251
|
Singhal A, Kumar S. Neutrophil and remnant clearance in immunity and inflammation. Immunology 2021; 165:22-43. [PMID: 34704249 DOI: 10.1111/imm.13423] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 08/18/2021] [Accepted: 10/21/2021] [Indexed: 12/13/2022] Open
Abstract
Neutrophil-centred inflammation and flawed clearance of neutrophils cause and exuberate multiple pathological conditions. These most abundant leukocytes exhibit very high daily turnover in steady-state and stress conditions. Various armours including oxidative burst, NETs and proteases function against pathogens, but also dispose neutrophils to spawn pro-inflammatory responses. Neutrophils undergo death through different pathways upon ageing, infection, executing the intruder's elimination. These include non-lytic apoptosis and other lytic deaths including NETosis, necroptosis and pyroptosis with distinct disintegration of the cellular membrane. This causes release and presence of different intracellular cytotoxic, and tissue-damaging content as cell remnants in the extracellular environment. The apoptotic cells and apoptotic bodies get cleared with non-inflammatory outcomes, while lytic deaths associated remnants including histones and cell-free DNA cause pro-inflammatory responses. Indeed, the enhanced frequencies of neutrophil-associated proteases, cell-free DNA and autoantibodies in diverse pathologies including sepsis, asthma, lupus and rheumatoid arthritis, imply disturbed neutrophil resolution programmes in inflammatory and autoimmune diseases. Thus, the clearance mechanisms of neutrophils and associated remnants are vital for therapeutics. Though studies focused on clearance mechanisms of senescent or apoptotic neutrophils so far generated a good understanding of the same, clearance of neutrophils undergoing distinct lytic deaths, including NETs, are being the subjects of intense investigations. Here, in this review, we are providing the current updates in the clearance mechanisms of apoptotic neutrophils and focusing on not so well-defined recognition, uptake and degradation of neutrophils undergoing lytic death and associated remnants that may provide new therapeutic approaches in inflammation and autoimmunity.
Collapse
Affiliation(s)
- Apurwa Singhal
- Pharmacology Division, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, India
| | - Sachin Kumar
- Pharmacology Division, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, India.,Academy of Scientific and Innovative Research (AcSIR), Postal Staff College Area, Ghaziabad, Uttar Pradesh, India
| |
Collapse
|
252
|
Zhang Y, Zhang Z, Li S, Zhao L, Li D, Cao Z, Xu X, Yang X. A siRNA-Assisted Assembly Strategy to Simultaneously Suppress "Self" and Upregulate "Eat-Me" Signals for Nanoenabled Chemo-Immunotherapy. ACS NANO 2021; 15:16030-16042. [PMID: 34544242 DOI: 10.1021/acsnano.1c04458] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Effectively activating macrophages that can engulf cancer cells is a promising immunotherapeutic strategy but remains a major challenge due to the expression of "self" signals (e.g., CD47 molecules) by tumor cells to prevent phagocytosis. Herein, we explored a siRNA-assisted assembly strategy for the simultaneous delivery of siRNA and mitoxantrone hydrochloride (MTO·2HCl) via PLGA-based nanoparticles. The siRNA suppressed a "self" signal by silencing the CD47 gene, while the MTO induced surface exposure of calreticulin (CRT) to provide an "eat-me" signal. The siRNA-assisted assembly strategy synergistically increased the phagocytosis of tumor cells by macrophages, promoted effective antigen presentation, and initiated T cell-mediated immune responses in two aggressive tumor animal models of melanoma and colon cancer, eventually achieving significantly improved antitumor activity. This study provides a straightforward codelivery strategy to simultaneously suppress "self" and upregulate "eat-me" signals to potentiate macrophage-mediated immunotherapy.
Collapse
Affiliation(s)
- Yuxi Zhang
- School of Medicine, South China University of Technology, Guangzhou, Guangdong 510006, People's Republic of China
| | - Zhenghai Zhang
- School of Medicine, South China University of Technology, Guangzhou, Guangdong 510006, People's Republic of China
| | - Senlin Li
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, People's Republic of China
| | - Liang Zhao
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou 511442, People's Republic of China
- National Engineering Research Center for Tissue Restoration and Reconstruction, and Key Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou, Guangdong 510006, People's Republic of China
| | - Dongdong Li
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou 511442, People's Republic of China
- National Engineering Research Center for Tissue Restoration and Reconstruction, and Key Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou, Guangdong 510006, People's Republic of China
| | - Ziyang Cao
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou 511442, People's Republic of China
- Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, and Innovation Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, People's Republic of China
| | - Xiaoding Xu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, People's Republic of China
| | - Xianzhu Yang
- School of Medicine, South China University of Technology, Guangzhou, Guangdong 510006, People's Republic of China
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou 511442, People's Republic of China
- National Engineering Research Center for Tissue Restoration and Reconstruction, and Key Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou, Guangdong 510006, People's Republic of China
| |
Collapse
|
253
|
Shklyaev SS, Melnichenko GA, Volevodz NN, Falaleeva NA, Ivanov SA, Kaprin AD, Mokrysheva NG. Adiponectin: a pleiotropic hormone with multifaceted roles. PROBLEMY ENDOKRINOLOGII 2021; 67:98-112. [PMID: 35018766 PMCID: PMC9753852 DOI: 10.14341/probl12827] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 10/22/2021] [Indexed: 05/28/2023]
Abstract
Adipose tissue mostly composed of different types of fat is one of the largest endocrine organs in the body playing multiple intricate roles including but not limited to energy storage, metabolic homeostasis, generation of heat, participation in immune functions and secretion of a number of biologically active factors known as adipokines. The most abundant of them is adiponectin. This adipocite-derived hormone exerts pleiotropic actions and exhibits insulin-sensitizing, antidiabetic, anti-obesogenic, anti-inflammatory, antiatherogenic, cardio- and neuroprotective properties. Contrariwise to its protective effects against various pathological events in different cell types, adiponectin may have links to several systemic diseases and malignances. Reduction in adiponectin levels has an implication in COVID-19-associated respiratory failure, which is attributed mainly to a phenomenon called 'adiponectin paradox'. Ample evidence about multiple functions of adiponectin in the body was obtained from animal, mostly rodent studies. Our succinct review is entirely about multifaceted roles of adiponectin and mechanisms of its action in different physiological and pathological states.
