2451
|
Belstrøm D, Jersie-Christensen RR, Lyon D, Damgaard C, Jensen LJ, Holmstrup P, Olsen JV. Metaproteomics of saliva identifies human protein markers specific for individuals with periodontitis and dental caries compared to orally healthy controls. PeerJ 2016; 4:e2433. [PMID: 27672500 PMCID: PMC5028799 DOI: 10.7717/peerj.2433] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 08/12/2016] [Indexed: 01/10/2023] Open
Abstract
Background The composition of the salivary microbiota has been reported to differentiate between patients with periodontitis, dental caries and orally healthy individuals. To identify characteristics of diseased and healthy saliva we thus wanted to compare saliva metaproteomes from patients with periodontitis and dental caries to healthy individuals. Methods Stimulated saliva samples were collected from 10 patients with periodontitis, 10 patients with dental caries and 10 orally healthy individuals. The proteins in the saliva samples were subjected to denaturing buffer and digested enzymatically with LysC and trypsin. The resulting peptide mixtures were cleaned up by solid-phase extraction and separated online with 2 h gradients by nano-scale C18 reversed-phase chromatography connected to a mass spectrometer through an electrospray source. The eluting peptides were analyzed on a tandem mass spectrometer operated in data-dependent acquisition mode. Results We identified a total of 35,664 unique peptides from 4,161 different proteins, of which 1,946 and 2,090 were of bacterial and human origin, respectively. The human protein profiles displayed significant overexpression of the complement system and inflammatory markers in periodontitis and dental caries compared to healthy controls. Bacterial proteome profiles and functional annotation were very similar in health and disease. Conclusions Overexpression of proteins related to the complement system and inflammation seems to correlate with oral disease status. Similar bacterial proteomes in healthy and diseased individuals suggests that the salivary microbiota predominantly thrives in a planktonic state expressing no disease-associated characteristics of metabolic activity.
Collapse
Affiliation(s)
- Daniel Belstrøm
- Section of Periodontology and Microbiology, Department of Odontology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Rosa R Jersie-Christensen
- Proteomics Program, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - David Lyon
- Disease Systems Biology Program, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Christian Damgaard
- Section of Periodontology and Microbiology, Department of Odontology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Institute for Inflammation Research, Center for Rheumatology and Spine Diseases, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Lars J Jensen
- Disease Systems Biology Program, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Palle Holmstrup
- Section of Periodontology and Microbiology, Department of Odontology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jesper V Olsen
- Proteomics Program, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
2452
|
Melin Fürst C, Åhrman E, Bratteby K, Waldemarson S, Malmström J, Blom AM. Quantitative Mass Spectrometry To Study Inflammatory Cartilage Degradation and Resulting Interactions with the Complement System. THE JOURNAL OF IMMUNOLOGY 2016; 197:3415-3424. [PMID: 27630166 DOI: 10.4049/jimmunol.1601006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Accepted: 08/14/2016] [Indexed: 12/25/2022]
Abstract
Joint diseases are often characterized by inflammatory processes that result in pathological changes in joint tissues, including cartilage degradation and release of components into the synovial fluid. The complement system plays a central role in promoting the inflammation. Because several cartilage proteins are known to interact with complement, causing either activation or inhibition of the system, we aimed to investigate these interactions comprehensively. Bovine cartilage explants were cultured with IL-1α to induce cartilage degradation, followed by incubation with human serum. Label-free selected reaction monitoring mass spectrometry was used to specifically quantify complement proteins interacting with the cartilage explant. In parallel, the time-dependent degradation of cartilage was detected using mass spectrometry analysis (liquid chromatography-tandem mass spectrometry). Complement proteins resulting from activation of the classical, alternative, and terminal pathways were detected on IL-1α-stimulated cartilage at time points when clear alterations in extracellular matrix composition had occurred. Increased levels of the complement activation product C4d, as detected by ELISA in serum after incubation with IL-1α-stimulated cartilage, confirmed the selected reaction monitoring results indicating complement activation. Further, typical activated (cleaved) C3 fragments were detected by Western blotting in extracts of IL-1α-stimulated cartilage. No complement activation was triggered by cartilage cultured in the absence of IL-1α. Components released from IL-1α-stimulated cartilage during culture had an inhibitory effect on complement activation. These were released after a longer incubation period with IL-1α and may represent a feedback reaction to cartilage-triggered complement activation observed after a shorter incubation period.
Collapse
Affiliation(s)
- Camilla Melin Fürst
- Division of Medical Protein Chemistry, Department of Translational Medicine, Lund University, S-205 02 Malmö, Sweden
| | - Emma Åhrman
- Division of Infection Medicine, Department of Clinical Sciences Lund, Lund University, S-221 84 Lund, Sweden; and
| | - Klas Bratteby
- Division of Medical Protein Chemistry, Department of Translational Medicine, Lund University, S-205 02 Malmö, Sweden
| | - Sofia Waldemarson
- Department of Immunotechnology, Lund University, S-223 81 Lund, Sweden
| | - Johan Malmström
- Division of Infection Medicine, Department of Clinical Sciences Lund, Lund University, S-221 84 Lund, Sweden; and
| | - Anna M Blom
- Division of Medical Protein Chemistry, Department of Translational Medicine, Lund University, S-205 02 Malmö, Sweden;
| |
Collapse
|
2453
|
Otto A, Maaß S, Lassek C, Becher D, Hecker M, Riedel K, Sievers S. The protein inventory of Clostridium difficile grown in complex and minimal medium. Proteomics Clin Appl 2016; 10:1068-1072. [PMID: 27511832 DOI: 10.1002/prca.201600069] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Revised: 07/21/2016] [Accepted: 08/08/2016] [Indexed: 01/29/2023]
Abstract
The intestinal pathogen Clostridium difficile is causing an increasing number of infections often characterized by severity and high relapse rates. Profound knowledge of the physiology of the pathogen could help to develop new treatment strategies. Proteomics, a valuable tool to study bacterial physiology, was used in this work to establish a benchmark proteome of reference strain C. difficile 630Δerm with MS-based details on all identified proteins. Our elaborate annotation and visualization of C. difficile 630Δerm 3764 ORFs will serve as a valuable base for researchers having to evaluate global expression studies. To exemplify expression variability, protein expression of late exponentially growing cells in complex brain-heart infusion medium and C. difficile minimal medium was compared. Noteworthy results of this comparison are as follows: (i) the higher expression of enzymes for the biosynthesis of some vitamins and purine and (ii) downregulation of proteins involved in butanoate fermentation in C. difficile minimal medium. However, the abundance of proteins involved in DNA metabolism, protein synthesis, and the cell envelope showed no variation between the two growth media.
Collapse
Affiliation(s)
- Andreas Otto
- Institute of Microbiology, University of Greifswald, Greifswald, Germany
| | - Sandra Maaß
- Institute of Microbiology, University of Greifswald, Greifswald, Germany
| | - Christian Lassek
- Institute of Microbiology, University of Greifswald, Greifswald, Germany
| | - Dörte Becher
- Institute of Microbiology, University of Greifswald, Greifswald, Germany
| | - Michael Hecker
- Institute of Microbiology, University of Greifswald, Greifswald, Germany
| | - Katharina Riedel
- Institute of Microbiology, University of Greifswald, Greifswald, Germany
| | - Susanne Sievers
- Institute of Microbiology, University of Greifswald, Greifswald, Germany.
| |
Collapse
|
2454
|
Augusto-de-Oliveira C, Stuginski DR, Kitano ES, Andrade-Silva D, Liberato T, Fukushima I, Serrano SMT, Zelanis A. Dynamic Rearrangement in Snake Venom Gland Proteome: Insights into Bothrops jararaca Intraspecific Venom Variation. J Proteome Res 2016; 15:3752-3762. [DOI: 10.1021/acs.jproteome.6b00561] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- César Augusto-de-Oliveira
- Laboratório
de Proteômica Funcional, Departamento de Ciência e Tecnologia, Universidade Federal de São Paulo (ICT-UNIFESP), São José dos Campos, São Paulo 12231-280, Brazil
| | - Daniel R. Stuginski
- Laboratório
de Herpetologia, Instituto Butantan, São Paulo, São
Paulo 05503-900, Brazil
| | - Eduardo S. Kitano
- Laboratório
Especial de Toxinologia Aplicada, Center of Toxins, Immune-Response
and Cell Signaling (CeTICS), Instituto Butantan, São Paulo, São
Paulo, Brazil
| | - Débora Andrade-Silva
- Laboratório
Especial de Toxinologia Aplicada, Center of Toxins, Immune-Response
and Cell Signaling (CeTICS), Instituto Butantan, São Paulo, São
Paulo, Brazil
| | - Tarcísio Liberato
- Laboratório
de Proteômica Funcional, Departamento de Ciência e Tecnologia, Universidade Federal de São Paulo (ICT-UNIFESP), São José dos Campos, São Paulo 12231-280, Brazil
| | - Isabella Fukushima
- Laboratório
de Proteômica Funcional, Departamento de Ciência e Tecnologia, Universidade Federal de São Paulo (ICT-UNIFESP), São José dos Campos, São Paulo 12231-280, Brazil
| | - Solange M. T. Serrano
- Laboratório
Especial de Toxinologia Aplicada, Center of Toxins, Immune-Response
and Cell Signaling (CeTICS), Instituto Butantan, São Paulo, São
Paulo, Brazil
| | - André Zelanis
- Laboratório
de Proteômica Funcional, Departamento de Ciência e Tecnologia, Universidade Federal de São Paulo (ICT-UNIFESP), São José dos Campos, São Paulo 12231-280, Brazil
| |
Collapse
|
2455
|
Schwenk BM, Hartmann H, Serdaroglu A, Schludi MH, Hornburg D, Meissner F, Orozco D, Colombo A, Tahirovic S, Michaelsen M, Schreiber F, Haupt S, Peitz M, Brüstle O, Küpper C, Klopstock T, Otto M, Ludolph AC, Arzberger T, Kuhn PH, Edbauer D. TDP-43 loss of function inhibits endosomal trafficking and alters trophic signaling in neurons. EMBO J 2016; 35:2350-2370. [PMID: 27621269 PMCID: PMC5090220 DOI: 10.15252/embj.201694221] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 08/12/2016] [Indexed: 12/12/2022] Open
Abstract
Nuclear clearance of TDP-43 into cytoplasmic aggregates is a key driver of neurodegeneration in amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD), but the mechanisms are unclear. Here, we show that TDP-43 knockdown specifically reduces the number and motility of RAB11-positive recycling endosomes in dendrites, while TDP-43 overexpression has the opposite effect. This is associated with delayed transferrin recycling in TDP-43-knockdown neurons and decreased β2-transferrin levels in patient CSF Whole proteome quantification identified the upregulation of the ESCRT component VPS4B upon TDP-43 knockdown in neurons. Luciferase reporter assays and chromatin immunoprecipitation suggest that TDP-43 represses VPS4B transcription. Preventing VPS4B upregulation or expression of its functional antagonist ALIX restores trafficking of recycling endosomes. Proteomic analysis revealed the broad reduction in surface expression of key receptors upon TDP-43 knockdown, including ErbB4, the neuregulin 1 receptor. TDP-43 knockdown delays the surface delivery of ErbB4. ErbB4 overexpression, but not neuregulin 1 stimulation, prevents dendrite loss upon TDP-43 knockdown. Thus, impaired recycling of ErbB4 and other receptors to the cell surface may contribute to TDP-43-induced neurodegeneration by blocking trophic signaling.
Collapse
Affiliation(s)
- Benjamin M Schwenk
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.,Munich Cluster of Systems Neurology (SyNergy), Munich, Germany
| | | | - Alperen Serdaroglu
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.,Institute for Advanced Study Technische Universität München, München, Germany
| | - Martin H Schludi
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.,Munich Cluster of Systems Neurology (SyNergy), Munich, Germany
| | | | - Felix Meissner
- Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Denise Orozco
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Alessio Colombo
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Sabina Tahirovic
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Meike Michaelsen
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | | | | | - Michael Peitz
- Institute of Reconstructive Neurobiology University of Bonn, Bonn, Germany.,German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Oliver Brüstle
- Institute of Reconstructive Neurobiology University of Bonn, Bonn, Germany
| | - Clemens Küpper
- Munich Cluster of Systems Neurology (SyNergy), Munich, Germany.,Department of Neurology, Friedrich-Baur-Institute LMU Munich, Munich, Germany
| | - Thomas Klopstock
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.,Munich Cluster of Systems Neurology (SyNergy), Munich, Germany.,Department of Neurology, Friedrich-Baur-Institute LMU Munich, Munich, Germany
| | - Markus Otto
- Department of Neurology, University of Ulm, Ulm, Germany
| | | | - Thomas Arzberger
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.,Center for Neuropathology and Prion Research, LMU Munich, Munich, Germany.,Department of Psychiatry and Psychotherapy, LMU Munich, Munich, Germany
| | - Peer-Hendrik Kuhn
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.,Institute for Advanced Study Technische Universität München, München, Germany.,Institut für Allgemeine Pathologie Klinikum rechts der Isar der Technischen Universität München, München, Germany
| | - Dieter Edbauer
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany .,Munich Cluster of Systems Neurology (SyNergy), Munich, Germany.,Institute for Metabolic Biochemistry LMU Munich, Munich, Germany
| |
Collapse
|
2456
|
Thomsen MS, Birkelund S, Burkhart A, Stensballe A, Moos T. Synthesis and deposition of basement membrane proteins by primary brain capillary endothelial cells in a murine model of the blood-brain barrier. J Neurochem 2016; 140:741-754. [PMID: 27456748 DOI: 10.1111/jnc.13747] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2016] [Revised: 06/25/2016] [Accepted: 07/20/2016] [Indexed: 11/30/2022]
Abstract
The brain vascular basement membrane is important for both blood-brain barrier (BBB) development, stability, and barrier integrity and the contribution hereto from brain capillary endothelial cells (BCECs), pericytes, and astrocytes of the BBB is probably significant. The aim of this study was to analyse four different in vitro models of the murine BBB for expression and possible secretion of major basement membrane proteins from murine BCECs (mBCECs). mBCECs, pericytes and glial cells (mainly astrocytes and microglia) were prepared from brains of C57BL/6 mice. The mBCECs were grown as monoculture, in co-culture with pericytes or mixed glial cells, or as a triple-culture with both pericytes and mixed glial cells. The integrity of the BBB models was validated by measures of transendothelial electrical resistance (TEER) and passive permeability to mannitol. The expression of basement membrane proteins was analysed using RT-qPCR, mass spectrometry and immunocytochemistry. Co-culturing mBCECs with pericytes, mixed glial cells, or both significantly increased the TEER compared to the monoculture, and a low passive permeability was correlated with high TEER. The mBCECs expressed all major basement membrane proteins such as laminin-411, laminin-511, collagen [α1(IV)]2 α2(IV), agrin, perlecan, and nidogen 1 and 2 in vitro. Increased expression of the laminin α5 subunit correlated with the addition of BBB-inducing factors (hydrocortisone, Ro 20-1724, and pCPT-cAMP), whereas increased expression of collagen IV α1 primarily correlated with increased levels of cAMP. In conclusion, BCECs cultured in vitro coherently form a BBB and express basement membrane proteins as a feature of maturation. Cover Image for this issue: doi: 10.1111/jnc.13789.
