201
|
Diaz CM, Macnab LT, Williams SM, Sullivan RKP, Pow DV. EAAT1 and D-serine expression are early features of human retinal development. Exp Eye Res 2007; 84:876-85. [PMID: 17379211 DOI: 10.1016/j.exer.2007.01.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2006] [Revised: 01/10/2007] [Accepted: 01/11/2007] [Indexed: 10/23/2022]
Abstract
In the developing central nervous system (CNS), the activation of N-methyl-D-aspartate (NMDA) receptors is probably an important regulator of processes such as synaptogenesis and neurite growth. NMDA receptor activation is dependent upon the homeostasis of glutamate and the presence of co-agonists such as D-serine. We have investigated the expression of the glutamate transporter excitatory amino acid transporter-1 (EAAT1 or GLAST) as the key regulator of retinal extracellular glutamate levels, and the ontogeny of D-serine expression in the developing human retina. The expression of EAAT1 and D-serine was compared to the temporal and spatial distribution of the synaptic vesicle marker synaptophysin and the synaptic vesicle glutamate transporter vGLUT1. We also examined the co-expression of EAAT1 and cellular retinaldehyde-binding protein (CRALBP), and the co-expression of EAAT1 and D-serine. Human retinae aged 10-20 weeks' gestation (WG) were prepared for immunocytochemistry or for Western blotting. Expression of EAAT1 was evident at 10 WG in cell bodies, processes and end-feet of radial glia-like cells at all retinal eccentricities. D-serine immunolabelling was also evident in radial glia-like cells by 12 WG. In contrast, immunoreactivity for synaptophysin only started to appear in the central retina at 12 WG whilst immunoreactivity for vGLUT was slightly later. EAAT1 and d-serine were co-localised to the same cell population. In addition, EAAT1 and CRALBP were also co-localised to the same cell population of radial glia-like cells, suggesting that the EAAT1 and D-serine-positive cells may be Müller cells. This study shows that key potential modifiers of NMDA receptor activity are present before synaptic vesicle proteins are evident and may thus play a role in shaping synaptogenesis in the developing human retina.
Collapse
Affiliation(s)
- Claudia M Diaz
- Discipline of Anatomy, School of Biomedical Sciences, University of Newcastle, Callaghan, NSW 2308, Australia.
| | | | | | | | | |
Collapse
|
202
|
Scolari MJ, Acosta GB. D-serine: a new word in the glutamatergic neuro-glial language. Amino Acids 2007; 33:563-74. [PMID: 17245616 DOI: 10.1007/s00726-006-0481-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2006] [Accepted: 11/22/2006] [Indexed: 01/07/2023]
Abstract
Gliotransmission is a process in which astrocytes are dynamic elements that influence synaptic transmission and synaptogenesis. The best-known gliotransmitters are glutamate and ATP. However, in the past decade, it has been demonstrated that D-serine, a D-amino acid, acts as a gliotransmitter in glutamatergic synapses. The physiological relevance of D-serine is sustained by the way in which it modulates the action of glutamatergic neurotransmission, neuronal migration and long-term potentiation (LTP). In addition, the synthesis and degradation mechanisms of D-serine have been proposed as potential therapeutic targets for the treatment of Alzheimer's disease, schizophrenia and related disorders. In the present review, detailed information is provided about the physiological and physiopathological relevance of D-serine, including metabolic and regulation aspects.
Collapse
Affiliation(s)
- M J Scolari
- Instituto de Investigaciones Farmacológicas (ININFA-CONICET-UBA), Buenos Aires, Argentina
| | | |
Collapse
|
203
|
Long KD, Mastropaolo J, Rosse RB, Deutsch SI. Exogenously administered D-serine failed to potentiate the ability of MK-801 to antagonize electrically precipitated seizures in nonhandled control and stressed mice. Eur Neuropsychopharmacol 2007; 17:53-7. [PMID: 16616833 DOI: 10.1016/j.euroneuro.2006.02.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2006] [Revised: 01/31/2006] [Accepted: 02/14/2006] [Indexed: 11/15/2022]
Abstract
NMDA receptor hypofunction (NRH) has been implicated in the pathophysiology of schizophrenia because of the ability of phencyclidine (PCP), a noncompetitive NMDA receptor antagonist, to precipitate a schizophreniform psychosis. The possible role that NRH plays in the pathophysiology of schizophrenia stimulated characterization of behaviors elicited by PCP and its analogues. For example, MK-801 (dizocilpine), a noncompetitive NMDA receptor antagonist that binds with higher affinity to the same hydrophobic channel domain as PCP, raises the threshold voltage required for the electrical precipitation of tonic hindlimb extension in mice. This ability of MK-801 is significantly reduced following stress. We showed that an exogenously administered glycine prodrug (i.e., milacemide) was able to potentiate MK-801's antiseizure efficacy in unstressed mice and restore MK-801's antiseizure efficacy in stressed animals. d-Serine may serve as an endogenous agonist for the obligatory glycine co-agonist site on the NMDA receptor complex. Orally administered d-serine has been studied clinically as an adjuvant therapeutic intervention in schizophrenia. Thus, we were surprised at its inability to potentiate MK-801's antiseizure efficacy in either control or stressed animals. These data do not support the development of d-serine as a viable therapeutic intervention for schizophrenia and, possibly, other disorders.
Collapse
Affiliation(s)
- Katrice D Long
- Mental Health Service Line, Department of Veterans Affairs Medical Center, 50 Irving Street, NW, Washington, DC 20422, USA
| | | | | | | |
Collapse
|
204
|
Hashimoto A, Yoshikawa M, Andoh H, Yano H, Matsumoto H, Kawaguchi M, Oka T, Kobayashi H. Effects of MK-801 on the expression of serine racemase and d-amino acid oxidase mRNAs and on the d-serine levels in rat brain. Eur J Pharmacol 2007; 555:17-22. [PMID: 17109841 DOI: 10.1016/j.ejphar.2006.09.062] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2006] [Accepted: 09/25/2006] [Indexed: 11/18/2022]
Abstract
We have investigated the acute effects of the increasing doses of non-competitive N-methyl-d-aspartate receptor antagonist MK-801 (0.2-1.6 mg/kg) on the expression of serine racemase and d-amino acid oxidase (DAO) mRNAs in several brain areas of rats. We have also evaluated the effects of the chronic administration of MK-801 (0.4 mg/kg) on the gene expression of serine racemase and DAO and on the d-serine concentrations. A dose-dependent augmentation of the expression of serine racemase mRNA was seen in most brain areas at both 1 and 4 h after the administration. In contrast, a drastic decline in the expression of DAO mRNA was observed in most brain areas 1 h after the MK-801 administration, whereas a dose-dependent elevation in the expression of DAO mRNA was observed in most brain areas 4 h after the administration. The chronic MK-801 administration produced a significant increase in the expression of serine racemase mRNA in almost all brain areas, whereas no significant changes were found in the level of DAO mRNA in most brain areas. In addition, the chronic administration caused a slight but significant elevation in the concentrations of d-serine in the cortex and striatum. These present findings indicate that increasing the serine racemase mRNA and no changes in the DAO mRNA after the chronic administration could contribute to the elevation of the d-serine level in the forebrain, and that serine racemase and DAO could play an important role in the regulation of N-methyl-d-aspartate receptors via the d-serine metabolism.
Collapse
Affiliation(s)
- Atsushi Hashimoto
- Department of Clinical Pharmacology, Tokai University School of Medicine, Isehara, Kanagawa 259-1143, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
205
|
Fuchs SA, Dorland L, de Sain-van der Velden MG, Hendriks M, Klomp LWJ, Berger R, de Koning TJ. D-serine in the developing human central nervous system. Ann Neurol 2006; 60:476-80. [PMID: 17068790 DOI: 10.1002/ana.20977] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
To elucidate the role of D-serine in human central nervous system, we analyzed D-serine, L-serine, and glycine concentrations in cerebrospinal fluid of healthy children and children with a defective L-serine biosynthesis (3-phosphoglycerate dehydrogenase deficiency). Healthy children showed high D-serine concentrations immediately after birth, both absolutely and relative to glycine and L-serine, declining to low values at infancy. D-Serine concentrations were almost undetectable in untreated 3-phosphoglycerate dehydrogenase-deficient patients. In one patient treated prenatally, D-serine concentration was nearly normal at birth and the clinical phenotype was normal. These observations suggest a pivotal role for D-serine in normal and aberrant human brain development.
Collapse
Affiliation(s)
- Sabine A Fuchs
- Department of Metabolic and Endocrine Diseases, University Medical Center Utrecht, Utrecht, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
206
|
Puyal J, Martineau M, Mothet JP, Nicolas MT, Raymond J. Changes in D-serine levels and localization during postnatal development of the rat vestibular nuclei. J Comp Neurol 2006; 497:610-21. [PMID: 16739185 DOI: 10.1002/cne.21016] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The patterns of development of the vestibular nuclei (VN) and their main connections involving glutamate neurotransmission offer a good model for studying the function of the glial-derived neuromodulator D-serine in synaptic plasticity. In this study we show that D-serine is present in the VN and we analyzed its distribution and the levels of expression of serine racemase and D-amino acid oxidase (D-AAO) at different stages of postnatal (P) development. From birth to P21, high levels of D-serine were detected in glial cells and processes in all parts of the VN. This period corresponded to high expression of serine racemase and low expression of D-AAO. On the other hand, in the mature VN D-serine displayed very low levels and was mainly localized in neuronal cell bodies and dendrites. This drop of D-serine in adult stages corresponded to an increasing expression of D-AAO at mature stages. High levels of glial D-serine during the first 3 weeks of postnatal development correspond to an intense period of plasticity and synaptogenesis and maturation of VN afferents, suggesting that D-serine could be involved in these phenomena. These results demonstrate for the first time that changes in D-serine levels and distribution occur during postnatal development in the central nervous system. The strong decrease of D-serine levels and the glial-to-neuronal switch suggests that D-serine may have distinct functional roles depending on the developmental stage of the vestibular network.
