201
|
Rodríguez de Francisco L, Romero-Rodríguez MC, Navarro-Cerrillo RM, Miniño V, Perdomo O, Jorrín-Novo JV. Characterization of the orthodox Pinus occidentalis seed and pollen proteomes by using complementary gel-based and gel-free approaches. J Proteomics 2016; 143:382-389. [PMID: 27084684 DOI: 10.1016/j.jprot.2016.03.041] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Revised: 03/19/2016] [Accepted: 03/28/2016] [Indexed: 01/31/2023]
Abstract
UNLABELLED This work presents an analysis of Pinus occidentalis pollen and seed proteomes, in which both gel-based and gel-free approaches have been used. Proteins were extracted from P. occidentalis seeds and pollen by using the TCA/acetone/phenol precipitation protocol, and protein extracts were subjected to 1- and 2-DE coupled to MALDI-TOF-TOF as well as to shotgun (nLC-LTQ-Orbitrap) analysis. All bands (1-DE) and the most abundant spots (2-DE) were excised, trypsin digested and the resulting peptides analyzed by MALDI TOF/TOF. In order to increase the proteome coverage, a gel free approach was used. Proteins were identified from mass spectra by using three different databases, including UniProtKB, NCBI and a Pinus spp. custom database [2]. The gel-based approach resulted in 42 (seeds) and 94 (pollen) protein identifications, while the shotgun approach permitted the identification of 187 (seed) and 960 (pollen) proteins. Proteins were classified based on their corresponding functional categories. In seeds, storage proteins were the most abundant ones, and some allergens and proteases were also identified. In pollen proteins related to general metabolism were the most predominant. Data are compared and discussed from a methodological and biological point of view, taking into account the particularities of the seed and pollen organs. BIOLOGICAL SIGNIFICANCE In this work we characterized P. occidentalis proteome with seeds and pollen samples implementing two complementary approaches for the analysis. We found a high content of storage protein, stress response and metabolism related proteins in the seed proteome. Similarly, in the pollen proteome we found predominant groups of proteins related to metabolism and stress response.
Collapse
Affiliation(s)
- Luis Rodríguez de Francisco
- Laboratorio de Biología, Instituto Tecnológico de Santo Domingo, República Dominicana; Agricultural and Plant Biochemistry and Proteomics Research Group, Dept. of Biochemistry and Molecular Biology, University of Córdoba, Agrifood Campus of International Excellence (ceiA3), 14071 Córdoba, Spain.
| | - Ma Cristina Romero-Rodríguez
- Departamento de Fitoquímica, Dirección de Investigación de la Facultad de Ciencias Químicas de la Universidad Nacional de Asunción, Paraguay.
| | - Rafael M Navarro-Cerrillo
- Department of Forestry Engineering, ETSIAM, University of Córdoba, Agrifood Campus of International Excellence (ceiA3), 14071 Córdoba, Spain
| | - Virgilio Miniño
- Laboratorio de Biología, Instituto Tecnológico de Santo Domingo, República Dominicana
| | - Omar Perdomo
- Laboratorio de Biología, Instituto Tecnológico de Santo Domingo, República Dominicana
| | - Jesús V Jorrín-Novo
- Agricultural and Plant Biochemistry and Proteomics Research Group, Dept. of Biochemistry and Molecular Biology, University of Córdoba, Agrifood Campus of International Excellence (ceiA3), 14071 Córdoba, Spain
| |
Collapse
|
202
|
Hara M, Monna S, Murata T, Nakano T, Amano S, Nachbar M, Wätzig H. The Arabidopsis KS-type dehydrin recovers lactate dehydrogenase activity inhibited by copper with the contribution of His residues. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2016; 245:135-42. [PMID: 26940498 DOI: 10.1016/j.plantsci.2016.02.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2015] [Revised: 02/05/2016] [Accepted: 02/06/2016] [Indexed: 05/02/2023]
Abstract
Dehydrin, which is one of the late embryogenesis abundant (LEA) proteins, is involved in the ability of plants to tolerate the lack of water. Although many reports have indicated that dehydrins bind heavy metals, the physiological role of this metal binding has not been well understood. Here, we report that the Arabidopsis KS-type dehydrin (AtHIRD11) recovered the lactate dehydrogenase (LDH) activity denatured by Cu(2+). The LDH activity was partially inhibited by 0.93 μM Cu(2+) but totally inactivated by 9.3 μM Cu(2+). AtHIRD11 recovered the activity of LDH treated with 9.3 μM Cu(2+) in a dose-dependent manner. The recovery activity of AtHIRD11 was significantly higher than those of serum albumin and lysozyme. The conversion of His residues to Ala in AtHIRD11 resulted in the loss of the Cu(2+) binding of the protein as well as the disappearance of the conformational change induced by Cu(2+) that is observed by circular dichroism spectroscopy. The mutant protein showed lower recovery activity than the original AtHIRD11. These results indicate that AtHIRD11 can reactivate LDH inhibited by Cu(2+) via the His residues. This function may prevent physiological damage to plants due to heavy-metal stress.
Collapse
Affiliation(s)
- Masakazu Hara
- Research Institute of Green Science and Technology, Shizuoka University, 836 Ohya, Shizuoka 422-8529, Japan.
| | - Shuhei Monna
- Research Institute of Green Science and Technology, Shizuoka University, 836 Ohya, Shizuoka 422-8529, Japan
| | - Takae Murata
- Research Institute of Green Science and Technology, Shizuoka University, 836 Ohya, Shizuoka 422-8529, Japan
| | - Taiyo Nakano
- Research Institute of Green Science and Technology, Shizuoka University, 836 Ohya, Shizuoka 422-8529, Japan
| | - Shono Amano
- Research Institute of Green Science and Technology, Shizuoka University, 836 Ohya, Shizuoka 422-8529, Japan
| | - Markus Nachbar
- Institut für Pharmazeutische Chemie, Technische Universität Braunschweig, Beethovenstraße 55, 38106 Braunschweig, Germany
| | - Hermann Wätzig
- Institut für Pharmazeutische Chemie, Technische Universität Braunschweig, Beethovenstraße 55, 38106 Braunschweig, Germany
| |
Collapse
|
203
|
Dahro B, Wang F, Peng T, Liu JH. PtrA/NINV, an alkaline/neutral invertase gene of Poncirus trifoliata, confers enhanced tolerance to multiple abiotic stresses by modulating ROS levels and maintaining photosynthetic efficiency. BMC PLANT BIOLOGY 2016. [PMID: 27025596 DOI: 10.1016/j.envexpbot.2018.12.009] [Citation(s) in RCA: 184] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
BACKGROUND Alkaline/neutral invertase (A/N-INV), an enzyme that hydrolyzes sucrose irreversibly into glucose and fructose, is essential for normal plant growth,development, and stress tolerance. However, the physiological and/or molecular mechanism underpinning the role of A/N-INV in abiotic stress tolerance is poorly understood. RESULTS In this report, an A/N-INV gene (PtrA/NINV) was isolated from Poncirus trifoliata, a cold-hardy relative of citrus, and functionally characterized. PtrA/NINV expression levels were induced by cold, salt, dehydration, sucrose, and ABA, but decreased by glucose. PtrA/NINV was found to localize in both chloroplasts and mitochondria. Overexpression of PtrA/NINV conferred enhanced tolerance to multiple stresses, including cold, high salinity, and drought, as supported by lower levels of reactive oxygen species (ROS), reduced oxidative damages, decreased water loss rate, and increased photosynthesis efficiency, relative to wild-type (WT). The transgenic plants exhibited higher A/N-INV activity and greater reducing sugar content under normal and stress conditions. CONCLUSIONS PtrA/NINV is an important gene implicated in sucrose decomposition, and plays a positive role in abiotic stress tolerance by promoting osmotic adjustment, ROS detoxification and photosynthesis efficiency. Thus, PtrA/NINV has great potential to be used in transgenic breeding for improvement of stress tolerance.
Collapse
Affiliation(s)
- Bachar Dahro
- Key Laboratory of Horticultural Plant Biology (MOE), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, China
- Department of Horticulture, Faculty of Agriculture, Tishreen University, Lattakia, Syria
| | - Fei Wang
- Key Laboratory of Horticultural Plant Biology (MOE), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, China
| | - Ting Peng
- Key Laboratory of Horticultural Plant Biology (MOE), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, China
| | - Ji-Hong Liu
- Key Laboratory of Horticultural Plant Biology (MOE), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
204
|
Bertrand A, Bipfubusa M, Castonguay Y, Rocher S, Szopinska-Morawska A, Papadopoulos Y, Renaut J. A proteome analysis of freezing tolerance in red clover (Trifolium pratense L.). BMC PLANT BIOLOGY 2016; 16:65. [PMID: 26965047 PMCID: PMC4787020 DOI: 10.1186/s12870-016-0751-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 02/29/2016] [Indexed: 05/15/2023]
Abstract
BACKGROUND Improvement of freezing tolerance of red clover (Trifolium pratense L.) would increase its persistence under cold climate. In this study, we assessed the freezing tolerance and compared the proteome composition of non-acclimated and cold-acclimated plants of two initial cultivars of red clover: Endure (E-TF0) and Christie (C-TF0) and of populations issued from these cultivars after three (TF3) and four (TF4) cycles of phenotypic recurrent selection for superior freezing tolerance. Through this approach, we wanted to identify proteins that are associated with the improvement of freezing tolerance in red clover. RESULTS Freezing tolerance expressed as the lethal temperature for 50 % of the plants (LT50) increased markedly from approximately -2 to -16 °C following cold acclimation. Recurrent selection allowed a significant 2 to 3 °C increase of the LT50 after four cycles of recurrent selection. Two-dimensional difference gel electrophoresis (2D-DIGE) was used to study variations in protein abundance. Principal component analysis based on 2D-DIGE revealed that the largest variability in the protein data set was attributable to the cold acclimation treatment and that the two genetic backgrounds had differential protein composition in the acclimated state only. Vegetative storage proteins (VSP), which are essential nitrogen reserves for plant regrowth, and dehydrins were among the most striking changes in proteome composition of cold acclimated crowns of red clovers. A subset of proteins varied in abundance in response to selection including a dehydrin that increased in abundance in TF3 and TF4 populations as compared to TF0 in the Endure background. CONCLUSION Recurrent selection performed indoor is an effective approach to improve the freezing tolerance of red clover. Significant improvement of freezing tolerance by recurrent selection was associated with differential accumulation of a small number of cold-regulated proteins that may play an important role in the determination of the level of freezing tolerance.
Collapse
Affiliation(s)
| | | | | | - Solen Rocher
- />Agriculture and Agri-Food Canada, Québec City, Canada
| | | | | | - Jenny Renaut
- />Luxembourg Institute of Science and Technology, Belvaux, Luxembourg
| |
Collapse
|
205
|
Manzo D, Ferriello F, Puopolo G, Zoina A, D'Esposito D, Tardella L, Ferrarini A, Ercolano MR. Fusarium oxysporum f.sp. radicis-lycopersici induces distinct transcriptome reprogramming in resistant and susceptible isogenic tomato lines. BMC PLANT BIOLOGY 2016; 16:53. [PMID: 26920134 PMCID: PMC4769521 DOI: 10.1186/s12870-016-0740-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Accepted: 02/17/2016] [Indexed: 05/20/2023]
Abstract
BACKGROUND Fusarium oxysporum f.sp. radicis-lycopersici (FORL) is one of the most destructive necrotrophic pathogens affecting tomato crops, causing considerable field and greenhouse yield losses. Despite such major economic impact, little is known about the molecular mechanisms regulating Fusarium oxysporum f.sp. radicis-lycopersici resistance in tomato. RESULTS A transcriptomic experiment was carried out in order to investigate the main mechanisms of FORL response in resistant and susceptible isogenic tomato lines. Microarray analysis at 15 DPI (days post inoculum) revealed a distinct gene expression pattern between the two genotypes in the inoculated vs non-inoculated conditions. A model of plant response both for compatible and incompatible reactions was proposed. In particular, in the incompatible interaction an activation of defense genes related to secondary metabolite production and tryptophan metabolism was observed. Moreover, maintenance of the cell osmotic potential after the FORL challenging was mediated by a dehydration-induced protein. As for the compatible interaction, activation of an oxidative burst mediated by peroxidases and a cytochrome monooxygenase induced cell degeneration and necrosis. CONCLUSIONS Our work allowed comprehensive understanding of the molecular basis of the tomato-FORL interaction. The result obtained emphasizes a different transcriptional reaction between the resistant and the susceptible genotype to the FORL challenge. Our findings could lead to the improvement in disease control strategies.
Collapse
Affiliation(s)
- Daniele Manzo
- Department of Agriculture Sciences, University of Naples 'Federico II', Via Università, 100, 80055, Portici, Italy.
| | - Francesca Ferriello
- Department of Agriculture Sciences, University of Naples 'Federico II', Via Università, 100, 80055, Portici, Italy.
| | - Gerardo Puopolo
- Department of Agriculture Sciences, University of Naples 'Federico II', Via Università, 100, 80055, Portici, Italy.
- Current address: Sustainable Agro-Ecosystems and Bioresources Department - IASMA Research and Innovation Center - Fondazione Edmund Mach, S. Michele all'Adige, Trento, Italy.
| | - Astolfo Zoina
- Department of Agriculture Sciences, University of Naples 'Federico II', Via Università, 100, 80055, Portici, Italy.
| | - Daniela D'Esposito
- Department of Agriculture Sciences, University of Naples 'Federico II', Via Università, 100, 80055, Portici, Italy.
| | - Luca Tardella
- Department of Statistical Sciences, University of Rome 'La Sapienza', Rome, Italy.
| | - Alberto Ferrarini
- Dipartimento di Biotecnologie, Università degli Studi di Verona, Strada le Grazie, Verona, Italy.
| | - Maria Raffaella Ercolano
- Department of Agriculture Sciences, University of Naples 'Federico II', Via Università, 100, 80055, Portici, Italy.
| |
Collapse
|
206
|
Li KQ, Xu XY, Huang XS. Identification of Differentially Expressed Genes Related to Dehydration Resistance in a Highly Drought-Tolerant Pear, Pyrus betulaefolia, as through RNA-Seq. PLoS One 2016; 11:e0149352. [PMID: 26900681 PMCID: PMC4762547 DOI: 10.1371/journal.pone.0149352] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 01/29/2016] [Indexed: 12/03/2022] Open
Abstract
Drought is a major abiotic stress that affects plant growth, development and productivity. Pear is one of the most important deciduous fruit trees in the world, but the mechanisms of drought tolerance in this plant are still unclear. To better understand the molecular basis regarding drought stress response, RNA-seq was performed on samples collected before and after dehydration in Pyrus betulaefolia. In total, 19,532 differentially expressed genes (DEGs) were identified. These genes were annotated into 144 Gene Ontology (GO) terms and 18 clusters of orthologous groups (COG) involved in 129 Kyoto Encyclopedia of Genes and Genomes (KEGG) defined pathways. These DEGs comprised 49 (26 up-regulated, 23 down-regulated), 248 (166 up-regulated, 82 down-regulated), 3483 (1295 up-regulated, 2188 down-regulated), 1455 (1065 up-regulated, 390 down-regulated) genes from the 1 h, 3 h and 6 h dehydration-treated samples and a 24 h recovery samples, respectively. RNA-seq was validated by analyzing the expresson patterns of randomly selected 16 DEGs by quantitative real-time PCR. Photosynthesis, signal transduction, innate immune response, protein phosphorylation, response to water, response to biotic stimulus, and plant hormone signal transduction were the most significantly enriched GO categories amongst the DEGs. A total of 637 transcription factors were shown to be dehydration responsive. In addition, a number of genes involved in the metabolism and signaling of hormones were significantly affected by the dehydration stress. This dataset provides valuable information regarding the Pyrus betulaefolia transcriptome changes in response to dehydration and may promote identification and functional analysis of potential genes that could be used for improving drought tolerance via genetic engineering of non-model, but economically-important, perennial species.