Collapse
Affiliation(s)
- Maj Schneider Thomsen
- Laboratory of Neurobiology, Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - Svend Birkelund
- Laboratory of Medical Mass Spectrometry, Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - Annette Burkhart
- Laboratory of Neurobiology, Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - Allan Stensballe
- Laboratory of Medical Mass Spectrometry, Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - Torben Moos
- Laboratory of Neurobiology, Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| |
Collapse
|
2457
|
Welinder KG, Hansen R, Overgaard MT, Brohus M, Sønderkær M, von Bergen M, Rolle-Kampczyk U, Otto W, Lindahl TL, Arinell K, Evans AL, Swenson JE, Revsbech IG, Frøbert O. Biochemical Foundations of Health and Energy Conservation in Hibernating Free-ranging Subadult Brown Bear Ursus arctos. J Biol Chem 2016; 291:22509-22523. [PMID: 27609515 DOI: 10.1074/jbc.m116.742916] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Revised: 09/02/2016] [Indexed: 12/12/2022] Open
Abstract
Brown bears (Ursus arctos) hibernate for 5-7 months without eating, drinking, urinating, and defecating at a metabolic rate of only 25% of the summer activity rate. Nonetheless, they emerge healthy and alert in spring. We quantified the biochemical adaptations for hibernation by comparing the proteome, metabolome, and hematological features of blood from hibernating and active free-ranging subadult brown bears with a focus on conservation of health and energy. We found that total plasma protein concentration increased during hibernation, even though the concentrations of most individual plasma proteins decreased, as did the white blood cell types. Strikingly, antimicrobial defense proteins increased in concentration. Central functions in hibernation involving the coagulation response and protease inhibition, as well as lipid transport and metabolism, were upheld by increased levels of very few key or broad specificity proteins. The changes in coagulation factor levels matched the changes in activity measurements. A dramatic 45-fold increase in sex hormone-binding globulin levels during hibernation draws, for the first time, attention to its significant but unknown role in maintaining hibernation physiology. We propose that energy for the costly protein synthesis is reduced by three mechanisms as follows: (i) dehydration, which increases protein concentration without de novo synthesis; (ii) reduced protein degradation rates due to a 6 °C reduction in body temperature and decreased protease activity; and (iii) a marked redistribution of energy resources only increasing de novo synthesis of a few key proteins. The comprehensive global data identified novel biochemical strategies for bear adaptations to the extreme condition of hibernation and have implications for our understanding of physiology in general.
Collapse
Affiliation(s)
- Karen Gjesing Welinder
- From the Department of Chemistry and Bioscience, Section of Biotechnology, Aalborg University, Fredrik Bajers Vej 7H, 9220 Aalborg East, Denmark,
| | - Rasmus Hansen
- From the Department of Chemistry and Bioscience, Section of Biotechnology, Aalborg University, Fredrik Bajers Vej 7H, 9220 Aalborg East, Denmark
| | - Michael Toft Overgaard
- From the Department of Chemistry and Bioscience, Section of Biotechnology, Aalborg University, Fredrik Bajers Vej 7H, 9220 Aalborg East, Denmark
| | - Malene Brohus
- From the Department of Chemistry and Bioscience, Section of Biotechnology, Aalborg University, Fredrik Bajers Vej 7H, 9220 Aalborg East, Denmark
| | - Mads Sønderkær
- From the Department of Chemistry and Bioscience, Section of Biotechnology, Aalborg University, Fredrik Bajers Vej 7H, 9220 Aalborg East, Denmark
| | - Martin von Bergen
- From the Department of Chemistry and Bioscience, Section of Biotechnology, Aalborg University, Fredrik Bajers Vej 7H, 9220 Aalborg East, Denmark.,the Departments of Metabolomics and.,Proteomics, Helmholtz Centre for Environmental Research (UFZ), Permoserstrasse 15, 04318 Leipzig, Germany
| | | | - Wolfgang Otto
- Proteomics, Helmholtz Centre for Environmental Research (UFZ), Permoserstrasse 15, 04318 Leipzig, Germany
| | - Tomas L Lindahl
- the Department of Clinical and Experimental Medicine, Linköping University, 581 85 Linköping, Sweden
| | - Karin Arinell
- the Department of Cardiology, Faculty of Health, Örebro University, 701 85 Örebro, Sweden
| | - Alina L Evans
- the Department of Forestry and Wildlife Management, Hedmark University College, Campus Evenstrand, 2411 Elverum, Norway
| | - Jon E Swenson
- the Department for Ecology and Natural Resource Management, Norwegian University of Life Sciences, Postbox 5014, 1432 Ås, Norway.,the Norwegian Institute for Nature Research, Tungasletta 2, N-7485 Trondheim, Norway, and
| | - Inge G Revsbech
- the Department of Bioscience, Zoophysiology, Aarhus University, C.F. Møllers Allé 3, 8000 Aarhus C, Denmark
| | - Ole Frøbert
- the Department of Cardiology, Faculty of Health, Örebro University, 701 85 Örebro, Sweden
| |
Collapse
|
2458
|
van Herwijnen MJC, Zonneveld MI, Goerdayal S, Nolte-'t Hoen ENM, Garssen J, Stahl B, Maarten Altelaar AF, Redegeld FA, Wauben MHM. Comprehensive Proteomic Analysis of Human Milk-derived Extracellular Vesicles Unveils a Novel Functional Proteome Distinct from Other Milk Components. Mol Cell Proteomics 2016; 15:3412-3423. [PMID: 27601599 DOI: 10.1074/mcp.m116.060426] [Citation(s) in RCA: 145] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Indexed: 12/15/2022] Open
Abstract
Breast milk contains several macromolecular components with distinctive functions, whereby milk fat globules and casein micelles mainly provide nutrition to the newborn, and whey contains molecules that can stimulate the newborn's developing immune system and gastrointestinal tract. Although extracellular vesicles (EV) have been identified in breast milk, their physiological function and composition has not been addressed in detail. EV are submicron sized vehicles released by cells for intercellular communication via selectively incorporated lipids, nucleic acids, and proteins. Because of the difficulty in separating EV from other milk components, an in-depth analysis of the proteome of human milk-derived EV is lacking. In this study, an extensive LC-MS/MS proteomic analysis was performed of EV that had been purified from breast milk of seven individual donors using a recently established, optimized density-gradient-based EV isolation protocol. A total of 1963 proteins were identified in milk-derived EV, including EV-associated proteins like CD9, Annexin A5, and Flotillin-1, with a remarkable overlap between the different donors. Interestingly, 198 of the identified proteins are not present in the human EV database Vesiclepedia, indicating that milk-derived EV harbor proteins not yet identified in EV of different origin. Similarly, the proteome of milk-derived EV was compared with that of other milk components. For this, data from 38 published milk proteomic studies were combined in order to construct the total milk proteome, which consists of 2698 unique proteins. Remarkably, 633 proteins identified in milk-derived EV have not yet been identified in human milk to date. Interestingly, these novel proteins include proteins involved in regulation of cell growth and controlling inflammatory signaling pathways, suggesting that milk-derived EVs could support the newborn's developing gastrointestinal tract and immune system. Overall, this study provides an expansion of the whole milk proteome and illustrates that milk-derived EV are macromolecular components with a unique functional proteome.
Collapse
Affiliation(s)
- Martijn J C van Herwijnen
- From the ‡Department of Biochemistry & Cell Biology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - Marijke I Zonneveld
- From the ‡Department of Biochemistry & Cell Biology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands.,§Division of Pharmacology, Department of Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, the Netherlands
| | - Soenita Goerdayal
- ¶Biomolecular Mass Spectrometry and Proteomics Group, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht, the Netherlands
| | - Esther N M Nolte-'t Hoen
- From the ‡Department of Biochemistry & Cell Biology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - Johan Garssen
- §Division of Pharmacology, Department of Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, the Netherlands.,‖Nutricia Research, Utrecht, the Netherlands
| | - Bernd Stahl
- ‖Nutricia Research, Utrecht, the Netherlands
| | - A F Maarten Altelaar
- ¶Biomolecular Mass Spectrometry and Proteomics Group, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht, the Netherlands
| | - Frank A Redegeld
- §Division of Pharmacology, Department of Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, the Netherlands
| | - Marca H M Wauben
- From the ‡Department of Biochemistry & Cell Biology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands;
| |
Collapse
|
2459
|
Mauri M, Kirchner M, Aharoni R, Ciolli Mattioli C, van den Bruck D, Gutkovitch N, Modepalli V, Selbach M, Moran Y, Chekulaeva M. Conservation of miRNA-mediated silencing mechanisms across 600 million years of animal evolution. Nucleic Acids Res 2016; 45:938-950. [PMID: 27604873 PMCID: PMC5314787 DOI: 10.1093/nar/gkw792] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Revised: 08/22/2016] [Accepted: 08/28/2016] [Indexed: 12/11/2022] Open
Abstract
Our current knowledge about the mechanisms of miRNA silencing is restricted to few lineages such as vertebrates, arthropods, nematodes and land plants. miRNA-mediated silencing in bilaterian animals is dependent on the proteins of the GW182 family. Here, we dissect the function of GW182 protein in the cnidarian Nematostella, separated by 600 million years from other Metazoa. Using cultured human cells, we show that Nematostella GW182 recruits the CCR4-NOT deadenylation complexes via its tryptophan-containing motifs, thereby inhibiting translation and promoting mRNA decay. Further, similarly to bilaterians, GW182 in Nematostella is recruited to the miRNA repression complex via interaction with Argonaute proteins, and functions downstream to repress mRNA. Thus, our work suggests that this mechanism of miRNA-mediated silencing was already active in the last common ancestor of Cnidaria and Bilateria.
Collapse
Affiliation(s)
- Marta Mauri
- Non-coding RNAs and mechanisms of cytoplasmic gene regulation, Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine, Berlin 13125, Germany
| | - Marieluise Kirchner
- Proteome dynamics, Max Delbrück Center for Molecular Medicine, Berlin 13125, Germany
| | - Reuven Aharoni
- Department of Ecology, Evolution and Behavior, Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91905, Israel
| | - Camilla Ciolli Mattioli
- Non-coding RNAs and mechanisms of cytoplasmic gene regulation, Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine, Berlin 13125, Germany
| | - David van den Bruck
- Non-coding RNAs and mechanisms of cytoplasmic gene regulation, Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine, Berlin 13125, Germany
| | - Nadya Gutkovitch
- Department of Ecology, Evolution and Behavior, Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91905, Israel
| | - Vengamanaidu Modepalli
- Department of Ecology, Evolution and Behavior, Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91905, Israel
| | - Matthias Selbach
- Proteome dynamics, Max Delbrück Center for Molecular Medicine, Berlin 13125, Germany
| | - Yehu Moran
- Department of Ecology, Evolution and Behavior, Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91905, Israel
| | - Marina Chekulaeva
- Non-coding RNAs and mechanisms of cytoplasmic gene regulation, Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine, Berlin 13125, Germany
| |
Collapse
|
2460
|
Pyrih J, Pyrihová E, Kolísko M, Stojanovová D, Basu S, Harant K, Haindrich AC, Doležal P, Lukeš J, Roger A, Tachezy J. Minimal cytosolic iron-sulfur cluster assembly machinery of Giardia intestinalis is partially associated with mitosomes. Mol Microbiol 2016; 102:701-714. [PMID: 27582265 DOI: 10.1111/mmi.13487] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/21/2016] [Indexed: 01/10/2023]
Abstract
Iron-sulfur (Fe-S) clusters are essential cofactors that enable proteins to transport electrons, sense signals, or catalyze chemical reactions. The maturation of dozens of Fe-S proteins in various compartments of every eukaryotic cell is driven by several assembly pathways. The ubiquitous cytosolic Fe-S cluster assembly (CIA) pathway, typically composed of eight highly conserved proteins, depends on mitochondrial Fe-S cluster assembly (ISC) machinery. Giardia intestinalis contains one of the smallest eukaryotic genomes and the mitosome, an extremely reduced mitochondrion. Because the only pathway known to be retained within this organelle is the synthesis of Fe-S clusters mediated by ISC machinery, a likely function of the mitosome is to cooperate with the CIA pathway. We investigated the cellular localization of CIA components in G. intestinalis and the origin and distribution of CIA-related components and Tah18-like proteins in other Metamonada. We show that orthologs of Tah18 and Dre2 are missing in these eukaryotes. In Giardia, all CIA components are exclusively cytosolic, with the important exception of Cia2 and two Nbp35 paralogs, which are present in the mitosomes. We propose that the dual localization of Cia2 and Nbp35 proteins in Giardia might represent a novel connection between the ISC and the CIA pathways.
Collapse
Affiliation(s)
- Jan Pyrih
- Department of Parasitology, Charles University in Prague, Vestec, 252 42, Czech Republic
| | - Eva Pyrihová
- Department of Parasitology, Charles University in Prague, Vestec, 252 42, Czech Republic
| | - Martin Kolísko
- Centre for Comparative Genomics and Evolutionary Bioinformatics, Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS, B3H 4R2, Canada
| | - Darja Stojanovová
- Department of Parasitology, Charles University in Prague, Vestec, 252 42, Czech Republic
| | - Somsuvro Basu
- Institute of Parasitology, Biology Centre, České Budějovice, Budweis, 37005, Czech Republic
| | - Karel Harant
- Department of Parasitology, Charles University in Prague, Vestec, 252 42, Czech Republic
| | - Alexander C Haindrich
- Institute of Parasitology, Biology Centre, České Budějovice, Budweis, 37005, Czech Republic.,Faculty of Sciences, University of South Bohemia, České Budějovice, Budweis, 37005, Czech Republic
| | - Pavel Doležal
- Department of Parasitology, Charles University in Prague, Vestec, 252 42, Czech Republic
| | - Julius Lukeš
- Institute of Parasitology, Biology Centre, České Budějovice, Budweis, 37005, Czech Republic.,Faculty of Sciences, University of South Bohemia, České Budějovice, Budweis, 37005, Czech Republic.,Canadian Institute for Advanced Research, Toronto, ON, M5G 1Z8, Canada
| | - Andrew Roger
- Centre for Comparative Genomics and Evolutionary Bioinformatics, Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS, B3H 4R2, Canada.,Canadian Institute for Advanced Research, Toronto, ON, M5G 1Z8, Canada
| | - Jan Tachezy
- Department of Parasitology, Charles University in Prague, Vestec, 252 42, Czech Republic
| |
Collapse
|
2461
|
Konstantinell A, Bruun JA, Olsen R, Aspar A, Škalko-Basnet N, Sveinbjørnsson B, Moens U. Secretomic analysis of extracellular vesicles originating from polyomavirus-negative and polyomavirus-positive Merkel cell carcinoma cell lines. Proteomics 2016; 16:2587-2591. [PMID: 27402257 DOI: 10.1002/pmic.201600223] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Revised: 06/30/2016] [Accepted: 07/07/2016] [Indexed: 01/16/2023]
Abstract
Extracellular vesicles or exosomes constitute an evolutionarily conserved mechanism of intercellular signaling. Exosomes are gaining an increasing amount of attention due to their role in pathologies, including malignancy, their importance as prognostic and diagnostic markers, and their potential as a therapeutic tool. Merkel cell carcinoma (MCC) is an aggressive form of skin cancer with a poor prognosis. Because an effective systemic treatment for this cancer type is currently not available, an exosome-based therapy was proposed. However, comprehensive secretome profiling has not been performed for MCC. To help unveil the putative contribution of exosomes in MCC, we studied the protein content of MCC-derived exosomes. Since approximately 80% of all MCC cases contain Merkel cell polyomavirus (MCPyV), the secretomes of two MCPyV-negative and two MCPyV-positive MCC cell lines were compared. We identified with high confidence 164 exosome-derived proteins common for all four cell lines that were annotated in ExoCarta and Vesiclepedia databases. These include proteins implicated in motility, metastasis and tumor progression, such as integrins and tetraspanins, intracellular signaling molecules, chaperones, proteasomal proteins, and translation factors. Additional virus-negative and virus-positive MCC cell lines should be examined to identify highly representative exosomal proteins that may provide reliable prognostic and diagnostic biomarkers, as well as targets for treatment in the future. Data are available via ProteomeXchange with identifier PXD004198.