Collapse
Affiliation(s)
- Julien Puyal
- Department of Cell Biology and Morphology, University of Lausanne, 1005 Lausanne, Switzerland.
| | | | | | | | | |
Collapse
|
207
|
O'Brien KB, Bowser MT. Measuring D-serine efflux from mouse cortical brain slices using online microdialysis-capillary electrophoresis. Electrophoresis 2006; 27:1949-56. [PMID: 16703626 DOI: 10.1002/elps.200500770] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Efflux of a number of important neurochemicals, including D-serine, L-serine, taurine, glutamate, and gamma-aminobutyric acid (GABA), from mouse cortical brain slices housed in a 7 microL perfusion chamber was monitored using online microdialysis-CE (MD-CE). Analyte concentrations could be measured every 20-27 s using the MD-CE instrument. Stimulation with high potassium induced increased release of D-serine. Kainic acid (KA) induced D-serine release, but this release was not blocked by 6-cyano-7-nitroquinoxaline-2,3-dione, suggesting that alpha-amino-3-hydroxy-5-methyl-4-isoxazole-propionic acid/KA receptors do not mediate D-serine release. Application of L-serine, the precursor of D-serine, resulted in increased extracellular D-serine concentrations. L-Cysteine also increased extracellular D-serine levels in a partially Na+-dependent manner. The observed effects upon application of L-serine and L-cysteine support the involvement of ASC neutral amino acid transporters in regulating the extracellular concentration of D-serine concentration through competitive inhibition of uptake or increased release through heteroexchange.
Collapse
Affiliation(s)
- Kylie B O'Brien
- Department of Chemistry, University of Minnesota, Minneapolis, MN 55455, USA
| | | |
Collapse
|
208
|
Abstract
From a structural perspective, the predominant glial cell of the central nervous system, the astrocyte, is positioned to regulate synaptic transmission and neurovascular coupling: the processes of one astrocyte contact tens of thousands of synapses, while other processes of the same cell form endfeet on capillaries and arterioles. The application of subcellular imaging of Ca2+ signaling to astrocytes now provides functional data to support this structural notion. Astrocytes express receptors for many neurotransmitters, and their activation leads to oscillations in internal Ca2+. These oscillations induce the accumulation of arachidonic acid and the release of the chemical transmitters glutamate, d-serine, and ATP. Ca2+ oscillations in astrocytic endfeet can control cerebral microcirculation through the arachidonic acid metabolites prostaglandin E2 and epoxyeicosatrienoic acids that induce arteriole dilation, and 20-HETE that induces arteriole constriction. In addition to actions on the vasculature, the release of chemical transmitters from astrocytes regulates neuronal function. Astrocyte-derived glutamate, which preferentially acts on extrasynaptic receptors, can promote neuronal synchrony, enhance neuronal excitability, and modulate synaptic transmission. Astrocyte-derived d-serine, by acting on the glycine-binding site of the N-methyl-d-aspartate receptor, can modulate synaptic plasticity. Astrocyte-derived ATP, which is hydrolyzed to adenosine in the extracellular space, has inhibitory actions and mediates synaptic cross-talk underlying heterosynaptic depression. Now that we appreciate this range of actions of astrocytic signaling, some of the immediate challenges are to determine how the astrocyte regulates neuronal integration and how both excitatory (glutamate) and inhibitory signals (adenosine) provided by the same glial cell act in concert to regulate neuronal function.
Collapse
Affiliation(s)
- Philip G Haydon
- Silvio Conte Center for Integration at the Tripartite Synapse, Department of Neuroscience, University of Pennsylvania School of Medicine, PA 19104, USA.
| | | |
Collapse
|
209
|
Rae C, Moussa CEH, Griffin JL, Parekh SB, Bubb WA, Hunt NH, Balcar VJ. A metabolomic approach to ionotropic glutamate receptor subtype function: a nuclear magnetic resonance in vitro investigation. J Cereb Blood Flow Metab 2006; 26:1005-17. [PMID: 16395280 DOI: 10.1038/sj.jcbfm.9600257] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
A range of behaviours are elucidated via ionotropic glutamate receptors (iGluR). In this work, we examined the acute activation of iGluRs by a range of receptor ligands and effectors to see whether distinguishable metabolic sequelae were elucidated by the activity. We used a guinea-pig brain cortical tissue slice model using targeted receptor ligands ((RS)-(tetrazol-5-yl)glycine (TZG), (5S,10R)-(+)-5-methyl-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5,10-imine maleate (MK-801, dizocilpine), cis-4-[phosphomethyl]-piperidine-2-carboxylic acid (CGS 19755), (RS)-alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid, (2S, 3S, 4S)-2-carboxy-4-(1-methylethenyl)-3-pyrrolidineacetic acid (kainate) and D-serine (D-Ser), as well as compounds (quinolinic acid and kynurenic acid (KynA)) involved in some neuroinflammatory responses. The data were derived using 13C and 1H NMR spectroscopy, and analysed by metabolomic approaches and multivariate statistics. The metabolic effects of agonists at the three major classes of iGluR were easily separated from each other using this method. The classical N-methyl-D-aspartate receptor agonist TZG and the antagonist CGS 19755 produced excitatory and inhibitory metabolic responses, respectively, while the blocker MK-801 resulted in a significant decrease in net metabolism and produced the largest decrease in all metabolite pool sizes seen by any glutamatergic ligand we have studied. Quinolinic acid and KynA produced similar acute metabolic responses, which were unlike those to TZG or CGS 19755, but similar to that of D-Ser. D-Ser was highly stimulatory of net flux into the Krebs cycle. These data show that the metabolic response to iGluR perturbation in vitro is a sensitive discriminator of function.
Collapse
Affiliation(s)
- Caroline Rae
- School of Molecular and Microbial Biosciences, The University of Sydney, Sydney, New South Wales, Australia.
| | | | | | | | | | | | | |
Collapse
|
210
|
Almond SL, Fradley RL, Armstrong EJ, Heavens RB, Rutter AR, Newman RJ, Chiu CS, Konno R, Hutson PH, Brandon NJ. Behavioral and biochemical characterization of a mutant mouse strain lacking D-amino acid oxidase activity and its implications for schizophrenia. Mol Cell Neurosci 2006; 32:324-34. [PMID: 16843004 DOI: 10.1016/j.mcn.2006.05.003] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2006] [Revised: 04/26/2006] [Accepted: 05/08/2006] [Indexed: 10/24/2022] Open
Abstract
D-amino acid oxidase (DAO) degrades D-serine, a co-agonist at the NMDA receptor (NMDAR). Hypofunction of the NMDAR has been suggested to contribute to the pathophysiology of schizophrenia. Intriguingly, DAO has been recently identified as a risk factor for schizophrenia through genetic association studies. A naturally occurring mouse strain (ddY/DAO-) has been identified which lacks DAO activity. We have characterized this strain both behaviorally and biochemically to evaluate DAO as a target for schizophrenia. We have confirmed that this strain lacks DAO activity and shown for the first time it has increased occupancy of the NMDAR glycine site due to elevated extracellular D-serine levels and has enhanced NMDAR function in vivo. Furthermore, the ddY/DAO- strain displays behaviors which suggest that it will be a useful tool for evaluation of the clinical benefit of DAO inhibition in schizophrenia.
Collapse
Affiliation(s)
- S L Almond
- Merck Sharp and Dohme, Neuroscience Research Centre, Harlow, Essex, CM20 2QR, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
211
|
Martineau M, Baux G, Mothet JP. D-serine signalling in the brain: friend and foe. Trends Neurosci 2006; 29:481-91. [PMID: 16806506 DOI: 10.1016/j.tins.2006.06.008] [Citation(s) in RCA: 121] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2005] [Revised: 04/10/2006] [Accepted: 06/08/2006] [Indexed: 01/08/2023]
Abstract
Neurons and glia talk to each other at synapses. Glia sense the level of synaptic activity and consequently regulate its efficacy via the release of neuromodulators. One such glia-derived modulator is D-serine, an amino acid that serves as an endogenous ligand for the strychnine-insensitive glycine-binding site of NMDA glutamate receptors. Here, we provide an overview of recent findings on the mechanisms of its synthesis, release and clearance at synapses, with an emphasis on the dichotomy of behaviour of this novel messenger in the brain. The discovery of the good and ugly faces of this gliotransmitter is an important issue of modern neuroscience that has repercussions for the treatment of brain disorders.
Collapse
Affiliation(s)
- Magalie Martineau
- Laboratoire de Neurobiologie Morphofonctionnelle, INSERM U378, 146 Rue Léo Saignat, 33077 Bordeaux, France
| | | | | |
Collapse
|
212
|
Junjaud G, Rouaud E, Turpin F, Mothet JP, Billard JM. Age-related effects of the neuromodulator D-serine on neurotransmission and synaptic potentiation in the CA1 hippocampal area of the rat. J Neurochem 2006; 98:1159-66. [PMID: 16790028 DOI: 10.1111/j.1471-4159.2006.03944.x] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The effects of the co-agonist of the N-methyl-D-aspartate receptor (NMDAr) D-serine on glutamatergic neurotransmission and synaptic potentiation were studied in the CA1 hippocampal field of young (3-5 months old) and aged (25-27 months old) Sprague-Dawley rats using ex vivo extracellular electrophysiological recording techniques. Exogenous d-serine depressed fast neurotransmission mediated by the alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid/kainate subtype of glutamate receptors in young but not in aged rats by acting on inhibitory glycinergic interneurons. In contrast, D-serine dose-dependently enhanced NMDAr-mediated synaptic responses in both groups of animals, but with a larger magnitude in aged rats, thus preventing the age-related decrease in NMDAr activation. D-serine also increased the magnitude of long-term potentiation in aged but not in young rats. Finally, D-serine levels were dramatically reduced in hippocampal tissues of aged rats. Taken together, these results indicate a weaker activation of the NMDAr glycine modulatory site by endogenous D-serine in aged animals, which accounts for a reduced NMDAr contribution to synaptic plasticity in ageing.