Collapse
Affiliation(s)
- Kong-Qing Li
- College of Rural Development, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xiao-Yong Xu
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou, 225009, China
| | - Xiao-San Huang
- College of Horticulture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| |
Collapse
|
207
|
Johnová P, Skalák J, Saiz-Fernández I, Brzobohatý B. Plant responses to ambient temperature fluctuations and water-limiting conditions: A proteome-wide perspective. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2016; 1864:916-31. [PMID: 26861773 DOI: 10.1016/j.bbapap.2016.02.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Revised: 12/26/2015] [Accepted: 02/04/2016] [Indexed: 12/24/2022]
Abstract
BACKGROUND Every year, environmental stresses such as limited water and nutrient availability, salinity, and temperature fluctuations inflict significant losses on crop yields across the globe. Recently, developments in analytical techniques, e.g. mass spectrometry, have led to great advances towards understanding how plants respond to environmental stresses. These processes are mediated by many molecular pathways and, at least partially, via proteome-environment interactions. SCOPE OF REVIEW This review focuses on the current state of knowledge about interactions between the plant proteome and the environment, with a special focus on drought and temperature responses of plant proteome dynamics, and subcellular and organ-specific compartmentalization, in Arabidopsis thaliana and crop species. MAJOR CONCLUSIONS Correct plant development under non-optimal conditions requires complex self-protection mechanisms, many of them common to different abiotic stresses. Proteome analyses of plant responses to temperature and drought stresses have revealed an intriguing interplay of modifications, mainly affecting the photosynthetic machinery, carbohydrate metabolism, and ROS activation and scavenging. Imbalances between transcript-level and protein-level regulation observed during adaptation to abiotic stresses suggest that many of the regulatory processes are controlled at translational and post-translational levels; proteomics is thus essential in revealing important regulatory networks. GENERAL SIGNIFICANCE Because information from proteomic data extends far beyond what can be deduced from transcriptome analysis, the results of proteome studies have substantially deepened our understanding of stress adaptation in plants; this is clearly a prerequisite for designing strategies to improve the yield and quality of crops grown under unfavorable conditions brought about by ongoing climatic change. This article is part of a Special Issue entitled: Plant Proteomics--a bridge between fundamental processes and crop production, edited by Dr. Hans-Peter Mock.
Collapse
Affiliation(s)
- Patricie Johnová
- Laboratory of Plant Molecular Biology, Institute of Biophysics AS CR, v.v.i. and, Mendel University in Brno, CEITEC - Central European Institute of Technology, Mendel University in Brno, Zemědělská 1, CZ-613 00 Brno, Czech Republic.
| | - Jan Skalák
- Laboratory of Plant Molecular Biology, Institute of Biophysics AS CR, v.v.i. and, Mendel University in Brno, CEITEC - Central European Institute of Technology, Mendel University in Brno, Zemědělská 1, CZ-613 00 Brno, Czech Republic.
| | - Iñigo Saiz-Fernández
- Laboratory of Plant Molecular Biology, Institute of Biophysics AS CR, v.v.i. and, Mendel University in Brno, CEITEC - Central European Institute of Technology, Mendel University in Brno, Zemědělská 1, CZ-613 00 Brno, Czech Republic.
| | - Břetislav Brzobohatý
- Laboratory of Plant Molecular Biology, Institute of Biophysics AS CR, v.v.i. and, Mendel University in Brno, CEITEC - Central European Institute of Technology, Mendel University in Brno, Zemědělská 1, CZ-613 00 Brno, Czech Republic.
| |
Collapse
|
208
|
Min H, Chen C, Wei S, Shang X, Sun M, Xia R, Liu X, Hao D, Chen H, Xie Q. Identification of Drought Tolerant Mechanisms in Maize Seedlings Based on Transcriptome Analysis of Recombination Inbred Lines. FRONTIERS IN PLANT SCIENCE 2016; 7:1080. [PMID: 27507977 PMCID: PMC4961006 DOI: 10.3389/fpls.2016.01080] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Accepted: 07/08/2016] [Indexed: 05/20/2023]
Abstract
Zea mays is an important crop that is sensitive to drought stress, but survival rates and growth status remain strong in some drought-tolerant lines under stress conditions. Under drought conditions, many biological processes, such as photosynthesis, carbohydrate metabolism and energy metabolism, are suppressed, while little is known about how the transcripts of genes respond to drought stress in the genome-wide rang in the seedling stage. In our study, the transcriptome profiles of two maize recombination inbred lines (drought-tolerant RIL70 and drought-sensitive RIL93) were analyzed at different drought stages to elucidate the dynamic mechanisms underlying drought tolerance in maize seedlings during drought conditions. Different numbers of differentially expressed genes presented in the different stages of drought stress in the two RILs, for the numbers of RIL93 vs. RIL70 were: 9 vs. 358, 477 vs. 103, and 5207 vs. 152 respectively in DT1, DT2, and DT5. Gene Ontology enrichment analysis revealed that in the initial drought-stressed stage, the primary differentially expressed genes involved in cell wall biosynthesis and transmembrane transport biological processes were overrepresented in RIL70 compared to RIL93. On the contrary, differentially expressed genes profiles presented at 2 and 5 day-treatments, the primary differentially expressed genes involved in response to stress, protein folding, oxidation-reduction, photosynthesis and carbohydrate metabolism, were overrepresented in RIL93 compared to RIL70. In addition, the transcription of genes encoding key members of the cell cycle and cell division processes were blocked, but ABA- and programmed cell death-related processes responded positively in RIL93. In contrast, the expression of cell cycle genes, ABA- and programmed cell death-related genes was relatively stable in RIL70. The results we obtained supported the working hypothesis that signaling events associated with turgor homeostasis, as established by cell wall biosynthesis regulation- and aquaporin-related genes, responded early in RIL70, which led to more efficient detoxification signaling (response to stress, protein folding, oxidation-reduction) during drought stress. This energy saving response at the early stages of drought should facilitate more cell activity under stress conditions and result in drought tolerance in RIL70.
Collapse
Affiliation(s)
- Haowei Min
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of SciencesBeijing, China
| | - Chengxuan Chen
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of SciencesBeijing, China
| | - Shaowei Wei
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of SciencesBeijing, China
| | - Xiaoling Shang
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of SciencesBeijing, China
| | - Meiyun Sun
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of SciencesBeijing, China
| | - Ran Xia
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of SciencesBeijing, China
| | - Xiangguo Liu
- Argo-Biotechnology Research Institute, Jilin Academy of Agricultural SciencesChangchun, China
| | - Dongyun Hao
- Argo-Biotechnology Research Institute, Jilin Academy of Agricultural SciencesChangchun, China
| | - Huabang Chen
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of SciencesBeijing, China
| | - Qi Xie
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of SciencesBeijing, China
- *Correspondence: Qi Xie
| |
Collapse
|
209
|
Sharma P, Das De T, Sharma S, Kumar Mishra A, Thomas T, Verma S, Kumari V, Lata S, Singh N, Valecha N, Chand Pandey K, Dixit R. Deep sequencing revealed molecular signature of horizontal gene transfer of plant like transcripts in the mosquito Anopheles culicifacies: an evolutionary puzzle. F1000Res 2015; 4:1523. [PMID: 26998230 PMCID: PMC4786938 DOI: 10.12688/f1000research.7534.1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/15/2015] [Indexed: 02/05/2023] Open
Abstract
In prokaryotes, horizontal gene transfer (HGT) has been regarded as an important evolutionary drive to acquire and retain beneficial genes for their survival in diverse ecologies. However, in eukaryotes, the functional role of HGTs remains questionable, although current genomic tools are providing increased evidence of acquisition of novel traits within non-mating metazoan species. Here, we provide another transcriptomic evidence for the acquisition of massive plant genes in the mosquito, Anopheles culicifacies. Our multiple experimental validations including genomic PCR, RT-PCR, real-time PCR, immuno-blotting and immuno-florescence microscopy, confirmed that plant like transcripts (PLTs) are of mosquito origin and may encode functional proteins. A comprehensive molecular analysis of the PLTs and ongoing metagenomic analysis of salivary microbiome provide initial clues that mosquitoes may have survival benefits through the acquisition of nuclear as well as chloroplast encoded plant genes. Our findings of PLTs further support the similar questionable observation of HGTs in other higher organisms, which is still a controversial and debatable issue in the community of evolutionists. We believe future understanding of the underlying mechanism of the feeding associated molecular responses may shed new insights in the functional role of PLTs in the mosquito.
Collapse
Affiliation(s)
- Punita Sharma
- Host-Parasite Interaction Biology Group, National Institute of Malaria Research, Delhi, India
- Nano and Biotechnology Department, Guru Jambheshwar University, Haryana, India
| | - Tanwee Das De
- Host-Parasite Interaction Biology Group, National Institute of Malaria Research, Delhi, India
| | - Swati Sharma
- Host-Parasite Interaction Biology Group, National Institute of Malaria Research, Delhi, India
| | | | - Tina Thomas
- Host-Parasite Interaction Biology Group, National Institute of Malaria Research, Delhi, India
| | - Sonia Verma
- Host-Parasite Interaction Biology Group, National Institute of Malaria Research, Delhi, India
| | - Vandana Kumari
- Host-Parasite Interaction Biology Group, National Institute of Malaria Research, Delhi, India
| | - Suman Lata
- Host-Parasite Interaction Biology Group, National Institute of Malaria Research, Delhi, India
| | - Namita Singh
- Nano and Biotechnology Department, Guru Jambheshwar University, Haryana, India
| | - Neena Valecha
- Host-Parasite Interaction Biology Group, National Institute of Malaria Research, Delhi, India
| | - Kailash Chand Pandey
- Host-Parasite Interaction Biology Group, National Institute of Malaria Research, Delhi, India
| | - Rajnikant Dixit
- Host-Parasite Interaction Biology Group, National Institute of Malaria Research, Delhi, India
| |
Collapse
|
210
|
Singh J, Reddy PS, Reddy CS, Reddy MK. Molecular cloning and characterization of salt inducible dehydrin gene from the C4 plant Pennisetum glaucum. ACTA ACUST UNITED AC 2015. [DOI: 10.1016/j.plgene.2015.08.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
211
|
Groszmann M, Gonzalez-Bayon R, Lyons RL, Greaves IK, Kazan K, Peacock WJ, Dennis ES. Hormone-regulated defense and stress response networks contribute to heterosis in Arabidopsis F1 hybrids. Proc Natl Acad Sci U S A 2015; 112:E6397-406. [PMID: 26527659 PMCID: PMC4655576 DOI: 10.1073/pnas.1519926112] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Plant hybrids are extensively used in agriculture to deliver increases in yields, yet the molecular basis of their superior performance (heterosis) is not well understood. Our transcriptome analysis of a number of Arabidopsis F1 hybrids identified changes to defense and stress response gene expression consistent with a reduction in basal defense levels. Given the reported antagonism between plant immunity and growth, we suggest that these altered patterns of expression contribute to the greater growth of the hybrids. The altered patterns of expression in the hybrids indicate decreases to the salicylic acid (SA) biosynthesis pathway and increases in the auxin [indole-3-acetic acid (IAA)] biosynthesis pathway. SA and IAA are hormones known to control stress and defense responses as well as plant growth. We found that IAA-targeted gene activity is frequently increased in hybrids, correlating with a common heterotic phenotype of greater leaf cell numbers. Reduced SA concentration and target gene responses occur in the larger hybrids and promote increased leaf cell size. We demonstrated the importance of SA action to the hybrid phenotype by manipulating endogenous SA concentrations. Increasing SA diminished heterosis in SA-reduced hybrids, whereas decreasing SA promoted growth in some hybrids and phenocopied aspects of hybrid vigor in parental lines. Pseudomonas syringae infection of hybrids demonstrated that the reductions in basal defense gene activity in these hybrids does not necessarily compromise their ability to mount a defense response comparable to the parents.
Collapse
Affiliation(s)
| | | | - Rebecca L Lyons
- CSIRO Agriculture, Queensland Bioscience Precinct, Brisbane, QLD 4069, Australia
| | | | - Kemal Kazan
- CSIRO Agriculture, Queensland Bioscience Precinct, Brisbane, QLD 4069, Australia
| | - W James Peacock
- CSIRO Agriculture, Canberra, ACT 2601, Australia; University of Technology, Sydney, NSW 2007, Australia
| | - Elizabeth S Dennis
- CSIRO Agriculture, Canberra, ACT 2601, Australia; University of Technology, Sydney, NSW 2007, Australia
| |
Collapse
|
212
|
Jiang HX, Yang LT, Qi YP, Lu YB, Huang ZR, Chen LS. Root iTRAQ protein profile analysis of two Citrus species differing in aluminum-tolerance in response to long-term aluminum-toxicity. BMC Genomics 2015; 16:949. [PMID: 26573913 PMCID: PMC4647617 DOI: 10.1186/s12864-015-2133-9] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Accepted: 10/23/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Limited information is available on aluminum (Al)-toxicity-responsive proteins in woody plant roots. Seedlings of 'Xuegan' (Citrus sinensis) and 'Sour pummelo' (Citrus grandis) were treated for 18 weeks with nutrient solution containing 0 (control) or 1.2 mM AlCl3 · 6H2O (+Al). Thereafter, we investigated Citrus root protein profiles using isobaric tags for relative and absolute quantification (iTRAQ). The aims of this work were to determine the molecular mechanisms of plants to deal with Al-toxicity and to identify differentially expressed proteins involved in Al-tolerance. RESULTS C. sinensis was more tolerant to Al-toxicity than C. grandis. We isolated 347 differentially expressed proteins from + Al Citrus roots. Among these proteins, 202 (96) proteins only presented in C. sinensis (C. grandis), and 49 proteins were shared by the two species. Of the 49 overlapping proteins, 45 proteins were regulated in the same direction upon Al exposure in the both species. These proteins were classified into following categories: sulfur metabolism, stress and defense response, carbohydrate and energy metabolism, nucleic acid metabolism, protein metabolism, cell transport, biological regulation and signal transduction, cell wall and cytoskeleton metabolism, and jasmonic acid (JA) biosynthesis. The higher Al-tolerance of C. sinensis may be related to several factors, including: (a) activation of sulfur metabolism; (b) greatly improving the total ability of antioxidation and detoxification; (c) up-regulation of carbohydrate and energy metabolism; (d) enhancing cell transport; (e) decreased (increased) abundances of proteins involved in protein synthesis (proteiolysis); (f) keeping a better balance between protein phosphorylation and dephosphorylation; and (g) increasing JA biosynthesis. CONCLUSIONS Our results demonstrated that metabolic flexibility was more remarkable in C. sinenis than in C. grandis roots, thus improving the Al-tolerance of C. sinensis. This provided the most integrated view of the adaptive responses occurring in Al-toxicity roots.