Collapse
Affiliation(s)
- Aelita Konstantinell
- Department of Medical Biology, Faculty of Health Sciences, University of Tromsø, Tromsø, Norway.
| | - Jack-Ansgar Bruun
- Department of Medical Biology, Faculty of Health Sciences, University of Tromsø, Tromsø, Norway
| | - Randi Olsen
- Department of Medical Biology, Faculty of Health Sciences, University of Tromsø, Tromsø, Norway
| | - Augusta Aspar
- Department of Medical Biology, Faculty of Health Sciences, University of Tromsø, Tromsø, Norway
| | - Nataša Škalko-Basnet
- Department of Pharmacy, Faculty of Health Sciences, University of Tromsø, Tromsø, Norway
| | - Baldur Sveinbjørnsson
- Department of Medical Biology, Faculty of Health Sciences, University of Tromsø, Tromsø, Norway
| | - Ugo Moens
- Department of Medical Biology, Faculty of Health Sciences, University of Tromsø, Tromsø, Norway
| |
Collapse
|
2462
|
Lee LY, Moh ESX, Parker BL, Bern M, Packer NH, Thaysen-Andersen M. Toward Automated N-Glycopeptide Identification in Glycoproteomics. J Proteome Res 2016; 15:3904-3915. [DOI: 10.1021/acs.jproteome.6b00438] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Ling Y. Lee
- Department
of Chemistry and Biomolecular Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Edward S. X. Moh
- Department
of Chemistry and Biomolecular Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Benjamin L. Parker
- Charles
Perkins Centre, School of Molecular Bioscience, The University of Sydney, Sydney, Australia
| | - Marshall Bern
- Protein Metrics
Inc., San Carlos, California 94070, United States
| | - Nicolle H. Packer
- Department
of Chemistry and Biomolecular Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Morten Thaysen-Andersen
- Department
of Chemistry and Biomolecular Sciences, Macquarie University, Sydney, NSW 2109, Australia
| |
Collapse
|
2463
|
Häupl B, Ihling CH, Sinz A. Protein Interaction Network of Human Protein Kinase D2 Revealed by Chemical Cross-Linking/Mass Spectrometry. J Proteome Res 2016; 15:3686-3699. [PMID: 27559607 DOI: 10.1021/acs.jproteome.6b00513] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We investigated the interaction network of human PKD2 in the cytosol and in Golgi-enriched subcellular protein fractions by an affinity enrichment strategy combined with chemical cross-linking/mass spectrometry (MS). Analysis of the subproteomes revealed the presence of distinct proteins in the cytosolic and Golgi fractions. The covalent fixation of transient or weak interactors by chemical cross-linking allowed capturing interaction partners that might otherwise disappear during conventional pull-down experiments. In total, 31 interaction partners were identified for PKD2, including glycogen synthase kinase-3 beta (GSK3B), 14-3-3 protein gamma (YWHAG), and the alpha isoform of 55 kDa regulatory subunit B of protein phosphatase 2A (PPP2R2A). Remarkably, the entire seven-subunit Arp2/3 complex (ARPC1B, ARPC2, ARPC3, ARPC4, ARPC5, ACTR3, ACTR2) as well as ARPC1A and ARPC5L, which are putative substitutes of ARPC1B and ARPC5, were identified. We provide evidence of a direct protein-protein interaction between PKD2 and Arp2/3. Our findings will pave the way for further structural and functional studies of PKD2 complexes, especially the PKD2/Arp2/3 interaction, to elucidate the role of PKD2 for transport processes at the trans-Golgi network. Data are available via ProteomeXchange with identifiers PXD003909 (enrichment from cytosolic fractions), PXD003913 (enrichment from Golgi fractions), and PXD003917 (subcellular fractionation).
Collapse
Affiliation(s)
- Björn Häupl
- Department of Pharmaceutical Chemistry & Bioanalytics, Institute of Pharmacy, Martin Luther University Halle-Wittenberg , Wolfgang-Langenbeck-Str. 4, D-06120 Halle (Saale), Germany
| | - Christian H Ihling
- Department of Pharmaceutical Chemistry & Bioanalytics, Institute of Pharmacy, Martin Luther University Halle-Wittenberg , Wolfgang-Langenbeck-Str. 4, D-06120 Halle (Saale), Germany
| | - Andrea Sinz
- Department of Pharmaceutical Chemistry & Bioanalytics, Institute of Pharmacy, Martin Luther University Halle-Wittenberg , Wolfgang-Langenbeck-Str. 4, D-06120 Halle (Saale), Germany
| |
Collapse
|
2464
|
Dong S, Liu L, Wu W, Armstrong SD, Xia D, Nan H, Hiscox JA, Chen H. Determination of the interactome of non-structural protein12 from highly pathogenic porcine reproductive and respiratory syndrome virus with host cellular proteins using high throughput proteomics and identification of HSP70 as a cellular factor for virus replication. J Proteomics 2016; 146:58-69. [DOI: 10.1016/j.jprot.2016.06.019] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Revised: 06/07/2016] [Accepted: 06/14/2016] [Indexed: 12/16/2022]
|
2465
|
Sun Y, Cheng L, Gu Y, Xin A, Wu B, Zhou S, Guo S, Liu Y, Diao H, Shi H, Wang G, Tao SC. A Human Lectin Microarray for Sperm Surface Glycosylation Analysis. Mol Cell Proteomics 2016; 15:2839-51. [PMID: 27364157 PMCID: PMC5013302 DOI: 10.1074/mcp.m116.059311] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Revised: 06/27/2016] [Indexed: 11/06/2022] Open
Abstract
Glycosylation is one of the most abundant and functionally important protein post-translational modifications. As such, technology for efficient glycosylation analysis is in high demand. Lectin microarrays are a powerful tool for such investigations and have been successfully applied for a variety of glycobiological studies. However, most of the current lectin microarrays are primarily constructed from plant lectins, which are not well suited for studies of human glycosylation because of the extreme complexity of human glycans. Herein, we constructed a human lectin microarray with 60 human lectin and lectin-like proteins. All of the lectins and lectin-like proteins were purified from yeast, and most showed binding to human glycans. To demonstrate the applicability of the human lectin microarray, human sperm were probed on the microarray and strong bindings were observed for several lectins, including galectin-1, 7, 8, GalNAc-T6, and ERGIC-53 (LMAN1). These bindings were validated by flow cytometry and fluorescence immunostaining. Further, mass spectrometry analysis showed that galectin-1 binds several membrane-associated proteins including heat shock protein 90. Finally, functional assays showed that binding of galectin-8 could significantly enhance the acrosome reaction within human sperms. To our knowledge, this is the first construction of a human lectin microarray, and we anticipate it will find wide use for a range of human or mammalian studies, alone or in combination with plant lectin microarrays.
Collapse
Affiliation(s)
- Yangyang Sun
- From the ‡Shanghai Center for Systems Biomedicine, Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200240, China; ¶State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University, Shanghai 200240, China; §§Department of Bioengineering, School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai 264209, China
| | - Li Cheng
- From the ‡Shanghai Center for Systems Biomedicine, Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200240, China; §School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China; ¶State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yihua Gu
- ‖China National Population and Family Planning Key Laboratory of Contraceptive Drugs and Devices, SIPPR, Fudan University, Shanghai 200032, China
| | - Aijie Xin
- **Shanghai Ji Ai Genetics and IVF Institute, Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai 200011, China
| | - Bin Wu
- ‖China National Population and Family Planning Key Laboratory of Contraceptive Drugs and Devices, SIPPR, Fudan University, Shanghai 200032, China
| | - Shumin Zhou
- ‡‡Institute for Microsurgery of Limbs, Shanghai sixth hospital, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Shujuan Guo
- From the ‡Shanghai Center for Systems Biomedicine, Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yin Liu
- From the ‡Shanghai Center for Systems Biomedicine, Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200240, China; ¶State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Hua Diao
- ‖China National Population and Family Planning Key Laboratory of Contraceptive Drugs and Devices, SIPPR, Fudan University, Shanghai 200032, China
| | - Huijuan Shi
- ‖China National Population and Family Planning Key Laboratory of Contraceptive Drugs and Devices, SIPPR, Fudan University, Shanghai 200032, China
| | - Guangyu Wang
- §§Department of Bioengineering, School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai 264209, China
| | - Sheng-Ce Tao
- From the ‡Shanghai Center for Systems Biomedicine, Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200240, China; §School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China; ¶State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University, Shanghai 200240, China;
| |
Collapse
|
2466
|
Davis JCC, Totten SM, Huang JO, Nagshbandi S, Kirmiz N, Garrido DA, Lewis ZT, Wu LD, Smilowitz JT, German JB, Mills DA, Lebrilla CB. Identification of Oligosaccharides in Feces of Breast-fed Infants and Their Correlation with the Gut Microbial Community. Mol Cell Proteomics 2016; 15:2987-3002. [PMID: 27435585 PMCID: PMC5013312 DOI: 10.1074/mcp.m116.060665] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Revised: 06/24/2016] [Indexed: 02/01/2023] Open
Abstract
Glycans in breast milk are abundant and found as either free oligosaccharides or conjugated to proteins and lipids. Free human milk oligosaccharides (HMOs) function as prebiotics by stimulating the growth of beneficial bacteria while preventing the binding of harmful bacteria to intestinal epithelial cells. Bacteria have adapted to the glycan-rich environment of the gut by developing enzymes that catabolize glycans. The decrease in HMOs and the increase in glycan digestion products give indications of the active enzymes in the microbial population. In this study, we quantitated the disappearance of intact HMOs and characterized the glycan digestion products in the gut that are produced by the action of microbial enzymes on HMOs and glycoconjugates from breast milk. Oligosaccharides from fecal samples of exclusively breast-fed infants were extracted and profiled using nanoLC-MS. Intact HMOs were found in the fecal samples, additionally, other oligosaccharides were found corresponding to degraded HMOs and non-HMO based compounds. The latter compounds were fragments of N-glycans released through the cleavage of the linkage to the asparagine residue and through cleavage of the chitobiose core of the N-glycan. Marker gene sequencing of the fecal samples revealed bifidobacteria as the dominant inhabitants of the infant gastrointestinal tracts. A glycosidase from Bifidobacterium longum subsp. longum was then expressed to digest HMOs in vitro, which showed that the digested oligosaccharides in feces corresponded to the action of glycosidases on HMOs. Similar expression of endoglycosidases also showed that N-glycans were released by bacterial enzymes. Although bifidobacteria may dominate the gut, it is possible that specific minority species are also responsible for the major products observed in feces. Nonetheless, the enzymatic activity correlated well with the known glycosidases in the respective bacteria, suggesting a direct relationship between microbial abundances and catabolic activity.
Collapse
Affiliation(s)
- Jasmine C C Davis
- From the ‡Department of Chemistry, University of California, Davis, California 95616; §Foods for Health Institute, University of California, Davis, California 95616
| | - Sarah M Totten
- From the ‡Department of Chemistry, University of California, Davis, California 95616; §Foods for Health Institute, University of California, Davis, California 95616
| | - Julie O Huang
- From the ‡Department of Chemistry, University of California, Davis, California 95616
| | - Sadaf Nagshbandi
- From the ‡Department of Chemistry, University of California, Davis, California 95616
| | - Nina Kirmiz
- §Foods for Health Institute, University of California, Davis, California 95616; ¶Department of Food Science and Technology, University of California, Davis, California 95616
| | - Daniel A Garrido
- §Foods for Health Institute, University of California, Davis, California 95616; ‖Department of Viticulture and Enology, University of California, Davis, California 95616
| | - Zachery T Lewis
- §Foods for Health Institute, University of California, Davis, California 95616; ¶Department of Food Science and Technology, University of California, Davis, California 95616
| | - Lauren D Wu
- From the ‡Department of Chemistry, University of California, Davis, California 95616; §Foods for Health Institute, University of California, Davis, California 95616
| | - Jennifer T Smilowitz
- §Foods for Health Institute, University of California, Davis, California 95616; ¶Department of Food Science and Technology, University of California, Davis, California 95616
| | - J Bruce German
- §Foods for Health Institute, University of California, Davis, California 95616; ¶Department of Food Science and Technology, University of California, Davis, California 95616
| | - David A Mills
- §Foods for Health Institute, University of California, Davis, California 95616; ¶Department of Food Science and Technology, University of California, Davis, California 95616; ‖Department of Viticulture and Enology, University of California, Davis, California 95616
| | - Carlito B Lebrilla
- From the ‡Department of Chemistry, University of California, Davis, California 95616; §Foods for Health Institute, University of California, Davis, California 95616;
| |
Collapse
|
2467
|
Zhang Y, Zhang D, Li Q, Liang J, Sun L, Yi X, Chen Z, Yan R, Xie G, Li W, Liu S, Xu B, Li L, Yang J, He L, Shang Y. Nucleation of DNA repair factors by FOXA1 links DNA demethylation to transcriptional pioneering. Nat Genet 2016; 48:1003-1013. [PMID: 27500525 DOI: 10.1038/ng.3635] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2016] [Accepted: 07/01/2016] [Indexed: 12/14/2022]
Abstract
FOXA1 functions in epigenetic reprogramming and is described as a 'pioneer factor'. However, exactly how FOXA1 achieves these remarkable biological functions is not fully understood. Here we report that FOXA1 associates with DNA repair complexes and is required for genomic targeting of DNA polymerase β (POLB) in human cells. Genome-wide DNA methylomes demonstrate that the FOXA1 DNA repair complex is functionally linked to DNA demethylation in a lineage-specific fashion. Depletion of FOXA1 results in localized reestablishment of methylation in a large portion of FOXA1-bound regions, and the regions with the most consistent hypermethylation exhibit the greatest loss of POLB and are represented by active promoters and enhancers. Consistently, overexpression of FOXA1 commits its binding sites to active DNA demethylation in a POLB-dependent manner. Finally, FOXA1-associated DNA demethylation is tightly coupled with estrogen receptor genomic targeting and estrogen responsiveness. Together, these results link FOXA1-associated DNA demethylation to transcriptional pioneering by FOXA1.
Collapse
Affiliation(s)
- Yu Zhang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Di Zhang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Qian Li
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Jing Liang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Luyang Sun
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Xia Yi
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Zhe Chen
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Ruorong Yan
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Guojia Xie
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Wanjin Li
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Shumeng Liu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Bosen Xu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Lei Li
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Jianguo Yang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Lin He
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Yongfeng Shang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
- Key Laboratory of Hormones and Development (Ministry of Health), Tianjin Key Laboratory of Medical Epigenetics, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| |
Collapse
|
2468
|
Li M, Li D, Feng F, Zhang S, Ma F, Cheng L. Proteomic analysis reveals dynamic regulation of fruit development and sugar and acid accumulation in apple. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:5145-57. [PMID: 27535992 PMCID: PMC7299428 DOI: 10.1093/jxb/erw277] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Understanding the fruit developmental process is critical for fruit quality improvement. Here, we report a comprehensive proteomic analysis of apple fruit development over five growth stages, from young fruit to maturity, coupled with metabolomic profiling. A tandem mass tag (TMT)-based comparative proteomics approach led to the identification and quantification of 7098 and 6247 proteins, respectively. This large-scale proteomic dataset presents a global view of the critical pathways involved in fruit development and metabolism. When linked with metabolomics data, these results provide new insights into the modulation of fruit development, the metabolism and storage of sugars and organic acids (mainly malate), and events within the energy-related pathways for respiration and glycolysis. We suggest that the key steps identified here (e.g. those involving the FK2, TST, EDR6, SPS, mtME and mtMDH switches), can be further targeted to confirm their roles in accumulation and balance of fructose, sucrose and malate. Moreover, our findings imply that the primary reason for decreases in amino acid concentrations during fruit development is related to a reduction in substrate flux via glycolysis, which is mainly regulated by fructose-bisphosphate aldolase and bisphosphoglycerate mutase.
Collapse
Affiliation(s)
- Mingjun Li
- State Key of Crop Stress Biology in Arid Areas/College of Horticulture, Northwest A&F University, Yangling, Shaanxi, China Section of Horticulture, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
| | - Dongxia Li
- State Key of Crop Stress Biology in Arid Areas/College of Horticulture, Northwest A&F University, Yangling, Shaanxi, China
| | - Fengjuan Feng
- State Key of Crop Stress Biology in Arid Areas/College of Horticulture, Northwest A&F University, Yangling, Shaanxi, China Section of Horticulture, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
| | - Sheng Zhang
- Institute of Biotechnology, Cornell University, Ithaca, NY 14853, USA
| | - Fengwang Ma
- State Key of Crop Stress Biology in Arid Areas/College of Horticulture, Northwest A&F University, Yangling, Shaanxi, China
| | - Lailiang Cheng
- Section of Horticulture, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
2469
|
Haase T, Börnigen D, Müller C, Zeller T. Systems Medicine as an Emerging Tool for Cardiovascular Genetics. Front Cardiovasc Med 2016; 3:27. [PMID: 27626034 PMCID: PMC5003874 DOI: 10.3389/fcvm.2016.00027] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 08/16/2016] [Indexed: 01/11/2023] Open
Abstract
Cardiovascular disease (CVD) is a major contributor to morbidity and mortality worldwide. However, the pathogenesis of CVD is complex and remains elusive. Within the last years, systems medicine has emerged as a novel tool to study the complex genetic, molecular, and physiological interactions leading to diseases. In this review, we provide an overview about the current approaches for systems medicine in CVD. They include bioinformatical and experimental tools such as cell and animal models, omics technologies, network, and pathway analyses. Additionally, we discuss challenges and current literature examples where systems medicine has been successfully applied for the study of CVD.
