201
|
Abstract
Background: The amount of intra-thoracic fat, of which mediastinal adipose tissue comprises the major depot, is related to various cardiometabolic risk factors. Autopsy and imaging studies indicate that the mediastinal depot in adult humans could contain brown adipose tissue (BAT). To gain a better understanding of this intra-thoracic fat depot, we examined possible BAT characteristics of human mediastinal in comparison with subcutaneous adipose tissue. Materials and methods: Adipose tissue biopsies from thoracic subcutaneous and mediastinal depots were obtained during open-heart surgery from 33 subjects (26 male, 63.7±13.8 years, body mass index 29.3±5.1 kg m−2). Microarray analysis was performed on 10 patients and genes of interest confirmed by quantitative PCR (qPCR) in samples from another group of 23 patients. Adipocyte size was determined and uncoupling protein 1 (UCP1) protein expression investigated with immunohistochemistry. Results: The microarray data showed that a number of BAT-specific genes had significantly higher expression in the mediastinal depot than in the subcutaneous depot. Higher expression of UCP1 (24-fold, P<0.001) and PPARGC1A (1.7-fold, P=0.0047), and lower expression of SHOX2 (0.12-fold, P<0.001) and HOXC8 (0.14-fold, P<0.001) in the mediastinal depot was confirmed by qPCR. Gene set enrichment analysis identified two gene sets related to mitochondria, which were significantly more highly expressed in the mediastinal than in the subcutaneous depot (P<0.01). No significant changes in UCP1 gene expression were observed in the subcutaneous or mediastinal depots following lowering of body temperature during surgery. UCP1 messenger RNA levels in the mediastinal depot were lower than those in murine BAT and white adipose tissue. In some mediastinal adipose tissue biopsies, a small number of multilocular adipocytes that stained positively for UCP1 were observed. Adipocytes were significantly smaller in the mediastinal than the subcutaneous depot (cross-sectional area 2400±810 versus 3260±980 μm2, P<0.001). Conclusions: Human mediastinal adipose tissue displays some characteristics of BAT when compared with the subcutaneous depot at microscopic and molecular levels.
Collapse
|
202
|
Bonet ML, Oliver P, Palou A. Pharmacological and nutritional agents promoting browning of white adipose tissue. Biochim Biophys Acta Mol Cell Biol Lipids 2013; 1831:969-85. [DOI: 10.1016/j.bbalip.2012.12.002] [Citation(s) in RCA: 199] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2012] [Revised: 12/03/2012] [Accepted: 12/04/2012] [Indexed: 11/29/2022]
|
203
|
Zhou L, Yu X, Meng Q, Li H, Niu C, Jiang Y, Cai Y, Li M, Li Q, An C, Shu L, Chen A, Su H, Tang Y, Yin S, Raschke S, Eckardt K, Eckel J, Yang Z. Resistin reduces mitochondria and induces hepatic steatosis in mice by the protein kinase C/protein kinase G/p65/PPAR gamma coactivator 1 alpha pathway. Hepatology 2013; 57:1384-93. [PMID: 23174781 DOI: 10.1002/hep.26167] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2012] [Revised: 10/17/2012] [Accepted: 10/31/2012] [Indexed: 02/06/2023]
Abstract
UNLABELLED Obesity is associated with many severe chronic diseases and deciphering its development and molecular mechanisms is necessary for promoting treatment. Previous studies have revealed that mitochondrial content is down-regulated in obesity, diabetes, and nonalcoholic fatty liver disease (NAFLD) and proposed that NAFLD and diabetes are mitochondrial diseases. However, the exact mechanisms underlying these processes remain unclear. In this study, we discovered that resistin down-regulated the content and activities of mitochondria, enhanced hepatic steatosis, and induced insulin resistance (IR) in mice. The time course indicated that the change in mitochondrial content was before the change in fat accumulation and development of insulin resistance. When the mitochondrial content was maintained, resistin did not stimulate hepatic fat accumulation. The present mutation study found that the residue Thr464 of the p65 subunit of nuclear factor kappa B was essential for regulating mitochondria. A proximity ligation assay revealed that resistin inactivated peroxisome proliferator activated receptor gamma coactivator 1 alpha (PGC-1α) and diminished the mitochondrial content by promoting the interaction of p65 and PGC-1α. Signaling-transduction analysis demonstrated that resistin down-regulated mitochondria by a novel protein kinase C/protein kinase G/p65/PGC-1α-signaling pathway. CONCLUSION Resistin induces hepatic steatosis through diminishing mitochondrial content. This reveals a novel pathway for mitochondrial regulation, and suggests that the maintenance of normal mitochondrial content could be a new strategy for treatment of obesity-associated diseases.
Collapse
Affiliation(s)
- Lei Zhou
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
204
|
Aune UL, Ruiz L, Kajimura S. Isolation and differentiation of stromal vascular cells to beige/brite cells. J Vis Exp 2013. [PMID: 23568137 DOI: 10.3791/50191] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Brown adipocytes have the ability to uncouple the respiratory chain in mitochondria and dissipate chemical energy as heat. Development of UCP1-positive brown adipocytes in white adipose tissues (so called beige or brite cells) is highly induced by a variety of environmental cues such as chronic cold exposure or by PPARγ agonists, therefore, this cell type has potential as a therapeutic target for obesity treatment. Although most immortalized adipocyte lines cannot recapitulate the process of "browning" of white fat in culture, primary adipocytes isolated from stromal vascular fraction in subcutaneous white adipose tissue (WAT) provide a reliable cellular system to study the molecular control of beige/brite cell development. Here we describe a protocol for effective isolation of primary preadipocytes and for inducing differentiation to beige/brite cells in culture. The browning effect can be assessed by the expression of brown fat-selective markers such as UCP1.
Collapse
Affiliation(s)
- Ulrike Liisberg Aune
- UCSF Diabetes Center and Department of Cell and Tissue Biology, University of California, San Francisco, CA, USA
| | | | | |
Collapse
|
205
|
Ryu MJ, Kim SJ, Kim YK, Choi MJ, Tadi S, Lee MH, Lee SE, Chung HK, Jung SB, Kim HJ, Jo YS, Kim KS, Lee SH, Kim JM, Kweon GR, Park KC, Lee JU, Kong YY, Lee CH, Chung J, Shong M. Crif1 deficiency reduces adipose OXPHOS capacity and triggers inflammation and insulin resistance in mice. PLoS Genet 2013; 9:e1003356. [PMID: 23516375 PMCID: PMC3597503 DOI: 10.1371/journal.pgen.1003356] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2012] [Accepted: 01/17/2013] [Indexed: 12/19/2022] Open
Abstract
Impaired mitochondrial oxidative phosphorylation (OXPHOS) has been proposed as an etiological mechanism underlying insulin resistance. However, the initiating organ of OXPHOS dysfunction during the development of systemic insulin resistance has yet to be identified. To determine whether adipose OXPHOS deficiency plays an etiological role in systemic insulin resistance, the metabolic phenotype of mice with OXPHOS-deficient adipose tissue was examined. Crif1 is a protein required for the intramitochondrial production of mtDNA-encoded OXPHOS subunits; therefore, Crif1 haploinsufficient deficiency in mice results in a mild, but specific, failure of OXPHOS capacity in vivo. Although adipose-specific Crif1-haploinsufficient mice showed normal growth and development, they became insulin-resistant. Crif1-silenced adipocytes showed higher expression of chemokines, the expression of which is dependent upon stress kinases and antioxidant. Accordingly, examination of adipose tissue from Crif1-haploinsufficient mice revealed increased secretion of MCP1 and TNFα, as well as marked infiltration by macrophages. These findings indicate that the OXPHOS status of adipose tissue determines its metabolic and inflammatory responses, and may cause systemic inflammation and insulin resistance.
Collapse
Affiliation(s)
- Min Jeong Ryu
- Research Center for Endocrine and Metabolic Diseases, Chungnam National University School of Medicine, Daejeon, Korea
| | - Soung Jung Kim
- Research Center for Endocrine and Metabolic Diseases, Chungnam National University School of Medicine, Daejeon, Korea
| | - Yong Kyung Kim
- Research Center for Endocrine and Metabolic Diseases, Chungnam National University School of Medicine, Daejeon, Korea
| | - Min Jeong Choi
- Research Center for Endocrine and Metabolic Diseases, Chungnam National University School of Medicine, Daejeon, Korea
| | - Surendar Tadi
- Research Center for Endocrine and Metabolic Diseases, Chungnam National University School of Medicine, Daejeon, Korea
| | - Min Hee Lee
- Research Center for Endocrine and Metabolic Diseases, Chungnam National University School of Medicine, Daejeon, Korea
| | - Seong Eun Lee
- Research Center for Endocrine and Metabolic Diseases, Chungnam National University School of Medicine, Daejeon, Korea
| | - Hyo Kyun Chung
- Research Center for Endocrine and Metabolic Diseases, Chungnam National University School of Medicine, Daejeon, Korea
| | - Saet Byel Jung
- Research Center for Endocrine and Metabolic Diseases, Chungnam National University School of Medicine, Daejeon, Korea
| | - Hyun-Jin Kim
- Research Center for Endocrine and Metabolic Diseases, Chungnam National University School of Medicine, Daejeon, Korea
| | - Young Suk Jo
- Research Center for Endocrine and Metabolic Diseases, Chungnam National University School of Medicine, Daejeon, Korea
| | - Koon Soon Kim
- Research Center for Endocrine and Metabolic Diseases, Chungnam National University School of Medicine, Daejeon, Korea
| | - Sang-Hee Lee
- Department of Pathology, Chungnam National University School of Medicine, Daejeon, Korea
| | - Jin Man Kim
- Department of Pathology, Chungnam National University School of Medicine, Daejeon, Korea
| | - Gi Ryang Kweon
- Department of Biochemistry, Chungnam National University School of Medicine, Daejeon, Korea
| | - Ki Cheol Park
- Department of Pathology, Daejeon St. Mary's Hospital, The Catholic University of Korea, Daejeon, Korea
| | - Jung Uee Lee
- Department of Pathology, Daejeon St. Mary's Hospital, The Catholic University of Korea, Daejeon, Korea
| | - Young Yun Kong
- School of Biological Sciences, Seoul National University, Seoul, Korea
| | - Chul-Ho Lee
- Animal Model Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Korea
| | - Jongkyeong Chung
- School of Biological Sciences, Seoul National University, Seoul, Korea
| | - Minho Shong
- Research Center for Endocrine and Metabolic Diseases, Chungnam National University School of Medicine, Daejeon, Korea
- * E-mail:
| |
Collapse
|
206
|
Xu XJ, Pories WJ, Dohm LG, Ruderman NB. What distinguishes adipose tissue of severely obese humans who are insulin sensitive and resistant? Curr Opin Lipidol 2013; 24:49-56. [PMID: 23298959 PMCID: PMC3575680 DOI: 10.1097/mol.0b013e32835b465b] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
PURPOSE OF REVIEW Despite a strong correlation between obesity and insulin resistance, 25% of severely obese (BMI >40) individuals are insulin sensitive. In this review, we will examine the factors in adipose tissue that distinguish the two groups, as well as reasons for believing the insulin-sensitive group will be less disease prone. RECENT FINDINGS Obesity has been linked to the metabolic syndrome with an increase in visceral (intra-abdominal) compared to subcutaneous fat. Recent studies in which adipose tissue of insulin-sensitive and insulin-resistant patients with severe obesity were compared indicate that the insulin-resistant group is also distinguished by increases in oxidative stress and decreases in AMP-activated protein kinase (AMPK) activity. In contrast, changes in the expression of genes for SIRT1, inflammatory cytokines, mitochondrial biogenesis and function, and the two α-isoforms of AMPK showed more depot variation. Studies of how these and other changes in adipose tissue respond to bariatric surgery are still in their infancy. SUMMARY Available data suggest that increases in oxidative stress, decreases in AMPK activity and SIRT1 gene expression, depot-specific changes in inflammatory, mitochondrial and other genes distinguish adipose tissue of insulin resistant from insulin-sensitive individuals with severe obesity.