Collapse
Affiliation(s)
- G Junjaud
- Neurobiologie de la Croissance et de la Sénescence, INSERM, Faculté de Médecine, Université Paris-Descartes, Paris, France
| | | | | | | | | |
Collapse
|
213
|
Mothet JP, Rouaud E, Sinet PM, Potier B, Jouvenceau A, Dutar P, Videau C, Epelbaum J, Billard JM. A critical role for the glial-derived neuromodulator D-serine in the age-related deficits of cellular mechanisms of learning and memory. Aging Cell 2006; 5:267-74. [PMID: 16842499 DOI: 10.1111/j.1474-9726.2006.00216.x] [Citation(s) in RCA: 131] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Age-associated deficits in learning and memory are closely correlated with impairments of synaptic plasticity. Analysis of N-methyl-D-aspartate receptor (NMDAr)-dependent long-term potentiation (LTP) in CA1 hippocampal slices indicates that the glial-derived neuromodulator D-serine is required for the induction of synaptic plasticity. During aging, the content of D-serine and the expression of its synthesizing enzyme serine racemase are significantly decreased in the hippocampus. Impaired LTP and NMDAr-mediated synaptic potentials in old rats are rescued by exogenous D-serine. These results highlight the critical role of glial cells and presumably astrocytes, through the availability of D-serine, in the deficits of synaptic mechanisms of learning and memory that occur in the course of aging.
Collapse
Affiliation(s)
- J P Mothet
- Neurobiologie de la Croissance et de la Sénescence, UMR 549 INSERM, Faculté de Médecine, Université Paris-Descartes, 2 ter rue d'Alésia, 75014 Paris, France
| | | | | | | | | | | | | | | | | |
Collapse
|
214
|
Dixon SM, Li P, Liu R, Wolosker H, Lam KS, Kurth MJ, Toney MD. Slow-binding human serine racemase inhibitors from high-throughput screening of combinatorial libraries. J Med Chem 2006; 49:2388-97. [PMID: 16610782 DOI: 10.1021/jm050701c] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
One-bead one-compound combinatorial chemistry together with a high-throughput screen based on fluorescently labeled enzyme allowed the identification of slow binding inhibitors of human serine racemase (hSR). A peptide library of topographically segregated encoded resin beads was synthesized, and several hSR-binding compounds were isolated, identified, and resynthesized for further kinetic study. Of these, several showed inhibitory effects with moderate potency (high micromolar K(I)s) toward hSR. A clear structural motif was identified consisting of 3-phenylpropionic acid and histidine moieties. Importantly, the inhibitors identified showed no structural similarities to the natural substrate, L-serine. Detailed kinetic analyses of the properties of selected inhibitors show that the screening protocol used here selectively identifies slow binding inhibitors. They provide a pharmacophore for the future isolation of more potent ligands that may prove useful in probing and understanding the biological role of hSR.
Collapse
Affiliation(s)
- Seth M Dixon
- Department of Chemistry, University of California, One Shields Avenue, Davis, CA 95616, USA
| | | | | | | | | | | | | |
Collapse
|
215
|
Panatier A, Theodosis DT, Mothet JP, Touquet B, Pollegioni L, Poulain DA, Oliet SHR. Glia-Derived d-Serine Controls NMDA Receptor Activity and Synaptic Memory. Cell 2006; 125:775-84. [PMID: 16713567 DOI: 10.1016/j.cell.2006.02.051] [Citation(s) in RCA: 657] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2005] [Revised: 01/03/2006] [Accepted: 02/28/2006] [Indexed: 02/05/2023]
Abstract
The NMDA receptor is a key player in excitatory transmission and synaptic plasticity in the central nervous system. Its activation requires the binding of both glutamate and a co-agonist like D-serine to its glycine site. As D-serine is released exclusively by astrocytes, we studied the physiological impact of the glial environment on NMDA receptor-dependent activity and plasticity. To this end, we took advantage of the changing astrocytic ensheathing of neurons occurring in the supraoptic nucleus during lactation. We provide direct evidence that in this hypothalamic structure the endogenous co-agonist of NMDA receptors is D-serine and not glycine. Consequently, the degree of astrocytic coverage of neurons governs the level of glycine site occupancy on the NMDA receptor, thereby affecting their availability for activation and thus the activity dependence of long-term synaptic changes. Such a contribution of astrocytes to synaptic metaplasticity fuels the emerging concept that astrocytes are dynamic partners of brain signaling.
Collapse
|
216
|
Williams SM, Diaz CM, Macnab LT, Sullivan RKP, Pow DV. Immunocytochemical analysis of D-serine distribution in the mammalian brain reveals novel anatomical compartmentalizations in glia and neurons. Glia 2006; 53:401-11. [PMID: 16342169 DOI: 10.1002/glia.20300] [Citation(s) in RCA: 104] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
D-Serine is a co-agonist at the NMDA receptor glycine-binding site. Early studies have emphasized a glial localization for D-serine. However the nature of the glial cells has not been fully resolved, because previous D-serine antibodies needed glutaraldehyde-fixation, precluding co-localization with fixation-sensitive antigens. We have raised a new D-serine antibody optimized for formaldehyde-fixation. Light and electron microscopic observations indicated that D-serine was concentrated into vesicle-like compartments in astrocytes and radial glial cells, rather than being distributed uniformly in the cytoplasm. In aged animals, patches of cortex and hippocampus were devoid of immunolabeling for D-serine, suggesting that impaired glial modulation of forebrain glutamatergic signaling might occur. Dual immunofluorescence labeling for glutamate and D-serine revealed D-serine in a subset of glutamatergic neurons, particularly in brainstem regions and in the olfactory bulbs. Microglia also contain D-serine. We suggest that some D-serine may be derived from the periphery. Collectively, our data suggest that the cellular compartmentation and distribution of D-serine may be more complex and extensive than previously thought and may have significant implications for our understanding of the role of D-serine in disease states including hypoxia and schizophrenia.
Collapse
Affiliation(s)
- Susan M Williams
- Department of Anatomy, School of Biomedical Sciences, University of Newcastle, Callaghan, New South Wales 2308, Australia
| | | | | | | | | |
Collapse
|
217
|
Kartvelishvily E, Shleper M, Balan L, Dumin E, Wolosker H. Neuron-derived D-serine release provides a novel means to activate N-methyl-D-aspartate receptors. J Biol Chem 2006; 281:14151-62. [PMID: 16551623 DOI: 10.1074/jbc.m512927200] [Citation(s) in RCA: 229] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
D-serine is a coagonist of N-methyl-D-aspartate (NMDA) receptors that occurs at high levels in the brain. Biosynthesis of D-serine is carried out by serine racemase, which converts L- to D-serine. D-serine has been demonstrated to occur in glial cells, leading to the proposal that astrocytes are the only source of D-serine. We now report significant amounts of serine racemase and D-serine in primary neuronal cultures and neurons in vivo. Several neuronal culture types expressed serine racemase, and D-serine synthesis was comparable with that in glial cultures. Immunohistochemical staining of brain sections with new antibodies revealed the presence of serine racemase and D-serine in neurons. Cortical neurons expressing serine racemase also expressed the NR2a subunit in situ. Neuron-derived D-serine contributes to NMDA receptor activation in cortical neuronal cultures. Degradation of endogenous D-serine by addition of the recombinant enzyme D-serine deaminase diminished NMDA-elicited excitotoxicity. Release of neuronal D-serine was mediated by ionotropic glutamate receptor agonists such as NMDA, alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid, and kainate. Removal of either external Ca2+ or Na+ blocked D-serine release. Release of D-serine was mostly through a cytosolic route because it was insensitive to bafilomycin A1, a potent inhibitor of vesicular neurotransmitter uptake. D-serine was also not transported into purified synaptic vesicles under conditions optimal for the uptake of known transmitters. Our results suggest that neurons are a major source of D-serine. Glutamate-induced neuronal D-serine release provides a novel mechanism for activating NMDA receptors by an autocrine or paracrine way.
Collapse
Affiliation(s)
- Elena Kartvelishvily
- Department of Biochemistry, Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 31096, Israel
| | | | | | | | | |
Collapse
|
218
|
Guo JD, Wang H, Zhang YQ, Zhao ZQ. Distinct effects of D-serine on spinal nociceptive responses in normal and carrageenan-injected rats. Biochem Biophys Res Commun 2006; 343:401-6. [PMID: 16546123 DOI: 10.1016/j.bbrc.2006.02.156] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2006] [Accepted: 02/25/2006] [Indexed: 11/30/2022]
Abstract
Single unit extracellular recordings from dorsal horn neurons were performed with glass micropipettes in pentobarbital-anesthetized rats. A total of 60 wide dynamic range (WDR) neurons were obtained from 34 rats. In normal rats (20/34), spinally administered D-serine (10 nmol), a putative endogenous agonist of glycine site of NMDA receptors, significantly enhanced the C- but not Abeta-, and Adelta-fiber responses of WDR neurons in the spinal dorsal horn. When 1 nmol of the glycine site antagonist 7-chlorokynurenic acid (7-CK) was co-administered with 10 nmol D-serine, the facilitation of D-serine on C-fiber response was completely blocked. 7-CK (1 nmol) alone failed to influence Abeta-, Adelta-, and C-fiber responses of WDR neurons. In contrast, in carrageenan-injected rats (14/34), 10 nmol D-serine had no effect on C-fiber response, while 1 nmol 7-CK per se markedly depressed C-fiber response of WDR neurons. These findings suggest that under physiological conditions, glycine sites in the spinal cord were available but became saturated following peripheral inflammation. Thus, increased endogenous d-serine or glycine may be involved in nociceptive transmission by modulating NMDA receptor activities. The glycine site of NMDA receptors may become a target for the prevention of inflammatory pain.
