201
|
Seasonal Variations in the Lipid Profile of the Ovarian Follicle in Italian Mediterranean Buffaloes. Animals (Basel) 2022; 12:ani12162108. [PMID: 36009698 PMCID: PMC9405139 DOI: 10.3390/ani12162108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 08/10/2022] [Accepted: 08/14/2022] [Indexed: 12/02/2022] Open
Abstract
Simple Summary Reproductive seasonality is a major factor affecting buffalo breeding. The rationale of this work derives from the hypothesis that the reduced cleavage and blastocyst rates observed during the non-breeding season could be due to a suboptimal follicular environment. The present study aimed to evaluate the influence of season on the lipid profile of the ovarian follicle in the Italian Mediterranean buffalo. For this purpose, abattoir-derived ovaries were collected during the breeding and non-breeding seasons, and the apolar phase of follicular components was analyzed. To our knowledge, this is the first report of seasonal variations in lipid content of the buffalo ovarian follicle, including follicular fluid, follicular and cumulus cells, and oocytes. The results undoubtedly demonstrated significant seasonal variations in the lipid profile, including triglycerides, cholesterol, and phospholipids, in the different biological matrices analyzed. Interestingly, an increased amount in the total level of non-esterified fatty acids in the follicular fluid was also observed during the non-breeding season. The results allow a better understanding of the physiology of the ovarian follicle in buffalo and unveil some causes of reduced oocyte competence during the non-reproductive season, laying the groundwork for further studies and corrective strategies. Abstract The reduced oocyte competence recorded during the non-breading season (NBS) is one of the key factors affecting the profitability of buffalo farming and limits the IVEP efficiency. The purpose of this experiment was to evaluate whether season influences the lipid content within the ovarian follicle in the Italian Mediterranean buffalo. Abattoir-derived ovaries were collected during the breeding season (BS) and the NBS, and different matrices (follicular fluid, oocytes, cumulus and follicular cells) were recovered. After the extraction of the apolar fraction, all samples were analyzed by H1 nuclear magnetic resonance and FF samples by gas chromatography–mass spectrometry. Seasonal differences in lipid composition were observed in all matrices. In particular, during the NBS, the triglyceride content was higher in the follicular fluid and in the oocytes but reduced in the follicular cells. Both cholesterol and phospholipids were reduced in the follicular fluid and follicular cells during the NBS. Furthermore, the total amount of non-esterified fatty acids was significantly increased in the follicular fluid. The seasonal variation in lipid profile of the follicle may, in part, account for the reduced buffalo oocyte competence during the NBS, due to the critical role played by lipids in regulating ovarian functions.
Collapse
|
202
|
Mao Z, Troeschel AN, Judd S, Shikany JM, Levitan EB, Safford MM, Bostick RM. Association of an evolutionary-concordance lifestyle pattern score with incident CVD among Black and White men and women. Br J Nutr 2022; 129:1-10. [PMID: 35942870 PMCID: PMC9908773 DOI: 10.1017/s0007114522002549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Dietary and lifestyle evolutionary discordance is hypothesised to play a role in the aetiology of CVD, including CHD and stroke. We aimed to investigate associations of a previously reported, total (dietary plus lifestyle) evolutionary-concordance (EC) pattern score with incident CVD, CHD and stroke. We used multivariable Cox proportional hazards regression to investigate associations of the EC score with CVD, CHD and stroke incidence among USA Black and White men and women ≥45 years old in the prospective REasons for Geographic and Racial Differences in Stroke study (2003-2017). The EC score comprised seven equally weighted components: a previously reported dietary EC score (using Block 98 FFQ data) and six lifestyle characteristics (alcohol intake, physical activity, sedentary behaviour, waist circumference, smoking history and social network size). A higher score indicates a more evolutionary-concordant dietary/lifestyle pattern. Of the 15 467 participants in the analytic cohort without a CVD diagnosis at baseline, 1563 were diagnosed with CVD (967 with CHD and 596 with stroke) during follow-up (median 11·0 years). Among participants in the highest relative to the lowest EC score quintile, the multivariable-adjusted hazards ratios and their 95 % CI for CVD, CHD and stroke were, respectively, 0·73 (0·62, 0·86; Ptrend < 0·001), 0·72 (0·59, 0·89; Ptrend < 0·001) and 0·76 (0·59, 0·98; Ptrend = 0·01). The results were similar by sex and race. Our findings support that a more evolutionary-concordant diet and lifestyle pattern may be associated with lower risk of CVD, CHD and stroke.
Collapse
Affiliation(s)
- Ziling Mao
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Alyssa N. Troeschel
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Suzanne Judd
- Department of Biostatistics, School of Public Health, University of Alabama at Birmingham, AL, USA
| | - James M. Shikany
- Department of Medicine, Division of Preventive Medicine, University of Alabama at Birmingham, AL, USA
| | - Emily B. Levitan
- Department of Epidemiology, School of Public Health, University of Alabama at Birmingham, AL, USA
| | | | - Roberd M. Bostick
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| |
Collapse
|
203
|
Impact of enteral immunonutrition on infectious complications and immune and inflammatory markers in cancer patients undergoing chemotherapy: A systematic review of randomised controlled trials. Clin Nutr 2022; 41:2135-2146. [DOI: 10.1016/j.clnu.2022.07.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 07/22/2022] [Accepted: 07/26/2022] [Indexed: 11/19/2022]
|
204
|
Rittenhouse M, Sambuughin N, Deuster P. Optimization of Omega-3 Index Levels in Athletes at the US Naval Academy: Personalized Omega-3 Fatty Acid Dosage and Molecular Genetic Approaches. Nutrients 2022; 14:nu14142966. [PMID: 35889922 PMCID: PMC9321651 DOI: 10.3390/nu14142966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/14/2022] [Accepted: 07/18/2022] [Indexed: 02/04/2023] Open
Abstract
The Dietary Guidelines for Americans recommend increasing the intake of omega-3 polyunsaturated fatty acids. The Omega-3 Index (O3I) is one marker used to assess omega-3 status. The O3I national average is 4.3%, which translates into a high risk for developing cardiovascular disease. Research has reported an association between variants in the two desaturase encoding genes, fatty acid desaturase 1 and fatty acid desaturase 2 (FADS1/2), and the concentration of O3I. The aim of this study was to assess whether a personalized dosage of omega-3 supplementation would lead to an O3I ≥ 8%. A secondary aim was to identify if changes in O3I levels would be associated with either of the two FADS1/2 variants. Methods: This interventional study had a pre- and post-intervention design to assess changes in O3I. Ninety participants completed demographic, biometrics, O3I, and genetic testing. Participants were provided a personalized dose of omega-3 supplements based on their baseline O3I. Results: The majority (63%) of participants were 20 year old white males with an average O3I at baseline of 4.6%; the post-supplementation average O3I was 5.6%. The most frequent genetic variants expressed in the full sample for FADS1/2 were GG (50%) and CA/AA (57%). Conclusions: O3I was significantly increased following omega-3 supplementation. However, it was not possible to conclude whether the two FADS1/2 variants led to differential increases in OI3 or if a personalized dosage of omega-3 supplementation led to an O3I ≥ 8%, due to our study limitations.
Collapse
Affiliation(s)
- Melissa Rittenhouse
- Consortium for Health and Military Performance, Department of Military and Emergency Medicine, F. Edward Hébert School of Medicine, Uniformed Services University, Bethesda, MD 20814, USA; (N.S.); (P.D.)
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817, USA
- Correspondence:
| | - Nyamkhishig Sambuughin
- Consortium for Health and Military Performance, Department of Military and Emergency Medicine, F. Edward Hébert School of Medicine, Uniformed Services University, Bethesda, MD 20814, USA; (N.S.); (P.D.)
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817, USA
| | - Patricia Deuster
- Consortium for Health and Military Performance, Department of Military and Emergency Medicine, F. Edward Hébert School of Medicine, Uniformed Services University, Bethesda, MD 20814, USA; (N.S.); (P.D.)
| |
Collapse
|
205
|
Loss of Eicosapentaenoic Acid (EPA) after Retort Sterilization of the EPA-BCAA Fortified Complete Nutrition Drink. Foods 2022; 11:foods11142023. [PMID: 35885266 PMCID: PMC9320311 DOI: 10.3390/foods11142023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 06/30/2022] [Accepted: 07/05/2022] [Indexed: 02/01/2023] Open
Abstract
Retort sterilization is cost-effective for small-scale production of specialized nutrition products. However, the sensory properties and stability of active ingredients after sterilization remain undetermined. This study aimed to investigate the effect of retort on the existence of functional compounds and the sensory satisfaction of a fortified complete nutrition formula with branched-chain amino acids (BCAAs), and fish oil providing eicosapentaenoic acid (EPA). Changes in EPA and BCAA contents after retort were determined by using LC-MS/MS. Nutrient values, osmolality, rheology and sensory acceptance of the processed fortified and control formulas were compared. After retort, the fortified formula had an increase in all types of BCAAs but 30% loss of EPA (p = 0.001). The fortified formula had slightly higher protein and fiber contents, along with increased osmolality. It had higher viscosity and shear stress, but similar IDDSI level at 0. Among flavors tested, the fortified formula with Japanese rice flavor received the highest satisfaction scores with over 80% sensory acceptance. In conclusion, retort sterilization preserved BCAAs of the functional drink, but the addition of 30% fish oil was required to compensate for the EPA loss. The sterilized fortified formula with Japanese rice flavor was sensory acceptable.
Collapse
|
206
|
Dietary olive leaves improve the quality and the consumer preferences of a model sheep cheese. Int Dairy J 2022. [DOI: 10.1016/j.idairyj.2022.105464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
207
|
Wilms JN, Ghaffari MH, Steele MA, Sauerwein H, Martín-Tereso J, Leal LN. Macronutrient profile in milk replacer or a whole milk powder modulates growth performance, feeding behavior, and blood metabolites in ad libitum-fed calves. J Dairy Sci 2022; 105:6670-6692. [PMID: 35787324 DOI: 10.3168/jds.2022-21870] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 03/26/2022] [Indexed: 11/19/2022]
Abstract
Milk replacers (MR) for calves usually contain more lactose and less fat than bovine whole milk (WM). There are insufficient data to determine whether these MR formulations are optimal for calves fed at high planes of nutrition. Thus, the effect of 3 MR formulations and a WM powder were evaluated on growth, feeding behavior, and blood metabolites in 96 male Holstein calves fed ad libitum and with 45.5 ± 4.30 kg (mean ± SD) BW at arrival. Calves were blocked based on arrival sequence, and randomly assigned within block to one of the 4 treatments (n = 24 calves/group): a high-fat MR (25.0% fat, dry matter basis; 22.5% protein, 38.6% lactose; 21.3 MJ/kg; HF), a high lactose MR (44.6% lactose, 22.5% protein, 18.0% fat; 19.7 MJ/kg; HL), a high protein MR (26.0% protein, 18.0% fat, 41.5% lactose; 20.0 MJ/kg; HP), and a WM powder (26.0% fat; 24.5% protein, 38.0% lactose; 21.6 MJ/kg; WP). In the first 2 wk after arrival, calves were individually housed and were fed 3.0 L of their respective liquid feed 3 times daily at 135 g/L. They were then moved to group housing and fed ad libitum until d 42 after arrival. Weaning was gradual and took place between d 43 and 70 after arrival; thereafter, calves were fed solids only. Concentrates, chopped straw, and water were available ad libitum throughout the study. Body weight was measured, and blood was collected at arrival and then weekly thereafter from wk 1 to 12. Weight gain and height were greater in HL than WP calves. In the preweaning phase, HL and HP-fed calves consumed more milk than WP, and HL-fed calves consumed more milk than HF calves. In wk 10, starter feed intakes were lower in HF calves than in the other groups. In the preweaning phase, ME intakes were the same for all treatments. This suggests that milk intakes were regulated by the energy density of the milk supplied. The percentage of calves requiring therapeutic interventions related to diarrhea was greater in WP-fed calves (29%) than HF and HL calves (4%), whereas HP (13%) did not differ with other groups. This was coupled with lower blood acid-base, blood gas, and blood sodium in WP than in MR-fed calves. Calves fed HF had greater serum nonesterified fatty acids compared with other groups, and greater serum amyloid A compared with WP and HL calves. Among the serum parameters, insulin-like growth factor-1 and lactate dehydrogenase correlated positively with MR intake and average daily gain. The high lactose and protein intakes in HL and HP calves led to greater insulin-like growth factor-1 concentrations than in WP-fed calves. Although growth differences were limited among MR groups, the metabolic profile largely differed and these differences require further investigation.
Collapse
Affiliation(s)
- J N Wilms
- Trouw Nutrition R&D, P.O. Box 299, 3800 AG, Amersfoort, the Netherlands; Department of Animal Biosciences, Animal Science and Nutrition, University of Guelph, Guelph, ON, Canada N1G 1Y2.
| | - M H Ghaffari
- Institute of Animal Science, University of Bonn, 53111 Bonn, Germany
| | - M A Steele
- Department of Animal Biosciences, Animal Science and Nutrition, University of Guelph, Guelph, ON, Canada N1G 1Y2
| | - H Sauerwein
- Institute of Animal Science, University of Bonn, 53111 Bonn, Germany
| | - J Martín-Tereso
- Trouw Nutrition R&D, P.O. Box 299, 3800 AG, Amersfoort, the Netherlands
| | - L N Leal
- Trouw Nutrition R&D, P.O. Box 299, 3800 AG, Amersfoort, the Netherlands
| |
Collapse
|
208
|
Needham H, Torpey G, Flores CC, Davis CJ, Vanderheyden WM, Gerstner JR. A Dichotomous Role for FABP7 in Sleep and Alzheimer's Disease Pathogenesis: A Hypothesis. Front Neurosci 2022; 16:798994. [PMID: 35844236 PMCID: PMC9280343 DOI: 10.3389/fnins.2022.798994] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 05/10/2022] [Indexed: 11/15/2022] Open
Abstract
Fatty acid binding proteins (FABPs) are a family of intracellular lipid chaperone proteins known to play critical roles in the regulation of fatty acid uptake and transport as well as gene expression. Brain-type fatty acid binding protein (FABP7) is enriched in astrocytes and has been implicated in sleep/wake regulation and neurodegenerative diseases; however, the precise mechanisms underlying the role of FABP7 in these biological processes remain unclear. FABP7 binds to both arachidonic acid (AA) and docosahexaenoic acid (DHA), resulting in discrete physiological responses. Here, we propose a dichotomous role for FABP7 in which ligand type determines the subcellular translocation of fatty acids, either promoting wakefulness aligned with Alzheimer's pathogenesis or promoting sleep with concomitant activation of anti-inflammatory pathways and neuroprotection. We hypothesize that FABP7-mediated translocation of AA to the endoplasmic reticulum of astrocytes increases astrogliosis, impedes glutamatergic uptake, and enhances wakefulness and inflammatory pathways via COX-2 dependent generation of pro-inflammatory prostaglandins. Conversely, we propose that FABP7-mediated translocation of DHA to the nucleus stabilizes astrocyte-neuron lactate shuttle dynamics, preserves glutamatergic uptake, and promotes sleep by activating anti-inflammatory pathways through the peroxisome proliferator-activated receptor-γ transcriptional cascade. Importantly, this model generates several testable hypotheses applicable to other neurodegenerative diseases, including amyotrophic lateral sclerosis and Parkinson's disease.