Collapse
Affiliation(s)
- X. Julia Xu
- Diabetes and Metabolism Unit, Section of Endocrinology, Department of Medicine, Boston University Medical Center, Boston, Massachusetts
| | - Walter J. Pories
- Section of Endocrinology and Metabolism, Department of Internal Medicine, Brody School of Medicine at East Carolina University, Greenville, North Carolina, USA
| | - Lynis G. Dohm
- Section of Endocrinology and Metabolism, Department of Internal Medicine, Brody School of Medicine at East Carolina University, Greenville, North Carolina, USA
| | - Neil B. Ruderman
- Diabetes and Metabolism Unit, Section of Endocrinology, Department of Medicine, Boston University Medical Center, Boston, Massachusetts
| |
Collapse
|
207
|
Vroegrijk IOCM, van Diepen JA, van den Berg SAA, Romijn JA, Havekes LM, van Dijk KW, Darland G, Konda V, Tripp ML, Bland JS, Voshol PJ. META060 protects against diet-induced obesity and insulin resistance in a high-fat-diet fed mouse. Nutrition 2013; 29:276-83. [PMID: 22985971 DOI: 10.1016/j.nut.2012.05.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2011] [Revised: 04/10/2012] [Accepted: 05/03/2012] [Indexed: 11/21/2022]
Abstract
OBJECTIVE We investigated whether a reduced iso-α acid derived from an extract of Humulus lupulus L., META060, had an effect on weight gain, body composition, and metabolism in a high-fat-diet (HFD) fed mouse model. METHODS Weight gain was monitored for up to 20 wk in mice receiving a low-fat diet, an HFD, or an HFD supplemented with META060 or rosiglitazone. Body composition was determined using dual-energy x-ray absorptiometric analysis. Indirect calorimetric measurements were performed to investigate the energy balance in the mice, and oral glucose tolerance tests were administered to examine the effect of META060 on the glycemic response. RESULTS The HFD-fed mice administered META060 for 14 wk had a significantly lower mean weight than HFD-fed mice (30.58 ± 0.5 versus 37.88 ± 0.7 g, P < 0.05). Indirect calorimetric measurements showed an increased metabolic flexibility in mice supplemented with META060. In addition, glucose tolerance was improved, comparable to the effects of rosiglitazone treatment. CONCLUSIONS META060 has potential therapeutic value for managing obesity and insulin resistance, and further research into the mechanism of action is warranted.
Collapse
Affiliation(s)
- Irene O C M Vroegrijk
- Department of General Internal Medicine, Endocrinology and Metabolic Diseases, Leiden University Medical Center, Leiden, The Netherlands
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
208
|
Vernochet C, Mourier A, Bezy O, Macotela Y, Boucher J, Rardin MJ, An D, Lee KY, Ilkayeva OR, Zingaretti CM, Emanuelli B, Smyth G, Cinti S, Newgard CB, Gibson BW, Larsson NG, Kahn CR. Adipose-specific deletion of TFAM increases mitochondrial oxidation and protects mice against obesity and insulin resistance. Cell Metab 2012; 16:765-76. [PMID: 23168219 PMCID: PMC3529641 DOI: 10.1016/j.cmet.2012.10.016] [Citation(s) in RCA: 194] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2012] [Revised: 08/08/2012] [Accepted: 10/25/2012] [Indexed: 01/01/2023]
Abstract
Obesity and type 2 diabetes are associated with mitochondrial dysfunction in adipose tissue, but the role for adipose tissue mitochondria in the development of these disorders is currently unknown. To understand the impact of adipose tissue mitochondria on whole-body metabolism, we have generated a mouse model with disruption of the mitochondrial transcription factor A (TFAM) specifically in fat. F-TFKO adipose tissue exhibit decreased mtDNA copy number, altered levels of proteins of the electron transport chain, and perturbed mitochondrial function with decreased complex I activity and greater oxygen consumption and uncoupling. As a result, F-TFKO mice exhibit higher energy expenditure and are protected from age- and diet-induced obesity, insulin resistance, and hepatosteatosis, despite a greater food intake. Thus, TFAM deletion in the adipose tissue increases mitochondrial oxidation that has positive metabolic effects, suggesting that regulation of adipose tissue mitochondria may be a potential therapeutic target for the treatment of obesity.
Collapse
Affiliation(s)
- Cecile Vernochet
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center and Department of Medicine, Harvard Medical School, Boston, MA
| | - Arnaud Mourier
- Max Planck Institute for Biology of Ageing, Robert-Koch-Str. 21, 50931 Cologne, Germany
| | - Olivier Bezy
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center and Department of Medicine, Harvard Medical School, Boston, MA
- Pfizer, Inc, Cardiovascular Metabolic and Endocrine Diseases (CVMED), 620 Memorial Drive, Cambridge, MA 02139
| | - Yazmin Macotela
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center and Department of Medicine, Harvard Medical School, Boston, MA
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Campus UNAM-Juriquilla, 76230 Querétaro, Mexico
| | - Jeremie Boucher
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center and Department of Medicine, Harvard Medical School, Boston, MA
| | - Matthew J. Rardin
- Buck Institute for Research on Aging, 8001 Redwood Boulevard, Novato, CA 94945, USA
| | - Ding An
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center and Department of Medicine, Harvard Medical School, Boston, MA
| | - Kevin Y. Lee
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center and Department of Medicine, Harvard Medical School, Boston, MA
| | - Olga R. Ilkayeva
- Sarah W. Stedman Nutrition and Metabolism Center, Duke University Medical Center, Durham, NC 27704, USA
| | - Cristina M. Zingaretti
- Department Experimental and Clinical Medicine-Diagnostic Electron Microscopy Unit University-United Hospitals of Ancona, Ancona 60020 & Adipose Organ Lab IRCCS San Raffaele Pisana, Rome 00163, Italy
| | - Brice Emanuelli
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center and Department of Medicine, Harvard Medical School, Boston, MA
| | - Graham Smyth
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center and Department of Medicine, Harvard Medical School, Boston, MA
| | - Saverio Cinti
- Department Experimental and Clinical Medicine-Diagnostic Electron Microscopy Unit University-United Hospitals of Ancona, Ancona 60020 & Adipose Organ Lab IRCCS San Raffaele Pisana, Rome 00163, Italy
| | - Christopher B. Newgard
- Sarah W. Stedman Nutrition and Metabolism Center, Duke University Medical Center, Durham, NC 27704, USA
| | - Bradford W. Gibson
- Buck Institute for Research on Aging, 8001 Redwood Boulevard, Novato, CA 94945, USA
| | - Nils-Göran Larsson
- Max Planck Institute for Biology of Ageing, Robert-Koch-Str. 21, 50931 Cologne, Germany
| | - C. Ronald Kahn
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center and Department of Medicine, Harvard Medical School, Boston, MA
| |
Collapse
|
209
|
Abstract
Excess of adipose tissue is accompanied by an increase in the risk of developing insulin resistance, type 2 diabetes (T2D) and other complications. Nevertheless, total or partial absence of fat or its accumulation in other tissues (lipotoxicity) is also associated to these complications. White adipose tissue (WAT) was traditionally considered a metabolically active storage tissue for lipids while brown adipose tissue (BAT) was considered as a thermogenic adipose tissue with higher oxidative capacity. Nowadays, WAT is also considered an endocrine organ that contributes to energy homeostasis. Experimental evidence tends to link the malfunction of adipose mitochondria with the development of obesity and T2D. This review discusses the importance of mitochondrial function in adipocyte biology and the increased evidences of mitochondria dysfunction in these epidemics. New strategies targeting adipocyte mitochondria from WAT and BAT are also discussed as therapies against obesity and its complications in the near future.
Collapse
Affiliation(s)
- Gema Medina-Gómez
- Dpto. de Bioquímica, Fisiología y Genética Molecular, Universidad Rey Juan Carlos, Facultad de Ciencias de la Salud, Avda. de Atenas s/n, 28922 Alcorcón, Madrid, Spain.
| |
Collapse
|
210
|
Martos-Moreno GA, Sackmann-Sala L, Berryman DE, Blome DW, Argente J, Kopchick JJ. [Anatomical heterogeneity in the proteome of human subcutaneous adipose tissue]. An Pediatr (Barc) 2012; 78:140-8. [PMID: 23228439 DOI: 10.1016/j.anpedi.2012.10.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2012] [Accepted: 10/11/2012] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Human subcutaneous (SQ) white adipose tissue (WAT) can vary according to its anatomical location, with subsequent differences in its proteomic profile. PATIENTS AND METHODS SQ-WAT aspirates were obtained from six overweight (BMI>25kg/m(2)) women who underwent extensive liposuction. SQ-WAT was removed from six different locations (upper abdominal, lower abdominal, thigh, back, flank, and hip), and the protein profiles were determined by two-dimensional gel electrophoresis. In addition, the proteomic profiles of upper abdominal and hip SQ-WAT were subjected to further analysis, comparing samples obtained from two layers of WAT (deep and superficial). RESULTS Twenty one protein spots showed differential intensities among the six defined anatomical locations, and 14 between the superficial and the deep layer. Among the proteins identified were, vimentin (structural protein), heat-shock proteins (HSPs), superoxide-dismutase (stress-resistance/chaperones), fatty-acid-binding protein (FABP) 4, and alpha-enolase (lipid and carbohydrate metabolism), and ATP-synthase (energy production). Among the WAT samples analyzed, the back sub-depot showed significant differences in the levels of selected proteins when compared to the other locations, with lower level of expression of several proteins involved in energy production and metabolism (ATP-synthase, alpha-enolase, HSPs and FABP-4). CONCLUSIONS The levels of several proteins in human SQ-WAT are not homogeneous between different WAT depots. These changes suggest the existence of inherent functional differences in subcutaneous fat depending upon its anatomical location. Thus, caution must be used when extrapolating data from one subcutaneous WAT region to other depots.
