201
|
Ventura-López C, Cervantes-Luevano K, Aguirre-Sánchez JS, Flores-Caballero JC, Alvarez-Delgado C, Bernaldez-Sarabia J, Sánchez-Campos N, Lugo-Sánchez LA, Rodríguez-Vázquez IC, Sander-Padilla JG, Romero-Antonio Y, Arguedas-Núñez MM, González-Canudas J, Licea-Navarro AF. Treatment with metformin glycinate reduces SARS-CoV-2 viral load: An in vitro model and randomized, double-blind, Phase IIb clinical trial. Biomed Pharmacother 2022; 152:113223. [PMID: 35709650 PMCID: PMC9159967 DOI: 10.1016/j.biopha.2022.113223] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 05/25/2022] [Accepted: 05/30/2022] [Indexed: 11/24/2022] Open
Abstract
The health crisis caused by the new coronavirus SARS-CoV-2 highlights the need to identify new treatment strategies for this viral infection. During the past year, over 400 coronavirus disease (COVID-19) treatment patents have been registered; nevertheless, the presence of new virus variants has triggered more severe disease presentations and reduced treatment effectiveness, highlighting the need for new treatment options for the COVID-19. This study evaluates the Metformin Glycinate (MG) effect on the SARS-CoV-2 in vitro and in vivo viral load. The in vitro study was conducted in a model of Vero E6 cells, while the in vivo study was an adaptive, two-armed, randomized, prospective, longitudinal, double-blind, multicentric, and phase IIb clinical trial. Our in vitro results revealed that MG effectively inhibits viral replication after 48 h of exposure to the drug, with no cytotoxic effect in doses up to 100 µM. The effect of the MG was also tested against three variants of interest (alpha, delta, and epsilon), showing increased survival rates in cells treated with MG. These results are aligned with our clinical data, which indicates that MG treatment reduces SARS-CoV2-infected patients´ viral load in just 3.3 days and supplementary oxygen requirements compared with the control group. We expect our results can guide efforts to position MG as a therapeutic option for COVID-19 patients.
Collapse
Affiliation(s)
- Claudia Ventura-López
- Departamento de Innovación Biomédica, CICESE, Carretera Ensenada-Tijuana 3918, Zona Playitas, Ensenada, BC 22860, Mexico.
| | - Karla Cervantes-Luevano
- Departamento de Innovación Biomédica, CICESE, Carretera Ensenada-Tijuana 3918, Zona Playitas, Ensenada, BC 22860, Mexico.
| | | | | | - Carolina Alvarez-Delgado
- Departamento de Innovación Biomédica, CICESE, Carretera Ensenada-Tijuana 3918, Zona Playitas, Ensenada, BC 22860, Mexico.
| | - Johanna Bernaldez-Sarabia
- Departamento de Innovación Biomédica, CICESE, Carretera Ensenada-Tijuana 3918, Zona Playitas, Ensenada, BC 22860, Mexico.
| | - Noemí Sánchez-Campos
- Departamento de Innovación Biomédica, CICESE, Carretera Ensenada-Tijuana 3918, Zona Playitas, Ensenada, BC 22860, Mexico.
| | | | | | | | | | | | | | - Alexei F Licea-Navarro
- Departamento de Innovación Biomédica, CICESE, Carretera Ensenada-Tijuana 3918, Zona Playitas, Ensenada, BC 22860, Mexico.
| |
Collapse
|
202
|
Aicher SM, Streicher F, Chazal M, Planas D, Luo D, Buchrieser J, Nemcova M, Seidlova V, Zukal J, Serra-Cobo J, Pontier D, Pain B, Zimmer G, Schwartz O, Roingeard P, Pikula J, Dacheux L, Jouvenet N. Species-Specific Molecular Barriers to SARS-CoV-2 Replication in Bat Cells. J Virol 2022; 96:e0060822. [PMID: 35862713 PMCID: PMC9327701 DOI: 10.1128/jvi.00608-22] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 06/07/2022] [Indexed: 11/20/2022] Open
Abstract
Bats are natural reservoirs of numerous coronaviruses, including the potential ancestor of SARS-CoV-2. Knowledge concerning the interaction between coronaviruses and bat cells is sparse. We investigated the ability of primary cells from Rhinolophus and Myotis species, as well as of established and novel cell lines from Myotis myotis, Eptesicus serotinus, Tadarida brasiliensis, and Nyctalus noctula, to support SARS-CoV-2 replication. None of these cells were permissive to infection, not even the ones expressing detectable levels of angiotensin-converting enzyme 2 (ACE2), which serves as the viral receptor in many mammalian species. The resistance to infection was overcome by expression of human ACE2 (hACE2) in three cell lines, suggesting that the restriction to viral replication was due to a low expression of bat ACE2 (bACE2) or the absence of bACE2 binding in these cells. Infectious virions were produced but not released from hACE2-transduced M. myotis brain cells. E. serotinus brain cells and M. myotis nasal epithelial cells expressing hACE2 efficiently controlled viral replication, which correlated with a potent interferon response. Our data highlight the existence of species-specific and cell-specific molecular barriers to viral replication in bat cells. These novel chiropteran cellular models are valuable tools to investigate the evolutionary relationships between bats and coronaviruses. IMPORTANCE Bats are host ancestors of several viruses that cause serious disease in humans, as illustrated by the ongoing SARS-CoV-2 pandemic. Progress in investigating bat-virus interactions has been hampered by a limited number of available bat cellular models. We have generated primary cells and cell lines from several bat species that are relevant for coronavirus research. The various permissivities of the cells to SARS-CoV-2 infection offered the opportunity to uncover some species-specific molecular restrictions to viral replication. All bat cells exhibited a potent entry-dependent restriction. Once this block was overcome by overexpression of human ACE2, which serves at the viral receptor, two bat cell lines controlled well viral replication, which correlated with the inability of the virus to counteract antiviral responses. Other cells potently inhibited viral release. Our novel bat cellular models contribute to a better understanding of the molecular interplays between bat cells and viruses.
Collapse
Affiliation(s)
- Sophie-Marie Aicher
- Institut Pasteur, Université de Paris Cité, CNRS UMR 3569, Virus Sensing and Signaling Unit, Paris, France
| | - Felix Streicher
- Institut Pasteur, Université de Paris Cité, CNRS UMR 3569, Virus Sensing and Signaling Unit, Paris, France
| | - Maxime Chazal
- Institut Pasteur, Université de Paris Cité, CNRS UMR 3569, Virus Sensing and Signaling Unit, Paris, France
| | - Delphine Planas
- Institut Pasteur, Université de Paris Cité, CNRS UMR 3569, Virus and Immunity Unit, Paris, France
- Vaccine Research Institute, Créteil, France
| | - Dongsheng Luo
- Institut Pasteur, Université de Paris Cité, Lyssavirus Epidemiology and Neuropathology Unit, Paris, France
| | - Julian Buchrieser
- Institut Pasteur, Université de Paris Cité, CNRS UMR 3569, Virus and Immunity Unit, Paris, France
| | - Monika Nemcova
- Department of Ecology and Diseases of Zoo Animals, Game, Fish and Bees, University of Veterinary Sciences Brno, Brno, Czech Republic
| | - Veronika Seidlova
- Department of Ecology and Diseases of Zoo Animals, Game, Fish and Bees, University of Veterinary Sciences Brno, Brno, Czech Republic
| | - Jan Zukal
- Institute of Vertebrate Biology of the Czech Academy of Sciences Brno, Brno, Czech Republic
| | - Jordi Serra-Cobo
- Institut de Recerca de la Biodiversitat (IRBio), Faculty of Biology, Universitat de Barcelona, Barcelona, Spain
- Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
| | - Dominique Pontier
- Université de Lyon, LabEx Ecofect, Lyon, France
- Université Lyon 1, CNRS, Laboratoire de Biométrie et Biologie Evolutive UMR5558, Villeurbanne, France
| | - Bertrand Pain
- University of Lyon, Université Lyon 1, INSERM, INRAE, Stem Cell and Brain Research Institute, Bron, France
| | - Gert Zimmer
- Institute of Virology and Immunology, Bern & Mittelhäusern, Switzerland
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Olivier Schwartz
- Institut Pasteur, Université de Paris Cité, CNRS UMR 3569, Virus and Immunity Unit, Paris, France
- Vaccine Research Institute, Créteil, France
| | - Philippe Roingeard
- INSERM U1259 MAVIVH and Plateforme IBiSA de Microscopie Electronique, Faculté de Médecine, Université de Tours, Tours, France
| | - Jiri Pikula
- Department of Ecology and Diseases of Zoo Animals, Game, Fish and Bees, University of Veterinary Sciences Brno, Brno, Czech Republic
| | - Laurent Dacheux
- Institut Pasteur, Université de Paris Cité, Lyssavirus Epidemiology and Neuropathology Unit, Paris, France
| | - Nolwenn Jouvenet
- Institut Pasteur, Université de Paris Cité, CNRS UMR 3569, Virus Sensing and Signaling Unit, Paris, France
| |
Collapse
|
203
|
French AJ, Longest AK, Pan J, Vikesland PJ, Duggal NK, Lakdawala SS, Marr LC. Environmental Stability of Enveloped Viruses is Impacted by the Initial Volume and Evaporation Kinetics of Droplets.. [PMID: 35923308 PMCID: PMC9347275 DOI: 10.1101/2022.07.26.501658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
AbstractEfficient spread of respiratory viruses requires the virus to maintain infectivity in the environment. Environmental stability of viruses can be influenced by many factors, including temperature and humidity. Our study measured the impact of initial droplet volume (50, 5, and 1 µL) and relative humidity (RH: 40%, 65%, and 85%) on the stability of influenza A virus, bacteriophage, Phi6, a common surrogate for enveloped viruses, and SARS-CoV-2 under a limited set of conditions. Our data suggest that the drying time required for the droplets to reach quasi-equilibrium (i.e. a plateau in mass) varied with RH and initial droplet volume. The macroscale physical characteristics of the droplets at quasi-equilibrium varied with RH but not with initial droplet volume. We observed more rapid virus decay when the droplets were still wet and undergoing evaporation, and slower decay after the droplets had dried. Initial droplet volume had a major effect on virus viability over the first few hours; whereby the decay rate of influenza virus was faster in smaller droplets. In general, influenza virus and SARS-CoV-2 decayed similarly. Overall, this study suggests that virus decay in media is closely correlated with the extent of droplet evaporation, which is controlled by RH. Taken together, these data suggest that decay of different viruses is more similar at higher RH and in smaller droplets and is distinct at lower RH and in larger droplets. Importantly, accurate assessment of transmission risk requires use of physiologically relevant droplet volumes and careful consideration of the use of surrogates.FundingNational Institute of Allergy and Infectious Diseases, National Institute of Neurological Disorders and Stroke, National Institutes of Health; Department of Health and Human Services; Flu Lab.ImportanceDuring the COVID-19 pandemic, policy decisions were being driven by virus stability experiments involving SARS-CoV-2 applied to surfaces in large droplets at various humidity conditions. The results of our study indicate that determination of half-lives for emerging pathogens in large droplets likely over-estimates transmission risk for contaminated surfaces, as occurred during the COVID-19 pandemic. Our study implicates the need for the use of physiologically relevant droplet sizes with use of relevant surrogates in addition to what is already known about the importance of physiologically relevant media for risk assessment of future emerging pathogens.
Collapse
|
204
|
Brady JM, Phelps M, MacDonald SW, Lam EC, Nitido A, Parsons D, Boutros CL, Deal CE, Garcia-Beltran WF, Tanno S, Natarajan H, Ackerman ME, Vrbanac VD, Balazs AB. Antibody-mediated prevention of vaginal HIV transmission is dictated by IgG subclass in humanized mice. Sci Transl Med 2022; 14:eabn9662. [PMID: 35895834 DOI: 10.1126/scitranslmed.abn9662] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
HIV broadly neutralizing antibodies (bNAbs) are capable of both blocking viral entry and driving innate immune responses against HIV-infected cells through their Fc region. Vaccination or productive infection results in a polyclonal mixture of class-switched immunoglobulin G (IgG) antibodies composed of four subclasses, each encoding distinct Fc regions that differentially engage innate immune functions. Despite evidence that innate immunity contributes to protection, the relative contribution of individual IgG subclasses is unknown. Here, we used vectored immunoprophylaxis in humanized mice to interrogate the efficacy of individual IgG subclasses during prevention of vaginal HIV transmission by VRC07, a potent CD4-binding site-directed bNAb. We find that VRC07 IgG2, which lacks Fc-mediated functionality, exhibited substantially reduced protection in vivo relative to other subclasses. Low concentrations of highly functional VRC07 IgG1 yielded substantial protection against vaginal challenge, suggesting that interventions capable of eliciting modest titers of functional IgG subclasses may provide meaningful benefit against infection.
Collapse
Affiliation(s)
- Jacqueline M Brady
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA 02139, USA.,Department of Biological and Biomedical Sciences, Harvard Medical School, Boston, MA 02115, USA
| | - Meredith Phelps
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA 02139, USA.,Department of Virology, Harvard Medical School, Boston, MA 02115, USA
| | - Scott W MacDonald
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA 02139, USA
| | - Evan C Lam
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA 02139, USA
| | - Adam Nitido
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA 02139, USA.,Department of Virology, Harvard Medical School, Boston, MA 02115, USA
| | - Dylan Parsons
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA 02139, USA
| | - Christine L Boutros
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA 02139, USA
| | - Cailin E Deal
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA 02139, USA
| | - Wilfredo F Garcia-Beltran
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA 02139, USA
| | - Serah Tanno
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA 02139, USA
| | - Harini Natarajan
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Dartmouth College, Hanover, NH 03755, USA
| | - Margaret E Ackerman
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Dartmouth College, Hanover, NH 03755, USA.,Thayer School of Engineering, Dartmouth College, Hanover, NH 03755, USA
| | - Vladimir D Vrbanac
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA 02139, USA
| | - Alejandro B Balazs
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA 02139, USA
| |
Collapse
|
205
|
Kuniyal A, Sarkar S, ChandraSekar S, Muthuchelvan D, Pandey AB, Dhama K, Ramakrishnan MA. Coinfection kinetics of goatpox virus and peste-des-petits-ruminants virus in Vero cells. Braz J Microbiol 2022; 53:2309-2314. [PMID: 35895274 PMCID: PMC9679053 DOI: 10.1007/s42770-022-00801-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 07/13/2022] [Indexed: 01/13/2023] Open
Abstract
Goatpox, sheeppox, and peste-des-petits-ruminants (PPR) are economically important virus diseases affecting goats and sheep, which often cause coinfection/comorbidities in the field. Coinfection with these viruses leads to enhanced infection in natural scenarios in terms of morbidities and mortalities. Currently, individual live attenuated vaccines are being used to mitigate these diseases and research on combination vaccines for these diseases is encouraging. For the preparation of combination vaccines, vaccine strains of the peste-des-petits-ruminants virus (PPRV), goatpox virus (GTPV), and sheeppox virus (SPPV) are grown separately and GTPV + PPRV are mixed for vaccination of goats, and PPRV + SPPV for sheep. Growing capripox and PPRV strains in the same cells simultaneously without the titer loss will save the time and cost of production. In the current study, we have evaluated the coinfection kinetics of capripox virus and a PPRV using a candidate GTPV vaccine strain (originally caused infection in both goats and sheep in the field) and PPRV/Sungri/96 (vaccine strain) in Vero cells. At high multiplicity of infection (MOI), PPRV was excluded from coinfection by GTPV, whereas at a low multiplicity coexistence/accommodation was observed between PPRV and GTPV without loss of the titer. The results shed light on the possibility of the production of two vaccine strains in the same cells using the coinfection model economically.
Collapse
Affiliation(s)
- Aruna Kuniyal
- ICAR-Indian Veterinary Research Institute, Mukteswar, Uttarakhand, 263 138, India
| | - Soumajit Sarkar
- ICAR-Indian Veterinary Research Institute, Mukteswar, Uttarakhand, 263 138, India
| | | | | | - Awadh Bihari Pandey
- ICAR-Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh, 243 122, India
| | - Kuldeep Dhama
- ICAR-Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh, 243 122, India
| | | |
Collapse
|
206
|
Elbaz NF, Abd Al Fatah ME. Bacterial diseases outbreaks in some freshwater fish farms in Kafr El-Sheikh, Egypt. JOURNAL OF APPLIED AQUACULTURE 2022:1-23. [DOI: 10.1080/10454438.2022.2105673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Affiliation(s)
- Naglaa F. Elbaz
- Fish Diseases Department, Faculty of Veterinary Medicine, Damanhour University, Damanhur, Egypt
| | | |
Collapse
|
207
|
Abstract
The M1 of influenza A virus (IAV) is important for the virus life cycle, especially for the assembly and budding of viruses, which is a multistep process that requires host factors. Identifying novel host proteins that interact with M1 and understanding their functions in IAV replication are of great interest in antiviral drug development. In this study, we identified 19 host proteins in DF1 cells suspected to interact with the M1 protein of an H5N6 virus through immunoprecipitation (IP)/mass spectrometry. Among them, PSMD12, a 26S proteasome regulatory subunit, was shown to interact with influenza M1, acting as a positive host factor in IAV replication in avian and human cells. The data showed that PSMD12 promoted K63-linked ubiquitination of M1 at the K102 site. H5N6 and PR8 with an M1-K102 site mutant displayed a significantly weaker replication ability than the wild-type viruses. Mechanistically, PSMD12 promoted M1-M2 virus-like particle (VLP) release, and an M1-K102 mutation disrupted the formation of supernatant M1-M2 VLPs. An H5N6 M1-K102 site mutation or knockdown PSMD12 disrupted the budding release of the virus in chicken embryo fibroblast (CEF) cells, which was confirmed by transmission electron microscopy. Further study confirmed that M1-K102 site mutation significantly affected the virulence of H5N6 and PR8 viruses in mice. In conclusion, we report the novel host factor PSMD12 which affects the replication of influenza virus by mediating K63-linked ubiquitination of M1 at K102. These findings provide novel insight into the interactions between IAV and host cells, while suggesting an important target for anti-influenza virus drug research. IMPORTANCE M1 is proposed to play multiple biologically important roles in the life cycle of IAV, which relies largely on host factors. This study is the first one to identify that PSMD12 interacts with M1, mediates K63-linked ubiquitination of M1 at the K102 site, and thus positively regulates influenza virus proliferation. PSMD12 promoted M1-M2 VLP egress, and an M1-K102 mutation affected the M1-M2 VLP formation. Furthermore, we demonstrate the importance of this site to the morphology and budding of influenza viruses by obtaining mutant viruses, and the M1 ubiquitination regulator PSMD12 has a similar function to the M1 K102 mutation in regulating virus release and virus morphology. Additionally, we confirm the reduced virulence of H5N6 and PR8 (H1N1) viruses carrying the M1-K102 site mutation in mice. These findings provide novel insights into IAV interactions with host cells and suggest a valid and highly conserved candidate target for antiviral drug development.