Collapse
Affiliation(s)
- Tina Haase
- Clinic for General and Interventional Cardiology, University Heart Center Hamburg, Hamburg, Germany; Partner Site Hamburg/Kiel/Lübeck, German Center for Cardiovascular Research (DZHK e.V.), Hamburg, Germany
| | - Daniela Börnigen
- Clinic for General and Interventional Cardiology, University Heart Center Hamburg, Hamburg, Germany; Partner Site Hamburg/Kiel/Lübeck, German Center for Cardiovascular Research (DZHK e.V.), Hamburg, Germany
| | - Christian Müller
- Clinic for General and Interventional Cardiology, University Heart Center Hamburg, Hamburg, Germany; Partner Site Hamburg/Kiel/Lübeck, German Center for Cardiovascular Research (DZHK e.V.), Hamburg, Germany
| | - Tanja Zeller
- Clinic for General and Interventional Cardiology, University Heart Center Hamburg, Hamburg, Germany; Partner Site Hamburg/Kiel/Lübeck, German Center for Cardiovascular Research (DZHK e.V.), Hamburg, Germany
| |
Collapse
|
2470
|
Coscia F, Watters KM, Curtis M, Eckert MA, Chiang CY, Tyanova S, Montag A, Lastra RR, Lengyel E, Mann M. Integrative proteomic profiling of ovarian cancer cell lines reveals precursor cell associated proteins and functional status. Nat Commun 2016; 7:12645. [PMID: 27561551 PMCID: PMC5007461 DOI: 10.1038/ncomms12645] [Citation(s) in RCA: 162] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Accepted: 07/19/2016] [Indexed: 12/11/2022] Open
Abstract
A cell line representative of human high-grade serous ovarian cancer (HGSOC) should not only resemble its tumour of origin at the molecular level, but also demonstrate functional utility in pre-clinical investigations. Here, we report the integrated proteomic analysis of 26 ovarian cancer cell lines, HGSOC tumours, immortalized ovarian surface epithelial cells and fallopian tube epithelial cells via a single-run mass spectrometric workflow. The in-depth quantification of >10,000 proteins results in three distinct cell line categories: epithelial (group I), clear cell (group II) and mesenchymal (group III). We identify a 67-protein cell line signature, which separates our entire proteomic data set, as well as a confirmatory publicly available CPTAC/TCGA tumour proteome data set, into a predominantly epithelial and mesenchymal HGSOC tumour cluster. This proteomics-based epithelial/mesenchymal stratification of cell lines and human tumours indicates a possible origin of HGSOC either from the fallopian tube or from the ovarian surface epithelium. High-grade serous ovarian cancer is the most common and aggressive ovarian cancer, with uncertain cell of origin. Here, the authors undertake a mass spectrometric analysis of 26 cancer cell lines and identify a protein signature that classifies ovarian cancer tissues into epithelial and mesenchymal groups.
Collapse
Affiliation(s)
- F Coscia
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - K M Watters
- Department of Obstetrics and Gynecology, Section of Gynecologic Oncology, University of Chicago, Chicago, Illinois 60637, USA
| | - M Curtis
- Department of Obstetrics and Gynecology, Section of Gynecologic Oncology, University of Chicago, Chicago, Illinois 60637, USA
| | - M A Eckert
- Department of Obstetrics and Gynecology, Section of Gynecologic Oncology, University of Chicago, Chicago, Illinois 60637, USA
| | - C Y Chiang
- Department of Obstetrics and Gynecology, Section of Gynecologic Oncology, University of Chicago, Chicago, Illinois 60637, USA
| | - S Tyanova
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - A Montag
- Department of Pathology, University of Chicago Medicine, Chicago, Illinois 60637, USA
| | - R R Lastra
- Department of Pathology, University of Chicago Medicine, Chicago, Illinois 60637, USA
| | - E Lengyel
- Department of Obstetrics and Gynecology, Section of Gynecologic Oncology, University of Chicago, Chicago, Illinois 60637, USA
| | - M Mann
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| |
Collapse
|
2471
|
Jiang Y, Lee J, Lee JH, Lee JW, Kim JH, Choi WH, Yoo YD, Cha-Molstad H, Kim BY, Kwon YT, Noh SA, Kim KP, Lee MJ. The arginylation branch of the N-end rule pathway positively regulates cellular autophagic flux and clearance of proteotoxic proteins. Autophagy 2016; 12:2197-2212. [PMID: 27560450 DOI: 10.1080/15548627.2016.1222991] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The N-terminal amino acid of a protein is an essential determinant of ubiquitination and subsequent proteasomal degradation in the N-end rule pathway. Using para-chloroamphetamine (PCA), a specific inhibitor of the arginylation branch of the pathway (Arg/N-end rule pathway), we identified that blocking the Arg/N-end rule pathway significantly impaired the fusion of autophagosomes with lysosomes. Under ER stress, ATE1-encoded Arg-tRNA-protein transferases carry out the N-terminal arginylation of the ER heat shock protein HSPA5 that initially targets cargo proteins, along with SQSTM1, to the autophagosome. At the late stage of autophagy, however, proteasomal degradation of arginylated HSPA5 might function as a critical checkpoint for the proper progression of autophagic flux in the cells. Consistently, the inhibition of the Arg/N-end rule pathway with PCA significantly elevated levels of MAPT and huntingtin aggregates, accompanied by increased numbers of LC3 and SQSTM1 puncta. Cells treated with the Arg/N-end rule inhibitor became more sensitized to proteotoxic stress-induced cytotoxicity. SILAC-based quantitative proteomics also revealed that PCA significantly alters various biological pathways, including cellular responses to stress, nutrient, and DNA damage, which are also closely involved in modulation of autophagic responses. Thus, our results indicate that the Arg/N-end rule pathway may function to actively protect cells from detrimental effects of cellular stresses, including proteotoxic protein accumulation, by positively regulating autophagic flux.
Collapse
Affiliation(s)
- Yanxialei Jiang
- a Department of Biochemistry and Molecular Biology , Seoul National University College of Medicine , Seoul , Korea
| | - Jeeyoung Lee
- a Department of Biochemistry and Molecular Biology , Seoul National University College of Medicine , Seoul , Korea.,b Department of Biomedical Sciences , Seoul National University Graduate School , Seoul , Korea
| | - Jung Hoon Lee
- a Department of Biochemistry and Molecular Biology , Seoul National University College of Medicine , Seoul , Korea.,b Department of Biomedical Sciences , Seoul National University Graduate School , Seoul , Korea
| | - Joon Won Lee
- d Department of Applied Chemistry , College of Applied Sciences, Kyung Hee University , Yongin , Korea
| | - Ji Hyeon Kim
- a Department of Biochemistry and Molecular Biology , Seoul National University College of Medicine , Seoul , Korea.,b Department of Biomedical Sciences , Seoul National University Graduate School , Seoul , Korea
| | - Won Hoon Choi
- a Department of Biochemistry and Molecular Biology , Seoul National University College of Medicine , Seoul , Korea.,b Department of Biomedical Sciences , Seoul National University Graduate School , Seoul , Korea
| | - Young Dong Yoo
- b Department of Biomedical Sciences , Seoul National University Graduate School , Seoul , Korea
| | - Hyunjoo Cha-Molstad
- c World Class Institute, Korea Research Institute of Bioscience and Biotechnology , Ochang, Cheongwon , Korea
| | - Bo Yeon Kim
- c World Class Institute, Korea Research Institute of Bioscience and Biotechnology , Ochang, Cheongwon , Korea
| | - Yong Tae Kwon
- b Department of Biomedical Sciences , Seoul National University Graduate School , Seoul , Korea
| | - Sue Ah Noh
- d Department of Applied Chemistry , College of Applied Sciences, Kyung Hee University , Yongin , Korea
| | - Kwang Pyo Kim
- d Department of Applied Chemistry , College of Applied Sciences, Kyung Hee University , Yongin , Korea
| | - Min Jae Lee
- a Department of Biochemistry and Molecular Biology , Seoul National University College of Medicine , Seoul , Korea.,b Department of Biomedical Sciences , Seoul National University Graduate School , Seoul , Korea
| |
Collapse
|
2472
|
Quantitative profiling of spreading-coupled protein tyrosine phosphorylation in migratory cells. Sci Rep 2016; 6:31811. [PMID: 27554326 PMCID: PMC4995472 DOI: 10.1038/srep31811] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2016] [Accepted: 07/26/2016] [Indexed: 01/08/2023] Open
Abstract
Protein tyrosine phosphorylation is an important mechanism that regulates cytoskeleton reorganization and cell spreading of migratory cells. A number of cytoskeletal proteins are known to be tyrosine phosphorylated (pY) in different cellular processes. However, the profile of pY proteins during different stages of cell spreading has not been available. Using immunoafffinity enrichment of pY proteins coupled with label free quantitative proteomics, we quantitatively identified 447 pY proteins in the migratory ECV-304 cells at the early spreading (adhesion) and the active spreading stages. We found that pY levels of the majority of the quantified proteins were significantly increased in the active spreading stage compared with the early spreading stage, suggesting that active cell spreading is concomitant with extra tyrosine phosphorylation. The major categories of proteins impacted by tyrosine phosphorylation are involved in cytoskeleton and focal adhesion regulation, protein translation and degradation. Our findings, for the first time, dissect the cell spreading-specific pY signals from the adhesion induced pY signals, and provide a valuable resource for the future mechanistic research regarding the regulation of cell spreading.
Collapse
|
2473
|
Deutsch EW, Overall CM, Van Eyk JE, Baker MS, Paik YK, Weintraub ST, Lane L, Martens L, Vandenbrouck Y, Kusebauch U, Hancock WS, Hermjakob H, Aebersold R, Moritz RL, Omenn GS. Human Proteome Project Mass Spectrometry Data Interpretation Guidelines 2.1. J Proteome Res 2016; 15:3961-3970. [PMID: 27490519 DOI: 10.1021/acs.jproteome.6b00392] [Citation(s) in RCA: 138] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Every data-rich community research effort requires a clear plan for ensuring the quality of the data interpretation and comparability of analyses. To address this need within the Human Proteome Project (HPP) of the Human Proteome Organization (HUPO), we have developed through broad consultation a set of mass spectrometry data interpretation guidelines that should be applied to all HPP data contributions. For submission of manuscripts reporting HPP protein identification results, the guidelines are presented as a one-page checklist containing 15 essential points followed by two pages of expanded description of each. Here we present an overview of the guidelines and provide an in-depth description of each of the 15 elements to facilitate understanding of the intentions and rationale behind the guidelines, for both authors and reviewers. Broadly, these guidelines provide specific directions regarding how HPP data are to be submitted to mass spectrometry data repositories, how error analysis should be presented, and how detection of novel proteins should be supported with additional confirmatory evidence. These guidelines, developed by the HPP community, are presented to the broader scientific community for further discussion.
Collapse
Affiliation(s)
- Eric W Deutsch
- Institute for Systems Biology , 401 Terry Avenure North, Seattle, Washington 98109, United States
| | - Christopher M Overall
- Centre for Blood Research, Departments of Oral Biological & Medical Sciences, and Biochemistry & Molecular Biology, Faculty of Dentistry, University of British Columbia , Vancouver, British Columbia V6T 1Z3, Canada
| | - Jennifer E Van Eyk
- Advanced Clinical Biosystems Research Institute, Department of Medicine, Cedars Sinai Medical Center , Los Angeles, California 90048, United States
| | - Mark S Baker
- Department of Biomedical Sciences, Faculty of Medicine and Health Science, Macquarie University , Sydney, New South Wales 2109, Australia
| | - Young-Ki Paik
- Yonsei Proteome Research Center and Department of Biochemistry, Yonsei University , 50 Yonsei-ro, Sudaemoon-ku, Seoul 120-749, Korea
| | - Susan T Weintraub
- The University of Texas , Health Science Center at San Antonio, San Antonio, Texas 78229, United States
| | - Lydie Lane
- SIB Swiss Institute of Bioinformatics and Department of Human Protein Science, Faculty of Medicine, University of Geneva , CMU, Michel Servet 1, 1211 Geneva 4, Switzerland
| | - Lennart Martens
- Department of Medical Protein Research, VIB , Ghent 9052, Belgium.,Department of Biochemistry, Ghent University , Ghent B-9000, Belgium
| | - Yves Vandenbrouck
- French Proteomics Infrastructure, Biosciences and Biotechnology Institute of Grenoble (BIG), Université Grenoble Alpes, CEA, INSERM , U1038 Grenoble, France
| | - Ulrike Kusebauch
- Institute for Systems Biology , 401 Terry Avenure North, Seattle, Washington 98109, United States
| | - William S Hancock
- Department of Chemical Biology, Northeastern University , Boston, Massachusetts 02115, United States
| | - Henning Hermjakob
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus , Hinxton, Cambridge CB10 1SD, United Kingdom.,National Center for Protein Sciences , Beijing 102206, China
| | - Ruedi Aebersold
- Department of Biology, Institute of Molecular Systems Biology , ETH Zurich, Zurich 8093, Switzerland.,Faculty of Science, University of Zurich , 8006 Zurich, Switzerland
| | - Robert L Moritz
- Institute for Systems Biology , 401 Terry Avenure North, Seattle, Washington 98109, United States
| | - Gilbert S Omenn
- Institute for Systems Biology , 401 Terry Avenure North, Seattle, Washington 98109, United States.,Departments of Computational Medicine & Bioinformatics, Internal Medicine, and Human Genetics and School of Public Health, University of Michigan , Ann Arbor, Michigan 48109-2218, United States
| |
Collapse
|
2474
|
Viktorovskaya OV, Greco TM, Cristea IM, Thompson SR. Identification of RNA Binding Proteins Associated with Dengue Virus RNA in Infected Cells Reveals Temporally Distinct Host Factor Requirements. PLoS Negl Trop Dis 2016; 10:e0004921. [PMID: 27556644 PMCID: PMC4996428 DOI: 10.1371/journal.pntd.0004921] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 07/22/2016] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND There are currently no vaccines or antivirals available for dengue virus infection, which can cause dengue hemorrhagic fever and death. A better understanding of the host pathogen interaction is required to develop effective therapies to treat DENV. In particular, very little is known about how cellular RNA binding proteins interact with viral RNAs. RNAs within cells are not naked; rather they are coated with proteins that affect localization, stability, translation and (for viruses) replication. METHODOLOGY/PRINCIPAL FINDINGS Seventy-nine novel RNA binding proteins for dengue virus (DENV) were identified by cross-linking proteins to dengue viral RNA during a live infection in human cells. These cellular proteins were specific and distinct from those previously identified for poliovirus, suggesting a specialized role for these factors in DENV amplification. Knockdown of these proteins demonstrated their function as viral host factors, with evidence for some factors acting early, while others late in infection. Their requirement by DENV for efficient amplification is likely specific, since protein knockdown did not impair the cell fitness for viral amplification of an unrelated virus. The protein abundances of these host factors were not significantly altered during DENV infection, suggesting their interaction with DENV RNA was due to specific recruitment mechanisms. However, at the global proteome level, DENV altered the abundances of proteins in particular classes, including transporter proteins, which were down regulated, and proteins in the ubiquitin proteasome pathway, which were up regulated. CONCLUSIONS/SIGNIFICANCE The method for identification of host factors described here is robust and broadly applicable to all RNA viruses, providing an avenue to determine the conserved or distinct mechanisms through which diverse viruses manage the viral RNA within cells. This study significantly increases the number of cellular factors known to interact with DENV and reveals how DENV modulates and usurps cellular proteins for efficient amplification.
Collapse
Affiliation(s)
- Olga V. Viktorovskaya
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Todd M. Greco
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, United States of America
| | - Ileana M. Cristea
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, United States of America
| | - Sunnie R. Thompson
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
- * E-mail:
| |
Collapse
|
2475
|
Miyamoto S, Ruhaak LR, Stroble C, Salemi MR, Phinney B, Lebrilla CB, Leiserowitz GS. Glycoproteomic Analysis of Malignant Ovarian Cancer Ascites Fluid Identifies Unusual Glycopeptides. J Proteome Res 2016; 15:3358-76. [PMID: 27500424 DOI: 10.1021/acs.jproteome.6b00548] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Ovarian cancer is a major cause of cancer mortality among women, largely due to late diagnosis of advanced metastatic disease. More extensive molecular analysis of metastatic ovarian cancer is needed to identify post-translational modifications of proteins, especially glycosylation that is particularly associated with metastatic disease to better understand the metastatic process and identify potential therapeutic targets. Glycoproteins in ascites fluid were enriched by affinity binding to lectins (ConA or WGA) and other affinity matrices. Separate glycomic, proteomic, and glycopeptide analyses were performed. Relative abundances of different N-glycan groups and proteins were identified from ascites fluids and a serum control. Levels of biomarkers CA125, MUC1, and fibronectin were also monitored in OC ascites samples by Western blot analysis. N-Glycan analysis of ascites fluids showed the presence of large, highly fucosylated and sialylated complex and hybrid glycans, some of which were not observed in normal serum. OC ascites glycoproteins, haptoglobin, fibronectin, lumican, fibulin, hemopexin, ceruloplasmin, alpha-1-antitrypsin, and alpha-1-antichymotrypsin were more abundant in OC ascites or not present in serum control samples. Further glycopeptide analysis of OC ascites identified N- and O-glycans in clusterin, hemopexin, and fibulin glycopeptides, some of which are unusual and may be important in OC metastasis.