Collapse
Affiliation(s)
- G A Martos-Moreno
- Edison Biotechnology Institute, Konneker Research Laboratories, Ohio University, The Ridges, Athens, Ohio, Estados Unidos
| | | | | | | | | | | |
Collapse
|
211
|
Shiota A, Shimabukuro M, Fukuda D, Soeki T, Sato H, Uematsu E, Hirata Y, Kurobe H, Maeda N, Sakaue H, Masuzaki H, Shimomura I, Sata M. Telmisartan ameliorates insulin sensitivity by activating the AMPK/SIRT1 pathway in skeletal muscle of obese db/db mice. Cardiovasc Diabetol 2012; 11:139. [PMID: 23137106 PMCID: PMC3527353 DOI: 10.1186/1475-2840-11-139] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2012] [Accepted: 10/18/2012] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Telmisartan is a well-established angiotensin II type 1 receptor blocker that improves insulin sensitivity in animal models of obesity and insulin resistance, as well as in humans. Telmisartan has been reported to function as a partial agonist of the peroxisome proliferator-activated receptor (PPAR) γ, which is also targeted by the nicotinamide adenine dinucleotide (NAD)-dependent deacetylase (SIRT1). Here, we investigated the pathways through which telmisartan acts on skeletal muscle, in vitro as well as in vivo. METHODS Nine-week-old male db/db mice were fed a 60% high-fat diet, with orally administrated either vehicle (carboxymethyl-cellulose, CMC), 5 mg/kg telmisartan, or 5 mg/kg telmisartan and 1 mg/kg GW9662, a selective irreversible antagonist of PPARγ, for 5 weeks. Effects of telmisartan on Sirt1 mRNA, AMPK phosphorylation, and NAD+/NADH ratio were determined in C2C12 cultured myocytes. RESULTS AND DISCUSSION Telmisartan treatment improved insulin sensitivity in obese db/db mice fed a high-fat diet and led to reduction in the size of hypertrophic pancreatic islets in these mice. Moreover, in vitro treatment with telmisartan led to increased expression of Sirt1 mRNA in C2C12 skeletal muscle cells; the increase in Sirt1 mRNA in telmisartan-treated C2C12 myoblasts occurred concomitantly with an increase in AMPK phosphorylation, an increase in NAD+/NADH ratio, and increases in the mRNA levels of PGC1α, FATP1, ACO, and GLUT4. CONCLUSIONS Our results indicate that telmisartan acts through a PPARγ-independent pathway, but at least partially exerts its effects by acting directly on skeletal muscle AMPK/SIRT1 pathways.
Collapse
Affiliation(s)
- Asuka Shiota
- Department of Cardio-Diabetes Medicine, University of Tokushima Graduate School of Health Biosciences, 3-18-15 Kuramoto, Tokushima 770-8503, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
212
|
Goossens GH, Blaak EE. Adipose tissue oxygen tension: implications for chronic metabolic and inflammatory diseases. Curr Opin Clin Nutr Metab Care 2012; 15:539-46. [PMID: 23037900 DOI: 10.1097/mco.0b013e328358fa87] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
PURPOSE OF REVIEW The present review aims to address the role of adipose tissue oxygen partial pressure (PO2) in the metabolic and endocrine derangements in conditions characterized by insulin resistance. RECENT FINDINGS The balance between adipose tissue oxygen supply and its metabolic rate seems to determine adipose tissue PO2. Studies in ob/ob and dietary-induced obese mice have provided evidence for adipose tissue hypoxia in obesity, which has been explained by insufficient adipose tissue angiogenesis during the massive and rapid weight gain in these animals. However, conflicting data have been reported in humans, showing both increased and decreased adipose tissue PO2 in obese compared with lean individuals. Both low and high adipose tissue PO2 may induce a proinflammatory phenotype in (pre)adipocytes, but most studies have been performed under rather extreme PO2 levels, not reflecting human adipose tissue physiology. Furthermore, adipose tissue PO2 may affect glucose and lipid metabolism as well as adipogenic differentiation, but many issues still need to be addressed. SUMMARY Adipose tissue hypoxia has been demonstrated in animal models of obesity, but findings in humans are controversial and require further investigation. Although adipose tissue PO2 seems to be involved in metabolic and endocrine derangements in human adipose tissue, future studies should investigate how low and high adipose tissue PO2 within the human physiological range (3-11% O2) relates to adipose tissue blood flow and oxygen consumption, cellular metabolic responses, and the inflammatory phenotype.
Collapse
Affiliation(s)
- Gijs H Goossens
- Department of Human Biology, NUTRIM School for Nutrition, Toxicology and Metabolism, Maastricht University Medical Centre, Maastricht, The Netherlands.
| | | |
Collapse
|
213
|
Zhang Y, Zeng X, Jin S. Autophagy in adipose tissue biology. Pharmacol Res 2012; 66:505-12. [PMID: 23017672 DOI: 10.1016/j.phrs.2012.09.004] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2012] [Accepted: 09/05/2012] [Indexed: 12/25/2022]
Abstract
Obesity, which predisposes individuals to type II diabetes and cardiovascular diseases, results from accumulation of white adipose tissue (WAT). WAT comprises mainly white adipocytes that have a unique cellular structure in which almost the entire intracellular space is occupied by one single lipid droplet. The cytoplasm envelopes this lipid droplet and occupies negligible space. Differentiation of WAT, or adipogenesis, requires dramatic cytoplasmic reorganization, including a dynamic change in mitochondrial mass. Autophagy is a major cytoplasmic degradation pathway and a primary pathway for mitochondrial degradation. Recent studies indicate that autophagy is implicated in adipogenesis. In this review, we summarize our current knowledge on autophagy in adipose tissue biology, with the emphasis on its role in mitochondrial degradation. Adipose tissue is a central component for whole-body energy homeostasis regulation. Advancement in this research area may provide novel venues for the intervention of obesity and obesity related diseases.
Collapse
Affiliation(s)
- Yong Zhang
- Department of Pharmacology and the Cancer Institute of New Jersey, University of Medicine and Dentistry of New Jersey-Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA
| | | | | |
Collapse
|
214
|
Pangare M, Makino A. Mitochondrial function in vascular endothelial cell in diabetes. J Smooth Muscle Res 2012; 48:1-26. [PMID: 22504486 DOI: 10.1540/jsmr.48.1] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Micro- and macrovascular complications are commonly seen in diabetic patients and endothelial dysfunction contributes to the development and progression of the complications. Abnormal functions in endothelial cells lead to the increase in vascular tension and atherosclerosis, followed by systemic hypertension as well as increased incidence of ischemia and stroke in diabetic patients. Mitochondria are organelles serving as a source of energy production and as regulators of cell survival (e.g., apoptosis and cell development) and ion homeostasis (e.g., H(+), Ca(2+)). Endothelial mitochondria are mainly responsible for generation of reactive oxygen species (ROS) and maintaining the Ca(2+) concentration in the cytosol. There is increasing evidence that mitochondrial morphological and functional changes are implicated in vascular endothelial dysfunction. Enhanced mitochondrial fission and/or attenuated fusion lead to mitochondrial fragmentation and disrupt the endothelial physiological function. Abnormal mitochondrial biogenesis and disturbance of mitochondrial autophagy increase the accumulation of damaged mitochondria, such as irreversibly depolarized or leaky mitochondria, and facilitate cell death. Augmented mitochondrial ROS production and Ca(2+) overload in mitochondria not only cause the maladaptive effect on the endothelial function, but also are potentially detrimental to cell survival. In this article, we review the physiological and pathophysiological role of mitochondria in endothelial function with special focus on diabetes.
Collapse
Affiliation(s)
- Meenal Pangare
- University of Illinois at Chicago, Chicago, IL 60612, USA
| | | |
Collapse
|
215
|
Kim DH, Sartor MA, Bain JR, Sandoval D, Stevens RD, Medvedovic M, Newgard CB, Woods SC, Seeley RJ. Rapid and weight-independent improvement of glucose tolerance induced by a peptide designed to elicit apoptosis in adipose tissue endothelium. Diabetes 2012; 61:2299-310. [PMID: 22733798 PMCID: PMC3425411 DOI: 10.2337/db11-1579] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
A peptide designed to induce apoptosis of endothelium in white adipose tissue (WAT) decreases adiposity. The goal of this work is to determine whether targeting of WAT endothelium results in impaired glucose regulation as a result of impaired WAT function. Glucose tolerance tests were performed on days 2 and 3 of treatment with vehicle (HF-V) or proapoptotic peptide (HF-PP) and mice pair-fed to HF-PP (HF-PF) in obese mice on a high-fat diet (HFD). Serum metabolic variables, including lipid profile, adipokines, individual fatty acids, and acylcarnitines, were measured. Microarray analysis was performed in epididymal fat of lean or obese mice treated with vehicle or proapoptotic peptide (PP). PP rapidly and potently improved glucose tolerance of obese mice in a weight- and food intake-independent manner. Serum insulin and triglycerides were decreased in HF-PP relative to HF-V. Levels of fatty acids and acylcarnitines were distinctive in HF-PP compared with HF-V or HF-PF. Microarray analysis in AT revealed that pathways involved in mitochondrial dysfunction, oxidative phosphorylation, and branched-chain amino acid degradation were changed by exposure to HFD and were reversed by PP administration. These studies suggest a novel role of the AT vasculature in glucose homeostasis and lipid metabolism.
Collapse
Affiliation(s)
- Dong-Hoon Kim
- Department of Pharmacology, Korea University College of Medicine, Seoul, Republic of Korea
| | - Maureen A. Sartor
- Center for Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan
| | - James R. Bain
- Departments of Pharmacology and Cancer Biology and Medicine, Sarah W. Stedman Nutrition and Metabolism Center, Duke University Medical Center, Durham, North Carolina
| | - Darleen Sandoval
- Department of Internal Medicine, University of Cincinnati, Cincinnati, Ohio
| | - Robert D. Stevens
- Departments of Pharmacology and Cancer Biology and Medicine, Sarah W. Stedman Nutrition and Metabolism Center, Duke University Medical Center, Durham, North Carolina
| | - Mario Medvedovic
- Department of Environmental Health, Division of Epidemiology and Biostatistics, University of Cincinnati Medical Center, Cincinnati, Ohio
| | - Christopher B. Newgard
- Departments of Pharmacology and Cancer Biology and Medicine, Sarah W. Stedman Nutrition and Metabolism Center, Duke University Medical Center, Durham, North Carolina
| | - Stephen C. Woods
- Department of Psychiatry, University of Cincinnati, Cincinnati, Ohio
| | - Randy J. Seeley
- Department of Internal Medicine, University of Cincinnati, Cincinnati, Ohio
- Corresponding author: Randy J. Seeley,
| |
Collapse
|
216
|
Sansbury BE, Cummins TD, Tang Y, Hellmann J, Holden CR, Harbeson MA, Chen Y, Patel RP, Spite M, Bhatnagar A, Hill BG. Overexpression of endothelial nitric oxide synthase prevents diet-induced obesity and regulates adipocyte phenotype. Circ Res 2012; 111:1176-89. [PMID: 22896587 DOI: 10.1161/circresaha.112.266395] [Citation(s) in RCA: 115] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
RATIONALE Endothelial dysfunction is a characteristic feature of diabetes and obesity in animal models and humans. Deficits in nitric oxide production by endothelial nitric oxide synthase (eNOS) are associated with insulin resistance, which is exacerbated by high-fat diet. Nevertheless, the metabolic effects of increasing eNOS levels have not been studied. OBJECTIVE The current study was designed to test whether overexpression of eNOS would prevent diet-induced obesity and insulin resistance. METHODS AND RESULTS In db/db mice and in high-fat diet-fed wild-type C57BL/6J mice, the abundance of eNOS protein in adipose tissue was decreased without significant changes in eNOS levels in skeletal muscle or aorta. Mice overexpressing eNOS (eNOS transgenic mice) were resistant to diet-induced obesity and hyperinsulinemia, although systemic glucose intolerance remained largely unaffected. In comparison with wild-type mice, high-fat diet-fed eNOS transgenic mice displayed a higher metabolic rate and attenuated hypertrophy of white adipocytes. Overexpression of eNOS did not affect food consumption or diet-induced changes in plasma cholesterol or leptin levels, yet plasma triglycerides and fatty acids were decreased. Metabolomic analysis of adipose tissue indicated that eNOS overexpression primarily affected amino acid and lipid metabolism; subpathway analysis suggested changes in fatty acid oxidation. In agreement with these findings, adipose tissue from eNOS transgenic mice showed higher levels of PPAR-α and PPAR-γ gene expression, elevated abundance of mitochondrial proteins, and a higher rate of oxygen consumption. CONCLUSIONS These findings demonstrate that increased eNOS activity prevents the obesogenic effects of high-fat diet without affecting systemic insulin resistance, in part, by stimulating metabolic activity in adipose tissue.