Collapse
|
208
|
Gracheva AV, Korchevaya ER, Ammour YI, Smirnova DI, Sokolova OS, Glukhov GS, Moiseenko AV, Zubarev IV, Samoilikov RV, Leneva IA, Svitich OA, Zverev VV, Faizuloev EB. Immunogenic properties of SARS-CoV-2 inactivated by ultraviolet light. Arch Virol 2022; 167:2181-2191. [PMID: 35857146 PMCID: PMC9296761 DOI: 10.1007/s00705-022-05530-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 05/25/2022] [Indexed: 11/23/2022]
Abstract
Vaccination against COVID-19 is the most effective method of controlling the spread of SARS-CoV-2 and reducing mortality from this disease. The development of vaccines with high protective activity against a wide range of SARS-CoV-2 antigenic variants remains relevant. In this regard, evaluation of the effectiveness of physical methods of virus inactivation, such as ultraviolet irradiation (UV) of the virus stock, remains relevant. This study demonstrates that the UV treatment of SARS-CoV-2 completely inactivates its infectivity while preserving its morphology, antigenic properties, and ability to induce the production of virus-neutralizing antibodies in mice through immunization. Thus, the UV inactivation of SARS-CoV-2 makes it possible to obtain viral material similar in its antigenic and immunogenic properties to the native antigen, which can be used both for the development of diagnostic test systems and for the development of an inactivated vaccine against COVID-19.
Collapse
Affiliation(s)
- A V Gracheva
- I.I. Mechnikov Research Institute of Vaccines and Sera, Moscow, 105064, Russia
| | - E R Korchevaya
- I.I. Mechnikov Research Institute of Vaccines and Sera, Moscow, 105064, Russia
| | - Yu I Ammour
- I.I. Mechnikov Research Institute of Vaccines and Sera, Moscow, 105064, Russia
| | - D I Smirnova
- I.I. Mechnikov Research Institute of Vaccines and Sera, Moscow, 105064, Russia
| | - O S Sokolova
- Faculty of Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
| | - G S Glukhov
- Faculty of Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
| | - A V Moiseenko
- Faculty of Biology, Lomonosov Moscow State University, Moscow, 119234, Russia.,N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Moscow, 119991, Russia
| | - I V Zubarev
- Faculty of Medicine, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - R V Samoilikov
- I.I. Mechnikov Research Institute of Vaccines and Sera, Moscow, 105064, Russia
| | - I A Leneva
- I.I. Mechnikov Research Institute of Vaccines and Sera, Moscow, 105064, Russia
| | - O A Svitich
- I.I. Mechnikov Research Institute of Vaccines and Sera, Moscow, 105064, Russia.,F.F. Erisman Institute of Public Health, I.M. Sechenov First Moscow State Medical University, Moscow, 119991, Russia
| | - V V Zverev
- I.I. Mechnikov Research Institute of Vaccines and Sera, Moscow, 105064, Russia.,F.F. Erisman Institute of Public Health, I.M. Sechenov First Moscow State Medical University, Moscow, 119991, Russia
| | - Evgeny B Faizuloev
- I.I. Mechnikov Research Institute of Vaccines and Sera, Moscow, 105064, Russia.
| |
Collapse
|
209
|
Vaccination with Omicron Inactivated Vaccine in Pre-vaccinated Mice Protects against SARS-CoV-2 Prototype and Omicron Variants. Vaccines (Basel) 2022; 10:vaccines10071149. [PMID: 35891313 PMCID: PMC9318641 DOI: 10.3390/vaccines10071149] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/11/2022] [Accepted: 07/15/2022] [Indexed: 12/11/2022] Open
Abstract
In response to the fast-waning immune response and the great threat of the Omicron variant of concern (VOC) to the public, we report the pilot-scale production of an inactivated Omicron vaccine candidate that induces high levels of neutralizing antibody titers to protect against the Omicron virus. Here, we demonstrate that the inactivated Omicron vaccine is safe and effective in recalling immune responses to the HB02, Omicron, and Delta viruses after one or two doses of BBIBP-CorV. In addition, the efficient productivity and good genetic stability of the manufactured inactivated vaccine is proved. These results support the further evaluation of the Omicron vaccine in a clinical trial.
Collapse
|
210
|
Lee G, Kang HR, Kim A, Park JH, Lee MJ, Kim SM. Antiviral effect of vesatolimod (GS-9620) against foot-and-mouth disease virus both in vitro and invivo. Antiviral Res 2022; 205:105384. [PMID: 35863499 DOI: 10.1016/j.antiviral.2022.105384] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 06/10/2022] [Accepted: 07/13/2022] [Indexed: 11/29/2022]
Abstract
Foot-and-mouth disease (FMD) is an acute contagious disease of cloven-hoofed animals such as cows, pigs, sheep, and deer. The current emergency FMD vaccines, to induce early protection, have limited use, as their protective effect in pigs does not begin until 7 days after vaccination. Therefore, the use of antiviral agents would be required for reducing the spread of foot-and-mouth disease virus (FMDV) during outbreaks. Vesatolimod (GS-9620), a toll-like receptor 7 agonist, is an antiviral agent against various human disease-causing viruses. However, its antiviral effect against FMDV has not been reported yet. The aim of this study was to investigate the antiviral effects of GS-9620 against FMDV both in vitro and in vivo. The inhibitory effect of GS-9620 on FMDV in swine cells involved the induction of porcine interferon (IFN)-α and upregulation of interferon-simulated genes. Protective effect in mice injected with GS-9620 against FMDV was maintained for 5 days after injection, and cytokines such as IFN-γ, interleukin (IL)-12, IL-6, and IFN-γ inducible protein-10 could be detected following the treatment with GS-9620. Furthermore, the combination of GS-9620 with an FMD-inactivated vaccine was found to be highly effective for early protection in mice. Overall, we suggest GS-9620 as a novel and effective antiviral agent for controlling FMDV infection.
Collapse
Affiliation(s)
- Gyeongmin Lee
- Center for Foot-and-Mouth Disease Vaccine Research, Animal and Plant Quarantine Agency, 177 Hyeoksin 8-ro, Gimcheon-City, Gyeongsangbuk-do, Republic of Korea
| | - Hyo Rin Kang
- Center for Foot-and-Mouth Disease Vaccine Research, Animal and Plant Quarantine Agency, 177 Hyeoksin 8-ro, Gimcheon-City, Gyeongsangbuk-do, Republic of Korea
| | - Aro Kim
- Center for Foot-and-Mouth Disease Vaccine Research, Animal and Plant Quarantine Agency, 177 Hyeoksin 8-ro, Gimcheon-City, Gyeongsangbuk-do, Republic of Korea
| | - Jong-Hyeon Park
- Center for Foot-and-Mouth Disease Vaccine Research, Animal and Plant Quarantine Agency, 177 Hyeoksin 8-ro, Gimcheon-City, Gyeongsangbuk-do, Republic of Korea
| | - Min Ja Lee
- Center for Foot-and-Mouth Disease Vaccine Research, Animal and Plant Quarantine Agency, 177 Hyeoksin 8-ro, Gimcheon-City, Gyeongsangbuk-do, Republic of Korea
| | - Su-Mi Kim
- Center for Foot-and-Mouth Disease Vaccine Research, Animal and Plant Quarantine Agency, 177 Hyeoksin 8-ro, Gimcheon-City, Gyeongsangbuk-do, Republic of Korea.
| |
Collapse
|
211
|
Savoie C, Lippé R. Optimizing human coronavirus OC43 growth and titration. PeerJ 2022; 10:e13721. [PMID: 35833016 PMCID: PMC9272819 DOI: 10.7717/peerj.13721] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 06/22/2022] [Indexed: 01/17/2023] Open
Abstract
Coronaviruses have been at the forefront of the news for the last 2 years. Unfortunately, SARS-CoV-2, the etiologic agent for the COVID-19 pandemic, must be manipulated in biosecurity level 3 settings, which significantly limits research. Meanwhile, several less pathogenic human coronaviruses (HCoV) exist and can be studied in much more common biosafety level 2 laboratories. Among them, HCoV-OC43 is a good surrogate candidate for SARS-CoV-2 since both are phylogenetically related human Betacoronaviruses. However, one issue has been the lack of standardized means among laboratories to propagate and titer this less virulent coronavirus. The present study probes the optimal parameters to propagate HCoV-OC43. First, testing of five different cell lines (MRC-5, Huh7.5, Vero, HCT-8, HRT-18) indicated that the physiologically relevant MRC-5 human lung cell line produced among the highest viral titers. HRT-18 may however be an interesting alternative as they are quick growing cells that also led to higher viral titers and a better tropism for various HCoV-OC43 variants. We also probed the impact of serum and temperature during viral expansion and confirmed that the normal temperature of the upper respiratory track (33 °C) improves viral yields over the typical 37 °C used to grow many other viruses. Meanwhile, we did not notice any evidence that serum concentrations significantly affected the virus but interestingly noted that the virus grew quite efficiently in a serum-free media formulation. Meanwhile sonication of viral stocks somewhat improved viral titers. Four titration methods (plaque assays, TCID50-CPE, TCID50-IFA and TCID50-IPA) were also probed using two cell lines (VeroE6 and HRT-18). In our hands, plaque assays proved unreliable and quantification of the virus by scoring CPE positive wells was significantly less sensitive than antibody-based assays (IFA and IPA). While the latter methods were equally sensitive, we favor the TCID50-IPA method since simpler, faster and cheaper than the IFA protocol. Moreover, the HRT-18 cells appeared more sensitive to quantify the virus. Perhaps most importantly, these optimized protocols routinely led to high titer viral stocks in the order of 108 TCID50/ml magnitude, which should fulfill the requirements of most experimental settings.
Collapse
Affiliation(s)
| | - Roger Lippé
- Centre de Recherche du CHU-Sainte-Justine, Montreal, Quebec, Canada,Department of Pathology and Cell biology, University of Montreal, Montreal, Quebec, Canada
| |
Collapse
|
212
|
Saadh MJ, Lafi FF, Dahadha AA, Albannan MS. Immunogenicity of a newly developed vaccine against Clostridium perfringens alpha-toxin in rabbits and cattle. Vet World 2022; 15:1617-1623. [PMID: 36185515 PMCID: PMC9394151 DOI: 10.14202/vetworld.2022.1617-1623] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 05/25/2022] [Indexed: 11/16/2022] Open
Abstract
Background and Aim: Clostridium perfringens type A is an anaerobic bacterium that produces four major toxins (alpha, beta, epsilon, and iota) that cause various diseases. Most of the important C. perfringens-associated diseases of farm animals are caused by alpha-toxin. This study aimed to produce a vaccine against alpha-toxin using C. perfringens type A (ATCC 13124) and investigate its potency, stability, and safety.
Materials and Methods: The vaccine was formulated of its constituents for 1 h. Each milliliter of the final vaccine product contained alpha toxoid 15 lecithovitellinase activity (Lv) by adding (0.375 mL containing 40 Lv) and approximately 0.2 mL from 3% concentrated aluminum hydroxide gel, <0.001% W/V thiomersal, <0.05% W/V formaldehyde, and nearly 0.425 mL phosphate-buffered saline (pH 7.2). The vaccine efficacy was evaluated in rabbits and cattle by performing potency, stability, and safety tests.
Results: The vaccine produced approximately 8.8 and 4.9 IU/mL neutralizing antibodies in rabbits and cattle, respectively. These concentrations were higher than the lowest concentration recommended by various international protocols and the United States Department of Agriculture by 2.20-fold in rabbits and 1.23-fold in cattle. Interestingly, the formulated vaccine enhanced immune responses by 1.80-fold in rabbits compared with that in cattle; the difference was statistically significant (p < 0.0001). The vaccine was stable for 30 months. In vaccinated rabbits, the body temperature slightly increased temporarily during the first 10 h of vaccination; however, the temperature difference was not statistically significant (p > 0.05).
Conclusion: This study describes a manufacturing process to obtain sufficient amounts of a vaccine against C. perfringens alpha-toxin. The formulated vaccine effectively elicited a higher level of neutralizing antibody response than the international standards. Furthermore, the vaccine was found to be stable, safe, and effective in preventing C. perfringens-related diseases in rabbits and cattle. Further studies are necessary to evaluate the efficacy of this vaccine in other farm animals.
Collapse
Affiliation(s)
- Mohamed J. Saadh
- Department of Pharmacy, Faculty of Pharmacy, Middle East University, Amman, Jordan
| | - Feras F. Lafi
- Department of Pharmacy, Faculty of Pharmacy, Middle East University, Amman, Jordan
| | - Adnan A. Dahadha
- Department of Genetic Engineering and Biotechnology, Faculty of Science, Philadelphia University, Jordan
| | - Mohamed S. Albannan
- Department of Research and development, Biotechnology Research Center, 23 July St., Industrial Zone, New Damietta, 34517, Egypt
| |
Collapse
|
213
|
Li S, Zhang X, Yao Y, Zhu Y, Zheng X, Liu F, Feng W. Inducible miR-150 Inhibits Porcine Reproductive and Respiratory Syndrome Virus Replication by Targeting Viral Genome and Suppressor of Cytokine Signaling 1. Viruses 2022; 14:1485. [PMID: 35891465 PMCID: PMC9318191 DOI: 10.3390/v14071485] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 07/04/2022] [Accepted: 07/04/2022] [Indexed: 12/11/2022] Open
Abstract
Hosts exploit various approaches to defend against porcine reproductive and respiratory syndrome virus (PRRSV) infection. microRNAs (miRNAs) have emerged as key negative post-transcriptional regulators of gene expression and have been reported to play important roles in regulating virus infection. Here, we identified that miR-150 was differentially expressed in virus permissive and non-permissive cells. Subsequently, we demonstrated that PRRSV induced the expression of miR-150 via activating the protein kinase C (PKC)/c-Jun amino-terminal kinases (JNK)/c-Jun pathway, and overexpression of miR-150 suppressed PRRSV replication. Further analysis revealed that miR-150 not only directly targeted the PRRSV genome, but also facilitated type I IFN signaling. RNA immunoprecipitation assay demonstrated that miR-150 targeted the suppressor of cytokine signaling 1 (SOCS1), which is a negative regulator of Janus activated kinase (JAK)/signal transducer and activator of the transcription (STAT) signaling pathway. The inverse correlation between miR-150 and SOCS1 expression implies that miR-150 plays a role in regulating ISG expression. In conclusion, miR-150 expression is upregulated upon PRRSV infection. miR-150 feedback positively targets the PRRSV genome and promotes type I IFN signaling, which can be seen as a host defensive strategy.
Collapse
Affiliation(s)
- Sihan Li
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China; (S.L.); (X.Z.); (Y.Y.); (Y.Z.); (X.Z.); (F.L.)
- Frontiers Science Center for Molecular Design Breeding, College of Biological Sciences, China Agricultural University, Beijing 100193, China
- Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
- Department of Microbiology and Immunology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Xuan Zhang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China; (S.L.); (X.Z.); (Y.Y.); (Y.Z.); (X.Z.); (F.L.)
- Frontiers Science Center for Molecular Design Breeding, College of Biological Sciences, China Agricultural University, Beijing 100193, China
- Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
- Department of Microbiology and Immunology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Yao Yao
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China; (S.L.); (X.Z.); (Y.Y.); (Y.Z.); (X.Z.); (F.L.)
- Frontiers Science Center for Molecular Design Breeding, College of Biological Sciences, China Agricultural University, Beijing 100193, China
- Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
- Department of Microbiology and Immunology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Yingqi Zhu
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China; (S.L.); (X.Z.); (Y.Y.); (Y.Z.); (X.Z.); (F.L.)
- Frontiers Science Center for Molecular Design Breeding, College of Biological Sciences, China Agricultural University, Beijing 100193, China
- Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
- Department of Microbiology and Immunology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Xiaojie Zheng
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China; (S.L.); (X.Z.); (Y.Y.); (Y.Z.); (X.Z.); (F.L.)
- Frontiers Science Center for Molecular Design Breeding, College of Biological Sciences, China Agricultural University, Beijing 100193, China
- Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
- Department of Microbiology and Immunology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Fang Liu
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China; (S.L.); (X.Z.); (Y.Y.); (Y.Z.); (X.Z.); (F.L.)
- Frontiers Science Center for Molecular Design Breeding, College of Biological Sciences, China Agricultural University, Beijing 100193, China
- Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
- Department of Microbiology and Immunology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Wenhai Feng
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China; (S.L.); (X.Z.); (Y.Y.); (Y.Z.); (X.Z.); (F.L.)
- Frontiers Science Center for Molecular Design Breeding, College of Biological Sciences, China Agricultural University, Beijing 100193, China
- Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
- Department of Microbiology and Immunology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| |
Collapse
|
214
|
Baselga M, Uranga-Murillo I, de Miguel D, Arias M, Sebastián V, Pardo J, Arruebo M. Silver Nanoparticles-Polyethyleneimine-Based Coatings with Antiviral Activity against SARS-CoV-2: A New Method to Functionalize Filtration Media. MATERIALS (BASEL, SWITZERLAND) 2022; 15:4742. [PMID: 35888208 PMCID: PMC9318907 DOI: 10.3390/ma15144742] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 06/27/2022] [Accepted: 07/04/2022] [Indexed: 02/06/2023]
Abstract
The use of face masks and air purification systems has been key to curbing the transmission of SARS-CoV-2 aerosols in the context of the current COVID-19 pandemic. However, some masks or air conditioning filtration systems are designed to remove large airborne particles or bacteria from the air, being limited their effectiveness against SARS-CoV-2. Continuous research has been aimed at improving the performance of filter materials through nanotechnology. This article presents a new low-cost method based on electrostatic forces and coordination complex formation to generate antiviral coatings on filter materials using silver nanoparticles and polyethyleneimine. Initially, the AgNPs synthesis procedure was optimized until reaching a particle size of 6.2 ± 2.6 nm, promoting a fast ionic silver release due to its reduced size, obtaining a stable colloid over time and having reduced size polydispersity. The stability of the binding of the AgNPs to the fibers was corroborated using polypropylene, polyester-viscose, and polypropylene-glass spunbond mats as substrates, obtaining very low amounts of detached AgNPs in all cases. Under simulated operational conditions, a material loss less than 1% of nanostructured silver was measured. SEM micrographs demonstrated high silver distribution homogeneity on the polymer fibers. The antiviral coatings were tested against SARS-CoV-2, obtaining inactivation yields greater than 99.9%. We believe our results will be beneficial in the fight against the current COVID-19 pandemic and in controlling other infectious airborne pathogens.