Collapse
Affiliation(s)
- Huan-Xin Jiang
- Institute of Plant Nutritional Physiology and Molecular Biology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China. .,College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| | - Lin-Tong Yang
- Institute of Plant Nutritional Physiology and Molecular Biology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China. .,College of Resource and Environmental Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| | - Yi-Ping Qi
- Institute of Materia Medica, Fujian Academy of Medical Sciences, Fuzhou, 350001, China.
| | - Yi-Bin Lu
- Institute of Plant Nutritional Physiology and Molecular Biology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China. .,College of Resource and Environmental Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| | - Zeng-Rong Huang
- Institute of Plant Nutritional Physiology and Molecular Biology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China. .,College of Resource and Environmental Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| | - Li-Song Chen
- Institute of Plant Nutritional Physiology and Molecular Biology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China. .,College of Resource and Environmental Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China. .,The Higher Educational Key Laboratory of Fujian Province for Soil Ecosystem Health and Regulation, Fujian Agriculture and Forestry University, Fuzhou, 350002, China. .,Fujian Key Laboratory for Plant Molecular and Cell Biology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| |
Collapse
|
213
|
Tan YC, Wong MY, Ho CL. Expression profiles of defence related cDNAs in oil palm (Elaeis guineensis Jacq.) inoculated with mycorrhizae and Trichoderma harzianum Rifai T32. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2015; 96:296-300. [PMID: 26322853 DOI: 10.1016/j.plaphy.2015.08.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Revised: 08/11/2015] [Accepted: 08/20/2015] [Indexed: 06/04/2023]
Abstract
Basal stem rot is one of the major diseases of oil palm (Elaies guineensis Jacq.) caused by pathogenic Ganoderma species. Trichoderma and mycorrhizae were proposed to be able to reduce the disease severity. However, their roles in improving oil palm defence system by possibly inducing defence-related genes in the host are not well characterized. To better understand that, transcript profiles of eleven putative defence-related cDNAs in the roots of oil palm inoculated with Trichoderma harzianum T32 and mycorrhizae at different time points were studied. Transcripts encoding putative Bowman-Birk protease inhibitor (EgBBI2) and defensin (EgDFS) increased more than 2 fold in mycorrhizae-treated roots at 6 weeks post inoculation (wpi) compared to those in controls. Transcripts encoding putative dehydrin (EgDHN), glycine-rich RNA binding protein (EgGRRBP), isoflavone reductase (EgIFR), type 2 ribosome inactivating protein (EgT2RIP), and EgDFS increased in the oil palm roots treated with T. harzianum at 6 and/or 12 wpi compared to those in the controls. Some of these genes were also expressed in oil palm roots treated with Ganoderma boninense. This study provides an insight of some defence-related genes induced by Trichoderma and mycorrhizae, and their roles as potential agents to boost the plant defence system.
Collapse
Affiliation(s)
- Yung-Chie Tan
- Institute of Tropical Agriculture, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor Darul Ehsan, Malaysia.
| | - Mui-Yun Wong
- Institute of Tropical Agriculture, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor Darul Ehsan, Malaysia; Department of Plant Protection, Faculty of Agriculture, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor Darul Ehsan, Malaysia.
| | - Chai-Ling Ho
- Institute of Tropical Agriculture, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor Darul Ehsan, Malaysia; Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor Darul Ehsan, Malaysia.
| |
Collapse
|
214
|
Saibi W, Feki K, Ben Mahmoud R, Brini F. Durum wheat dehydrin (DHN-5) confers salinity tolerance to transgenic Arabidopsis plants through the regulation of proline metabolism and ROS scavenging system. PLANTA 2015; 242:1187-94. [PMID: 26105651 DOI: 10.1007/s00425-015-2351-z] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Accepted: 06/09/2015] [Indexed: 05/18/2023]
Abstract
The wheat dehydrin (DHN-5) gives birth to salinity tolerance to transgenic Arabidopsis plants by the regulation of proline metabolism and the ROS scavenging system. Dehydrins (DHNs) are involved in plant abiotic stress tolerance. In this study, we reported that salt tolerance of transgenic Arabidopsis plants overexpressing durum wheat dehydrin (DHN-5) was closely related to the activation of the proline metabolism enzyme (P5CS) and some antioxidant biocatalysts. Indeed, DHN-5 improved P5CS activity in the transgenic plants generating a significant proline accumulation. Moreover, salt tolerance of Arabidopsis transgenic plants was accompanied by an excellent activation of antioxidant enzymes like catalase (CAT), superoxide dismutase (SOD) and peroxide dismutase (POD) and generation of a lower level of hydrogen peroxide (H2O2) in leaves compared to the wild-type plants. The enzyme activities were enhanced in these transgenic plants in the presence of exogenous proline. Nevertheless, proline accumulation was slightly reduced in transgenic plants promoting chlorophyll levels. All these results suggest the crucial role of DHN-5 in response to salt stress through the activation of enzymes implicated in proline metabolism and in ROS scavenging enzymes.
Collapse
Affiliation(s)
- Walid Saibi
- Biotechnology and Plant Improvement Laboratory, Centre of Biotechnology of Sfax-University of Sfax, B.P 1177, 3018, Sfax, Tunisia.
| | - Kaouthar Feki
- Biotechnology and Plant Improvement Laboratory, Centre of Biotechnology of Sfax-University of Sfax, B.P 1177, 3018, Sfax, Tunisia
| | - Rihem Ben Mahmoud
- Biotechnology and Plant Improvement Laboratory, Centre of Biotechnology of Sfax-University of Sfax, B.P 1177, 3018, Sfax, Tunisia
| | - Faiçal Brini
- Biotechnology and Plant Improvement Laboratory, Centre of Biotechnology of Sfax-University of Sfax, B.P 1177, 3018, Sfax, Tunisia
| |
Collapse
|
215
|
Falavigna VDS, Miotto YE, Porto DD, Anzanello R, Santos HPD, Fialho FB, Margis-Pinheiro M, Pasquali G, Revers LF. Functional diversification of the dehydrin gene family in apple and its contribution to cold acclimation during dormancy. PHYSIOLOGIA PLANTARUM 2015; 155:315-329. [PMID: 25809953 DOI: 10.1111/ppl.12338] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Revised: 03/06/2015] [Accepted: 03/07/2015] [Indexed: 06/04/2023]
Abstract
Dehydrins (DHN) are proteins involved in plant adaptive responses to abiotic stresses, mainly dehydration. Several studies in perennial crops have linked bud dormancy progression, a process characterized by the inability to initiate growth from meristems under favorable conditions, with DHN gene expression. However, an in-depth characterization of DHNs during bud dormancy progression is still missing. An extensive in silico characterization of the apple DHN gene family was performed. Additionally, we used five different experiments that generated samples with different dormancy status, including genotypes with contrasting dormancy traits, to analyze how DHN genes are being regulated during bud dormancy progression in apple by real-time quantitative polymerase chain reaction (RT-qPCR). Duplication events took place in the diversification of apple DHN family. Additionally, MdDHN genes presented tissue- and bud dormant-specific expression patterns. Our results indicate that MdDHN genes are highly divergent in function, with overlapping levels, and that their expressions are fine-tuned by the environment during the dormancy process in apple.
Collapse
Affiliation(s)
- Vítor da Silveira Falavigna
- Graduate Program in Cell and Molecular Biology, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Yohanna Evelyn Miotto
- Laboratory of Plant Molecular Genetics, Centro Nacional de Pesquisa de Uva e Vinho, Empresa Brasileira de Pesquisa Agropecuária, Bento Gonçalves, Brazil
| | - Diogo Denardi Porto
- Laboratory of Plant Molecular Genetics, Centro Nacional de Pesquisa de Uva e Vinho, Empresa Brasileira de Pesquisa Agropecuária, Bento Gonçalves, Brazil
| | - Rafael Anzanello
- Laboratory of Plant Physiology, Centro Nacional de Pesquisa de Uva e Vinho, Empresa Brasileira de Pesquisa Agropecuária, Bento Gonçalves, Brazil
| | - Henrique Pessoa dos Santos
- Laboratory of Plant Physiology, Centro Nacional de Pesquisa de Uva e Vinho, Empresa Brasileira de Pesquisa Agropecuária, Bento Gonçalves, Brazil
| | - Flávio Bello Fialho
- Laboratory of Plant Physiology, Centro Nacional de Pesquisa de Uva e Vinho, Empresa Brasileira de Pesquisa Agropecuária, Bento Gonçalves, Brazil
| | - Márcia Margis-Pinheiro
- Graduate Program in Cell and Molecular Biology, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Giancarlo Pasquali
- Graduate Program in Cell and Molecular Biology, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Luís Fernando Revers
- Laboratory of Plant Molecular Genetics, Centro Nacional de Pesquisa de Uva e Vinho, Empresa Brasileira de Pesquisa Agropecuária, Bento Gonçalves, Brazil
| |
Collapse
|
216
|
Calestani C, Moses M, Maestri E, Marmiroli N, Bray E. Constitutive Expression of the Barley Dehydrin Gene aba2 Enhances Arabidopsis Germination in Response to Salt Stress. INTERNATIONAL JOURNAL OF PLANT BIOLOGY 2015. [DOI: 10.4081/pb.2015.5826] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Dehydrins (DHNs) are a sub-family of the late embryogenesis abundant proteins generally induced during development of desiccation tolerance in seeds and water deficit or salinity stress in plants. Nevertheless, a detailed understanding of the DHNs function is still lacking. In this work we investigated the possible protective role during salt stress of a Dhn from Hordeum vulgare (L.), aba2. The coding sequence of the aba2 gene was constitutively expressed in transgenic lines of Arabidopsis thaliana (L.). During salt stress conditions germination rate, cotyledon expansion and greening were greatly improved in the transgenic lines as compared to the wild type. Between 98 and 100% of the transgenic seeds germinated after two weeks in media containing up to 250 mM NaCl, and 90% after 22 days at 300 mM NaCl. In conditions of 200 mM NaCl 93% of the transgenic cotyledons had greened after two weeks, outperforming the wild type by 45%. Our study provides further evidence that DHNs have an important role in salt stress tolerance. The production of plants constitutively expressing DHNs could be an effective strategy to improve plant breeding programs.
Collapse
|
217
|
Almeida AM, Urra C, Moraga C, Jego M, Flores A, Meisel L, González M, Infante R, Defilippi BG, Campos-Vargas R, Orellana A. Proteomic analysis of a segregant population reveals candidate proteins linked to mealiness in peach. J Proteomics 2015; 131:71-81. [PMID: 26459401 DOI: 10.1016/j.jprot.2015.10.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Revised: 09/23/2015] [Accepted: 10/08/2015] [Indexed: 10/22/2022]
Abstract
Peaches are stored at low temperatures to delay ripening and increase postharvest life. However some varieties are susceptible to chilling injury,which leads to fruit mealiness, browning and flesh bleeding. In order to identify potentialmarkers associated with chilling injury,we performed proteomic analyses on a segregating population with contrasting susceptibility to chilling-induced mealiness. Chilling-induced mealiness was assessed by measuring juiciness in fruits that have been stored in cold and then allowed to ripen. Fruitmesocarp and leaf proteome from contrasting segregants were analyzed using 2-DE gels. Comparison of protein abundance between segregants revealed 133 spots from fruit mesocarp and 36 from leaf. Thirty four fruit mesocarp proteins were identified from these spots. Most of these proteins were related to ethylene synthesis, ABA response and stress response. Leaf protein analyses identified 22 proteins, most of which related to energy metabolism. Some of the genes that code for these proteins have been previously correlated with chilling injury through transcript analyses and co-segregation with mealiness QTLs. The results from this study, further deciphers the molecular mechanisms associated with chilling response in peach fruit, and identifies candidate proteins linked to mealiness in peach which may be used as putative markers for this trait.
Collapse
Affiliation(s)
- Andréa Miyasaka Almeida
- Universidad Andrés Bello, Fac. Ciencias Biológicas, Centro de Biotecnología Vegetal, República 217, Santiago, Chile; FONDAP-Center of Genome Regulation (CGR), Santiago, Chile.
| | - Claudio Urra
- Universidad Andrés Bello, Fac. Ciencias Biológicas, Centro de Biotecnología Vegetal, República 217, Santiago, Chile; FONDAP-Center of Genome Regulation (CGR), Santiago, Chile
| | - Carol Moraga
- Universidad Andrés Bello, Fac. Ciencias Biológicas, Centro de Biotecnología Vegetal, República 217, Santiago, Chile; FONDAP-Center of Genome Regulation (CGR), Santiago, Chile
| | - Marcela Jego
- Universidad Andrés Bello, Fac. Ciencias Biológicas, Centro de Biotecnología Vegetal, República 217, Santiago, Chile; FONDAP-Center of Genome Regulation (CGR), Santiago, Chile
| | - Alejandra Flores
- Universidad Andrés Bello, Fac. Ciencias Biológicas, Centro de Biotecnología Vegetal, República 217, Santiago, Chile; FONDAP-Center of Genome Regulation (CGR), Santiago, Chile
| | - Lee Meisel
- INTA-Universidad de Chile, Santiago, Chile
| | - Mauricio González
- FONDAP-Center of Genome Regulation (CGR), Santiago, Chile; INTA-Universidad de Chile, Santiago, Chile
| | - Rodrigo Infante
- Departamento de Producción Agrícola, Universidad de Chile, Casilla, 1004 Santiago, Chile
| | - Bruno G Defilippi
- Instituto de Investigaciones Agropecuarias, INIA-La Platina, Santa Rosa 11610, Santiago, Chile
| | - Reinaldo Campos-Vargas
- Universidad Andrés Bello, Fac. Ciencias Biológicas, Centro de Biotecnología Vegetal, República 217, Santiago, Chile
| | - Ariel Orellana
- Universidad Andrés Bello, Fac. Ciencias Biológicas, Centro de Biotecnología Vegetal, República 217, Santiago, Chile; FONDAP-Center of Genome Regulation (CGR), Santiago, Chile
| |
Collapse
|
218
|
Babitha KC, Vemanna RS, Nataraja KN, Udayakumar M. Overexpression of EcbHLH57 Transcription Factor from Eleusine coracana L. in Tobacco Confers Tolerance to Salt, Oxidative and Drought Stress. PLoS One 2015; 10:e0137098. [PMID: 26366726 PMCID: PMC4569372 DOI: 10.1371/journal.pone.0137098] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2014] [Accepted: 08/12/2015] [Indexed: 02/01/2023] Open
Abstract
Basic helix-loop-helix (bHLH) transcription factors constitute one of the largest families in plants and are known to be involved in various developmental processes and stress tolerance. We report the characterization of a stress responsive bHLH transcription factor from stress adapted species finger millet which is homologous to OsbHLH57 and designated as EcbHLH57. The full length sequence of EcbHLH57 consisted of 256 amino acids with a conserved bHLH domain followed by leucine repeats. In finger millet, EcbHLH57 transcripts were induced by ABA, NaCl, PEG, methyl viologen (MV) treatments and drought stress. Overexpression of EcbHLH57 in tobacco significantly increased the tolerance to salinity and drought stress with improved root growth. Transgenic plants showed higher photosynthetic rate and stomatal conductance under drought stress that resulted in higher biomass. Under long-term salinity stress, the transgenic plants accumulated higher seed weight/pod and pod number. The transgenic plants were also tolerant to oxidative stress and showed less accumulation of H202 and MDA levels. The overexpression of EcbHLH57 enhanced the expression of stress responsive genes such as LEA14, rd29A, rd29B, SOD, APX, ADH1, HSP70 and also PP2C and hence improved tolerance to diverse stresses.