Collapse
Affiliation(s)
- Brian E Sansbury
- Institute of Molecular Cardiology, Department of Medicine, University of Louisville, Louisville, KY 40202, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
217
|
Role of Peroxisome Proliferator-Activated Receptor-γ in Vascular Inflammation. Int J Vasc Med 2012; 2012:508416. [PMID: 22888436 PMCID: PMC3409528 DOI: 10.1155/2012/508416] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2012] [Accepted: 06/08/2012] [Indexed: 12/13/2022] Open
Abstract
Vascular inflammation plays a crucial role in atherosclerosis, and its regulation is important to prevent cerebrovascular and coronary artery disease. The inflammatory process in atherogenesis involves a variety of immune cells including monocytes/macrophages, lymphocytes, dendritic cells, and neutrophils, which all express peroxisome proliferator-activated receptor-γ (PPAR-γ). PPAR-γ is a nuclear receptor and transcription factor in the steroid superfamily and is known to be a key regulator of adipocyte differentiation. Increasing evidence from mainly experimental studies has demonstrated that PPAR-γ activation by endogenous and synthetic ligands is involved in lipid metabolism and anti-inflammatory activity. In addition, recent clinical studies have shown a beneficial effect of thiazolidinediones, synthetic PPAR-γ ligands, on cardiovascular disease beyond glycemic control. These results suggest that PPAR-γ activation is an important regulator in vascular inflammation and is expected to be a therapeutic target in the treatment of atherosclerotic complications. This paper reviews the recent findings of PPAR-γ involvement in vascular inflammation and the therapeutic potential of regulating the immune system in atherosclerosis.
Collapse
|
218
|
Distel E, Penot G, Cadoudal T, Balguy I, Durant S, Benelli C. Early induction of a brown-like phenotype by rosiglitazone in the epicardial adipose tissue of fatty Zucker rats. Biochimie 2012; 94:1660-7. [PMID: 22575275 DOI: 10.1016/j.biochi.2012.04.014] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2012] [Accepted: 04/10/2012] [Indexed: 01/18/2023]
Abstract
The epicardial adipose tissue (EAT) is "hypertrophied" in the obese. Thiazolidinediones are anti-diabetic, hypolipidemic drugs and are selective agonists for the gamma isoform of peroxisome proliferator-activated receptor (PPARγ). We evaluated the short-term effects of the prototype rosiglitazone (RSG, 5 mg kg(-1) day(-1) for 4 days) on the expression of the genes and proteins (by real-time PCR and Western blot) involved in fatty acid (FA) metabolism in EAT of the obese fatty Zucker rat and compared the levels of expression with those in retroperitoneal adipose tissue (RAT). The glyceroneogenic flux leading to fatty acid re-esterification was assessed by the incorporation of 14C from [1-14C]-pyruvate into neutral lipids. RSG upregulated the mRNA for phosphoenolpyruvate carboxykinase, pyruvate dehydrogenase kinase 4, glycerol kinase, adipocyte lipid binding protein, adipose tissue triglyceride lipase and lipoprotein lipase in both RAT and EAT with a resulting increase in glyceroneogenesis that, however, was more pronounced in EAT than in RAT. Under RSG, fatty acid output was decreased in both tissues but unexpectedly less so in EAT than in RAT. RSG also induced the expression of the key genes for fatty acid oxidation [carnitinepalmitoyl transferase-1, medium chain acyl dehydrogenase and very long chain acyl dehydrogenase (VLCAD)]in EAT and RAT with a resulting significant rise of the expression of VLCAD protein. In addition, the expression of the genes encoding proteins involved in mitochondrial processing and density PPARγ coactivator 1 alpha (PGC-1α), NADH dehydrogenase 1 and cytochrome oxidase (COX4) were increased by RSG treatment only in EAT, with a resulting significant up-regulation of PGC1-α and COX4 protein. This was accompanied by a rise in the expression of PR domain containing 16 and uncoupling protein 1, two brown adipose tissue-specific proteins. In conclusion, this study reveals that PPAR-γ agonist could induce a rapid browning of the EAT that probably contributes to the increase in lipid turnover.
Collapse
Affiliation(s)
- Emilie Distel
- Institut National de la Santé et de la Recherche Médicale UMR-S 747, Université Paris Descartes Centre universitaire des Saints-Pères, Pharmacologie Toxicologie et Signalisation Cellulaire, 45 rue des Saints-Pères, 75006 Paris, France
| | | | | | | | | | | |
Collapse
|
219
|
Yan SJ, Wang L, Li Z, Zhu DN, Guo SC, Xin WF, Yang YF, Cong X, Ma T, Shen PP, Sheng J, Zhang WS. Inhibition of advanced glycation end product formation by Pu-erh tea ameliorates progression of experimental diabetic nephropathy. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2012; 60:4102-4110. [PMID: 22482420 DOI: 10.1021/jf300347p] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Accumulation of advanced glycation end products (AGEs) has been implicated in the development of diabetic nephropathy. We investigated the effects of Pu-erh tea on AGE accumulation associated with diabetic nephropathy. Although it did not affect blood glucose levels and insulin sensitivy, Pu-erh tea treatment for 8 weeks attenuated the increases in urinary albumin, serum creatinine, and mesangial matrix in db/db mice. We found that Pu-erh tea prevented diabetes-induced accumulation of AGEs and led to a decreased level of receptor for AGE expression in glomeruli. Both production and clearance of carbonyl compounds, the main precursor of AGE formation, were probably attenuated by Pu-erh tea in vivo independent of glyoxalase I expression. In vitro, HPLC assay demonstrated Pu-erh tea could trap methylglyoxal in a dose-dependent manner. Our study raises the possibility that inhibition of AGE formation by carbonyl trapping is a promising approach to prevent or arrest the progression of diabetic complications.
Collapse
Affiliation(s)
- Shi-Jun Yan
- State Key Laboratory of Earth Surface Processes and Resource Ecology, Beijing Normal University, Beijing, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
220
|
Michel S, Wanet A, De Pauw A, Rommelaere G, Arnould T, Renard P. Crosstalk between mitochondrial (dys)function and mitochondrial abundance. J Cell Physiol 2012; 227:2297-310. [PMID: 21928343 DOI: 10.1002/jcp.23021] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A controlled regulation of mitochondrial mass through either the production (biogenesis) or the degradation (mitochondrial quality control) of the organelle represents a crucial step for proper mitochondrial and cell function. Key steps of mitochondrial biogenesis and quality control are overviewed, with an emphasis on the role of mitochondrial chaperones and proteases that keep mitochondria fully functional, provided the mitochondrial activity impairment is not excessive. In this case, the whole organelle is degraded by mitochondrial autophagy or "mitophagy." Beside the maintenance of adequate mitochondrial abundance and functions for cell homeostasis, mitochondrial biogenesis might be enhanced, through discussed signaling pathways, in response to various physiological stimuli, like contractile activity, exposure to low temperatures, caloric restriction, and stem cells differentiation. In addition, mitochondrial dysfunction might also initiate a retrograde response, enabling cell adaptation through increased mitochondrial biogenesis.
Collapse
Affiliation(s)
- Sébastien Michel
- Laboratory of Biochemistry and Cell Biology (URBC), NARILIS (Namur Research Institute for Life Sciences), University of Namur (FUNDP), Namur, Belgium
| | | | | | | | | | | |
Collapse
|
221
|
Ohno H, Shinoda K, Spiegelman BM, Kajimura S. PPARγ agonists induce a white-to-brown fat conversion through stabilization of PRDM16 protein. Cell Metab 2012; 15:395-404. [PMID: 22405074 PMCID: PMC3410936 DOI: 10.1016/j.cmet.2012.01.019] [Citation(s) in RCA: 610] [Impact Index Per Article: 46.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2011] [Revised: 12/14/2011] [Accepted: 01/27/2012] [Indexed: 12/21/2022]
Abstract
Brown adipose tissue dissipates energy through heat and functions as a defense against cold and obesity. PPARγ ligands have been shown to induce the browning of white adipocytes; however, the underlying mechanisms remain unclear. Here, we show that PPARγ ligands require full agonism to induce a brown fat gene program preferentially in subcutaneous white adipose. These effects require expression of PRDM16, a factor that controls the development of classical brown fat. Depletion of PRDM16 blunts the effects of the PPARγ agonist rosiglitazone on the induced brown fat gene program. Conversely, PRDM16 and rosiglitazone synergistically activate the brown fat gene program in vivo. This synergy is tightly associated with an increased accumulation of PRDM16 protein, due in large measure to an increase in the half-life of the protein in agonist treated cells. Identifying compounds that stabilize PRDM16 protein may represent a plausible therapeutic pathway for the treatment of obesity and diabetes.
Collapse
Affiliation(s)
- Haruya Ohno
- UCSF Diabetes Center and Department of Cell and Tissue Biology, University of California, San Francisco, 35 Medical Center Way, San Francisco, CA 94143-0669, USA
| | | | | | | |
Collapse
|
222
|
Pipatpiboon N, Pratchayasakul W, Chattipakorn N, Chattipakorn SC. PPARγ agonist improves neuronal insulin receptor function in hippocampus and brain mitochondria function in rats with insulin resistance induced by long term high-fat diets. Endocrinology 2012; 153:329-38. [PMID: 22109891 DOI: 10.1210/en.2011-1502] [Citation(s) in RCA: 176] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
We previously demonstrated that a high-fat diet (HFD) consumption can cause not only peripheral insulin resistance, but also neuronal insulin resistance. Moreover, the consumption of an HFD has been shown to cause mitochondrial dysfunction in both the skeletal muscle and liver. Rosiglitazone, a peroxizome proliferator-activated receptor-γ ligand, is a drug used to treat type 2 diabetes mellitus. Recent studies suggested that rosiglitazone can improve learning and memory in both human and animal models. However, the effects of rosiglitazone on neuronal insulin resistance and brain mitochondria after the HFD consumption have not yet been investigated. Therefore, we tested the hypothesis that rosiglitazone improves neuronal insulin resistance caused by a HFD via attenuating the dysfunction of neuronal insulin receptors and brain mitochondria. Rosiglitazone (5 mg/kg · d) was given for 14 d to rats that were fed with either a HFD or normal diet for 12 wk. After the 14(th) week, all animals were euthanized, and their brains were removed and examined for insulin-induced long-term depression, neuronal insulin signaling, and brain mitochondrial function. We found that rosiglitazone significantly improved peripheral insulin resistance and insulin-induced long-term depression and increased neuronal Akt/PKB-ser phosphorylation in response to insulin. Furthermore, rosiglitazone prevented brain mitochondrial conformational changes and attenuated brain mitochondrial swelling, brain mitochondrial membrane potential changes, and brain mitochondrial ROS production. Our data suggest that neuronal insulin resistance and the impairment of brain mitochondria caused by a 12-wk HFD consumption can be reversed by rosiglitazone.