Collapse
Affiliation(s)
- Marta Baselga
- Institute for Health Research Aragon (IIS Aragón), 50009 Zaragoza, Spain; (I.U.-M.); (D.d.M.); (M.A.); (V.S.); (J.P.); (M.A.)
| | - Iratxe Uranga-Murillo
- Institute for Health Research Aragon (IIS Aragón), 50009 Zaragoza, Spain; (I.U.-M.); (D.d.M.); (M.A.); (V.S.); (J.P.); (M.A.)
- Department of Microbiology, Pediatrics, Radiology and Public Health, Facultad de Medicina, University of Zaragoza, 50009 Zaragoza, Spain
- Networking Research Center on Infectious Diseases, CIBERINFEC, 28029 Madrid, Spain
| | - Diego de Miguel
- Institute for Health Research Aragon (IIS Aragón), 50009 Zaragoza, Spain; (I.U.-M.); (D.d.M.); (M.A.); (V.S.); (J.P.); (M.A.)
- Department of Microbiology, Pediatrics, Radiology and Public Health, Facultad de Medicina, University of Zaragoza, 50009 Zaragoza, Spain
| | - Maykel Arias
- Institute for Health Research Aragon (IIS Aragón), 50009 Zaragoza, Spain; (I.U.-M.); (D.d.M.); (M.A.); (V.S.); (J.P.); (M.A.)
- Department of Microbiology, Pediatrics, Radiology and Public Health, Facultad de Medicina, University of Zaragoza, 50009 Zaragoza, Spain
- Networking Research Center on Infectious Diseases, CIBERINFEC, 28029 Madrid, Spain
| | - Victor Sebastián
- Institute for Health Research Aragon (IIS Aragón), 50009 Zaragoza, Spain; (I.U.-M.); (D.d.M.); (M.A.); (V.S.); (J.P.); (M.A.)
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, 50009 Zaragoza, Spain
- Department of Chemical Engineering, Campus Río Ebro–Edificio I+D, University of Zaragoza, 50018 Zaragoza, Spain
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN, 28029 Madrid, Spain
| | - Julián Pardo
- Institute for Health Research Aragon (IIS Aragón), 50009 Zaragoza, Spain; (I.U.-M.); (D.d.M.); (M.A.); (V.S.); (J.P.); (M.A.)
- Department of Microbiology, Pediatrics, Radiology and Public Health, Facultad de Medicina, University of Zaragoza, 50009 Zaragoza, Spain
- Networking Research Center on Infectious Diseases, CIBERINFEC, 28029 Madrid, Spain
| | - Manuel Arruebo
- Institute for Health Research Aragon (IIS Aragón), 50009 Zaragoza, Spain; (I.U.-M.); (D.d.M.); (M.A.); (V.S.); (J.P.); (M.A.)
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, 50009 Zaragoza, Spain
- Department of Chemical Engineering, Campus Río Ebro–Edificio I+D, University of Zaragoza, 50018 Zaragoza, Spain
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN, 28029 Madrid, Spain
| |
Collapse
|
215
|
Antimicrobial and antiviral activity of selenium sulphide nanoparticles synthesised in extracts from spices in natural deep eutectic solvents (NDES). SUSTAINABLE MATERIALS AND TECHNOLOGIES 2022; 32:e00433. [PMCID: PMC8996440 DOI: 10.1016/j.susmat.2022.e00433] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 03/13/2022] [Accepted: 04/08/2022] [Indexed: 07/20/2023]
Abstract
Selenium sulphide is a well-known bioactive chemical, but its preparation in nanometric form stabilised in water has not been widely reported. In the article, extracts of cinnamon, curcumin, and pepper obtained using natural deep eutectic solvents (NDES) were used to obtain stable selenium sulphide nanoparticles. The analysis confirmed that selenium sulphide nanoparticles with an average crystallite size of 28–44 nm and a particle size of approximately 500 nm were successfully synthesised. The use of NDES stabilised the SeS2 nanoparticles and increased their bioactivity towards microorganisms. The obtained systems revealed high biocidal and antiviral activity against S. aureus, E. coli, P. aeruginosa, and C. albicans strains, Human influenza virus A/H1N1, and Betacoronavirus 1 (Human coronavirus HCoV-OC43). The SeS2 nanoparticles obtained in the NDES extract of curcuma strongly inhibited the growth of pathogenic fungi and bacteria with minimum biocidal concentration (MBC) values of 117.2, 117.2, 117.2, and 468.8 mg/dm3 against E. coli, P. aeruginosa, S. aureus, and C. albicans, respectively. The suspensions containing selenium sulphide nanoparticles stabilised by spice extracts were also highly active against influenza viruses and B-coronavirus, showing a reduction of over 99%.
Collapse
|
216
|
Cuevas F, Kawabata H, Krammer F, Carreño JM. An
In Vitro
Microneutralization Assay for Influenza Virus Serology. Curr Protoc 2022; 2:e465. [PMID: 35848945 PMCID: PMC9298957 DOI: 10.1002/cpz1.465] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Influenza is an infectious respiratory disease with significant morbidity and mortality rates among people of all ages. Influenza viruses spread and evolve rapidly in the human population. Different immune histories, given by previous exposures to influenza virus infections and/or vaccinations, result in a great diversity of humoral and cellular immune responses. Understanding protective immune responses induced against circulating virus strains and potential pandemic strains is vital for infection prevention and disease mitigation. Vaccine formulations for seasonal influenza must be reformulated annually to stay abreast of occurring virus mutations. Assays to measure the capacity of antibodies to neutralize influenza viruses provide a good estimate of protection against future infections with strains similar or identical to those used in the assay. Here, we describe a detailed protocol of our standard in vitro microneutralization assay to assess the neutralization activity of polyclonal sera or purified monoclonal antibodies. © 2022 The Authors. Current Protocols published by Wiley Periodicals LLC. This article was corrected on 27 August 2022. See the end of the full text for details. Basic Protocol: Microneutralization assay to assess virus inhibition by serum or monoclonal antibodies Support Protocol 1: Preparation of cDMEM Support Protocol 2: Preparation and aliquoting of TPCK‐treated trypsin Support Protocol 3: Inactivation of serum samples by RDE treatment
Collapse
Affiliation(s)
- Frans Cuevas
- Department of Microbiology Icahn School of Medicine at Mount Sinai New York New York
| | - Hisaaki Kawabata
- Department of Microbiology Icahn School of Medicine at Mount Sinai New York New York
| | - Florian Krammer
- Department of Microbiology Icahn School of Medicine at Mount Sinai New York New York
- Department of Pathology, Molecular and Cell‐Based Medicine Icahn School of Medicine at Mount Sinai New York New York
- Center for Vaccine Research and Pandemic Preparedness (C‐VARPP) Icahn School of Medicine at Mount Sinai New York New York
| | - Juan Manuel Carreño
- Department of Microbiology Icahn School of Medicine at Mount Sinai New York New York
| |
Collapse
|
217
|
Pandarangga P, McAllister MM, Peaston AE, Ngai YT, Cahyono MI, Hemmatzadeh F. Performance comparison of homologous and heterologous Newcastle disease virus in vaccines and antibody tests. Res Vet Sci 2022; 149:82-89. [PMID: 35777283 DOI: 10.1016/j.rvsc.2022.06.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 06/07/2022] [Accepted: 06/10/2022] [Indexed: 10/17/2022]
Abstract
Antigenic differences between commercial Newcastle Disease Virus (NDV) vaccine and circulating field virus reduce vaccine efficacy. Fifty-layer chickens were divided into five groups: three vaccinated chicken groups using killed LaSota (Genotype II/GII), Mega, or VD (Genotype VII/GVII) viral strains, negative, and positive control groups. On day 28, Hemagglutination Inhibition (HI) serology of vaccinated chickens was performed using whole virus antigens of RIVS, LaSota, Mega, and VD strains. Sera were also tested with an alternative antigen, using an ELISA to detect antibody for the cleavage site F protein peptide from GII and GVII NDV strains. Vaccinated and unvaccinated positive control birds underwent infectious challenges using VD and Mega strains. HI testing showed that antibody titers were higher when tested using homologous antigens than heterologous antigens. ELISA performed with alternative antigens did not perform as well as the established HI test using homologous strains. Viral shedding was reduced by vaccination that was homologous to the infectious challenge in comparison with vaccination using the LaSota strain virus. We conclude that superior results are obtained when serological testing, vaccinations, and vaccine challenge experiments all use circulating strains of ND virus. Implementation of this recommendation would likely reduce viral shedding by vaccinated chickens and be more effective in preventing outbreaks of virulent NDV.
Collapse
Affiliation(s)
- Putri Pandarangga
- School of Animal and Veterinary Sciences, The University of Adelaide, 5371, South Australia, Australia; Departemen Klinik, Reproduksi, Patologi, dan Nutrisi, Fakultas Kedokteran dan Kedokteran Hewan, Universitas Nusa Cendana, Kupang, 85001, Indonesia.
| | - Milton M McAllister
- School of Animal and Veterinary Sciences, The University of Adelaide, 5371, South Australia, Australia
| | - Anne E Peaston
- School of Animal and Veterinary Sciences, The University of Adelaide, 5371, South Australia, Australia
| | - Yuen T Ngai
- The University of South Australia, 5001, South Australia, Australia
| | - Mohammad I Cahyono
- Indonesian Research Centre for Veterinary Science, West Java, 16114, Indonesia
| | - Farhid Hemmatzadeh
- School of Animal and Veterinary Sciences, The University of Adelaide, 5371, South Australia, Australia
| |
Collapse
|
218
|
Dolka B, Czopowicz M, Dolka I, Szeleszczuk P. Chicken embryo lethality assay for determining the lethal dose, tissue distribution and pathogenicity of clinical Enterococcus cecorum isolates from poultry. Sci Rep 2022; 12:10675. [PMID: 35739309 PMCID: PMC9225985 DOI: 10.1038/s41598-022-14900-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Accepted: 06/14/2022] [Indexed: 11/25/2022] Open
Abstract
Enterococcus cecorum is a well-known component of the normal poultry intestinal microbiota and an important bacterial pathogen. Infections caused by E. cecorum have negative effects on the poultry production worldwide. In this study we used the SPF-chicken embryo lethality assay (ELA) to assess the pathogenic potential of E. cecorum. A total of 23 isolates were used: 19 clinical isolates from field outbreaks in different poultry groups (CB - broiler chickens, BB - broiler breeders, CL - layers, T- turkeys, W - waterfowl) and 4 commensal isolates. The cumulative mortality caused by all clinical isolates was higher (53.4%) than that of the commensals (38.9%). The highest mortality was induced by CB isolates (68.9%), followed by CL (60.4%), all chicken isolates (59.2%; CB, BB, CL), BB (45.8%), T (41.7%), non-chicken isolates (40.7%; T, W), and W isolates (39.8%). Most of the embryos that died, did die on the 1st day post-infection (dpi), except those infected with CB, CL (on 2 dpi). The median lethal dose (LD50) of E. cecorum ranged from 6.07 × 102 cfu/ml (CB isolates) and 1.42 × 104 cfu/ml (all clinical isolates) to 4.8 × 105 cfu/ml (commensal isolates). This study provides the first evidence of a wide tissue distribution and multiplication of E. cecorum in embryos. Dead embryos showed scattered petechiae, hemorrhages, aggregates of bacteria in blood vessels, multiple organ necrosis, and encephalomalacia. Our data indicate that surviving embryos were able to elicit innate immune response to infection. On the other hand, reisolation of viable bacteria from surviving embryos may suggest that E. cecorum could evade or resist immune mechanisms in order to persist in organs. Furthermore, body mass of surviving embryos was affected by the strain type, not the dose (bacterial concentration) used, and was lower for the infection with clinical strains. The results indicated the highest pathogenicity of clinical E. cecorum isolates from CB and CL flocks.
Collapse
Affiliation(s)
- Beata Dolka
- Department of Pathology and Veterinary Diagnostics, Institute of Veterinary Medicine, Warsaw University of Life Sciences - SGGW, Nowoursynowska 159c St., 02-776, Warsaw, Poland.
| | - Michał Czopowicz
- Division of Veterinary Epidemiology and Economics, Institute of Veterinary Medicine, Warsaw University of Life Sciences - SGGW, Nowoursynowska 159c St., 02-776, Warsaw, Poland
| | - Izabella Dolka
- Department of Pathology and Veterinary Diagnostics, Institute of Veterinary Medicine, Warsaw University of Life Sciences - SGGW, Nowoursynowska 159c St., 02-776, Warsaw, Poland
| | - Piotr Szeleszczuk
- Department of Pathology and Veterinary Diagnostics, Institute of Veterinary Medicine, Warsaw University of Life Sciences - SGGW, Nowoursynowska 159c St., 02-776, Warsaw, Poland
| |
Collapse
|
219
|
Sheerin D, Abhimanyu, Peton N, Vo W, Allison CC, Wang X, Johnson WE, Coussens AK. Immunopathogenic overlap between COVID-19 and tuberculosis identified from transcriptomic meta-analysis and human macrophage infection. iScience 2022; 25:104464. [PMID: 35634577 PMCID: PMC9130411 DOI: 10.1016/j.isci.2022.104464] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 01/14/2022] [Accepted: 05/18/2022] [Indexed: 12/25/2022] Open
Abstract
Current and previous tuberculosis (TB) increase the risk of COVID-19 mortality and severe disease. To identify mechanisms of immunopathogenic interaction between COVID-19 and TB, we performed a systematic review and patient-level meta-analysis of COVID-19 transcriptomic signatures, spanning disease severity, from whole blood, PBMCs, and BALF. 35 eligible signatures were profiled on 1181 RNA-seq samples from 853 individuals across the spectrum of TB infection. Thirteen COVID-19 gene-signatures had significantly higher "COVID-19 risk scores" in active TB and latent TB progressors compared with non-progressors and uninfected controls (p<0·005), in three independent cohorts. Integrative single-cell-RNAseq analysis identified FCN1- and SPP1-expressing macrophages enriched in severe COVID-19 BALF and active TB blood. Gene ontology and protein-protein interaction networks identified 12-gene disease-exacerbation hot spots between COVID-19 and TB. Finally, we in vitro validated that SARS-CoV-2 infection is increased in human macrophages cultured in the inflammatory milieu of Mtb-infected macrophages, correlating with TMPRSS2, IFNA1, IFNB1, IFNG, TNF, and IL1B induction.
Collapse
Affiliation(s)
- Dylan Sheerin
- Infectious Diseases and Immune Defence Division, The Walter & Eliza Hall Institute of Medical Research, Parkville 3279, VIC, Australia
| | - Abhimanyu
- Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine, Department of Pathology, University of Cape Town, Observatory, 7925 Western Cape, South Africa
| | - Nashied Peton
- Infectious Diseases and Immune Defence Division, The Walter & Eliza Hall Institute of Medical Research, Parkville 3279, VIC, Australia
- Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine, Department of Pathology, University of Cape Town, Observatory, 7925 Western Cape, South Africa
| | - William Vo
- Infectious Diseases and Immune Defence Division, The Walter & Eliza Hall Institute of Medical Research, Parkville 3279, VIC, Australia
| | - Cody Charles Allison
- Infectious Diseases and Immune Defence Division, The Walter & Eliza Hall Institute of Medical Research, Parkville 3279, VIC, Australia
| | - Xutao Wang
- Division of Computational Biomedicine and Department of Biostatistics, Boston University, Boston, MA 02118, USA
| | - W. Evan Johnson
- Division of Computational Biomedicine and Department of Biostatistics, Boston University, Boston, MA 02118, USA
| | - Anna Kathleen Coussens
- Infectious Diseases and Immune Defence Division, The Walter & Eliza Hall Institute of Medical Research, Parkville 3279, VIC, Australia
- Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine, Department of Pathology, University of Cape Town, Observatory, 7925 Western Cape, South Africa
- Department of Medical Biology, University of Melbourne, Parkville 3010, VIC, Australia
| |
Collapse
|
220
|
Uraki R, Kiso M, Imai M, Yamayoshi S, Ito M, Fujisaki S, Takashita E, Ujie M, Furusawa Y, Yasuhara A, Iwatsuki-Horimoto K, Sakai-Tagawa Y, Watanabe S, Hasegawa H, Kawaoka Y. Therapeutic efficacy of monoclonal antibodies and antivirals against SARS-CoV-2 Omicron BA.1 in Syrian hamsters. Nat Microbiol 2022; 7:1252-1258. [PMID: 35705860 DOI: 10.1038/s41564-022-01170-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 06/01/2022] [Indexed: 11/09/2022]
Abstract
The spike protein of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the major antigen stimulating the host's protective immune response. Here we assessed the efficacy of therapeutic monoclonal antibodies (mAbs) against Omicron variant (B.1.1.529) sublineage BA.1 variants in Syrian hamsters. Of the FDA-approved therapeutic mAbs tested (that is, REGN10987/REGN10933, COV2-2196/COV2-2130 and S309), only COV2-2196/COV2-2130 efficiently inhibited BA.1 replication in the lungs of hamsters, and this effect was diminished against a BA.1.1 variant possessing the S-R346K substitution. In addition, treatment of BA.1-infected hamsters with molnupiravir (a SARS-CoV-2 RNA-dependent RNA polymerase inhibitor) or S-217622 (a SARS-CoV-2 protease inhibitor) strongly reduced virus replication in the lungs. These findings suggest that the use of therapeutic mAbs in Omicron-infected patients should be carefully considered due to mutations that affect efficacy, and demonstrate that the antiviral compounds molnupiravir and S-217622 are effective against Omicron BA.1 variants.