Collapse
Affiliation(s)
- S. S. Shklyaev
- National Research Center for Endocrinology of the Ministry of Health of the Russian Federation;
A. Tsyb Medical Radiological Research Center — Branch of the National Medical Research Radiological Center of the Ministry of Health of the Russian Federation
| | - G. A. Melnichenko
- National Research Center for Endocrinology of the Ministry of Health of the Russian Federatio
| | - N. N. Volevodz
- National Research Center for Endocrinology of the Ministry of Health of the Russian Federatio
| | - N. A. Falaleeva
- A. Tsyb Medical Radiological Research Center — Branch of the National Medical Research Radiological Center of the Ministry of Health of the Russian Federation
| | - S. A. Ivanov
- A. Tsyb Medical Radiological Research Center — Branch of the National Medical Research Radiological Center of the Ministry of Health of the Russian Federation
| | - A. D. Kaprin
- A. Tsyb Medical Radiological Research Center — Branch of the National Medical Research Radiological Center of the Ministry of Health of the Russian Federation
| | - N. G. Mokrysheva
- National Research Center for Endocrinology of the Ministry of Health of the Russian Federation
| |
Collapse
|
254
|
Zhou L, Liu H, Liu K, Wei S. Gold Compounds and the Anticancer Immune Response. Front Pharmacol 2021; 12:739481. [PMID: 34588987 PMCID: PMC8473785 DOI: 10.3389/fphar.2021.739481] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 08/31/2021] [Indexed: 12/20/2022] Open
Abstract
Gold compounds are not only well-explored for cytotoxic effects on tumors, but are also known to interact with the cancer immune system. The immune system deploys innate and adaptive mechanisms to protect against pathogens and prevent malignant transformation. The combined action of gold compounds with the activated immune system has shown promising results in cancer therapy through in vivo and in vitro experiments. Gold compounds are known to induce innate immune responses; however, these responses may contribute to adaptive immune responses. Gold compounds play the role of a major hapten that acts synergistically in innate immunity. Gold compounds support cancer cell antigenicity and promote anti-tumor immune response by inducing the release of CRT, ATP, HMGB1, HSP, and NKG2D to enhance immunogenicity. Gold compounds affect various immune cells (including suppressor regulatory T cells), inhibit myeloid derived suppressor cells, and enhance the function and number of dendritic cells. Gold nanoparticles (AuNPs) have potential for improving the effect of immunotherapy and reducing the toxicity and side effects of the treatment process. Thus, AuNPs provide an ideal opportunity for exploring the combination of anticancer gold compounds and immunotherapeutic interventions.
Collapse
Affiliation(s)
- Ling Zhou
- Department of Respiratory and Critical Care Medicine, Tongji Hospital, Tongji Medical College Huazhong University of Science and Technology, Wuhan, China
| | - Huiguo Liu
- Department of Respiratory and Critical Care Medicine, Tongji Hospital, Tongji Medical College Huazhong University of Science and Technology, Wuhan, China
| | - Kui Liu
- Department of Respiratory and Critical Care Medicine, Tongji Hospital, Tongji Medical College Huazhong University of Science and Technology, Wuhan, China
| | - Shuang Wei
- Department of Respiratory and Critical Care Medicine, Tongji Hospital, Tongji Medical College Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
255
|
Chaudhary S, Patidar A, Dhiman A, Chaubey GK, Dilawari R, Talukdar S, Modanwal R, Raje M. Exposure of a specific pleioform of multifunctional glyceraldehyde 3-phosphate dehydrogenase initiates CD14-dependent clearance of apoptotic cells. Cell Death Dis 2021; 12:892. [PMID: 34593755 PMCID: PMC8482365 DOI: 10.1038/s41419-021-04168-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 09/02/2021] [Accepted: 09/15/2021] [Indexed: 02/08/2023]
Abstract
Rapid clearance of apoptotic cells by phagocytes is crucial for organogenesis, tissue homeostasis, and resolution of inflammation. This process is initiated by surface exposure of various 'eat me' ligands. Though phosphatidylserine (PS) is the best recognized general recognition ligand till date, recent studies have shown that PS by itself is not sufficient for clearance of apoptotic cells. In this study, we have identified a specific pleioform of GAPDH (Glyceraldehyde 3-phosphate dehydrogenase) that functions as an 'eat me' signal on apoptotic cell surface. This specific form of GAPDH which is exposed on surface of apoptotic cells was found to interact with CD14 present on plasma membrane of phagocytes leading to their engulfment. This is the first study demonstrating the novel interaction between multifunctional GAPDH and the phagocytic receptor CD14 resulting in apoptotic cell clearance (efferocytosis).
Collapse
Affiliation(s)
- Surbhi Chaudhary
- Institute of Microbial Technology, CSIR, Sector 39A, Chandigarh, 160036, India
| | - Anil Patidar
- Institute of Microbial Technology, CSIR, Sector 39A, Chandigarh, 160036, India
| | - Asmita Dhiman
- Institute of Microbial Technology, CSIR, Sector 39A, Chandigarh, 160036, India
| | | | - Rahul Dilawari
- Institute of Microbial Technology, CSIR, Sector 39A, Chandigarh, 160036, India
| | - Sharmila Talukdar
- Institute of Microbial Technology, CSIR, Sector 39A, Chandigarh, 160036, India
| | - Radheshyam Modanwal
- Institute of Microbial Technology, CSIR, Sector 39A, Chandigarh, 160036, India
| | - Manoj Raje
- Institute of Microbial Technology, CSIR, Sector 39A, Chandigarh, 160036, India.
| |
Collapse
|
256
|
Therapy Strategy of CD47 in Diffuse Large B-Cell Lymphoma (DLBCL). DISEASE MARKERS 2021; 2021:4894022. [PMID: 34567285 PMCID: PMC8463246 DOI: 10.1155/2021/4894022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Accepted: 08/30/2021] [Indexed: 12/14/2022]
Abstract
At present, the use of the common chemotherapy regimen CHOP/R-CHOP for diffuse large B-cell lymphoma (DLBCL) has some shortcomings, especially for relapsed and refractory DLBCL. CD47 is now considered as a prominent target in cancer therapies, and CD47 blockade mainly inhibits the CD47-SIRPα axis to prevent tumor immune escape. Here, we evaluated the effects of the latest CD47 antibodies reported and the correlations of closely related genes with CD47 in this disease. In the future, therapeutic strategies for DLBCL will focus on multitarget antibody combined treatment and multigene joint attacks.