Collapse
Affiliation(s)
- Noppamas Pipatpiboon
- Neuroelectrophysiology Unit, Cardiac Electrophysiology Research and Training Center, Chiang Mai University, Chiang Mai, 50200, Thailand
| | | | | | | |
Collapse
|
223
|
Pérez-Pérez R, García-Santos E, Ortega-Delgado FJ, López JA, Camafeita E, Ricart W, Fernández-Real JM, Peral B. Attenuated metabolism is a hallmark of obesity as revealed by comparative proteomic analysis of human omental adipose tissue. J Proteomics 2012; 75:783-95. [DOI: 10.1016/j.jprot.2011.09.016] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2011] [Revised: 09/19/2011] [Accepted: 09/22/2011] [Indexed: 01/11/2023]
|
224
|
Chattopadhyay M, Guhathakurta I, Behera P, Ranjan KR, Khanna M, Mukhopadhyay S, Chakrabarti S. Mitochondrial bioenergetics is not impaired in nonobese subjects with type 2 diabetes mellitus. Metabolism 2011; 60:1702-10. [PMID: 21663924 DOI: 10.1016/j.metabol.2011.04.015] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2011] [Revised: 04/21/2011] [Accepted: 04/28/2011] [Indexed: 02/02/2023]
Abstract
Although mitochondrial dysfunction has been well documented in obese people with type 2 diabetes mellitus, its presence or absence in nonobese subjects with type 2 diabetes mellitus has not been well studied so far. The aim of the present study was to assess the status of mitochondrial oxidative phosphorylation in subcutaneous adipose tissue of nonobese type 2 diabetes mellitus subjects in comparison to control, obese nondiabetic, and obese type 2 diabetes mellitus subjects. Mitochondria were isolated from subcutaneous white adipose tissue obtained from the abdominal region of control, obese nondiabetic, nonobese type 2 diabetes mellitus, and obese type 2 diabetes mellitus subjects. The activities of complex I, I to III, II to III, and IV; transmembrane potential; and inorganic phosphate utilization of mitochondria from different groups were measured. Mitochondrial transmembrane potential, inorganic phosphate utilization, and the activities of respiratory chain complexes were significantly reduced in obese nondiabetic and obese type 2 diabetes mellitus patients compared with those in control subjects. No detectable change in mitochondrial functional parameters was observed in case of nonobese type 2 diabetes mellitus subjects compared with control subjects. Furthermore, a significant difference was noticed in mitochondrial phosphate utilization and activities of respiratory complexes, for example, I, I to III, and II to III, between obese type 2 diabetes mellitus subjects and obese nondiabetic subjects. Obesity modulates mitochondrial dysfunction associated with type 2 diabetes mellitus.
Collapse
Affiliation(s)
- Mrittika Chattopadhyay
- Department of Biochemistry, Institute of Post Graduate Medical Education & Research, Kolkata-700020, India
| | | | | | | | | | | | | |
Collapse
|
225
|
|
226
|
Håkansson J, Eliasson B, Smith U, Enerbäck S. Adipocyte mitochondrial genes and the forkhead factor FOXC2 are decreased in type 2 diabetes patients and normalized in response to rosiglitazone. Diabetol Metab Syndr 2011; 3:32. [PMID: 22098677 PMCID: PMC3230127 DOI: 10.1186/1758-5996-3-32] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2011] [Accepted: 11/18/2011] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND FOXC2 has lately been implicated in diabetes and obesity as well as mitochondrial function and biogenesis and also as a regulator of mtTFA/Tfam. In this study, the expression of FOXC2 and selected genes involved in mitochondrial function and biogenesis in healthy subjects and in a matched cohort with type 2 diabetes patients before and after treatment with rosiglitazone was determined. Quantitative real time PCR was used to analyze both RNA and DNA from biopsies from subcutaneous adipose tissue. METHODS Blood samples and subcutaneous abdominal fat biopsies were collected from 12 T2D patients, of which 11 concluded the study, pre-treatment and 90 days after initiation of rosiglitazone treatment, and from 19 healthy control subjects on the first and only visit from healthy subjects. Clinical parameters were measured on the blood samples. RNA and DNA were prepared from the fat biopsies and gene expression was measured with real time PCR. RESULTS The expression level of genes in the mitochondrial respiratory complexes I - IV were significantly downregulated in the diabetic patients and restored in response to rosiglitazone treatment. Rosiglitazone treatment also increased the relative number of mitochondria in diabetic patients compared with controls. Furthermore, the transcription factors FOXC2 and mtTFA/Tfam displayed a response pattern identical to the mitochondrial genes. CONCLUSIONS FOXC2, mtTFA/Tfam and subunits of the respiratory complexes I - IV show equivalent regulation in gene expression levels in response to TZD treatment. This, together with the knowledge that FOXC2 has a regulatory function of mtTFA/Tfam and mitochondrial biogenesis, suggests that FOXC2 has a possible functional role in the TZD activated mitochondrial response.
Collapse
Affiliation(s)
- Joakim Håkansson
- Department of Medical and Clinical Genetics, Institute of Biomedicine University of Gothenburg, Göteborg, Sweden
- PharmaSurgics AB, Arvid Wallgrens backe 20, Göteborg, Sweden
| | - Björn Eliasson
- The Lundberg Laboratory for Diabetes Research, Department of Molecular and Clinical Medicine, The Sahlgrenska Academy at the University of Gothenburg, Göteborg, Sweden
| | - Ulf Smith
- The Lundberg Laboratory for Diabetes Research, Department of Molecular and Clinical Medicine, The Sahlgrenska Academy at the University of Gothenburg, Göteborg, Sweden
| | - Sven Enerbäck
- Department of Medical and Clinical Genetics, Institute of Biomedicine University of Gothenburg, Göteborg, Sweden
| |
Collapse
|
227
|
Pardo R, Enguix N, Lasheras J, Feliu JE, Kralli A, Villena JA. Rosiglitazone-induced mitochondrial biogenesis in white adipose tissue is independent of peroxisome proliferator-activated receptor γ coactivator-1α. PLoS One 2011; 6:e26989. [PMID: 22087241 PMCID: PMC3210129 DOI: 10.1371/journal.pone.0026989] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2011] [Accepted: 10/07/2011] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Thiazolidinediones, a family of insulin-sensitizing drugs commonly used to treat type 2 diabetes, are thought to exert their effects in part by promoting mitochondrial biogenesis in white adipose tissue through the transcriptional coactivator PGC-1α (Peroxisome Proliferator-Activated Receptor γ Coactivator-1α). METHODOLOGY/PRINCIPAL FINDINGS To assess the role of PGC-1α in the control of rosiglitazone-induced mitochondrial biogenesis, we have generated a mouse model that lacks expression of PGC-1α specifically in adipose tissues (PGC-1α-FAT-KO mice). We found that expression of genes encoding for mitochondrial proteins involved in oxidative phosphorylation, tricarboxylic acid cycle or fatty acid oxidation, was similar in white adipose tissue of wild type and PGC-1α-FAT-KO mice. Furthermore, the absence of PGC-1α did not prevent the positive effect of rosiglitazone on mitochondrial gene expression or biogenesis, but it precluded the induction by rosiglitazone of UCP1 and other brown fat-specific genes in white adipose tissue. Consistent with the in vivo findings, basal and rosiglitazone-induced mitochondrial gene expression in 3T3-L1 adipocytes was unaffected by the knockdown of PGC-1α but it was impaired when PGC-1β expression was knockdown by the use of specific siRNA. CONCLUSIONS/SIGNIFICANCE These results indicate that in white adipose tissue PGC-1α is dispensable for basal and rosiglitazone-induced mitochondrial biogenesis but required for the rosiglitazone-induced expression of UCP1 and other brown adipocyte-specific markers. Our study suggests that PGC-1α is important for the appearance of brown adipocytes in white adipose tissue. Our findings also provide evidence that PGC-1β and not PGC-1α regulates basal and rosiglitazone-induced mitochondrial gene expression in white adipocytes.
Collapse
Affiliation(s)
- Rosario Pardo
- Laboratory of Metabolism and Obesity, Unit of Diabetes and Metabolism, Vall d'Hebron-Institut de Recerca, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Natàlia Enguix
- Laboratory of Metabolism and Obesity, Unit of Diabetes and Metabolism, Vall d'Hebron-Institut de Recerca, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Jaime Lasheras
- Laboratory of Metabolism and Obesity, Unit of Diabetes and Metabolism, Vall d'Hebron-Institut de Recerca, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Juan E. Feliu
- Laboratory of Metabolism and Obesity, Unit of Diabetes and Metabolism, Vall d'Hebron-Institut de Recerca, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Anastasia Kralli
- Department of Chemical Physiology, The Scripps Research Institute, La Jolla, California, United States of America
| | - Josep A. Villena
- Laboratory of Metabolism and Obesity, Unit of Diabetes and Metabolism, Vall d'Hebron-Institut de Recerca, Universitat Autònoma de Barcelona, Barcelona, Spain
| |
Collapse
|
228
|
Rosiglitazone Induces Mitochondrial Biogenesis in Differentiated Murine 3T3-L1 and C3H/10T1/2 Adipocytes. PPAR Res 2011; 2011:179454. [PMID: 22013433 PMCID: PMC3195302 DOI: 10.1155/2011/179454] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2011] [Revised: 07/20/2011] [Accepted: 08/04/2011] [Indexed: 01/14/2023] Open
Abstract
Growing evidence indicates that PPARγ agonists, including rosiglitazone (RSG), induce adipose mitochondrial biogenesis. By systematically analyzing mitochondrial gene expression in two common murine adipocyte models, the current study aimed to further establish the direct role of RSG and capture temporal changes in gene transcription. Microarray profiling revealed that in fully differentiated 3T3-L1 and C3H/10T1/2 adipocytes treated with RSG or DMSO vehicle for 1, 2, 4, 7, 24, and 48 hrs, RSG overwhelmingly increased mitochondrial gene transcripts time dependently. The timing of the increases was consistent with the cascade of organelle biogenesis, that is, initiated by induction of transcription factor(s), followed by increases in the biosynthesis machinery, and then by increases in functional components. The transcriptional increases were further validated by increased mitochondrial staining, citrate synthase activity, and O2 consumption, and were found to be associated with increased adiponectin secretion. The work provided further insight on the mechanism of PPARγ-induced mitochondrial biogenesis in differentiated adipocytes.
Collapse
|
229
|
|
230
|
Little JP, Safdar A, Benton CR, Wright DC. Skeletal muscle and beyond: the role of exercise as a mediator of systemic mitochondrial biogenesis. Appl Physiol Nutr Metab 2011; 36:598-607. [DOI: 10.1139/h11-076] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
It has been known for more than 4 decades that exercise causes increases in skeletal muscle mitochondrial enzyme content and activity (i.e., mitochondrial biogenesis). Increasing evidence now suggests that exercise can induce mitochondrial biogenesis in a wide range of tissues not normally associated with the metabolic demands of exercise. Perturbations in mitochondrial content and (or) function have been linked to a wide variety of diseases, in multiple tissues, and exercise may serve as a potent approach by which to prevent and (or) treat these pathologies. In this context, the purpose of this review is to highlight the effects of exercise, and the underlying mechanisms therein, on the induction of mitochondrial biogenesis in skeletal muscle, adipose tissue, liver, brain, and kidney.
Collapse
Affiliation(s)
- Jonathan P. Little
- Department of Biology, I.K. Barber School of Arts and Sciences, University of British Columbia Okanagan, Kelowna, BC, Canada
| | - Adeel Safdar
- Departments of Kinesiology, Pediatrics and Medicine, McMaster University, Hamilton, ON, Canada
| | - Carley R. Benton
- Università Vita-Salute San Raffaele, Via Olgettina 58, 20132 Milano, Italy
| | - David C. Wright
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada
| |
Collapse
|
231
|
Reusens B, Theys N, Remacle C. Alteration of mitochondrial function in adult rat offspring of malnourished dams. World J Diabetes 2011; 2:149-57. [PMID: 21954419 PMCID: PMC3180527 DOI: 10.4239/wjd.v2.i9.149] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2011] [Revised: 08/16/2011] [Accepted: 08/21/2011] [Indexed: 02/05/2023] Open
Abstract
Under-nutrition as well as over-nutrition during pregnancy has been associated with the development of adult diseases such as diabetes and obesity. Both epigenetic modifications and programming of the mitochondrial function have been recently proposed to explain how altered intrauterine metabolic environment may produce such a phenotype. This review aims to report data reported in several animal models of fetal malnutrition due to maternal low protein or low calorie diet, high fat diet as well as reduction in placental blood flow. We focus our overview on the β cell. We highlight that, notwithstanding early nutritional events, mitochondrial dysfunctions resulting from different alteration by diet or gender are programmed. This may explain the higher propensity to develop obesity and diabetes in later life.