Collapse
Affiliation(s)
- Ji-Dong Guo
- Institute of Neurobiology, Fudan University, Shanghai 200433, China
| | | | | | | |
Collapse
|
219
|
Ren WH, Guo JD, Cao H, Wang H, Wang PF, Sha H, Ji RR, Zhao ZQ, Zhang YQ. Is endogenous d-serine in the rostral anterior cingulate cortex necessary for pain-related negative affect? J Neurochem 2006; 96:1636-47. [PMID: 16476080 DOI: 10.1111/j.1471-4159.2006.03677.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Functional activation of NMDA receptors requires co-activation of glutamate- and glycine-binding sites. D-serine is considered to be an endogenous ligand for the glycine site of NMDA receptors. Using a combination of a rat formalin-induced conditioned place avoidance (F-CPA) behavioral model and whole-cell patch-clamp recording in rostral anterior cingulate cortex (rACC) slices, we examined the effects of d-amino acid oxidase (DAAO), an endogenous D-serine-degrading enzyme, and 7-chlorokynurenate (7Cl-KYNA), an antagonist of the glycine site of NMDA receptors, on pain-related aversion. Degradation of endogenous D-serine with DAAO, or selective blockade of the glycine site of NMDA receptors by 7Cl-KYNA, effectively inhibited NMDA-evoked currents in rACC slices. Intra-rACC injection of DAAO (0.1 U) and 7Cl-KYNA (2 and 0.2 mM, 0.6 microL per side) 20 min before F-CPA conditioning greatly attenuated F-CPA scores, but did not affect formalin-induced acute nociceptive behaviors and electric foot shock-induced conditioned place avoidance. This study reveals for the first time that endogenous D-serine plays a critical role in pain-related aversion by activating the glycine site of NMDA receptors in the rACC. Furthermore, these results extend our hypothesis that activation of NMDA receptors in the rACC is necessary for the acquisition of specific pain-related negative emotion. Thus a new and promising strategy for the prevention of chronic pain-induced emotional disturbance might be raised.
Collapse
Affiliation(s)
- Wen-Hua Ren
- Institutes of Brain Science, Institute of Neurobiology [corrected] Fudan University, Shanghai, China
| | | | | | | | | | | | | | | | | |
Collapse
|
220
|
Martineau M, Baux G, Mothet JP. Gliotransmission at central glutamatergic synapses: D-serine on stage. ACTA ACUST UNITED AC 2006; 99:103-10. [PMID: 16455236 DOI: 10.1016/j.jphysparis.2005.12.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Long ignored and only considered as housekeeping cells for neurons, astroglial cells in the last decade have gained increasing attention as key players of higher functions in healthy brain, but also in diseases. This revolution in our way to think the active brain culminates in the concept of a tripartite synapse, which considers glial cells and notably astrocytes as an integral dynamic partner of synapses. Glia not only listens but also talks to neurons through the release of neuroactive substances. Recently much attention has been paid to the role played by the atypical amino acid D-serine in this signalling pathway. This molecule synthesized through racemization of L-serine fulfils most criteria as a gliotransmitter and as the endogenous ligand for the strychnine-insensitive glycine binding site of the NMDA receptors. D-serine is considered to be a permissive factor for long-term changes in synaptic plasticity and neuronal migration through activation of NMDA receptors. It is also known that disturbance of NMDA receptors activity can cause cell death. Not surprisingly, then, D-serine has also been found to promote neurons death in experimental models of beta-amyloid peptide-induced neuroinflammation and of ischaemia by overactivating the NMDA receptors. Finally, in a more recent past, studies have pointed to the molecular mechanisms leading to D-serine release into and removal from the synaptic cleft.
Collapse
Affiliation(s)
- Magalie Martineau
- Laboratoire de Neurobiologie Cellulaire et Moléculaire, CNRS UPR 9040, Institut Fédératif de Neurobiologie Alfred Fessard, 1 Avenue de la Terrasse, 91198 Gif-sur-Yvette Cedex, France
| | | | | |
Collapse
|
221
|
Fujii K, Maeda K, Hikida T, Mustafa AK, Balkissoon R, Xia J, Yamada T, Ozeki Y, Kawahara R, Okawa M, Huganir RL, Ujike H, Snyder SH, Sawa A. Serine racemase binds to PICK1: potential relevance to schizophrenia. Mol Psychiatry 2006; 11:150-7. [PMID: 16314870 DOI: 10.1038/sj.mp.4001776] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Accumulating evidence from both genetic and clinico-pharmacological studies suggests that D-serine, an endogenous coagonist to the NMDA subtype glutamate receptor, may be implicated in schizophrenia (SZ). Although an association of genes for D-serine degradation, such as D-amino acid oxidase and G72, has been reported, a role for D-serine in SZ has been unclear. In this study, we identify and characterize protein interacting with C-kinase (PICK1) as a protein interactor of the D-serine synthesizing enzyme, serine racemase (SR). The binding of endogenous PICK1 and SR requires the PDZ domain of PICK1. The gene coding for PICK1 is located at chromosome 22q13, a region frequently linked to SZ. In a case-control association study using well-characterized Japanese subjects, we observe an association of the PICK1 gene with SZ, which is more prominent in disorganized SZ. Our findings implicating PICK1 as a susceptibility gene for SZ are consistent with a role for D-serine in the disease.
Collapse
Affiliation(s)
- K Fujii
- Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
222
|
Jouvenceau A, Dutar P. A role for the protein phosphatase 2B in altered hippocampal synaptic plasticity in the aged rat. ACTA ACUST UNITED AC 2006; 99:154-61. [PMID: 16442785 DOI: 10.1016/j.jphysparis.2005.12.009] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Synaptic plasticity following NMDA application on hippocampal slices from young (3-5 months) and aged (24-27 months) rats was compared. In young rats, NMDA (20 microM) induced opposite effects depending on the duration of the application. A short (1 min) or long (5 min) application induced a long-term depression of synaptic activity while a 3 min application induced a potentiation. In aged rats, however, NMDA application always induced depression, regardless of the duration. To identify mechanisms which could explain the difference observed between young and aged rats, we explored changes in NMDA receptor activation and changes in kinase/phosphatase balance. We first demonstrate that the potentiation present in slices from young rats was not restored in aged rats by exogenous application of the co-agonist of NMDA receptor d-serine (which compensates for the changes in NMDAR activation seen in aged rats). This suggested that alterations in synaptic plasticity activation mainly involve intracellular mechanisms. We next showed that the participation of the kinases PKA and CaMKII in the NMDA-induced potentiation in young rats is negligible. Finally, we determined the consequences of phosphatase inhibition in aged rats. Incubation of slices in okadaic acid (a PP1/PP2B antagonist) did not affect the depression induced by a 3min NMDA application in aged rats. The PP2B antagonist FK506 restored potentiation in aged rats (3 min NMDA application). In hippocampal neurons from aged rats, a depression is always observed, suggesting a preferential activation of PP2B by NMDA in these neurons.
Collapse
Affiliation(s)
- Anne Jouvenceau
- INSERM U549, Neurobiologie de la croissance et de la sénescence, 2 ter rue d'Alésia, 75014 Paris, France.
| | | |
Collapse
|
223
|
Oliet SHR, Mothet JP. Molecular determinants ofD-serine-mediated gliotransmission: From release to function. Glia 2006; 54:726-737. [PMID: 17006901 DOI: 10.1002/glia.20356] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Since the late 80s, it is recognized that functional activation of N-methyl D-aspartate receptors (NMDARs) requires the binding of both glutamate and glycine. However, the surprising discovery that the wrong isomer of serine, D-serine, is present in mammals has profoundly challenged this dogmatic model of NMDARs activation. Indeed, there are accumulating evidence indicating that D-serine is the endogenous ligand for the glycine modulatory binding site in many brain areas. D-Serine is synthesized in glial cells by serine racemase (SR) and released upon activation of glutamate receptors. Here, we will provide an overview of recent findings on the molecular and cellular mechanisms involved in the synthesis and release of this gliotransmitter. We will also emphasize the function of this novel messenger in regulating synaptic excitatory transmission and plasticity in different brain areas. Because it fulfils all criteria for a gliotransmitter, D-serine regulatory action on glutamatergic transmission further illustrates the emerging concept of the "tripartite synapse".
Collapse
Affiliation(s)
- Stéphane H R Oliet
- INSERM U378 and Université Victor Segalen Bordeaux 2, 146 rue Léo Saignat, 33077 Bordeaux, France
| | - Jean-Pierre Mothet
- INSERM U378 and Université Victor Segalen Bordeaux 2, 146 rue Léo Saignat, 33077 Bordeaux, France
- Institut de Neurobiologie Alfred Fessard, Laboratoire de Neurobiologie Cellulaire et Moléculaire, CNRS UPR9040, 1 avenue de la Terrasse, 91198 Gif-sur-Yvette, France
| |
Collapse
|
224
|
Dememes D, Mothet JP, Nicolas MT. Cellular distribution of d-serine, serine racemase and d-amino acid oxidase in the rat vestibular sensory epithelia. Neuroscience 2006; 137:991-7. [PMID: 16289842 DOI: 10.1016/j.neuroscience.2005.09.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2005] [Revised: 09/14/2005] [Accepted: 09/15/2005] [Indexed: 10/25/2022]
Abstract
Glutamate is the main neurotransmitter at the synapses between sensory cells and primary afferents in the peripheral vestibular system. Evidence has recently been obtained demonstrating that the atypical amino acid D-serine is the main endogenous co-agonist of the N-methyl-D-aspartate receptors in the CNS. We studied the distribution of D-serine and its synthesizing and degrading enzymes, serine racemase and d-amino acid oxidase in the rat vestibular sensory epithelium using immunocytochemistry. D-serine, serine racemase and D-amino acid oxidase were localized in the transitional cells, which are parasensory cells located between the sensory epithelium and the dark cells. The dark cells expressed only serine racemase. D-Serine was also detected in the supporting cells of the sensory epithelium. These cells, which are in close contact with glutamatergic synapses, express GLAST, a glial specific transporter for glutamate. They may have similar functions to glial cells in the CNS and thus expression of D-serine suggests a neuromodulator role for D-serine at the glutamatergic synapses in the peripheral vestibular system. Our data also indicate that the metabolism of D-serine is not restricted to glial cells suggesting that the amino acid may play an additional role in the peripheral nervous system.