Collapse
|
257
|
Hernández-Mercado E, Prieto-Chávez JL, Arriaga-Pizano LA, Hernández-Gutierrez S, Mendlovic F, Königsberg M, López-Díazguerrero NE. Increased CD47 and MHC Class I Inhibitory Signals Expression in Senescent CD1 Primary Mouse Lung Fibroblasts. Int J Mol Sci 2021; 22:ijms221910215. [PMID: 34638556 PMCID: PMC8508564 DOI: 10.3390/ijms221910215] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 08/30/2021] [Accepted: 09/03/2021] [Indexed: 12/22/2022] Open
Abstract
Cellular senescence is more than a proliferative arrest in response to various stimuli. Senescent cells (SC) participate in several physiological processes, and their adequate removal is essential to maintain tissue and organism homeostasis. However, SC accumulation in aging and age-related diseases alters the tissue microenvironment leading to deterioration. The immune system clears the SC, but the specific scenarios and mechanisms related to recognizing and eliminating them are unknown. Hence, we aimed to evaluate the existence of three regulatory signals of phagocytic function, CD47, major histocompatibility complex class I (MHC-I), and calreticulin, present in the membrane of SC. Therefore, primary fibroblasts were isolated from CD1 female mice lungs, and stress-induced premature senescence (SIPS) was induced with hydrogen peroxide. Replicative senescence (RS) was used as a second senescent model. Our results revealed a considerable increment of CD47 and MHC-I in RS and SIPS fibroblasts. At the same time, no significant changes were found in calreticulin, suggesting that those signals might be associated with evading immune system recognition and thus averting senescent cells clearance.
Collapse
Affiliation(s)
- Elisa Hernández-Mercado
- Laboratorio de Bioenergetica y Envejecimiento Celular, Departamento de Ciencias de la Salud, Universidad Autónoma Metropolitana-Iztapalapa, Mexico City 09340, Mexico; (E.H.-M.); (M.K.)
- Posgrado en Biología Experimental, Universidad Autónoma Metropolitana-Iztapalapa, Mexico City 09340, Mexico
| | | | | | - Salomon Hernández-Gutierrez
- Laboratorio de Biología Molecular, Escuela de Medicina, Universidad Panamericana, Mexico City 04510, Mexico;
| | - Fela Mendlovic
- Facultad de Medicina, UNAM, Mexico City 04360, Mexico;
- Facultad de Ciencias de la Salud, Universidad Anáhuac Mexico Norte, Mexico City 04510, Mexico
| | - Mina Königsberg
- Laboratorio de Bioenergetica y Envejecimiento Celular, Departamento de Ciencias de la Salud, Universidad Autónoma Metropolitana-Iztapalapa, Mexico City 09340, Mexico; (E.H.-M.); (M.K.)
| | - Norma Edith López-Díazguerrero
- Laboratorio de Bioenergetica y Envejecimiento Celular, Departamento de Ciencias de la Salud, Universidad Autónoma Metropolitana-Iztapalapa, Mexico City 09340, Mexico; (E.H.-M.); (M.K.)
- Correspondence:
| |
Collapse
|
258
|
Podolska MJ, Shan X, Janko C, Boukherroub R, Gaipl US, Szunerits S, Frey B, Muñoz LE. Graphene-Induced Hyperthermia (GIHT) Combined With Radiotherapy Fosters Immunogenic Cell Death. Front Oncol 2021; 11:664615. [PMID: 34485114 PMCID: PMC8415397 DOI: 10.3389/fonc.2021.664615] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 07/29/2021] [Indexed: 12/30/2022] Open
Abstract
Radiotherapy and chemotherapy are the standard interventions for cancer patients, although cancer cells often develop radio- and/or chemoresistance. Hyperthermia reduces tumor resistance and induces immune responses resulting in a better prognosis. We have previously described a method to induce tumor cell death by local hyperthermia employing pegylated reduced graphene oxide nanosheets and near infrared light (graphene-induced hyperthermia, GIHT). The spatiotemporal exposure/release of heat shock proteins (HSP), high group mobility box 1 protein (HMGB1), and adenosine triphosphate (ATP) are reported key inducers of immunogenic cell death (ICD). We hypothesize that GIHT decisively contributes to induce ICD in irradiated melanoma B16F10 cells, especially in combination with radiotherapy. Therefore, we investigated the immunogenicity of GIHT alone or in combination with radiotherapy in melanoma B16F10 cells. Tumor cell death in vitro revealed features of apoptosis that is progressing fast into secondary necrosis. Both HSP70 and HMGB1/DNA complexes were detected 18 hours post GIHT treatment, whereas the simultaneous release of ATP and HMGB1/DNA was observed only 24 hours post combined treatment. We further confirmed the adjuvant potential of these released DAMPs by immunization/challenge experiments. The inoculation of supernatants of cells exposed to sole GIHT resulted in tumor growth at the site of inoculation. The immunization with cells exposed to sole radiotherapy rather fostered the growth of secondary tumors in vivo. Contrarily, a discreet reduction of secondary tumor volumes was observed in mice immunized with a single dose of cells and supernatants treated with the combination of GIHT and irradiation. We propose the simultaneous release of several DAMPs as a potential mechanism fostering anti-tumor immunity against previously irradiated cancer cells.
Collapse
Affiliation(s)
- Malgorzata J Podolska
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander-University of Erlangen-Nürnberg (FAU), Universitätsklinikum Erlangen, Erlangen, Germany.,Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander-University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Xiaomei Shan
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander-University of Erlangen-Nürnberg (FAU), Universitätsklinikum Erlangen, Erlangen, Germany.,Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander-University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Christina Janko
- Department of Otorhinolaryngology, Head and Neck Surgery, Section of Experimental Oncology and Nanomedicine (SEON), Else Kröner-Fresenius-Stiftung Professorship, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Rabah Boukherroub
- Univ. Lille, CNRS, Centrale Lille, Univ. Polytechnique Hauts-de-France, UMR 8520-IEMN, Lille, France
| | - Udo S Gaipl
- Translational Radiobiology, Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Sabine Szunerits
- Univ. Lille, CNRS, Centrale Lille, Univ. Polytechnique Hauts-de-France, UMR 8520-IEMN, Lille, France
| | - Benjamin Frey
- Translational Radiobiology, Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Luis E Muñoz
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander-University of Erlangen-Nürnberg (FAU), Universitätsklinikum Erlangen, Erlangen, Germany.,Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander-University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| |
Collapse
|
259
|
Nduwumwami AJ, Hengst JA, Yun JK. Sphingosine Kinase Inhibition Enhances Dimerization of Calreticulin at the Cell Surface in Mitoxantrone-Induced Immunogenic Cell Death. J Pharmacol Exp Ther 2021; 378:300-310. [PMID: 34158403 DOI: 10.1124/jpet.121.000629] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 06/16/2021] [Indexed: 11/22/2022] Open
Abstract
Agents that induce immunogenic cell death (ICD) alter the cellular localization of calreticulin (CRT), causing it to become cell surface-exposed within the plasma membrane lipid raft microdomain [cell surface-exposed CRT (ectoCRT)] where it serves as a damage associated-molecular pattern that elicits an antitumor immune response. We have identified the sphingolipid metabolic pathway as an integral component of the process of ectoCRT exposure. Inhibition of the sphingosine kinases (SphKs) enhances mitoxantrone-induced production of hallmarks of ICD, including ectoCRT production, with an absolute mean difference of 40 MFI (95% CI: 19-62; P = 0.0014) and 1.3-fold increase of ATP secretion with an absolute mean difference of 87 RLU (95% CI: 55-120; P < 0.0001). Mechanistically, sphingosine kinase inhibition increases mitoxantrone-induced accumulation of ceramide species, including C16:0 ceramide 2.8-fold with an absolute mean difference of 1.390 pmol/nmol Pi (95% CI: 0.798-1.983; P = 0.0023). We further examined the localization of ectoCRT to the lipid raft microdomain and demonstrate that ectoCRT forms disulfide-bridged dimers. Together, our findings suggest that ceramide accumulation impinges on the homeostatic function of the endoplasmic reticulum to induce ectoCRT exposure and that structural alterations of ectoCRT may underlie its immunogenicity. Our findings further suggest that inhibition of the SphKs may represent a means to enhance the therapeutic immunogenic efficacy of ICD-inducing agents while reducing overt toxicity/immunosuppressive effects by allowing for the modification of dosing regimens or directly lowering the dosages of ICD-inducing agents employed in therapeutic regimens. SIGNIFICANCE STATEMENT: This study demonstrates that inhibition of sphingosine kinase enhances the mitoxantrone-induced cell surface exposure of a dimeric form of the normally endoplasmic reticulum resident chaperone calreticulin as part of the process of a unique form of regulated cell death termed immunogenic cell death. Importantly, inhibition of sphingosine kinase may represent a means to enhance the therapeutic efficacy of immunogenic cell death-inducing agents, such as mitoxantrone, while reducing their overt toxicity and immunosuppressive effects, leading to better therapeutic outcomes for patients.