Collapse
Affiliation(s)
- Brigitte Reusens
- Brigitte Reusens, Nicolas Theys, Claude Remacle, Laboratory of Cell Biology, Institute of Life Science, Université Catholique de Louvain, 1348 Louvain-la-Neuve, Belgium
| | | | | |
Collapse
|
232
|
Moreno-Aliaga MJ, Pérez-Echarri N, Marcos-Gómez B, Larequi E, Gil-Bea FJ, Viollet B, Gimenez I, Martínez JA, Prieto J, Bustos M. Cardiotrophin-1 is a key regulator of glucose and lipid metabolism. Cell Metab 2011; 14:242-53. [PMID: 21803294 DOI: 10.1016/j.cmet.2011.05.013] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2010] [Revised: 02/23/2011] [Accepted: 05/18/2011] [Indexed: 12/19/2022]
Abstract
Cardiotrophin-1 (CT-1) is a member of the gp130 family of cytokines. We observed that ct-1(-/-) mice develop mature-onset obesity, insulin resistance, and hypercholesterolemia despite reduced calorie intake. Decreased energy expenditure preceded and accompanied the development of obesity. Acute treatment with rCT-1 decreased blood glucose in an insulin-independent manner and increased insulin-stimulated AKT phosphorylation in muscle. These changes were associated with stimulation of fatty acid oxidation, an effect that was absent in AMPKα2(-/-) mice. Chronic rCT-1 treatment reduced food intake, enhanced energy expenditure, and induced white adipose tissue remodeling characterized by upregulation of genes implicated in the control of lipolysis, fatty acid oxidation, and mitochondrial biogenesis and genes typifying brown fat phenotype. Moreover, rCT-1 reduced body weight and corrected insulin resistance in ob/ob and in high-fat-fed obese mice. We conclude that CT-1 is a master regulator of fat and glucose metabolism with potential applications for treatment of obesity and insulin resistance.
Collapse
Affiliation(s)
- María J Moreno-Aliaga
- Department of Nutrition, Food Sciences, Physiology and Toxicology, University of Navarra, 31008 Pamplona, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
233
|
Ji C, Chen X, Gao C, Jiao L, Wang J, Xu G, Fu H, Guo X, Zhao Y. IL-6 induces lipolysis and mitochondrial dysfunction, but does not affect insulin-mediated glucose transport in 3T3-L1 adipocytes. J Bioenerg Biomembr 2011; 43:367-75. [PMID: 21732177 DOI: 10.1007/s10863-011-9361-8] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2011] [Accepted: 05/24/2011] [Indexed: 01/05/2023]
Abstract
Interleukin-6 (IL-6) has emerged as an important cytokine involved in the regulation of metabolism. However, the role of IL-6 in the etiology of obesity and insulin resistance is not fully understood. Mitochondria are key organelles of energy metabolism, and there is growing evidence that mitochondrial dysfunction plays a crucial role in the pathogenesis of obesity-associated insulin resistance. In this study, we determined the direct effect of IL-6 on lipolysis in adipocytes, and the effects of IL-6 on mitochondrial function were investigated. We found that cells treated with IL-6 displayed fewer lipids and an elevated glycerol release rate. Further, IL-6 treatment led to decreased mitochondrial membrane potential, decreased cellular ATP production, and increased intracellular ROS levels. The mitochondria in IL-6-treated cells became swollen and hollow with reduced or missing cristae. However, insulin-stimulated glucose transport was unaltered. PGC-1α, NRF1, and mtTFA mRNA levels were markedly increased, and the mitochondrial contents were also increased. Our results demonstrate that IL-6 can exert a direct lipolytic effect and induce mitochondrial dysfunction. However, IL-6 did not affect insulin sensitivity in adipocytes in vitro. We deduce that in these cells, enhanced mitochondrial biogenesis might play a compensatory role in glucose transport.
Collapse
Affiliation(s)
- Chenbo Ji
- Department of Pediatrics, Nanjing Maternal and Child Health Hospital of Nanjing Medical University, Nanjing, China
| | | | | | | | | | | | | | | | | |
Collapse
|
234
|
Abstract
Over the last decades, substantial progress has been made in defining the molecular events and relevant tissues controlling insulin action and the potential defects that lead to insulin resistance and later on Type 2 diabetes mellitus (T2DM). Mitochondrial dysfunction has been postulated as a common mechanism implicated in the development of insulin resistance and T2DM aetiology. Since then there has been growing interest in this area of research and many studies have addressed whether mitochondrial function/dysfunction is implicated in the progression of T2DM or if it is just a consequence. Mitochondria are adjusted to the specific needs of the tissue and to the environmental interactions or pathophysiological state that it encounters. This review offers a current state of the subject in a tissue specific approach. We will focus our attention on skeletal muscle, liver, and white adipose tissue as the main insulin sensitive organs. Hypothalamic mitochondrial function will be also discussed.
Collapse
Affiliation(s)
- Pablo M Garcia-Roves
- Diabetes and Obesity Laboratory, Institute for Biomedical Research August Pi i Sunyer (IDIBAPS) and Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), Barcelona, Spain.
| |
Collapse
|
235
|
Goossens GH, Bizzarri A, Venteclef N, Essers Y, Cleutjens JP, Konings E, Jocken JWE, Cajlakovic M, Ribitsch V, Clément K, Blaak EE. Increased adipose tissue oxygen tension in obese compared with lean men is accompanied by insulin resistance, impaired adipose tissue capillarization, and inflammation. Circulation 2011; 124:67-76. [PMID: 21670228 DOI: 10.1161/circulationaha.111.027813] [Citation(s) in RCA: 230] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND Adipose tissue (AT) dysfunction in obesity contributes to chronic, low-grade inflammation that predisposes to type 2 diabetes mellitus and cardiovascular disease. Recent in vitro studies suggest that AT hypoxia may induce inflammation. We hypothesized that adipose tissue blood flow (ATBF) regulates AT oxygen partial pressure (AT P(O2)), thereby affecting AT inflammation and insulin sensitivity. METHODS AND RESULTS We developed an optochemical measurement system for continuous monitoring of AT P(O2) using microdialysis. The effect of alterations in ATBF on AT P(O2) was investigated in lean and obese subjects with both pharmacological and physiological approaches to manipulate ATBF. Local administration of angiotensin II (vasoconstrictor) in abdominal subcutaneous AT decreased ATBF and AT P(O2), whereas infusion of isoprenaline (vasodilator) evoked opposite effects. Ingestion of a glucose drink increased ATBF and AT P(O2) in lean subjects, but these responses were blunted in obese individuals. However, AT P(O2) was higher (hyperoxia) in obese subjects despite lower ATBF, which appears to be explained by lower AT oxygen consumption. This was accompanied by insulin resistance, lower AT capillarization, lower AT expression of genes encoding proteins involved in mitochondrial biogenesis and function, and higher AT gene expression of macrophage infiltration and inflammatory markers. CONCLUSIONS Our findings establish ATBF as an important regulator of AT P(O2). Nevertheless, obese individuals exhibit AT hyperoxia despite lower ATBF, which seems to be explained by lower AT oxygen consumption. This is accompanied by insulin resistance, impaired AT capillarization, and higher AT gene expression of inflammatory cell markers. CLINICAL TRIAL REGISTRATION- URL http://www.trialregister.nl. Unique identifier: NTR2451.
Collapse
Affiliation(s)
- Gijs H Goossens
- Department of Human Biology, NUTRIM School for Nutrition, Toxicology, and Metabolism, Maastricht University Medical Centre, PO Box 616, 6200 MD Maastricht, Netherlands.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
236
|
Mitochondrial stress: a bridge between mitochondrial dysfunction and metabolic diseases? Cell Signal 2011; 23:1528-33. [PMID: 21616143 DOI: 10.1016/j.cellsig.2011.05.008] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2011] [Accepted: 05/09/2011] [Indexed: 12/16/2022]
Abstract
Under pathophysiological conditions such as obesity, excessive oxidation of nutrients may induce mitochondrial stress, leading to mitochondrial unfolded protein response (UPR(mt)) and initiation of a retrograde stress signaling pathway. Defects in the UPR(mt) and the retrograde signaling pathways may disrupt the integrity and homeostasis of the mitochondria, resulting in endoplasmic reticulum stress and insulin resistance. Improving the capacity of mitochondria to reduce stress may be an effective approach to improve mitochondria function and to suppress obesity-induced metabolic disorders such as insulin resistance and type 2 diabetes.
Collapse
|
237
|
Shui G, Stebbins JW, Lam BD, Cheong WF, Lam SM, Gregoire F, Kusonoki J, Wenk MR. Comparative plasma lipidome between human and cynomolgus monkey: are plasma polar lipids good biomarkers for diabetic monkeys? PLoS One 2011; 6:e19731. [PMID: 21573191 PMCID: PMC3087804 DOI: 10.1371/journal.pone.0019731] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2010] [Accepted: 04/05/2011] [Indexed: 02/06/2023] Open
Abstract
Background Non-human primates (NHP) are now being considered as models for investigating human metabolic diseases including diabetes. Analyses of cholesterol and triglycerides in plasma derived from NHPs can easily be achieved using methods employed in humans. Information pertaining to other lipid species in monkey plasma, however, is lacking and requires comprehensive experimental analysis. Methodologies/Principal Findings We examined the plasma lipidome from 16 cynomolgus monkey, Macaca fascicularis, using liquid chromatography coupled with mass spectrometry (LC/MS). We established novel analytical approaches, which are based on a simple gradient elution, to quantify polar lipids in plasma including (i) glycerophospholipids (phosphatidylcholine, PC; phosphatidylethanolamine, PE; phosphatidylinositol, PI; phosphatidylglycerol, PG; phosphatidylserine, PS; phosphatidic acid, PA); (ii) sphingolipids (sphingomyelin, SM; ceramide, Cer; Glucocyl-ceramide, GluCer; ganglioside mannoside 3, GM3). Lipidomic analysis had revealed that the plasma of human and cynomolgus monkey were of similar compositions, with PC, SM, PE, LPC and PI constituting the major polar lipid species present. Human plasma contained significantly higher levels of plasmalogen PE species (p<0.005) and plasmalogen PC species (p<0.0005), while cynomolgus monkey had higher levels of polyunsaturated fatty acyls (PUFA) in PC, PE, PS and PI. Notably, cynomolgus monkey had significantly lower levels of glycosphingolipids, including GluCer (p<0.0005) and GM3 (p<0.0005), but higher level of Cer (p<0.0005) in plasma than human. We next investigated the biochemical alterations in blood lipids of 8 naturally occurring diabetic cynomolgus monkeys when compared with 8 healthy controls. Conclusions For the first time, we demonstrated that the plasma of human and cynomolgus monkey were of similar compositions, but contained different mol distribution of individual molecular species. Diabetic monkeys exhibited decreased levels of sphingolipids, which are microdomain-associated lipids and are thought to be associated with insulin sensitivity. Significant increases in PG species, which are precursors for cardiolipin biosynthesis in mitochondria, were found in fasted diabetic monkeys (n = 8).