Collapse
Affiliation(s)
- Suzanne Miyamoto
- Division of Hematology and Oncology, Department of Internal Medicine, UC Davis School of Medicine , Sacramento, California 95817, United States
| | - L Renee Ruhaak
- Department of Chemistry, UC Davis , Davis, California 95616, United States
| | - Carol Stroble
- Division of Hematology and Oncology, Department of Internal Medicine, UC Davis School of Medicine , Sacramento, California 95817, United States
| | - Michelle R Salemi
- Proteomic Core, Genome Center, UC Davis , Davis, California 95616, United States
| | - Brett Phinney
- Proteomic Core, Genome Center, UC Davis , Davis, California 95616, United States
| | - Carlito B Lebrilla
- Department of Chemistry, UC Davis , Davis, California 95616, United States
| | - Gary S Leiserowitz
- Division of Gynecologic Oncology, UC Davis Medical Center , Sacramento, California 95817, United States
| |
Collapse
|
2476
|
Fasano M, Monti C, Alberio T. A systems biology-led insight into the role of the proteome in neurodegenerative diseases. Expert Rev Proteomics 2016; 13:845-55. [PMID: 27477319 DOI: 10.1080/14789450.2016.1219254] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
INTRODUCTION Multifactorial disorders are the result of nonlinear interactions of several factors; therefore, a reductionist approach does not appear to be appropriate. Proteomics is a global approach that can be efficiently used to investigate pathogenetic mechanisms of neurodegenerative diseases. AREAS COVERED Here, we report a general introduction about the systems biology approach and mechanistic insights recently obtained by over-representation analysis of proteomics data of cellular and animal models of Alzheimer's disease, Parkinson's disease and other neurodegenerative disorders, as well as of affected human tissues. Expert commentary: As an inductive method, proteomics is based on unbiased observations that further require validation of generated hypotheses. Pathway databases and over-representation analysis tools allow researchers to assign an expectation value to pathogenetic mechanisms linked to neurodegenerative diseases. The systems biology approach based on omics data may be the key to unravel the complex mechanisms underlying neurodegeneration.
Collapse
Affiliation(s)
- Mauro Fasano
- a Department of Science and High Technology and Center of Neuroscience , University of Insubria , Busto Arsizio , Italy
| | - Chiara Monti
- a Department of Science and High Technology and Center of Neuroscience , University of Insubria , Busto Arsizio , Italy
| | - Tiziana Alberio
- a Department of Science and High Technology and Center of Neuroscience , University of Insubria , Busto Arsizio , Italy
| |
Collapse
|
2477
|
MASP-3 is the exclusive pro-factor D activator in resting blood: the lectin and the alternative complement pathways are fundamentally linked. Sci Rep 2016; 6:31877. [PMID: 27535802 PMCID: PMC4989169 DOI: 10.1038/srep31877] [Citation(s) in RCA: 103] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Accepted: 07/29/2016] [Indexed: 11/08/2022] Open
Abstract
MASP-3 was discovered 15 years ago as the third mannan-binding lectin (MBL)-associated serine protease of the complement lectin pathway. Lacking any verified substrate its role remained ambiguous. MASP-3 was shown to compete with a key lectin pathway enzyme MASP-2 for MBL binding, and was therefore considered to be a negative complement regulator. Later, knock-out mice experiments suggested that MASP-1 and/or MASP-3 play important roles in complement pro-factor D (pro-FD) maturation. However, studies on a MASP-1/MASP-3-deficient human patient produced contradicting results. In normal resting blood unperturbed by ongoing coagulation or complement activation, factor D is present predominantly in its active form, suggesting that resting blood contains at least one pro-FD activating proteinase that is not a direct initiator of coagulation or complement activation. We have recently showed that all three MASPs can activate pro-FD in vitro. In resting blood, however, using our previously evolved MASP-1 and MASP-2 inhibitors we proved that neither MASP-1 nor MASP-2 activates pro-FD. Other plasma proteinases, particularly MASP-3, remained candidates for that function. For this study we evolved a specific MASP-3 inhibitor and unambiguously proved that activated MASP-3 is the exclusive pro-FD activator in resting blood, which demonstrates a fundamental link between the lectin and alternative pathways.
Collapse
|
2478
|
Chatterjee S, Stupp GS, Park SKR, Ducom JC, Yates JR, Su AI, Wolan DW. A comprehensive and scalable database search system for metaproteomics. BMC Genomics 2016; 17:642. [PMID: 27528457 PMCID: PMC4986259 DOI: 10.1186/s12864-016-2855-3] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Accepted: 06/21/2016] [Indexed: 01/30/2023] Open
Abstract
BACKGROUND Mass spectrometry-based shotgun proteomics experiments rely on accurate matching of experimental spectra against a database of protein sequences. Existing computational analysis methods are limited in the size of their sequence databases, which severely restricts the proteomic sequencing depth and functional analysis of highly complex samples. The growing amount of public high-throughput sequencing data will only exacerbate this problem. We designed a broadly applicable metaproteomic analysis method (ComPIL) that addresses protein database size limitations. RESULTS Our approach to overcome this significant limitation in metaproteomics was to design a scalable set of sequence databases assembled for optimal library querying speeds. ComPIL was integrated with a modified version of the search engine ProLuCID (termed "Blazmass") to permit rapid matching of experimental spectra. Proof-of-principle analysis of human HEK293 lysate with a ComPIL database derived from high-quality genomic libraries was able to detect nearly all of the same peptides as a search with a human database (~500x fewer peptides in the database), with a small reduction in sensitivity. We were also able to detect proteins from the adenovirus used to immortalize these cells. We applied our method to a set of healthy human gut microbiome proteomic samples and showed a substantial increase in the number of identified peptides and proteins compared to previous metaproteomic analyses, while retaining a high degree of protein identification accuracy and allowing for a more in-depth characterization of the functional landscape of the samples. CONCLUSIONS The combination of ComPIL with Blazmass allows proteomic searches to be performed with database sizes much larger than previously possible. These large database searches can be applied to complex meta-samples with unknown composition or proteomic samples where unexpected proteins may be identified. The protein database, proteomic search engine, and the proteomic data files for the 5 microbiome samples characterized and discussed herein are open source and available for use and additional analysis.
Collapse
Affiliation(s)
- Sandip Chatterjee
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Gregory S Stupp
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Sung Kyu Robin Park
- Department of Chemical Physiology, The Scripps Research Institute, La Jolla, USA
| | - Jean-Christophe Ducom
- High Performance Computing Technology Core, The Scripps Research Institute, La Jolla, USA
| | - John R Yates
- Department of Chemical Physiology, The Scripps Research Institute, La Jolla, USA
| | - Andrew I Su
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA.
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, USA.
| | - Dennis W Wolan
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA.
- Department of Chemical Physiology, The Scripps Research Institute, La Jolla, USA.
| |
Collapse
|
2479
|
Uyy E, Suica VI, Boteanu RM, Manda D, Baciu AE, Badiu C, Antohe F. Endoplasmic Reticulum Chaperones Are Potential Active Factors in Thyroid Tumorigenesis. J Proteome Res 2016; 15:3377-87. [PMID: 27480176 DOI: 10.1021/acs.jproteome.6b00567] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The study aimed to evaluate the proteomic changes in benign follicular adenoma versus malignant follicular variant of papillary thyroid carcinoma. Tumor and nontumor adjacent samples were analyzed by liquid nanochromatography mass spectrometry, and protein abundance was evaluated by label-free quantification. Western blotting and quantitative real-time polymerase chain reaction were used to validate and complement the mass spectrometry data. The results demonstrated deregulated expression of four endoplasmic reticulum chaperones (78 kDa glucose-regulated protein, endoplasmin, calnexin, protein disulfide-isomerase A4), glutathione peroxidase 3 and thyroglobulin, all of them involved in thyroid hormone synthesis pathway. The altered tissue abundance of endoplasmic reticulum chaperones in thyroid cancer was correlated with serum expression levels. The identified proteins significantly discriminate between adenoma and carcinoma in both thyroid tissue and corresponding sera. Data are available via ProteomeXchange with identifier PXD004322.
Collapse
Affiliation(s)
- Elena Uyy
- Institute of Cellular Biology and Pathology "Nicolae Simionescu" , 8, B.P. Hasdeu Street, P.O. Box 35-14, 050568 Bucharest, Romania
| | - Viorel I Suica
- Institute of Cellular Biology and Pathology "Nicolae Simionescu" , 8, B.P. Hasdeu Street, P.O. Box 35-14, 050568 Bucharest, Romania
| | - Raluca M Boteanu
- Institute of Cellular Biology and Pathology "Nicolae Simionescu" , 8, B.P. Hasdeu Street, P.O. Box 35-14, 050568 Bucharest, Romania
| | - Dana Manda
- National Institute of Endocrinology "C.I. Parhon" , 34-36 Aviatorilor Boulevard, 011863 Bucharest, Romania
| | - Ancuta E Baciu
- National Institute of Endocrinology "C.I. Parhon" , 34-36 Aviatorilor Boulevard, 011863 Bucharest, Romania.,University of Bucharest, Faculty of Physics , 405 Atomiştilor Street, 077125 Magurele, Romania
| | - Corin Badiu
- National Institute of Endocrinology "C.I. Parhon" , 34-36 Aviatorilor Boulevard, 011863 Bucharest, Romania
| | - Felicia Antohe
- Institute of Cellular Biology and Pathology "Nicolae Simionescu" , 8, B.P. Hasdeu Street, P.O. Box 35-14, 050568 Bucharest, Romania
| |
Collapse
|
2480
|
Smidak R, Aradska J, Kirchberger S, Distel M, Sialana FJ, Wackerlig J, Mechtcheriakova D, Lubec G. A detailed proteomic profiling of plasma membrane from zebrafish brain. Proteomics Clin Appl 2016; 10:1264-1268. [PMID: 27459904 DOI: 10.1002/prca.201600081] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 06/29/2016] [Accepted: 07/21/2016] [Indexed: 12/11/2022]
Abstract
Zebrafish (Danio rerio) is a well-established model organism in developmental biology and disease modeling. In recent years, an increasing amount of studies used zebrafish to analyze the genetic changes underlying various neurological disorders. The brain plasma membrane proteome represents the major subsets of signaling proteins and promising drug targets, but is often understudied due to traditional experimental difficulties including problems with solubility, detergent removal, or low abundance. Here, we report a comprehensive dataset of the proteins identified in the enriched plasma membrane of the zebrafish brain by applying sequential trypsin/chymotrypsin digestion with multidimensional LC-MS/MS. A total number of 97 017 peptide groups corresponding to 9201 proteins were identified. These were annotated in various molecular functions or neurological disorders. The dataset of the current study provides a useful data source for further utilizing zebrafish in basic and clinical neuroscience.
Collapse
Affiliation(s)
- Roman Smidak
- Department of Pediatrics, Medical University of Vienna, Vienna, Austria
| | - Jana Aradska
- Department of Pediatrics, Medical University of Vienna, Vienna, Austria
| | - Stefanie Kirchberger
- Children's Cancer Research Institute, St. Anna Kinderkrebsforschung, Innovative Cancer Models, Vienna, Austria
| | - Martin Distel
- Children's Cancer Research Institute, St. Anna Kinderkrebsforschung, Innovative Cancer Models, Vienna, Austria
| | | | - Judith Wackerlig
- Department of Pharmaceutical Chemistry, Faculty of Life Sciences, University of Vienna, Vienna, Austria
| | - Diana Mechtcheriakova
- Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria
| | - Gert Lubec
- Department of Pharmaceutical Chemistry, Faculty of Life Sciences, University of Vienna, Vienna, Austria
| |
Collapse
|
2481
|
Swenson JM, Colmenares SU, Strom AR, Costes SV, Karpen GH. The composition and organization of Drosophila heterochromatin are heterogeneous and dynamic. eLife 2016; 5:e16096. [PMID: 27514026 PMCID: PMC4981497 DOI: 10.7554/elife.16096] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 07/06/2016] [Indexed: 12/13/2022] Open
Abstract
Heterochromatin is enriched for specific epigenetic factors including Heterochromatin Protein 1a (HP1a), and is essential for many organismal functions. To elucidate heterochromatin organization and regulation, we purified Drosophila melanogaster HP1a interactors, and performed a genome-wide RNAi screen to identify genes that impact HP1a levels or localization. The majority of the over four hundred putative HP1a interactors and regulators identified were previously unknown. We found that 13 of 16 tested candidates (83%) are required for gene silencing, providing a substantial increase in the number of identified components that impact heterochromatin properties. Surprisingly, image analysis revealed that although some HP1a interactors and regulators are broadly distributed within the heterochromatin domain, most localize to discrete subdomains that display dynamic localization patterns during the cell cycle. We conclude that heterochromatin composition and architecture is more spatially complex and dynamic than previously suggested, and propose that a network of subdomains regulates diverse heterochromatin functions.
Collapse
Affiliation(s)
- Joel M Swenson
- Division of Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, United States
| | - Serafin U Colmenares
- Division of Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, United States
| | - Amy R Strom
- Division of Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, United States
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| | - Sylvain V Costes
- Division of Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, United States
| | - Gary H Karpen
- Division of Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, United States
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| |
Collapse
|
2482
|
Proteomic dataset of Paracentrotus lividus gonads of different sexes and at different maturation stages. Data Brief 2016; 8:824-7. [PMID: 27508229 PMCID: PMC4960011 DOI: 10.1016/j.dib.2016.06.037] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Revised: 06/14/2016] [Accepted: 06/22/2016] [Indexed: 11/20/2022] Open
Abstract
We report the proteomic dataset of gonads from wild Paracentrotus lividus related to the research article entitled “Proteomic changes occurring along gonad maturation in the edible sea urchin Paracentrotus lividus” [1]. Gonads of three individuals per sex in the recovery, pre-mature, mature, and spent stages were analyzed using a shotgun proteomics approach based on filter-aided sample preparation followed by tandem mass spectrometry, protein identification carried out using Sequest-HT as the search engine within the Proteome Discoverer informatics platform, and label-free differential analysis. The dataset has been deposited in the ProteomeXchange Consortium via the PRIDE partner repository with the dataset identifier PRIDE: PXD004200.
Collapse
|
2483
|
Yadetie F, Bjørneklett S, Garberg HK, Oveland E, Berven F, Goksøyr A, Karlsen OA. Quantitative analyses of the hepatic proteome of methylmercury-exposed Atlantic cod (Gadus morhua) suggest oxidative stress-mediated effects on cellular energy metabolism. BMC Genomics 2016; 17:554. [PMID: 27496535 PMCID: PMC4974784 DOI: 10.1186/s12864-016-2864-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2016] [Accepted: 06/30/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Methylmecury (MeHg) is a widely distributed environmental pollutant with considerable risk to both human health and wildlife. To gain better insight into the underlying mechanisms of MeHg-mediated toxicity, we have used label-free quantitative mass spectrometry to analyze the liver proteome of Atlantic cod (Gadus morhua) exposed in vivo to MeHg (0, 0.5, 2 mg/kg body weight) for 2 weeks. RESULTS Out of a toltal of 1143 proteins quantified, 125 proteins were differentially regulated between MeHg-treated samples and controls. Using various bioinformatics tools, we performed gene ontology, pathway and network enrichment analysis, which indicated that proteins and pathways mainly related to energy metabolism, antioxidant defense, cytoskeleton remodeling, and protein synthesis were regulated in the hepatic proteome after MeHg exposure. Comparison with previous gene expression data strengthened these results, and further supported that MeHg predominantly affects many energy metabolism pathways, presumably through its strong induction of oxidative stress. Some enzymes known to have functionally important oxidation-sensitive cysteine residues in other animals are among the differentially regulated proteins, suggesting their modulations by MeHg-induced oxidative stress. Integrated analysis of the proteomics dataset combined with previous gene expression dataset showed a more pronounced effect of MeHg on amino acid, glucose and fatty acid metabolic pathways, and suggested possible interactions of the cellular energy metabolism and antioxidant defense pathways. CONCLUSIONS MeHg disrupts mainly redox homeostasis and energy generating metabolic pathways in cod liver. The energy pathways appear to be modulated through MeHg-induced oxidative stress, possibly mediated by oxidation sensitive enzymes.