Collapse
Affiliation(s)
- Asvelt J Nduwumwami
- Department of Pharmacology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania
| | - Jeremy A Hengst
- Department of Pharmacology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania
| | - Jong K Yun
- Department of Pharmacology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania
| |
Collapse
|
260
|
Using oncolytic viruses to ignite the tumour immune microenvironment in bladder cancer. Nat Rev Urol 2021; 18:543-555. [PMID: 34183833 DOI: 10.1038/s41585-021-00483-z] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/21/2021] [Indexed: 02/06/2023]
Abstract
The advent of immune checkpoint inhibition (ICI) has transformed the treatment paradigm for bladder cancer. However, despite the success of ICI in other tumour types, the majority of ICI-treated patients with bladder cancer failed to respond. The lack of efficacy in some patients could be attributed to a paucity of pre-existing immune reactive cells within the tumour immune microenvironment, which limits the beneficial effects of ICI. In this setting, strategies to attract lymphocytes before implementation of ICI could be helpful. Oncolytic virotherapy is thought to induce the release of damage-associated molecular patterns, eliciting a pro-inflammatory cytokine cascade and stimulating the activation of the innate immune system. Concurrently, oncolytic virotherapy-induced oncolysis leads to further release of neoantigens and subsequent epitope spreading, culminating in a robust, tumour-specific adaptive immune response. Combination therapy using oncolytic virotherapy with ICI has proven successful in a number of preclinical studies and is beginning to enter clinical trials for the treatment of both non-muscle-invasive and muscle-invasive bladder cancer. In this context, understanding of the mechanisms underpinning oncolytic virotherapy and its potential synergism with ICI will enable clinicians to effectively deploy oncolytic virotherapy, either as monotherapy or as combination therapy in the different clinical stages of bladder cancer.
Collapse
|
261
|
Abstract
Human immunodeficiency virus (HIV) remodels the cell surface of infected cells to facilitate viral dissemination and promote immune evasion. The membrane-associated viral protein U (Vpu) accessory protein encoded by HIV-1 plays a key role in this process by altering cell surface levels of multiple host proteins. Using an unbiased quantitative plasma membrane profiling approach, we previously identified CD47 as a putative host target downregulated by Vpu. CD47 is a ubiquitously expressed cell surface protein that interacts with the myeloid cell inhibitory receptor signal regulatory protein-alpha (SIRPα) to deliver a "don't-eat-me" signal, thus protecting cells from phagocytosis. In this study, we investigate whether CD47 modulation by HIV-1 Vpu might promote the susceptibility of macrophages to viral infection via phagocytosis of infected CD4+ T cells. Indeed, we find that Vpu downregulates CD47 expression on infected CD4+ T cells, leading to enhanced capture and phagocytosis by macrophages. We further provide evidence that this Vpu-dependent process allows a C-C chemokine receptor type 5 (CCR5)-tropic transmitted/founder (T/F) virus, which otherwise poorly infects macrophages in its cell-free form, to efficiently infect macrophages. Importantly, we show that HIV-1-infected cells expressing a Vpu-resistant CD47 mutant are less prone to infecting macrophages through phagocytosis. Mechanistically, Vpu forms a physical complex with CD47 through its transmembrane domain and targets the latter for lysosomal degradation. These results reveal a novel role of Vpu in modulating macrophage infection, which has important implications for HIV-1 transmission in early stages of infection and the establishment of viral reservoir. IMPORTANCE Macrophages play critical roles in human immunodeficiency virus (HIV) transmission, viral spread early in infection, and as a reservoir of virus. Selective capture and engulfment of HIV-1-infected T cells was shown to drive efficient macrophage infection, suggesting that this mechanism represents an important mode of infection notably for weakly macrophage-tropic T/F viruses. In this study, we provide insight into the signals that regulate this process. We show that the HIV-1 accessory protein viral protein U (Vpu) downregulates cell surface levels of CD47, a host protein that interacts with the inhibitory receptor signal regulatory protein-alpha (SIRPα), to deliver a "don't-eat-me" signal to macrophages. This allows for enhanced capture and phagocytosis of infected T cells by macrophages, ultimately leading to their productive infection even with transmitted/founder (T/F) virus. These findings provide new insights into the mechanisms governing the intercellular transmission of HIV-1 to macrophages with implications for the establishment of the macrophage reservoir and early HIV-1 dissemination in vivo.