Collapse
Affiliation(s)
- K. C. Babitha
- Department of Crop Physiology, University of Agricultural Sciences, Bangalore, Karnataka, India
| | - Ramu S. Vemanna
- Department of Crop Physiology, University of Agricultural Sciences, Bangalore, Karnataka, India
| | - Karaba N. Nataraja
- Department of Crop Physiology, University of Agricultural Sciences, Bangalore, Karnataka, India
| | - M. Udayakumar
- Department of Crop Physiology, University of Agricultural Sciences, Bangalore, Karnataka, India
| |
Collapse
|
219
|
Dametto A, Sperotto RA, Adamski JM, Blasi ÉAR, Cargnelutti D, de Oliveira LFV, Ricachenevsky FK, Fregonezi JN, Mariath JEA, da Cruz RP, Margis R, Fett JP. Cold tolerance in rice germinating seeds revealed by deep RNAseq analysis of contrasting indica genotypes. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2015; 238:1-12. [PMID: 26259169 DOI: 10.1016/j.plantsci.2015.05.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Revised: 05/11/2015] [Accepted: 05/12/2015] [Indexed: 05/10/2023]
Abstract
Rice productivity is largely affected by low temperature, which can be harmful throughout plant development, from germination to grain filling. Germination of indica rice cultivars under cold is slow and not uniform, resulting in irregular emergence and small plant population. To identify and characterize novel genes involved in cold tolerance during the germination stage, two indica rice genotypes (sister lines previously identified as cold-tolerant and cold-sensitive) were used in parallel transcriptomic analysis (RNAseq) under cold treatment (seeds germinating at 13 °C for 7 days). We detected 1,361 differentially expressed transcripts. Differences in gene expression found by RNAseq were confirmed for 11 selected genes using RT-qPCR. Biological processes enhanced in the cold-tolerant seedlings include: cell division and expansion (confirmed by anatomical sections of germinating seeds), cell wall integrity and extensibility, water uptake and membrane transport capacity, sucrose synthesis, generation of simple sugars, unsaturation of membrane fatty acids, wax biosynthesis, antioxidant capacity (confirmed by histochemical staining of H2O2), and hormone and Ca(2+)-signaling. The cold-sensitive seedlings respond to low temperature stress increasing synthesis of HSPs and dehydrins, along with enhanced ubiquitin/proteasome protein degradation pathway and polyamine biosynthesis. Our findings can be useful in future biotechnological approaches aiming to cold tolerance in indica rice.
Collapse
Affiliation(s)
- Andressa Dametto
- Programa de Pós-Graduação em Biotecnologia (PPGBiotec), Centro Universitário UNIVATES, Lajeado, RS, Brazil
| | - Raul A Sperotto
- Centro de Ciências Biológicas e da Saúde (CCBS), Centro Universitário UNIVATES, Lajeado, RS, Brazil; Programa de Pós-Graduação em Biotecnologia (PPGBiotec), Centro Universitário UNIVATES, Lajeado, RS, Brazil.
| | - Janete M Adamski
- Departamento de Botânica, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Édina A R Blasi
- Centro de Ciências Biológicas e da Saúde (CCBS), Centro Universitário UNIVATES, Lajeado, RS, Brazil
| | - Denise Cargnelutti
- Departamento de Agronomia, Universidade Federal da Fronteira Sul (UFFS), Erechim, RS, Brazil
| | - Luiz F V de Oliveira
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Felipe K Ricachenevsky
- Departamento de Botânica, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Jeferson N Fregonezi
- Departamento de Botânica, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Jorge E A Mariath
- Departamento de Botânica, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Renata P da Cruz
- Departamento de Plantas de Lavoura, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Rogério Margis
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Janette P Fett
- Departamento de Botânica, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil.
| |
Collapse
|
220
|
Obidiegwu JE, Bryan GJ, Jones HG, Prashar A. Coping with drought: stress and adaptive responses in potato and perspectives for improvement. FRONTIERS IN PLANT SCIENCE 2015; 6:542. [PMID: 26257752 PMCID: PMC4510777 DOI: 10.3389/fpls.2015.00542] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Accepted: 07/03/2015] [Indexed: 05/20/2023]
Abstract
Potato (Solanum tuberosum L.) is often considered as a drought sensitive crop and its sustainable production is threatened due to frequent drought episodes. There has been much research aiming to understand the physiological, biochemical, and genetic basis of drought tolerance in potato as a basis for improving production under drought conditions. The complex phenotypic response of potato plants to drought is conditioned by the interactive effects of the plant's genotypic potential, developmental stage, and environment. Effective crop improvement for drought tolerance will require the pyramiding of many disparate characters, with different combinations being appropriate for different growing environments. An understanding of the interaction between below ground water uptake by the roots and above ground water loss from the shoot system is essential. The development of high throughput precision phenotyping platforms is providing an exciting new tool for precision screening, which, with the incorporation of innovative screening strategies, can aid the selection and pyramiding of drought-related genes appropriate for specific environments. Outcomes from genomics, proteomics, metabolomics, and bioengineering advances will undoubtedly compliment conventional breeding strategies and presents an alternative route toward development of drought tolerant potatoes. This review presents an overview of past research activity, highlighting recent advances with examples from other crops and suggesting future research directions.
Collapse
Affiliation(s)
| | - Glenn J. Bryan
- Cell and Molecular Sciences, The James Hutton InstituteDundee, UK
| | - Hamlyn G. Jones
- Plant Science Division, School of Life Sciences, University of DundeeDundee, UK
- School of Plant Biology, University of Western AustraliaCrawley, WA, Australia
| | - Ankush Prashar
- Cell and Molecular Sciences, The James Hutton InstituteDundee, UK
| |
Collapse
|
221
|
Tiwari V, Chaturvedi AK, Mishra A, Jha B. Introgression of the SbASR-1 gene cloned from a halophyte Salicornia brachiate enhances salinity and drought endurance in transgenic groundnut (arachis hypogaea)and acts as a transcription factor [corrected]. PLoS One 2015; 10:e0131567. [PMID: 26158616 PMCID: PMC4497679 DOI: 10.1371/journal.pone.0131567] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Accepted: 06/03/2015] [Indexed: 11/25/2022] Open
Abstract
The SbASR-1 gene, cloned from a halophyte Salicornia brachiata, encodes a plant-specific hydrophilic and stress responsive protein. The genome of S. brachiata has two paralogs of the SbASR-1 gene (2549 bp), which is comprised of a single intron of 1611 bp, the largest intron of the abscisic acid stress ripening [ASR] gene family yet reported. In silico analysis of the 843-bp putative promoter revealed the presence of ABA, biotic stress, dehydration, phytohormone, salinity, and sugar responsive cis-regulatory motifs. The SbASR-1 protein belongs to Group 7 LEA protein family with different amino acid composition compared to their glycophytic homologs. Bipartite Nuclear Localization Signal (NLS) was found on the C-terminal end of protein and localization study confirmed that SbASR-1 is a nuclear protein. Furthermore, transgenic groundnut (Arachis hypogaea) plants over-expressing the SbASR-1 gene constitutively showed enhanced salinity and drought stress tolerance in the T1 generation. Leaves of transgenic lines exhibited higher chlorophyll and relative water contents and lower electrolyte leakage, malondialdehyde content, proline, sugars, and starch accumulation under stress treatments than wild-type (Wt) plants. Also, lower accumulation of H2O2 and O2.- radicals was detected in transgenic lines compared to Wt plants under stress conditions. Transcript expression of APX (ascorbate peroxidase) and CAT (catalase) genes were higher in Wt plants, whereas the SOD (superoxide dismutase) transcripts were higher in transgenic lines under stress. Electrophoretic mobility shift assay (EMSA) confirmed that the SbASR-1 protein binds at the consensus sequence (C/G/A)(G/T)CC(C/G)(C/G/A)(A/T). Based on results of the present study, it may be concluded that SbASR-1 enhances the salinity and drought stress tolerance in transgenic groundnut by functioning as a LEA (late embryogenesis abundant) protein and a transcription factor.
Collapse
Affiliation(s)
- Vivekanand Tiwari
- Marine Biotechnology and Ecology Division, CSIR-Central Salt and Marine Chemicals Research Institute, Bhavnagar, Gujarat, India
| | - Amit Kumar Chaturvedi
- Marine Biotechnology and Ecology Division, CSIR-Central Salt and Marine Chemicals Research Institute, Bhavnagar, Gujarat, India
| | - Avinash Mishra
- Marine Biotechnology and Ecology Division, CSIR-Central Salt and Marine Chemicals Research Institute, Bhavnagar, Gujarat, India
| | - Bhavanath Jha
- Marine Biotechnology and Ecology Division, CSIR-Central Salt and Marine Chemicals Research Institute, Bhavnagar, Gujarat, India
| |
Collapse
|
222
|
Lundén K, Danielsson M, Durling MB, Ihrmark K, Gorriz MN, Stenlid J, Asiegbu FO, Elfstrand M. Transcriptional Responses Associated with Virulence and Defence in the Interaction between Heterobasidion annosum s.s. and Norway Spruce. PLoS One 2015; 10:e0131182. [PMID: 26151363 PMCID: PMC4495060 DOI: 10.1371/journal.pone.0131182] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Accepted: 05/31/2015] [Indexed: 01/13/2023] Open
Abstract
Heterobasidion annosum sensu lato is a serious pathogen causing root and stem rot to conifers in the northern hemisphere and rendering the timber defective for sawing and pulping. In this study we applied next-generation sequencing to i) identify transcriptional responses unique to Heterobasidion-inoculated Norway spruce and ii) investigate the H. annosum transcripts to identify putative virulence factors. To address these objectives we wounded or inoculated 30-year-old Norway spruce clones with H. annosum and 454-sequenced the transcriptome of the interaction at 0, 5 and 15 days post inoculation. The 491860 high-quality reads were de novo assembled and the relative expression was analysed. Overall, very few H. annosum transcripts were represented in our dataset. Three delta-12 fatty acid desaturase transcripts and one Clavaminate synthase-like transcript, both associated with virulence in other pathosystems, were found among the significantly induced transcripts. The analysis of the Norway spruce transcriptional responses produced a handful of differentially expressed transcripts. Most of these transcripts originated from genes known to respond to H. annosum. However, three genes that had not previously been reported to respond to H. annosum showed specific induction to inoculation: an oxophytodienoic acid–reductase (OPR), a beta–glucosidase and a germin-like protein (GLP2) gene. Even in a small data set like ours, five novel highly expressed Norway spruce transcripts without significant alignment to any previously annotated protein in Genbank but present in the P. abies (v1.0) gene catalogue were identified. Their expression pattern suggests a role in defence. Therefore a more complete survey of the transcriptional responses in the interactions between Norway spruce and its major pathogen H. annosum would probably provide a better understanding of gymnosperm defence than accumulated until now.
Collapse
Affiliation(s)
- Karl Lundén
- Department of Forest Mycology and Plant Pathology, Uppsala Biocenter, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Marie Danielsson
- Chemistry, School of Chemical Science and Engineering, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Mikael Brandström Durling
- Department of Forest Mycology and Plant Pathology, Uppsala Biocenter, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Katarina Ihrmark
- Department of Forest Mycology and Plant Pathology, Uppsala Biocenter, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Miguel Nemesio Gorriz
- Department of Forest Mycology and Plant Pathology, Uppsala Biocenter, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Jan Stenlid
- Department of Forest Mycology and Plant Pathology, Uppsala Biocenter, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | | | - Malin Elfstrand
- Department of Forest Mycology and Plant Pathology, Uppsala Biocenter, Swedish University of Agricultural Sciences, Uppsala, Sweden
- * E-mail:
| |
Collapse
|
223
|
Giarola V, Challabathula D, Bartels D. Quantification of expression of dehydrin isoforms in the desiccation tolerant plant Craterostigma plantagineum using specifically designed reference genes. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2015; 236:103-15. [PMID: 26025524 DOI: 10.1016/j.plantsci.2015.03.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Revised: 03/16/2015] [Accepted: 03/20/2015] [Indexed: 05/18/2023]
Abstract
Craterostigma plantagineum is a desiccation tolerant resurrection plant. Many genes are induced during desiccation. Dehydrins are a group of dehydration-induced genes present in all higher plants. The current study aims at classifying the most abundantly expressed dehydrin genes from vegetative tissues of C. plantagineum and quantifying their expression. To identify variations between dehydrin isoforms at different stages of desiccation and rehydration by RT-qPCR, the target mRNA requires an accurate and reliable normalization. Previously we reported that RNAs from leaves and roots of C. plantagineum are not degraded during desiccation and subsequent rehydration thus allowing the use of RT-qPCR to test the stability of reference genes. The expression stability of eight candidate reference genes was tested in leaves, roots and callus. These genes were ranked according to their stability of gene expression using GeNorm(PLUS) and RefFinder. The most consistently expressed reference genes in each tissue were identified and used to normalize gene expression data. Dehydrin isoforms were divided in three groups based on the expression level during the desiccation process in three different tissues (leaves, roots and callus).
Collapse
Affiliation(s)
- Valentino Giarola
- Institute of Molecular Physiology and Biotechnology of Plants, University of Bonn, Kirschallee 1, D-53115 Bonn, Germany
| | - Dinakar Challabathula
- Institute of Molecular Physiology and Biotechnology of Plants, University of Bonn, Kirschallee 1, D-53115 Bonn, Germany; Department of Life Sciences, School of Basic and Applied Sciences, Central University of Tamil Nadu, Thiruvarur, India
| | - Dorothea Bartels
- Institute of Molecular Physiology and Biotechnology of Plants, University of Bonn, Kirschallee 1, D-53115 Bonn, Germany.
| |
Collapse
|
224
|
Byun MY, Lee J, Cui LH, Kang Y, Oh TK, Park H, Lee H, Kim WT. Constitutive expression of DaCBF7, an Antarctic vascular plant Deschampsia antarctica CBF homolog, resulted in improved cold tolerance in transgenic rice plants. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2015; 236:61-74. [PMID: 26025521 DOI: 10.1016/j.plantsci.2015.03.020] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Revised: 03/07/2015] [Accepted: 03/26/2015] [Indexed: 05/23/2023]
Abstract
Deschampsia antarctica is an Antarctic hairgrass that grows on the west coast of the Antarctic peninsula. In this report, we have identified and characterized a transcription factor, D. antarctica C-repeat binding factor 7 (DaCBF7), that is a member of the monocot group V CBF homologs. The protein contains a single AP2 domain, a putative nuclear localization signal, and the typical CBF signature. DaCBF7, like other monocot group V homologs, contains a distinct polypeptide stretch composed of 43 amino acids in front of the AP2 motif. DaCBF7 was predominantly localized to nuclei and interacted with the C-repeat/dehydration responsive element (CRT/DRE) core sequence (ACCGAC) in vitro. DaCBF7 was induced by abiotic stresses, including drought, cold, and salinity. To investigate its possible cellular role in cold tolerance, a transgenic rice system was employed. DaCBF7-overexpressing transgenic rice plants (Ubi:DaCBF7) exhibited markedly increased tolerance to cold stress compared to wild-type plants without growth defects; however, overexpression of DaCBF7 exerted little effect on tolerance to drought or salt stress. Transcriptome analysis of a Ubi:DaCBF7 transgenic line revealed 13 genes that were up-regulated in DaCBF7-overexpressing plants compared to wild-type plants in the absence of cold stress and in short- or long-term cold stress. Five of these genes, dehydrin, remorin, Os03g63870, Os11g34790, and Os10g22630, contained putative CRT/DRE or low-temperature responsive elements in their promoter regions. These results suggest that overexpression of DaCBF7 directly and indirectly induces diverse genes in transgenic rice plants and confers enhanced tolerance to cold stress.