Collapse
Affiliation(s)
- Ryuta Uraki
- Division of Virology, Institute of Medical Science, University of Tokyo, Tokyo, Japan.,The Research Center for Global Viral Diseases, National Center for Global Health and Medicine Research Institute, Tokyo, Japan
| | - Maki Kiso
- Division of Virology, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Masaki Imai
- Division of Virology, Institute of Medical Science, University of Tokyo, Tokyo, Japan.,The Research Center for Global Viral Diseases, National Center for Global Health and Medicine Research Institute, Tokyo, Japan
| | - Seiya Yamayoshi
- Division of Virology, Institute of Medical Science, University of Tokyo, Tokyo, Japan.,The Research Center for Global Viral Diseases, National Center for Global Health and Medicine Research Institute, Tokyo, Japan
| | - Mutsumi Ito
- Division of Virology, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Seiichiro Fujisaki
- Center for Influenza and Respiratory Virus Research, National Institute of Infectious Diseases, Musashimurayama, Tokyo, Japan
| | - Emi Takashita
- Center for Influenza and Respiratory Virus Research, National Institute of Infectious Diseases, Musashimurayama, Tokyo, Japan
| | - Michiko Ujie
- Division of Virology, Institute of Medical Science, University of Tokyo, Tokyo, Japan.,The Research Center for Global Viral Diseases, National Center for Global Health and Medicine Research Institute, Tokyo, Japan
| | - Yuri Furusawa
- Division of Virology, Institute of Medical Science, University of Tokyo, Tokyo, Japan.,The Research Center for Global Viral Diseases, National Center for Global Health and Medicine Research Institute, Tokyo, Japan
| | - Atsuhiro Yasuhara
- Division of Virology, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | | | - Yuko Sakai-Tagawa
- Division of Virology, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Shinji Watanabe
- Center for Influenza and Respiratory Virus Research, National Institute of Infectious Diseases, Musashimurayama, Tokyo, Japan
| | - Hideki Hasegawa
- Center for Influenza and Respiratory Virus Research, National Institute of Infectious Diseases, Musashimurayama, Tokyo, Japan
| | - Yoshihiro Kawaoka
- Division of Virology, Institute of Medical Science, University of Tokyo, Tokyo, Japan. .,The Research Center for Global Viral Diseases, National Center for Global Health and Medicine Research Institute, Tokyo, Japan. .,Influenza Research Institute, Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
221
|
Tzeng TT, Chai KM, Shen KY, Yu CY, Yang SJ, Huang WC, Liao HC, Chiu FF, Dou HY, Liao CL, Chen HW, Liu SJ. A DNA vaccine candidate delivered by an electroacupuncture machine provides protective immunity against SARS-CoV-2 infection. NPJ Vaccines 2022; 7:60. [PMID: 35662254 PMCID: PMC9166770 DOI: 10.1038/s41541-022-00482-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 04/28/2022] [Indexed: 11/09/2022] Open
Abstract
A major challenge in the use of DNA vaccines is efficient DNA delivery in vivo. Establishing a safe and efficient electric transfer method is the key to developing rapid DNA vaccines against emerging infectious diseases. To overcome the complexity of designing new electric transfer machines for DNA delivery, a clinically approved electric transfer machine could be considered as an alternative. Here, we report an electroacupuncture machine-based method for DNA vaccine delivery after intramuscular injection of the COVID-19 DNA vaccine. The S gene of SARS-CoV-2 in the pVAX1 plasmid (pSARS2-S) was used as an antigen in this study. We optimized the clinically used electroacupuncture machine settings for efficient induction of the neutralizing antibody titer after intramuscular injection of pSARS2-S in mice. We found that pSARS2-S immunization at 40 Vpp for 3-5 s could induce high neutralizing antibody titers and Th1-biased immune responses. IFN-γ/TNF-α-secreting CD4+ and CD8+ T cells were also observed in the DNA vaccination group but not in the recombinant protein vaccination group. T-cell epitope mapping shows that the major reactive epitopes were located in the N-terminal domain (a.a. 261-285) and receptor-binding domain (a.a. 352-363). Importantly, pSARS2-S immunization in hamsters could induce protective immunity against SARS-CoV-2 challenge in vivo. In the preclinical toxicology study, blood biochemistry, hematology, and DNA persistence analysis reveal that the DNA delivery method is safe. Furthermore, the raised antisera could also cross-neutralize different variants of concern. These findings suggest that DNA vaccination using an electroacupuncture machine is feasible for use in humans in the future.
Collapse
Affiliation(s)
- Tsai-Teng Tzeng
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli, Taiwan
| | - Kit Man Chai
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli, Taiwan
| | - Kuan-Yin Shen
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli, Taiwan
| | - Chia-Yi Yu
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli, Taiwan
| | - Shiu-Ju Yang
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli, Taiwan
| | - Wan-Chun Huang
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli, Taiwan
| | - Hung-Chun Liao
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli, Taiwan
- Department of Life Sciences, National Tsing Hua University, Hsinchu, Taiwan
| | - Fang-Feng Chiu
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli, Taiwan
| | - Horng-Yunn Dou
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli, Taiwan
| | - Ching-Len Liao
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli, Taiwan
| | - Hsin-Wei Chen
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli, Taiwan.
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan.
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.
| | - Shih-Jen Liu
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli, Taiwan.
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan.
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.
| |
Collapse
|
222
|
Combination of dasabuvir and PSI-6206 for the treatment of coxsackievirus B3 infection. J Virus Erad 2022; 8:100074. [PMID: 35789934 PMCID: PMC9249823 DOI: 10.1016/j.jve.2022.100074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 06/16/2022] [Indexed: 11/27/2022] Open
Abstract
Coxsackievirus B3 (CVB3) infections may cause life-threatening diseases and have no approved specific treatment. Some promising approaches to treat viral diseases include drug repurposing and combination therapy. We have selected in this study dasabuvir, an approved antiviral drug, and PSI-6206, an experimental drug and determined their individual and combined antiviral activity against CVB3 replication in vitro. Our results show that the individual drugs inhibited CVB3 infection in a dose-dependent manner, at a selective index >10 with a strong synergetic antiviral effect of the two compounds. Given that dasabuvir has already been approved for the treatment of hepatitis C virus infection, treatment of CVB3-related disease with this drug may represent a promising treatment strategy.
Collapse
|
223
|
Aggarwal A, Stella AO, Walker G, Akerman A, Esneau C, Milogiannakis V, Burnett DL, McAllery S, Silva MR, Lu Y, Foster CSP, Brilot F, Pillay A, Van Hal S, Mathivanan V, Fichter C, Kindinger A, Hoppe AC, Munier ML, Amatayakul-Chantler S, Roth N, Coppola G, Symonds GP, Schofield P, Jackson J, Lenthall H, Henry JY, Mazigi O, Jäck HM, Davenport MP, Darley DR, Matthews GV, Khoury DS, Cromer D, Goodnow CC, Christ D, Robosa R, Starck DJ, Bartlett NW, Rawlinson WD, Kelleher AD, Turville SG. Platform for isolation and characterization of SARS-CoV-2 variants enables rapid characterization of Omicron in Australia. Nat Microbiol 2022; 7:896-908. [PMID: 35637329 PMCID: PMC9159941 DOI: 10.1038/s41564-022-01135-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 04/26/2022] [Indexed: 01/31/2023]
Abstract
Genetically distinct variants of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have emerged since the start of the COVID-19 pandemic. Over this period, we developed a rapid platform (R-20) for viral isolation and characterization using primary remnant diagnostic swabs. This, combined with quarantine testing and genomics surveillance, enabled the rapid isolation and characterization of all major SARS-CoV-2 variants circulating in Australia in 2021. Our platform facilitated viral variant isolation, rapid resolution of variant fitness using nasopharyngeal swabs and ranking of evasion of neutralizing antibodies. In late 2021, variant of concern Omicron (B1.1.529) emerged. Using our platform, we detected and characterized SARS-CoV-2 VOC Omicron. We show that Omicron effectively evades neutralization antibodies and has a different entry route that is TMPRSS2-independent. Our low-cost platform is available to all and can detect all variants of SARS-CoV-2 studied so far, with the main limitation being that our platform still requires appropriate biocontainment.
Collapse
Affiliation(s)
- Anupriya Aggarwal
- The Kirby Institute, University of New South Wales, Sydney, New South Wales, Australia
| | - Alberto Ospina Stella
- The Kirby Institute, University of New South Wales, Sydney, New South Wales, Australia
| | - Gregory Walker
- Serology and Virology Division (SAViD), NSW Health Pathology, Sydney, New South Wales, Australia
| | - Anouschka Akerman
- The Kirby Institute, University of New South Wales, Sydney, New South Wales, Australia
| | - Camille Esneau
- Hunter Medical Research Institute, University of Newcastle, Callaghan, New South Wales, Australia
| | - Vanessa Milogiannakis
- The Kirby Institute, University of New South Wales, Sydney, New South Wales, Australia
| | - Deborah L Burnett
- Garvan Institute of Medical Research, Sydney, New South Wales, Australia
| | - Samantha McAllery
- The Kirby Institute, University of New South Wales, Sydney, New South Wales, Australia
| | - Mariana Ruiz Silva
- The Kirby Institute, University of New South Wales, Sydney, New South Wales, Australia
| | - Yonghui Lu
- Serology and Virology Division (SAViD), NSW Health Pathology, Sydney, New South Wales, Australia
| | - Charles S P Foster
- Serology and Virology Division (SAViD), NSW Health Pathology, Sydney, New South Wales, Australia
| | - Fabienne Brilot
- Brain Autoimmunity Group, Kids Neuroscience Centre, The Children's Hospital at Westmead, Faculty of Medicine and Health, School of Medical Sciences, Sydney University of Sydney, Sydney Institute for Infectious Diseases, Sydney, New South Wales, Australia
| | - Aleha Pillay
- Brain Autoimmunity Group, Kids Neuroscience Centre, The Children's Hospital at Westmead, Faculty of Medicine and Health, School of Medical Sciences, Sydney University of Sydney, Sydney Institute for Infectious Diseases, Sydney, New South Wales, Australia
| | | | - Vennila Mathivanan
- The Kirby Institute, University of New South Wales, Sydney, New South Wales, Australia
| | - Christina Fichter
- The Kirby Institute, University of New South Wales, Sydney, New South Wales, Australia
| | - Andrea Kindinger
- The Kirby Institute, University of New South Wales, Sydney, New South Wales, Australia
| | - Alexandra Carey Hoppe
- The Kirby Institute, University of New South Wales, Sydney, New South Wales, Australia
| | - Mee Ling Munier
- The Kirby Institute, University of New South Wales, Sydney, New South Wales, Australia
| | - Supavadee Amatayakul-Chantler
- Department of Bioanalytical Sciences, Plasma Product Development, Research and Development, CSL Behring, Broadmeadows, Melbourne, Victoria, Australia
| | - Nathan Roth
- Department of Bioanalytical Sciences, Plasma Product Development, Research and Development, CSL Behring AG, Bern, Switzerland
| | - Germano Coppola
- Department of Bioanalytical Sciences, Plasma Product Development, Research and Development, CSL Behring, Broadmeadows, Melbourne, Victoria, Australia
| | | | - Peter Schofield
- Garvan Institute of Medical Research, Sydney, New South Wales, Australia
| | - Jennifer Jackson
- Garvan Institute of Medical Research, Sydney, New South Wales, Australia
| | - Helen Lenthall
- Garvan Institute of Medical Research, Sydney, New South Wales, Australia
| | - Jake Y Henry
- Garvan Institute of Medical Research, Sydney, New South Wales, Australia
| | - Ohan Mazigi
- Garvan Institute of Medical Research, Sydney, New South Wales, Australia
| | | | - Miles P Davenport
- The Kirby Institute, University of New South Wales, Sydney, New South Wales, Australia
| | - David R Darley
- St Vincent's Hospital, Sydney, New South Wales, Australia
| | - Gail V Matthews
- The Kirby Institute, University of New South Wales, Sydney, New South Wales, Australia
- St Vincent's Hospital, Sydney, New South Wales, Australia
| | - David S Khoury
- The Kirby Institute, University of New South Wales, Sydney, New South Wales, Australia
| | - Deborah Cromer
- The Kirby Institute, University of New South Wales, Sydney, New South Wales, Australia
| | | | - Daniel Christ
- Garvan Institute of Medical Research, Sydney, New South Wales, Australia
| | - Roselle Robosa
- Molecular Diagnostic Medicine Laboratory, Sydpath, St Vincent's Hospital, Sydney, New South Wales, Australia
| | - Damien J Starck
- Molecular Diagnostic Medicine Laboratory, Sydpath, St Vincent's Hospital, Sydney, New South Wales, Australia
| | - Nathan W Bartlett
- Serology and Virology Division (SAViD), NSW Health Pathology, Sydney, New South Wales, Australia
| | - William D Rawlinson
- Hunter Medical Research Institute, University of Newcastle, Callaghan, New South Wales, Australia
| | - Anthony D Kelleher
- The Kirby Institute, University of New South Wales, Sydney, New South Wales, Australia
- St Vincent's Hospital, Sydney, New South Wales, Australia
| | - Stuart G Turville
- The Kirby Institute, University of New South Wales, Sydney, New South Wales, Australia.
| |
Collapse
|
224
|
Jonsdottir HR, Siegrist D, Julien T, Padey B, Bouveret M, Terrier O, Pizzorno A, Huang S, Samby K, Wells TNC, Boda B, Rosa-Calatrava M, Engler OB, Constant S. Molnupiravir combined with different repurposed drugs further inhibits SARS-CoV-2 infection in human nasal epithelium in vitro. Biomed Pharmacother 2022; 150:113058. [PMID: 35658229 PMCID: PMC9057985 DOI: 10.1016/j.biopha.2022.113058] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 04/08/2022] [Accepted: 04/26/2022] [Indexed: 01/08/2023] Open
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused a worldwide pandemic with unprecedented economic and societal impact. Currently, several vaccines are available and multitudes of antiviral treatments have been proposed and tested. Although many of the vaccines show clinical efficacy, they are not equally accessible worldwide. Additionally, due to the continuous emergence of new variants and generally short duration of immunity, the development of effective antiviral treatments remains of the utmost importance. Since the emergence of SARS-CoV-2, substantial efforts have been undertaken to repurpose existing drugs for accelerated clinical testing and emergency use authorizations. However, drug-repurposing studies using cellular assays often identify hits that later prove ineffective clinically, highlighting the need for more complex screening models. To this end, we evaluated the activity of single compounds that have either been tested clinically or already undergone extensive preclinical profiling, using a standardized in vitro model of human nasal epithelium. Furthermore, we also evaluated drug combinations based on a sub-maximal concentration of molnupiravir. We report the antiviral activity of 95 single compounds and 30 combinations. We show that only a few single agents are highly effective in inhibiting SARS-CoV-2 replication while selected drug combinations containing 10 µM molnupiravir boosted antiviral activity compared to single compound treatment. These data indicate that molnupiravir-based combinations are worthy of further consideration as potential treatment strategies against coronavirus disease 2019 (COVID-19). Not many single compounds exhibit antiviral activity against SARS-CoV-2. The RdRp inhibitor, molnupiravir, inhibits SARS-CoV-2 at various concentrations. Combinations containing 10 µM molnupiravir boost antiviral activity. Combination treatment might provide additional therapeutic benefit against COVID-19.
Collapse
Affiliation(s)
- Hulda R Jonsdottir
- Spiez Laboratory, Federal Office for Civil Protection, Spiez, Switzerland; Department of Rheumatology, Immunology, and Allergology, Inselspital University Hospital, Bern, Switzerland; Department of BioMedical Research, University of Bern, Bern, Switzerland.
| | - Denise Siegrist
- Spiez Laboratory, Federal Office for Civil Protection, Spiez, Switzerland
| | - Thomas Julien
- VirNext, Faculté de Médecine RTH Laennec, Université Claude Bernard Lyon 1, Université de Lyon, 69008, Lyon, France; CIRI, Centre International de Recherche en Infectiologie, (Team VirPath), Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, F-69007 Lyon, France
| | - Blandine Padey
- CIRI, Centre International de Recherche en Infectiologie, (Team VirPath), Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, F-69007 Lyon, France
| | | | - Olivier Terrier
- CIRI, Centre International de Recherche en Infectiologie, (Team VirPath), Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, F-69007 Lyon, France
| | | | - Song Huang
- Epithelix Sàrl, Plan-les-Ouates, Switzerland
| | | | | | | | - Manuel Rosa-Calatrava
- VirNext, Faculté de Médecine RTH Laennec, Université Claude Bernard Lyon 1, Université de Lyon, 69008, Lyon, France; CIRI, Centre International de Recherche en Infectiologie, (Team VirPath), Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, F-69007 Lyon, France
| | - Olivier B Engler
- Spiez Laboratory, Federal Office for Civil Protection, Spiez, Switzerland
| | | |
Collapse
|
225
|
BacMam Expressing Highly Glycosylated Porcine Interferon Alpha Induces Robust Antiviral and Adjuvant Effects against Foot-and-Mouth Disease Virus in Pigs. J Virol 2022; 96:e0052822. [PMID: 35604219 DOI: 10.1128/jvi.00528-22] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Foot-and-mouth disease (FMD) is an acute contagious disease that affects cloven-hoofed animals and has severe global economic consequences. FMD is most commonly controlled by vaccination. Currently available commercial FMD vaccines contain chemically inactivated whole viruses, which are thought to be slow acting as they are effective only 4 to 7 days following vaccination. Hence, the development of a novel rapid vaccine or alternative measures, such as antiviral agents or the combination of vaccines and antiviral agents for prompt FMD virus (FMDV) outbreak containment, is desirable. Here, we constructed a recombinant baculovirus (BacMam) expressing consensus porcine interferon alpha (IFN-α) that has three additional N-glycosylation sites driven by a cytomegalovirus immediate early (CMV-IE) promoter (Bac-Con3N IFN-α) for protein expression in mammalian cells. Bac-Con3N IFN-α expressing highly glycosylated porcine IFN-α protein increased the duration of antiviral effects. We evaluated the antiviral effects of Bac-Con3N IFN-α in swine cells and mice and observed sustained antiviral effects in pig serum; additionally, Bac-Con3N IFN-α exhibited sustained antiviral effects in vivo as well as adjuvant effects in combination with an inactivated FMD vaccine. Pigs injected with a combination of Bac-Con3N IFN-α and the inactivated FMD vaccine were protected against FMDV at 1, 3, and 7 days postvaccination. Furthermore, we observed that in combination with the inactivated FMD vaccine, Bac-Con3N IFN-α increased neutralizing antibody levels in mice and pigs. Therefore, we suggest that Bac-Con3N IFN-α is a strong potential antiviral and adjuvant candidate for use in combination with inactivated FMD vaccines to protect pigs against FMDV. IMPORTANCE Early inhibition of foot-and-mouth disease (FMD) virus (FMDV) replication in pigs is highly desirable as FMDV transmission and shedding rates are higher in pigs than in cattle. However, commercial FMD vaccines require at least 4 to 7 days postvaccination (dpv) for protection, and animals are vulnerable to heterologous viruses before acquiring high antibody levels after the second vaccination. Therefore, the development of antiviral agents for use in combination with FMD vaccines is essential. We developed a novel antiviral and immunostimulant, Bac-Con3N IFN-α, which is a modified porcine IFN-α-expressing recombinant baculovirus, to improve IFN stability and allow its direct delivery to animals. We present a promising candidate for use in combination with inactivated FMD vaccines as pigs applied to the strategy had early protection against FMDV at 1 to 7 dpv, and their neutralizing antibody levels were higher than those in pigs administered the vaccine only.