Collapse
|
262
|
Ross EA, Devitt A, Johnson JR. Macrophages: The Good, the Bad, and the Gluttony. Front Immunol 2021; 12:708186. [PMID: 34456917 PMCID: PMC8397413 DOI: 10.3389/fimmu.2021.708186] [Citation(s) in RCA: 246] [Impact Index Per Article: 61.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 07/27/2021] [Indexed: 12/16/2022] Open
Abstract
Macrophages are dynamic cells that play critical roles in the induction and resolution of sterile inflammation. In this review, we will compile and interpret recent findings on the plasticity of macrophages and how these cells contribute to the development of non-infectious inflammatory diseases, with a particular focus on allergic and autoimmune disorders. The critical roles of macrophages in the resolution of inflammation will then be examined, emphasizing the ability of macrophages to clear apoptotic immune cells. Rheumatoid arthritis (RA) is a chronic autoimmune-driven spectrum of diseases where persistent inflammation results in synovial hyperplasia and excessive immune cell accumulation, leading to remodeling and reduced function in affected joints. Macrophages are central to the pathophysiology of RA, driving episodic cycles of chronic inflammation and tissue destruction. RA patients have increased numbers of active M1 polarized pro-inflammatory macrophages and few or inactive M2 type cells. This imbalance in macrophage homeostasis is a main contributor to pro-inflammatory mediators in RA, resulting in continual activation of immune and stromal populations and accelerated tissue remodeling. Modulation of macrophage phenotype and function remains a key therapeutic goal for the treatment of this disease. Intriguingly, therapeutic intervention with glucocorticoids or other DMARDs promotes the re-polarization of M1 macrophages to an anti-inflammatory M2 phenotype; this reprogramming is dependent on metabolic changes to promote phenotypic switching. Allergic asthma is associated with Th2-polarised airway inflammation, structural remodeling of the large airways, and airway hyperresponsiveness. Macrophage polarization has a profound impact on asthma pathogenesis, as the response to allergen exposure is regulated by an intricate interplay between local immune factors including cytokines, chemokines and danger signals from neighboring cells. In the Th2-polarized environment characteristic of allergic asthma, high levels of IL-4 produced by locally infiltrating innate lymphoid cells and helper T cells promote the acquisition of an alternatively activated M2a phenotype in macrophages, with myriad effects on the local immune response and airway structure. Targeting regulators of macrophage plasticity is currently being pursued in the treatment of allergic asthma and other allergic diseases. Macrophages promote the re-balancing of pro-inflammatory responses towards pro-resolution responses and are thus central to the success of an inflammatory response. It has long been established that apoptosis supports monocyte and macrophage recruitment to sites of inflammation, facilitating subsequent corpse clearance. This drives resolution responses and mediates a phenotypic switch in the polarity of macrophages. However, the role of apoptotic cell-derived extracellular vesicles (ACdEV) in the recruitment and control of macrophage phenotype has received remarkably little attention. ACdEV are powerful mediators of intercellular communication, carrying a wealth of lipid and protein mediators that may modulate macrophage phenotype, including a cargo of active immune-modulating enzymes. The impact of such interactions may result in repair or disease in different contexts. In this review, we will discuss the origin, characterization, and activity of macrophages in sterile inflammatory diseases and the underlying mechanisms of macrophage polarization via ACdEV and apoptotic cell clearance, in order to provide new insights into therapeutic strategies that could exploit the capabilities of these agile and responsive cells.
Collapse
Affiliation(s)
- Ewan A Ross
- School of Biosciences, College of Health and Life Sciences, Aston University, Birmingham, United Kingdom
| | - Andrew Devitt
- School of Biosciences, College of Health and Life Sciences, Aston University, Birmingham, United Kingdom
| | - Jill R Johnson
- School of Biosciences, College of Health and Life Sciences, Aston University, Birmingham, United Kingdom
| |
Collapse
|
263
|
Rozek W, Kwasnik M, Malinowska A, Stasiak K, Larska M, Rola J. Proteomic analysis of the secretome of equine herpesvirus-1 infected rabbit kidney cells. Res Vet Sci 2021; 140:134-141. [PMID: 34428631 DOI: 10.1016/j.rvsc.2021.08.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 07/30/2021] [Accepted: 08/12/2021] [Indexed: 11/25/2022]
Abstract
Herpesviruses are the main cause of abortions and respiratory or neurological disorders in horses. Various disease patterns are suspected to be associated with the A2254G point mutation in the DNA polymerase sequence (ORF30) of the herpesvirus genome, although the importance of this link is still under debate. Based on a label-free quantitative proteomic analysis, the differences in the secretion of some host proteins between rabbit kidney cells infected with A2254 and cells of the same line infected with G2254 equine herpesvirus 1 (EHV-1) strains were identified. In both groups, downregulation of proteins involved in insulin growth factor and extracellular matrix pathway regulation was observed. Among 12 proteins with increased secretion, 8 were regulated only in G2254 EHV-1 infection. Those were endoplasmic reticulum chaperones with calcium binding properties, related to unfolded protein response and mitochondria. It was presumed that the secretion of proteins such as calreticulin, Hspa5 or endoplasmin may contribute to the pathogenesis of EHV-1 infection.
Collapse
Affiliation(s)
- Wojciech Rozek
- Department of Virology, National Veterinary Research Institute, 24-100 Pulawy, Poland.
| | - Malgorzata Kwasnik
- Department of Virology, National Veterinary Research Institute, 24-100 Pulawy, Poland
| | - Agata Malinowska
- Environmental Laboratory of Mass Spectrometry, Polish Academy of Sciences, Institute of Biochemistry and Biophysics, 02-106 Warsaw, Poland
| | - Karol Stasiak
- Department of Virology, National Veterinary Research Institute, 24-100 Pulawy, Poland
| | - Magdalena Larska
- Department of Virology, National Veterinary Research Institute, 24-100 Pulawy, Poland
| | - Jerzy Rola
- Department of Virology, National Veterinary Research Institute, 24-100 Pulawy, Poland
| |
Collapse
|
264
|
Agellon LB, Michalak M. A View of the Endoplasmic Reticulum Through the Calreticulin Lens. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 2021; 59:1-11. [PMID: 34050859 DOI: 10.1007/978-3-030-67696-4_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
Calreticulin is well known as an ER-resident protein that serves as the major endoplasmic reticulum (ER) Ca2+ binding protein. This protein has been the major topic of discussion in an international workshop that has been meeting for a quarter of a century. In sharing information about this protein, the field also witnessed remarkable insights into the importance of the ER as an organelle and the role of ER Ca2+ in coordinating ER and cellular functions. Recent technological advances have helped to uncover the contributions of calreticulin in maintaining Ca2+ homeostasis in the ER and to unravel its involvement in a multitude of cellular processes as highlighted in this collection of articles. The continuing revelations of unexpected involvement of calreticulin and Ca2+ in many critical aspects of cellular function promises to further improve insights into the significance of this protein in the promotion of physiology as well as prevention of pathology.