Collapse
Affiliation(s)
- D Dememes
- INM, INSERM U583, Hôpital St Eloi, 34091 Montpellier Cx5, France
| | | | | |
Collapse
|
225
|
Strísovský K, Jirásková J, Mikulová A, Rulísek L, Konvalinka J. Dual substrate and reaction specificity in mouse serine racemase: identification of high-affinity dicarboxylate substrate and inhibitors and analysis of the beta-eliminase activity. Biochemistry 2005; 44:13091-100. [PMID: 16185077 DOI: 10.1021/bi051201o] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Mouse serine racemase (mSR) is a pyridoxal 5'-phosphate dependent enzyme that catalyzes the biosynthesis of the N-methyl-d-aspartate receptor coagonist d-serine in the brain. Furthermore, mSR catalyzes beta-elimination of serine and l-serine-O-sulfate into pyruvate. The biological significance of this beta-elimination activity and the factors influencing mSR substrate and reaction specificity, which are crucial for prospective inhibitor design, are poorly understood. Using a bacterial expression system and ATP-agarose affinity chromatography, we have generated a pure and active recombinant mSR and investigated its substrate and reaction specificity in vitro by analyzing a systematic series of compounds derived from l-Ser and l-serine-O-sulfate. The analysis revealed several competitive inhibitors of serine racemization including glycine (K(I) = 1.63 mM), several dicarboxylic acids including malonate (K(I) = 0.077 mM), and l-erythro-3-hydroxyaspartate (K(I) = 0.049 mM). The latter compound represents the most effective inhibitor of SR reported to date. A simple inversion of the beta-carbon configuration of the compound yields an excellent beta-elimination substrate l-threo-3-hydroxyaspartate. Inhibition analysis indicates that racemization and beta-elimination activities of mSR reside at the same active site. While the racemization activity is specific to serine, the beta-elimination activity has a broader specificity for l-amino acids with a suitable leaving group at the beta-carbon and optimal spatial orientation of the alpha-carboxyl and leaving groups. The possible implications of our observations for inhibitor design, regulation of activity, and function of mSR are discussed.
Collapse
Affiliation(s)
- Kvido Strísovský
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo nám. 2, Praha 6, 166 10, Czech Republic
| | | | | | | | | |
Collapse
|
226
|
Kholmanskikh SS, Koeller HB, Wynshaw-Boris A, Gomez T, Letourneau PC, Ross ME. Calcium-dependent interaction of Lis1 with IQGAP1 and Cdc42 promotes neuronal motility. Nat Neurosci 2005; 9:50-7. [PMID: 16369480 DOI: 10.1038/nn1619] [Citation(s) in RCA: 141] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2005] [Accepted: 11/22/2005] [Indexed: 11/09/2022]
Abstract
Lis1 gene defects impair neuronal migration, causing the severe human brain malformation lissencephaly. Although much is known about its interactions with microtubules, microtubule-binding proteins such as CLIP-170, and with the dynein motor complex, the response of Lis1 to neuronal motility signals has not been elucidated. Lis1 deficiency is associated with deregulation of the Rho-family GTPases Cdc42, Rac1 and RhoA, and ensuing actin cytoskeletal defects, but the link between Lis1 and Rho GTPases remains unclear. We report here that calcium influx enhances neuronal motility through Lis1-dependent regulation of Rho GTPases. Lis1 promotes Cdc42 activation through interaction with the calcium sensitive GTPase scaffolding protein IQGAP1, maintaining the perimembrane localization of IQGAP1 and CLIP170 and thereby tethering microtubule ends to the cortical actin cytoskeleton. Lis1 thus is a key component of neuronal motility signal transduction that regulates the cytoskeleton by complexing with IQGAP1, active Cdc42 and CLIP-170 upon calcium influx.
Collapse
Affiliation(s)
- Stanislav S Kholmanskikh
- Department of Neurology and Neuroscience, Weill Medical College of Cornell University, 1300 York Avenue, New York, New York 10021, USA
| | | | | | | | | | | |
Collapse
|
227
|
Taniguchi G, Yamamoto N, Tsuchida H, Umino A, Shimazu D, Sakurai SI, Takebayashi H, Nishikawa T. Cloning of a D-serine-regulated transcript dsr-2 from rat cerebral neocortex. J Neurochem 2005; 95:1541-9. [PMID: 16277602 DOI: 10.1111/j.1471-4159.2005.03535.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
D-serine is now considered to be an endogenous co-agonist of the NMDA receptor in mammalian brain. To obtain insight into the molecular mechanisms underlying D-serine metabolism and function, we explored transcripts that are responsive to D-serine in the neocortex of the 8-day-old infant rat by a differential cloning technique, RNA arbitrarily primed PCR. We isolated a novel D-serine inducible transcript, D-serine-responsive transcript-2 (dsr-2), that was exclusively expressed in the brain. Sequence analysis of the corresponding cDNAs to the transcript revealed that the dsr-2 mRNA consists of 7199 nucleotides with an open reading frame encoding 111 amino acids. The dsr-2 gene was located on the reverse strand within an intron of the neurexin-3alpha gene, mapped to rat chromosome 6q24-31. The regional distribution of the basal expression of dsr-2 and its ontogenic changes in the brain closely correlated with those of free D-serine and of NMDA receptor R2B subunit mRNA, but were somewhat different from those of the neurexin-3alpha transcript. These findings suggest that dsr-2 may be involved in D-serine metabolism and/or function, and in the interactions between D-serine, NMDA receptor and neurexin-3alpha, in mammalian brain.
Collapse
Affiliation(s)
- Go Taniguchi
- Section of Psychiatry and Behavioral Sciences, Tokyo Medical and Dental University Graduate School, Tokyo, Japan
| | | | | | | | | | | | | | | |
Collapse
|
228
|
Sanchez-Perez A, Llansola M, Cauli O, Felipo V. Modulation of NMDA receptors in the cerebellum. II. Signaling pathways and physiological modulators regulating NMDA receptor function. THE CEREBELLUM 2005; 4:162-70. [PMID: 16147948 DOI: 10.1080/14734220510008003] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
NMDA receptors in cerebellum have specific characteristics that make their function and modulation different from those of NMDA receptors in other brain areas. The properties of the NMDA receptor that modulate its function: Subunit composition, post-translational modifications and synaptic localization are summarized in an accompanying article. In this review we summarize how different signaling molecules modulate the function of NMDA receptors. The function of the receptors is modulated by the co-agonists glycine and serine and this modulation is different in cerebellum than in other areas. The NMDA receptor also has binding sites for polyamines that regulate its function. Other signaling molecules that modulate NMDA receptors function are: cAMP, neurotrophic factors such as BDNF, FGF-2 or neuregulins. These and other molecules allow an interplay between NMDA receptors and other receptors for neurotransmitters that may in this way modulate NMDA receptor function. This has been reported, for example, for metabotropic glutamate receptors. The expression and function of NMDA receptor is also modulated by synaptic activity, allowing an adaptation of the receptors function to the external inputs. NMDA receptors modulate important cerebral processes. NMDA receptors in different brain areas seem to modulate different processes. Cerebellar NMDA receptors play a special role in the modulation of motor learning and coordination. This is also briefly reviewed.
Collapse
Affiliation(s)
- Ana Sanchez-Perez
- Laboratory of Neurobiology, Centro de Investigacion Principe Felipe, Fundación Valenciana de Investigaciones Biomedicas, Valencia, Spain
| | | | | | | |
Collapse
|
229
|
Shimazu D, Yamamoto N, Umino A, Ishii S, Sakurai SI, Nishikawa T. Inhibition of D-serine accumulation in the Xenopus oocyte by expression of the rat ortholog of human 3'-phosphoadenosine 5'-phosphosulfate transporter gene isolated from the neocortex as D-serine modulator-1. J Neurochem 2005; 96:30-42. [PMID: 16277611 DOI: 10.1111/j.1471-4159.2005.03501.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
D-serine in mammalian brains has been suggested to be an endogenous co-agonist of the NMDA-type glutamate receptor. We have explored the molecules regulating D-serine uptake and release from the rat neocortex cDNA library using a Xenopus oocyte expression system, and isolated a cDNA clone designated as dsm-1 (D-serine modulator-1) encoding a protein that reduces the accumulation of D-serine to the oocyte. dsm-1 is the rat orthologue of the human 3'-phosphoadenosine 5'-phosphosulfate transporter 1 (PAPST1) gene. The hydropathy analysis of the deduced amino acid sequence of the Dsm-1 protein predicts the 10 transmembrane domains with a long hydrophobic stretch in the C-terminal like some amino acid transporters. The dsm-1 mRNA is predominantly expressed in the forebrain areas that are enriched with D-serine and NMDA receptors, and in the liver. The transient expression of dsm-1 in COS-7 cells demonstrates a partially Golgi apparatus-related punctuate distribution throughout the cytoplasm with a concentration near the nucleus. dsm-1-expressing oocytes diminishes the sodium-dependent and -independent accumulation of D-serine and the basal levels of the intrinsic D-serine and increases the rate of release of the pre-loaded D-serine. These findings indicate that dsm-1 may, at least in part, be involved in the D-serine translocation across the vesicular or plasma membranes in the brain, and thereby control the extra- and intracellular contents of D-serine.
Collapse
Affiliation(s)
- Dai Shimazu
- Section of Psychiatry and Behavioral Sciences, Tokyo Medical and Dental University Graduate School, Tokyo, Japan
| | | | | | | | | | | |
Collapse
|
230
|
Ciriacks CM, Bowser MT. Measuring the effect of glutamate receptor agonists on extracellular D-serine concentrations in the rat striatum using online microdialysis-capillary electrophoresis. Neurosci Lett 2005; 393:200-5. [PMID: 16266784 DOI: 10.1016/j.neulet.2005.09.080] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2005] [Revised: 09/17/2005] [Accepted: 09/26/2005] [Indexed: 10/25/2022]
Abstract
Online microdialysis-capillary electrophoresis (CE) was used to measure the changes in extracellular D-serine concentration in response to the application of glutamate agonists and antagonists in the rat striatum. The microdialysis-CE assay was capable of measuring concentration changes as small as 8% with a sampling rate of 12-15s. Kainic acid (KA) induced increases in D- and L-serine concentrations. Application of the non-NMDA receptor antagonist CNQX did not affect the increases observed for D- or L-serine, suggesting a nonspecific effect. NMDA also induced increases in D-serine, L-serine, glutamate and GABA concentrations. These increases were attenuated by the NMDA receptor antagonist MK-801.