Collapse
Affiliation(s)
- Hope Needham
- Department of Biology, Gonzaga University, Spokane, WA, United States
| | - Grace Torpey
- Department of Biology, Gonzaga University, Spokane, WA, United States
| | - Carlos C. Flores
- Department of Translational Medicine and Physiology, Elson S. Floyd College of Medicine, Washington State University, Spokane, WA, United States
| | - Christopher J. Davis
- Department of Translational Medicine and Physiology, Elson S. Floyd College of Medicine, Washington State University, Spokane, WA, United States
- Sleep and Performance Research Center, Elson S. Floyd College of Medicine, Washington State University, Spokane, WA, United States
| | - William M. Vanderheyden
- Department of Translational Medicine and Physiology, Elson S. Floyd College of Medicine, Washington State University, Spokane, WA, United States
- Sleep and Performance Research Center, Elson S. Floyd College of Medicine, Washington State University, Spokane, WA, United States
| | - Jason R. Gerstner
- Department of Translational Medicine and Physiology, Elson S. Floyd College of Medicine, Washington State University, Spokane, WA, United States
- Sleep and Performance Research Center, Elson S. Floyd College of Medicine, Washington State University, Spokane, WA, United States
- Steve Gleason Institute for Neuroscience, Elson S. Floyd College of Medicine, Washington State University, Spokane, WA, United States
| |
Collapse
|
209
|
Fatty Acid Content of Four Salmonid Fish Consumed by Indigenous Peoples from the Yamal-Nenets Autonomous Okrug (Northwestern Siberia, Russia). Animals (Basel) 2022; 12:ani12131643. [PMID: 35804543 PMCID: PMC9264761 DOI: 10.3390/ani12131643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/15/2022] [Accepted: 06/22/2022] [Indexed: 11/16/2022] Open
Abstract
We assayed fatty acids in the flesh of Arctic cisco Coregonus autumnalis (adult and juvenile), least cisco Coregonus sardinella, muksun Coregonus muksun, and Arctic charr Salvelinus alpinus inhabiting water bodies of the Gydan Peninsula, Siberia, Russia. The highest concentrations of total and polyunsaturated fatty acids (PUFAs) were found in Arctic charr (27.8 and 9.5 mg g−1) and adult Arctic cisco (20.2 and 7.6 mg g−1), while the lowest concentrations occurred in juvenile Arctic cisco (7.5 and 3.6 mg g−1). Multivariate analyses divided all studied fish into five distinct groups with the highest similarity between least cisco and muksun and the highest dissimilarity between juvenile Arctic cisco and Arctic charr. Coregonid fish from the study area had a higher content of docosahexaenoic and eicosapentaenoic acids than their conspecifics from subarctic and temperate habitats. The flesh of the studied fish is a source of a healthy diet for humans. Taking into account that all the studied fish are components of the traditional diet of indigenous peoples in northwestern Siberia, our data may be useful not only for local consumers and anglers but also for stakeholders focused on food policy and food security in the area.
Collapse
|
210
|
Martínez R, Mesas C, Guzmán A, Galisteo M, López-Jurado M, Prados J, Melguizo C, Bermúdez F, Porres JM. Bioavailability and biotransformation of linolenic acid from basil seed oil as a novel source of omega-3 fatty acids tested on a rat experimental model. Food Funct 2022; 13:7614-7628. [PMID: 35731538 DOI: 10.1039/d2fo00672c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Basil is an aromatic herb with a high concentration of bioactive compounds. The oil extracted from its seeds is a good source of α-linolenic acid (ALA) and also provides substantial amounts of linoleic acid (LA). This study aimed to test the bioavailability of the oil derived from basil seeds and its effects on different physiological parameters using 7-15% dietary inclusion levels. Furthermore, the assimilation of LA and ALA and their transformation in long-chain polyunsaturated fatty acids (LC-PUFAs) have been studied. Digestive utilization of total fat from basil seed oil (BSO) was high and similar to that of olive oil used as a control. Consumption of BSO resulted in increased LA and ALA levels of the plasma, liver, and erythrocyte membrane. In addition, the transformation of LA to arachidonic acid (ARA) was decreased by the high dietary intake of ALA which redirected the pathway of the Δ-6 desaturase enzyme towards the transformation of ALA into eicosapentaenoic acid (EPA). No alterations of hematological and plasma biochemical parameters were found for the 7 and 10% dietary inclusion levels of BSO, whereas a decrease in the platelet count and an increase in total- and HDL-cholesterol as well as plasma alkaline phosphatase (ALP) were found for a 15% BSO dose. In conclusion, BSO is a good source of ALA to be transformed into EPA and decrease the precursor of the pro-inflammatory molecule ARA. This effect on the levels of EPA in different tissues offers potential for its use as a dietary supplement, novel functional food, or a constituent of nutraceutical formulations to treat different pathologies.
Collapse
Affiliation(s)
- Rosario Martínez
- Cellbitec S.L., N.I.F. B04847216, Scientific Headquarters of the Almería Technology Park, Universidad de Almería, 04128 La Cañada, Almería, Spain. .,Department of Physiology, Institute of Nutrition and Food Technology (INyTA), Biomedical Research Center (CIBM), Universidad de Granada, 18100 Granada, Spain.
| | - Cristina Mesas
- Institute of Biopathology and Regenerative Medicine (IBIMER), Biomedical Research Center (CIBM), University of Granada, 18100 Granada, Spain. .,Department of Anatomy and Embryology, Faculty of Medicine, University of Granada, 18071 Granada, Spain
| | - Ana Guzmán
- Cellbitec S.L., N.I.F. B04847216, Scientific Headquarters of the Almería Technology Park, Universidad de Almería, 04128 La Cañada, Almería, Spain. .,Institute of Biopathology and Regenerative Medicine (IBIMER), Biomedical Research Center (CIBM), University of Granada, 18100 Granada, Spain.
| | - Milagros Galisteo
- Department of Pharmacology, School of Pharmacy, University of Granada, 18071 Granada, Spain.
| | - María López-Jurado
- Department of Physiology, Institute of Nutrition and Food Technology (INyTA), Biomedical Research Center (CIBM), Universidad de Granada, 18100 Granada, Spain.
| | - José Prados
- Institute of Biopathology and Regenerative Medicine (IBIMER), Biomedical Research Center (CIBM), University of Granada, 18100 Granada, Spain. .,Department of Anatomy and Embryology, Faculty of Medicine, University of Granada, 18071 Granada, Spain.,Instituto Biosanitario de Granada (ibs. GRANADA), 18014 Granada, Spain
| | - Consolación Melguizo
- Institute of Biopathology and Regenerative Medicine (IBIMER), Biomedical Research Center (CIBM), University of Granada, 18100 Granada, Spain. .,Department of Anatomy and Embryology, Faculty of Medicine, University of Granada, 18071 Granada, Spain.,Instituto Biosanitario de Granada (ibs. GRANADA), 18014 Granada, Spain
| | - Francisco Bermúdez
- Cellbitec S.L., N.I.F. B04847216, Scientific Headquarters of the Almería Technology Park, Universidad de Almería, 04128 La Cañada, Almería, Spain.
| | - Jesus M Porres
- Department of Physiology, Institute of Nutrition and Food Technology (INyTA), Biomedical Research Center (CIBM), Universidad de Granada, 18100 Granada, Spain.
| |
Collapse
|
211
|
Gillis C, Martinez MC, Mina DS. Tailoring prehabilitation to address the multifactorial nature of functional capacity for surgery. J Hum Nutr Diet 2022; 36:395-405. [PMID: 35716131 DOI: 10.1111/jhn.13050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 06/07/2022] [Indexed: 11/30/2022]
Abstract
Mounting evidence suggests that recovery begins before the surgical incision. The pre-surgery phase of recovery - the preparation for optimal surgical recovery - can be reinforced with prehabilitation. Prehabilitation is the approach of enhancing the functional capacity of the individual to enable them to withstand a stressful event. With this narrative review, we apply the Wilson & Cleary conceptual model of patient outcomes to specify the complex and integrative relationship of health factors that limit functional capacity before surgery. To have the greatest impact on patient outcomes, prehabilitation programs require individualized and coordinated care from medical, nutritional, psychosocial, and exercise services. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Chelsia Gillis
- School of Human Nutrition, McGill University.,Anesthesia Department, McGill University
| | | | - Daniel Santa Mina
- Faculty of Kinesiology and Physical Education, University of Toronto.,Department of Anesthesia and Pain Management, University Health Network
| |
Collapse
|
212
|
Adams JM, Valentine CJ, Karns RA, Rogers LK, Murase M, Fowler GN, Nommsen-Rivers LA. DHA Supplementation Attenuates Inflammation-Associated Gene Expression in the Mammary Gland of Lactating Mothers Who Deliver Preterm. J Nutr 2022; 152:1404-1414. [PMID: 35199834 PMCID: PMC9178958 DOI: 10.1093/jn/nxac043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 01/25/2022] [Accepted: 02/21/2022] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND In a randomized trial of DHA supplementation to lactating mothers who delivered preterm, there were significant increases in DHA status in the mother and her infant. OBJECTIVES Our objective here was to characterize the mammary gland transcriptomes from the above study. We hypothesized that proinflammatory gene expression would be attenuated in the increased DHA group compared with the standard DHA group. METHODS In the original trial, mothers delivering at <29 wk gestation at the University of Cincinnati Medical Center and intending to express their milk were randomly assigned to supplementation with 200 mg/d DHA (standard group: STD) or 1000 mg/d DHA (experimental group: EXP) within 7 d of delivery. Here, we conducted RNA-seq transcriptome analysis of n = 5 EXP and n = 4 STD extracellular mammary mRNA samples extracted from the fat layer of milk samples obtained 4 wk postenrollment. Transcripts were assessed for differential expression (false discovery rate adjusted P value <0.05) and clustering between EXP compared with STD groups. Ontological analysis of all differentially expressed genes (DEGs) was performed with Toppcluster. RESULTS There were 409 DEGs. We observed 5 main groups of biological processes that were upregulated, including those associated with improved immune regulation and management of oxidative stress; and 3 main groups of biological processes that were downregulated, including 1 associated with immune dysregulation. For example, we observed upregulation of inflammation-inhibiting genes including NFKB inhibitor alpha (NFKBIA; fold-change (FC), adjusted P value: FC = 1.70, P = 0.007) and interleukin-18 binding protein (IL18BP: FC = 2.2, adjusted P = 0.02); and downregulation of proinflammatory genes including interleukin 7 receptor (IL7R: FC = -1.9, adjusted P = 0.02) and interleukin 1 receptor like 1 (IL1RL1: FC = -13.0, adjusted P = 0.02). CONCLUSIONS Increased DHA supplementation during lactation can modulate the expression of inflammation-related genes within the mammary gland. This might translate to milk composition with a more optimal inflammasome profile. Future research with a larger clinical trial and greater interrogation of clinical outcomes is warranted.
Collapse
Affiliation(s)
- Joselyn M Adams
- Department of Rehabilitation, Exercise, and Nutritional Sciences, University of Cincinnati College of Allied Health Sciences, Cincinnati, OH, USA
| | - Christina J Valentine
- Department of Neonatology, Banner University Medical Center, The University of Arizona, Tucson, AZ, USA
| | - Rebekah A Karns
- Division of Biostatistics and Epidemiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Lynette K Rogers
- Center for Perinatal Research, Nationwide Children's Hospital, Columbus, OH, USA
| | - Masahiko Murase
- Department of Neonatology, Showa University Hospital, Shinagawa City, Tokyo, Japan
| | - Grace N Fowler
- Department of Obstetrics and Gynecology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Laurie A Nommsen-Rivers
- Department of Rehabilitation, Exercise, and Nutritional Sciences, University of Cincinnati College of Allied Health Sciences, Cincinnati, OH, USA
| |
Collapse
|
213
|
da Silva A, Silveira BKS, Hermsdorff HHM, da Silva W, Bressan J. Effect of omega-3 fatty acid supplementation on telomere length and telomerase activity: A systematic review of clinical trials. Prostaglandins Leukot Essent Fatty Acids 2022; 181:102451. [PMID: 35661999 DOI: 10.1016/j.plefa.2022.102451] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 04/26/2022] [Accepted: 05/19/2022] [Indexed: 11/23/2022]
Abstract
Evidence suggests antioxidant and anti-inflammatory properties of omega-3 polyunsaturated fatty acids (n-3 PUFA). However, the effect of supplementation of this fatty acid profile on the telomere length and the telomerase enzyme activity was not revised yet. The PubMed and Embase® databases were used to search for clinical trials. A total of six clinical trials were revised. Omega-3 PUFA supplementation did not statistically affect telomere length in three out of three studies but affected telomerase activity in two out of four studies. The supplementation increased telomerase enzyme activity in subjects with first-episode schizophrenia. Besides, it decreased telomerase enzyme activity without modulating the effects of Pro12Ala polymorphism on the PPARγ gene in type 2 diabetes subjects. The methodological differences between the studies and the limited number of studies on the theme suggest that further studies are needed to elucidate the effects of n-3 PUFA supplementation on telomere length and telomerase enzyme activity in humans.
Collapse
Affiliation(s)
- Alessandra da Silva
- Laboratory of Energy Metabolism and Body Composition. Department of Nutrition and Health, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil.
| | - Brenda Kelly Souza Silveira
- Laboratory of Energy Metabolism and Body Composition. Department of Nutrition and Health, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Helen Hermana Miranda Hermsdorff
- Laboratory of Energy Metabolism and Body Composition. Department of Nutrition and Health, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Walmir da Silva
- Laboratory of Animal Biotechnology. Animal Science Department, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Josefina Bressan
- Laboratory of Energy Metabolism and Body Composition. Department of Nutrition and Health, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| |
Collapse
|
214
|
Tsurudome Y, Akamine T, Horiguchi M, Wada Y, Fujimura A, Ushijima K. Potential mechanism of hepatic lipid accumulation during a long-term rest phase restricted feeding in mice. Chronobiol Int 2022; 39:1132-1143. [PMID: 35603436 DOI: 10.1080/07420528.2022.2077746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Eating during a rest phase disrupts the biological clock system and leads to obesity and metabolic diseases. Although a rest phase restricted feeding (RF) is reported to enhance hepatic lipid accumulation, the mechanism(s) of the phenomenon is still unknown. This study evaluated the potential involvement of the CD36-related transport of lipids into the liver in mice with the RF procedure. This study showed that hepatic lipid accumulation was more significant in the RF group compared with mice under an active phase restricted feeding (AF). The RF procedure also elevated the expression of CD36 mRNA and its protein on the cellular membrane throughout the day. The transcription factor profiling array revealed that the RF activated the proliferator-activated receptor-γ (PPARγ), one of the CD36 transcript enhancers. In the liver of RF mice, the expression of miR-27b-3p, which is known to interfere with PPARγ gene expression, significantly decreased. These results suggest that the RF procedure inhibits the expression of miR-27b-3p in the liver and subsequently elevates PPARγ activity. Activated PPARγ might lead to CD36 upregulation, which, in turn, stimulates the transport of lipids into the liver.