Collapse
|
226
|
Zhang M, Fei S, Xia J, Wang Y, Wu H, Li X, Guo Y, Swevers L, Sun J, Feng M. Sirt5 Inhibits BmNPV Replication by Promoting a Relish-Mediated Antiviral Pathway in Bombyx mori. Front Immunol 2022; 13:906738. [PMID: 35693834 PMCID: PMC9186105 DOI: 10.3389/fimmu.2022.906738] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 04/19/2022] [Indexed: 11/23/2022] Open
Abstract
Silent information regulators (Sirtuins) belong to the family of nicotinamide adenine dinucleotide (NAD+)-dependent histone deacetylases (HDACs) that have diverse functions in cells. Mammalian Sirtuins have seven isoforms (Sirt1–7) which have been found to play a role in viral replication. However, Sirtuin members of insects are very different from mammals, and the function of insect Sirtuins in regulating virus replication is unclear. The silkworm, Bombyx mori, as a model species of Lepidoptera, is also an important economical insect. B. mori nucleopolyhedrovirus (BmNPV) is a major pathogen that specifically infects silkworms and causes serious losses in the sericulture industry. Here, we used the infection of the silkworm by BmNPV as a model to explore the effect of Sirtuins on virus replication. We initially knocked down all silkworm Sirtuins, and then infected with BmNPV to analyze its replication. Sirt2 and Sirt5 were found to have potential antiviral functions in the silkworm. We further confirmed the antiviral function of silkworm Sirt5 through its effects on viral titers during both knockdown and overexpression experiments. Additionally, Suramin, a Sirt5 inhibitor, was found to promote BmNPV replication. In terms of molecular mechanism, it was found that silkworm Sirt5 might promote the immune pathway mediated by Relish, thereby enhancing the host antiviral response. This study is the first to explore the role of Sirtuins in insect-virus interactions, providing new insights into the functional role of members of the insect Sirtuin family.
Collapse
Affiliation(s)
- Mengmeng Zhang
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Shigang Fei
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Junming Xia
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Yeyuan Wang
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Hongyun Wu
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Xian Li
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Yiyao Guo
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Luc Swevers
- Insect Molecular Genetics and Biotechnology, National Centre for Scientific Research Demokritos, Institute of Biosciences and Applications, Athens, Greece
| | - Jingchen Sun
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
- *Correspondence: Jingchen Sun, ; Min Feng,
| | - Min Feng
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
- *Correspondence: Jingchen Sun, ; Min Feng,
| |
Collapse
|
227
|
Naveed A, Naveed MA, Akram L, Sharif M, Kang MI, Park SI. Rotavirus exploits SREBP pathway for hyper lipid biogenesis during replication. J Gen Virol 2022; 103. [PMID: 35594141 DOI: 10.1099/jgv.0.001757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Species A rotavirus (RVA) is one of the pathogens causing severe acute gastroenteritis in young children and animals worldwide. RVA replicates and assembles its immature particle within electron dense compartments known as viroplasm. Despite the importance of lipid droplet (LD) formation in the RVA viroplasm, the upstream molecules modulating LD formation have remained elusive. Here, we demonstrate that RVA infection reprogrammes sterol regulatory element binding proteins (SREBPs)-dependent lipogenic pathways in virus-infected cells. Interestingly, silencing of SREBPs significantly reduced RVA protein synthesis, genome replication and progeny virus production. Moreover, knockout of SREBP-1c gene conferred resistance to RVA-induced diarrhoea, reduction of RVA replication, and mitigation of small intestinal pathology in mice. This study identifies SREBPs-mediated lipogenic reprogramming in RVA-infected host cells for facilitating virus replication and SREBPs as a potential target for developing therapeutics against RVA infection.
Collapse
Affiliation(s)
- Ahsan Naveed
- Laboratory of Veterinary Pathology, College of Veterinary Medicine, Chonnam National University, Gwangju 61186, Republic of Korea
| | | | - Lubna Akram
- District Headquarter Hospital, Pakpattan Sharif 57400, Pakistan
| | - Muhammad Sharif
- Laboratory of Veterinary Pathology, College of Veterinary Medicine, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Mun-Il Kang
- Laboratory of Veterinary Pathology, College of Veterinary Medicine, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Sang-Ik Park
- Laboratory of Veterinary Pathology, College of Veterinary Medicine, Chonnam National University, Gwangju 61186, Republic of Korea
| |
Collapse
|
228
|
Liu Z, Xu Y, Li Y, Xu S, Li Y, Xiao L, Chen X, He C, Zheng K. Transcriptome analysis of Aedes albopictus midguts infected by dengue virus identifies a gene network module highly associated with temperature. Parasit Vectors 2022; 15:173. [PMID: 35590344 PMCID: PMC9118615 DOI: 10.1186/s13071-022-05282-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 04/11/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Dengue is prevalent worldwide and is transmitted by Aedes mosquitoes. Temperature is a strong driver of dengue transmission. However, little is known about the underlying mechanisms. METHODS Aedes albopictus mosquitoes exposed or not exposed to dengue virus serotype 2 (DENV-2) were reared at 23 °C, 28 °C and 32 °C, and midguts and residual tissues were evaluated at 7 days after infection. RNA sequencing of midgut pools from the control group, midgut breakthrough group and midgut nonbreakthrough group at different temperatures was performed. The transcriptomic profiles were analyzed using the R package, followed by weighted gene correlation network analysis (WGCNA) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis to identify the important molecular mechanisms regulated by temperature. RESULTS The midgut infection rate and midgut breakthrough rate at 28 °C and 32 °C were significantly higher than those at 23 °C, which indicates that high temperature facilitates DENV-2 breakthrough in the Ae. albopictus midgut. Transcriptome sequencing was performed to investigate the antiviral mechanism in the midgut. The midgut gene expression datasets clustered with respect to temperature, blood-feeding and midgut breakthrough. Over 1500 differentially expressed genes were identified by pairwise comparisons of midguts at different temperatures. To assess key molecules regulated by temperature, we used WGCNA, which identified 28 modules of coexpressed genes; the ME3 module correlated with temperature. KEGG analysis indicated that RNA degradation, Toll and immunodeficiency factor signaling and other pathways are regulated by temperature. CONCLUSIONS Temperature affects the infection and breakthrough of Ae. albopictus midguts invaded by DENV-2, and Ae. albopictus midgut transcriptomes change with temperature. The candidate genes and key pathways regulated by temperature provide targets for the prevention and control of dengue.
Collapse
Affiliation(s)
- Zhuanzhuan Liu
- Department of Pathogen Biology and Immunology, Jiangsu Key Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, China
| | - Ye Xu
- Department of Pathogen Biology, Key Laboratory of Tropical Disease Research of Guangdong Province, School of Public Health, Southern Medical University, Guangzhou, China
| | - Yudi Li
- Department of Pathogen Biology and Immunology, Jiangsu Key Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, China
| | - Shihong Xu
- Department of Pathogen Biology and Immunology, Jiangsu Key Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, China
| | - Yiji Li
- Department of Pathogen Biology, Hainan Medical University, Haikou, Hainan, China
| | - Ling Xiao
- Taiyuan Central Hospital, Shanxi, China
| | - Xiaoguang Chen
- Department of Pathogen Biology, Key Laboratory of Tropical Disease Research of Guangdong Province, School of Public Health, Southern Medical University, Guangzhou, China
| | - Cheng He
- Department of Pathogen Biology and Immunology, Jiangsu Key Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, China.
| | - Kuiyang Zheng
- Department of Pathogen Biology and Immunology, Jiangsu Key Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, China.
| |
Collapse
|
229
|
Bullen CK, Davis SL, Looney MM. Quantification of Infectious SARS-CoV-2 by the 50% Tissue Culture Infectious Dose Endpoint Dilution Assay. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2022; 2452:131-146. [PMID: 35554905 DOI: 10.1007/978-1-0716-2111-0_9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A number of viral quantification methods are used to measure the concentration of infectious severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). While the traditional plaque-based assay allows for direct enumeration of replication competent lytic virions and remains the gold standard for the quantification of infectious virus, the 50% tissue culture infectious dose (TCID50) endpoint dilution assay allows for a more rapid, large-scale analysis of experimental samples. In this chapter, we describe a well-established TCID50 assay protocol to measure the SARS-CoV-2 infectious titer in viral stocks, in vitro cell or organoid models, and animal tissue. We also present alternative assays for scoring the cytopathic effect of SARS-CoV-2 in cell culture and comparable methods to calculate the 50% endpoint by serial dilution.
Collapse
Affiliation(s)
- C Korin Bullen
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Stephanie L Davis
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Monika M Looney
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
230
|
Ashtiwi NM, Sarr D, Nagy T, Reneer ZB, Tripp RA, Rada B. The Hypothiocyanite and Amantadine Combination Treatment Prevents Lethal Influenza A Virus Infection in Mice. Front Immunol 2022; 13:859033. [PMID: 35663985 PMCID: PMC9159274 DOI: 10.3389/fimmu.2022.859033] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 04/12/2022] [Indexed: 11/21/2022] Open
Abstract
The influenza virus has a large clinical burden and is associated with significant mortality and morbidity. The development of effective drugs for the treatment or prevention of influenza is important in order to reduce its impact. Adamantanes and neuraminidase inhibitors are two classes of anti-influenza drugs in which resistance has developed; thus, there is an urgent need to explore new therapeutic options. Boosting antiviral innate immune mechanisms in the airways represents an attractive approach. Hypothiocyanite (OSCN-) is produced by the airway epithelium and is effective in reducing the replication of several influenza A virus strains in vitro. It remains, however, largely unexplored whether OSCN- has such an antiviral effect in vivo. Here we determined the therapeutic potential of OSCN-, alone or in combination with amantadine (AMT), in preventing lethal influenza A virus replication in mice and in vitro. Mice intranasally infected with a lethal dose of A/Puerto Rico/8/1934 (H1N1) or A/Hong Kong/8/1968 (H3N2) were cured by the combination treatment of OSCN- and AMT. Monotherapy with OSCN- or AMT alone did not substantially improve survival outcomes. However, AMT+OSCN- treatment significantly inhibited viral replication, and in vitro treatment inhibited viral entry and nuclear transport of different influenza A virus strains (H1N1 and H3N2) including the AMT-resistant strain A/WSN/33 (H1N1). A triple combination treatment consisting of AMT, oseltamivir, and OSCN- was also tested and further inhibited in vitro viral replication of the AMT-resistant A/WSN/33 strain. These results suggest that OSCN- is a promising anti-influenza treatment option when combined with other antiviral drugs.
Collapse
Affiliation(s)
- Nuha Milad Ashtiwi
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
| | - Demba Sarr
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
| | - Tamás Nagy
- Department of Pathology, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
| | - Z. Beau Reneer
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
| | - Ralph A. Tripp
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
| | - Balázs Rada
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
| |
Collapse
|
231
|
Ochnik M, Franz D, Sobczyński M, Naporowski P, Banach M, Orzechowska B, Sochocka M. Inhibition of Human Respiratory Influenza A Virus and Human Betacoronavirus-1 by the Blend of Double-Standardized Extracts of Aronia melanocarpa (Michx.) Elliot and Sambucus nigra L. Pharmaceuticals (Basel) 2022; 15:ph15050619. [PMID: 35631445 PMCID: PMC9143272 DOI: 10.3390/ph15050619] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/11/2022] [Accepted: 05/14/2022] [Indexed: 02/05/2023] Open
Abstract
Viral and bacterial diseases are among the greatest concerns of humankind since ancient times. Despite tremendous pharmacological progress, there is still a need to search for new drugs that could treat or support the healing processes. A rich source of bioactive compounds with antiviral potency include plants such as black chokeberry and elderberry. The aim of this study was to assess the in vitro antiviral ability of an originally designed double-standardized blend of extracts from Aronia melanocarpa (Michx.) Elliot and Sambucus nigra L. (EAM-ESN) or separated extracts of A. melanocarpa (EAM) or S. nigra (ESN) against four human respiratory tract viruses: influenza A virus (A/H1N1), betacoronavirus-1 (HCoV-OC43) belonging to the same β-coronaviruses as the current pandemic SARS-CoV-2, human herpesvirus type 1 (HHV-1), and human adenovirus type 5 (HAdV-5). Antiviral assays (AVAs) were used to evaluate the antiviral activity of the plant extracts in a cell-present environment with extracts tested before, simultaneously, or after viral infection. The virus replication was assessed using the CPE scale or luminescent assay. The EAM-ESN blend strongly inhibited A/H1N1 replication as well as HCoV-OC43, while having a limited effect against HHV-1 and HAdV-5. This activity likely depends mostly on the presence of the extract of S. nigra. However, the EAM-ESN blend possesses more effective inhibitory activity toward virus replication than its constituent extracts. A post-infection mechanism of action of the EAM-ESN make this blend the most relevant for potential drugs and supportive treatments; thus, the EAM-ESN blend might be considered as a natural remedy in mild, seasonal respiratory viral infections.
Collapse
Affiliation(s)
- Michał Ochnik
- Laboratory of Virology, Department of Immunology of Infectious Diseases, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland; (M.O.); (D.F.); (B.O.)
| | - Dominika Franz
- Laboratory of Virology, Department of Immunology of Infectious Diseases, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland; (M.O.); (D.F.); (B.O.)
| | - Maciej Sobczyński
- Laboratory of Molecular Neurobiology, Nencki Institute of Experimental Biology of the Polish Academy of Sciences, 02-093 Warsaw, Poland;
| | - Piotr Naporowski
- Laboratory of Medical Microbiology, Department of Immunology of Infectious Diseases, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland;
| | - Mariusz Banach
- Department of Physical Chemistry and Polymer Physical Chemistry, Nicolaus Copernicus University in Toruń, 87-100 Toruń, Poland;
| | - Beata Orzechowska
- Laboratory of Virology, Department of Immunology of Infectious Diseases, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland; (M.O.); (D.F.); (B.O.)
| | - Marta Sochocka
- Laboratory of Virology, Department of Immunology of Infectious Diseases, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland; (M.O.); (D.F.); (B.O.)
- Correspondence: ; Tel.: +48-713-709-924
| |
Collapse
|
232
|
Panatto D, Orsi A, Bruzzone B, Ricucci V, Fedele G, Reiner G, Giarratana N, Domnich A, Icardi G. Efficacy of the Sentinox Spray in Reducing Viral Load in Mild COVID-19 and Its Virucidal Activity against Other Respiratory Viruses: Results of a Randomized Controlled Trial and an In Vitro Study. Viruses 2022; 14:1033. [PMID: 35632774 PMCID: PMC9144724 DOI: 10.3390/v14051033] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/10/2022] [Accepted: 05/11/2022] [Indexed: 01/25/2023] Open
Abstract
Sentinox (STX) is an acid-oxidizing solution containing hypochlorous acid in spray whose virucidal activity against SARS-CoV-2 has been demonstrated. In this paper, results of a randomized controlled trial (RCT) on the efficacy of STX in reducing viral load in mild COVID-19 patients (NCT04909996) and a complementary in vitro study on its activity against different respiratory viruses are reported. In the RCT, 57 patients were randomized (1:1:1) to receive STX three (STX-3) or five (STX-5) times/day plus standard therapy or standard therapy only (controls). Compared with controls, the log10 load reduction in groups STX-3 and STX-5 was 1.02 (p = 0.14) and 0.18 (p = 0.80), respectively. These results were likely driven by outliers with extreme baseline viral loads. When considering subjects with baseline cycle threshold values of 20-30, STX-3 showed a significant (p = 0.016) 2.01 log10 reduction. The proportion of subjects that turned negative by the end of treatment (day 5) was significantly higher in the STX-3 group than in controls, suggesting a shorter virus clearance time. STX was safe and well-tolerated. In the in vitro study, ≥99.9% reduction in titers against common respiratory viruses was observed. STX is a safe device with large virucidal spectrum and may reduce viral loads in mild COVID-19 patients.
Collapse
Affiliation(s)
- Donatella Panatto
- Department of Health Sciences (DISSAL), University of Genoa, 16132 Genoa, Italy; (D.P.); (A.O.); (G.I.)
| | - Andrea Orsi
- Department of Health Sciences (DISSAL), University of Genoa, 16132 Genoa, Italy; (D.P.); (A.O.); (G.I.)
- Hygiene Unit, San Martino Policlinico Hospital-IRCCS for Oncology and Neurosciences, 16132 Genoa, Italy; (B.B.); (V.R.)
| | - Bianca Bruzzone
- Hygiene Unit, San Martino Policlinico Hospital-IRCCS for Oncology and Neurosciences, 16132 Genoa, Italy; (B.B.); (V.R.)
| | - Valentina Ricucci
- Hygiene Unit, San Martino Policlinico Hospital-IRCCS for Oncology and Neurosciences, 16132 Genoa, Italy; (B.B.); (V.R.)
| | | | - Giorgio Reiner
- APR Applied Pharma Research SA, via Corti 5, CH-6828 Balerna, Switzerland; (G.R.); (N.G.)
| | - Nadia Giarratana
- APR Applied Pharma Research SA, via Corti 5, CH-6828 Balerna, Switzerland; (G.R.); (N.G.)
| | - Alexander Domnich
- Hygiene Unit, San Martino Policlinico Hospital-IRCCS for Oncology and Neurosciences, 16132 Genoa, Italy; (B.B.); (V.R.)
| | - Giancarlo Icardi
- Department of Health Sciences (DISSAL), University of Genoa, 16132 Genoa, Italy; (D.P.); (A.O.); (G.I.)
- Hygiene Unit, San Martino Policlinico Hospital-IRCCS for Oncology and Neurosciences, 16132 Genoa, Italy; (B.B.); (V.R.)
| | | |
Collapse
|
233
|
Sonnleitner ST, Prelog M, Sonnleitner S, Hinterbichler E, Halbfurter H, Kopecky DBC, Almanzar G, Koblmüller S, Sturmbauer C, Feist L, Horres R, Posch W, Walder G. Cumulative SARS-CoV-2 mutations and corresponding changes in immunity in an immunocompromised patient indicate viral evolution within the host. Nat Commun 2022; 13:2560. [PMID: 35538074 PMCID: PMC9090742 DOI: 10.1038/s41467-022-30163-4] [Citation(s) in RCA: 72] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 04/19/2022] [Indexed: 01/07/2023] Open
Abstract
Different scenarios explaining the emergence of novel variants of concern (VOC) of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have been reported, including their evolution in scarcely monitored populations, in animals as alternative hosts, or in immunocompromised individuals. Here we report SARS-CoV-2 immune escape mutations over a period of seven months in an immunocompromised patient with prolonged viral shedding. Signs of infection, viral shedding and mutation events are periodically analyzed using RT-PCR and next-generation sequencing based on naso-pharyngeal swabs, with the results complemented by immunological diagnostics to determine humoral and T cell immune responses. Throughout the infection course, 17 non-synonymous intra-host mutations are noted, with 15 (88.2%) having been previously described as prominent immune escape mutations (S:E484K, S:D950N, S:P681H, S:N501Y, S:del(9), N:S235F and S:H655Y) in VOCs. The high frequency of these non-synonymous mutations is consistent with multiple events of convergent evolution. Thus, our results suggest that specific mutations in the SARS-CoV-2 genome may represent positions with a fitness advantage, and may serve as targets in future vaccine and therapeutics development for COVID-19.