Collapse
Affiliation(s)
- Mi Young Byun
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul 120-749, Republic of Korea
| | - Jungeun Lee
- Division of Life Sciences, Korea Polar Research Institute, Incheon 406-840, Republic of Korea
| | - Li Hua Cui
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul 120-749, Republic of Korea
| | - Yoonjee Kang
- Division of Life Sciences, Korea Polar Research Institute, Incheon 406-840, Republic of Korea
| | - Tae Kyung Oh
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul 120-749, Republic of Korea
| | - Hyun Park
- Division of Life Sciences, Korea Polar Research Institute, Incheon 406-840, Republic of Korea
| | - Hyoungseok Lee
- Division of Life Sciences, Korea Polar Research Institute, Incheon 406-840, Republic of Korea.
| | - Woo Taek Kim
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul 120-749, Republic of Korea.
| |
Collapse
|
225
|
Chiappetta A, Muto A, Bruno L, Woloszynska M, Lijsebettens MV, Bitonti MB. A dehydrin gene isolated from feral olive enhances drought tolerance in Arabidopsis transgenic plants. FRONTIERS IN PLANT SCIENCE 2015; 6:392. [PMID: 26175736 PMCID: PMC4485055 DOI: 10.3389/fpls.2015.00392] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Accepted: 05/16/2015] [Indexed: 05/08/2023]
Abstract
Dehydrins belong to a protein family whose expression may be induced or enhanced by developmental process and environmental stresses that lead to cell dehydration. A dehydrin gene named OesDHN was isolated and characterized from oleaster (Olea europaea L. subsp. europaea, var. sylvestris), the wild form of olive. To elucidate the contribution of OesDHN in the development of drought tolerance, its expression levels were investigated in oleaster plants during development and under drought stress condition. The involvement of OesDHN in plant stress response was also evaluated in Arabidopsis transgenic lines, engineered to overexpress this gene, and exposed to a controlled mild osmotic stress. OesDHN expression was found to be modulated during development and induced under mild drought stress in oleaster plants. In addition, the Arabidopsis transgenic plants showed a better tolerance to osmotic stress than wild-type plants. The results demonstrated that OesDHN expression is induced by drought stress and is able to confer osmotic stress tolerance. We suggest a role for OesDHN, as a putative functional marker of plant stress tolerance.
Collapse
Affiliation(s)
- Adriana Chiappetta
- Laboratory of Plant Biology, Department of Biology, Ecology and Earth Science, University of CalabriaCosenza, Italy
| | - Antonella Muto
- Laboratory of Plant Biology, Department of Biology, Ecology and Earth Science, University of CalabriaCosenza, Italy
- Department of Plant Systems Biology, VIB, Ghent UniversityGhent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent UniversityGhent, Belgium
| | - Leonardo Bruno
- Laboratory of Plant Biology, Department of Biology, Ecology and Earth Science, University of CalabriaCosenza, Italy
| | - Magdalena Woloszynska
- Department of Plant Systems Biology, VIB, Ghent UniversityGhent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent UniversityGhent, Belgium
| | - Mieke Van Lijsebettens
- Department of Plant Systems Biology, VIB, Ghent UniversityGhent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent UniversityGhent, Belgium
| | - Maria B. Bitonti
- Laboratory of Plant Biology, Department of Biology, Ecology and Earth Science, University of CalabriaCosenza, Italy
| |
Collapse
|
226
|
Navarro S, Vazquez-Hernandez M, Rosales R, Sanchez-Ballesta MT, Merodio C, Escribano MI. Differential regulation of dehydrin expression and trehalose levels in Cardinal table grape skin by low temperature and high CO2. JOURNAL OF PLANT PHYSIOLOGY 2015; 179:1-11. [PMID: 25817412 DOI: 10.1016/j.jplph.2015.02.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Revised: 02/03/2015] [Accepted: 02/04/2015] [Indexed: 05/07/2023]
Abstract
Dehydrins and trehalose are multifunctional protective biomolecules that play a role in counteracting cellular damage during dehydrative stresses. In this paper, we studied dehydrin isoform patterns, dehydrin gene expression and trehalose levels in the skin of Cardinal (Vitis vinifera L.) table grapes, along with their regulation by different cold postharvest storage conditions. Immunoanalysis with K-segment antibody recognizes four constitutive dehydrins (from 17 to 44 kDa) that are tightly regulated by low temperature and high CO2. Phosphatase treatment showed that DHN44 and DHN22 isoforms are phosphorylated polypeptides, while MALDI-TOF MS and MS/MS analysis suggested that 44 kDa polypeptide may be a dehydrin homodimer. At the transcriptional level, dehydrins are also regulated by low temperature and high CO2, showing a fairly good correlation with their mRNA levels. Trehalose was quantified by high performance anion-exchange chromatography with pulsed amperometric detection (HPAEC-PAD), revealing a progressive increase of this metabolite throughout storage at 0 °C and the sudden transitory increases in short-term high CO2-treated fruit. We propose that the constitutive presence and up-regulation of dehydrins and trehalose during low temperature postharvest storage could be positively correlated with the relative chilling tolerance of table grapes and the adaptive responses activated by high CO2 levels to preserve cell water status and to counteract the disruption of physiological processes during cold storage.
Collapse
Affiliation(s)
- Sara Navarro
- Grupo Biotecnología y Fisiología Posrecolección, Departamento de Caracterización, Calidad y Seguridad, Instituto de Ciencia y Tecnología de Alimentos y Nutrición, ICTAN-CSIC, José Antonio Novais 10, Ciudad Universitaria, E-28040 Madrid, Spain
| | - María Vazquez-Hernandez
- Grupo Biotecnología y Fisiología Posrecolección, Departamento de Caracterización, Calidad y Seguridad, Instituto de Ciencia y Tecnología de Alimentos y Nutrición, ICTAN-CSIC, José Antonio Novais 10, Ciudad Universitaria, E-28040 Madrid, Spain
| | - Raquel Rosales
- Grupo Biotecnología y Fisiología Posrecolección, Departamento de Caracterización, Calidad y Seguridad, Instituto de Ciencia y Tecnología de Alimentos y Nutrición, ICTAN-CSIC, José Antonio Novais 10, Ciudad Universitaria, E-28040 Madrid, Spain
| | - María Teresa Sanchez-Ballesta
- Grupo Biotecnología y Fisiología Posrecolección, Departamento de Caracterización, Calidad y Seguridad, Instituto de Ciencia y Tecnología de Alimentos y Nutrición, ICTAN-CSIC, José Antonio Novais 10, Ciudad Universitaria, E-28040 Madrid, Spain
| | - Carmen Merodio
- Grupo Biotecnología y Fisiología Posrecolección, Departamento de Caracterización, Calidad y Seguridad, Instituto de Ciencia y Tecnología de Alimentos y Nutrición, ICTAN-CSIC, José Antonio Novais 10, Ciudad Universitaria, E-28040 Madrid, Spain
| | - María Isabel Escribano
- Grupo Biotecnología y Fisiología Posrecolección, Departamento de Caracterización, Calidad y Seguridad, Instituto de Ciencia y Tecnología de Alimentos y Nutrición, ICTAN-CSIC, José Antonio Novais 10, Ciudad Universitaria, E-28040 Madrid, Spain.
| |
Collapse
|
227
|
Korotaeva N, Romanenko A, Suvorova G, Ivanova MV, Lomovatskaya L, Borovskii G, Voinikov V. Seasonal changes in the content of dehydrins in mesophyll cells of common pine needles. PHOTOSYNTHESIS RESEARCH 2015; 124:159-169. [PMID: 25744388 DOI: 10.1007/s11120-015-0112-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Accepted: 02/25/2015] [Indexed: 06/04/2023]
Abstract
The appearance of dehydrins (DHNs) in cells is required for the development of cold resistance. DHNs are therefore considered specific markers of cold resistance by some authors. DHNs accumulate in plants concomitantly with a reduction of intracellular water content, and presumably protect membranes and proteins from damage caused by moisture loss. DHN content in pine needles increases in spring and autumn when moisture availability and temperatures are most unfavorable. The present work is focused on seasonal changes in DHN content in various mesophyll-cell compartments of pine (Pinus sylvestris L.) needles in association with changes in environmental factors. In spring, the number of thylakoid membranes per granum was lower than in summer and autumn. An increase in needle content of DHNs with approximate masses of 76, 73, 72, 35, and 17 kD in spring and autumn, associated with needle dehydration during this period, is shown here. The largest increase in DHN content was observed in spring, with the highest amount of DHNs presented in chloroplast membrane system including grana thylakoids, stromal thylakoids, and the two chloroplast envelope membranes and in cell walls. In the autumn, most DHNs were localized in chloroplasts and mitochondria.
Collapse
Affiliation(s)
- Natalia Korotaeva
- Siberian Institute of Plant Physiology and Biochemistry, Siberian Branch of Russian Academy of Sciences, Lermontova St., 132, POB 317, 664033, Irkutsk, Russia
| | | | | | | | | | | | | |
Collapse
|
228
|
Bahieldin A, Atef A, Sabir JSM, Gadalla NO, Edris S, Alzohairy AM, Radhwan NA, Baeshen MN, Ramadan AM, Eissa HF, Hassan SM, Baeshen NA, Abuzinadah O, Al-Kordy MA, El-Domyati FM, Jansen RK. RNA-Seq analysis of the wild barley (H. spontaneum) leaf transcriptome under salt stress. C R Biol 2015; 338:285-97. [PMID: 25882349 DOI: 10.1016/j.crvi.2015.03.010] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Revised: 03/10/2015] [Accepted: 03/12/2015] [Indexed: 11/16/2022]
Abstract
Wild salt-tolerant barley (Hordeum spontaneum) is the ancestor of cultivated barley (Hordeum vulgare or H. vulgare). Although the cultivated barley genome is well studied, little is known about genome structure and function of its wild ancestor. In the present study, RNA-Seq analysis was performed on young leaves of wild barley treated with salt (500mM NaCl) at four different time intervals. Transcriptome sequencing yielded 103 to 115 million reads for all replicates of each treatment, corresponding to over 10 billion nucleotides per sample. Of the total reads, between 74.8 and 80.3% could be mapped and 77.4 to 81.7% of the transcripts were found in the H. vulgare unigene database (unigene-mapped). The unmapped wild barley reads for all treatments and replicates were assembled de novo and the resulting contigs were used as a new reference genome. This resulted in 94.3 to 95.3% of the unmapped reads mapping to the new reference. The number of differentially expressed transcripts was 9277, 3861 of which were unigene-mapped. The annotated unigene- and de novo-mapped transcripts (5100) were utilized to generate expression clusters across time of salt stress treatment. Two-dimensional hierarchical clustering classified differential expression profiles into nine expression clusters, four of which were selected for further analysis. Differentially expressed transcripts were assigned to the main functional categories. The most important groups were "response to external stimulus" and "electron-carrier activity". Highly expressed transcripts are involved in several biological processes, including electron transport and exchanger mechanisms, flavonoid biosynthesis, reactive oxygen species (ROS) scavenging, ethylene production, signaling network and protein refolding. The comparisons demonstrated that mRNA-Seq is an efficient method for the analysis of differentially expressed genes and biological processes under salt stress.
Collapse
Affiliation(s)
- Ahmed Bahieldin
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University (KAU), P.O. Box 80141, 21589 Jeddah, Saudi Arabia; Department of Genetics, Faculty of Agriculture, Ain Shams University, Cairo, Egypt.
| | - Ahmed Atef
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University (KAU), P.O. Box 80141, 21589 Jeddah, Saudi Arabia
| | - Jamal S M Sabir
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University (KAU), P.O. Box 80141, 21589 Jeddah, Saudi Arabia
| | - Nour O Gadalla
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University (KAU), P.O. Box 80141, 21589 Jeddah, Saudi Arabia; Genetics and Cytology Department, Genetic Engineering and Biotechnology Division, National Research Center, Dokki, Egypt
| | - Sherif Edris
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University (KAU), P.O. Box 80141, 21589 Jeddah, Saudi Arabia; Department of Genetics, Faculty of Agriculture, Ain Shams University, Cairo, Egypt
| | - Ahmed M Alzohairy
- Genetics Department, Faculty of Agriculture, Zagazig University, 44511 Zagazig, Egypt
| | - Nezar A Radhwan
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University (KAU), P.O. Box 80141, 21589 Jeddah, Saudi Arabia
| | - Mohammed N Baeshen
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University (KAU), P.O. Box 80141, 21589 Jeddah, Saudi Arabia
| | - Ahmed M Ramadan
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University (KAU), P.O. Box 80141, 21589 Jeddah, Saudi Arabia; Agricultural Genetic Engineering Research Institute (AGERI), Agriculture Research Center (ARC), Giza, Egypt
| | - Hala F Eissa
- Agricultural Genetic Engineering Research Institute (AGERI), Agriculture Research Center (ARC), Giza, Egypt; Faculty of Biotechnology, Misr University for Science and Technology (MUST), 6th October City, Egypt
| | - Sabah M Hassan
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University (KAU), P.O. Box 80141, 21589 Jeddah, Saudi Arabia; Department of Genetics, Faculty of Agriculture, Ain Shams University, Cairo, Egypt
| | - Nabih A Baeshen
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University (KAU), P.O. Box 80141, 21589 Jeddah, Saudi Arabia
| | - Osama Abuzinadah
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University (KAU), P.O. Box 80141, 21589 Jeddah, Saudi Arabia
| | - Magdy A Al-Kordy
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University (KAU), P.O. Box 80141, 21589 Jeddah, Saudi Arabia; Genetics and Cytology Department, Genetic Engineering and Biotechnology Division, National Research Center, Dokki, Egypt
| | - Fotouh M El-Domyati
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University (KAU), P.O. Box 80141, 21589 Jeddah, Saudi Arabia; Department of Genetics, Faculty of Agriculture, Ain Shams University, Cairo, Egypt
| | - Robert K Jansen
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University (KAU), P.O. Box 80141, 21589 Jeddah, Saudi Arabia; Department of Integrative Biology, University of Texas at Austin, 78712 Austin, USA
| |
Collapse
|
229
|
Feng ZJ, Cui XY, Cui XY, Chen M, Yang GX, Ma YZ, He GY, Xu ZS. The soybean GmDi19-5 interacts with GmLEA3.1 and increases sensitivity of transgenic plants to abiotic stresses. FRONTIERS IN PLANT SCIENCE 2015; 6:179. [PMID: 25852726 PMCID: PMC4371698 DOI: 10.3389/fpls.2015.00179] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2015] [Accepted: 03/05/2015] [Indexed: 05/29/2023]
Abstract
Drought-induced (Di19) proteins played important roles in plant growth, development, and abiotic stress responses. In the present study, a total of seven Di19 genes were identified in soybean. Each soybean Di19 gene showed specific responses to salt, drought, oxidative, and ABA stresses based on expression profiles. With a relatively higher transcript level among Di19 members under four stress treatments, GmDi19-5 was selected for detailed analysis. Inhibitor assays revealed that ABA inhibitor (Fluridone) or H2O2 inhibitor (DMTU) was involved in the drought- or salt-induced transcription of GmDi19-5. The GUS activity driven by the GmDi19-5 promoter was induced by salt, PEG, ABA, and MV treatments and tended to be accumulated in the vascular bundles and young leaves. A subcellular localization assay showed that GmDi19-5 protein localized in the nucleus. Further investigation showed that GmDi19-5 protein was involved in the interaction with GmLEA3.1. Overexpression of GmDi19-5 increased sensitivity of transgenic Arabidopsis plants to salt, drought, oxidative, and ABA stresses and regulated expression of several ABA/stress-associated genes. This present investigation showed that GmDi19-5 functioned as a negative factor under abiotic stresses and was involved in ABA and SOS signaling pathway by altering transcription of stress-associated genes.