Collapse
Affiliation(s)
- Yuya Tsurudome
- Division of Pharmaceutics, Faculty of Pharmaceutical Sciences, Sanyo-Onoda City University, Yamaguchi, Japan
| | - Takahiro Akamine
- Department of Pharmacology, Faculty of Medicine, Oita University, Oita, Japan
| | - Michiko Horiguchi
- Division of Pharmaceutics, Faculty of Pharmaceutical Sciences, Sanyo-Onoda City University, Yamaguchi, Japan
| | - Yukiyo Wada
- Division of Pharmaceutics, Faculty of Pharmaceutical Sciences, Sanyo-Onoda City University, Yamaguchi, Japan
| | - Akio Fujimura
- Division of Pharmaceutics, Faculty of Pharmaceutical Sciences, Sanyo-Onoda City University, Yamaguchi, Japan.,Division of Clinical Pharmacology, Department of Pharmacology, Jichi Medical University, Tochigi, Japan
| | - Kentaro Ushijima
- Division of Pharmaceutics, Faculty of Pharmaceutical Sciences, Sanyo-Onoda City University, Yamaguchi, Japan.,Division of Clinical Pharmacology, Department of Pharmacology, Jichi Medical University, Tochigi, Japan
| |
Collapse
|
215
|
Bungau SG, Tit DM, Vesa CM, Abid A, Szilagyi DV, Radu AF, Bungau AF, Tarce AG, Behl T, Stoicescu M, Brisc CM, Gitea D, Nechifor AC, Endres L. Non-conventional therapeutical approaches to acne vulgaris related to its association with metabolic disorders. Eur J Pharmacol 2022; 923:174936. [PMID: 35378101 DOI: 10.1016/j.ejphar.2022.174936] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 03/12/2022] [Accepted: 03/30/2022] [Indexed: 12/31/2022]
Abstract
The ever-increasing frequency of metabolic syndrome (MetS) is still a major challenge of the public health care system, worldwide. In recent years, researchers have been drawn to the uncommon (at first look) link between skin illnesses and MetS. Because of the pro-inflammatory mechanisms and insulin resistance (IR) that are upregulated in metabolic syndrome, many skin disorders are correlated to metabolic dysfunctions, including acne vulgaris. A comprehensive understanding of the link between MetS and acne vulgaris may contribute to the development of new treatment strategies. The current review focuses on dietary and therapeutic interventions and assesses the effect of various approaches such as improving diet by avoiding certain food products (i.e., milk and chocolate) or increasing the intake of others (i.e., food products rich in omega-3 fatty acids), metformin administration, therapy with plant extracts, plant essential oils, and probiotic supplementation on the improvement of certain acne vulgaris severity parameters. These therapeutic approaches, when combined with allopathic treatment, can improve the patients' quality of life.
Collapse
Affiliation(s)
- Simona Gabriela Bungau
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 410028, Oradea, Romania; Doctoral School of Biological and Biomedical Sciences, University of Oradea, 410087, Oradea, Romania.
| | - Delia Mirela Tit
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 410028, Oradea, Romania; Doctoral School of Biological and Biomedical Sciences, University of Oradea, 410087, Oradea, Romania.
| | - Cosmin Mihai Vesa
- Department of Preclinical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 410073, Oradea, Romania.
| | - Areha Abid
- Department of Food and Bioproduct Science, College of Agriculture and Bioresources, University of Saskatchewan, Canada.
| | - Denisa-Viola Szilagyi
- Doctoral School of Biological and Biomedical Sciences, University of Oradea, 410087, Oradea, Romania.
| | - Andrei-Flavius Radu
- Doctoral School of Biological and Biomedical Sciences, University of Oradea, 410087, Oradea, Romania.
| | - Alexa Florina Bungau
- Faculty of Medicine and Pharmacy, University of Oradea, 410073, Oradea, Romania.
| | | | - Tapan Behl
- Department of Pharmacology, Chitkara College of Pharmacy, Chitkara University, Punjab, 140401, India.
| | - Manuela Stoicescu
- Department of Medical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 410073, Oradea, Romania.
| | - Cristina Mihaela Brisc
- Department of Medical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 410073, Oradea, Romania.
| | - Daniela Gitea
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 410028, Oradea, Romania.
| | - Aurelia Cristina Nechifor
- Analytical Chemistry and Environmental Engineering Department, University Politehnica of Bucharest, 011061, Bucharest, Romania.
| | - Laura Endres
- Department of Psycho-neurosciences and Recovery, Faculty of Medicine and Pharmacy, University of Oradea, 410073, Oradea, Romania.
| |
Collapse
|
216
|
Pompura SL, Hafler DA, Dominguez-Villar M. Fatty Acid Metabolism and T Cells in Multiple Sclerosis. Front Immunol 2022; 13:869197. [PMID: 35603182 PMCID: PMC9116144 DOI: 10.3389/fimmu.2022.869197] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 03/30/2022] [Indexed: 11/25/2022] Open
Abstract
Cellular metabolic remodeling is intrinsically linked to the development, activation, differentiation, function, and survival of T cells. T cells transition from a catabolic, naïve state to an anabolic effector state upon T cell activation. Subsequently, specialization of T cells into T helper (Th) subsets, including regulatory T cells (Treg), requires fine-tuning of metabolic programs that better support and optimize T cell functions for that particular environment. Increasingly, studies have shown that changes in nutrient availability at both the cellular and organismal level during disease states can alter T cell function, highlighting the importance of better characterizing metabolic-immune axes in both physiological and disease settings. In support of these data, a growing body of evidence is emerging that shows specific lipid species are capable of altering the inflammatory functional phenotypes of T cells. In this review we summarize the metabolic programs shown to support naïve and effector T cells, and those driving Th subsets. We then discuss changes to lipid profiles in patients with multiple sclerosis, and focus on how the presence of specific lipid species can alter cellular metabolism and function of T cells.
Collapse
Affiliation(s)
- Saige L. Pompura
- Departments of Neurology and Immunobiology, Yale School of Medicine, New Haven, CT, United States
| | - David A. Hafler
- Departments of Neurology and Immunobiology, Yale School of Medicine, New Haven, CT, United States
| | | |
Collapse
|
217
|
Fan J, Bao Q, Ma K, Li X, Jia J, Wu H. Antioxidant and innate immunity of Danio rerio against Edwardsiella tarda in response to diets including three kinds of marine microalgae. ALGAL RES 2022. [DOI: 10.1016/j.algal.2022.102689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
218
|
Isomeric lipid signatures reveal compartmentalized fatty acid metabolism in cancer. J Lipid Res 2022; 63:100223. [PMID: 35537528 PMCID: PMC9184569 DOI: 10.1016/j.jlr.2022.100223] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 05/03/2022] [Accepted: 05/04/2022] [Indexed: 01/18/2023] Open
Abstract
The cellular energy and biomass demands of cancer drive a complex dynamic between uptake of extracellular FAs and their de novo synthesis. Given that oxidation of de novo synthesized FAs for energy would result in net-energy loss, there is an implication that FAs from these two sources must have distinct metabolic fates; however, hitherto, all FAs have been considered part of a common pool. To probe potential metabolic partitioning of cellular FAs, cancer cells were supplemented with stable isotope-labeled FAs. Structural analysis of the resulting glycerophospholipids revealed that labeled FAs from uptake were largely incorporated to canonical (sn-) positions on the glycerol backbone. Surprisingly, labeled FA uptake also disrupted canonical isomer patterns of the unlabeled lipidome and induced repartitioning of n-3 and n-6 PUFAs into glycerophospholipid classes. These structural changes support the existence of differences in the metabolic fates of FAs derived from uptake or de novo sources and demonstrate unique signaling and remodeling behaviors usually hidden from conventional lipidomics.
Collapse
|
219
|
Dravid AA, M. Dhanabalan K, Agarwal S, Agarwal R. Resolvin D1-loaded nanoliposomes promote M2 macrophage polarization and are effective in the treatment of osteoarthritis. Bioeng Transl Med 2022; 7:e10281. [PMID: 35600665 PMCID: PMC9115708 DOI: 10.1002/btm2.10281] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 09/19/2021] [Accepted: 09/22/2021] [Indexed: 11/24/2022] Open
Abstract
Current treatments for osteoarthritis (OA) offer symptomatic relief but do not prevent or halt the disease progression. Chronic low-grade inflammation is considered a significant driver of OA. Specialized proresolution mediators are powerful agents of resolution but have a short in vivo half-life. In this study, we have engineered a Resolvin D1 (RvD1)-loaded nanoliposomal formulation (Lipo-RvD1) that targets and resolves the OA-associated inflammation. This formulation creates a depot of the RvD1 molecules that allows the controlled release of the molecule for up to 11 days in vitro. In surgically induced mice model of OA, only controlled-release formulation of Lipo-RvD1 was able to treat the progressing cartilage damage when administered a month after the surgery, while the free drug was unable to prevent cartilage damage. We found that Lipo-RvD1 functions by damping the proinflammatory activity of synovial macrophages and recruiting a higher number of M2 macrophages at the site of inflammation. Our Lipo-RvD1 formulation was able to target and suppress the formation of the osteophytes and showed analgesic effect, thus emphasizing its ability to treat clinical symptoms of OA. Such controlled-release formulation of RvD1 could represent a patient-compliant treatment for OA.
Collapse
Affiliation(s)
- Ameya A. Dravid
- BioSystems Science and EngineeringIndian Institute of ScienceBangaloreKarnatakaIndia
| | - Kaamini M. Dhanabalan
- BioSystems Science and EngineeringIndian Institute of ScienceBangaloreKarnatakaIndia
| | - Smriti Agarwal
- BioSystems Science and EngineeringIndian Institute of ScienceBangaloreKarnatakaIndia
| | - Rachit Agarwal
- BioSystems Science and EngineeringIndian Institute of ScienceBangaloreKarnatakaIndia
| |
Collapse
|
220
|
Wilms JN, Hare KS, Fischer-Tlustos AJ, Vahmani P, Dugan MER, Leal LN, Steele MA. Fatty acid profile characterization in colostrum, transition milk, and mature milk of primi- and multiparous cows during the first week of lactation. J Dairy Sci 2022; 105:4692-4710. [PMID: 35473965 DOI: 10.3168/jds.2022-20880a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 03/10/2022] [Indexed: 01/03/2023]
Abstract
The specific fatty acid (FA) profile of colostrum may indicate a biological requirement for neonatal calves. The objective of this study was to characterize the FA profile and yields in colostrum, transition milk, and mature milk in primiparous (PP) and multiparous (MP) cows. Colostrum was milked from 10 PP and 10 MP Holstein cows fed the same pre- and postpartum rations. Milkings (M) 2 to 5 and 12 were respectively termed transition and mature milk. Overall, short-chain FA (C4:0 and C6:0) were 61 and 50% lower in colostrum than mature milk, respectively. A parity by milking interaction was also present, with higher C4:0 for PP cows at M2 and for MP cows at M12. Additionally, higher concentrations of C6:0 were present for PP cows at M2 through M4 and for MP cows at M12. Palmitic (C16:0) and myristic (C14:0) acids were 38% and 19% higher in colostrum than mature milk, respectively. However, total saturated FA remained relatively stable. Branched-chain FA were 13% lower in colostrum than mature milk and higher in PP than MP cows throughout the milking period. The proportion of trans-monounsaturated FA (MUFA) was 72% higher in PP cows throughout the milking period, as well as 13% lower in colostrum than mature milk. In contrast, cis-MUFA and total MUFA were not affected by milking nor parity. Linoleic acid (LA) was 25% higher in colostrum than transition and mature milks, but α-linolenic acid (ALA) did not differ. Consequently, the ratio of LA to ALA was 29% higher in colostrum than mature milk and 33% higher in MP cows. Linoleic acid was also 15% higher in MP cows, whereas ALA was 15% higher in PP cows. Conjugated linoleic acid (CLA, cis-9,trans-11) was 2.7-fold higher in PP cows, and no differences between colostrum and mature milk were detected. Overall, polyunsaturated FA (PUFA) from the n-6 and n-3 series were over 40% higher in colostrum compared with transition and mature milk. Milking by parity interactions were present for arachidonic acid (ARA), eicosapentaenoic acid (EPA), docosapentaenoic acid (DPA), docosahexaenoic acid (DHA), and total n-3 PUFA, translating to higher proportions in PP cows in M1 to M3, whereas proportions remained relatively stable throughout the milking period in MP cows. Despite increasing milk yields throughout the subsequent milkings, higher yields of EPA, ARA, DPA, and DHA were present in colostrum than in mature milk. Greater proportions and yields of n-3 and n-6 FA in colostrum may translate to specific requirements for newborn calves. Differences were also observed between PP and MP cows and may reflect different nutrient requirements and partitioning.
Collapse
Affiliation(s)
- J N Wilms
- Department of Animal Biosciences, University of Guelph, Guelph, ON N1G 2W1, Canada; Trouw Nutrition R&D, 3800 AG Amersfoort, the Netherlands
| | - K S Hare
- Department of Animal Biosciences, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - A J Fischer-Tlustos
- Department of Animal Biosciences, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - P Vahmani
- Department of Animal Science, University of California, Davis 95616
| | - M E R Dugan
- Agriculture and Agri-Food Canada, Lacombe Research and Development Centre, Lacombe, AB T4L 1V7, Canada
| | - L N Leal
- Trouw Nutrition R&D, 3800 AG Amersfoort, the Netherlands
| | - M A Steele
- Department of Animal Biosciences, University of Guelph, Guelph, ON N1G 2W1, Canada.
| |
Collapse
|
221
|
Maghalian M, Hasanzadeh R, Mirghafourvand M. The effect of oral vitamin E and omega-3 alone and in combination on menopausal hot flushes: A systematic review and meta-analysis. Post Reprod Health 2022; 28:93-106. [PMID: 35445622 DOI: 10.1177/20533691221083196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
This systematic review was conducted to investigate the effects of vitamin E and omega-3 used alone and in combination on the frequency and intensity of hot flushes (primary outcomes) and adverse effects (secondary outcome) in menopausal women. English and Persian databases were searched until March 18, 2021. The quality of the published papers was evaluated using Cochrane Handbook and the meta-analysis was conducted in RevMan 5.3. Heterogeneity was assessed using I2. In cases with substantial heterogeneity, a random effects model was used instead of a fixed effects model. A total of 387 papers were obtained from the databases. Finally, 10 papers with a sample size of 1100 participants entered the systematic review and a meta-analysis was conducted on nine of them. The results of the meta-analysis of two studies indicated that using vitamin E and omega-3 in combination significantly reduced the intensity of hot flushes compared to the placebo (mean difference (MD): -0.35; 95% CI: -0.48 to -0.21). The mean frequency (MD: -0.50; 95% CI: -1.58 to 0.58) and intensity (SMD: -0.61; 95% CI: -1.50 to 0.29) of hot flushes in the omega-3 group and the frequency of hot flushes (SMD: -0.21; 95% CI: -0.47 to 0.04) in the vitamin E group showed no significant differences with the placebo. No serious adverse effects were reported in the studies. Given the low number of RCTs, more clinical trials with larger sample size are required.