Collapse
Affiliation(s)
- Sissy Therese Sonnleitner
- Infektiologie Tirol, Department of Virology, 9931, Unterwalden 30, Außervillgraten, Austria.
- Institute of Hygiene and Medical Microbiology, Medical University of Innsbruck, 6020, Innsbruck, Austria.
| | - Martina Prelog
- Pediatric Rheumatology/Special Immunology, Department of Pediatrics, University Hospital Wuerzburg, Josef-Schneider-Str. 2, Wuerzburg, Germany
| | - Stefanie Sonnleitner
- Infektiologie Tirol, Department of Virology, 9931, Unterwalden 30, Außervillgraten, Austria
| | - Eva Hinterbichler
- Infektiologie Tirol, Department of Virology, 9931, Unterwalden 30, Außervillgraten, Austria
| | - Hannah Halbfurter
- Infektiologie Tirol, Department of Virology, 9931, Unterwalden 30, Außervillgraten, Austria
| | - Dominik B C Kopecky
- Infektiologie Tirol, Department of Virology, 9931, Unterwalden 30, Außervillgraten, Austria
| | - Giovanni Almanzar
- Pediatric Rheumatology/Special Immunology, Department of Pediatrics, University Hospital Wuerzburg, Josef-Schneider-Str. 2, Wuerzburg, Germany
| | - Stephan Koblmüller
- Institute of Biology, University of Graz, Universitätsplatz 2, 8010, Graz, Austria
| | - Christian Sturmbauer
- Institute of Biology, University of Graz, Universitätsplatz 2, 8010, Graz, Austria
| | - Leonard Feist
- GenXPro GmbH, Altenhoeferallee 3, 60438, Frankfurt am Main, Germany
| | - Ralf Horres
- GenXPro GmbH, Altenhoeferallee 3, 60438, Frankfurt am Main, Germany
| | - Wilfried Posch
- Institute of Hygiene and Medical Microbiology, Medical University of Innsbruck, 6020, Innsbruck, Austria
| | - Gernot Walder
- Infektiologie Tirol, Department of Virology, 9931, Unterwalden 30, Außervillgraten, Austria
| |
Collapse
|
234
|
Kang MS, Park GY. In Vitro Inactivation of Respiratory Viruses and Rotavirus by the Oral Probiotic Strain Weissella cibaria CMS1. Probiotics Antimicrob Proteins 2022; 14:760-766. [PMID: 35536505 PMCID: PMC9086127 DOI: 10.1007/s12602-022-09947-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/27/2022] [Indexed: 11/17/2022]
Abstract
Weissella cibaria CMS1 (oraCMS1) has been commercially used in Korea as an oral care probiotic for several years. Human respiratory syncytial virus (RSV) and the influenza A virus (H1N1) are representative viruses that cause infantile lower respiratory tract infections. Rotavirus A (RVA) is the most common cause of diarrhea in infants and young children. Here, we aimed to evaluate the efficacy of the cell-free supernatant (CFS) of oraCMS1 in inactivating RSV, H1N1, and RVA in suspension as per ASTM (American Society for Testing and Materials) E1052-20. The mixture of oraCMS1 and these viruses was evaluated at contact times of 1, 2, and 4 h. Virucidal activity was measured using a 50% tissue culture infective dose assay (log10TCID50) after infecting the host cells with the viruses. The CFS of oraCMS1 inactivated RSV by up to 99.0% after 1 h and 99.9% after 2 and 4 h, and H1N1 and RVA were inactivated by up to 99.9% and 99.0% at 2 h, respectively. Although these in vitro results cannot be directly interpreted as implying clinical efficacy, our findings suggest that oraCMS1 provides a protective barrier against RSV, H1N1, and RVA, and therefore, it can help decrease the risk of respiratory tract and intestinal infections.
Collapse
Affiliation(s)
- Mi-Sun Kang
- R&D Center, OraPharm Inc, Seoul, 04782, Republic of Korea.
| | | |
Collapse
|
235
|
Osman IO, Garrec C, de Souza GAP, Zarubica A, Belhaouari DB, Baudoin JP, Lepidi H, Mege JL, Malissen B, Scola BL, Devaux CA. Control of CDH1/E-Cadherin Gene Expression and Release of a Soluble Form of E-Cadherin in SARS-CoV-2 Infected Caco-2 Intestinal Cells: Physiopathological Consequences for the Intestinal Forms of COVID-19. Front Cell Infect Microbiol 2022; 12:798767. [PMID: 35601094 PMCID: PMC9114883 DOI: 10.3389/fcimb.2022.798767] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 03/22/2022] [Indexed: 12/19/2022] Open
Abstract
COVID-19 is the biggest pandemic the world has seen this century. Alongside the respiratory damage observed in patients with severe forms of the disease, gastrointestinal symptoms have been frequently reported. These symptoms (e.g., diarrhoea), sometimes precede the development of respiratory tract illnesses, as if the digestive tract was a major target during early SARS-CoV-2 dissemination. We hypothesize that in patients carrying intestinal SARS-CoV-2, the virus may trigger epithelial barrier damage through the disruption of E-cadherin (E-cad) adherens junctions, thereby contributing to the overall gastrointestinal symptoms of COVID-19. Here, we use an intestinal Caco-2 cell line of human origin which expresses the viral receptor/co-receptor as well as the membrane anchored cell surface adhesion protein E-cad to investigate the expression of E-cad after exposure to SARS-CoV-2. We found that the expression of CDH1/E-cad mRNA was significantly lower in cells infected with SARS-CoV-2 at 24 hours post-infection, compared to virus-free Caco-2 cells. The viral receptor ACE2 mRNA expression was specifically down-regulated in SARS-CoV-2-infected Caco-2 cells, while it remained stable in HCoV-OC43-infected Caco-2 cells, a virus which uses HLA class I instead of ACE2 to enter cells. It is worth noting that SARS-CoV-2 induces lower transcription of TMPRSS2 (involved in viral entry) and higher expression of B0AT1 mRNA (that encodes a protein known to co-express with ACE2 on intestinal cells). At 48 hours post-exposure to the virus, we also detected a small but significant increase of soluble E-cad protein (sE-cad) in the culture supernatant of SARS-CoV-2-infected Caco-2 cells. The increase of sE-cad release was also found in the intestinal HT29 cell line when infected by SARS-CoV-2. Beside the dysregulation of E-cad, SARS-CoV-2 infection of Caco-2 cells also leads to the dysregulation of other cell adhesion proteins (occludin, JAMA-A, zonulin, connexin-43 and PECAM-1). Taken together, these results shed light on the fact that infection of Caco-2 cells with SARS-CoV-2 affects tight-, adherens-, and gap-junctions. Moreover, intestinal tissues damage was associated to the intranasal SARS-CoV-2 infection in human ACE2 transgenic mice.
Collapse
Affiliation(s)
- Ikram Omar Osman
- Microbes Evolution Phylogeny and Infections (MEPHI), Institut de recherche pour le Développement (IRD), Assistance Publique Hôpitaux de Marseille (APHM), Institut Hospitalo-Universitaire (IHU)-Méditerranée Infection, Marseille, France
- Aix-Marseille Université, Marseille, France
| | - Clémence Garrec
- Microbes Evolution Phylogeny and Infections (MEPHI), Institut de recherche pour le Développement (IRD), Assistance Publique Hôpitaux de Marseille (APHM), Institut Hospitalo-Universitaire (IHU)-Méditerranée Infection, Marseille, France
- Aix-Marseille Université, Marseille, France
| | - Gabriel Augusto Pires de Souza
- Microbes Evolution Phylogeny and Infections (MEPHI), Institut de recherche pour le Développement (IRD), Assistance Publique Hôpitaux de Marseille (APHM), Institut Hospitalo-Universitaire (IHU)-Méditerranée Infection, Marseille, France
| | - Ana Zarubica
- Centre d’Immunophénomique (CIPHE), Aix Marseille Université, Institut National de la Santé et de la Recherche Médicale (INSERM), Centre National de la Recherche Scientifique (CNRS), CELPHEDIA, PHENOMIN, Marseille, France
| | - Djamal Brahim Belhaouari
- Microbes Evolution Phylogeny and Infections (MEPHI), Institut de recherche pour le Développement (IRD), Assistance Publique Hôpitaux de Marseille (APHM), Institut Hospitalo-Universitaire (IHU)-Méditerranée Infection, Marseille, France
- Aix-Marseille Université, Marseille, France
| | - Jean-Pierre Baudoin
- Microbes Evolution Phylogeny and Infections (MEPHI), Institut de recherche pour le Développement (IRD), Assistance Publique Hôpitaux de Marseille (APHM), Institut Hospitalo-Universitaire (IHU)-Méditerranée Infection, Marseille, France
| | - Hubert Lepidi
- Microbes Evolution Phylogeny and Infections (MEPHI), Institut de recherche pour le Développement (IRD), Assistance Publique Hôpitaux de Marseille (APHM), Institut Hospitalo-Universitaire (IHU)-Méditerranée Infection, Marseille, France
- Assitance Publique Hôpitaux de Marseille (APHM), Marseille, France
| | - Jean-Louis Mege
- Microbes Evolution Phylogeny and Infections (MEPHI), Institut de recherche pour le Développement (IRD), Assistance Publique Hôpitaux de Marseille (APHM), Institut Hospitalo-Universitaire (IHU)-Méditerranée Infection, Marseille, France
- Aix-Marseille Université, Marseille, France
- Assitance Publique Hôpitaux de Marseille (APHM), Marseille, France
| | - Bernard Malissen
- Centre d’Immunophénomique (CIPHE), Aix Marseille Université, Institut National de la Santé et de la Recherche Médicale (INSERM), Centre National de la Recherche Scientifique (CNRS), CELPHEDIA, PHENOMIN, Marseille, France
| | - Bernard La Scola
- Microbes Evolution Phylogeny and Infections (MEPHI), Institut de recherche pour le Développement (IRD), Assistance Publique Hôpitaux de Marseille (APHM), Institut Hospitalo-Universitaire (IHU)-Méditerranée Infection, Marseille, France
| | - Christian Albert Devaux
- Microbes Evolution Phylogeny and Infections (MEPHI), Institut de recherche pour le Développement (IRD), Assistance Publique Hôpitaux de Marseille (APHM), Institut Hospitalo-Universitaire (IHU)-Méditerranée Infection, Marseille, France
- Aix-Marseille Université, Marseille, France
- Centre National de la Recherche Scientifique (CNRS), Marseille, France
| |
Collapse
|
236
|
Minenkova O, Santapaola D, Milazzo FM, Anastasi AM, Battistuzzi G, Chiapparino C, Rosi A, Gritti G, Borleri G, Rambaldi A, Dental C, Viollet C, Pagano B, Salvini L, Marra E, Luberto L, Rossi A, Riccio A, Merlo Pich E, Santoro MG, De Santis R. Human inhalable antibody fragments neutralizing SARS-CoV-2 variants for COVID-19 therapy. Mol Ther 2022; 30:1979-1993. [PMID: 35167974 PMCID: PMC8837488 DOI: 10.1016/j.ymthe.2022.02.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 02/02/2022] [Accepted: 02/09/2022] [Indexed: 12/01/2022] Open
Abstract
As of December 2021, coronavirus disease 2019 (COVID-19), caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), remains a global emergency, and novel therapeutics are urgently needed. Here we describe human single-chain variable fragment (scFv) antibodies (76clAbs) that block an epitope of the SARS-CoV-2 spike protein essential for ACE2-mediated entry into cells. 76clAbs neutralize the Delta variant and other variants being monitored (VBMs) and inhibit spike-mediated pulmonary cell-cell fusion, a critical feature of COVID-19 pathology. In two independent animal models, intranasal administration counteracted the infection. Because of their high efficiency, remarkable stability, resilience to nebulization, and low cost of production, 76clAbs may become a relevant tool for rapid, self-administrable early intervention in SARS-CoV-2-infected subjects independently of their immune status.
Collapse
Affiliation(s)
- Olga Minenkova
- Alfasigma SpA, Biotechnology R&D, Via Pontina Km 30.400, Pomezia, 00071 Rome, Italy
| | - Daniela Santapaola
- Alfasigma SpA, Biotechnology R&D, Via Pontina Km 30.400, Pomezia, 00071 Rome, Italy
| | | | - Anna Maria Anastasi
- Alfasigma SpA, Biotechnology R&D, Via Pontina Km 30.400, Pomezia, 00071 Rome, Italy
| | | | - Caterina Chiapparino
- Alfasigma SpA, Biotechnology R&D, Via Pontina Km 30.400, Pomezia, 00071 Rome, Italy
| | - Antonio Rosi
- Alfasigma SpA, Biotechnology R&D, Via Pontina Km 30.400, Pomezia, 00071 Rome, Italy
| | - Giuseppe Gritti
- ASST Papa Giovanni XXIII, Piazza OMS, 1, 24127 Bergamo, Italy
| | | | - Alessandro Rambaldi
- ASST Papa Giovanni XXIII, Piazza OMS, 1, 24127 Bergamo, Italy; Department of Hematology and Oncology, University of Milan, Via Festa del Perdono, 7, 20122 Milan, Italy
| | - Clélia Dental
- Texcell, Batiment Genavenir 5, Rue Pierre Fontaine 1, 91058 Evry Cedex, France
| | - Cécile Viollet
- Texcell, Batiment Genavenir 5, Rue Pierre Fontaine 1, 91058 Evry Cedex, France
| | - Bruno Pagano
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano, 49, 80131 Naples, Italy
| | - Laura Salvini
- Fondazione Toscana Life Sciences, Via Fiorentina, 1, 53100 Siena, Italy
| | | | - Laura Luberto
- Takis Srl, Via di Castel Romano, 100, 00128 Rome, Italy
| | - Antonio Rossi
- Institute of Translational Pharmacology, CNR, Via Fosso del Cavaliere, 100, 00133 Rome, Italy
| | - Anna Riccio
- Department of Biology, University of Rome Tor Vergata, Via della Ricerca Scientifica, 1, 00133 Rome, Italy
| | - Emilio Merlo Pich
- Alfasigma SpA, Biotechnology R&D, Via Pontina Km 30.400, Pomezia, 00071 Rome, Italy
| | - Maria Gabriella Santoro
- Institute of Translational Pharmacology, CNR, Via Fosso del Cavaliere, 100, 00133 Rome, Italy; Department of Biology, University of Rome Tor Vergata, Via della Ricerca Scientifica, 1, 00133 Rome, Italy
| | - Rita De Santis
- Alfasigma SpA, Biotechnology R&D, Via Pontina Km 30.400, Pomezia, 00071 Rome, Italy.
| |
Collapse
|
237
|
Oral Administration of Valganciclovir Reduces Clinical Signs, Virus Shedding and Cell-Associated Viremia in Ponies Experimentally Infected with the Equid Herpesvirus-1 C2254 Variant. Pathogens 2022; 11:pathogens11050539. [PMID: 35631060 PMCID: PMC9148010 DOI: 10.3390/pathogens11050539] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/27/2022] [Accepted: 04/30/2022] [Indexed: 12/10/2022] Open
Abstract
Equid alphaherpesvirus-1 (EHV-1) is one of the main pathogens in horses, responsible for respiratory diseases, ocular diseases, abortions, neonatal foal death and neurological complications such as equine herpesvirus myeloencephalopathy (EHM). Current vaccines reduce the excretion and dissemination of the virus and, therefore, the extent of an epizooty. While their efficacy against EHV-1-induced abortion in pregnant mares and the decreased occurrence of an abortion storm in the field have been reported, their potential efficacy against the neurological form of disease remains undocumented. No antiviral treatment against EHV-1 is marketed and recommended to date. This study aimed to measure the protection induced by valganciclovir (VGCV), the prodrug of ganciclovir, in Welsh mountain ponies experimentally infected with an EHV-1 ORF30-C2254 strain. Four ponies were administered VGCV immediately prior to experimental EHV-1 infection, while another four ponies received a placebo. The treatment consisted in 6.5 mg/kg body weight of valganciclovir administered orally three times the first day and twice daily for 13 days. Clinical signs of disease, virus shedding and viraemia were measured for up to 3 weeks. The severity of the cumulative clinical score was significantly reduced in the treated group when compared with the control group. Shedding of infectious EHV-1 was significantly reduced in the treated group when compared with the control group between Day + 1 (D + 1) and D + 12. Viraemia was significantly reduced in the treated group when compared with the control group. Seroconversion was measured in all the ponies included in the study, irrespective of the treatment received. Oral administration of valganciclovir induced no noticeable side effect but reduced clinical signs of disease, infectious virus shedding and viraemia in ponies experimentally infected with the EHV-1 C2254 variant.
Collapse
|
238
|
Abstract
Zika virus is a mosquito-borne flavivirus known to cause severe birth defects and neuroimmunological disorders. We have previously demonstrated that mosquito transmission of Zika virus decreases with temperature. While transmission was optimized at 29°C, it was limited at cool temperatures (<22°C) due to poor virus establishment in the mosquitoes. Temperature is one of the strongest drivers of vector-borne disease transmission due to its profound effect on ectothermic mosquito vectors, viruses, and their interaction. Although there is substantial evidence of temperature effects on arbovirus replication and dissemination inside mosquitoes, little is known about whether temperature affects virus replication directly or indirectly through mosquito physiology. In order to determine the mechanisms behind temperature-induced changes in Zika virus transmission potential, we investigated different steps of the virus replication cycle in mosquito cells (C6/36) at optimal (28°C) and cool (20°C) temperatures. We found that the cool temperature did not alter Zika virus entry or translation, but it affected genome replication and reduced the amount of double-stranded RNA replication intermediates. If replication complexes were first formed at 28°C and the cells were subsequently shifted to 20°C, the late steps in the virus replication cycle were efficiently completed. These data suggest that cool temperature decreases the efficiency of Zika virus genome replication in mosquito cells. This phenotype was observed in the Asian lineage of Zika virus, while the African lineage Zika virus was less restricted at 20°C. IMPORTANCE With half of the human population at risk, arboviral diseases represent a substantial global health burden. Zika virus, previously known to cause sporadic infections in humans, emerged in the Americas in 2015 and quickly spread worldwide. There was an urgent need to better understand the disease pathogenesis and develop therapeutics and vaccines, as well as to understand, predict, and control virus transmission. In order to efficiently predict the seasonality and geography for Zika virus transmission, we need a deeper understanding of the host-pathogen interactions and how they can be altered by environmental factors such as temperature. Identifying the step in the virus replication cycle that is inhibited under cool conditions can have implications in modeling the temperature suitability for arbovirus transmission as global environmental patterns change. Understanding the link between pathogen replication and environmental conditions can potentially be exploited to develop new vector control strategies in the future.