Collapse
Affiliation(s)
- Zhi-Juan Feng
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science and TechnologyWuhan, China
- Institute of Crop Science, Chinese Academy of Agricultural Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of AgricultureBeijing, China
| | - Xiao-Yu Cui
- Institute of Crop Science, Chinese Academy of Agricultural Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of AgricultureBeijing, China
| | - Xi-Yan Cui
- College of Life Sciences, Jilin Agricultural UniversityChangchun, China
| | - Ming Chen
- Institute of Crop Science, Chinese Academy of Agricultural Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of AgricultureBeijing, China
| | - Guang-Xiao Yang
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science and TechnologyWuhan, China
| | - You-Zhi Ma
- Institute of Crop Science, Chinese Academy of Agricultural Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of AgricultureBeijing, China
| | - Guang-Yuan He
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science and TechnologyWuhan, China
| | - Zhao-Shi Xu
- Institute of Crop Science, Chinese Academy of Agricultural Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of AgricultureBeijing, China
| |
Collapse
|
230
|
Jung CG, Hwang SG, Park YC, Park HM, Kim DS, Park DH, Jang CS. Molecular characterization of the cold- and heat-induced Arabidopsis PXL1 gene and its potential role in transduction pathways under temperature fluctuations. JOURNAL OF PLANT PHYSIOLOGY 2015; 176:138-46. [PMID: 25602612 DOI: 10.1016/j.jplph.2015.01.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Revised: 01/01/2015] [Accepted: 01/01/2015] [Indexed: 05/26/2023]
Abstract
LRR-RLK (Leucine-Rich Repeat Receptor-Like Kinase) proteins are believed to play essential roles in cell-to-cell communication during various cellular processes including development, hormone perception, and abiotic stress responses. We isolated an LRR-RLK gene previously named Arabidopsis PHLOEM INTERCALATED WITH XYLEM-LIKE 1 (AtPXL1) and examined its expression patterns. AtPXL1 was highly induced by cold and heat stress, but not by drought. The fluorescence signal of 35S::AtPXL1-EGFP was closely localized to the plasma membrane. A yeast two-hybrid and bimolecular fluorescence complementation assay exhibited that AtPXL1 interacts with both proteins, A. thaliana histidine-rich dehydrin1 (AtHIRD1) and A. thaliana light-harvesting protein complex I (AtLHCA1). We found that AtPXL1 possesses autophosphorylation activity and phosphorylates AtHIRD1 and AtLHCA1 in an in vitro assay. Subsequently, we found that the knockout line (atpxl1) showed hypersensitive phenotypes when subjected to cold and heat during the germination stage, while the AtPXL1 overexpressing line as well as wild type plants showed high germination rates compared to the knockout plants. These results provide an insight into the molecular function of AtPXL1 in the regulation of signal transduction pathways under temperature fluctuations.
Collapse
Affiliation(s)
- Chang Gyo Jung
- Plant Genomics Laboratory, Department of Applied Plant Sciences, Kangwon National University, Chuncheon 200-713, Republic of Korea
| | - Sun-Goo Hwang
- Plant Genomics Laboratory, Department of Applied Plant Sciences, Kangwon National University, Chuncheon 200-713, Republic of Korea
| | - Yong Chan Park
- Plant Genomics Laboratory, Department of Applied Plant Sciences, Kangwon National University, Chuncheon 200-713, Republic of Korea
| | - Hyeon Mi Park
- Plant Genomics Laboratory, Department of Applied Plant Sciences, Kangwon National University, Chuncheon 200-713, Republic of Korea
| | - Dong Sub Kim
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, 1266 Singjeong, Jeongeup 580-185, Jeonbuk, Republic of Korea
| | - Duck Hwan Park
- Department of Applied Biology, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon 200-713, Republic of Korea
| | - Cheol Seong Jang
- Plant Genomics Laboratory, Department of Applied Plant Sciences, Kangwon National University, Chuncheon 200-713, Republic of Korea.
| |
Collapse
|
231
|
Comparison of drought stress response and gene expression between a GM maize variety and a near-isogenic non-GM variety. PLoS One 2015; 10:e0117073. [PMID: 25692547 PMCID: PMC4333122 DOI: 10.1371/journal.pone.0117073] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Accepted: 12/11/2014] [Indexed: 11/19/2022] Open
Abstract
Maize MON810, grown and commercialised worldwide, is the only cultivated GM event in the EU. Maize MON810, variety DKC6575, and the corresponding near-isogenic line Tietar were studied in different growth conditions, to compare their behaviour in response to drought. Main photosynthetic parameters were significantly affected by drought stress in both GM and non-GM varieties to a similar extent. Though DKC6575 (GM) had a greater sensitivity in the early phase of stress response as compared with Tietar (non-GM), after six days of stress they behaved similarly, and both varieties recovered from stress damage. Profiling gene expression in water deficit regimes and in a generalised drought stress condition showed an up-regulation of many stress-responsive genes, but a greater number of differentially expressed genes was observed in Tietar, with genes belonging to transcription factor families and genes encoding heat shock proteins, late embryogenesis abundant proteins and detoxification enzymes. Since induction of these genes have been indicated from the literature as typical of stress responses, their activation in Tietar rather than in DKC6575 may be reminiscent of a more efficient response to drought. DKC6575 was also analysed for the expression of the transgene CryIAb (encoding the delta-endotoxin insecticidal protein) in water deficit conditions. In all the experiments, the CryIAb transcript was not influenced by drought stress, but was expressed at a constant level. This suggests that though possessing a different pattern of sensitivity to stress, the GM variety maintains the same expression level for the transgene.
Collapse
|
232
|
Charfeddine S, Saïdi MN, Charfeddine M, Gargouri-Bouzid R. Genome-wide identification and expression profiling of the late embryogenesis abundant genes in potato with emphasis on dehydrins. Mol Biol Rep 2015. [PMID: 25638043 DOI: 10.1007/s11033‐015‐3853‐2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Late embryogenesis abundant (LEA) proteins were first described as accumulating late in plant seed development. They were also shown to be involved in plant responses to environmental stress and as well as in bacteria, yeast and invertebrates. They are known to play crucial roles in dehydration tolerance. This study describes a genome-wide analysis of LEA proteins and the corresponding genes in Solanum tuberosum. Twenty-nine LEA family members encoding genes in the Solanum genome were identified. Phylogenetic analyses allowed the classification of the potato LEA proteins into nine distinct groups. Some of them were identified as putative orthologs of Arabidopsis and rice LEA genes. In silico analyses confirmed the hydrophilicity of most of the StLEA proteins, whereas some of them can be folded. The in silico expression analyses showed that the identified genes displayed tissue-specific, stress and hormone-responsive expression profiles. Five StLEA classified as dehydrins were selected for expression analyses under salt and drought stresses. The data revealed that they were induced by both stresses. The analyses indicate that several factors such us developmental stages, hormones, and dehydration, can regulate the expression and activities of LEA protein. This report can be helpful for the further functional diversity studies and analyses of LEA proteins in potato. These genes can be overexpressed to improve potato abiotic stress response.
Collapse
Affiliation(s)
- Safa Charfeddine
- Unité Enzymes et Bioconversion, Ecole Nationale d'Ingénieurs de Sfax, Route Soukra Km 4, B.P 1173, 3038, Sfax, Tunisia,
| | | | | | | |
Collapse
|
233
|
Liu H, Yu C, Li H, Ouyang B, Wang T, Zhang J, Wang X, Ye Z. Overexpression of ShDHN, a dehydrin gene from Solanum habrochaites enhances tolerance to multiple abiotic stresses in tomato. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2015; 231:198-211. [PMID: 25576005 DOI: 10.1016/j.plantsci.2014.12.006] [Citation(s) in RCA: 95] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2014] [Revised: 12/04/2014] [Accepted: 12/06/2014] [Indexed: 05/02/2023]
Abstract
Dehydrins (DHNs) play important roles in plant adaptation to abiotic stress. In this study, a cold-induced SK3-type DHN gene (ShDHN) isolated from wild tomato species Solanum habrochaites was characterized for its function in abiotic stress tolerance. ShDHN was constitutively expressed in root, leaf, stem, flower and fruit. ShDHN was continuously up-regulated during cold stress and showed higher expression level in the cold-tolerant S. habrochaites than in the susceptible S. lycopersicum. Moreover, ShDHN expression was also regulated by drought, salt, osmotic stress, and exogenous signaling molecules. Overexpression of ShDHN in cultivated tomato increased tolerance to cold and drought stresses and improved seedling growth under salt and osmotic stresses. Compared with the wild-type, the transgenic plants accumulated more proline, maintained higher enzymatic activities of superoxide dismutase and catalase, and suffered less membrane damage under cold and drought stresses. Moreover, the transgenic plants accumulated lower levels of H2O2 and O2(-) under cold stress, and had higher relative water contents and lower water loss rates under dehydration conditions. Furthermore, overexpression of ShDHN in tomato led to the up- or down-regulated expression of several genes involved in ROS scavenging and JA signaling pathway, including SOD1, GST, POD, LOX, PR1 and PR2. Taken together, these results indicate that ShDHN has pleiotropic effects on improving plant adaptation to abiotic stresses and that it possesses potential usefulness in genetic improvement of stress tolerance in tomato.
Collapse
Affiliation(s)
- Hui Liu
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, No. 1, Shizishan Street, Hongshan District, Wuhan, Hubei 430070, China; Key Laboratory of Biology and Genetic Resources of Rubber Tree, Ministry of Agriculture, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Danzhou 571737, China
| | - Chuying Yu
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, No. 1, Shizishan Street, Hongshan District, Wuhan, Hubei 430070, China
| | - Hanxia Li
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, No. 1, Shizishan Street, Hongshan District, Wuhan, Hubei 430070, China
| | - Bo Ouyang
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, No. 1, Shizishan Street, Hongshan District, Wuhan, Hubei 430070, China
| | - Taotao Wang
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, No. 1, Shizishan Street, Hongshan District, Wuhan, Hubei 430070, China
| | - Junhong Zhang
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, No. 1, Shizishan Street, Hongshan District, Wuhan, Hubei 430070, China
| | - Xin Wang
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, No. 1, Shizishan Street, Hongshan District, Wuhan, Hubei 430070, China
| | - Zhibiao Ye
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, No. 1, Shizishan Street, Hongshan District, Wuhan, Hubei 430070, China.
| |
Collapse
|
234
|
Charfeddine S, Saïdi MN, Charfeddine M, Gargouri-Bouzid R. Genome-wide identification and expression profiling of the late embryogenesis abundant genes in potato with emphasis on dehydrins. Mol Biol Rep 2015; 42:1163-74. [PMID: 25638043 DOI: 10.1007/s11033-015-3853-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Accepted: 01/27/2015] [Indexed: 10/24/2022]
Abstract
Late embryogenesis abundant (LEA) proteins were first described as accumulating late in plant seed development. They were also shown to be involved in plant responses to environmental stress and as well as in bacteria, yeast and invertebrates. They are known to play crucial roles in dehydration tolerance. This study describes a genome-wide analysis of LEA proteins and the corresponding genes in Solanum tuberosum. Twenty-nine LEA family members encoding genes in the Solanum genome were identified. Phylogenetic analyses allowed the classification of the potato LEA proteins into nine distinct groups. Some of them were identified as putative orthologs of Arabidopsis and rice LEA genes. In silico analyses confirmed the hydrophilicity of most of the StLEA proteins, whereas some of them can be folded. The in silico expression analyses showed that the identified genes displayed tissue-specific, stress and hormone-responsive expression profiles. Five StLEA classified as dehydrins were selected for expression analyses under salt and drought stresses. The data revealed that they were induced by both stresses. The analyses indicate that several factors such us developmental stages, hormones, and dehydration, can regulate the expression and activities of LEA protein. This report can be helpful for the further functional diversity studies and analyses of LEA proteins in potato. These genes can be overexpressed to improve potato abiotic stress response.
Collapse
Affiliation(s)
- Safa Charfeddine
- Unité Enzymes et Bioconversion, Ecole Nationale d'Ingénieurs de Sfax, Route Soukra Km 4, B.P 1173, 3038, Sfax, Tunisia,
| | | | | | | |
Collapse
|
235
|
Wheat dehydrin K-segments ensure bacterial stress tolerance, antiaggregation and antimicrobial effects. Appl Biochem Biotechnol 2015; 175:3310-21. [PMID: 25637507 DOI: 10.1007/s12010-015-1502-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Accepted: 01/20/2015] [Indexed: 12/23/2022]
Abstract
Dehydrins are a group of plant proteins that have been shown to be involved in the tolerance of various abiotic stresses such as dehydration, salinity, and low temperature. We have previously shown that the K-segments of the wheat dehydrin DHN-5 are essential for the protection of enzyme activities in vitro. In this study, we further investigate the role of the K-segments in the growth of Escherichia coli under various stresses, and we tested their antibacterial and antifungal activities. Our results showed that the truncated forms of DHN-5 containing the two K-segments enhanced tolerance of E. coli against diverse stresses by protecting proteins against aggregation. In addition, we demonstrated that the K-segments have antibacterial and antifungal activities against Gram-positive and Gram-negative bacteria and fungi. Based on these results, we propose that the K-segments may play a protective role in plants not only under abiotic stress conditions but also most likely during defense mechanisms.
Collapse
|
236
|
Yang W, Zhang L, Lv H, Li H, Zhang Y, Xu Y, Yu J. The K-segments of wheat dehydrin WZY2 are essential for its protective functions under temperature stress. FRONTIERS IN PLANT SCIENCE 2015. [PMID: 26124763 DOI: 10.3389/fpls.2015.00406ref] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Dehydrins (DHNs), group 2 of late embryogenesis abundant (LEA) proteins, are up-regulated in most plants during cold, drought, heat, or salinity stress. All DHNs contain at least one K-segment, which is believed to play a significant role in DHN function by forming an amphipathic helix. In previous studies, wzy2, an YSK2-type DHN gene, was isolated from the Zhengyin 1 cultivar of Triticum aestivum under cold and drought stress treatment conditions. Four WZY2 truncated derivatives were constructed to knock out the K-, Y- or S-segment, which potentially affect the function of the protein. In vivo assays of Escherichia coli viability enhancement, in vitro lactate dehydrogenase (LDH) activity protection and ex vivo protein aggregation prevention assays revealed that WZY2 acted as a protectant and improved stress tolerance during temperature variation. The results also showed that unlike the truncated derivative without K-segments, the derivative containing two K-segments had remarkable effects that were similar to those of full-length WZY2, indicating that the K-segment is the major functional component of WZY2. Moreover, compared with the other segments, the first K-segment might be the most critical contributor to WZY2 functionality. In general, this work highlights the behavior of DHNs in relieving cold stress ex vivo and the contribution of the K-segment to DHN function.