Collapse
Affiliation(s)
- Luis B Agellon
- School of Human Nutrition, McGill University, Ste. Anne de Bellevue, QC, Canada.
| | - Marek Michalak
- Department of Biochemistry, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
265
|
Fabian KP, Wolfson B, Hodge JW. From Immunogenic Cell Death to Immunogenic Modulation: Select Chemotherapy Regimens Induce a Spectrum of Immune-Enhancing Activities in the Tumor Microenvironment. Front Oncol 2021; 11:728018. [PMID: 34497771 PMCID: PMC8419351 DOI: 10.3389/fonc.2021.728018] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 07/29/2021] [Indexed: 12/22/2022] Open
Abstract
Cancer treatment has rapidly entered the age of immunotherapy, and it is becoming clear that the effective therapy of established tumors necessitates rational multi-combination immunotherapy strategies. But even in the advent of immunotherapy, the clinical role of standard-of-care chemotherapy regimens still remains significant and may be complementary to emerging immunotherapeutic approaches. Depending on dose, schedule, and agent, chemotherapy can induce immunogenic cell death, resulting in the release of tumor antigens to stimulate an immune response, or immunogenic modulation, sensitizing surviving tumor cells to immune cell killing. While these have been previously defined as distinct processes, in this review we examine the published mechanisms supporting both immunogenic cell death and immunogenic modulation and propose they be reclassified as similar effects termed "immunogenic cell stress." Treatment-induced immunogenic cell stress is an important result of cytotoxic chemotherapy and future research should consider immunogenic cell stress as a whole rather than just immunogenic cell death or immunogenic modulation. Cancer treatment strategies should be designed specifically to take advantage of these effects in combination immunotherapy, and novel chemotherapy regimens should be designed and investigated to potentially induce all aspects of immunogenic cell stress.
Collapse
Affiliation(s)
| | | | - James W. Hodge
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, United States
| |
Collapse
|
266
|
Si Y, Zhang Y, Guan JS, Ngo HG, Totoro A, Singh AP, Chen K, Xu Y, Yang ES, Zhou L, Liu R, Liu X(M. Anti-CD47 Monoclonal Antibody-Drug Conjugate: A Targeted Therapy to Treat Triple-Negative Breast Cancers. Vaccines (Basel) 2021; 9:882. [PMID: 34452008 PMCID: PMC8402537 DOI: 10.3390/vaccines9080882] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 07/31/2021] [Accepted: 08/05/2021] [Indexed: 12/24/2022] Open
Abstract
Triple-negative breast cancers (TNBCs) are frequently recurrent due to the development of drug resistance post chemotherapy. Both the existing literature and our study found that surface receptor CD47 (cluster of differentiation 47) was upregulated in chemotherapy-treated TNBC cells. The goal of this study was to develop a monoclonal antibody (mAb)-based targeting strategy to treat TNBC after standard treatment. Specifically, a new mAb that targets the extracellular domain of receptor CD47 was developed using hybridoma technology and produced in fed-batch culture. Flow cytometry, confocal microscopy, and in vivo imaging system (IVIS) showed that the anti-CD47 mAb effectively targeted human and mouse TNBC cells and xenograft models with high specificity. The antibody-drug conjugate (ADC) carrying mertansine was constructed and demonstrated higher potency with reduced IC50 in TNBC cells than did the free drug and significantly inhibited tumor growth post gemcitabine treatment in MDA-MB-231 xenograft NSG model. Finally, whole blood analysis indicated that the anti-CD47 mAb had no general immune toxicity, flow cytometry analysis of lymph nodes revealed an increase of CD69+ NK, CD11c+ DC, and CD4+ T cells, and IHC staining showed tumoral infiltration of macrophage in the 4T1 xenograft BALB/cJ model. This study demonstrated that targeting CD47 with ADC has great potential to treat TNBCs as a targeted therapy.
Collapse
Affiliation(s)
- Yingnan Si
- Department of Biomedical Engineering, University of Alabama at Birmingham (UAB), 1825 University Blvd, Birmingham, AL 35294, USA; (Y.S.); (Y.Z.); (J.-S.G.); (H.G.N.); (A.T.); (A.P.S.); (K.C.); (L.Z.)
| | - Ya Zhang
- Department of Biomedical Engineering, University of Alabama at Birmingham (UAB), 1825 University Blvd, Birmingham, AL 35294, USA; (Y.S.); (Y.Z.); (J.-S.G.); (H.G.N.); (A.T.); (A.P.S.); (K.C.); (L.Z.)
| | - Jia-Shiung Guan
- Department of Biomedical Engineering, University of Alabama at Birmingham (UAB), 1825 University Blvd, Birmingham, AL 35294, USA; (Y.S.); (Y.Z.); (J.-S.G.); (H.G.N.); (A.T.); (A.P.S.); (K.C.); (L.Z.)
| | - Hanh Giai Ngo
- Department of Biomedical Engineering, University of Alabama at Birmingham (UAB), 1825 University Blvd, Birmingham, AL 35294, USA; (Y.S.); (Y.Z.); (J.-S.G.); (H.G.N.); (A.T.); (A.P.S.); (K.C.); (L.Z.)
| | - Angela Totoro
- Department of Biomedical Engineering, University of Alabama at Birmingham (UAB), 1825 University Blvd, Birmingham, AL 35294, USA; (Y.S.); (Y.Z.); (J.-S.G.); (H.G.N.); (A.T.); (A.P.S.); (K.C.); (L.Z.)
| | - Ajeet Pal Singh
- Department of Biomedical Engineering, University of Alabama at Birmingham (UAB), 1825 University Blvd, Birmingham, AL 35294, USA; (Y.S.); (Y.Z.); (J.-S.G.); (H.G.N.); (A.T.); (A.P.S.); (K.C.); (L.Z.)
| | - Kai Chen
- Department of Biomedical Engineering, University of Alabama at Birmingham (UAB), 1825 University Blvd, Birmingham, AL 35294, USA; (Y.S.); (Y.Z.); (J.-S.G.); (H.G.N.); (A.T.); (A.P.S.); (K.C.); (L.Z.)
| | - Yuanxin Xu
- Department of Medicine, University of Alabama at Birmingham (UAB), 703 19th Street South, Birmingham, AL 35294, USA;
| | - Eddy S. Yang
- Department of Radiation Oncology, University of Alabama at Birmingham (UAB), 1808 7th Avenue South, Birmingham, AL 35294, USA;
- O’Neal Comprehensive Cancer Center, University of Alabama at Birmingham (UAB), 1824 6th Avenue South, Birmingham, AL 35233, USA
| | - Lufang Zhou
- Department of Biomedical Engineering, University of Alabama at Birmingham (UAB), 1825 University Blvd, Birmingham, AL 35294, USA; (Y.S.); (Y.Z.); (J.-S.G.); (H.G.N.); (A.T.); (A.P.S.); (K.C.); (L.Z.)