Collapse
Affiliation(s)
- Guanghou Shui
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
| | | | | | | | | | | | | | | |
Collapse
|
238
|
Li L, Hossain MA, Sadat S, Hager L, Liu L, Tam L, Schroer S, Huogen L, Fantus IG, Connelly PW, Woo M, Ng DS. Lecithin cholesterol acyltransferase null mice are protected from diet-induced obesity and insulin resistance in a gender-specific manner through multiple pathways. J Biol Chem 2011; 286:17809-20. [PMID: 21454561 DOI: 10.1074/jbc.m110.180893] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Complete lecithin cholesterol acyltransferase (LCAT) deficiency uniformly results in a profound HDL deficiency. We recently reported unexpected enhanced insulin sensitivity in LCAT knock-out mice in the LDL receptor knock-out background (Ldlr(-/-)×Lcat(-/-); double knock-out (DKO)), when compared with their Ldlr(-/-)×Lcat(+/+) (single knock-out (SKO)) controls. Here, we report that LCAT-deficient mice (DKO and Lcat(-/-)) are protected against high fat high sucrose (HFHS) diet-induced obesity without hypophagia in a gender-specific manner compared with their respective (SKO and WT) controls. The metabolic phenotypes are more pronounced in the females. Changes in endoplasmic reticulum stress were examined as a possible mechanism for the metabolic protection. The female DKO mice developed attenuated HFHS-induced endoplasmic reticulum stress as evidenced by a lack of increase in mRNA levels of the hepatic unfolded protein response (UPR) markers Grp78 and CHOP compared with SKO controls. The DKO female mice were also protected against diet-induced insulin resistance. In white adipose tissue of chow-fed DKO mice, we also observed a reduction in UPR, gene markers for adipogenesis, and markers for activation of Wnt signaling. In skeletal muscles of female DKO mice, we observed an unexpected increase in UCP1 in association with increase in phospho-AMPKα, PGC1α, and UCP3 expressions. This increase in UCP1 was associated with ectopic islands of brown adipocytes between skeletal muscle fibers. Our findings suggest that LCAT deficiency confers gender-specific protection against diet-induced obesity and insulin resistance at least in part through regulation in UPR, white adipose tissue adipogenesis, and brown adipocyte partitioning.
Collapse
Affiliation(s)
- Lixin Li
- Keenan Research Centre, Li Ka Shing Knowledge Institute, Department of Medicine, St. Michael's Hospital, Toronto M5B 1W8, Canada
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
239
|
Xie X, Yi Z, Bowen B, Wolf C, Flynn CR, Sinha S, Mandarino LJ, Meyer C. Characterization of the Human Adipocyte Proteome and Reproducibility of Protein Abundance by One-Dimensional Gel Electrophoresis and HPLC-ESI-MS/MS. J Proteome Res 2011; 9:4521-34. [PMID: 20812759 DOI: 10.1021/pr100268f] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Abnormalities in adipocytes play an important role in various conditions, including the metabolic syndrome, type 2 diabetes mellitus and cardiovascular disease, but little is known about alterations at the protein level. We therefore sought to (1) comprehensively characterize the human adipocyte proteome for the first time and (2) demonstrate feasibility of measuring adipocyte protein abundances by one-dimensional SDS-PAGE and high performance liquid chromatography-electron spray ionization-tandem mass spectrometry (HPLC-ESI-MS/MS). In adipocytes isolated from approximately 0.5 g of subcutaneous abdominal adipose tissue of three healthy, lean subjects, we identified a total of 1493 proteins. Triplicate analysis indicated a 22.5% coefficient of variation of protein abundances. Proteins ranged from 5.8 to 629 kDa and included a large number of proteins involved in lipid metabolism, such as fatty acid transport, fatty acid oxidation, lipid storage, lipolysis, and lipid droplet maintenance. Furthermore, we found most glycolysis enzymes and numerous proteins associated with oxidative stress, protein synthesis and degradation as well as some adipokines. 22% of all proteins were of mitochondrial origin. These results provide the first detailed characterization of the human adipocyte proteome, suggest an important role of adipocyte mitochondria, and demonstrate feasibility of this approach to examine alterations of adipocyte protein abundances in human diseases.
Collapse
Affiliation(s)
- Xitao Xie
- Center for Metabolic Biology, Arizona State University, Tempe, Arizona, USA
| | | | | | | | | | | | | | | |
Collapse
|
240
|
Hsiao G, Chapman J, Ofrecio JM, Wilkes J, Resnik JL, Thapar D, Subramaniam S, Sears DD. Multi-tissue, selective PPARγ modulation of insulin sensitivity and metabolic pathways in obese rats. Am J Physiol Endocrinol Metab 2011; 300:E164-74. [PMID: 20959535 PMCID: PMC3023199 DOI: 10.1152/ajpendo.00219.2010] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2010] [Accepted: 10/14/2010] [Indexed: 01/17/2023]
Abstract
Peroxisome proliferator-activated receptor-γ (PPARγ) ligands, including the insulin-sensitizing thiazolidinedione drugs, transcriptionally regulate hundreds of genes. Little is known about the relationship between PPARγ ligand-specific modulation of cellular mechanisms and insulin sensitization. We characterized the insulin sensitivity and multitissue gene expression profiles of lean and insulin-resistant, obese Zucker rats untreated or treated with one of four PPARγ ligands (pioglitazone, rosiglitazone, troglitazone, and AG-035029). We analyzed the transcriptional profiles of adipose tissue, skeletal muscle, and liver from the rats and determined whether ligand treatment insulin-sensitizing potency was related to ligand treatment-induced alteration of functional pathways. Ligand treatments improved insulin sensitivity in obese rats to varying degrees. Adipose tissue profiles revealed ligand treatment-selective modulation of inflammatory and branched-chain amino acid (BCAA) metabolic pathways, which correlated with ligand treatment-specific insulin-sensitizing potency. Skeletal muscle profiles showed that obese rats exhibited elevated expression of adipocyte and slow-twitch fiber markers, which further increased after ligand treatment, but the magnitude of the treatment-induced changes was not correlated with insulin sensitization. Although PPARγ ligand treatments heterogeneously improved dysregulated expression of cholesterol and fatty acid biosynthetic pathways in obese rat liver, these alterations were not correlated with ligand insulin-sensitizing potency. PPARγ ligand treatment-specific insulin-sensitizing potency correlated with modulation of adipose tissue inflammatory and BCAA metabolic pathways, suggesting a functional relationship between these pathways and whole body insulin sensitivity. Other PPARγ ligand treatment-induced functional pathway changes were detected in adipose tissue, skeletal muscle, and liver profiles but were not related to degree of insulin sensitization.
Collapse
Affiliation(s)
- Gene Hsiao
- Department of Bioengineering, University of California, San Diego, CA, USA
| | | | | | | | | | | | | | | |
Collapse
|
241
|
Bjørndal B, Burri L, Staalesen V, Skorve J, Berge RK. Different adipose depots: their role in the development of metabolic syndrome and mitochondrial response to hypolipidemic agents. J Obes 2011; 2011:490650. [PMID: 21403826 PMCID: PMC3042633 DOI: 10.1155/2011/490650] [Citation(s) in RCA: 236] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2010] [Accepted: 12/27/2010] [Indexed: 12/16/2022] Open
Abstract
Adipose tissue metabolism is closely linked to insulin resistance, and differential fat distributions are associated with disorders like hypertension, diabetes, and cardiovascular disease. Adipose tissues vary in their impact on metabolic risk due to diverse gene expression profiles, leading to differences in lipolysis and in the production and release of adipokines and cytokines, thereby affecting the function of other tissues. In this paper, the roles of the various adipose tissues in obesity are summarized, with particular focus on mitochondrial function. In addition, we discuss how a functionally mitochondrial-targeted compound, the modified fatty acid tetradecylthioacetic acid (TTA), can influence mitochondrial function and decrease the size of specific fat depots.
Collapse
Affiliation(s)
- Bodil Bjørndal
- Institute of Medicine, University of Bergen, N 5021 Bergen, Norway
- *Bodil Bjørndal:
| | - Lena Burri
- Institute of Medicine, University of Bergen, N 5021 Bergen, Norway
| | - Vidar Staalesen
- Institute of Medicine, University of Bergen, N 5021 Bergen, Norway
| | - Jon Skorve
- Institute of Medicine, University of Bergen, N 5021 Bergen, Norway
| | - Rolf K. Berge
- Institute of Medicine, University of Bergen, N 5021 Bergen, Norway
- Department of Heart Disease, Haukeland University Hospital, N 5021 Bergen, Norway
| |
Collapse
|
242
|
Maternal malnutrition programs pancreatic islet mitochondrial dysfunction in the adult offspring. J Nutr Biochem 2010; 22:985-94. [PMID: 21190832 DOI: 10.1016/j.jnutbio.2010.08.015] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2010] [Revised: 08/20/2010] [Accepted: 08/25/2010] [Indexed: 12/12/2022]
Abstract
Accumulating evidence has shown that maternal malnutrition increases the risk of metabolic disease in the progeny. We previously reported that prenatal exposure to a low-protein diet (LP) leads to mitochondrial dysfunction in pancreatic islets from adult rodent offspring that could relate physiological and cellular alterations due to early diet. We aim to determine whether mitochondrial dysfunction could be a common consequence of prenatal nutritional unbalances. Pregnant Wistar rats received either a global food restriction (GFR), consisting in the reduction by 50% of the normal daily food intake, or a high-fat diet (HF) throughout gestation. GFR or HF diet during pregnancy leads to a lack of increase in insulin release and ATP content in response to glucose stimulation in islets from 3-month-old male and female offspring. These similar consequences originated from impairment in either glucose sensing or glucose metabolism, depending on the type of early malnutrition and on the sex of the progeny. Indeed, the glucose transport across β-cell membrane seemed compromised in female HF offspring, since GLUT-2 gene was markedly underexpressed. Additionally, for each progeny, consequences downstream the entry of glucose were also apparent. Expression of genes involved in glycolysis, TCA cycle and oxidative phosphorylations was altered in GFR and HF rats in a sex- and diet-dependent manner. Moreover, prenatal malnutrition affected the regulators of mitochondrial biogenesis, namely, PPAR coactivator 1 alpha (PGC-1α), since its expression was higher in islets from GFR rats. In conclusion, programming of mitochondrial dysfunction is a consequence of maternal malnutrition, which may predispose to glucose intolerance in the adult offspring.
Collapse
|
243
|
Role of obesity-associated dysfunctional adipose tissue in cancer: a molecular nutrition approach. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2010; 1807:664-78. [PMID: 21111705 DOI: 10.1016/j.bbabio.2010.11.004] [Citation(s) in RCA: 106] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2010] [Revised: 11/09/2010] [Accepted: 11/09/2010] [Indexed: 02/08/2023]
Abstract
Obesity is a complex disease caused by the interaction of a myriad of genetic, dietary, lifestyle and environmental factors, which favors a chronic positive energy balance, leading to increased body fat mass. There is emerging evidence of a strong association between obesity and an increased risk of cancer. However, the mechanisms linking both diseases are not fully understood. Here, we analyze the current knowledge about the potential contribution that expanding adipose tissue in obesity could make to the development of cancer via dysregulated secretion of pro-inflammatory cytokines, chemokines and adipokines such as TNF-α, IL-6, leptin, adiponectin, visfatin and PAI-1. Dietary factors play an important role in the risk of suffering obesity and cancer. The identification of bioactive dietary factors or substances that affect some of the components of energy balance to prevent/reduce weight gain as well as cancer is a promising avenue of research. This article reviews the beneficial effects of some bioactive food molecules (n-3 PUFA, CLA, resveratrol and lipoic acid) in energy metabolism and cancer, focusing on the molecular mechanisms involved, which may provide new therapeutic targets in obesity and cancer.