Collapse
Affiliation(s)
- Mahsa Maghalian
- Student Research Committee, 48432Tabriz University of Medical Sciences, Tabriz, Iran
| | - Robab Hasanzadeh
- Department of Midwifery, Bonab Branch, Islamic Azad University, Bonab, Iran
| | - Mojgan Mirghafourvand
- Social Determinants of Health Research Center, Faculty of Nursing & Midwifery, 48432Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Family Health, Social Determinants of Health Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
| |
Collapse
|
222
|
Horn J, Mayer DE, Chen S, Mayer EA. Role of diet and its effects on the gut microbiome in the pathophysiology of mental disorders. Transl Psychiatry 2022; 12:164. [PMID: 35443740 PMCID: PMC9021202 DOI: 10.1038/s41398-022-01922-0] [Citation(s) in RCA: 86] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 03/22/2022] [Accepted: 03/29/2022] [Indexed: 12/12/2022] Open
Abstract
There is emerging evidence that diet has a major modulatory influence on brain-gut-microbiome (BGM) interactions with important implications for brain health, and for several brain disorders. The BGM system is made up of neuroendocrine, neural, and immune communication channels which establish a network of bidirectional interactions between the brain, the gut and its microbiome. Diet not only plays a crucial role in shaping the gut microbiome, but it can modulate structure and function of the brain through these communication channels. In this review, we summarize the evidence available from preclinical and clinical studies on the influence of dietary habits and interventions on a selected group of psychiatric and neurologic disorders including depression, cognitive decline, Parkinson's disease, autism spectrum disorder and epilepsy. We will particularly address the role of diet-induced microbiome changes which have been implicated in these effects, and some of which are shared between different brain disorders. While the majority of these findings have been demonstrated in preclinical and in cross-sectional, epidemiological studies, to date there is insufficient evidence from mechanistic human studies to make conclusions about causality between a specific diet and microbially mediated brain function. Many of the dietary benefits on microbiome and brain health have been attributed to anti-inflammatory effects mediated by the microbial metabolites of dietary fiber and polyphenols. The new attention given to dietary factors in brain disorders has the potential to improve treatment outcomes with currently available pharmacological and non-pharmacological therapies.
Collapse
Affiliation(s)
- J Horn
- G. Oppenheimer Center for Neurobiology of Stress and Resilience, Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - D E Mayer
- MayerInterconnected, LLC, Los Angeles, CA, USA
| | - S Chen
- University of California, San Francisco, CA, USA
| | - E A Mayer
- G. Oppenheimer Center for Neurobiology of Stress and Resilience, Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA.
| |
Collapse
|
223
|
Tatsumi Y, Kato A, Niimi N, Yako H, Himeno T, Kondo M, Tsunekawa S, Kato Y, Kamiya H, Nakamura J, Higai K, Sango K, Kato K. Docosahexaenoic Acid Suppresses Oxidative Stress-Induced Autophagy and Cell Death via the AMPK-Dependent Signaling Pathway in Immortalized Fischer Rat Schwann Cells 1. Int J Mol Sci 2022; 23:ijms23084405. [PMID: 35457223 PMCID: PMC9027959 DOI: 10.3390/ijms23084405] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 04/05/2022] [Accepted: 04/14/2022] [Indexed: 01/27/2023] Open
Abstract
Autophagy is the process by which intracellular components are degraded by lysosomes. It is also activated by oxidative stress; hence, autophagy is thought to be closely related to oxidative stress, one of the major causes of diabetic neuropathy. We previously reported that docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) induced antioxidant enzymes and protected Schwann cells from oxidative stress. However, the relationship between autophagy and oxidative stress-induced cell death in diabetic neuropathy has not been elucidated. Treatment with tert-butyl hydroperoxide (tBHP) decreased the cell survival rate, as measured by an MTT assay in immortalized Fischer rat Schwann cells 1 (IFRS1). A DHA pretreatment significantly prevented tBHP-induced cytotoxicity. tBHP increased autophagy, which was revealed by the ratio of the initiation markers, AMP-activated protein kinase, and UNC51-like kinase phosphorylation. Conversely, the DHA pretreatment suppressed excessive tBHP-induced autophagy signaling. Autophagosomes induced by tBHP in IFRS1 cells were decreased to control levels by the DHA pretreatment whereas autolysosomes were only partially decreased. These results suggest that DHA attenuated excessive autophagy induced by oxidative stress in Schwann cells and may be useful to prevent or reduce cell death in vitro. However, its potentiality to treat diabetic neuropathy must be validated in in vivo studies.
Collapse
Affiliation(s)
- Yasuaki Tatsumi
- Laboratory of Medicine, Aichi Gakuin University School of Pharmacy, 1-100 Kusumoto-cho, Chikusa-ku, Nagoya 464-8650, Japan; (Y.T.); (A.K.)
- Department of Medical Biochemistry, Faculty of Pharmaceutical Sciences, Toho University, Miyama 2-2-1, Funabashi 274-8510, Japan;
| | - Ayako Kato
- Laboratory of Medicine, Aichi Gakuin University School of Pharmacy, 1-100 Kusumoto-cho, Chikusa-ku, Nagoya 464-8650, Japan; (Y.T.); (A.K.)
| | - Naoko Niimi
- Diabetic Neuropathy Project, Department of Diseases and Infection, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya, Tokyo 156-8506, Japan; (N.N.); (H.Y.); (K.S.)
| | - Hideji Yako
- Diabetic Neuropathy Project, Department of Diseases and Infection, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya, Tokyo 156-8506, Japan; (N.N.); (H.Y.); (K.S.)
| | - Tatsuhito Himeno
- Division of Diabetes, Department of Internal Medicine, Aichi Medical University School of Medicine, 1-1 Yazakokarimate, Nagakute 480-1195, Japan; (T.H.); (M.K.); (S.T.); (Y.K.); (H.K.); (J.N.)
| | - Masaki Kondo
- Division of Diabetes, Department of Internal Medicine, Aichi Medical University School of Medicine, 1-1 Yazakokarimate, Nagakute 480-1195, Japan; (T.H.); (M.K.); (S.T.); (Y.K.); (H.K.); (J.N.)
| | - Shin Tsunekawa
- Division of Diabetes, Department of Internal Medicine, Aichi Medical University School of Medicine, 1-1 Yazakokarimate, Nagakute 480-1195, Japan; (T.H.); (M.K.); (S.T.); (Y.K.); (H.K.); (J.N.)
| | - Yoshiro Kato
- Division of Diabetes, Department of Internal Medicine, Aichi Medical University School of Medicine, 1-1 Yazakokarimate, Nagakute 480-1195, Japan; (T.H.); (M.K.); (S.T.); (Y.K.); (H.K.); (J.N.)
| | - Hideki Kamiya
- Division of Diabetes, Department of Internal Medicine, Aichi Medical University School of Medicine, 1-1 Yazakokarimate, Nagakute 480-1195, Japan; (T.H.); (M.K.); (S.T.); (Y.K.); (H.K.); (J.N.)
| | - Jiro Nakamura
- Division of Diabetes, Department of Internal Medicine, Aichi Medical University School of Medicine, 1-1 Yazakokarimate, Nagakute 480-1195, Japan; (T.H.); (M.K.); (S.T.); (Y.K.); (H.K.); (J.N.)
| | - Koji Higai
- Department of Medical Biochemistry, Faculty of Pharmaceutical Sciences, Toho University, Miyama 2-2-1, Funabashi 274-8510, Japan;
| | - Kazunori Sango
- Diabetic Neuropathy Project, Department of Diseases and Infection, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya, Tokyo 156-8506, Japan; (N.N.); (H.Y.); (K.S.)
| | - Koichi Kato
- Laboratory of Medicine, Aichi Gakuin University School of Pharmacy, 1-100 Kusumoto-cho, Chikusa-ku, Nagoya 464-8650, Japan; (Y.T.); (A.K.)
- Correspondence: ; Tel.: +81-52-757-6778
| |
Collapse
|
224
|
Metabolites Associated with Memory and Gait: A Systematic Review. Metabolites 2022; 12:metabo12040356. [PMID: 35448544 PMCID: PMC9024701 DOI: 10.3390/metabo12040356] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 04/08/2022] [Accepted: 04/13/2022] [Indexed: 01/19/2023] Open
Abstract
We recently found that dual decline in memory and gait speed was consistently associated with an increased risk of dementia compared to decline in memory or gait only or no decline across six aging cohorts. The mechanisms underlying this relationship are unknown. We hypothesize that individuals who experience dual decline may have specific pathophysiological pathways to dementia which can be indicated by specific metabolomic signatures. Here, we summarize blood-based metabolites that are associated with memory and gait from existing literature and discuss their relevant pathways. A total of 39 eligible studies were included in this systematic review. Metabolites that were associated with memory and gait belonged to five shared classes: sphingolipids, fatty acids, phosphatidylcholines, amino acids, and biogenic amines. The sphingolipid metabolism pathway was found to be enriched in both memory and gait impairments. Existing data may suggest that metabolites from sphingolipids and the sphingolipid metabolism pathway are important for both memory and gait impairments. Future studies using empirical data across multiple cohorts are warranted to identify metabolomic signatures of dual decline in memory and gait and to further understand its relationship with future dementia risk.
Collapse
|
225
|
Sundaram TS, Giromini C, Rebucci R, Pistl J, Bhide M, Baldi A. Role of omega-3 polyunsaturated fatty acids, citrus pectin, and milk-derived exosomes on intestinal barrier integrity and immunity in animals. J Anim Sci Biotechnol 2022; 13:40. [PMID: 35399093 PMCID: PMC8996583 DOI: 10.1186/s40104-022-00690-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 02/07/2022] [Indexed: 11/10/2022] Open
Abstract
The gastrointestinal tract of livestock and poultry is prone to challenge by feedborne antigens, pathogens, and other stress factors in the farm environment. Excessive physiological inflammation and oxidative stress that arises firstly disrupts the intestinal epithelial barrier followed by other components of the gastrointestinal tract. In the present review, the interrelationship between intestinal barrier inflammation and oxidative stress that contributes to the pathogenesis of inflammatory bowel disease was described. Further, the role of naturally existing immunomodulatory nutrients such as the omega-3 polyunsaturated fatty acids, citrus pectin, and milk-derived exosomes in preventing intestinal barrier inflammation was discussed. Based on the existing evidence, the possible molecular mechanism of these bioactive nutrients in the intestinal barrier was outlined for application in animal diets.
Collapse
Affiliation(s)
- Tamil Selvi Sundaram
- Department of Veterinary Science for Health, Animal Production and Food Safety, University of Milan, Via Trentacoste 2, 20134, Milan, Italy.
- University of Veterinary Medicine and Pharmacy in Košice, Komenského 68/73, 04181, Košice, Slovakia.
| | - Carlotta Giromini
- Department of Veterinary Science for Health, Animal Production and Food Safety, University of Milan, Via Trentacoste 2, 20134, Milan, Italy
| | - Raffaella Rebucci
- Department of Veterinary Science for Health, Animal Production and Food Safety, University of Milan, Via Trentacoste 2, 20134, Milan, Italy
| | - Juraj Pistl
- University of Veterinary Medicine and Pharmacy in Košice, Komenského 68/73, 04181, Košice, Slovakia
| | - Mangesh Bhide
- University of Veterinary Medicine and Pharmacy in Košice, Komenského 68/73, 04181, Košice, Slovakia
| | - Antonella Baldi
- Department of Veterinary Science for Health, Animal Production and Food Safety, University of Milan, Via Trentacoste 2, 20134, Milan, Italy
| |
Collapse
|
226
|
Du L, Zheng Y, Yang YH, Huang YJ, Hao YM, Chen C, Wang BZ, Guo X, Wu H, Su GH. Krill oil prevents lipopolysaccharide-evoked acute liver injury in mice through inhibition of oxidative stress and inflammation. Food Funct 2022; 13:3853-3864. [PMID: 35274650 DOI: 10.1039/d1fo04136c] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Acute liver injury is a life-threatening syndrome that often results from the actions of viruses, drugs and toxins. Herein, the protective effect and potential mechanism of krill oil (KO), a novel natural product rich in long-chain n-3 polyunsaturated fatty acids bound to phospholipids and astaxanthin, on lipopolysaccharide (LPS)-evoked acute liver injury in mice were investigated. Male C57BL/6J mice were administered intragastrically with 400 mg kg-1 KO or fish oil (FO) once per day for 28 consecutive days prior to LPS exposure (10 mg kg-1, intraperitoneally injected). The results revealed that KO pretreatment significantly ameliorated LPS-evoked hepatic dysfunction indicated by reduced serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) activities and attenuated hepatic histopathological damage. KO pretreatment also mitigated LPS-induced hepatic oxidative stress, as evidenced by decreased malondialdehyde (MDA) contents, elevated glutathione (GSH) levels, and elevated catalase (CAT) and superoxide dismutase (SOD) activities. Additionally, LPS-evoked overproduction of pro-inflammatory mediators in serum and the liver was inhibited by KO pretreatment. Furthermore, KO pretreatment suppressed LPS-induced activation of the hepatic toll-like receptor 4 (TLR4)/nuclear factor-kappa B (NF-κB)/NOD-like receptor family pyrin domain containing 3 (NLRP3) signaling pathway. Interestingly, the hepatoprotective effect of KO was superior to that of FO. Collectively, the current findings suggest that KO protects against LPS-evoked acute liver injury via inhibition of oxidative stress and inflammation.
Collapse
Affiliation(s)
- Lei Du
- Research Center of Translational Medicine, Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, No.105 Jiefang Road, Jinan, Shandong, 250013, China. .,Department of Nutrition and Food Hygiene, School of Public Health, Cheeloo College of Medicine, Shandong University, No.44 Wenhuaxi Road, Jinan, Shandong, 250012, China.
| | - Yan Zheng
- Research Center of Translational Medicine, Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, No.105 Jiefang Road, Jinan, Shandong, 250013, China.
| | - Yu-Hong Yang
- School of Food Science & Engineering, Qilu University of Technology (Shandong Academy of Sciences), No.3501 Daxue Road, Jinan, Shandong, 250353, China
| | - Yu-Jie Huang
- Department of Nutrition and Food Hygiene, School of Public Health, Cheeloo College of Medicine, Shandong University, No.44 Wenhuaxi Road, Jinan, Shandong, 250012, China.
| | - Yi-Ming Hao
- Department of Nutrition and Food Hygiene, School of Public Health, Cheeloo College of Medicine, Shandong University, No.44 Wenhuaxi Road, Jinan, Shandong, 250012, China.
| | - Chen Chen
- Department of Nutrition and Food Hygiene, School of Public Health, Cheeloo College of Medicine, Shandong University, No.44 Wenhuaxi Road, Jinan, Shandong, 250012, China.
| | - Bao-Zhen Wang
- Department of Nutrition and Food Hygiene, School of Public Health, Cheeloo College of Medicine, Shandong University, No.44 Wenhuaxi Road, Jinan, Shandong, 250012, China.
| | - Xin Guo
- Research Center of Translational Medicine, Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, No.105 Jiefang Road, Jinan, Shandong, 250013, China. .,Department of Nutrition and Food Hygiene, School of Public Health, Cheeloo College of Medicine, Shandong University, No.44 Wenhuaxi Road, Jinan, Shandong, 250012, China.
| | - Hao Wu
- Research Center of Translational Medicine, Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, No.105 Jiefang Road, Jinan, Shandong, 250013, China. .,Department of Nutrition and Food Hygiene, School of Public Health, Cheeloo College of Medicine, Shandong University, No.44 Wenhuaxi Road, Jinan, Shandong, 250012, China.
| | - Guo-Hai Su
- Research Center of Translational Medicine, Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, No.105 Jiefang Road, Jinan, Shandong, 250013, China.
| |
Collapse
|
227
|
Alkhedhairi SAA, Aba Alkhayl FF, Ismail AD, Rozendaal A, German M, MacLean B, Johnston L, Miller A, Hunter A, Macgregor L, Combet E, Quinn T, Gray S. The effects of krill oil supplementation on skeletal muscle function and size in older adults: a randomised controlled trial. Clin Nutr 2022; 41:1228-1235. [PMID: 35504165 DOI: 10.1016/j.clnu.2022.04.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 04/07/2022] [Accepted: 04/08/2022] [Indexed: 11/30/2022]
|
228
|
de la Rocha C, Rodríguez-Ríos D, Ramírez-Chávez E, Molina-Torres J, de Jesús Flores-Sierra J, Orozco-Castellanos LM, Galván-Chía JP, Sánchez AV, Zaina S, Lund G. Cumulative Metabolic and Epigenetic Effects of Paternal and/or Maternal Supplementation with Arachidonic Acid across Three Consecutive Generations in Mice. Cells 2022; 11:cells11061057. [PMID: 35326508 PMCID: PMC8947399 DOI: 10.3390/cells11061057] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/02/2022] [Accepted: 03/02/2022] [Indexed: 12/14/2022] Open
Abstract
Apart from the known associations between arachidonic acid (AA), weight gain, and neurological and immune function, AA exposure leads to alterations in global and gene-specific DNA methylation (DNAm) and fatty acid (FA) content in human cultured cells. However, it is unknown as to whether the latter effects occur in vivo and are maintained over extended periods of time and across generations. To address this issue, we asked whether AA supplementation for three consecutive generations (prior to coitus in sires or in utero in dams) affected offspring growth phenotypes, in addition to liver DNAm and FA profiles in mice. Twelve-week-old BALB/c mice were exposed daily to AA dissolved in soybean oil (vehicle, VH), or VH only, for 10 days prior to mating or during the entire pregnancy (20 days). On average, 15 mice were supplemented per generation, followed by analysis of offspring body weight and liver traits (x average = 36 and 10 per generation, respectively). Body weight cumulatively increased in F2 and F3 offspring generations and positively correlated with milligrams of paternal or maternal offspring AA exposure. A concomitant increase in liver weight was observed. Notably, akin to AA-challenged cultured cells, global DNAm and cis-7-hexadecenoic acid (16:1n-9), an anti-inflammatory FA that is dependent on stearoyl-CoA desaturase 1 (SCD1) activity, increased with milligrams of AA exposure. In accordance, liver Scd1 promoter methylation decreased with milligrams of germline AA exposure and was negatively correlated with liver weight. Our results show that mice retain cellular memories of AA exposure across generations that could potentially be beneficial to the innate immune system.