Collapse
Affiliation(s)
- Fekadu Yadetie
- Department of Biology, University of Bergen, PO Box 7803, N-5020, Bergen, Norway
| | - Silje Bjørneklett
- Department of Biology, University of Bergen, PO Box 7803, N-5020, Bergen, Norway
| | - Hilde Kristin Garberg
- Department of Biomedicine, Proteomics Unit (PROBE) at the University of Bergen, Bergen, Norway
| | - Eystein Oveland
- Department of Biomedicine, Proteomics Unit (PROBE) at the University of Bergen, Bergen, Norway
| | - Frode Berven
- Department of Biomedicine, Proteomics Unit (PROBE) at the University of Bergen, Bergen, Norway
| | - Anders Goksøyr
- Department of Biology, University of Bergen, PO Box 7803, N-5020, Bergen, Norway
| | - Odd André Karlsen
- Department of Biology, University of Bergen, PO Box 7803, N-5020, Bergen, Norway.
| |
Collapse
|
2484
|
Martinez-Val A, Garcia F, Ximénez-Embún P, Ibarz N, Zarzuela E, Ruppen I, Mohammed S, Munoz J. On the Statistical Significance of Compressed Ratios in Isobaric Labeling: A Cross-Platform Comparison. J Proteome Res 2016; 15:3029-38. [PMID: 27452035 DOI: 10.1021/acs.jproteome.6b00151] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Isobaric labeling is gaining popularity in proteomics due to its multiplexing capacity. However, copeptide fragmentation introduces a bias that undermines its accuracy. Several strategies have been shown to partially and, in some cases, completely solve this issue. However, it is still not clear how ratio compression affects the ability to identify a protein's change of abundance as statistically significant. Here, by using the "two proteomes" approach (E. coli lysates with fixed 2.5 ratios in the presence or absence of human lysates acting as the background interference) and manipulating isolation width values, we were able to model isobaric data with different levels of accuracy and precision in three types of mass spectrometers: LTQ Orbitrap Velos, Impact, and Q Exactive. We determined the influence of these variables on the statistical significance of the distorted ratios and compared them to the ratios measured without impurities. Our results confirm previous findings1-4 regarding the importance of optimizing acquisition parameters in each instrument in order to minimize interference without compromising precision and identification. We also show that, under these experimental conditions, the inclusion of a second replicate increases statistical sensitivity 2-3-fold and counterbalances to a large extent the issue of ratio compression.
Collapse
Affiliation(s)
- Ana Martinez-Val
- ProteoRed-ISCIII. Proteomics Unit, Spanish National Cancer Research Centre (CNIO), 28029 Madrid, Spain
| | - Fernando Garcia
- ProteoRed-ISCIII. Proteomics Unit, Spanish National Cancer Research Centre (CNIO), 28029 Madrid, Spain
| | - Pilar Ximénez-Embún
- ProteoRed-ISCIII. Proteomics Unit, Spanish National Cancer Research Centre (CNIO), 28029 Madrid, Spain
| | - Nuria Ibarz
- ProteoRed-ISCIII. Proteomics Unit, Spanish National Cancer Research Centre (CNIO), 28029 Madrid, Spain
| | - Eduardo Zarzuela
- ProteoRed-ISCIII. Proteomics Unit, Spanish National Cancer Research Centre (CNIO), 28029 Madrid, Spain
| | - Isabel Ruppen
- ProteoRed-ISCIII. Proteomics Unit, Spanish National Cancer Research Centre (CNIO), 28029 Madrid, Spain
| | - Shabaz Mohammed
- Department of Biochemistry, University of Oxford , New Biochemistry Building, South Parks Road, OX1 3QU Oxford, U.K.,Departments of Chemistry, University of Oxford , Physical & Theoretical Chemistry Laboratory, South Parks Road, OX1 3QZ Oxford, U.K
| | - Javier Munoz
- ProteoRed-ISCIII. Proteomics Unit, Spanish National Cancer Research Centre (CNIO), 28029 Madrid, Spain
| |
Collapse
|
2485
|
Milewski MC, Broger T, Kirkpatrick J, Filomena A, Komadina D, Schneiderhan-Marra N, Wilmanns M, Parret AHA. A standardized production pipeline for high profile targets from Mycobacterium tuberculosis. Proteomics Clin Appl 2016; 10:1049-1057. [PMID: 27400835 PMCID: PMC5095800 DOI: 10.1002/prca.201600033] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2016] [Revised: 05/23/2016] [Accepted: 07/07/2016] [Indexed: 01/21/2023]
Abstract
Purpose Tuberculosis is still a major threat to global health. New tools and strategies to produce disease‐related proteins are quintessential for the development of novel vaccines and diagnostic markers. Experimental design To obtain recombinant proteins from Mycobacterium tuberculosis (Mtb) for use in clinical applications, a standardized procedure was developed that includes subcloning, protein expression in Mycobacterium smegmatis and protein purification using chromatography. The potential for the different protein targets to serve as diagnostic markers for tuberculosis was established using multiplex immunoassays. Results Twelve soluble proteins from Mtb, including one protein complex, were purified to near‐homogeneity following recombinant expression in M. smegmatis. Protein purity was assessed both by size exclusion chromatography and MS. Multiplex serological testing of the final protein preparations showed that all but one protein displayed a clear antibody response in serum samples from 278 tuberculosis patients. Conclusion and clinical relevance The established workflow comprises a simple, cost‐effective, and scalable pipeline for production of soluble proteins from Mtb and can be used to prioritize immunogenic proteins suitable for use as diagnostic markers.
Collapse
Affiliation(s)
- Morlin C Milewski
- European Molecular Biology Laboratory (EMBL), Hamburg Unit, Hamburg, Germany
| | - Tobias Broger
- Foundation for Innovative New Diagnostics (FIND), Geneva, Switzerland
| | - Joanna Kirkpatrick
- European Molecular Biology Laboratory (EMBL), Proteomics Core Facility, Heidelberg, Germany
| | - Angela Filomena
- Natural and Medical Sciences Institute, University of Tübingen, Reutlingen, Germany
| | - Dana Komadina
- European Molecular Biology Laboratory (EMBL), Hamburg Unit, Hamburg, Germany
| | | | - Matthias Wilmanns
- European Molecular Biology Laboratory (EMBL), Hamburg Unit, Hamburg, Germany.,University of Hamburg Clinical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Annabel H A Parret
- European Molecular Biology Laboratory (EMBL), Hamburg Unit, Hamburg, Germany.
| |
Collapse
|
2486
|
Foster DB, Liu T, Kammers K, O'Meally R, Yang N, Papanicolaou KN, Talbot CC, Cole RN, O'Rourke B. Integrated Omic Analysis of a Guinea Pig Model of Heart Failure and Sudden Cardiac Death. J Proteome Res 2016; 15:3009-28. [PMID: 27399916 DOI: 10.1021/acs.jproteome.6b00149] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Here, we examine key regulatory pathways underlying the transition from compensated hypertrophy (HYP) to decompensated heart failure (HF) and sudden cardiac death (SCD) in a guinea pig pressure-overload model by integrated multiome analysis. Relative protein abundances from sham-operated HYP and HF hearts were assessed by iTRAQ LC-MS/MS. Metabolites were quantified by LC-MS/MS or GC-MS. Transcriptome profiles were obtained using mRNA microarrays. The guinea pig HF proteome exhibited classic biosignatures of cardiac HYP, left ventricular dysfunction, fibrosis, inflammation, and extravasation. Fatty acid metabolism, mitochondrial transcription/translation factors, antioxidant enzymes, and other mitochondrial procsses, were downregulated in HF but not HYP. Proteins upregulated in HF implicate extracellular matrix remodeling, cytoskeletal remodeling, and acute phase inflammation markers. Among metabolites, acylcarnitines were downregulated in HYP and fatty acids accumulated in HF. The correlation of transcript and protein changes in HF was weak (R(2) = 0.23), suggesting post-transcriptional gene regulation in HF. Proteome/metabolome integration indicated metabolic bottlenecks in fatty acyl-CoA processing by carnitine palmitoyl transferase (CPT1B) as well as TCA cycle inhibition. On the basis of these findings, we present a model of cardiac decompensation involving impaired nuclear integration of Ca(2+) and cyclic nucleotide signals that are coupled to mitochondrial metabolic and antioxidant defects through the CREB/PGC1α transcriptional axis.
Collapse
Affiliation(s)
- D Brian Foster
- Division of Cardiology, Johns Hopkins University School of Medicine , Baltimore, Maryland 21205, United States
| | - Ting Liu
- Division of Cardiology, Johns Hopkins University School of Medicine , Baltimore, Maryland 21205, United States
| | - Kai Kammers
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health , Baltimore, Maryland 21205, United States
| | - Robert O'Meally
- Proteomics Core Facility, Johns Hopkins University School of Medicine , Baltimore, Maryland 21205, United States
| | - Ni Yang
- Division of Cardiology, Johns Hopkins University School of Medicine , Baltimore, Maryland 21205, United States
| | - Kyriakos N Papanicolaou
- Division of Cardiology, Johns Hopkins University School of Medicine , Baltimore, Maryland 21205, United States
| | - C Conover Talbot
- Institute for Basic Biomedical Sciences, Johns Hopkins University School of Medicine , Baltimore, Maryland 21205, United States
| | - Robert N Cole
- Proteomics Core Facility, Johns Hopkins University School of Medicine , Baltimore, Maryland 21205, United States
| | - Brian O'Rourke
- Division of Cardiology, Johns Hopkins University School of Medicine , Baltimore, Maryland 21205, United States
| |
Collapse
|
2487
|
Ye Z, Sangireddy S, Okekeogbu I, Zhou S, Yu CL, Hui D, Howe KJ, Fish T, Thannhauser TW. Drought-Induced Leaf Proteome Changes in Switchgrass Seedlings. Int J Mol Sci 2016; 17:ijms17081251. [PMID: 27490537 PMCID: PMC5000649 DOI: 10.3390/ijms17081251] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Revised: 07/24/2016] [Accepted: 07/27/2016] [Indexed: 11/16/2022] Open
Abstract
Switchgrass (Panicum virgatum) is a perennial crop producing deep roots and thus highly tolerant to soil water deficit conditions. However, seedling establishment in the field is very susceptible to prolonged and periodic drought stress. In this study, a “sandwich” system simulating a gradual water deletion process was developed. Switchgrass seedlings were subjected to a 20-day gradual drought treatment process when soil water tension was increased to 0.05 MPa (moderate drought stress) and leaf physiological properties had expressed significant alteration. Drought-induced changes in leaf proteomes were identified using the isobaric tags for relative and absolute quantitation (iTRAQ) labeling method followed by nano-scale liquid chromatography mass spectrometry (nano-LC-MS/MS) analysis. Additionally, total leaf proteins were processed using a combinatorial library of peptide ligands to enrich for lower abundance proteins. Both total proteins and those enriched samples were analyzed to increase the coverage of the quantitative proteomics analysis. A total of 7006 leaf proteins were identified, and 257 (4% of the leaf proteome) expressed a significant difference (p < 0.05, fold change <0.6 or >1.7) from the non-treated control to drought-treated conditions. These proteins are involved in the regulation of transcription and translation, cell division, cell wall modification, phyto-hormone metabolism and signaling transduction pathways, and metabolic pathways of carbohydrates, amino acids, and fatty acids. A scheme of abscisic acid (ABA)-biosynthesis and ABA responsive signal transduction pathway was reconstructed using these drought-induced significant proteins, showing systemic regulation at protein level to deploy the respective mechanism. Results from this study, in addition to revealing molecular responses to drought stress, provide a large number of proteins (candidate genes) that can be employed to improve switchgrass seedling growth and establishment under soil drought conditions (Data are available via ProteomeXchange with identifier PXD004675).
Collapse
Affiliation(s)
- Zhujia Ye
- Department of Agricultural Sciences, Tennessee State University, 3500 John Merritt Blvd, Nashville, TN 37209, USA.
| | - Sasikiran Sangireddy
- Department of Agricultural Sciences, Tennessee State University, 3500 John Merritt Blvd, Nashville, TN 37209, USA.
| | - Ikenna Okekeogbu
- Department of Agricultural Sciences, Tennessee State University, 3500 John Merritt Blvd, Nashville, TN 37209, USA.
| | - Suping Zhou
- Department of Agricultural Sciences, Tennessee State University, 3500 John Merritt Blvd, Nashville, TN 37209, USA.
| | - Chih-Li Yu
- Department of Biological Sciences, Tennessee State University, 3500 John Merritt Blvd, Nashville, TN 37209, USA.
| | - Dafeng Hui
- Department of Biological Sciences, Tennessee State University, 3500 John Merritt Blvd, Nashville, TN 37209, USA.
| | - Kevin J Howe
- Functional & Comparative Proteomics Center, USDA-ARS, Cornell University, Ithaca, NY 14853, USA.
| | - Tara Fish
- Functional & Comparative Proteomics Center, USDA-ARS, Cornell University, Ithaca, NY 14853, USA.
| | - Theodore W Thannhauser
- Functional & Comparative Proteomics Center, USDA-ARS, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
2488
|
Pfrunder S, Grossmann J, Hunziker P, Brunisholz R, Gekenidis MT, Drissner D. Bacillus cereus Group-Type Strain-Specific Diagnostic Peptides. J Proteome Res 2016; 15:3098-107. [DOI: 10.1021/acs.jproteome.6b00216] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Stefanie Pfrunder
- Agroscope, Institute
for Food Sciences, Schloss
1, 8820 Waedenswil, Switzerland
| | - Jonas Grossmann
- Functional
Genomics Center Zurich, ETH Zurich and University of Zurich, Winterthurerstraße
190, 8057 Zurich, Switzerland
| | - Peter Hunziker
- Functional
Genomics Center Zurich, ETH Zurich and University of Zurich, Winterthurerstraße
190, 8057 Zurich, Switzerland
| | - René Brunisholz
- Functional
Genomics Center Zurich, ETH Zurich and University of Zurich, Winterthurerstraße
190, 8057 Zurich, Switzerland
| | - Maria-Theresia Gekenidis
- Agroscope, Institute
for Food Sciences, Schloss
1, 8820 Waedenswil, Switzerland
- ETH Zurich, Institute of Food, Nutrition and
Health, Schmelzbergstraße
7, 8092 Zurich, Switzerland
| | - David Drissner
- Agroscope, Institute
for Food Sciences, Schloss
1, 8820 Waedenswil, Switzerland
| |
Collapse
|
2489
|
Kariithi HM, Boeren S, Murungi EK, Vlak JM, Abd-Alla AMM. A proteomics approach reveals molecular manipulators of distinct cellular processes in the salivary glands of Glossina m. morsitans in response to Trypanosoma b. brucei infections. Parasit Vectors 2016; 9:424. [PMID: 27485005 PMCID: PMC4969678 DOI: 10.1186/s13071-016-1714-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 07/20/2016] [Indexed: 12/28/2022] Open
Abstract
Background Glossina m. morsitans is the primary vector of the Trypanosoma brucei group, one of the causative agents of African trypanosomoses. The parasites undergo metacyclogenesis, i.e. transformation into the mammalian-infective metacyclic trypomastigote (MT) parasites, in the salivary glands (SGs) of the tsetse vector. Since the MT-parasites are largely uncultivable in vitro, information on the molecular processes that facilitate metacyclogenesis is scanty. Methods To bridge this knowledge gap, we employed tandem mass spectrometry to investigate protein expression modulations in parasitized (T. b. brucei-infected) and unparasitized SGs of G. m. morsitans. We annotated the identified proteins into gene ontologies and mapped the up- and downregulated proteins within protein-protein interaction (PPI) networks. Results We identified 361 host proteins, of which 76.6 % (n = 276) and 22.3 % (n = 81) were up- and downregulated, respectively, in parasitized SGs compared to unparasitized SGs. Whilst 32 proteins were significantly upregulated (> 10-fold), only salivary secreted adenosine was significantly downregulated. Amongst the significantly upregulated proteins, there were proteins associated with blood feeding, immunity, cellular proliferation, homeostasis, cytoskeletal traffic and regulation of protein turnover. The significantly upregulated proteins formed major hubs in the PPI network including key regulators of the Ras/MAPK and Ca2+/cAMP signaling pathways, ubiquitin-proteasome system and mitochondrial respiratory chain. Moreover, we identified 158 trypanosome-specific proteins, notable of which were proteins in the families of the GPI-anchored surface glycoproteins, kinetoplastid calpains, peroxiredoxins, retrotransposon host spot multigene and molecular chaperones. Whilst immune-related trypanosome proteins were over-represented, membrane transporters and proteins involved in translation repression (e.g. ribosomal proteins) were under-represented, potentially reminiscent of the growth-arrested MT-parasites. Conclusions Our data implicate the significantly upregulated proteins as manipulators of diverse cellular processes in response to T. b. brucei infection, potentially to prepare the MT-parasites for invasion and evasion of the mammalian host immune defences. We discuss potential strategies to exploit our findings in enhancement of trypanosome refractoriness or reduce the vector competence of the tsetse vector. Electronic supplementary material The online version of this article (doi:10.1186/s13071-016-1714-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Henry M Kariithi
- Biotechnology Research Institute, Kenya Agricultural and Livestock Research Organization, P.O Box 57811, 00200, Kaptagat Rd, Loresho, Nairobi, Kenya. .,Insect Pest Control Laboratories, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, International Atomic Energy Agency, Wagrammer Straße 5, Vienna, Austria.