Collapse
Affiliation(s)
- Wenbo Yang
- College of Life Sciences/State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling China
| | - Linsheng Zhang
- College of Life Sciences/State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling China
| | - Hui Lv
- College of Life Sciences/State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling China
| | - He Li
- College of Life Sciences/State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling China
| | - Yane Zhang
- College of Life Sciences/State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling China
| | - Yang Xu
- College of Life Sciences/State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling China
| | - Jianing Yu
- College of Life Sciences, Shaanxi Normal University Xi'an, China
| |
Collapse
|
237
|
Thakur A, Bhatla SC. Proteomic analysis of oil body membrane proteins accompanying the onset of desiccation phase during sunflower seed development. PLANT SIGNALING & BEHAVIOR 2015; 10:e1030100. [PMID: 26786011 PMCID: PMC4854339 DOI: 10.1080/15592324.2015.1030100] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Revised: 03/10/2015] [Accepted: 03/11/2015] [Indexed: 05/20/2023]
Abstract
A noteworthy metabolic signature accompanying oil body (OB) biogenesis during oilseed development is associated with the modulation of the oil body membranes proteins. Present work focuses on 2-dimensional polyacrylamide gel electrophoresis (2-D PAGE)-based analysis of the temporal changes in the OB membrane proteins analyzed by LC-MS/MS accompanying the onset of desiccation (20-30 d after anthesis; DAA) in the developing seeds of sunflower (Helianthus annuus L.). Protein spots unique to 20-30 DAA stages were picked up from 2-D gels for identification and the identified proteins were categorized into 7 functional classes. These include proteins involved in energy metabolism, reactive oxygen scavenging, proteolysis and protein turnover, signaling, oleosin and oil body biogenesis-associated proteins, desiccation and cytoskeleton. At 30 DAA stage, exclusive expressions of enzymes belonging to energy metabolism, desiccation and cytoskeleton were evident which indicated an increase in the metabolic and enzymatic activity in the cells at this stage of seed development (seed filling). Increased expression of cruciferina-like protein and dehydrin at 30 DAA stage marks the onset of desiccation. The data has been analyzed and discussed to highlight desiccation stage-associated metabolic events during oilseed development.
Collapse
Affiliation(s)
- Anita Thakur
- Laboratory of Plant Physiology and Biochemistry; Department of Botany; University of Delhi; Delhi, India
| | - Satish C Bhatla
- Laboratory of Plant Physiology and Biochemistry; Department of Botany; University of Delhi; Delhi, India
| |
Collapse
|
238
|
Yaish MW, Kumar PP. Salt tolerance research in date palm tree (Phoenix dactylifera L.), past, present, and future perspectives. FRONTIERS IN PLANT SCIENCE 2015; 6:348. [PMID: 26042137 PMCID: PMC4434913 DOI: 10.3389/fpls.2015.00348] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Accepted: 05/01/2015] [Indexed: 05/22/2023]
Abstract
The date palm can adapt to extreme drought, to heat, and to relatively high levels of soil salinity. However, excessive amounts of salt due to irrigation with brackish water lead to a significant reduction in the productivity of the fruits as well as marked decrease in the viable numbers of the date palm trees. It is imperative that the nature of the existing salt-adaptation mechanism be understood in order to develop future date palm varieties that can tolerate excessive soil salinity. In this perspective article, several research strategies, obstacles, and precautions are discussed in light of recent advancements accomplished in this field and the properties of this species. In addition to a physiological characterization, we propose the use of a full range of OMICS technologies, coupled with reverse genetics approaches, aimed toward understanding the salt-adaption mechanism in the date palm. Information generated by these analyses should highlight transcriptional and posttranscriptional modifications controlling the salt-adaptation mechanisms. As an extremophile with a natural tolerance for a wide range of abiotic stresses, the date palm may represent a treasure trove of novel genetic resources for salinity tolerance.
Collapse
Affiliation(s)
- Mahmoud W. Yaish
- Department of Biology, College of Science, Sultan Qaboos University, Muscat, Oman
- *Correspondence: Mahmoud W. Yaish, Department of Biology, College of Science, Sultan Qaboos University, P.O. Box 36, 123 Muscat, Oman,
| | - Prakash P. Kumar
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| |
Collapse
|
239
|
Todaka D, Shinozaki K, Yamaguchi-Shinozaki K. Recent advances in the dissection of drought-stress regulatory networks and strategies for development of drought-tolerant transgenic rice plants. FRONTIERS IN PLANT SCIENCE 2015; 6:84. [PMID: 25741357 PMCID: PMC4332304 DOI: 10.3389/fpls.2015.00084] [Citation(s) in RCA: 206] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Accepted: 02/02/2015] [Indexed: 05/17/2023]
Abstract
Advances have been made in the development of drought-tolerant transgenic plants, including cereals. Rice, one of the most important cereals, is considered to be a critical target for improving drought tolerance, as present-day rice cultivation requires large quantities of water and as drought-tolerant rice plants should be able to grow in small amounts of water. Numerous transgenic rice plants showing enhanced drought tolerance have been developed to date. Such genetically engineered plants have generally been developed using genes encoding proteins that control drought regulatory networks. These proteins include transcription factors, protein kinases, receptor-like kinases, enzymes related to osmoprotectant or plant hormone synthesis, and other regulatory or functional proteins. Of the drought-tolerant transgenic rice plants described in this review, approximately one-third show decreased plant height under non-stressed conditions or in response to abscisic acid treatment. In cereal crops, plant height is a very important agronomic trait directly affecting yield, although the improvement of lodging resistance should also be taken into consideration. Understanding the regulatory mechanisms of plant growth reduction under drought stress conditions holds promise for developing transgenic plants that produce high yields under drought stress conditions. Plant growth rates are reduced more rapidly than photosynthetic activity under drought conditions, implying that plants actively reduce growth in response to drought stress. In this review, we summarize studies on molecular regulatory networks involved in response to drought stress. In a separate section, we highlight progress in the development of transgenic drought-tolerant rice plants, with special attention paid to field trial investigations.
Collapse
Affiliation(s)
- Daisuke Todaka
- Laboratory of Plant Molecular Physiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, TokyoJapan
| | - Kazuo Shinozaki
- RIKEN Center for Sustainable Resource Science, YokohamaJapan
| | - Kazuko Yamaguchi-Shinozaki
- Laboratory of Plant Molecular Physiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, TokyoJapan
- *Correspondence: Kazuko Yamaguchi-Shinozaki, Laboratory of Plant Molecular Physiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan e-mail:
| |
Collapse
|
240
|
Hernández-Sánchez IE, Maruri-López I, Ferrando A, Carbonell J, Graether SP, Jiménez-Bremont JF. Nuclear localization of the dehydrin OpsDHN1 is determined by histidine-rich motif. FRONTIERS IN PLANT SCIENCE 2015; 6:702. [PMID: 26442018 PMCID: PMC4561349 DOI: 10.3389/fpls.2015.00702] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Accepted: 08/23/2015] [Indexed: 05/18/2023]
Abstract
The cactus OpsDHN1 dehydrin belongs to a large family of disordered and highly hydrophilic proteins known as Late Embryogenesis Abundant (LEA) proteins, which accumulate during the late stages of embryogenesis and in response to abiotic stresses. Herein, we present the in vivo OpsDHN1 subcellular localization by N-terminal GFP translational fusion; our results revealed a cytoplasmic and nuclear localization of the GFP::OpsDHN1 protein in Nicotiana benthamiana epidermal cells. In addition, dimer assembly of OpsDHN1 in planta using a Bimolecular Fluorescence Complementation (BiFC) approach was demonstrated. In order to understand the in vivo role of the histidine-rich motif, the OpsDHN1-ΔHis version was produced and assayed for its subcellular localization and dimer capability by GFP fusion and BiFC assays, respectively. We found that deletion of the OpsDHN1 histidine-rich motif restricted its localization to cytoplasm, but did not affect dimer formation. In addition, the deletion of the S-segment in the OpsDHN1 protein affected its nuclear localization. Our data suggest that the deletion of histidine-rich motif and S-segment show similar effects, preventing OpsDHN1 from getting into the nucleus. Based on these results, the histidine-rich motif is proposed as a targeting element for OpsDHN1 nuclear localization.
Collapse
Affiliation(s)
- Itzell E. Hernández-Sánchez
- Laboratorio de Biología Molecular de Hongos y Plantas, División de Biología Molecular, Instituto Potosino de Investigación Científica y Tecnológica ACSan Luis Potosí, México
| | - Israel Maruri-López
- Laboratorio de Biología Molecular de Hongos y Plantas, División de Biología Molecular, Instituto Potosino de Investigación Científica y Tecnológica ACSan Luis Potosí, México
| | - Alejandro Ferrando
- Instituto de Biología Molecular y Celular de Plantas, Universidad Politécnica de Valencia-Consejo Superior de Investigaciones CientíficasValencia, Spain
| | - Juan Carbonell
- Instituto de Biología Molecular y Celular de Plantas, Universidad Politécnica de Valencia-Consejo Superior de Investigaciones CientíficasValencia, Spain
| | - Steffen P. Graether
- Department of Molecular and Cellular Biology, University of GuelphGuelph, ON, Canada
| | - Juan F. Jiménez-Bremont
- Laboratorio de Biología Molecular de Hongos y Plantas, División de Biología Molecular, Instituto Potosino de Investigación Científica y Tecnológica ACSan Luis Potosí, México
- *Correspondence: Juan F. Jiménez-Bremont, Laboratorio de Biología Molecular de Hongos y Plantas, División de Biología Molecular, Instituto Potosino de Investigación Científica y Tecnológica AC, Camino a la Presa de San Jose No. 2055 Lomas 4a Seccion Cp 78216, AP 3-74 Tangamanga, San Luis Potosi, Mexico
| |
Collapse
|
241
|
Yang W, Zhang L, Lv H, Li H, Zhang Y, Xu Y, Yu J. The K-segments of wheat dehydrin WZY2 are essential for its protective functions under temperature stress. FRONTIERS IN PLANT SCIENCE 2015; 6:406. [PMID: 26124763 PMCID: PMC4467595 DOI: 10.3389/fpls.2015.00406] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Accepted: 05/19/2015] [Indexed: 05/02/2023]
Abstract
Dehydrins (DHNs), group 2 of late embryogenesis abundant (LEA) proteins, are up-regulated in most plants during cold, drought, heat, or salinity stress. All DHNs contain at least one K-segment, which is believed to play a significant role in DHN function by forming an amphipathic helix. In previous studies, wzy2, an YSK2-type DHN gene, was isolated from the Zhengyin 1 cultivar of Triticum aestivum under cold and drought stress treatment conditions. Four WZY2 truncated derivatives were constructed to knock out the K-, Y- or S-segment, which potentially affect the function of the protein. In vivo assays of Escherichia coli viability enhancement, in vitro lactate dehydrogenase (LDH) activity protection and ex vivo protein aggregation prevention assays revealed that WZY2 acted as a protectant and improved stress tolerance during temperature variation. The results also showed that unlike the truncated derivative without K-segments, the derivative containing two K-segments had remarkable effects that were similar to those of full-length WZY2, indicating that the K-segment is the major functional component of WZY2. Moreover, compared with the other segments, the first K-segment might be the most critical contributor to WZY2 functionality. In general, this work highlights the behavior of DHNs in relieving cold stress ex vivo and the contribution of the K-segment to DHN function.
Collapse
Affiliation(s)
- Wenbo Yang
- College of Life Sciences/State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, YanglingChina
| | - Linsheng Zhang
- College of Life Sciences/State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, YanglingChina
- *Correspondence: Linsheng Zhang, College of Life Sciences/State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Xinong Road No.22, Yangling, Shaanxi 712100, China
| | - Hui Lv
- College of Life Sciences/State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, YanglingChina
| | - He Li
- College of Life Sciences/State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, YanglingChina
| | - Yane Zhang
- College of Life Sciences/State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, YanglingChina
| | - Yang Xu
- College of Life Sciences/State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, YanglingChina
| | - Jianing Yu
- College of Life Sciences, Shaanxi Normal UniversityXi’an, China
| |
Collapse
|
242
|
La Porta N, Sablok G, Emilliani G, Hietala AM, Giovannelli A, Fontana P, Potenza E, Baldi P. Identification of Low Temperature Stress Regulated Transcript Sequences and Gene Families in Italian Cypress. Mol Biotechnol 2014; 57:407-18. [DOI: 10.1007/s12033-014-9833-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
243
|
Hu G, Koh J, Yoo MJ, Pathak D, Chen S, Wendel JF. Proteomics profiling of fiber development and domestication in upland cotton (Gossypium hirsutum L.). PLANTA 2014; 240:1237-1251. [PMID: 25156487 DOI: 10.1007/s00425-014-2146-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Accepted: 08/07/2014] [Indexed: 06/03/2023]
Abstract
Comparative proteomic analyses were performed to detail the evolutionary consequences of strong directional selection for enhanced fiber traits in modern upland cotton (Gossypium hirsutum L.). Using two complementary proteomic approaches, 2-DE and iTRAQ LC-MS/MS, fiber proteomes were examined for four representative stages of fiber development. Approximately 1,000 protein features were characterized using each strategy, collectively resulting in the identification and functional categorization of 1,223 proteins. Unequal contributions of homoeologous proteins were detected for over a third of the fiber proteome, but overall expression was balanced with respect to the genome-of-origin in the allopolyploid G. hirsutum. About 30% of the proteins were differentially expressed during fiber development within wild and domesticated cotton. Notably, domestication was accompanied by a doubling of protein developmental dynamics for the period between 10 and 20 days following pollination. Expression levels of 240 iTRAQ proteins and 293 2-DE spots were altered by domestication, collectively representing multiple cellular and metabolic processes, including metabolism, energy, protein synthesis and destination, defense and stress response. Analyses of homoeolog-specific expression indicate that duplicated gene products in cotton fibers can be differently regulated in response to selection. These results demonstrate the power of proteomics for the analysis of crop domestication and phenotypic evolution.
Collapse
Affiliation(s)
- Guanjing Hu
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA, 50011, USA
| | | | | | | | | | | |
Collapse
|
244
|
Rosales R, Romero I, Escribano MI, Merodio C, Sanchez-Ballesta MT. The crucial role of Φ- and K-segments in the in vitro functionality of Vitis vinifera dehydrin DHN1a. PHYTOCHEMISTRY 2014; 108:17-25. [PMID: 25457499 DOI: 10.1016/j.phytochem.2014.10.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Revised: 10/02/2014] [Accepted: 10/08/2014] [Indexed: 05/07/2023]
Abstract
Dehydrins (DHNs), group II LEA (Late Embryogenesis Abundant) proteins, are among the most commonly observed proteins which accumulate in plants in response to cold and any other environmental factors, causing the dehydration of cells. In previous studies, we isolated a YSK2-type VvcDHN1a gene from table grapes (Vitis vinifera cv. Cardinal) which presented two spliced variants (the spliced, DHN1a_s and the unspliced, DHN1a_u). Their expression was induced by low temperature storage and CO2, although with different accumulation patterns. DHN1a_u codifies for a truncated YS protein lacking Ф- and K-segments, which might affect its functionality. In this work, we expressed both DHN1a_s and DHN1a_u recombinant proteins in Escherichia coli. We carried out a number of in vitro assays to analyze the implications that Ф- and K-segments have in the protective role of VvcDHN1 against different abiotic stresses and their antifungal activity against the fungal pathogen Botrytis cinerea. Our results showed that unlike DHN1a_u, DHN1a_s has a potent cryoprotective effect on lactate dehydrogenase activity, protects malate dehydrogenase against dehydration and partially inhibits B. cinerea growth. Moreover, the DHN1a promoter presented cis-regulatory elements related to cold and drought, as well as biotic stress-related elements. We also observed that both spliced variants interact weakly with DNA, suggesting that K-segments are not involved in DNA binding. Overall, this work highlights the crucial role of Ф- and K-segments in DHNs function in plant response to abiotic stress showing for the first time, the potential role of the V. vinifera DHN1a_s in the protection against freezing and dehydration as well as inhibiting B. cinerea growth.