- Department of Medicine, University of Alabama at Birmingham (UAB), 703 19th Street South, Birmingham, AL 35294, USA;
| | - Runhua Liu
- Department of Genetics, University of Alabama at Birmingham (UAB), 702 20th St., Birmingham, AL 35233, USA;
| | - Xiaoguang (Margaret) Liu
- Department of Biomedical Engineering, University of Alabama at Birmingham (UAB), 1825 University Blvd, Birmingham, AL 35294, USA; (Y.S.); (Y.Z.); (J.-S.G.); (H.G.N.); (A.T.); (A.P.S.); (K.C.); (L.Z.)
- O’Neal Comprehensive Cancer Center, University of Alabama at Birmingham (UAB), 1824 6th Avenue South, Birmingham, AL 35233, USA
| |
Collapse
|
267
|
Are cachexia-associated tumors transmitTERS of ER stress? Biochem Soc Trans 2021; 49:1841-1853. [PMID: 34338294 DOI: 10.1042/bst20210496] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 06/23/2021] [Accepted: 07/06/2021] [Indexed: 12/24/2022]
Abstract
Cancer cachexia is associated with deficient response to chemotherapy. On the other hand, the tumors of cachectic patients remarkably express more chemokines and have higher immune infiltration. For immunogenicity, a strong induction of the unfolded protein response (UPR) is necessary. UPR followed by cell surface exposure of calreticulin on the dying tumor cell is essential for its engulfment by macrophages and dendritic cells. However, some tumor cells upon endoplasmic reticulum (ER) stress can release factors that induce ER stress to other cells, in the so-called transmissible ER stress (TERS). The cells that received TERS produce more interleukin 6 (IL-6) and chemokines and acquire resistance to subsequent ER stress, nutrient deprivation, and genotoxic stress. Since ER stress enhances the release of extracellular vesicles (EVs), we suggest they can mediate TERS. It was found that ER stressed cachexia-inducing tumor cells transmit factors that trigger ER stress in other cells. Therefore, considering the role of EVs in cancer cachexia, the release of exosomes can possibly play a role in the process of blunting the immunogenicity of the cachexia-associated tumors. We propose that TERS can cause an inflammatory and immunosuppressive phenotype in cachexia-inducing tumors.
Collapse
|
268
|
Bonacina F, Martini E, Svecla M, Nour J, Cremonesi M, Beretta G, Moregola A, Pellegatta F, Zampoleri V, Catapano AL, Kallikourdis M, Norata GD. Adoptive transfer of CX3CR1 transduced-T regulatory cells improves homing to the atherosclerotic plaques and dampens atherosclerosis progression. Cardiovasc Res 2021; 117:2069-2082. [PMID: 32931583 DOI: 10.1093/cvr/cvaa264] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 07/13/2020] [Accepted: 09/03/2020] [Indexed: 12/17/2022] Open
Abstract
AIM Loss of immunosuppressive response supports inflammation during atherosclerosis. We tested whether adoptive cell therapy (ACT) with Tregulatory cells (Tregs), engineered to selectively migrate in the atherosclerotic plaque, would dampen the immune-inflammatory response in the arterial wall in animal models of familial hypercholesterolaemia (FH). METHODS AND RESULTS FH patients presented a decreased Treg suppressive function associated to an increased inflammatory burden. A similar phenotype was observed in Ldlr -/- mice accompanied by a selective increased expression of the chemokine CX3CL1 in the aorta but not in other districts (lymph nodes, spleen, and liver). Treg overexpressing CX3CR1 were thus generated (CX3CR1+-Tregs) to drive Tregs selectively to the plaque. CX3CR1+-Tregs were injected (i.v.) in Ldlr -/- fed high-cholesterol diet (western type diet, WTD) for 8 weeks. CX3CR1+-Tregs were detected in the aorta, but not in other tissues, of Ldlr -/- mice 24 h after ACT, corroborating the efficacy of this approach. After 4 additional weeks of WTD, ACT with CX3CR1+-Tregs resulted in reduced plaque progression and lipid deposition, ameliorated plaque stability by increasing collagen and smooth muscle cells content, while decreasing the number of pro-inflammatory macrophages. Shotgun proteomics of the aorta showed a metabolic rewiring in CX3CR1+-Tregs treated Ldlr -/- mice compared to controls that was associated with the improvement of inflammation-resolving pathways and disease progression. CONCLUSION ACT with vasculotropic Tregs appears as a promising strategy to selectively target immune activation in the atherosclerotic plaque.
Collapse
MESH Headings
- Adoptive Transfer
- Adult
- Animals
- Aortic Diseases/immunology
- Aortic Diseases/metabolism
- Aortic Diseases/pathology
- Aortic Diseases/prevention & control
- Atherosclerosis/immunology
- Atherosclerosis/metabolism
- Atherosclerosis/pathology
- Atherosclerosis/prevention & control
- CX3C Chemokine Receptor 1/genetics
- CX3C Chemokine Receptor 1/metabolism
- Cells, Cultured
- Disease Models, Animal
- Disease Progression
- Female
- Genetic Therapy
- Humans
- Hyperlipoproteinemia Type II/immunology
- Hyperlipoproteinemia Type II/metabolism
- Male
- Mice, Inbred C57BL
- Mice, Knockout
- Middle Aged
- Plaque, Atherosclerotic
- Prospective Studies
- Receptors, LDL/genetics
- Receptors, LDL/metabolism
- Retrospective Studies
- T-Lymphocytes, Regulatory/immunology
- T-Lymphocytes, Regulatory/metabolism
- T-Lymphocytes, Regulatory/transplantation
- Transduction, Genetic
- Mice
Collapse
Affiliation(s)
- Fabrizia Bonacina
- Department of Excellence of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Via Balzaretti 9, 20133 Milan, Italy
| | - Elisa Martini
- Adaptive Immunity Lab, Humanitas Clinical and Research Center, Rozzano-IRCCS, Milan, Italy
| | - Monika Svecla
- Department of Excellence of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Via Balzaretti 9, 20133 Milan, Italy
| | - Jasmine Nour
- Department of Excellence of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Via Balzaretti 9, 20133 Milan, Italy
| | - Marco Cremonesi
- Adaptive Immunity Lab, Humanitas Clinical and Research Center, Rozzano-IRCCS, Milan, Italy
| | - Giangiacomo Beretta
- Department of Environmental Science and Policy, Università degli Studi di Milano, Milan, Italy
| | - Annalisa Moregola
- Department of Excellence of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Via Balzaretti 9, 20133 Milan, Italy
| | | | - Veronica Zampoleri
- Department of Excellence of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Via Balzaretti 9, 20133 Milan, Italy
- Centro SISA per lo Studio dell'Aterosclerosi, Ospedale Bassini, Cinisello Balsamo, Italy
| | - Alberico Luigi Catapano
- Department of Excellence of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Via Balzaretti 9, 20133 Milan, Italy
- IRCCS Multimedica, Milan, Italy
| | - Marinos Kallikourdis
- Adaptive Immunity Lab, Humanitas Clinical and Research Center, Rozzano-IRCCS, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Italy
| | - Giuseppe Danilo Norata
- Department of Excellence of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Via Balzaretti 9, 20133 Milan, Italy
- Centro SISA per lo Studio dell'Aterosclerosi, Ospedale Bassini, Cinisello Balsamo, Italy
| |
Collapse
|
269
|
Schulz C, Petzold T, Ishikawa-Ankerhold H. Macrophage Regulation of Granulopoiesis and Neutrophil Functions. Antioxid Redox Signal 2021; 35:182-191. [PMID: 33107319 DOI: 10.1089/ars.2020.8203] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Significance: Neutrophils are potent effector cells of innate immunity requiring precise regulation of their numbers and functions in blood and tissues. Recent Advances: Macrophages have emerged as modulators of neutrophil properties. In inflammatory conditions, tissue macrophages modulate neutrophil trafficking and activation. Further, macrophages govern granulopoiesis in the bone marrow hematopoietic niche. Interactions of macrophages and neutrophils can be induced by cytokines and damage-associated molecular patterns, and they are also regulated by oxidative signaling. Critical Issues: We review the impact of macrophages on neutrophil development and function, and its consequences in health and disease. Future Directions: Targeting the liaison between macrophages and neutrophils might provide an interesting therapeutic strategy to reduce tissue inflammation and promote immune tolerance. Antioxid. Redox Signal. 35, 182-191.