Collapse
Affiliation(s)
- Chanda M Ciriacks
- University of Minnesota, Department of Chemistry, 207 Pleasant Street SE, Minneapolis, MN 55455, USA
| | | |
Collapse
|
231
|
Miao H, Rubakhin SS, Sweedler JV. Confirmation of peak assignments in capillary electrophoresis using immunoprecipitation. Application to D-aspartate measurements in neurons. J Chromatogr A 2005; 1106:56-60. [PMID: 16199049 DOI: 10.1016/j.chroma.2005.09.037] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2005] [Revised: 09/14/2005] [Accepted: 09/16/2005] [Indexed: 10/25/2022]
Abstract
Capillary electrophoresis (CE) with laser-induced fluorescence (LIF) detection is a powerful tool for analysis of samples ranging from tissue extracts to single cells. However, accurate peak identification in electropherograms is challenging when complex biological samples are analyzed, as often matching a migration time between an analyte and corresponding standard may be insufficient to confirm the peak's identity. A method which combines single-step immunoprecipitation and CE-LIF analysis for investigation of the chiral amino acids in single cells and small tissue samples is demonstrated. D-Aspartate (D-Asp) has been reported in the central nervous system of the invertebrate neurobiological model Aplysia californica. In order to confirm the identity of D-Asp signal in the complex electropherograms of nerve tissue extracts and individual neurons, anti-D-Asp serum, preincubated with L-Asp conjugate, is added to the sample. This selectively binds the free D-Asp, creating an antibody-antigen complex with a migration time similar to that of antibody alone, but not that of D-Asp. The complete disappearance of the putative D-Asp peak confirms its identity and validates that there are no other detectable analytes co-migrating with D-Asp in the electropherogram.
Collapse
Affiliation(s)
- Hai Miao
- Department of Chemistry, University of Illinois, Champaign, School of Chemical Sciences, 600 South Mathews Avenue 63-5, Urbana, IL 61801, USA
| | | | | |
Collapse
|
232
|
O'Brien KB, Miller RF, Bowser MT. d-Serine uptake by isolated retinas is consistent with ASCT-mediated transport. Neurosci Lett 2005; 385:58-63. [PMID: 15950382 DOI: 10.1016/j.neulet.2005.05.009] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2005] [Revised: 04/26/2005] [Accepted: 05/06/2005] [Indexed: 10/25/2022]
Abstract
Uptake of the neuromodulator D-serine by isolated larval tiger salamander (Ambystoma tigrinum) retinas was measured using capillary electrophoresis (CE). Excised retinas were incubated in Ringer's solution in the presence of 5 microM D-serine. The supernatant was removed after 30 min, mixed with 4-fluoro-7-nitrobenz-2-oxa-1,3-diazole (NBD-F) to fluorescently label amines and analyzed using CE. Significant D-serine uptake was observed over a period of 1.5h. This is the first observation of D-serine uptake by an intact retinal tissue. D-Serine uptake in the retina was Na(+)-dependent and blocked by l-alanine, l-threonine, and l-cysteine. This pharmacology is consistent with the sodium dependent heteroexchange expected of system ASC-type transporters.
Collapse
Affiliation(s)
- Kylie B O'Brien
- Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, MN 55455, USA
| | | | | |
Collapse
|
233
|
Krasteniakov NV, Martina M, Bergeron R. Role of the glycine site of the N-methyl-D-aspartate receptor in synaptic plasticity induced by pairing. Eur J Neurosci 2005; 21:2782-92. [PMID: 15926925 DOI: 10.1111/j.1460-9568.2005.04099.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In the hippocampal CA1 region of the rat, activity-dependent plasticity requires substantial postsynaptic depolarization and activation of the N-methyl-D-aspartate glutamate receptor subtype (NMDAR). Exogenous and endogenous compounds selectively modulate NMDAR function by acting at the glycine coagonist site. Here we investigate the modulatory role of the glycine site in the induction of bidirectional synaptic plasticity. Plasticity was induced by pairing low-frequency afferent pulses with different levels of postsynaptic depolarization in the absence and presence of glycine site compounds. We found strong dependence of glycine site agonist modulation on membrane voltage during induction. Thus, D-serine and glycine were more effective in enhancing long-term potentiation (LTP) during pairing of small depolarization (-60 or -50 mV) with subthreshold EPSCs than during pairing of stronger depolarization (-40 mV) with suprathreshold synaptic responses. The glycine site role in bidirectional synaptic plasticity was studied with the selective antagonist 7-chlorokynurenic acid. Blockade of the glycine site during the pairing reversed the direction of plasticity from LTP towards long-term depression. The magnitude of depression was dependent on antagonist concentration and the level of depolarization during the pairing. Thus, these experiments demonstrate the role of the glycine site in the induction of bidirectional synaptic plasticity.
Collapse
Affiliation(s)
- N V Krasteniakov
- Ottawa Health Research Institute, 725 Parkdale Avenue, Ottawa, ON, K1Y 4E9, Canada
| | | | | |
Collapse
|
234
|
Fuchs SA, Berger R, Klomp LWJ, de Koning TJ. D-amino acids in the central nervous system in health and disease. Mol Genet Metab 2005; 85:168-80. [PMID: 15979028 DOI: 10.1016/j.ymgme.2005.03.003] [Citation(s) in RCA: 139] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2005] [Revised: 03/05/2005] [Accepted: 03/09/2005] [Indexed: 11/13/2022]
Abstract
Recent evidence has shown that d-amino acids are present in animals and humans in high concentrations and fulfill specific biological functions. In the central nervous system, two d-amino acids, d-serine and d-aspartate, occur in considerable concentrations. d-Serine is synthesized and metabolized endogenously and the same might account for d-aspartate. d-Serine has been studied most extensively and was shown to play a role in excitatory amino acid metabolism, being a co-agonist of the N-methyl-d-aspartate (NMDA) receptor. Insight into d-serine metabolism is relevant for physiological NMDA receptor (NMDAr) activation and for all the disorders associated with an altered function of the NMDAr, such as schizophrenia, ischemia, epilepsy, and neurodegenerative disorders. d-Aspartate appears to play a role in development and endocrine function, but the precise function of d-aspartate and other d-amino acids in animals and humans requires further investigation. As d-amino acids play biological roles, alterations in the concentrations of d-amino acids might occur in some disorders and relate to the pathogenesis of these disorders. d-Amino acid concentrations may then not only help in the diagnostic process, but also provide novel therapeutic targets. Consequently, the presence and important roles of d-amino acids in higher organisms do not only challenge former theories on mammalian physiology, but also contribute to exciting new insights in human disease.
Collapse
Affiliation(s)
- Sabine A Fuchs
- Department of Metabolic and Endocrine Diseases, University Medical Center Utrecht, Utrecht, The Netherlands
| | | | | | | |
Collapse
|
235
|
Dunlop DS, Neidle A. Regulation of serine racemase activity by amino acids. ACTA ACUST UNITED AC 2005; 133:208-14. [PMID: 15710237 DOI: 10.1016/j.molbrainres.2004.10.027] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/17/2004] [Indexed: 11/17/2022]
Abstract
The effects of various amino acids on the activity of serine racemase, purified from mouse brain, were examined. Those acting as inhibitors included compounds with electron withdrawing groups on the beta-carbon of alanine (beta-halo-alanines and L-serine-O-sulfate), which can act as enzyme-activated inhibitors, and compounds containing beta-SH groups (cysteine and homocysteine) which react with enzyme-bound pyridoxal phosphate to form thiazolidine derivatives. Glycine and a series of metabolites related to L-aspartic acid (L-aspartic acid, L-asparagine, and oxaloacetic acid) were also found to be competitive inhibitors of the racemase. The Ki values for glycine and aspartic acid inhibition were 0.15 and 1.9 mM, respectively, indicating that alterations in the concentrations of these amino acids might play a role in the regulation of D-serine synthesis.
Collapse
Affiliation(s)
- David S Dunlop
- Nathan Kline Institute for Psychiatric Research, 140 Old Orangeburg Road, Orangeburg, NY 10962, USA.
| | | |
Collapse
|
236
|
Panizzutti R, Rausch M, Zurbrügg S, Baumann D, Beckmann N, Rudin M. The pharmacological stimulation of NMDA receptors via co-agonist site: an fMRI study in the rat brain. Neurosci Lett 2005; 380:111-5. [PMID: 15854761 DOI: 10.1016/j.neulet.2005.01.062] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2004] [Revised: 01/09/2005] [Accepted: 01/10/2005] [Indexed: 10/25/2022]
Abstract
d-Serine has been proposed as an endogenous modulator at the co-agonist glycine-binding site of N-methyl-d-aspartate (NMDA) receptors. There is still some debate as to whether this site is saturated in vivo, but it seems likely that this depends on regional differences in local glycine or d-serine concentrations. In order to identify areas where the co-agonist site was not fully activated in vivo, we studied the effect of intraperitoneal d-serine administration in the rat brain using functional magnetic resonance imaging (fMRI). Using contrast agent injection, the variations in the relative cerebral blood volume (CBVrel) in several regions of interest were evaluated. d-Serine (50 mg/kg) elicited a significant statistical increase in the CBVrel in the hippocampus. This effect was inhibited by the specific full antagonist of the co-agonist glycine site L-701,324 indicating that the hippocampal activation occurred through the binding of the agonist d-serine to the glycine-binding site of NMDA receptors. This result demonstrates that in the hippocampus, the co-agonist sites of NMDA receptors are not endogenously saturated under our experimental conditions, suggesting an important role of d-serine in the modulation of receptor function in the hippocampus.
Collapse
Affiliation(s)
- Rogério Panizzutti
- Departamento de Anatomia, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Av. Pau Brasil s/n, 21940-900 Rio de Janeiro, RJ, Brazil.
| | | | | | | | | | | |
Collapse
|
237
|
Hashimoto A, Chiba S, Chiba Y. Effect of systemic administration of D-serine on the levels of D- and L-serine in several brain areas and periphery of rat. Eur J Pharmacol 2005; 495:153-8. [PMID: 15249164 DOI: 10.1016/j.ejphar.2004.05.036] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2004] [Revised: 04/19/2004] [Accepted: 05/20/2004] [Indexed: 11/17/2022]
Abstract
To obtain further insight into the distribution and metabolism of exogenous D-serine, we have investigated the effect of the intraperitoneal administration of D-serine (10 mmol/kg) on the concentrations of D- and L-serine in several brain areas and periphery of infant and adult rats. The administration produced a significant augmentation of the D-serine levels not only in the cortex but also in the hippocampus, striatum, cerebellum and periphery. The rapid decline in the enhanced D-serine levels was observed in the periphery and cerebellum, whereas the injection caused a prolonged elevation of the D-serine levels in the cortex and hippocampus. The application caused a slight increase in the L-serine levels in several brain areas and periphery 3 or 6 h after the injection, whereas a significant decrease in the L-serine concentration was observed in the periphery, diencephalon and cerebellum 3 or 7 days after the injection. Because a structural abnormality and N-methyl-D-aspartate (NMDA) receptor hypofunction has been demonstrated in the cortex and hippocampus of schizophrenic subjects, D-serine treatment may offer a new therapeutic approach to diseases related to the hypofunction of NMDA receptors such as schizophrenia.