Collapse
|
239
|
Boudewijns R, Pérez P, Lázaro-Frías A, Van Looveren D, Vercruysse T, Thibaut HJ, Weynand B, Coelmont L, Neyts J, Astorgano D, Montenegro D, Puentes E, Rodríguez E, Dallmeier K, Esteban M, García-Arriaza J. MVA-CoV2-S Vaccine Candidate Neutralizes Distinct Variants of Concern and Protects Against SARS-CoV-2 Infection in Hamsters. Front Immunol 2022; 13:845969. [PMID: 35371064 PMCID: PMC8966703 DOI: 10.3389/fimmu.2022.845969] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 02/17/2022] [Indexed: 12/31/2022] Open
Abstract
To control the coronavirus disease 2019 (COVID-19) pandemic and the emergence of different variants of concern (VoCs), novel vaccines against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are needed. In this study, we report the potent immunogenicity and efficacy induced in hamsters by a vaccine candidate based on a modified vaccinia virus Ankara (MVA) vector expressing a human codon optimized full-length SARS-CoV-2 spike (S) protein (MVA-S). Immunization with one or two doses of MVA-S elicited high titers of S- and receptor-binding domain (RBD)-binding IgG antibodies and neutralizing antibodies against parental SARS-CoV-2 and VoC alpha, beta, gamma, delta, and omicron. After SARS-CoV-2 challenge, MVA-S-vaccinated hamsters showed a significantly strong reduction of viral RNA and infectious virus in the lungs compared to the MVA-WT control group. Moreover, a marked reduction in lung histopathology was also observed in MVA-S-vaccinated hamsters. These results favor the use of MVA-S as a potential vaccine candidate for SARS-CoV-2 in clinical trials.
Collapse
Affiliation(s)
- Robbert Boudewijns
- KU Leuven Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory of Virology and Chemotherapy, Leuven, Belgium
| | - Patricia Pérez
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología (CNB), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Madrid, Spain
| | - Adrián Lázaro-Frías
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología (CNB), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Madrid, Spain
| | - Dominique Van Looveren
- KU Leuven Department of Microbiology, Immunology and Transplantation, Rega Institute, Translational Platform Virology and Chemotherapy (TPVC), Leuven, Belgium
| | - Thomas Vercruysse
- KU Leuven Department of Microbiology, Immunology and Transplantation, Rega Institute, Translational Platform Virology and Chemotherapy (TPVC), Leuven, Belgium
| | - Hendrik Jan Thibaut
- KU Leuven Department of Microbiology, Immunology and Transplantation, Rega Institute, Translational Platform Virology and Chemotherapy (TPVC), Leuven, Belgium
| | - Birgit Weynand
- KU Leuven Department of Imaging and Pathology, Translational Cell and Tissue Research, Leuven, Belgium
| | - Lotte Coelmont
- KU Leuven Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory of Virology and Chemotherapy, Leuven, Belgium
| | - Johan Neyts
- KU Leuven Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory of Virology and Chemotherapy, Leuven, Belgium
| | - David Astorgano
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología (CNB), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | | | | | | | - Kai Dallmeier
- KU Leuven Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory of Virology and Chemotherapy, Leuven, Belgium
| | - Mariano Esteban
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología (CNB), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Juan García-Arriaza
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología (CNB), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Madrid, Spain
| |
Collapse
|
240
|
Li M, Li J, Yang Y, Liu W, Liang Z, Ding G, Chen X, Song Q, Xue C, Sun B. Investigation of mouse hepatitis virus strain A59 inactivation under both ambient and cold environments reveals the mechanisms of infectivity reduction following UVC exposure. JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING 2022; 10:107206. [PMID: 35043085 PMCID: PMC8757640 DOI: 10.1016/j.jece.2022.107206] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 01/04/2022] [Accepted: 01/11/2022] [Indexed: 06/14/2023]
Abstract
The surface contamination of SARS-CoV-2 is becoming a potential source of virus transmission during the pandemic of COVID-19. Under the cold environment, the infection incidents would be more severe with the increase of virus survival time. Thus, the disinfection of contaminated surfaces in both ambient and cold environments is a critical measure to restrain the spread of the virus. In our study, it was demonstrated that the 254 nm ultraviolet-C (UVC) is an efficient method to inactivate a coronavirus, mouse hepatitis virus strain A59 (MHV-A59). The inactivation rate to MHV-A59 coronavirus was up to 99.99% when UVC doses were 2.90 and 14.0 mJ/cm2 at room temperature (23 °C) and in cold environment (-20 °C), respectively. Further mechanistic study demonstrated that UVC could induce spike protein damage to partly impede virus attachment and genome penetration processes, which contributes to 12% loss of viral infectivity. Additionally, it can induce genome damage to significantly interrupt genome replication, protein synthesis, virus assembly and release processes, which takes up 88% contribution to viral inactivation. With these mechanistic understandings, it will greatly contribute to the prevention and control of the current SARS-CoV-2 transmissions in cold chains (low temperature-controlled product supply chains), public area such as airport, school, and warehouse.
Collapse
Affiliation(s)
- Min Li
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, 116024 Dalian, China
- School of Chemical Engineering, Dalian University of Technology, 116024 Dalian, China
| | - Jiahuan Li
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, 116024 Dalian, China
- School of Chemical Engineering, Dalian University of Technology, 116024 Dalian, China
| | - Yunlong Yang
- School of Bioengineering, Dalian University of Technology, 116024 Dalian, China
| | - Wenhui Liu
- School of Bioengineering, Dalian University of Technology, 116024 Dalian, China
| | - Zhihui Liang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, 116024 Dalian, China
- School of Chemical Engineering, Dalian University of Technology, 116024 Dalian, China
| | - Guanyu Ding
- Soleilware Photonics Co.,LTD, Suzhou, Jiangsu 215000, China
| | - Xiaohe Chen
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu 215163, China
| | - Qi Song
- Soleilware Photonics Co.,LTD, Suzhou, Jiangsu 215000, China
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu 215163, China
| | - Changying Xue
- School of Bioengineering, Dalian University of Technology, 116024 Dalian, China
| | - Bingbing Sun
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, 116024 Dalian, China
- School of Chemical Engineering, Dalian University of Technology, 116024 Dalian, China
| |
Collapse
|
241
|
van der Vossen JMBM, Fawzy A, Ouwens AMT, van Doornmalen JPCM, de Samber M, Driessens R, Heerikhuisen M, Montijn RC. Effective ultraviolet C light disinfection of respirators demonstrated in challenges with Geobacillus stearothermophilus spores and SARS-CoV-2 virus. J Hosp Infect 2022; 122:168-172. [PMID: 35150785 PMCID: PMC8828443 DOI: 10.1016/j.jhin.2022.01.021] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 01/19/2022] [Accepted: 01/31/2022] [Indexed: 11/05/2022]
Abstract
BACKGROUND The global COVID-19 pandemic, accompanied by spikes in the number of patients in hospitals, required substantial amounts of respiratory protective devices (respirators), thereby causing shortages. Disinfection of used respirators by applying ultraviolet C (UVC) light may enable safe reuse, reducing shortages. AIM To determine whether UVC disinfection is applicable to enable repeated safe reuse of respirators. METHODS The UVC chamber, equipped with low-pressure mercury discharge lamps emitting at 254 nm, was used to determine the sporicidal and virucidal effects. Respirators challenged with spores and viruses were exposed to various UVC energy levels. Deactivation of the biological agents was studied as well as UVC effects on particle filtration properties and respirator fit. FINDINGS A 5 log10 reduction of G. thermophilus spore viability by a UVC dose of 1.1 J/cm2 was observed. By simulating spores present in the middle of the respirators, a 5 log10 reduction was achieved at a UVC dose of 10 J/cm2. SARS-CoV-2 viruses were inactivated by 4 log10 upon exposure to 19.5 mJ/cm2 UVC. In case UVC must be transmitted through all layers of the respirators to reach the spores and virus, a reduction of >5 log10 was achieved using a UVC dose of 10 J/cm2. Exposure to a six-times higher UVC dose did not significantly affect the integrity of the fit nor aerosol filtering capacity of the respirator. CONCLUSION UVC was shown to be a mild and effective way of respirator disinfection allowing for reuse of the UVC-treated respirators.
Collapse
Affiliation(s)
- J M B M van der Vossen
- The Netherlands Organisation for Applied Scientific Research TNO, Department of Microbiology and Systems Biology, Zeist, the Netherlands.
| | - A Fawzy
- The Netherlands Organisation for Applied Scientific Research TNO, Department Equipment for Additive Manufacturing, Eindhoven, the Netherlands
| | - A M T Ouwens
- The Netherlands Organisation for Applied Scientific Research TNO, Department of Microbiology and Systems Biology, Zeist, the Netherlands
| | | | | | | | - M Heerikhuisen
- The Netherlands Organisation for Applied Scientific Research TNO, Department of Microbiology and Systems Biology, Zeist, the Netherlands
| | - R C Montijn
- The Netherlands Organisation for Applied Scientific Research TNO, Department of Microbiology and Systems Biology, Zeist, the Netherlands
| |
Collapse
|
242
|
Kicker E, Tittel G, Schaller T, Pferschy-Wenzig EM, Zatloukal K, Bauer R. SARS-CoV-2 neutralizing activity of polyphenols in a special green tea extract preparation. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 98:153970. [PMID: 35144138 PMCID: PMC8801126 DOI: 10.1016/j.phymed.2022.153970] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 01/20/2022] [Accepted: 01/27/2022] [Indexed: 05/05/2023]
Abstract
BACKGROUND The COVID-19 pandemic will continue to threaten our health care systems in the next years. In addition to vaccination there is a need for effective tools for prevention and treatment. Products from natural sources, like standardized plant extracts offer a wide range of antiviral effects and possible applications. PURPOSE The aim of this study was to investigate, whether a sorbitol/lecithin-based throat spray containing concentrated green tea extract (sGTE) interacts with SARS-CoV-2 viral particles and additionally is capable to block the virus replication. STUDY DESIGN AND METHODS The antiviral effect was studied in a VeroE6 cell culture model, including concentration/effect correlations and the biological mechanism of virus blockade, using the Wuhan type of SARS CoV-2 as well as its beta- and delta-mutations. In addition, the qualitative and quantitative tannin profile present on the oral mucosa after spray application has been investigated by LC-MS/MS and HPLC-DAD analyses of (-)-epigallocatechin-3-O-gallate (EGCG) and related catechin derivatives. RESULTS The findings of this study demonstrate, that sGTE has strong neutralizing activity on SARS-CoV-2 resulting in an up to 6,3E+04-fold reduction of infectivity independent from the strain. The type of interaction of sGTE with surface proteins seems to be direct and non-specific concerning the viral surface protein structures and resembles the general non-specific activity of polyphenols. By HPLC-DAD analysis, eight catechins were identified in sGTE, with EGCG and (-)-epicatechin-3-O-gallate as the most abundant ones. The total content of catechin derivatives, calculated as catechin, was 76 g/100 g. LC-MS/MS and HPLC-DAD analyses of throat swabs after application of a sGTE spray have shown that the concentrations of green tea tannins in the pharyngeal mucosa are higher than the effective dose found in the in vitro studies with SARS-CoV-2, even 1 h after the last application. CONCLUSION The findings of this study suggest that sGTE has strong neutralizing activity on SARS-CoV-2 independent from the strain (Wuhan strain, beta- or delta-variants). sGTE might be relevant for reduction of corresponding viral infections when periodically applied to mouth and throat.
Collapse
Affiliation(s)
- Eva Kicker
- Diagnostic and Research Center for Molecular Biomedicine, Institute of Pathology, Medical University of Graz, Neue Stiftingtalstrasse 6, 8010 Graz, Austria; BioTechMed, Mozartgasse 12/II, 8010 Graz, Austria
| | - Gerolf Tittel
- Phytovisions GmbH & Co. KG, Karwendelstrasse 29, 82467 Garmisch-Partenkirchen, Germany
| | - Tanja Schaller
- Dronania pharmaceuticals GmbH, Karl- Benz- Strasse 3, 86825 Bad Woerishofen, Germany
| | - Eva-Maria Pferschy-Wenzig
- Institute of Pharmaceutical Sciences, University of Graz, Beethovenstraße 8, 8010 Graz, Austria; BioTechMed, Mozartgasse 12/II, 8010 Graz, Austria
| | - Kurt Zatloukal
- Diagnostic and Research Center for Molecular Biomedicine, Institute of Pathology, Medical University of Graz, Neue Stiftingtalstrasse 6, 8010 Graz, Austria; BioTechMed, Mozartgasse 12/II, 8010 Graz, Austria
| | - Rudolf Bauer
- Institute of Pharmaceutical Sciences, University of Graz, Beethovenstraße 8, 8010 Graz, Austria; BioTechMed, Mozartgasse 12/II, 8010 Graz, Austria.
| |
Collapse
|
243
|
Reynolds DL, Simpson EB. Evaluation of ivermectin antiviral activity against avian infectious bronchitis virus using a chicken embryo model. Int J Vet Sci Med 2022; 10:19-24. [PMID: 35382155 PMCID: PMC8959520 DOI: 10.1080/23144599.2022.2050077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Ivermectin is widely used in both animals and humans as an FDA-approved parasiticide. Ivermectin has also been reported to have antiviral activity against several viruses including coronaviruses. There are reports that indicate ivermectin may have some role in diminishing the disease caused by SARS-CoV-2, but the evidence is inconclusive. The objective of this study was to determine if ivermectin was efficacious in inhibiting avian infectious bronchitis virus (IBV, a coronavirus) replication in chicken embryos. Briefly, our approach was to use the Massachusetts vaccine strain of IBV in combination with various doses of ivermectin and then inoculate these preparations into chicken embryos to determine if IBV replication was inhibited. The embryos were examined for IBV lesions and samples of chorioallantoic fluid were collected for IBV RT-PCR analysis. Several trials were performed, and the results of our study indicate that ivermectin did not inhibit IBV replication in chicken embryos.
Collapse
Affiliation(s)
- Donald L. Reynolds
- School of Veterinary Medicine and Biomedical Sciences University of Nebraska – Lincoln, Lincoln, NE, USA
| | - E. Barry Simpson
- School of Veterinary Medicine and Biomedical Sciences University of Nebraska – Lincoln, Lincoln, NE, USA
| |
Collapse
|
244
|
Goad DW, Bressy C, Holbrook MC, Grdzelishvili VZ. Acquired chemoresistance can lead to increased resistance of pancreatic cancer cells to oncolytic vesicular stomatitis virus. Mol Ther Oncolytics 2022; 24:59-76. [PMID: 34977342 PMCID: PMC8703189 DOI: 10.1016/j.omto.2021.11.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 11/27/2021] [Indexed: 01/23/2023] Open
Abstract
Vesicular stomatitis virus (VSV) is a promising oncolytic virus (OV) against different malignancies, including pancreatic ductal adenocarcinoma (PDAC). Our previous studies have demonstrated that VSV-based OVs are effective against the majority of tested human PDAC cell lines. However, some PDAC cell lines are resistant to VSV. PDAC is one of the deadliest types of human malignancies in part due to intrinsic or acquired chemoresistance. Here, we investigated how acquired chemoresistance impacts the efficacy of VSV-based OV therapy. Using an experimental evolution approach, we generated PDAC cell lines with increased resistance to gemcitabine and examined their responsiveness to oncolytic virotherapy. We found that gemcitabine-resistant PDAC cells become more resistant to VSV. The cross-resistance correlated with upregulated levels of a subset of interferon-stimulated genes, resembling the interferon-related DNA damage resistance signature (IRDS), often associated with resistance of cancer cells to chemotherapy and/or radiation therapy. Analysis of ten different PDAC cell lines showed that four PDAC cell lines most resistant to VSV were also highly resistant to gemcitabine, and they all displayed IRDS-like expression in our previous reports. Our study highlights a possible interaction between two different therapies that should be considered in the future for the development of rational treatment regimens.
Collapse
Affiliation(s)
- Dakota W. Goad
- Department of Biological Sciences, University of North Carolina at Charlotte, 9201 University City Blvd, Charlotte, NC 28223, USA
| | - Christian Bressy
- Department of Biological Sciences, University of North Carolina at Charlotte, 9201 University City Blvd, Charlotte, NC 28223, USA
| | - Molly C. Holbrook
- Department of Biological Sciences, University of North Carolina at Charlotte, 9201 University City Blvd, Charlotte, NC 28223, USA
| | - Valery Z. Grdzelishvili
- Department of Biological Sciences, University of North Carolina at Charlotte, 9201 University City Blvd, Charlotte, NC 28223, USA
- School of Data Science, University of North Carolina at Charlotte, Charlotte, NC 28223, USA
- Corresponding author Valery Z. Grdzelishvili, Department of Biological Sciences, University of North Carolina at Charlotte, 9201 University City Blvd, Charlotte, NC 28223, USA.
| |
Collapse
|
245
|
Wu WL, Chiang CY, Lai SC, Yu CY, Huang YL, Liao HC, Liao CL, Chen HW, Liu SJ. Monoclonal antibody targeting the conserved region of the SARS-CoV-2 spike protein to overcome viral variants. JCI Insight 2022; 7:157597. [PMID: 35290246 PMCID: PMC9089791 DOI: 10.1172/jci.insight.157597] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 03/09/2022] [Indexed: 11/21/2022] Open
Abstract
Most therapeutic mAbs target the receptor-binding domain (RBD) of the spike protein of SARS-CoV-2. Unfortunately, the RBD is a hot spot for mutations in SARS-CoV-2 variants, which will lead to loss of the neutralizing function of current therapeutic mAbs. Universal mAbs for different variants are necessary. We identified mAbs that recognized the S2 region of the spike protein, which is identical in different variants. The mAbs could neutralize SARS-CoV-2 infection and protect animals from SARS-CoV-2 challenge. After cloning the variable region of the light chain and heavy chain, the variable region sequences were humanized to select a high-affinity humanized mAb, hMab5.17. hMab5.17 protected animals from SARS-CoV-2 challenge and neutralized SARS-CoV-2 variant infection. We further identified the linear epitope of the mAb, which is not mutated in any variant of concern. These data suggest that a mAb recognizing the S2 region of the spike protein will be a potential universal therapeutic mAb for COVID-19.