| | - Sjef Boeren
- Laboratory of Biochemistry, Wageningen University, Dreijenlaan 3, 6703, HA, Wageningen, The Netherlands
| | - Edwin K Murungi
- Department of Biochemistry and Molecular Biology, Egerton University, P.O. Box 536, 20115, Njoro, Kenya
| | - Just M Vlak
- Laboratory of Virology, Wageningen University, Droevendaalsesteeg 1, 6708, PB, Wageningen, The Netherlands
| | - Adly M M Abd-Alla
- Insect Pest Control Laboratories, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, International Atomic Energy Agency, Wagrammer Straße 5, Vienna, Austria.
| |
Collapse
|
2490
|
Aasebø E, Mjaavatten O, Vaudel M, Farag Y, Selheim F, Berven F, Bruserud Ø, Hernandez-Valladares M. Freezing effects on the acute myeloid leukemia cell proteome and phosphoproteome revealed using optimal quantitative workflows. J Proteomics 2016; 145:214-225. [DOI: 10.1016/j.jprot.2016.03.049] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2016] [Revised: 03/23/2016] [Accepted: 03/29/2016] [Indexed: 12/12/2022]
|
2491
|
Griss J, Perez-Riverol Y, Lewis S, Tabb DL, Dianes JA, del-Toro N, Rurik M, Walzer MW, Kohlbacher O, Hermjakob H, Wang R, Vizcaíno JA. Recognizing millions of consistently unidentified spectra across hundreds of shotgun proteomics datasets. Nat Methods 2016; 13:651-656. [PMID: 27493588 PMCID: PMC4968634 DOI: 10.1038/nmeth.3902] [Citation(s) in RCA: 120] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Accepted: 05/24/2016] [Indexed: 12/13/2022]
Abstract
Mass spectrometry (MS) is the main technology used in proteomics approaches. However, on average 75% of spectra analysed in an MS experiment remain unidentified. We propose to use spectrum clustering at a large-scale to shed a light on these unidentified spectra. PRoteomics IDEntifications database (PRIDE) Archive is one of the largest MS proteomics public data repositories worldwide. By clustering all tandem MS spectra publicly available in PRIDE Archive, coming from hundreds of datasets, we were able to consistently characterize three distinct groups of spectra: 1) incorrectly identified spectra, 2) spectra correctly identified but below the set scoring threshold, and 3) truly unidentified spectra. Using a multitude of complementary analysis approaches, we were able to identify less than 20% of the consistently unidentified spectra. The complete spectrum clustering results are available through the new version of the PRIDE Cluster resource (http://www.ebi.ac.uk/pride/cluster). This resource is intended, among other aims, to encourage and simplify further investigation into these unidentified spectra.
Collapse
Affiliation(s)
- Johannes Griss
- Division of Immunology, Allergy and Infectious Diseases, Department of Dermatology, Medical University of Vienna, Austria
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, Cambridge, United Kingdom
| | - Yasset Perez-Riverol
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, Cambridge, United Kingdom
| | - Steve Lewis
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, Cambridge, United Kingdom
| | - David L. Tabb
- Department of Biomedical Informatics, Vanderbilt University School of Medicine, Nashville
| | - José A. Dianes
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, Cambridge, United Kingdom
| | - Noemi del-Toro
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, Cambridge, United Kingdom
| | - Marc Rurik
- Dept. of Computer Science, University of Tübingen, Germany
- Center for Bioinformatics, University of Tübingen, Germany
| | - Mathias W. Walzer
- Dept. of Computer Science, University of Tübingen, Germany
- Center for Bioinformatics, University of Tübingen, Germany
| | - Oliver Kohlbacher
- Dept. of Computer Science, University of Tübingen, Germany
- Center for Bioinformatics, University of Tübingen, Germany
- Quantitative Biology Center, University of Tübingen, Germany
- Max Planck Institute for Developmental Biology, Germany
| | - Henning Hermjakob
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, Cambridge, United Kingdom
- National Center for Protein Sciences, Beijing, China
| | - Rui Wang
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, Cambridge, United Kingdom
| | - Juan Antonio Vizcaíno
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, Cambridge, United Kingdom
| |
Collapse
|
2492
|
Liu Z, Wang F, Chen J, Zhou Y, Zou H. Modulating the selectivity of affinity absorbents to multi-phosphopeptides by a competitive substitution strategy. J Chromatogr A 2016; 1461:35-41. [DOI: 10.1016/j.chroma.2016.07.042] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Revised: 07/12/2016] [Accepted: 07/15/2016] [Indexed: 12/14/2022]
|
2493
|
Hanzelmann D, Joo HS, Franz-Wachtel M, Hertlein T, Stevanovic S, Macek B, Wolz C, Götz F, Otto M, Kretschmer D, Peschel A. Toll-like receptor 2 activation depends on lipopeptide shedding by bacterial surfactants. Nat Commun 2016; 7:12304. [PMID: 27470911 PMCID: PMC4974576 DOI: 10.1038/ncomms12304] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 06/21/2016] [Indexed: 12/18/2022] Open
Abstract
Sepsis caused by Gram-positive bacterial pathogens is a major fatal disease but its molecular basis remains elusive. Toll-like receptor 2 (TLR2) has been implicated in the orchestration of inflammation and sepsis but its role appears to vary for different pathogen species and clones. Accordingly, Staphylococcus aureus clinical isolates differ substantially in their capacity to activate TLR2. Here we show that strong TLR2 stimulation depends on high-level production of phenol-soluble modulin (PSM) peptides in response to the global virulence activator Agr. PSMs are required for mobilizing lipoproteins, the TLR2 agonists, from the staphylococcal cytoplasmic membrane. Notably, the course of sepsis caused by PSM-deficient S. aureus is similar in wild-type and TLR2-deficient mice, but TLR2 is required for protection of mice against PSM-producing S. aureus. Thus, a crucial role of TLR2 depends on agonist release by bacterial surfactants. Modulation of this process may lead to new therapeutic strategies against Gram-positive infections. The role played by human protein TLR2 in inflammation and sepsis varies for different bacterial pathogens. Here, Hanzelmann et al. show that the differential abilities of Staphylococcus aureus strains to activate TLR2 depend on their production of peptides that release lipoproteins known to act as TLR2 agonists.
Collapse
Affiliation(s)
- Dennis Hanzelmann
- Department of Infection Biology, Interfaculty Institute for Microbiology and Infection Medicine Tübingen (IMIT), University of Tübingen, Auf der Morgenstelle 28, 72076 Tübingen, Germany
| | - Hwang-Soo Joo
- Pathogen Molecular Genetics Section, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Mirita Franz-Wachtel
- Proteome Center Tübingen, Interfaculty Institute of Cell Biology, University of Tübingen, Auf der Morgenstelle 15, 72076 Tübingen, Germany
| | - Tobias Hertlein
- Institute for Molecular Infection Biology, University of Würzburg, Josef-Schneider-Straße 2, Würzburg 97080, Germany
| | - Stefan Stevanovic
- Department of Immunology, Interfaculty Institute for Cell Biology, Eberhard Karls University, Auf der Morgenstelle 15, 72076 Tübingen, Germany
| | - Boris Macek
- Proteome Center Tübingen, Interfaculty Institute of Cell Biology, University of Tübingen, Auf der Morgenstelle 15, 72076 Tübingen, Germany
| | - Christiane Wolz
- Department of Medical Microbiology and Hygiene, Interfaculty Institute for Microbiology and Infection Medicine Tübingen (IMIT), University of Tübingen, Elfriede-Aulhorn-Straße 5, 72076 Tübingen, Germany
| | - Friedrich Götz
- Department of Microbial Genetics, Interfaculty Institute for Microbiology and Infection Medicine Tübingen (IMIT), University of Tübingen, Auf der Morgenstelle 28, 72076 Tübingen, Germany
| | - Michael Otto
- Pathogen Molecular Genetics Section, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Dorothee Kretschmer
- Department of Infection Biology, Interfaculty Institute for Microbiology and Infection Medicine Tübingen (IMIT), University of Tübingen, Auf der Morgenstelle 28, 72076 Tübingen, Germany.,German Center for Infection Research, University of Tübingen, Auf der Morgenstelle 28, 72076 Tübingen, Germany
| | - Andreas Peschel
- Department of Infection Biology, Interfaculty Institute for Microbiology and Infection Medicine Tübingen (IMIT), University of Tübingen, Auf der Morgenstelle 28, 72076 Tübingen, Germany.,German Center for Infection Research, University of Tübingen, Auf der Morgenstelle 28, 72076 Tübingen, Germany
| |
Collapse
|
2494
|
Brioschi M, Baetta R, Ghilardi S, Gianazza E, Guarino A, Parolari A, Polvani G, Tremoli E, Banfi C. Normal human mitral valve proteome: A preliminary investigation by gel-based and gel-free proteomic approaches. Electrophoresis 2016; 37:2633-2643. [PMID: 27450324 DOI: 10.1002/elps.201600081] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Revised: 06/27/2016] [Accepted: 07/14/2016] [Indexed: 12/24/2022]
Abstract
The mitral valve is a highly complex structure which regulates blood flow from the left atrium to the left ventricle (LV) avoiding a significant forward gradient during diastole or regurgitation during systole. The integrity of the mitral valve is also essential for the maintenance of normal LV size, geometry, and function. Significant advances in the comprehension of the biological, functional, and mechanical behavior of the mitral valve have recently been made. However, current knowledge of protein components in the normal human mitral valve is still limited and complicated by the low cellularity of this tissue and the presence of high abundant proteins from the extracellular matrix. We employed here an integrated proteomic approach to analyse the protein composition of the normal human mitral valve and reported confident identification of 422 proteins, some of which have not been previously described in this tissue. In particular, we described the ability of pre-MS separation technique based on liquid-phase IEF and SDS-PAGE to identify the largest number of proteins. We also demonstrated that some of these proteins, e.g. αB-Crystallin, septin-11, four-and-a-half LIM domains protein 1, and dermatopontin, are synthesised by interstitial cells isolated from human mitral valves. These initial results provide a valuable basis for future studies aimed at analysing in depth the mitral valve protein composition and at investigating potential pathogenetic molecular mechanisms. Data are available via ProteomeXchange with identifier PXD004397.
Collapse
Affiliation(s)
| | | | | | | | - Anna Guarino
- Centro Cardiologico Monzino, IRCCS, Milan, Italy.,Banca Tessuti Cardiovascolari Regione Lombardia, Centro Cardiologico Monzino IRCCS Milan, Milan, Italy
| | - Alessandro Parolari
- Dipartimento di Chirurgia cardiaca, IRCCS Policlinico San Donato, Milan, Italy
| | - Gianluca Polvani
- Centro Cardiologico Monzino, IRCCS, Milan, Italy.,Università degli Studi di Milano, Dipartimento di Scienze Cliniche e di Comunità, Sezione Cardiovascolare, Milan, Italy
| | | | | |
Collapse
|
2495
|
Ravidà A, Cwiklinski K, Aldridge AM, Clarke P, Thompson R, Gerlach JQ, Kilcoyne M, Hokke CH, Dalton JP, O'Neill SM. Fasciola hepatica Surface Tegument: Glycoproteins at the Interface of Parasite and Host. Mol Cell Proteomics 2016; 15:3139-3153. [PMID: 27466253 PMCID: PMC5054340 DOI: 10.1074/mcp.m116.059774] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Indexed: 11/20/2022] Open
Abstract
Fasciola hepatica, commonly known as liver fluke, is a trematode that causes Fasciolosis in ruminants and humans. The outer tegumental coat of F. hepatica (FhTeg) is a complex metabolically active biological matrix that is continually exposed to the host immune system and therefore makes a good vaccine target. F. hepatica tegumental coat is highly glycosylated and helminth-derived immunogenic oligosaccharide motifs and glycoproteins are currently being investigated as novel vaccine candidates. This report presents the first systematic characterization of FhTeg glycosylation using lectin microarrays to characterize carbohydrates motifs present, and lectin histochemistry to localize these on the F. hepatica tegument. We discovered that FhTeg glycoproteins are predominantly oligomannose oligosaccharides that are expressed on the spines, suckers and tegumental coat of F. hepatica and lectin blot analysis confirmed the abundance of N- glycosylated proteins. Although some oligosaccharides are widely distributed on the fluke surface other subsets are restricted to distinct anatomical regions. We selectively enriched for FhTeg mannosylated glycoprotein subsets using lectin affinity chromatography and identified 369 proteins by mass spectrometric analysis. Among these proteins are a number of potential vaccine candidates with known immune modulatory properties including proteases, protease inhibitors, paramyosin, Venom Allergen-like II, Enolase and two proteins, nardilysin and TRIL, that have not been previously associated with F. hepatica. Furthermore, we provide a comprehensive insight regarding the putative glycosylation of FhTeg components that could highlight the importance of further studies examining glycoconjugates in host-parasite interactions in the context of F. hepatica infection and the development of an effective vaccine.
Collapse
Affiliation(s)
- Alessandra Ravidà
- From the ‡Fundamental and Translational Immunology, School of Biotechnology, Faculty of Science and Health, Dublin City University, Glasnevin, Dublin 9, Ireland
| | - Krystyna Cwiklinski
- §School of Biological Sciences, Medical Biology Centre (MBC), Queen's University Belfast, Belfast, Northern Ireland, UK
| | - Allison M Aldridge
- From the ‡Fundamental and Translational Immunology, School of Biotechnology, Faculty of Science and Health, Dublin City University, Glasnevin, Dublin 9, Ireland
| | - Paul Clarke
- ¶Glycoselect, Dublin City University, Glasnevin, Dublin 9
| | | | - Jared Q Gerlach
- ‖Glycoscience Group, National Centre for Biomedical Engineering Science, National University of Ireland Galway, Ireland; **Regenerative Medicine Institute, NUI Galway, Ireland
| | - Michelle Kilcoyne
- ‖Glycoscience Group, National Centre for Biomedical Engineering Science, National University of Ireland Galway, Ireland; ‡‡Carbohydrate Signalling Group, Microbiology, NUI Galway, Ireland
| | - Cornelis H Hokke
- §§Department of Parasitology, Leiden University Medical Center, Leiden, The Netherlands
| | - John P Dalton
- §School of Biological Sciences, Medical Biology Centre (MBC), Queen's University Belfast, Belfast, Northern Ireland, UK
| | - Sandra M O'Neill
- From the ‡Fundamental and Translational Immunology, School of Biotechnology, Faculty of Science and Health, Dublin City University, Glasnevin, Dublin 9, Ireland;
| |
Collapse
|
2496
|
Choi SG, Wang Q, Jia J, Chikina M, Pincas H, Dolios G, Sasaki K, Wang R, Minamino N, Salton SRJ, Sealfon SC. Characterization of Gonadotrope Secretoproteome Identifies Neurosecretory Protein VGF-derived Peptide Suppression of Follicle-stimulating Hormone Gene Expression. J Biol Chem 2016; 291:21322-21334. [PMID: 27466366 DOI: 10.1074/jbc.m116.740365] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Indexed: 01/21/2023] Open
Abstract
Reproductive function is controlled by the pulsatile release of hypothalamic gonadotropin-releasing hormone (GnRH), which regulates the expression of the gonadotropins luteinizing hormone and FSH in pituitary gonadotropes. Paradoxically, Fshb gene expression is maximally induced at lower frequency GnRH pulses, which provide a very low average concentration of GnRH stimulation. We studied the role of secreted factors in modulating gonadotropin gene expression. Inhibition of secretion specifically disrupted gonadotropin subunit gene regulation but left early gene induction intact. We characterized the gonadotrope secretoproteome and global mRNA expression at baseline and after Gαs knockdown, which has been found to increase Fshb gene expression (1). We identified 1077 secreted proteins or peptides, 19 of which showed mRNA regulation by GnRH or/and Gαs knockdown. Among several novel secreted factors implicated in Fshb gene regulation, we focused on the neurosecretory protein VGF. Vgf mRNA, whose gene has been implicated in fertility (2), exhibited high induction by GnRH and depended on Gαs In contrast with Fshb induction, Vgf induction occurred preferentially at high GnRH pulse frequency. We hypothesized that a VGF-derived peptide might regulate Fshb gene induction. siRNA knockdown or extracellular immunoneutralization of VGF augmented Fshb mRNA induction by GnRH. GnRH stimulated the secretion of the VGF-derived peptide NERP1. NERP1 caused a concentration-dependent decrease in Fshb gene induction. These findings implicate a VGF-derived peptide in selective regulation of the Fshb gene. Our results support the concept that signaling specificity from the cell membrane GnRH receptor to the nuclear Fshb gene involves integration of intracellular signaling and exosignaling regulatory motifs.