Collapse
Affiliation(s)
- Carmen de la Rocha
- Department of Genetic Engineering, CINVESTAV Irapuato Unit, Irapuato 36500, Mexico; (C.d.l.R.); (D.R.-R.); (A.V.S.)
| | - Dalia Rodríguez-Ríos
- Department of Genetic Engineering, CINVESTAV Irapuato Unit, Irapuato 36500, Mexico; (C.d.l.R.); (D.R.-R.); (A.V.S.)
| | - Enrique Ramírez-Chávez
- Department of Biotechnology and Biochemistry, CINVESTAV Irapuato Unit, Irapuato 36500, Mexico; (E.R.-C.); (J.M.-T.)
| | - Jorge Molina-Torres
- Department of Biotechnology and Biochemistry, CINVESTAV Irapuato Unit, Irapuato 36500, Mexico; (E.R.-C.); (J.M.-T.)
| | - José de Jesús Flores-Sierra
- Department of Medical Sciences, Division of Health Sciences, León Campus, University of Guanajuato, León 37000, Mexico; (J.d.J.F.-S.); (S.Z.)
| | - Luis M. Orozco-Castellanos
- Department of Pharmacology, Division of Natural and Exact Sciences, Guanajuato Campus, University of Guanajuato, Guanajuato 36000, Mexico; (L.M.O.-C.); (J.P.G.-C.)
| | - Juan P. Galván-Chía
- Department of Pharmacology, Division of Natural and Exact Sciences, Guanajuato Campus, University of Guanajuato, Guanajuato 36000, Mexico; (L.M.O.-C.); (J.P.G.-C.)
| | - Atenea Vázquez Sánchez
- Department of Genetic Engineering, CINVESTAV Irapuato Unit, Irapuato 36500, Mexico; (C.d.l.R.); (D.R.-R.); (A.V.S.)
| | - Silvio Zaina
- Department of Medical Sciences, Division of Health Sciences, León Campus, University of Guanajuato, León 37000, Mexico; (J.d.J.F.-S.); (S.Z.)
| | - Gertrud Lund
- Department of Genetic Engineering, CINVESTAV Irapuato Unit, Irapuato 36500, Mexico; (C.d.l.R.); (D.R.-R.); (A.V.S.)
- Correspondence: ; Tel.: +52-462-623-9664
| |
Collapse
|
229
|
Cretton M, Malanga G, Mazzuca Sobczuk T, Mazzuca M. Marine lipids as a source of high-quality fatty acids and antioxidants. FOOD REVIEWS INTERNATIONAL 2022. [DOI: 10.1080/87559129.2022.2042555] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Martina Cretton
- Facultad de Ciencias Naturales y Ciencias de la Salud, Departamento de Química, Universidad Nacional de la Patagonia San Juan Bosco, Chubut, Argentina
- CONICET - Centro de Investigación yTransferencia Golfo San Jorge (CIT-GSJ), Comodoro Rivadavia,Chubut, Argentina
| | - Gabriela Malanga
- Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
- CONICET-Universidad de Buenos Aires. Instituto de Bioquímica y Medicina Molecular (IBIMOL), Buenos Aires, Argentina
| | - Tania Mazzuca Sobczuk
- Departamento de Ingeniería Química, Campus de Excelencia Internacional Agroalimentario (CeiA3), Universidad de Almería, Spain
| | - Marcia Mazzuca
- Facultad de Ciencias Naturales y Ciencias de la Salud, Departamento de Química, Universidad Nacional de la Patagonia San Juan Bosco, Chubut, Argentina
- CONICET - Centro de Investigación yTransferencia Golfo San Jorge (CIT-GSJ), Comodoro Rivadavia,Chubut, Argentina
| |
Collapse
|
230
|
Ferreira I, Falcato F, Bandarra N, Rauter AP. Resolvins, Protectins, and Maresins: DHA-Derived Specialized Pro-Resolving Mediators, Biosynthetic Pathways, Synthetic Approaches, and Their Role in Inflammation. Molecules 2022; 27:1677. [PMID: 35268778 PMCID: PMC8912121 DOI: 10.3390/molecules27051677] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Revised: 02/11/2022] [Accepted: 02/16/2022] [Indexed: 12/31/2022] Open
Abstract
Marine organisms are an important source of natural products with unique and diverse chemical structures that may hold the key for the development of novel drugs. Docosahexaenoic acid (DHA) is an omega-3 fatty acid marine natural product playing a crucial regulatory role in the resolution of inflammation and acting as a precursor for the biosynthesis of the anti-inflammatory specialized pro-resolving mediators (SPMs) resolvins, protectins, and maresins. These metabolites exert many beneficial actions including neuroprotection, anti-hypertension, or anti-tumorigenesis. As dysregulation of SPMs is associated with diseases of prolonged inflammation, the disclosure of their bioactivities may be correlated with anti-inflammatory and pro-resolving capabilities, offering new targets for drug design. The availability of these SPMs from natural resources is very low, but the evaluation of their pharmacological properties requires their access in larger amounts, as achieved by synthetic routes. In this report, the first review of the total organic syntheses carried out for resolvins, protectins, and maresins is presented. Recently, it was proposed that DHA-derived pro-resolving mediators play a key role in the treatment of COVID-19. In this work we also review the current evidence on the structures, biosynthesis, and functional and new-found roles of these novel lipid mediators of disease resolution.
Collapse
Affiliation(s)
- Inês Ferreira
- Centro de Química Estrutural, Institute of Molecular Sciences, Faculdade de Ciências, Universidade de Lisboa, Ed. C8, Piso 5, Campo Grande, 1749-016 Lisboa, Portugal;
- Division of Aquaculture, Upgrading and Bioprospecting, Portuguese Institute of the Sea and Atmosphere, Rua Alfredo Magalhães Ramalho, 6, 1495-006 Lisboa, Portugal;
| | - Filipa Falcato
- Division of Aquaculture, Upgrading and Bioprospecting, Portuguese Institute of the Sea and Atmosphere, Rua Alfredo Magalhães Ramalho, 6, 1495-006 Lisboa, Portugal;
| | - Narcisa Bandarra
- Division of Aquaculture, Upgrading and Bioprospecting, Portuguese Institute of the Sea and Atmosphere, Rua Alfredo Magalhães Ramalho, 6, 1495-006 Lisboa, Portugal;
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), University of Porto, Rua dos Bragas 289, 4050-123 Porto, Portugal
| | - Amélia P. Rauter
- Centro de Química Estrutural, Institute of Molecular Sciences, Faculdade de Ciências, Universidade de Lisboa, Ed. C8, Piso 5, Campo Grande, 1749-016 Lisboa, Portugal;
| |
Collapse
|
231
|
Spence T, Zavez A, Allsopp PJ, Conway MC, Yeates AJ, Mulhern MS, van Wijngaarden E, Strain JJ, Myers GJ, Watson GE, Davidson PW, Shamlaye CF, Thurston SW, McSorley EM. Serum cytokines are associated with n-3 polyunsaturated fatty acids and not with methylmercury measured in infant cord blood in the Seychelles child development study. ENVIRONMENTAL RESEARCH 2022; 204:112003. [PMID: 34492279 DOI: 10.1016/j.envres.2021.112003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 08/30/2021] [Accepted: 09/01/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Maternal fish consumption increases infant methylmercury (MeHg) exposure and polyunsaturated fatty acid (PUFA) concentrations. The n-3 PUFA are regulators of inflammation while MeHg may impact the cord cytokine profile and, subsequently, contribute to immune mediated outcomes. This study aimed to investigate associations between infant MeHg exposure and cord cytokine concentrations while adjusting for cord PUFA. METHODS We studied participants in the Seychelles Child Development Study (SCDS) Nutrition Cohort 2 (NC2), a large birth cohort in a high fish-eating population. Whole blood MeHg, serum PUFA and serum cytokine concentrations (IFN-γ, IL-1β, IL-2, IL-12p70, TNF-α, IL-4, IL-10, IL-13, IL-6 and IL-8) were measured in cord blood collected at delivery (n = 878). Linear regression examined associations between infant MeHg exposure and cord cytokines concentrations, with and without adjustment for cord PUFA. An interaction model examined cord MeHg, cytokines and tertiles of the n-6:n-3 ratio (low/medium/high). RESULTS There was no overall association between cord MeHg (34.08 ± 19.98 μg/L) and cytokine concentrations, with or without adjustment for PUFA. Increased total n-3 PUFA (DHA, EPA and ALA) was significantly associated with lower IL-10 (β = -0.667; p = 0.007) and lower total Th2 (IL-4, IL-10 and IL-13) (β = -0.715; p = 0.036). In the interaction model, MeHg and IL-1β was positive and significantly different from zero in the lowest n-6:n-3 ratio tertile (β = 0.002, p = 0.03). CONCLUSION Methylmercury exposure from fish consumption does not appear to impact markers of inflammation in cord blood. The association of cord n-3 PUFA with lower IL-10 and total Th2 cytokines suggests that they may have a beneficial influence on the regulation of the inflammatory milieu. These findings are important for public health advice and deserve to be investigated in follow up studies.
Collapse
Affiliation(s)
- Toni Spence
- Nutrition Innovation Centre for Food and Health, Ulster University, Coleraine, County Londonderry, BT52 1SA, UK.
| | - Alexis Zavez
- School of Medicine and Dentistry, University of Rochester, 601 Elmwood Avenue, Rochester, NY, 14642, USA.
| | - Philip J Allsopp
- Nutrition Innovation Centre for Food and Health, Ulster University, Coleraine, County Londonderry, BT52 1SA, UK
| | - Marie C Conway
- Nutrition Innovation Centre for Food and Health, Ulster University, Coleraine, County Londonderry, BT52 1SA, UK.
| | - Alison J Yeates
- Nutrition Innovation Centre for Food and Health, Ulster University, Coleraine, County Londonderry, BT52 1SA, UK.
| | - Maria S Mulhern
- Nutrition Innovation Centre for Food and Health, Ulster University, Coleraine, County Londonderry, BT52 1SA, UK.
| | - Edwin van Wijngaarden
- School of Medicine and Dentistry, University of Rochester, 601 Elmwood Avenue, Rochester, NY, 14642, USA.
| | - J J Strain
- Nutrition Innovation Centre for Food and Health, Ulster University, Coleraine, County Londonderry, BT52 1SA, UK.
| | - Gary J Myers
- School of Medicine and Dentistry, University of Rochester, 601 Elmwood Avenue, Rochester, NY, 14642, USA.
| | - Gene E Watson
- School of Medicine and Dentistry, University of Rochester, 601 Elmwood Avenue, Rochester, NY, 14642, USA.
| | - Philip W Davidson
- School of Medicine and Dentistry, University of Rochester, 601 Elmwood Avenue, Rochester, NY, 14642, USA.
| | | | - Sally W Thurston
- School of Medicine and Dentistry, University of Rochester, 601 Elmwood Avenue, Rochester, NY, 14642, USA.
| | - Emeir M McSorley
- Nutrition Innovation Centre for Food and Health, Ulster University, Coleraine, County Londonderry, BT52 1SA, UK.
| |
Collapse
|
232
|
Simard M, Tremblay A, Morin S, Martin C, Julien P, Fradette J, Flamand N, Pouliot R. α-Linolenic acid and linoleic acid modulate the lipidome and the skin barrier of a tissue-engineered skin model. Acta Biomater 2022; 140:261-274. [PMID: 34808417 DOI: 10.1016/j.actbio.2021.11.021] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 11/15/2021] [Accepted: 11/16/2021] [Indexed: 12/18/2022]
Abstract
Polyunsaturated fatty acids (PUFAs) play an important role in the establishment and the maintenance of the skin barrier function. However, the impact of their derived lipid mediators remains unclear. Skin substitutes were engineered according to the self-assembly method with a culture medium supplemented with 10 μM of both α-linolenic acid (ALA) and linoleic acid (LA). The supplementation with ALA and LA decreased testosterone absorption through a tissue-engineered reconstructed skin model, thus indicating an improved skin barrier function following supplementation. The exogenously provided fatty acids were incorporated into the phospholipid and triglyceride fractions of the skin substitutes. Indeed, the dual supplementation increased the levels of eicosapentaenoic acid (EPA) (15-fold), docosapentaenoic acid (DPA) (3-fold), and LA (1.5-fold) in the epidermal phospholipids while it increased the levels of ALA (>20-fold), DPA (3-fold) and LA (1.5-fold) in the epidermal triglycerides. The bioactive lipid mediator profile of the skin substitutes, including prostaglandins, hydroxy-fatty acids, N-acylethanolamines and monoacylglycerols, was next analyzed using liquid chromatography-tandem mass spectrometry. The lipid supplementation further modulated bioactive lipid mediator levels of the reconstructed skin substitutes, leading to a lipid mediator profile more representative of the one found in normal human skin. These findings show that an optimized supply of PUFAs via culture media is essential for the establishment of improved barrier function in vitro. STATEMENT OF SIGNIFICANCE: Supplementation of the culture medium with 10 μM of both α-linolenic acid (ALA) and linoleic acid (LA) improved the skin barrier function of a tissue-engineered skin model. The exogenously provided fatty acids were incorporated into the phospholipid and triglyceride fractions of the skin substitutes and further modulated bioactive lipid mediator levels, including prostaglandins, hydroxy-fatty acids, N-acylethanolamines and monoacylglycerols. These findings highlight the important role of ALA and LA in skin homeostasis and show that an optimized supply of polyunsaturated fatty acids via culture media is essential for the establishment of improved barrier function in vitro.