Collapse
Affiliation(s)
- Atsushi Hashimoto
- Department of Pharmacology, School of Medicine, Tokai University, Isehara, Kanagawa 259-1143, Japan.
| | | | | |
Collapse
|
238
|
Cheng Y, Fan L, Chen H, Chen X, Hu Z. Method for on-line derivatization and separation of aspartic acid enantiomer in pharmaceuticals application by the coupling of flow injection with micellar electrokinetic chromatography. J Chromatogr A 2005; 1072:259-65. [PMID: 15887496 DOI: 10.1016/j.chroma.2005.03.019] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
A novel, easy and accurate capillary electrophoresis (CE) coupled with flow injection (FI) method for the separation and determination of aspartic acid (Asp) enantiomers by on-line derivatization had been developed, and it had been applied to the real sample for the first time. The derivatization reagents were o-phthalaldehyde (OPA) and mercaptoethanol (ME), which were obtained easily, the chiral selector was beta-cyclodextrin (beta-CD), the micellar chemical was sodium dodecyl sulfate (SDS), and the modifier was methanol. By on-line derivatization, aspartic acid enantiomers were automatically and reproducibly converted to the ultraviolet (UV)-absorbing diastereoisomer derivates, which were separated by micellar electrokinetic chromatography (MEKC). According to the factors affecting the separation and sensitivity of aspartic acid enantiomer and other amino acids in the real sample, the pH value and concentration of the buffer, the concentration of beta-CD and SDS, the volume percentage of the methanol (v/v) in the buffer, the applied voltage and the conversion time were selected as the investigating variates. Under the investigated separation conditions, D-aspartic acid (D-Asp), L-aspartic acid (L-Asp) and other four amino acids achieved the baseline separation in not only the standard mixture of amino acids but also the real sample (Compound Amino Acid Injection (6AA)). The repeatability (defined as relative standard deviation (RSD), n = 5) was 4.0% and 4.0% with peak area evaluation, and 4.2% and 3.7% with peak height evaluation for D-Asp and L-Asp in the real sample. Recovery at added standard levels of 1.0, 3.0 and 6.0 mM was 92%, 104% and 109%, respectively.
Collapse
Affiliation(s)
- Yuqiao Cheng
- Department of Chemistry, Lanzhou University, Lanzhou 730000, China
| | | | | | | | | |
Collapse
|
239
|
Yang S, Qiao H, Wen L, Zhou W, Zhang Y. d-Serine enhances impaired long-term potentiation in CA1 subfield of hippocampal slices from aged senescence-accelerated mouse prone/8. Neurosci Lett 2005; 379:7-12. [PMID: 15814189 DOI: 10.1016/j.neulet.2004.12.033] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2004] [Revised: 12/06/2004] [Accepted: 12/15/2004] [Indexed: 10/25/2022]
Abstract
The molecular and cellular mechanisms underlying the cognitive deficiency of senescence-accelerated mouse prone/8 (SAMP8) have been attributed to many pathological changes in neurons. Recently, increasing evidence has shown that astrocytes, by mean of d-serine, involve in the process of synaptic transmission. Here we reported that the long-term potentiation (LTP) in CA1 area of hippocampal slices prepared from 2-, 6- and 12-month-old SAMP8 significantly decreased with age. Meanwhile, the LTP in the slices of 6- and 12-month-old mice markedly decreased below that of the age-matched normal strain SAMR1. Supplement with exogenous d-serine, a main product of astrocytes and a coagonist at the "glycin-binding" site of N-methyl-d-aspartate (NMDA) receptors, not only directly enhanced the deficient LTP but also rescued the abolished LTP by d-amino acid oxidase (DAAO) in slices from 12-month-old SAMP8. This ameliorative effect of d-serine was inhibited by either AP-V or 5,7-dichlorokynurenic acid (DCKA). These results suggest that absence of d-serine or dysfunction of the astrocytes possibly was one of mechanisms underlying the decrease of NMDA receptor-dependent LTP and cognition in aged SAMP8.
Collapse
Affiliation(s)
- Sheng Yang
- Beijing Institute of Pharmacology and Toxicology, 27 Tai-Ping Road, Beijing 100850, China
| | | | | | | | | |
Collapse
|
240
|
Mothet JP, Pollegioni L, Ouanounou G, Martineau M, Fossier P, Baux G. Glutamate receptor activation triggers a calcium-dependent and SNARE protein-dependent release of the gliotransmitter D-serine. Proc Natl Acad Sci U S A 2005; 102:5606-11. [PMID: 15800046 PMCID: PMC556243 DOI: 10.1073/pnas.0408483102] [Citation(s) in RCA: 326] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The gliotransmitter D-serine is released upon (S)-alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid/kainate and metabotropic glutamate receptor stimulation, but the mechanisms involved are unknown. Here, by using a highly sensitive bioassay to continuously monitor extracellular D-serine levels, we have investigated the pathways used in its release. We reveal that D-serine release is inhibited by removal of extracellular calcium and augmented by increasing extracellular calcium or after treatment with the Ca(2+) ionophore A23187. Furthermore, release of the amino acid is considerably reduced after depletion of thapsigargin-sensitive intracellular Ca(2+) stores or chelation of intracellular Ca(2+) with 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetate-acetoxymethyl ester. Interestingly, D-serine release also was markedly reduced by concanamycin A, a vacuolar-type H(+)-ATPase inhibitor, indicating a role for the vesicular proton gradient in the transmitter storage/release. In addition, agonist-evoked D-serine release was sensitive to tetanus neurotoxin. Finally, immunocytochemical and sucrose density gradient analysis revealed that a large fraction of D-serine colocalized with synaptobrevin/VAMP2, suggesting that it is stored in VAMP2-bearing vesicles. In summary, our study reveals the cellular mechanisms subserving D-serine release and highlights the importance of the glial cell exocytotic pathway in influencing CNS levels of extracellular D-serine.
Collapse
Affiliation(s)
- Jean-Pierre Mothet
- Laboratoire de Neurobiologie Cellulaire et Moléculaire, Centre National de la Recherche Scientifique Unité Propre de Recherche 9040, Institut Fédératif de Neurobiologie Alfred Fessard, F-91198 Gif-sur-Yvette, France.
| | | | | | | | | | | |
Collapse
|
241
|
Simó C, Rizzi A, Barbas C, Cifuentes A. Chiral capillary electrophoresis-mass spectrometry of amino acids in foods. Electrophoresis 2005; 26:1432-41. [PMID: 15759299 DOI: 10.1002/elps.200406199] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
In this work, the development of a new chiral capillary electrophoresis-mass spectrometry (CE-MS) method to separate D- and L-amino acids is shown. On-line coupling between CE and MS is established through an electrospray-coaxial sheath flow interface. Enantiomer separation is achieved by using a cheap, nonvolatile, chiral selector as beta-cyclodextrin in the background electrolyte (BGE) together with a physically coated capillary that is aimed to prevent contamination of the electrospray. The capillary coating is simple and easy to obtain as it only requires flushing of the capillary with a polymer aqueous solution for 3 min. Optimization of CE parameters (pH of BGE, type and concentration of chiral selector, and capillary inner diameter) and electrospray-MS parameters (nature and flow rate of the sheath liquid, nebulizer pressure) is carried out. Two different derivatization protocols of amino acids using dansyl chloride (DNS) and fluorescein isothiocyanate (FITC) are compared in terms of MS sensitivity and chiral resolution. Under optimum CE-MS conditions it is observed that the MS sensitivity obtained for FITC- and DNS-amino acids is similar (with limit of detection (LOD) in the microM range, corresponding to amounts injected in the fmol range) while chiral resolution is better for FITC-amino acids. The optimized method is demonstrated to provide the simultaneous analysis of 15 selected amino acids (i.e., FITC-D/L-Asp, -Glu, -Ser, -Asn, -Ala, -Pro, -Arg, and FITC-gamma-aminobutyric acid (GABA) in a single chiral CE-MS run, corresponding to the main amino acids that can be found in orange. Moreover, as a result of the high resolution achieved, it is possible to detect down to 2% of D-Asp in the presence of 98% of L-Asp. The good possibilities of chiral CE-MS in food analysis are corroborated through the detection of the main amino acids in a commercial orange juice (i.e., FITC-L-Asp, -Glu, -Ser, -Asn, -Pro, -Arg, and the nonchiral FITC-GABA) as well as the determination of the fraudulent addition of synthetic amino acids (containing D- and L-forms) to a fresh orange juice.
Collapse
Affiliation(s)
- Carolina Simó
- Department of Food Analysis, Institute of Industrial Fermentations (CSIC), Madrid, Spain
| | | | | | | |
Collapse
|
242
|
Kim PM, Aizawa H, Kim PS, Huang AS, Wickramasinghe SR, Kashani AH, Barrow RK, Huganir RL, Ghosh A, Snyder SH. Serine racemase: activation by glutamate neurotransmission via glutamate receptor interacting protein and mediation of neuronal migration. Proc Natl Acad Sci U S A 2005; 102:2105-10. [PMID: 15684087 PMCID: PMC548584 DOI: 10.1073/pnas.0409723102] [Citation(s) in RCA: 175] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Serine racemase (SR), localized to astrocytic glia that ensheathe synapses, converts L-serine to D-serine, an endogenous ligand of the NMDA receptor. We report the activation of SR by glutamate neurotransmission involving alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid receptors via glutamate receptor interacting protein (GRIP) and the physiologic regulation of cerebellar granule cell migration by SR. GRIP physiologically binds SR, augmenting SR activity and D-serine release. GRIP infection of neonatal mouse cerebellum in vivo enhances granule cell migration. Selective degradation of D-serine by D-amino acid oxidase and pharmacologic inhibition of SR impede migration, whereas D-serine activates the process. Thus, in neuronal migration, glutamate stimulates Bergmann glia to form and release D-serine, which, together with glutamate, activates NMDA receptors on granule neurons, chemokinetically enhancing migration.