Collapse
Affiliation(s)
| | - Qian Wang
- From the Departments of Neurology and
| | | | | | | | | | - Kazuki Sasaki
- Department of Molecular Pharmacology, National Cerebral and Cardiovascular Center Research Institute, Osaka 565-8565, Japan
| | | | - Naoto Minamino
- Department of Molecular Pharmacology, National Cerebral and Cardiovascular Center Research Institute, Osaka 565-8565, Japan
| | - Stephen R J Salton
- Fishberg Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York 10029 and
| | - Stuart C Sealfon
- From the Departments of Neurology and Center for Advanced Research on Diagnostic Assays, and
| |
Collapse
|
2497
|
Ottman N, Huuskonen L, Reunanen J, Boeren S, Klievink J, Smidt H, Belzer C, de Vos WM. Characterization of Outer Membrane Proteome of Akkermansia muciniphila Reveals Sets of Novel Proteins Exposed to the Human Intestine. Front Microbiol 2016; 7:1157. [PMID: 27507967 PMCID: PMC4960237 DOI: 10.3389/fmicb.2016.01157] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 07/12/2016] [Indexed: 12/26/2022] Open
Abstract
Akkermansia muciniphila is a common member of the human gut microbiota and belongs to the Planctomycetes-Verrucomicrobia-Chlamydiae superphylum. Decreased levels of A. muciniphila have been associated with many diseases, and thus it is considered to be a beneficial resident of the intestinal mucus layer. Surface-exposed molecules produced by this organism likely play important roles in colonization and communication with other microbes and the host, but the protein composition of the outer membrane (OM) has not been characterized thus far. Herein we set out to identify and characterize A. muciniphila proteins using an integrated approach of proteomics and computational analysis. Sarkosyl extraction and sucrose density-gradient centrifugation methods were used to enrich and fractionate the OM proteome of A. muciniphila. Proteins from these fractions were identified by LC-MS/MS and candidates for OM proteins derived from the experimental approach were subjected to computational screening to verify their location in the cell. In total we identified 79 putative OM and membrane-associated extracellular proteins, and 23 of those were found to differ in abundance between cells of A. muciniphila grown on the natural substrate, mucin, and those grown on the non-mucus sugar, glucose. The identified OM proteins included highly abundant proteins involved in secretion and transport, as well as proteins predicted to take part in formation of the pili-like structures observed in A. muciniphila. The most abundant OM protein was a 95-kD protein, termed PilQ, annotated as a type IV pili secretin and predicted to be involved in the production of pili in A. muciniphila. To verify its location we purified the His-Tag labeled N-terminal domain of PilQ and generated rabbit polyclonal antibodies. Immunoelectron microscopy of thin sections immunolabeled with these antibodies demonstrated the OM localization of PilQ, testifying for its predicted function as a type IV pili secretin in A. muciniphila. As pili structures are known to be involved in the modulation of host immune responses, this provides support for the involvement of OM proteins in the host interaction of A. muciniphila. In conclusion, the characterization of A. muciniphila OM proteome provides valuable information that can be used for further functional and immunological studies.
Collapse
Affiliation(s)
- Noora Ottman
- Laboratory of Microbiology, Wageningen UniversityWageningen, Netherlands; Metapopulation Research Centre, University of HelsinkiHelsinki, Finland
| | - Laura Huuskonen
- Department of Veterinary Biosciences, University of Helsinki Helsinki, Finland
| | - Justus Reunanen
- Department of Veterinary Biosciences, University of HelsinkiHelsinki, Finland; Microbiology and Biotechnology, Department of Food and Environmental Sciences, University of HelsinkiHelsinki, Finland
| | - Sjef Boeren
- Laboratory of Biochemistry, Wageningen University Wageningen, Netherlands
| | - Judith Klievink
- Immunobiology, Department of Bacteriology and Immunology, and Research Programs Unit, University of Helsinki Helsinki, Finland
| | - Hauke Smidt
- Laboratory of Microbiology, Wageningen University Wageningen, Netherlands
| | - Clara Belzer
- Laboratory of Microbiology, Wageningen University Wageningen, Netherlands
| | - Willem M de Vos
- Laboratory of Microbiology, Wageningen UniversityWageningen, Netherlands; Department of Veterinary Biosciences, University of HelsinkiHelsinki, Finland; Immunobiology, Department of Bacteriology and Immunology, and Research Programs Unit, University of HelsinkiHelsinki, Finland
| |
Collapse
|
2498
|
Heyder T, Kohler M, Tarasova NK, Haag S, Rutishauser D, Rivera NV, Sandin C, Mia S, Malmström V, Wheelock ÅM, Wahlström J, Holmdahl R, Eklund A, Zubarev RA, Grunewald J, Ytterberg AJ. Approach for Identifying Human Leukocyte Antigen (HLA)-DR Bound Peptides from Scarce Clinical Samples. Mol Cell Proteomics 2016; 15:3017-29. [PMID: 27452731 DOI: 10.1074/mcp.m116.060764] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Indexed: 01/30/2023] Open
Abstract
Immune-mediated diseases strongly associating with human leukocyte antigen (HLA) alleles are likely linked to specific antigens. These antigens are presented to T cells in the form of peptides bound to HLA molecules on antigen presenting cells, e.g. dendritic cells, macrophages or B cells. The identification of HLA-DR-bound peptides presents a valuable tool to investigate the human immunopeptidome. The lung is likely a key player in the activation of potentially auto-aggressive T cells prior to entering target tissues and inducing autoimmune disease. This makes the lung of exceptional interest and presents an ideal paradigm to study the human immunopeptidome and to identify antigenic peptides.Our previous investigation of HLA-DR peptide presentation in the lung required high numbers of cells (800 × 10(6) bronchoalveolar lavage (BAL) cells). Because BAL from healthy nonsmokers typically contains 10-15 × 10(6) cells, there is a need for a highly sensitive approach to study immunopeptides in the lungs of individual patients and controls.In this work, we analyzed the HLA-DR immunopeptidome in the lung by an optimized methodology to identify HLA-DR-bound peptides from low cell numbers. We used an Epstein-Barr Virus (EBV) immortalized B cell line and bronchoalveolar lavage (BAL) cells obtained from patients with sarcoidosis, an inflammatory T cell driven disease mainly occurring in the lung. Specifically, membrane complexes were isolated prior to immunoprecipitation, eluted peptides were identified by nanoLC-MS/MS and processed using the in-house developed ClusterMHCII software. With the optimized procedure we were able to identify peptides from 10 × 10(6) cells, which on average correspond to 10.9 peptides/million cells in EBV-B cells and 9.4 peptides/million cells in BAL cells. This work presents an optimized approach designed to identify HLA-DR-bound peptides from low numbers of cells, enabling the investigation of the BAL immunopeptidome from individual patients and healthy controls in order to identify disease-associated peptides.
Collapse
Affiliation(s)
- Tina Heyder
- From the ‡Respiratory Medicine Unit, Department of Medicine and Center for Molecular Medicine, Solna, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden; §Division of Physiological Chemistry I, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Maxie Kohler
- From the ‡Respiratory Medicine Unit, Department of Medicine and Center for Molecular Medicine, Solna, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Nataliya K Tarasova
- §Division of Physiological Chemistry I, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Sabrina Haag
- ¶Division of Medical Inflammation Research, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Dorothea Rutishauser
- §Division of Physiological Chemistry I, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Natalia V Rivera
- From the ‡Respiratory Medicine Unit, Department of Medicine and Center for Molecular Medicine, Solna, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Charlotta Sandin
- ‖Rheumatology Unit, Department of Medicine, Solna, Karolinska Institutet, Stockholm, Sweden
| | - Sohel Mia
- ‖Rheumatology Unit, Department of Medicine, Solna, Karolinska Institutet, Stockholm, Sweden
| | - Vivianne Malmström
- ‖Rheumatology Unit, Department of Medicine, Solna, Karolinska Institutet, Stockholm, Sweden
| | - Åsa M Wheelock
- From the ‡Respiratory Medicine Unit, Department of Medicine and Center for Molecular Medicine, Solna, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Jan Wahlström
- From the ‡Respiratory Medicine Unit, Department of Medicine and Center for Molecular Medicine, Solna, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Rikard Holmdahl
- ¶Division of Medical Inflammation Research, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Anders Eklund
- From the ‡Respiratory Medicine Unit, Department of Medicine and Center for Molecular Medicine, Solna, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Roman A Zubarev
- §Division of Physiological Chemistry I, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Johan Grunewald
- From the ‡Respiratory Medicine Unit, Department of Medicine and Center for Molecular Medicine, Solna, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - A Jimmy Ytterberg
- §Division of Physiological Chemistry I, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden; ‖Rheumatology Unit, Department of Medicine, Solna, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
2499
|
Scott D, Garner TP, Long J, Strachan J, Mistry SC, Bottrill AR, Tooth DJ, Searle MS, Oldham NJ, Layfield R. Mass spectrometry insights into a tandem ubiquitin-binding domain hybrid engineered for the selective recognition of unanchored polyubiquitin. Proteomics 2016; 16:1961-9. [DOI: 10.1002/pmic.201600067] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Revised: 03/18/2016] [Accepted: 03/29/2016] [Indexed: 11/10/2022]
Affiliation(s)
- Daniel Scott
- School of Life Sciences; Queen's Medical Centre; University of Nottingham; Nottingham UK
- School of Chemistry; University Park; University of Nottingham; Nottingham UK
| | - Tom P Garner
- Department of Biochemistry; Albert Einstein College of Medicine of Yeshiva University; Bronx NY USA
| | - Jed Long
- School of Chemistry; University Park; University of Nottingham; Nottingham UK
- Centre for Biomolecular Sciences; University Park; University of Nottingham; Nottingham UK
| | - Jo Strachan
- Institute of Cell Biology; University of Edinburgh; Edinburgh UK
| | - Sharad C. Mistry
- Protein & Nucleic Acid Chemistry Laboratory; University of Leicester; Leicester UK
| | - Andrew R. Bottrill
- Protein & Nucleic Acid Chemistry Laboratory; University of Leicester; Leicester UK
| | - David J. Tooth
- School of Life Sciences; Queen's Medical Centre; University of Nottingham; Nottingham UK
| | - Mark S. Searle
- School of Chemistry; University Park; University of Nottingham; Nottingham UK
- Centre for Biomolecular Sciences; University Park; University of Nottingham; Nottingham UK
| | - Neil J. Oldham
- School of Chemistry; University Park; University of Nottingham; Nottingham UK
| | - Rob Layfield
- School of Life Sciences; Queen's Medical Centre; University of Nottingham; Nottingham UK
| |
Collapse
|
2500
|
Zumthor JP, Cernikova L, Rout S, Kaech A, Faso C, Hehl AB. Static Clathrin Assemblies at the Peripheral Vacuole-Plasma Membrane Interface of the Parasitic Protozoan Giardia lamblia. PLoS Pathog 2016; 12:e1005756. [PMID: 27438602 PMCID: PMC4954726 DOI: 10.1371/journal.ppat.1005756] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Accepted: 06/18/2016] [Indexed: 11/19/2022] Open
Abstract
Giardia lamblia is a parasitic protozoan that infects a wide range of vertebrate hosts including humans. Trophozoites are non-invasive but associate tightly with the enterocyte surface of the small intestine. This narrow ecological specialization entailed extensive morphological and functional adaptations during host-parasite co-evolution, including a distinctly polarized array of endocytic organelles termed peripheral vacuoles (PVs), which are confined to the dorsal cortical region exposed to the gut lumen and are in close proximity to the plasma membrane (PM). Here, we investigated the molecular consequences of these adaptations on the Giardia endocytic machinery and membrane coat complexes. Despite the absence of canonical clathrin coated vesicles in electron microscopy, Giardia possesses conserved PV-associated clathrin heavy chain (GlCHC), dynamin-related protein (GlDRP), and assembly polypeptide complex 2 (AP2) subunits, suggesting a novel function for GlCHC and its adaptors. We found that, in contrast to GFP-tagged AP2 subunits and DRP, CHC::GFP reporters have no detectable turnover in living cells, indicating fundamental differences in recruitment to the membrane and disassembly compared to previously characterized clathrin coats. Histochemical localization in electron tomography showed that these long-lived GlCHC assemblies localized at distinctive approximations between the plasma and PV membrane. A detailed protein interactome of GlCHC revealed all of the conserved factors in addition to novel or highly diverged proteins, including a putative clathrin light chain and lipid-binding proteins. Taken together, our data provide strong evidence for giardial CHC as a component of highly stable assemblies at PV-PM junctions that likely have a central role in organizing continuities between the PM and PV membranes for controlled sampling of the fluid environment. This suggests a novel function for CHC in Giardia and the extent of molecular remodeling of endocytosis in this species. In canonical clathrin mediated endocytosis (CME) models, the concerted action of ca. 50 proteins mediates the uptake of extracellular components. The key player in this process is clathrin which coats transport intermediates called clathrin coated vesicles (CCV). The intestinal parasite Giardia lamblia has undergone extensive remodeling during colonization of the mammalian duodenum. Here, we report on unique features of this parasite’s endocytic system, consisting of fixed peripheral vacuoles (PV) in close proximity to the exposed plasma membrane (PM), with no discernible CCVs. Using state-of-the-art imaging strategies, we show that the surface of Giardia trophozoites is pock-marked with PM invaginations reaching to the underlying PV membrane. Co-immunoprecipitation and analysis of protein dynamics reveal that, in line with the absence of CCVs, giardial clathrin assemblies have no dynamic behavior. CHC still remains associated to AP2 and dynamin, both conserved dynamic CME components, and to a newly identified putative clathrin light chain. The emerging model calls for giardial clathrin organized into static cores surrounded by dynamic interaction partners, and most likely involved in the regulation of fusion between the PM and the PVs in a “kiss-and-flush”-like mechanism. This suggests that Giardia harbors a conceptually novel function for clathrin in endocytosis, which might be a consequence of host-parasite co-evolution.
Collapse
Affiliation(s)
| | - Lenka Cernikova
- Institute of Parasitology, University of Zurich, Zurich, Switzerland
| | - Samuel Rout
- Institute of Parasitology, University of Zurich, Zurich, Switzerland
| | - Andres Kaech
- Center for Microscopy and Image Analysis, University of Zurich, Zurich, Switzerland
| | - Carmen Faso
- Institute of Parasitology, University of Zurich, Zurich, Switzerland
- * E-mail: (CF); (ABH)
| | - Adrian B. Hehl
- Institute of Parasitology, University of Zurich, Zurich, Switzerland
- * E-mail: (CF); (ABH)
| |
Collapse
|