Collapse
|
244
|
Fromme T, Klingenspor M. Uncoupling protein 1 expression and high-fat diets. Am J Physiol Regul Integr Comp Physiol 2010; 300:R1-8. [PMID: 21048077 DOI: 10.1152/ajpregu.00411.2010] [Citation(s) in RCA: 141] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Uncoupling protein 1 (Ucp1) is the key component of β-adrenergically controlled nonshivering thermogenesis in brown adipocytes. This process combusts stored and nutrient energy as heat. Cold exposure not only activates Ucp1-mediated thermogenesis to maintain normothermia but also results in adaptive thermogenesis, i.e., the recruitment of thermogenic capacity in brown adipose tissue. As a hallmark of adaptive thermogenesis, Ucp1 synthesis is increased proportionally to temperature and duration of exposure. Beyond this classical thermoregulatory function, it has been suggested that Ucp1-mediated thermogenesis can also be employed for metabolic thermogenesis to prevent the development of obesity. Accordingly, in times of excess caloric intake, one may expect a positive regulation of Ucp1. The general impression from an overview of the present literature is, indeed, an increased brown adipose tissue Ucp1 mRNA and protein content after feeding a high-fat diet (HFD) to mice and rats. The reported increases are very variable in magnitude, and the effect size seems to be independent of dietary fat content and duration of the feeding trial. In white adipose tissue depots Ucp1 mRNA is generally downregulated by HFD, indicating a decline in the number of interspersed brown adipocytes.
Collapse
Affiliation(s)
- Tobias Fromme
- Else-Kröner Fresenius Center, Technische Universität München, Freising, Germany.
| | | |
Collapse
|
245
|
Coordinate Transcriptomic and Metabolomic Effects of the Insulin Sensitizer Rosiglitazone on Fundamental Metabolic Pathways in Liver, Soleus Muscle, and Adipose Tissue in Diabetic db/db Mice. PPAR Res 2010; 2010. [PMID: 20953342 PMCID: PMC2953354 DOI: 10.1155/2010/679184] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2010] [Revised: 07/16/2010] [Accepted: 08/11/2010] [Indexed: 11/17/2022] Open
Abstract
Rosiglitazone (RSG), developed for the treatment of type 2 diabetes mellitus, is known to have potent effects on carbohydrate and lipid metabolism leading to the improvement of insulin sensitivity in target tissues. To further assess the capacity of RSG to normalize gene expression in insulin-sensitive tissues, we compared groups of 18-day-treated db/db mice with increasing oral doses of RSG (10, 30, and 100 mg/kg/d) with untreated non-diabetic littermates (db/+). For this aim, transcriptional changes were measured in liver, inguinal adipose tissue (IAT) and soleus muscle using microarrays and real-time PCR. In parallel, targeted metabolomic assessment of lipids (triglycerides (TGs) and free fatty acids (FFAs)) in plasma and tissues was performed by UPLC-MS methods. Multivariate analyses revealed a relationship between the differential gene expressions in liver and liver trioleate content and between blood glucose levels and a combination of differentially expressed genes measured in liver, IAT, and muscle. In summary, we have integrated gene expression and targeted metabolomic data to present a comprehensive overview of RSG-induced changes in a diabetes mouse model and improved the molecular understanding of how RSG ameliorates diabetes through its effect on the major insulin-sensitive tissues.
Collapse
|
246
|
Differential modulatory effects of rosiglitazone and pioglitazone on white adipose tissue in db/db mice. Life Sci 2010; 87:405-10. [DOI: 10.1016/j.lfs.2010.08.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2010] [Revised: 07/07/2010] [Accepted: 08/07/2010] [Indexed: 11/21/2022]
|
247
|
Watt MJ, Spriet LL. Triacylglycerol lipases and metabolic control: implications for health and disease. Am J Physiol Endocrinol Metab 2010; 299:E162-8. [PMID: 20071561 DOI: 10.1152/ajpendo.00698.2009] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Fatty acids derived from the hydrolysis of adipose tissue and skeletal muscle triacylglycerol (TG) are an important energy substrate at rest and during physical activity. This review outlines the identification of the new TG lipase, adipose triglyceride lipase, the current understanding of how cellular TG lipases are regulated, and the implications for understanding the integrated control of TG lipolysis. Furthermore, this review outlines recent advances that propose a "revised" role for TG lipases in cellular function, metabolic homeostasis, and disease prevention.
Collapse
Affiliation(s)
- Matthew J Watt
- Biology of Lipid Metabolism Laboratory, Department of Physiology, Monash University, Clayton, Victoria 3800, Australia.
| | | |
Collapse
|
248
|
Gupta J, Gaikwad AB, Tikoo K. Hepatic expression profiling shows involvement of PKC epsilon, DGK eta, Tnfaip, and Rho kinase in type 2 diabetic nephropathy rats. J Cell Biochem 2010; 111:944-54. [DOI: 10.1002/jcb.22783] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
249
|
Jacome-Sosa MM, Lu J, Wang Y, Ruth MR, Wright DC, Reaney MJ, Shen J, Field CJ, Vine DF, Proctor SD. Increased hypolipidemic benefits of cis-9, trans-11 conjugated linoleic acid in combination with trans-11 vaccenic acid in a rodent model of the metabolic syndrome, the JCR:LA-cp rat. Nutr Metab (Lond) 2010; 7:60. [PMID: 20633302 PMCID: PMC3161353 DOI: 10.1186/1743-7075-7-60] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2010] [Accepted: 07/16/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Conjugated linoleic acid (cis-9, trans-11 CLA) and trans-11 vaccenic acid (VA) are found naturally in ruminant-derived foods. CLA has been shown to have numerous potential health related effects and has been extensively investigated. More recently, we have shown that VA has lipid-lowering properties associated with reduced hepatic lipidogenesis and chylomicron secretion in the JCR:LA-cp rat. The aim of this study was to evaluate potential additional hypolipidemic effects of purified forms of CLA and VA in an animal model of the metabolic syndrome (the JCR:LA-cp rat). METHODS Twenty four obese JCR:LA-cp rats were randomized and assigned to one of three nutritionally adequate iso-caloric diets containing 1% w/w cholesterol and 15% w/w fat for 16 wk: 1) control diet (CD), 2) 1.0% w/w cis-9, trans-11 CLA (CLA), 3) 1.0% w/w VA and 1% w/w cis-9, trans-11 CLA (VA+CLA). Lean rats were fed the CD to represent normolipidemic conditions. RESULTS Fasting plasma triglyceride (TG), total cholesterol and LDL-cholesterol concentrations were reduced in obese rats fed either the CLA diet or the VA+CLA diet as compared to the obese control group (p < 0.05, p < 0.001; p < 0.001, p < 0.01; p < 0.01, p < 0.001, respectively). The VA+CLA diet reduced plasma TG and LDL-cholesterol to the level of the normolipidemic lean rats and further decreased nonesterified fatty acids compared to the CLA diet alone. Interestingly, rats fed the VA+CLA diet had a higher food intake but lower body weight than the CLA fed group (P < 0.05). Liver weight and TG content were lower in rats fed either CLA (p < 0.05) or VA+CLA diets (p < 0.001) compared to obese control, consistent with a decreased relative protein abundance of hepatic acetyl-CoA carboxylase in both treatment groups (P < 0.01). The activity of citrate synthase was increased in liver and adipose tissue of rats fed, CLA and VA+CLA diets (p < 0.001) compared to obese control, suggesting increased mitochondrial fatty acid oxidative capacity. CONCLUSION We demonstrate that the hypolipidemic effects of chronic cis-9, trans-11 CLA supplementation on circulating dyslipidemia and hepatic steatosis are enhanced by the addition of VA in the JCR:LA-cp rat.
Collapse
Affiliation(s)
- M Miriam Jacome-Sosa
- Metabolic and Cardiovascular Diseases Laboratory, University of Alberta, Edmonton, AB, T6G 2P5, Canada.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
250
|
Perrone CE, Mattocks DAL, Jarvis-Morar M, Plummer JD, Orentreich N. Methionine restriction effects on mitochondrial biogenesis and aerobic capacity in white adipose tissue, liver, and skeletal muscle of F344 rats. Metabolism 2010; 59:1000-11. [PMID: 20045141 DOI: 10.1016/j.metabol.2009.10.023] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2009] [Revised: 10/23/2009] [Accepted: 10/26/2009] [Indexed: 01/11/2023]
Abstract
Methionine restriction increases life span in rats and mice and reduces age-related accretion of adipose tissue in Fischer 344 rats. Recent reports have shown that adipose tissue mitochondrial content and function are associated with adiposity; therefore, the expression of genes involved in mitochondrial biogenesis and oxidative capacity was examined in white adipose tissue, liver, and skeletal muscle from Fischer 344 rats fed control (0.86% methionine) or methionine-restricted (0.17% methionine) diets for 3 months. Methionine restriction induced transcriptional changes of peroxisome proliferator-activated receptors, peroxisome proliferator-activated receptor coactivators 1alpha and 1beta, and some of their known target genes in all of these tissues. In addition, tissue-specific responses were elicited at the protein level. In inguinal adipose tissue, methionine restriction increased protein levels of peroxisome proliferator-activated receptor and peroxisome proliferator-activated receptor coactivator target genes. It also induced mitochondrial DNA copy number, suggesting mitochondrial biogenesis and corresponding with the up-regulation of citrate synthase activity. In contrast, methionine restriction induced changes in mitochondrial glycerol-3-phosphate dehydrogenase activity and stearoyl-coenzyme A desaturase 1 protein levels only in liver and uncoupling protein 3 and cytochrome c oxidase subunit IV protein levels only in skeletal muscle. No increase in mitochondrial DNA copy number was observed in liver and skeletal muscle despite an increase in mitochondrial citrate synthase activity. The results indicate that adiposity resistance in methionine-restricted rats is associated with mitochondrial biogenesis in inguinal adipose tissue and increased mitochondrial aerobic capacity in liver and skeletal muscle.
Collapse
MESH Headings
- Adipose Tissue, White/growth & development
- Adipose Tissue, White/metabolism
- Adipose Tissue, White/physiology
- Adiposity/physiology
- Aerobiosis/physiology
- Animals
- Blotting, Western
- Body Weight/physiology
- Citrate (si)-Synthase/metabolism
- DNA, Mitochondrial/metabolism
- Gene Expression/genetics
- Gene Expression/physiology
- Glycerol-3-Phosphate Dehydrogenase (NAD+)/metabolism
- Liver/growth & development
- Liver/metabolism
- Liver/physiology
- Male
- Methionine/physiology
- Mitochondria/physiology
- Mitochondria, Liver/metabolism
- Mitochondria, Liver/physiology
- Mitochondria, Muscle/metabolism
- Mitochondria, Muscle/physiology
- Muscle, Skeletal/growth & development
- Muscle, Skeletal/metabolism
- Muscle, Skeletal/physiology
- Organ Size/physiology
- Rats
- Rats, Inbred F344
- Reverse Transcriptase Polymerase Chain Reaction
- Stearoyl-CoA Desaturase/metabolism
Collapse
Affiliation(s)
- Carmen E Perrone
- Cell Biology Laboratory, Biomedical Research Station, Orentreich Foundation for the Advancement of Science, Inc., Cold Spring-on-Hudson, NY 10516, USA.
| | | | | | | | | |
Collapse
|