Collapse
Affiliation(s)
- Paul M Kim
- Department of Pharmacology and Molecular Science, Neuroscience, The Johns Hopkins University School of Medicine, 725 North Wolfe Street, Baltimore, MD 21205, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
243
|
Hashimoto A, Yoshikawa M, Niwa A, Konno R. Mice lacking d-amino acid oxidase activity display marked attenuation of stereotypy and ataxia induced by MK-801. Brain Res 2005; 1033:210-5. [PMID: 15694926 DOI: 10.1016/j.brainres.2004.11.031] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/19/2004] [Indexed: 11/21/2022]
Abstract
The behavioral effects produced by MK-801 (0.4 mg/kg) were compared in mutant DAO-/- mice lacking D-amino acid oxidase activity and normal DAO+/+ mice. Mutant mice display marked diminution of stereotypy and ataxia induced by MK-801 compared to normal mice. Because the D-serine level in the brain of mutant mice is significantly higher than that of normal mice, the elevated D-serine in the brain of mutant mice could antagonize MK-801-induced stereotypy and ataxia.
Collapse
Affiliation(s)
- Atsushi Hashimoto
- Department of Pharmacology, School of Medicine, Tokai University, Isehara, Kanagawa 259-1143, Japan.
| | | | | | | |
Collapse
|
244
|
Yoshikawa M, Oka T, Kawaguchi M, Hashimoto A. MK-801 upregulates the expression of d-amino acid oxidase mRNA in rat brain. ACTA ACUST UNITED AC 2005; 131:141-4. [PMID: 15530664 DOI: 10.1016/j.molbrainres.2004.08.017] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/31/2004] [Indexed: 10/26/2022]
Abstract
We have evaluated the effect of the systemic administration of MK-801 (0.4 mg/kg) on the gene expression of D-amino acid oxidase (DAO) in several brain areas of the rat. The levels of DAO mRNA in all the brain areas significantly increased and peaked at 4 h after the administration. The present results suggest that there is a link between the expression of DAO mRNA and the N-methyl-D-aspartate (NMDA) receptor activity.
Collapse
Affiliation(s)
- Masanobu Yoshikawa
- Department of Pharmacology, School of Medicine, Tokai University, Isehara, Kanagawa, 259-1143, Japan
| | | | | | | |
Collapse
|
245
|
Abstract
It has now been well established that D-serine, a coagonist for the N-methyl-D-aspartate (NMDA) glutamate receptors (NR1/NR2 type), is maintained at a high concentration in mammalian brains for life and shows a brain-selective and NMDA receptor R2B subunit-related distribution, overturning the hitherto generally accepted theory that D-amino acid is not always present in mammalian tissues. D-Serine in the brain has been shown to be contained in both the glia and neurons and to have specific processes of biosynthesis, extracellular release, uptake, and degradation. Moreover, the selective elimination of D-serine reduces the NMDA receptor-mediated intracellular signaling and long-term potentiation of synaptic connections. Together with the anti-psychotic and anti-ataxic property of D-serine and the pivotal roles of the NMDA receptor in divergent higher brain functions, these observations support the view that the D-amino acid may be involved as an endogenous modulator for the NMDA receptor in various neuropsychiatric functions and their pathological conditions.
Collapse
Affiliation(s)
- Toru Nishikawa
- Section of Psychiatry and Behavioral Sciences, Tokyo Medical and Dental University Graduate School, Tokyo, Japan.
| |
Collapse
|
246
|
Abstract
N-Methyl-d-aspartate (NMDA) glutamate receptors are a class of excitatory amino acid receptors, which have several important functions in the motor circuits of the basal ganglia, and are viewed as important targets for the development of new drugs to prevent or treat Parkinson's disease (PD). NMDA receptors are ligand-gated ion channels composed of multiple subunits, each of which has distinct cellular and regional patterns of expression. They have complex regulatory properties, with both agonist and co-agonist binding sites and regulation by phosphorylation and protein-protein interactions. They are found in all of the structures of the basal ganglia, although the subunit composition in the various structures is different. NMDA receptors present in the striatum are crucial for dopamine-glutamate interactions. The abundance, structure, and function of striatal receptors are altered by the dopamine depletion and further modified by the pharmacological treatments used in PD. In animal models, NMDA receptor antagonists are effective antiparkinsonian agents and can reduce the complications of chronic dopaminergic therapy (wearing off and dyskinesias). Use of these agents in humans has been limited because of the adverse effects associated with nonselective blockade of NMDA receptor function, but the development of more potent and selective pharmaceuticals holds the promise of an important new therapeutic approach for PD.
Collapse
Affiliation(s)
- Penelope J Hallett
- MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, 114 16th Street, Charlestown, MA 02129, USA
| | | |
Collapse
|
247
|
Van Hemelrijck A, Sarre S, Smolders I, Michotte Y. Determination of amino acids associated with cerebral ischaemia in rat brain microdialysates using narrowbore liquid chromatography and fluorescence detection. J Neurosci Methods 2004; 144:63-71. [PMID: 15848240 DOI: 10.1016/j.jneumeth.2004.10.013] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2004] [Revised: 10/14/2004] [Accepted: 10/14/2004] [Indexed: 11/20/2022]
Abstract
Microdialysis coupled to liquid chromatography (LC) has proven to be a valuable in vivo sampling technique for studying neurotransmitter changes in normal and ischaemic brain. However, few analytical methods have described the simultaneous determination of amino acids, relevant in stroke research, together with the nitric-oxide-related compound citrulline. Therefore, we developed a gradient LC method for the quantitative simultaneous determination of aspartate, glutamate, serine, glutamine, arginine, taurine, alanine and citrulline in dialysates of rat brain using narrowbore LC with o-phthalaldehyde-2-mercaptoethanol pre-column derivatisation and fluorescence detection. The proposed method is a thoroughly validated, fully automated and robust LC method for the determination of amino acids in a wide concentration range. The method was applied for the determination of amino acids and the citrulline/arginine ratio in the Et-1 model for focal cerebral ischaemia.
Collapse
Affiliation(s)
- An Van Hemelrijck
- Department of Pharmaceutical Chemistry and Drug Analysis, Research Group Experimental Pharmacology, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium
| | | | | | | |
Collapse
|
248
|
Schell MJ. The N-methyl D-aspartate receptor glycine site and D-serine metabolism: an evolutionary perspective. Philos Trans R Soc Lond B Biol Sci 2004; 359:943-64. [PMID: 15306409 PMCID: PMC1693380 DOI: 10.1098/rstb.2003.1399] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The N-methyl D-aspartate (NMDA) type of glutamate receptor requires two distinct agonists to operate. Glycine is assumed to be the endogenous ligand for the NMDA receptor glycine site, but this notion has been challenged by the discovery of high levels of endogenous d-serine in the mammalian forebrain. I have outlined an evolutionary framework for the appearance of a glycine site in animals and the metabolic events leading to high levels of D-serine in brain. Sequence alignments of the glycine-binding regions, along with the scant experimental data available, suggest that the properties of invertebrate NMDA receptor glycine sites are probably different from those in vertebrates. The synthesis of D-serine in brain is due to a pyridoxal-5'-phosphate (B(6))-requiring serine racemase in glia. Although it remains unknown when serine racemase first evolved, data concerning the evolution of B(6) enzymes, along with the known occurrences of serine racemases in animals, point to D-serine synthesis arising around the divergence time of arthropods. D-Serine catabolism occurs via the ancient peroxisomal enzyme d-amino acid oxidase (DAO), whose ontogenetic expression in the hindbrain of mammals is delayed until the postnatal period and absent from the forebrain. The phylogeny of D-serine metabolism has relevance to our understanding of brain ontogeny, schizophrenia and neurotransmitter dynamics.
Collapse
Affiliation(s)
- Michael J Schell
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1PD, UK.
| |
Collapse
|
249
|
Stouffer EM, Petri HL, Devan BD. Effect of D-serine on a delayed match-to-place task for the water maze. Behav Brain Res 2004; 152:447-52. [PMID: 15196813 DOI: 10.1016/j.bbr.2003.10.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2003] [Revised: 10/02/2003] [Accepted: 10/08/2003] [Indexed: 11/18/2022]
Abstract
The effect of the amino acid d-serine, a partial NMDA receptor agonist, on a delayed match-to-place task in the water maze was examined. Twenty-four male rats were first trained to attain baseline measurements, then administered D-serine or saline. Rats administered D-serine (100 mg/kg, i.p.) before swim trials did not show a decrease in escape latencies, but did show an increase in swim time spent within the previous days' escape platform location.
Collapse
Affiliation(s)
- Eric M Stouffer
- Department of Psychology, Laboratory of Comparative Neuropsychology, Towson University, Towson, MD 21252-0001, USA.
| | | | | |
Collapse
|
250
|
Yoshikawa M, Kobayashi T, Oka T, Kawaguchi M, Hashimoto A. Distribution and MK-801-induced expression of serine racemase mRNA in rat brain by real-time quantitative PCR. ACTA ACUST UNITED AC 2004; 128:90-4. [PMID: 15337321 DOI: 10.1016/j.molbrainres.2004.06.015] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/15/2004] [Indexed: 11/26/2022]
Abstract
We have used real-time quantitative PCR methods to evaluate the effect of the systemic administration of (+)-5-methyl-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5,10-imine (MK-801; 0.4 mg/kg) on the gene expression of serine racemase in several brain areas of the rat. The levels of serine racemase mRNA in all the brain areas transiently increased after the administration. The present findings suggest that there is a link between the expression of serine racemase mRNA and the activity of the NMDA receptors.
Collapse
Affiliation(s)
- Masanobu Yoshikawa
- Department of Pharmacology, School of Medicine, Tokai University, Isehara, Kanagawa 259-1143, Japan
| | | | | | | | | |
Collapse
|