Collapse
Affiliation(s)
- Mélissa Simard
- Centre de Recherche en Organogénèse Expérimentale de l'Université Laval/LOEX, Axe médecine régénératrice, Centre de recherche du CHU de Québec-Université Laval, Québec, QC, G1J 1Z4, Canada; Faculté de pharmacie de l'Université Laval, Québec, QC, G1J 1A4, Canada
| | - Andréa Tremblay
- Centre de Recherche en Organogénèse Expérimentale de l'Université Laval/LOEX, Axe médecine régénératrice, Centre de recherche du CHU de Québec-Université Laval, Québec, QC, G1J 1Z4, Canada; Faculté de pharmacie de l'Université Laval, Québec, QC, G1J 1A4, Canada
| | - Sophie Morin
- Centre de Recherche en Organogénèse Expérimentale de l'Université Laval/LOEX, Axe médecine régénératrice, Centre de recherche du CHU de Québec-Université Laval, Québec, QC, G1J 1Z4, Canada; Faculté de pharmacie de l'Université Laval, Québec, QC, G1J 1A4, Canada
| | - Cyril Martin
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec, QC, G1V 4G5, Canada; Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health (CERC-MEND), Université Laval, Québec, QC, Canada
| | - Pierre Julien
- Département de médecine, Faculté de médecine de l'Université Laval, Québec, QC, G1V 0A6, Canada; Axe Endocrinologie et Néphrologie, Centre de recherche du CHU de Québec, Université Laval, Québec, QC, G1J 1A4, Canada
| | - Julie Fradette
- Centre de Recherche en Organogénèse Expérimentale de l'Université Laval/LOEX, Axe médecine régénératrice, Centre de recherche du CHU de Québec-Université Laval, Québec, QC, G1J 1Z4, Canada; Département de chirurgie, Faculté de médecine de l'Université Laval, Québec, QC, G1V 0A6, Canada
| | - Nicolas Flamand
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec, QC, G1V 4G5, Canada; Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health (CERC-MEND), Université Laval, Québec, QC, Canada
| | - Roxane Pouliot
- Centre de Recherche en Organogénèse Expérimentale de l'Université Laval/LOEX, Axe médecine régénératrice, Centre de recherche du CHU de Québec-Université Laval, Québec, QC, G1J 1Z4, Canada; Faculté de pharmacie de l'Université Laval, Québec, QC, G1J 1A4, Canada.
| |
Collapse
|
233
|
She Y, Mangat R, Tsai S, Proctor SD, Richard C. The Interplay of Obesity, Dyslipidemia and Immune Dysfunction: A Brief Overview on Pathophysiology, Animal Models, and Nutritional Modulation. Front Nutr 2022; 9:840209. [PMID: 35252310 PMCID: PMC8891442 DOI: 10.3389/fnut.2022.840209] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 01/20/2022] [Indexed: 12/14/2022] Open
Abstract
Obesity has emerged as a leading global health concern. It is characterized by chronic low-grade inflammation, which impairs insulin signaling, lipid metabolism and immune function. Recent findings from animal and clinical studies have begun to elucidate the underlying mechanisms of immune dysfunction seen in the context of obesity. Here, we provide a brief review on the current understanding of the interplay between obesity, dyslipidemia and immunity. We also emphasize the advantages and shortcomings of numerous applicable research models including rodents and large animal swine that aim at unraveling the molecular basis of disease and clinical manifestations. Although there is no perfect model to answer all questions at once, they are often used to complement each other. Finally, we highlight some emerging nutritional strategies to improve immune function in the context of obesity with a particular focus on choline and foods that contains high amounts of choline.
Collapse
Affiliation(s)
- Yongbo She
- Division of Human Nutrition, Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada
- Metabolic and Cardiovascular Diseases Laboratory, Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada
| | - Rabban Mangat
- Division of Human Nutrition, Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada
- Metabolic and Cardiovascular Diseases Laboratory, Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada
| | - Sue Tsai
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB, Canada
| | - Spencer D. Proctor
- Division of Human Nutrition, Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada
- Metabolic and Cardiovascular Diseases Laboratory, Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada
| | - Caroline Richard
- Division of Human Nutrition, Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada
- Metabolic and Cardiovascular Diseases Laboratory, Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
234
|
Utilizing Genomically Targeted Molecular Data to Improve Patient-Specific Outcomes in Autism Spectrum Disorder. Int J Mol Sci 2022; 23:ijms23042167. [PMID: 35216282 PMCID: PMC8879068 DOI: 10.3390/ijms23042167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/27/2022] [Accepted: 02/10/2022] [Indexed: 02/04/2023] Open
Abstract
Molecular biology combined with genomics can be a powerful tool for developing potential intervention strategies for improving outcomes in children with autism spectrum disorders (ASD). Monogenic etiologies rarely cause autism. Instead, ASD is more frequently due to many polygenic contributing factors interacting with each other, combined with the epigenetic effects of diet, lifestyle, and environment. One limitation of genomics has been identifying ways of responding to each identified gene variant to translate the information to something clinically useful. This paper will illustrate how understanding the function of a gene and the effects of a reported variant on a molecular level can be used to develop actionable and targeted potential interventions for a gene variant or combinations of variants. For illustrative purposes, this communication highlights a specific genomic variant, SHANK3. The steps involved in developing molecularly genomically targeted actionable interventions will be demonstrated. Cases will be shared to support the efficacy of this strategy and to show how clinicians utilized these targeted interventions to improve ASD-related symptoms significantly. The presented approach demonstrates the utility of genomics as a part of clinical decision-making.
Collapse
|
235
|
Cao X, Shang Y, Kong W, Jiang S, Liao J, Dai R. Flavonoids derived from Anemarrhenae Rhizoma ameliorate inflammation of benign prostatic hyperplasia via modulating COX/LOX pathways. JOURNAL OF ETHNOPHARMACOLOGY 2022; 284:114740. [PMID: 34737006 DOI: 10.1016/j.jep.2021.114740] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 09/29/2021] [Accepted: 10/09/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Flavonoids are the main components of the traditional Chinese medicine Anemarrhenae Rhizoma (dried rhizome of Anemarrhena asphodeloides Bge.), which has been reported to possess activity against inflammation and tumor. AIM OF STUDY Regulation of the arachidonic acid (AA) cascade through cyclooxygenase (COX) and lipoxygenase (LOX) represent the two major pathways to treat inflammatory of benign prostatic hyperplasia (BPH). In this study, Anemarrhenae Rhizoma flavonoids and its main compounds (mangiferin, neomangiferin and isomangiferin) were investigated for effects on AA metabolism. METHODS Ultra-performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS) was used to monitor AA metabolites in BPH rats and in PC-3 cells. COX-2 and 5-LOX protein and mRNA levels were measured by Western blot and qPCR, respectively, along with histopathological assessment of prostate tissues. RESULTS Treatment with flavonoids significantly ameliorated BPH-associated prostate inflammation and inhibited the expression of COX-2 and 5-LOX at the protein and mRNA levels. Quantitative metabolomic analysis of blood plasma showed flavonoids treatment decreased AA levels and its metabolites associated with the COX and LOX pathways. Further exploration of the flavonoid compounds mangiferin, neomangiferin and isomangiferin showed they inhibited AA metabolism to varying degrees in PC-3 cell cultures. CONCLUSION Anemarrhenae Rhizoma flavonoids act to inhibit BPH-related inflammation in vivo and in vitro by targeting AA metabolism and interfering with COX and LOX pathways. The identification of mangiferin, neomangiferin and isomangiferin as anti-inflammatory components suggests flavonoids interventions represent a promising therapeutic approach for BPH.
Collapse
Affiliation(s)
- Xiaotong Cao
- School of Pharmacy, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang, Liaoning Province, China.
| | - Ying Shang
- School of Pharmacy, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang, Liaoning Province, China.
| | - Weigui Kong
- School of Pharmacy, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang, Liaoning Province, China.
| | - Shuqing Jiang
- School of Pharmacy, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang, Liaoning Province, China.
| | - Jun Liao
- School of Pharmacy, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang, Liaoning Province, China.
| | - Ronghua Dai
- School of Pharmacy, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang, Liaoning Province, China.
| |
Collapse
|
236
|
Ulu A, Velazquez JV, Burr A, Sveiven SN, Yang J, Bravo C, Hammock BD, Nordgren TM. Sex-Specific Differences in Resolution of Airway Inflammation in Fat-1 Transgenic Mice Following Repetitive Agricultural Dust Exposure. Front Pharmacol 2022; 12:785193. [PMID: 35095496 PMCID: PMC8793679 DOI: 10.3389/fphar.2021.785193] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 12/23/2021] [Indexed: 11/13/2022] Open
Abstract
In agriculture industries, workers are at increased risk for developing pulmonary diseases due to inhalation of agricultural dusts, particularly when working in enclosed confinement facilities. Agricultural dusts inhalation leads to unresolved airway inflammation that precedes the development and progression of lung disease. We have previously shown beneficial effects of the omega-3 polyunsaturated fatty acid (ω-3 PUFA) DHA in protecting against the negative inflammatory effects of repetitive dust exposure in the lung. Dietary manipulation of pulmonary disease risk is an attractive and timely approach given the contribution of an increased ω-6 to ω-3 PUFA ratio to low grade inflammation and chronic disease in the Western diet. To prevent any confounding factors that comes with dietary supplementation of ω-3 PUFA (different sources, purity, dose, and duration), we employed a Fat-1 transgenic mouse model that convert ω-6 PUFA to ω-3 PUFA, leading to a tissue ω-6 to ω-3 PUFA ratio of approximately 1:1. Building on our initial findings, we hypothesized that attaining elevated tissue levels of ω-3 PUFA would attenuate agricultural dust-induced lung inflammation and its resolution. To test this hypothesis, we compared wild-type (WT) and Fat-1 transgenic mice in their response to aqueous extracts of agricultural dust (DE). We also used a soluble epoxide hydrolase inhibitor (sEH) to potentiate the effects of ω-3 PUFA, since sEH inhibitors have been shown to stabilize the anti-inflammatory P450 metabolites derived from both ω-3 and ω-6 PUFA and promote generation of specialized pro-resolving lipid mediators from ω-3 PUFA. Over a three-week period, mice were exposed to a total of 15 intranasal instillations of DE obtained from swine confinement buildings in the Midwest. We observed genotype and sex-specific differences between the WT vs. Fat-1 transgenic mice in response to repetitive dust exposure, where three-way ANOVA revealed significant main effects of treatment, genotype, and sex. Also, Fat-1 transgenic mice displayed reduced lymphoid aggregates in the lung following DE exposure as compared to WT animals exposed to DE, suggesting improved resilience to the DE-induced inflammatory effects. Overall, our data implicate a protective role of ω-3 FA in the lung following repetitive dust exposure.
Collapse
Affiliation(s)
- Arzu Ulu
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA, United States
| | - Jalene V Velazquez
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA, United States
| | - Abigail Burr
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA, United States
| | - Stefanie N Sveiven
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA, United States
| | - Jun Yang
- Department of Entomology and Nematology, University of California Davis Comprehensive Cancer Center, University of California, Davis, Davis, CA, United States
| | - Carissa Bravo
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA, United States
| | - Bruce D Hammock
- Department of Entomology and Nematology, University of California Davis Comprehensive Cancer Center, University of California, Davis, Davis, CA, United States
| | - Tara M Nordgren
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA, United States.,Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, United States
| |
Collapse
|
237
|
Kalogerou M, Ioannou S, Kolovos P, Prokopiou E, Potamiti L, Kyriacou K, Panagiotidis M, Ioannou M, Fella E, Worth EP, Georgiou T. Omega-3 fatty acids promote neuroprotection, decreased apoptosis and reduced glial cell activation in the retina of a mouse model of OPA1-related autosomal dominant optic atrophy. Exp Eye Res 2022; 215:108901. [DOI: 10.1016/j.exer.2021.108901] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 12/13/2021] [Accepted: 12/15/2021] [Indexed: 01/10/2023]
|
238
|
Marx W, Thomson S, O'Hely M, Symeonides C, Collier F, Tang MLK, Loughman A, Burgner D, Saffery R, Pham C, Mansell T, Sly PD, Vuillermin P, Ranganathan S, Ponsonby AL. Maternal inflammatory and omega-3 fatty acid pathways mediate the association between socioeconomic disadvantage and childhood cognition. Brain Behav Immun 2022; 100:211-218. [PMID: 34896180 DOI: 10.1016/j.bbi.2021.12.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 11/28/2021] [Accepted: 12/03/2021] [Indexed: 10/19/2022] Open
Abstract
Poor cognitive outcomes in early childhood predict poor educational outcomes and diminished health over the life course. We sought to investigate (i) whether maternal metabolites predict child cognition, and (ii) if maternal metabolomic profile mediates the relationship between environmental exposures and child cognition. Metabolites were measured using nuclear magnetic resonance-based metabolomics in pregnant women from a population-derived birth cohort. Child cognition was measured at age 2 years. In 662 mother-child pairs, elevated inflammatory markers (β = -2.62; 95% CI -4.10, -1.15; P = 0.0005) and lower omega-3 fatty acid-related metabolites (β = 0.49; 95% CI 0.09, 0.88; P = 0.02) in the mother were associated with lower child cognition and partially mediated the association between lower child cognition and multiple risk factors common to socioeconomic disadvantage. Modifying maternal prenatal metabolic pathways related to inflammation and omega-3 fatty acids may offset the adverse associations between prenatal risk factors related to socioeconomic disadvantage and low child cognition.