Collapse
Affiliation(s)
- Wan-Ling Wu
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli, Taiwan
| | - Chen-Yi Chiang
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli, Taiwan
| | - Szu-Chia Lai
- Institute of Preventive Medicine, National Defense Medical Center, New Taipei, Taiwan
| | - Chia-Yi Yu
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli, Taiwan
| | - Yu-Ling Huang
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli, Taiwan
| | - Hung-Chun Liao
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli, Taiwan
| | - Ching-Len Liao
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli, Taiwan
| | - Hsin-Wei Chen
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli, Taiwan
| | - Shih-Jen Liu
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli, Taiwan
| |
Collapse
|
246
|
Dolci M, Signorini L, Cason C, Campisciano G, Kunderfranco P, Pariani E, Galli C, Petix V, Ferrante P, Delbue S, Comar M. Circulation of SARS-CoV-2 Variants among Children from November 2020 to January 2022 in Trieste (Italy). Microorganisms 2022; 10:612. [PMID: 35336187 PMCID: PMC8949205 DOI: 10.3390/microorganisms10030612] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 02/25/2022] [Accepted: 03/10/2022] [Indexed: 01/02/2023] Open
Abstract
INTRODUCTION The ongoing coronavirus disease 19 (COVID-19) outbreak involves the pediatric population, but to date, few reports have investigated the circulation of variants among children. MATERIAL AND METHODS In this retrospective study, non-hospitalized pediatric patients with SARS-CoV-2-positive nasopharyngeal swabs (NPS) were enrolled at the Institute for Maternal and Child Health-IRCCS Burlo Garofolo, Trieste (Italy), from November 2020 to January 2022. SARS-CoV-2 variants were identified by in vitro viral isolation, amplification, automatic sequencing of the receptor binding domain (RBD) of the SARS-CoV-2 spike coding gene, and subsequent next-generation sequencing. The growth curves of the isolated strains were defined in vitro by infecting Vero-E6 cells and quantifying the viral load in the supernatants up to 72 h post-infection by qRT-PCR. The neutralization activity of sera obtained from a COVID-19 vaccinated subject, recovered (2020) patient, vaccinated and recovered (2021) patient, and seronegative subject was assessed by microneutralization assay against the different variants. RESULTS In total, 32 SARS-CoV-2-positive children, 16 (50%) females, with a median age of 1.4 years (range: 1 day-13 years), were enrolled. The D614G amino acid substitution was detected in all isolated and amplified viral strains. Of the 32 isolates, 4 (12.5%) carried a nonsynonymous nucleotide mutation leading to the N439K (3/4), lineage B.1.258 (∆H69/∆V70), and S477N (1/4) substitution. In 7/32 (21.8%) isolates, amino acid substitutions allowed the identification of a delta variant, lineage B.1.617.2-AY.43, and in 1/32 (3.1%), the Omicron strain (B.1.1.529.BA1) was identified. The growth curves of the B.1, B.1.258 (∆H69/∆V70), B.1.617.2-AY.43, and B.1.1.529.BA1 variants did not show any significant differences. A reduction in the serum neutralizing activity against B.1.258 (∆H69/∆V70) only in a vaccinated subject (1.7-fold difference), against B.1.617.2-AY.43 in a vaccinated subject and in recovered patients (12.7 and ≥2.5-fold differences, respectively), and against B.1.1.529.BA1 variant (57.6- and 1.4-fold differences in vaccinated and in vaccinated and recovered patients) were observed compared to the B.1 variant. CONCLUSIONS SARS-CoV-2 variants carrying the B.1.258 (∆H69/∆V70) and S477N substitutions were reported here in a pediatric population for the first time. Although the growth rates of the isolated strains (B.1.258, B.1.617.2-AY.43, B.1.1.529.BA1) did not differ from the B.1 variant, neutralizing activity of the sera from vaccinated subjects significantly decreased against these variants. Attention should be devoted to the pediatric population to prevent the spread of new SARS-CoV-2 variants in an unvaccinated and predominantly naive population.
Collapse
Affiliation(s)
- Maria Dolci
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Via Pascal 36, 20133 Milan, Italy; (M.D.); (L.S.)
| | - Lucia Signorini
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Via Pascal 36, 20133 Milan, Italy; (M.D.); (L.S.)
| | - Carolina Cason
- SSD of Advanced Microbiology Diagnosis and Translational Research, Institute for Maternal and Child Health-IRCCS Burlo Garofolo, Via dell’Istria 65/1, 34137 Trieste, Italy; (C.C.); (G.C.); (V.P.); (M.C.)
| | - Giuseppina Campisciano
- SSD of Advanced Microbiology Diagnosis and Translational Research, Institute for Maternal and Child Health-IRCCS Burlo Garofolo, Via dell’Istria 65/1, 34137 Trieste, Italy; (C.C.); (G.C.); (V.P.); (M.C.)
| | - Paolo Kunderfranco
- Bioinformatics Unit, Humanitas Clinical and Research Center—IRCCS, Via Alessandro Manzoni 56, 20089 Milan, Italy;
| | - Elena Pariani
- Department of Biomedical Sciences for Health, University of Milano, Via Pascal 36, 20133 Milan, Italy; (E.P.); (C.G.)
| | - Cristina Galli
- Department of Biomedical Sciences for Health, University of Milano, Via Pascal 36, 20133 Milan, Italy; (E.P.); (C.G.)
| | - Vincenzo Petix
- SSD of Advanced Microbiology Diagnosis and Translational Research, Institute for Maternal and Child Health-IRCCS Burlo Garofolo, Via dell’Istria 65/1, 34137 Trieste, Italy; (C.C.); (G.C.); (V.P.); (M.C.)
| | - Pasquale Ferrante
- Istituto Clinico Città Studi, Via Niccolò Jommelli, 17, 20131 Milan, Italy;
| | - Serena Delbue
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Via Pascal 36, 20133 Milan, Italy; (M.D.); (L.S.)
| | - Manola Comar
- SSD of Advanced Microbiology Diagnosis and Translational Research, Institute for Maternal and Child Health-IRCCS Burlo Garofolo, Via dell’Istria 65/1, 34137 Trieste, Italy; (C.C.); (G.C.); (V.P.); (M.C.)
- Department of Medical Sciences (DSM), University of Trieste, 34129 Trieste, Italy
| |
Collapse
|
247
|
Um J, Choi YY, Kim G, Kim MK, Lee KS, Sung HK, Kim BC, Lee YK, Jang HC, Bang JH, Chung KH, Oh MD, Park JS, Jeon J. Booster BNT162b2 COVID-19 Vaccination Increases Neutralizing Antibody Titers Against the SARS-CoV-2 Omicron Variant in Both Young and Elderly Adults. J Korean Med Sci 2022; 37:e70. [PMID: 35257525 PMCID: PMC8901881 DOI: 10.3346/jkms.2022.37.e70] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 02/07/2022] [Indexed: 11/20/2022] Open
Abstract
Concerns about the effectiveness of current vaccines against the rapidly spreading severe acute respiratory syndrome-coronavirus-2 omicron (B.1.1.529) variant are increasing. This study aimed to assess neutralizing antibody activity against the wild-type (BetaCoV/Korea/KCDC03/2020), delta, and omicron variants after full primary and booster vaccinations with BNT162b2. A plaque reduction neutralization test was employed to determine 50% neutralizing dilution (ND50) titers in serum samples. ND50 titers against the omicron variant (median [interquartile range], 5.3 [< 5.0-12.7]) after full primary vaccination were lower than those against the wild-type (144.8 [44.7-294.0]) and delta (24.3 [14.3-81.1]) variants. Furthermore, 19/30 participants (63.3%) displayed lower ND50 titers than the detection threshold (< 10.0) against omicron after full primary vaccination. However, the booster vaccine significantly increased ND50 titers against BetaCoV/Korea/KCDC03/2020, delta, and omicron, although titers against omicron remained lower than those against the other variants (P < 0.001). Our study suggests that booster vaccination with BNT162b2 significantly increases humoral immunity against the omicron variant.
Collapse
Affiliation(s)
- Jihye Um
- Research Institute of Public Health, National Medical Center, Seoul, Korea
| | - Youn Young Choi
- Research Institute of Public Health, National Medical Center, Seoul, Korea
- Department of Pediatrics, National Medical Center, Seoul, Korea
| | - Gayeon Kim
- Department of Infectious Diseases, National Medical Center, Seoul, Korea
| | - Min-Kyung Kim
- Department of Infectious Diseases, National Medical Center, Seoul, Korea
| | - Kyung-Shin Lee
- Research Institute of Public Health, National Medical Center, Seoul, Korea
| | - Ho Kyung Sung
- Research Institute of Public Health, National Medical Center, Seoul, Korea
| | - Byung Chul Kim
- National Institute of Infectious Diseases, National Institute of Health, Korea Disease Control and Prevention Agency, Cheongju, Korea
| | - Yoo-Kyoung Lee
- National Institute of Infectious Diseases, National Institute of Health, Korea Disease Control and Prevention Agency, Cheongju, Korea
| | - Hee-Chang Jang
- National Institute of Infectious Diseases, National Institute of Health, Korea Disease Control and Prevention Agency, Cheongju, Korea
| | - Ji Hwan Bang
- Division of Infectious Diseases, Seoul Metropolitan Government-Seoul National University Boramae Medical Center, Seoul, Korea
| | - Ki-Hyun Chung
- Department of Pediatrics, National Medical Center, Seoul, Korea
| | - Myoung-Don Oh
- Department of Internal Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Jun-Sun Park
- Research Institute of Public Health, National Medical Center, Seoul, Korea.
| | - Jaehyun Jeon
- Research Institute of Public Health, National Medical Center, Seoul, Korea
- Department of Infectious Diseases, National Medical Center, Seoul, Korea.
| |
Collapse
|
248
|
Modified Vaccinia Virus Ankara as a Potential Biosafety Level 2 Surrogate for African Swine Fever Virus in Disinfectant Efficacy Tests. Pathogens 2022; 11:pathogens11030320. [PMID: 35335644 PMCID: PMC8949558 DOI: 10.3390/pathogens11030320] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/02/2022] [Accepted: 03/03/2022] [Indexed: 12/10/2022] Open
Abstract
In South Korea, despite the increase in emerging viral pathogens in the veterinary industry, only efficacy-tested, virus-specific disinfectants are allowed to be used. Moreover, domestic testing of disinfectants for their virucidal efficacies against foreign, malignant, infectious pathogens that are unreported within the country and/or contagious livestock diseases that require special attention regarding public hygiene are legally restricted. Therefore, the Animal and Plant Quarantine Agency (APQA) designed a study to select a potential biosafety level 2 surrogate of African swine fever virus (ASFV) for efficacy testing to improve the disinfectant approval procedures. For this, the modified vaccinia virus Ankara (MVA) was compared to ASFV in terms of its susceptibility to disinfectants. Effective concentrations of active substances of disinfectants (potassium peroxymonosulfate, sodium dichloroisocyanurate, malic acid, citric acid, glutaraldehyde, and benzalkonium chloride) against ASFV and MVA were compared; similarly, efficacies of APQA-listed commercial disinfectants were examined. Tests were performed according to APQA guidelines, and infectivities of ASFV and MVA were confirmed by hemadsorption and cytopathic effect, respectively. The results reveal that the disinfectants are effective against MVA at similar or higher concentrations than those against ASFV, validating the use of MVA as a potential biosafety level 2 surrogate for ASFV in efficacy testing of veterinary disinfectants.
Collapse
|
249
|
Stilwell NK, Frasca S, Farina LL, Subramaniam K, Imnoi K, Viadanna PH, Hopper L, Powell J, Colee J, Waltzek TB. Effect of water temperature on frog virus 3 disease in hatchery-reared pallid sturgeon Scaphirhynchus albus. DISEASES OF AQUATIC ORGANISMS 2022; 148:73-86. [PMID: 35238323 DOI: 10.3354/dao03645] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Ranaviruses are large double-stranded DNA viruses within the genus Ranavirus (family Iridoviridae) that are being detected with increasing frequency among aquacultured and wild fishes. In the USA, multiple sturgeon hatcheries have experienced ranavirus epizootics resulting in significant morbidity and mortality in young-of-year (YOY). Significant economic losses have resulted from repeated outbreaks of frog virus 3 (FV3), the type species for the genus Ranavirus, in YOY pallid sturgeon Scaphirhynchus albus reared at a hatchery within the Missouri River Basin. Water temperature and stocking density are known to influence the severity of ranavirus disease in ectothermic vertebrates. To determine the effect of water temperature on ranavirus disease in hatchery-raised S. albus, we conducted FV3 challenges at 2 temperatures (17 and 23°C) and compared cumulative survival over a 28 d study period. A mean (±SE) survival rate of 57.5 ± 13.2% was observed in replicate tanks of sturgeon maintained at 23°C, whereas no mortality was observed among sturgeon maintained at 17°C. In a second challenge study, we compared the effect of water temperature on disease progression by regularly sampling fish over the study period and evaluating lesions by histopathology and in situ hybridization, and by assessing viral titer and load in external and internal tissues using virus isolation and qPCR, respectively. Results suggest that temperature manipulation may be an effective mitigation strategy that sturgeon hatcheries can employ to minimize ranavirus-associated disease.
Collapse
Affiliation(s)
- Natalie K Stilwell
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, Gainesville, FL 32610, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
250
|
Qin S, Hu X, Lin S, Xiao J, Wang Z, Jia J, Song X, Liu K, Ren Z, Wang Y. Hsp90 Inhibitors Prevent HSV-1 Replication by Directly Targeting UL42-Hsp90 Complex. Front Microbiol 2022; 12:797279. [PMID: 35185822 PMCID: PMC8851068 DOI: 10.3389/fmicb.2021.797279] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 11/29/2021] [Indexed: 11/13/2022] Open
Abstract
Herpes simplex virus type I (HSV-1) is a member of the Alphaherpesvirinae family, which could initiate labial herpes caused by the reactivation of HSV-1 primary infection, and secondary infection even causes herpes encephalitis. The study presented here demonstrates that Hsp90 inhibitors (AT-533 and 17-AAG) directly targeted the HSV-1 UL42-Hsp90 complex, and Hsp90 interacted with HSV-1 UL42 in silicon and experiment. Interestingly, Hsp90 inhibitors also reduced virus titers of ACV-resistant clinical HSV-1 strains (153 and blue strain), revealing that HSV-1 UL42 would be a new target against ACV-resistant HSV-1 strains. Altogether, this present study indicates that Hsp90 inhibitors prevent HSV-1 proliferation by regulating the interaction between Hsp90 and HSV-1 UL42, suggesting a promising target for anti-HSV-1 therapies in the replication.
Collapse
Affiliation(s)
- Shurong Qin
- Guangzhou Jinan Biomedical Research and Development Center, College of Life Science and Technology, Institute of Biomedicine, Jinan University, Guangzhou, China.,Key Laboratory of Virology of Guangzhou, Jinan University, Guangzhou, China.,Key Laboratory of Bioengineering Medicine of Guangdong Province, Jinan University, Guangzhou, China.,College of Pharmacy, Jinan University, Guangzhou, China
| | - Xiao Hu
- Guangzhou Jinan Biomedical Research and Development Center, College of Life Science and Technology, Institute of Biomedicine, Jinan University, Guangzhou, China.,Key Laboratory of Virology of Guangzhou, Jinan University, Guangzhou, China.,Key Laboratory of Bioengineering Medicine of Guangdong Province, Jinan University, Guangzhou, China.,College of Pharmacy, Jinan University, Guangzhou, China
| | - Shimin Lin
- Guangzhou Jinan Biomedical Research and Development Center, College of Life Science and Technology, Institute of Biomedicine, Jinan University, Guangzhou, China.,Key Laboratory of Virology of Guangzhou, Jinan University, Guangzhou, China.,Key Laboratory of Bioengineering Medicine of Guangdong Province, Jinan University, Guangzhou, China
| | - Ji Xiao
- Guangzhou Jinan Biomedical Research and Development Center, College of Life Science and Technology, Institute of Biomedicine, Jinan University, Guangzhou, China.,Key Laboratory of Virology of Guangzhou, Jinan University, Guangzhou, China.,Key Laboratory of Bioengineering Medicine of Guangdong Province, Jinan University, Guangzhou, China
| | - Zhaoyang Wang
- Guangzhou Jinan Biomedical Research and Development Center, College of Life Science and Technology, Institute of Biomedicine, Jinan University, Guangzhou, China.,Key Laboratory of Virology of Guangzhou, Jinan University, Guangzhou, China.,Key Laboratory of Bioengineering Medicine of Guangdong Province, Jinan University, Guangzhou, China
| | - Jiaoyan Jia
- Guangzhou Jinan Biomedical Research and Development Center, College of Life Science and Technology, Institute of Biomedicine, Jinan University, Guangzhou, China.,Key Laboratory of Virology of Guangzhou, Jinan University, Guangzhou, China.,Key Laboratory of Bioengineering Medicine of Guangdong Province, Jinan University, Guangzhou, China
| | - Xiaowei Song
- Guangzhou Jinan Biomedical Research and Development Center, College of Life Science and Technology, Institute of Biomedicine, Jinan University, Guangzhou, China.,Key Laboratory of Virology of Guangzhou, Jinan University, Guangzhou, China.,Key Laboratory of Bioengineering Medicine of Guangdong Province, Jinan University, Guangzhou, China
| | - Kaisheng Liu
- Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, China
| | - Zhe Ren
- Guangzhou Jinan Biomedical Research and Development Center, College of Life Science and Technology, Institute of Biomedicine, Jinan University, Guangzhou, China.,Key Laboratory of Virology of Guangzhou, Jinan University, Guangzhou, China.,Key Laboratory of Bioengineering Medicine of Guangdong Province, Jinan University, Guangzhou, China
| | - Yifei Wang
- Guangzhou Jinan Biomedical Research and Development Center, College of Life Science and Technology, Institute of Biomedicine, Jinan University, Guangzhou, China.,Key Laboratory of Virology of Guangzhou, Jinan University, Guangzhou, China.,Key Laboratory of Bioengineering Medicine of Guangdong Province, Jinan University, Guangzhou, China
| |
Collapse
|