Collapse
|
245
|
Jyothi-Prakash PA, Mohanty B, Wijaya E, Lim TM, Lin Q, Loh CS, Kumar PP. Identification of salt gland-associated genes and characterization of a dehydrin from the salt secretor mangrove Avicennia officinalis. BMC PLANT BIOLOGY 2014; 14:291. [PMID: 25404140 PMCID: PMC4247641 DOI: 10.1186/s12870-014-0291-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Accepted: 10/15/2014] [Indexed: 05/06/2023]
Abstract
BACKGROUND Salt stress is a major challenge for growth and development of plants. The mangrove tree Avicennia officinalis has evolved salt tolerance mechanisms such as salt secretion through specialized glands on its leaves. Although a number of structural studies on salt glands have been done, the molecular mechanism of salt secretion is not clearly understood. Also, studies to identify salt gland-specific genes in mangroves have been scarce. RESULTS By subtractive hybridization (SH) of cDNA from salt gland-rich cell layers (tester) with mesophyll tissues as the driver, several Expressed Sequence Tags (ESTs) were identified. The major classes of ESTs identified include those known to be involved in regulating metabolic processes (37%), stress response (17%), transcription (17%), signal transduction (17%) and transport functions (12%). A visual interactive map generated based on predicted functional gene interactions of the identified ESTs suggested altered activities of hydrolase, transmembrane transport and kinases. Quantitative Real-Time PCR (qRT-PCR) was carried out to validate the expression specificity of the ESTs identified by SH. A Dehydrin gene was chosen for further experimental analysis, because it is significantly highly expressed in salt gland cells, and dehydrins are known to be involved in stress remediation in other plants. Full-length Avicennia officinalis Dehydrin1 (AoDHN1) cDNA was obtained by Rapid Amplification of cDNA Ends. Phylogenetic analysis and further characterization of this gene suggested that AoDHN1 belongs to group II Late Embryogenesis Abundant proteins. qRT-PCR analysis of Avicennia showed up-regulation of AoDHN1 in response to salt and drought treatments. Furthermore, some functional insights were obtained by growing E. coli cells expressing AoDHN1. Growth of E. coli cells expressing AoDHN1 was significantly higher than that of the control cells without AoDHN1 under salinity and drought stresses, suggesting that the mangrove dehydrin protein helps to mitigate the abiotic stresses. CONCLUSIONS Thirty-four ESTs were identified to be enriched in salt gland-rich tissues of A. officinalis leaves. qRT-PCR analysis showed that 10 of these were specifically enriched in the salt gland-rich tissues. Our data suggest that one of the selected genes, namely, AoDHN1 plays an important role to mitigate salt and drought stress responses.
Collapse
Affiliation(s)
- Pavithra A Jyothi-Prakash
- />Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore, Republic of Singapore
- />NUS Environmental Research Institute (NERI), National University of Singapore, #02-01, T-Lab Building, 5A Engineering Drive 1, Singapore, Republic of Singapore
| | - Bijayalaxmi Mohanty
- />Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, Republic of Singapore
| | - Edward Wijaya
- />IFReC, Osaka University, 3-1 Yamada-oka, Suita, Osaka 565-0871 Japan
| | - Tit-Meng Lim
- />Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore, Republic of Singapore
| | - Qingsong Lin
- />Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore, Republic of Singapore
| | - Chiang-Shiong Loh
- />Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore, Republic of Singapore
- />NUS Environmental Research Institute (NERI), National University of Singapore, #02-01, T-Lab Building, 5A Engineering Drive 1, Singapore, Republic of Singapore
| | - Prakash P Kumar
- />Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore, Republic of Singapore
- />Temasek Life Sciences Laboratory, National University of Singapore, 1 Research Link, Singapore, Republic of Singapore
| |
Collapse
|
246
|
Protein profiles reveal diverse responsive signaling pathways in kernels of two maize inbred lines with contrasting drought sensitivity. Int J Mol Sci 2014; 15:18892-918. [PMID: 25334062 PMCID: PMC4227252 DOI: 10.3390/ijms151018892] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Revised: 09/30/2014] [Accepted: 10/08/2014] [Indexed: 01/18/2023] Open
Abstract
Drought stress is a major factor that contributes to disease susceptibility and yield loss in agricultural crops. To identify drought responsive proteins and explore metabolic pathways involved in maize tolerance to drought stress, two maize lines (B73 and Lo964) with contrasting drought sensitivity were examined. The treatments of drought and well water were applied at 14 days after pollination (DAP), and protein profiles were investigated in developing kernels (35 DAP) using iTRAQ (isobaric tags for relative and absolute quantitation). Proteomic analysis showed that 70 and 36 proteins were significantly altered in their expression under drought treatments in B73 and Lo964, respectively. The numbers and levels of differentially expressed proteins were generally higher in the sensitive genotype, B73, implying an increased sensitivity to drought given the function of the observed differentially expressed proteins, such as redox homeostasis, cell rescue/defense, hormone regulation and protein biosynthesis and degradation. Lo964 possessed a more stable status with fewer differentially expressed proteins. However, B73 seems to rapidly initiate signaling pathways in response to drought through adjusting diverse defense pathways. These changes in protein expression allow for the production of a drought stress-responsive network in maize kernels.
Collapse
|
247
|
Rivera-Najera LY, Saab-Rincón G, Battaglia M, Amero C, Pulido NO, García-Hernández E, Solórzano RM, Reyes JL, Covarrubias AA. A group 6 late embryogenesis abundant protein from common bean is a disordered protein with extended helical structure and oligomer-forming properties. J Biol Chem 2014; 289:31995-32009. [PMID: 25271167 DOI: 10.1074/jbc.m114.583369] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Late embryogenesis-abundant proteins accumulate to high levels in dry seeds. Some of them also accumulate in response to water deficit in vegetative tissues, which leads to a remarkable association between their presence and low water availability conditions. A major sub-group of these proteins, also known as typical LEA proteins, shows high hydrophilicity and a high percentage of glycine and other small amino acid residues, distinctive physicochemical properties that predict a high content of structural disorder. Although all typical LEA proteins share these characteristics, seven groups can be distinguished by sequence similarity, indicating structural and functional diversity among them. Some of these groups have been extensively studied; however, others require a more detailed analysis to advance in their functional understanding. In this work, we report the structural characterization of a group 6 LEA protein from a common bean (Phaseolus vulgaris L.) (PvLEA6) by circular dichroism and nuclear magnetic resonance showing that it is a disordered protein in aqueous solution. Using the same techniques, we show that despite its unstructured nature, the addition of trifluoroethanol exhibited an intrinsic potential in this protein to gain helicity. This property was also promoted by high osmotic potentials or molecular crowding. Furthermore, we demonstrate that PvLEA6 protein is able to form soluble homo-oligomeric complexes that also show high levels of structural disorder. The association between PvLEA6 monomers to form dimers was shown to occur in plant cells by bimolecular fluorescence complementation, pointing to the in vivo functional relevance of this association.
Collapse
Affiliation(s)
- Lucero Y Rivera-Najera
- Departamentos de Biología Molecular de Plantas and Universidad Nacional Autónoma de México, Apdo. Postal 510-3, 62250 Cuernavaca, Mor
| | - Gloria Saab-Rincón
- Departamentos de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Apdo. Postal 510-3, 62250 Cuernavaca, Mor
| | - Marina Battaglia
- Departamentos de Biología Molecular de Plantas and Universidad Nacional Autónoma de México, Apdo. Postal 510-3, 62250 Cuernavaca, Mor
| | - Carlos Amero
- Centro de Investigaciones Químicas, Universidad Autónoma del Estado de Morelos, Av. Universidad No. 1001, Col Chamilpa, 62209 Cuernavaca, Morelos, and
| | - Nancy O Pulido
- Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, México 04510, D. F. México
| | - Enrique García-Hernández
- Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, México 04510, D. F. México
| | - Rosa M Solórzano
- Departamentos de Biología Molecular de Plantas and Universidad Nacional Autónoma de México, Apdo. Postal 510-3, 62250 Cuernavaca, Mor
| | - José L Reyes
- Departamentos de Biología Molecular de Plantas and Universidad Nacional Autónoma de México, Apdo. Postal 510-3, 62250 Cuernavaca, Mor
| | - Alejandra A Covarrubias
- Departamentos de Biología Molecular de Plantas and Universidad Nacional Autónoma de México, Apdo. Postal 510-3, 62250 Cuernavaca, Mor..
| |
Collapse
|
248
|
Radwan A, Hara M, Kleinwächter M, Selmar D. Dehydrin expression in seeds and maturation drying: a paradigm change. PLANT BIOLOGY (STUTTGART, GERMANY) 2014; 16:853-5. [PMID: 25040649 DOI: 10.1111/plb.12228] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Accepted: 05/29/2014] [Indexed: 05/25/2023]
Abstract
Dehydrins are well known for being expressed in leaves during the course of developmental processes as well as under drought stress, being part of the protective machinery. Moreover, in seed physiology, dehydrins are classified as late embryogenesis-related proteins (LEA protein), where they are thought to be responsible for persistence and longevity of seeds. Although both topics are a focus of modern plant biology, a direct linkage between these both areas is generally lacking. Based on an alignment of the chain of events, this paper will help to generate understanding that the occurrence of dehydrins in maturing seeds and leaves suffering drought stress is part of the same basic principle: basic principle: dehydrins are expressed in response to water shortage. Unfortunately, the related developmental process in seeds, i.e. maturation drying, has not been adequately considered as a part of this process. As a corresponding implication, the chain of events must be adjusted: the differences in dehydrin expression in orthodox, intermediate and recalcitrant seeds could be directly attributed to the occurrence or absence of maturation drying. The differences in dehydrin expression in orthodox, intermediate and recalcitrant seeds, and thus the differences in longevity, could be attributed to the occurrence or absence of a maturation drying.
Collapse
Affiliation(s)
- A Radwan
- Institute for Plant Biology, Technische Universität Braunschweig, Braunschweig, Germany
| | | | | | | |
Collapse
|
249
|
Fernández I, Merlos M, López-Ráez JA, Martínez-Medina A, Ferrol N, Azcón C, Bonfante P, Flors V, Pozo MJ. Defense related phytohormones regulation in arbuscular mycorrhizal symbioses depends on the partner genotypes. J Chem Ecol 2014; 40:791-803. [PMID: 24997625 DOI: 10.1007/s10886-014-0473-6] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Revised: 06/20/2014] [Accepted: 06/24/2014] [Indexed: 11/25/2022]
Abstract
Arbuscular mycorrhizal (AM) symbioses are mutualistic associations between soil fungi and most vascular plants. Modulation of the hormonal and transcriptional profiles, including changes related to defense signalling, has been reported in many host plants during AM symbioses. These changes have been often related to the improved stress tolerance common in mycorrhizal plants. However, results on the alterations in phytohormones content and their role on the symbiosis are controversial. Here, an integrative analysis of the response of phylogenetically diverse plants (i.e., tomato, soybean, and maize) to two mycorrhizal fungi -Funneliformis mosseae and Rhizophagus irregularis- was performed. The analysis of the defense-related hormones salicylic acid, abscisic acid, and jasmonates, and the expression of marker genes of the pathways they regulate, revealed significant changes in the roots of mycorrhizal plants. These changes depended on both the plant and the AM fungus (AMF) involved. However, general trends can be identified: roots associated with the most effective colonizer R. irregularis showed fewer changes in these defense-related traits, while the colonization by F. mosseae led to significant modifications in all plants tested. The up-regulation of the jasmonate pathway by F. mosseae was found to be highly conserved among the different plant species, suggesting an important role of jasmonates during this AM interaction. Our study evidences a strong influence of the AMF genotype on the modulation of host defense signalling, and offers hints on the role of these changes in the symbiosis.
Collapse
Affiliation(s)
- I Fernández
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín (CSIC), Granada, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
250
|
Roorkiwal M, Nayak SN, Thudi M, Upadhyaya HD, Brunel D, Mournet P, This D, Sharma PC, Varshney RK. Allele diversity for abiotic stress responsive candidate genes in chickpea reference set using gene based SNP markers. FRONTIERS IN PLANT SCIENCE 2014; 5:248. [PMID: 24926299 PMCID: PMC4046317 DOI: 10.3389/fpls.2014.00248] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Accepted: 05/15/2014] [Indexed: 05/20/2023]
Abstract
Chickpea is an important food legume crop for the semi-arid regions, however, its productivity is adversely affected by various biotic and abiotic stresses. Identification of candidate genes associated with abiotic stress response will help breeding efforts aiming to enhance its productivity. With this objective, 10 abiotic stress responsive candidate genes were selected on the basis of prior knowledge of this complex trait. These 10 genes were subjected to allele specific sequencing across a chickpea reference set comprising 300 genotypes including 211 genotypes of chickpea mini core collection. A total of 1.3 Mbp sequence data were generated. Multiple sequence alignment (MSA) revealed 79 SNPs and 41 indels in nine genes while the CAP2 gene was found to be conserved across all the genotypes. Among 10 candidate genes, the maximum number of SNPs (34) was observed in abscisic acid stress and ripening (ASR) gene including 22 transitions, 11 transversions and one tri-allelic SNP. Nucleotide diversity varied from 0.0004 to 0.0029 while polymorphism information content (PIC) values ranged from 0.01 (AKIN gene) to 0.43 (CAP2 promoter). Haplotype analysis revealed that alleles were represented by more than two haplotype blocks, except alleles of the CAP2 and sucrose synthase (SuSy) gene, where only one haplotype was identified. These genes can be used for association analysis and if validated, may be useful for enhancing abiotic stress, including drought tolerance, through molecular breeding.
Collapse
Affiliation(s)
- Manish Roorkiwal
- International Crops Research Institute for the Semi-Arid TropicsHyderabad, India
- University School of Biotechnology, Guru Gobind Singh Indraprastha UniversityDelhi, India
| | - Spurthi N. Nayak
- International Crops Research Institute for the Semi-Arid TropicsHyderabad, India
- Agronomy Department, University of FloridaGainesville, FL, USA
| | - Mahendar Thudi
- International Crops Research Institute for the Semi-Arid TropicsHyderabad, India
| | - Hari D. Upadhyaya
- International Crops Research Institute for the Semi-Arid TropicsHyderabad, India
| | | | | | | | - Prakash C. Sharma
- University School of Biotechnology, Guru Gobind Singh Indraprastha UniversityDelhi, India
| | - Rajeev K. Varshney
- International Crops Research Institute for the Semi-Arid TropicsHyderabad, India
| |
Collapse
|