Collapse
Affiliation(s)
- Wolfgang Marx
- Florey Institute for Neuroscience and Mental Health, 30 Royal Parade, Parkville, VIC 3052, Australia; Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, 299 Ryrie Street, Geelong, VIC 3220, Australia
| | - Sarah Thomson
- Florey Institute for Neuroscience and Mental Health, 30 Royal Parade, Parkville, VIC 3052, Australia
| | - Martin O'Hely
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, 299 Ryrie Street, Geelong, VIC 3220, Australia; Murdoch Children's Research Institute, Royal Children's Hospital, 50 Flemington Rd, Parkville, VIC 3052, Australia
| | - Christos Symeonides
- Murdoch Children's Research Institute, Royal Children's Hospital, 50 Flemington Rd, Parkville, VIC 3052, Australia; Minderoo Foundation, Perth, VIC 6000, Australia; Royal Children's Hospital, 50 Flemington Rd, Parkville, VIC 3052, Australia
| | - Fiona Collier
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, 299 Ryrie Street, Geelong, VIC 3220, Australia
| | - Mimi L K Tang
- Murdoch Children's Research Institute, Royal Children's Hospital, 50 Flemington Rd, Parkville, VIC 3052, Australia; Royal Children's Hospital, 50 Flemington Rd, Parkville, VIC 3052, Australia; University of Melbourne, Grattan Street, Parkville, VIC 3010, Australia
| | - Amy Loughman
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, 299 Ryrie Street, Geelong, VIC 3220, Australia
| | - David Burgner
- Murdoch Children's Research Institute, Royal Children's Hospital, 50 Flemington Rd, Parkville, VIC 3052, Australia; Department of Paediatrics, University of Melbourne, Grattan Street, Parkville, VIC 3010, Australia
| | - Richard Saffery
- Murdoch Children's Research Institute, Royal Children's Hospital, 50 Flemington Rd, Parkville, VIC 3052, Australia; Department of Paediatrics, University of Melbourne, Grattan Street, Parkville, VIC 3010, Australia
| | - Cindy Pham
- Florey Institute for Neuroscience and Mental Health, 30 Royal Parade, Parkville, VIC 3052, Australia; Murdoch Children's Research Institute, Royal Children's Hospital, 50 Flemington Rd, Parkville, VIC 3052, Australia
| | - Toby Mansell
- Murdoch Children's Research Institute, Royal Children's Hospital, 50 Flemington Rd, Parkville, VIC 3052, Australia; Department of Paediatrics, University of Melbourne, Grattan Street, Parkville, VIC 3010, Australia
| | - Peter D Sly
- Child Health Research Centre, The University of Queensland, 62 Graham St, South Brisbane, QLD 4101, Australia
| | - Peter Vuillermin
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, 299 Ryrie Street, Geelong, VIC 3220, Australia; Barwon Health, Bellerine St, Geelong, VIC 3220, Australia
| | - Sarath Ranganathan
- Murdoch Children's Research Institute, Royal Children's Hospital, 50 Flemington Rd, Parkville, VIC 3052, Australia
| | - Anne-Louise Ponsonby
- Florey Institute for Neuroscience and Mental Health, 30 Royal Parade, Parkville, VIC 3052, Australia; Murdoch Children's Research Institute, Royal Children's Hospital, 50 Flemington Rd, Parkville, VIC 3052, Australia.
| | | |
Collapse
|
239
|
de Castro GS, Andrade MF, Pinto FCS, Faiad JZ, Seelaender M. Omega-3 Fatty Acid Supplementation and Its Impact on Systemic Inflammation and Body Weight in Patients With Cancer Cachexia-A Systematic Review and Meta-Analysis. Front Nutr 2022; 8:797513. [PMID: 35174197 PMCID: PMC8841833 DOI: 10.3389/fnut.2021.797513] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 11/19/2021] [Indexed: 12/29/2022] Open
Abstract
Body weight loss and inflammation are major alterations related to cancer cachexia, an important wasting syndrome highly prevalent in many types of cancer. Nutritional components modulate inflammation in several chronic diseases. Omega-3 fatty acids (n-3) are well known for their anti-inflammatory properties. However, the effects of n-3 on cancer cachexia are still controversial. This systematic review and meta-analysis aims to evaluate the reported effects of n-3 supplementation on body weight and inflammatory markers in patients with cancer cachexia. Articles indexed in the major scientific platforms were retrieved in agreement with the Preferring Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) and 167 references were initially found. After removing duplicates and applying the inclusion and exclusion criteria, this systematic review included six studies. Using a random-effects model with 95% CI, three effect sizes were expressed as standard mean difference (SMD). No differences were found regarding the effect of n-3 on interleukin-6, C-reactive protein, and albumin levels. Body weight analysis included only two studies, devoid of robust conclusions. The low number of studies, low sample size, and great intra-variability precluded a stronger analysis. More studies evaluating n-3 supplementation in cancer cachexia are still needed.
Collapse
Affiliation(s)
- Gabriela Salim de Castro
- Departamento de Biologia Celular e do Desenvolvimento, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
- Departamento de Cirurgia, Cancer Metabolism Research Group, LIM 26-HC, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Márcia Fábia Andrade
- Departamento de Biologia Celular e do Desenvolvimento, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
- Departamento de Cirurgia, Cancer Metabolism Research Group, LIM 26-HC, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Flaydson Clayton Silva Pinto
- Departamento de Cirurgia, Cancer Metabolism Research Group, LIM 26-HC, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Jaline Zandonato Faiad
- Departamento de Cirurgia, Cancer Metabolism Research Group, LIM 26-HC, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Marília Seelaender
- Departamento de Cirurgia, Cancer Metabolism Research Group, LIM 26-HC, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
240
|
Wilms JN, Hare KS, Fischer-Tlustos AJ, Vahmani P, Dugan MER, Leal LN, Steele MA. Fatty acid profile characterization in colostrum, transition milk, and mature milk of primi- and multiparous cows during the first week of lactation. J Dairy Sci 2022; 105:2612-2630. [PMID: 35033345 DOI: 10.3168/jds.2021-20880] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 11/12/2021] [Indexed: 12/28/2022]
Abstract
The specific fatty acid (FA) profile of colostrum may indicate a biological requirement for neonatal calves. The objective of this study was to characterize the FA profile and yields in colostrum, transition milk, and mature milk in primiparous (PP) and multiparous (MP) cows. Colostrum was milked from 10 PP and 10 MP Holstein cows fed the same pre- and postpartum rations. Milkings (M) 2 to 5 and 12 were respectively termed transition and mature milk. Overall, short-chain FA (C4:0 and C6:0) were 61 and 50% lower in colostrum than mature milk, respectively. A parity by milking interaction was also present, with higher C4:0 for PP cows at M2 and for MP cows at M12. Additionally, higher concentrations of C6:0 were present for PP cows at M2 through M4 and for MP cows at M12. Palmitic (C16:0) and myristic (C14:0) acids were 16% and 27% higher in colostrum than mature milk, respectively. However, total saturated FA remained relatively stable. Branched-chain FA were 13% lower in colostrum than mature milk and higher in PP than MP cows throughout the milking period. The proportion of trans-monounsaturated FA (MUFA) was 42% higher in PP cows throughout the milking period, as well as 15% lower in colostrum than mature milk. In contrast, cis-MUFA and total MUFA were not affected by milking nor parity. Linoleic acid (LA) was 13% higher in colostrum than transition and mature milks, but α-linolenic acid (ALA) did not differ. Consequently, the ratio of LA to ALA was 23% higher in colostrum than mature milk and 25% higher in MP cows. Linoleic acid was also 13% higher in MP cows, whereas ALA was 15% higher in PP cows. Conjugated linoleic acid (CLA, cis-9,trans-11) was 63% higher in PP cows, and no differences between colostrum and mature milk were detected. Overall, polyunsaturated FA (PUFA) from the n-6 and n-3 series were over 25% higher in colostrum compared with transition and mature milk. Milking by parity interactions were present for arachidonic acid (ARA), eicosapentaenoic acid (EPA), docosapentaenoic acid (DPA), docosahexaenoic acid (DHA), and total n-3 PUFA, translating to higher proportions in PP cows in M1 to M3, whereas proportions remained relatively stable throughout the milking period in MP cows. Despite increasing milk yields throughout the subsequent milkings, higher yields of EPA, ARA, DPA, and DHA were present in colostrum than in mature milk. Greater proportions and yields of n-3 and n-6 FA in colostrum may translate to specific requirements for newborn calves. Differences were also observed between PP and MP cows and may reflect different nutrient requirements and partitioning.
Collapse
Affiliation(s)
- J N Wilms
- Department of Animal Biosciences, University of Guelph, Guelph, ON N1G 2W1, Canada; Trouw Nutrition R&D, 3800 AG Amersfoort, the Netherlands
| | - K S Hare
- Department of Animal Biosciences, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - A J Fischer-Tlustos
- Department of Animal Biosciences, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - P Vahmani
- Department of Animal Science, University of California, Davis 95616
| | - M E R Dugan
- Agriculture and Agri-Food Canada, Lacombe Research and Development Centre, Lacombe, AB T4L 1V7, Canada
| | - L N Leal
- Trouw Nutrition R&D, 3800 AG Amersfoort, the Netherlands
| | - M A Steele
- Department of Animal Biosciences, University of Guelph, Guelph, ON N1G 2W1, Canada.
| |
Collapse
|
241
|
Melendez P, Roeschmann CF, Baudo A, Tao S, Pinedo P, Kalantari A, Coarsey M, Bernard JK, Naikare H. Effect of fish oil and canola oil supplementation on immunological parameters, feed intake, and growth of Holstein calves. J Dairy Sci 2022; 105:2509-2520. [PMID: 35033346 DOI: 10.3168/jds.2021-21134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 11/20/2021] [Indexed: 11/19/2022]
Abstract
Supplemental n-3 fatty acids (FA) may support better immune responses than n-6 and n-9 FA in dairy calves. The objective was to evaluate the effect of n-3 FA, supplemented as a fish oil product (FO) in the milk replacer (MR), in comparison to n-6 and n-9 FA, supplemented as canola oil (CO), on body weight (BW), daily gain, and immunological parameters of preweaning Holstein calves. The study was conducted from September to December 2019. Calves were randomly allocated to a control group (n = 15; BW = 36.2 ± 1.5 kg; mean ± SEM) supplemented daily with 30 mL of CO and to an experimental group (n = 15; BW = 36.3 ± 1.5 kg) supplemented with 60 g of a product containing 30 g of FO. Both treatments were added to the MR during the morning feeding. All calves were fed 4 L of MR at 12.5% solids at 0700 and 1600 h for wk 1, 6 L from wk 2 to 7, and 3 L once daily (0700 h) during wk 8 until weaning (56 d). Blood samples were collected at 7, 14, 21, 28, 35, 42, 49, and 56 d of age for serum haptoglobin, TNF-α, IL-1β, and protectin. Dry matter intake was recorded in all experimental calves daily. Seroneutralization titers to vaccination against viral diseases (infectious bovine rhinotracheitis, parainfluenza 3, bovine viral diarrhea, and bovine respiratory syncytial virus) were determined. Mixed models for repeated measures were developed to analyze variables over time. Seroneutralization titers were analyzed by the Kruskal-Wallis test. The other variables were compared by a generalized linear model. Serum FA profile at 35 d of age showed that FO supported higher concentrations of n-3 FA than CO. Final BW [65.2 vs. 62.0 kg, standard error of the mean (SEM) = 2.1 kg] and average daily gain (0.52 vs. 0.46 kg/d, SEM = 0.1 kg/d) tended to be higher for the FO than the CO group. An interaction of treatment × day for dry matter intake was observed, especially during weaning (2.17 kg vs. 1.94 kg, SEM = 0.158 kg, for FO and CO group, respectively). Blood lactate (mmol/L) was higher in the CO than in the FO group at d 7. Haptoglobin and IL-1β were higher for the CO group on d 14 than the FO group. The TNF- α concentrations for the FO group were reduced over time, whereas the concentrations in the CO group remained constant. Protectin was higher in the FO group on d 14, but was lower on d 28, 35, and 49. Seroneutralization antibody titers postvaccination for the PI3 virus were higher for the FO than the CO group. In conclusion, calves supplemented with FO had lower concentrations of blood lactate, haptoglobin, IL-1β and TNF-α than calves supplemented with CO during the study period. The FO supplementation had a higher DMI than CO supplementation. Results of this trial should be interpreted with caution due to the lack of a negative control group as well as the lower birth weight and growth rate observed under heat stress conditions.
Collapse
Affiliation(s)
- P Melendez
- College of Veterinary Medicine, University of Georgia, Athens 30602.
| | - C F Roeschmann
- Faculty of Veterinary Sciences, University of Chile, Santiago, Chile
| | - A Baudo
- Abraham Baldwin Agricultural College, Tifton, GA 31793
| | - S Tao
- Department of Animal and Dairy Sciences, University of Georgia, Athens 30602
| | - P Pinedo
- Department of Animal Sciences, Colorado State University, Fort Collins 80523-1171
| | - A Kalantari
- College of Veterinary Medicine, University of Georgia, Athens 30602
| | - M Coarsey
- College of Veterinary Medicine, University of Georgia, Athens 30602
| | - J K Bernard
- Department of Animal and Dairy Sciences, University of Georgia, Tifton 31793
| | - H Naikare
- College of Veterinary Medicine, University of Georgia, Athens 30602
| |
Collapse
|
242
|
Mir RA, Nazir M, Naik S, Mukhtar S, Ganai BA, Zargar SM. Utilizing the underutilized plant resources for development of life style foods: Putting nutrigenomics to use. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 171:128-138. [PMID: 34998100 DOI: 10.1016/j.plaphy.2021.12.038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 12/26/2021] [Accepted: 12/30/2021] [Indexed: 06/14/2023]
Abstract
Sufficient amount of minerals, vitamins, and proteins in human diet play indispensable role in maintaining the active metabolism for better human health. All the essential nutrients that are requisite for an individual's survival are acquired from plants as well as animals. Micronutrients and macronutrients directly influence the metabolic pathways and their deficiencies play a substantial role in development of manifold disorders. In addition to environmental factors, quality and quantity of foods are key factors in maintaining the human health. Transition from healthy to diseased state is concurrent with the pattern of gene expression that is largely influenced by nutrition and environment. A combined approach to study the influence of nutrition on expression of numerous genes can be well explored through nutrigenomic studies. Nutrigenomics includes studies wherein applied genomics is used to investigate nutritional science to understand the compartmentalization of genes that influence the cause of diet-related complications. This review describes the role of underutilized crops as frontline foods to circumvent the health complications through the nutrigenomic studies. Further dynamics of nutrigenomic tools to study the impact of nutrition on the changing pattern of genome stability and gene expression for developing precise safety measures against wide range of health ailments linked to metabolic networks. Additionally, this review provides detailed information on nutrigenomic studies undertaken to unravel the potential of underutilized crops to augment the human health and to carry the agronomic/genomic approaches to enhance nutritional profile of underutilized crops to overcome diet-related disorders.
Collapse
Affiliation(s)
- Rakeeb Ahmad Mir
- Department of Biotechnology, School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri, Jammu and Kashmir, 185131, India
| | - Muslima Nazir
- Centre of Research for Development, University of Kashmir, Hazratbal, Srinagar, Jammu and Kashmir, 190006, India
| | - Samiullah Naik
- Proteomics Laboratory, Division of Plant Biotechnology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Jammu and Kashmir, 190025, India
| | - Shazia Mukhtar
- Proteomics Laboratory, Division of Plant Biotechnology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Jammu and Kashmir, 190025, India
| | - Bashir Ahmad Ganai
- Centre of Research for Development, University of Kashmir, Hazratbal, Srinagar, Jammu and Kashmir, 190006, India
| | - Sajad Majeed Zargar
- Proteomics Laboratory, Division of Plant Biotechnology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Jammu and Kashmir, 190025, India.
| |
Collapse
|
243
|
Piñas García P, Hernández Martínez FJ, Aznárez López N, Castillón Torre L, Tena Sempere ME. Supplementation with a Highly Concentrated Docosahexaenoic Acid (DHA) in Non-Proliferative Diabetic Retinopathy: A 2-Year Randomized Double-Blind Placebo-Controlled Study. Antioxidants (Basel) 2022; 11:antiox11010116. [PMID: 35052620 PMCID: PMC8772895 DOI: 10.3390/antiox11010116] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 12/28/2021] [Accepted: 01/03/2022] [Indexed: 02/04/2023] Open
Abstract
We assessed the effect of a 2-year supplementation with a highly concentrated docosahexaenoic acid (DHA) product with antioxidant activity on non-proliferative diabetic retinopathy (NPDR) in a randomized double-blind placebo-controlled study. A total of 170 patients with diabetes were randomly assigned to the DHA group (n = 83) or the placebo group (n = 87). NPDR was diagnosed using non-contact slit lamp biomicroscopy examination, and classified into mild, moderate, and severe stages. Patients in the DHA group received a high rich DHA triglyceride (1050 mg/day) nutritional supplement, and those in the placebo group received olive oil capsules. The percentages of mild NPDR increased from 61.7% at baseline to 75.7% at the end of the study in the DHA group, and from 61.9% to 73.1% in the placebo group. Moderate NPDR stages decreased from 35.1% at baseline to 18.7% at the end of the study in the DHA group, and from 36.8% to 26.0% in the placebo group. In the DHA group, there were five eyes with severe NPDR at baseline, which increased to one more at the end of the study. In the placebo group, of two eyes with severe NPDR at baseline, one eye remained at the end of the study. Changes in visual acuity were not found. There were improvements in the serum levels of HbA1c in both groups, but significant differences between the DHA and the placebo groups were not found. In this study, the use of a DHA triglyceride nutraceutical supplement for 2 years did not appear to influence the slowing of the progression of NPDR.
Collapse
|
244
|
Fatty Acid Oxidation and Pro-Resolving Lipid Mediators Are Related to Male Infertility. Antioxidants (Basel) 2022; 11:antiox11010107. [PMID: 35052611 PMCID: PMC8773194 DOI: 10.3390/antiox11010107] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 12/25/2021] [Accepted: 12/29/2021] [Indexed: 02/04/2023] Open
Abstract
Specialized pro-resolving lipid mediators regulate the resolution of acute inflammation. They are formed by enzymatic oxygenation of polyunsaturated fatty acids and are divided into families including lipoxins, resolvins, protectins, and maresins. Resolvin D1 (RvD1), produced by docosahexaenoic acid, exerts anti-inflammatory and pro-resolving activities. This research aimed to investigate the implication of seminal RvD1 in human infertility. Infertile patients (n° 67) were grouped based on pathological reproductive conditions as idiopathic infertility, varicocele, and leukocytospermia; the fourth group was composed of fertile men (n° 18). Sperm characteristics were evaluated by light microscopy (WHO guidelines) and by transmission electron microscopy (TEM). The seminal levels of RvD1 and F2-isoprostane (F2-IsoPs) were dosed. In twenty men (6 fertile men, 8 with varicocele, 6 with leukocytospermia) seminal phospholipase A2, iron, cholesterol, transferrin, estradiol, ferritin, testosterone, and sperm membrane fatty acids were detected. The results indicated that: (i) RvD1 amount was positively correlated with F2-IsoPs and reduced sperm quality; (ii) RvD1 levels were significantly higher in patients with leukocytospermia, varicocele, and idiopathic infertility compared to fertile men; (iii) RvD1 increased along with other markers of oxidative stress and inflammation as fatty acids content and clinical biomarkers. This study suggests a panel of inflammatory markers and lipid mediators for a diagnosis of inflammatory status and a subsequent appropriate therapeutic approach.
Collapse
|
245
|
Mantzioris E, Muhlhausler BS, Villani A. Impact of the Mediterranean Dietary pattern on n-3 fatty acid tissue levels-A systematic review. Prostaglandins Leukot Essent Fatty Acids 2022; 176:102387. [PMID: 34929617 DOI: 10.1016/j.plefa.2021.102387] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 12/06/2021] [Accepted: 12/10/2021] [Indexed: 02/03/2023]
Abstract
INTRODUCTION The Mediterranean Diet (MedDiet) is described as a plant-based dietary pattern with adherence associated with reductions in chronic disease risk and longevity. Although the nutrient profile is diverse and complex, the MedDiet is often described as a rich source of n-3 polyunsaturated fatty acids (PUFA) derived from fish, seafood and nuts. However, whether MedDiet adherence results in appreciable increases in tissue levels of n-3 PUFAs is yet to be systematically investigated. This systematic review synthesized the literature to determine the impact of the MedDiet on n-3 PUFA tissue levels. MATERIALS AND METHODS Medline, Embase, Amed, and CINAHL databases were searched for studies reporting on adherence to a MedDiet and tissue levels of n-3 PUFAs. PROSPERO registration number is CRD 42020162114. RESULTS Twenty-two studies were included. Seven were observational studies and 15 were randomised controlled trials (RCTs). All observational studies reported a positive relationship between adherence and higher tissue n-3 PUFA levels. Two-thirds (10/15) of RCTs reported significant increases in n-3 PUFA concentrations. DISCUSSION MedDiet adherence is associated with higher tissue levels of n-3 PUFA. However, we report heterogeneity in the description across all MedDiet interventions.
Collapse
Affiliation(s)
- Evangeline Mantzioris
- UniSA: Clinical & Health Sciences, Alliance for Research in Nutrition, Exercise and Activity (ARENA), University of South Australia, North Terrace and Frome Rd, Adelaide SA 5000, Australia.
| | | | - Anthony Villani
- School of Health and Behavioural Sciences, University of the Sunshine Coast, Queensland, Australia
| |
Collapse
|
246
|
Menon D, Lewis EJH, Perkins BA, Bril V. Omega-3 Nutrition Therapy for the Treatment of Diabetic Sensorimotor Polyneuropathy. Curr Diabetes Rev 2022; 18:e010921196028. [PMID: 34488588 DOI: 10.2174/1573399817666210901121111] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 04/06/2021] [Accepted: 05/06/2021] [Indexed: 11/22/2022]
Abstract
Despite advances in clinical and translational research, an effective therapeutic option for diabetic sensorimotor polyneuropathy (DSP) has remained elusive. The pathomechanisms of DSP are diverse, and along with hyperglycemia, the roles of inflammatory mediators and lipotoxicity in the development of microangiopathy have been well elucidated. Omega-3 (n-3) polyunsaturated fatty acids (PUFA) are essential fatty acids with a vital role in a number of physiological processes, including neural health, membrane structure integrity, anti-inflammatory processes, and lipid metabolism. Identification of n-3 PUFA derived specialised proresolving mediators (SPM), namely resolvins, neuroprotectin, and maresins which also favour nerve regeneration, have positioned n-3 PUFA as potential treatment options in DSP. Studies in n-3 PUFA treated animal models of DSP showed positive nerve benefits in functional, electrophysiological, and pathological indices. Clinical trials in humans are limited, but recent proof-of-concept evidence suggests n-3 PUFA has a positive effect on small nerve fibre regeneration with an increase in the small nerve fiber measure of corneal nerve fibre length (CNFL). Further randomized control trials with a longer duration of treatment, higher n-3 PUFA doses, and more rigorous neuropathy measures are needed to provide a definitive understanding of the benefits of n-3 PUFA supplementation in DSP.
Collapse
Affiliation(s)
- Deepak Menon
- Ellen and Martin Prosserman Centre for Neuromuscular Disorders. Division of Neurology, University Health Network, University of Toronto, Toronto, Canada
| | - Evan J H Lewis
- Lunenfeld-Tanenbaum Research Institute, Leadership Sinai Centre for Diabetes, Mount Sinai Hospital, Toronto, Canada
| | - Bruce A Perkins
- Lunenfeld-Tanenbaum Research Institute, Leadership Sinai Centre for Diabetes, Mount Sinai Hospital, Toronto, Canada
| | - Vera Bril
- Ellen and Martin Prosserman Centre for Neuromuscular Disorders. Division of Neurology, University Health Network, University of Toronto, Toronto, Canada
| |
Collapse
|
247
|
Alshaikh BN, Reyes Loredo A, Knauff M, Momin S, Moossavi S. The Role of Dietary Fats in the Development and Prevention of Necrotizing Enterocolitis. Nutrients 2021; 14:145. [PMID: 35011027 PMCID: PMC8746672 DOI: 10.3390/nu14010145] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 12/21/2021] [Accepted: 12/26/2021] [Indexed: 11/18/2022] Open
Abstract
Necrotizing enterocolitis (NEC) is a significant cause of mortality and morbidity in preterm infants. The pathogenesis of NEC is not completely understood; however, intestinal immaturity and excessive immunoreactivity of intestinal mucosa to intraluminal microbes and nutrients appear to have critical roles. Dietary fats are not only the main source of energy for preterm infants, but also exert potent effects on intestinal development, intestinal microbial colonization, immune function, and inflammatory response. Preterm infants have a relatively low capacity to digest and absorb triglyceride fat. Fat may thereby accumulate in the ileum and contribute to the development of NEC by inducing oxidative stress and inflammation. Some fat components, such as long-chain polyunsaturated fatty acids (LC-PUFAs), also exert immunomodulatory roles during the early postnatal period when the immune system is rapidly developing. LC-PUFAs may have the ability to modulate the inflammatory process of NEC, particularly when the balance between n3 and n6 LC-PUFAs derivatives is maintained. Supplementation with n3 LC-PUFAs alone may have limited effect on NEC prevention. In this review, we describe how various fatty acids play different roles in the pathogenesis of NEC in preterm infants.
Collapse
Affiliation(s)
- Belal N Alshaikh
- Neonatal Nutrition and Gastroenterology Program, Department of Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 2T9, Canada
| | - Adriana Reyes Loredo
- Neonatal Nutrition and Gastroenterology Program, Department of Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 2T9, Canada
| | - Megan Knauff
- Nutrition Services, Alberta Health Services, Calgary, AB T2N 2T9, Canada
| | - Sarfaraz Momin
- Neonatal Nutrition and Gastroenterology Program, Department of Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 2T9, Canada
| | - Shirin Moossavi
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 2T9, Canada
- International Microbiome Centre, Cumming School of Medicine, Health Sciences Centre, University of Calgary, Calgary, AB T2N 2T9, Canada
| |
Collapse
|
248
|
Elisia I, Yeung M, Wong J, Kowalski S, Larsen M, Shyp T, Sorensen PH, krystal G. A low carbohydrate diet containing soy protein and fish oil reduces breast but not prostate cancer in C3(1)/Tag mice. Carcinogenesis 2021; 43:115-125. [DOI: 10.1093/carcin/bgab106] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 10/25/2021] [Accepted: 11/01/2021] [Indexed: 11/13/2022] Open
Abstract
Abstract
We recently showed that a low carbohydrate (CHO) diet containing soy protein and fish oil dramatically reduces lung nodules in a mouse model of lung cancer when compared to a Western diet. To explore the universality of this finding, we herein compared this low CHO diet to a Western diet on in preventing breast and prostate cancer using a mouse model that expresses the SV40 large T antigen specifically in breast epithelia in females and prostate epithelia in males. We found that breast cancer was significantly reduced with this low CHO diet and this correlated with a reduction in plasma levels of glucose, insulin, IL-6, TNFα and PGE2. This also corresponded with a reduction in the Ki67 proliferation index within breast tumors. On the other hand, this low CHO diet did not reduce the incidence of prostate cancer in the male mice. Although it reduced both blood glucose and insulin to the same extent as in the female mice, there was no reduction in plasma IL-6, TNFα or PGE2 levels, nor in the Ki67 proliferation index in prostate lesions. Based on immunohistochemistry studies with antibodies to PFKFB3, CPT1a and FAS, it is likely that this difference in response of the two cancer types to this low CHO diet reflects differences in the glucose dependence of breast and prostate cancer, with the former being highly dependent on glucose for energy and the latter being more dependent on fatty acids.
Collapse
Affiliation(s)
- Ingrid Elisia
- The Terry Fox Laboratory, BC Cancer, Vancouver, British Columbia, V5Z 1L3, Canada
| | - Michelle Yeung
- The Terry Fox Laboratory, BC Cancer, Vancouver, British Columbia, V5Z 1L3, Canada
| | - Jennifer Wong
- The Terry Fox Laboratory, BC Cancer, Vancouver, British Columbia, V5Z 1L3, Canada
| | - Sara Kowalski
- The Terry Fox Laboratory, BC Cancer, Vancouver, British Columbia, V5Z 1L3, Canada
| | | | - Taras Shyp
- Department of Molecular Oncology, BC Cancer, Vancouver, British Columbia, V5Z 1L3, Canada
| | - Poul H Sorensen
- Department of Molecular Oncology, BC Cancer, Vancouver, British Columbia, V5Z 1L3, Canada
| | - Gerald krystal
- The Terry Fox Laboratory, BC Cancer, Vancouver, British Columbia, V5Z 1L3, Canada
| |
Collapse
|
249
|
Chernyak BV, Lyamzaev KG, Mulkidjanian AY. Innate Immunity as an Executor of the Programmed Death of Individual Organisms for the Benefit of the Entire Population. Int J Mol Sci 2021; 22:ijms222413480. [PMID: 34948277 PMCID: PMC8704876 DOI: 10.3390/ijms222413480] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 12/11/2021] [Accepted: 12/13/2021] [Indexed: 11/19/2022] Open
Abstract
In humans, over-activation of innate immunity in response to viral or bacterial infections often causes severe illness and death. Furthermore, similar mechanisms related to innate immunity can cause pathogenesis and death in sepsis, massive trauma (including surgery and burns), ischemia/reperfusion, some toxic lesions, and viral infections including COVID-19. Based on the reviewed observations, we suggest that such severe outcomes may be manifestations of a controlled suicidal strategy protecting the entire population from the spread of pathogens and from dangerous pathologies rather than an aberrant hyperstimulation of defense responses. We argue that innate immunity may be involved in the implementation of an altruistic programmed death of an organism aimed at increasing the well-being of the whole community. We discuss possible ways to suppress this atavistic program by interfering with innate immunity and suggest that combating this program should be a major goal of future medicine.
Collapse
Affiliation(s)
- Boris V. Chernyak
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia;
- Correspondence: (B.V.C.); (A.Y.M.)
| | - Konstantin G. Lyamzaev
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia;
| | - Armen Y. Mulkidjanian
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia;
- School of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 119992 Moscow, Russia
- Department of Physics, Osnabrueck University, D-49069 Osnabrueck, Germany
- Correspondence: (B.V.C.); (A.Y.M.)
| |
Collapse
|
250
|
Sangouni AA, Orang Z, Mozaffari-Khosravi H. Effect of omega-3 supplementation on cardiometabolic indices in diabetic patients with non-alcoholic fatty liver disease: a randomized controlled trial. BMC Nutr 2021; 7:86. [PMID: 34911587 PMCID: PMC8672492 DOI: 10.1186/s40795-021-00490-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 12/01/2021] [Indexed: 12/25/2022] Open
Abstract
Background Patients with non-alcoholic fatty liver disease (NAFLD) as well as type 2 diabetes mellitus (T2DM) are at increased risk for cardiovascular diseases (CVD). Omega-3 supplementation has been proposed as a possible strategy for management of cardiometabolic risk. Cardiometabolic indices can predict and evaluate the cardiometabolic risk. Aims We investigated the effect of omega-3 supplementation on accurate and available cardiometabolic indices including atherogenic index of plasma (AIP), Castelli risk index I, Castelli risk index II and atherogenic coefficient (AC) in diabetic patients with NAFLD. Methods We conducted a double-blind, randomized controlled trial (RCT) for 12 weeks. From August 2016 to March 2017, the subjects referred to Faghihi hospital in Shiraz, Iran, were recruited. Sixty diabetic patients with NAFLD were randomly assigned into the omega-3 (2000 mg/d omega-3 capsule contained 360 mg/d eicosapentaenoic acid and 240 mg/d docosahexaenoic acid) and the placebo (liquid paraffin) groups using computer-generated random number table. Results Omega-3 supplementation compared to the placebo had no significant effect on AIP (− 0.11 ± 0.20 vs. -0.03 ± 0.16; P = 0.11), Castelli risk index I (− 0.25 ± 0.6 vs. -0.07 ± 0.7; P = 0.42), Castelli risk index II (− 0.24 ± 0.5 vs. -0.14 ± 0.5; P = 0.63) and AC (− 0.25 ± 0.6 vs. -0.07 ± 0.7; P = 0.42). After adjusting for confounding factors, the findings remained without change. Conclusion Omega-3 supplementation (2000 mg/d) for 12 weeks has no effect on cardiometabolic risk. It seems, higher doses of omega-3 can improve cordiometabolic risk. The trial was registered at Iranian Registry of Clinical Trials IRCT2016102530489N1.
Collapse
Affiliation(s)
- Abbas Ali Sangouni
- Department of Nutrition, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.,Nutrition and Food Security Research Center, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Zahra Orang
- Department of Nutrition, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.,Nutrition and Food Security Research Center, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Hassan Mozaffari-Khosravi
- Department of Nutrition, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran. .,Nutrition and Food Security Research Center, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.
| |
Collapse
|