Collapse
Affiliation(s)
- Christian Schulz
- Medizinische Klinik und Poliklinik I., LMU Klinikum, Munich, Germany.,Walter-Brendel-Center for Experimental Medicine, Ludwig-Maximilians-Universität, Munich, Munich, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany
| | - Tobias Petzold
- Medizinische Klinik und Poliklinik I., LMU Klinikum, Munich, Germany.,Walter-Brendel-Center for Experimental Medicine, Ludwig-Maximilians-Universität, Munich, Munich, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany
| | - Hellen Ishikawa-Ankerhold
- Medizinische Klinik und Poliklinik I., LMU Klinikum, Munich, Germany.,Walter-Brendel-Center for Experimental Medicine, Ludwig-Maximilians-Universität, Munich, Munich, Germany
| |
Collapse
|
270
|
Patel RB, Hernandez R, Carlson P, Grudzinski J, Bates AM, Jagodinsky JC, Erbe A, Marsh IR, Arthur I, Aluicio-Sarduy E, Sriramaneni RN, Jin WJ, Massey C, Rakhmilevich AL, Vail D, Engle JW, Le T, Kim K, Bednarz B, Sondel PM, Weichert J, Morris ZS. Low-dose targeted radionuclide therapy renders immunologically cold tumors responsive to immune checkpoint blockade. Sci Transl Med 2021; 13:eabb3631. [PMID: 34261797 PMCID: PMC8449934 DOI: 10.1126/scitranslmed.abb3631] [Citation(s) in RCA: 137] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 02/10/2021] [Accepted: 06/24/2021] [Indexed: 12/12/2022]
Abstract
Molecular and cellular effects of radiotherapy on tumor microenvironment (TME) can help prime and propagate antitumor immunity. We hypothesized that delivering radiation to all tumor sites could augment response to immunotherapies. We tested an approach to enhance response to immune checkpoint inhibitors (ICIs) by using targeted radionuclide therapy (TRT) to deliver radiation semiselectively to tumors. NM600, an alkylphosphocholine analog that preferentially accumulates in most tumor types, chelates a radioisotope and semiselectively delivers it to the TME for therapeutic or diagnostic applications. Using serial 86Y-NM600 positron emission tomography (PET) imaging, we estimated the dosimetry of 90Y-NM600 in immunologically cold syngeneic murine models that do not respond to ICIs alone. We observed strong therapeutic efficacy and reported optimal dose (2.5 to 5 gray) and sequence for 90Y-NM600 in combination with ICIs. After combined treatment, 45 to 66% of mice exhibited complete response and tumor-specific T cell memory, compared to 0% with 90Y-NM600 or ICI alone. This required expression of STING in tumor cells. Combined TRT and ICI activated production of proinflammatory cytokines in the TME, promoted tumor infiltration by and clonal expansion of CD8+ T cells, and reduced metastases. In mice bearing multiple tumors, combining TRT with moderate-dose (12 gray) external beam radiotherapy (EBRT) targeting a single tumor augmented response to ICIs compared to combination of ICIs with either TRT or EBRT alone. The safety of TRT was confirmed in a companion canine study. Low-dose TRT represents a translatable approach to promote response to ICIs for many tumor types, regardless of location.
Collapse
Affiliation(s)
- Ravi B Patel
- Department of Radiation Oncology, University of Pittsburgh Hillman Cancer Center, Pittsburgh, PA 15213, USA.
| | - Reinier Hernandez
- Department of Radiology, University of Wisconsin-Madison, Madison, WI 53792, USA
| | - Peter Carlson
- Department of Human Oncology, University of Wisconsin-Madison, Madison, WI 53792, USA
| | - Joseph Grudzinski
- Department of Radiology, University of Wisconsin-Madison, Madison, WI 53792, USA
| | - Amber M Bates
- Department of Human Oncology, University of Wisconsin-Madison, Madison, WI 53792, USA
| | - Justin C Jagodinsky
- Department of Human Oncology, University of Wisconsin-Madison, Madison, WI 53792, USA
| | - Amy Erbe
- Department of Human Oncology, University of Wisconsin-Madison, Madison, WI 53792, USA
| | - Ian R Marsh
- Department of Medical Physics, University of Wisconsin-Madison, Madison, WI 53792, USA
| | - Ian Arthur
- Department of Human Oncology, University of Wisconsin-Madison, Madison, WI 53792, USA
| | | | - Raghava N Sriramaneni
- Department of Human Oncology, University of Wisconsin-Madison, Madison, WI 53792, USA
| | - Won Jong Jin
- Department of Human Oncology, University of Wisconsin-Madison, Madison, WI 53792, USA
| | - Christopher Massey
- Department of Radiology, University of Wisconsin-Madison, Madison, WI 53792, USA
| | | | - David Vail
- Department of Medical Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI 53792, USA
- Barbara A. Suran Comparative Oncology Institute, University of Wisconsin-Madison, Madison, WI 53792, USA
| | - Johnathan W Engle
- Department of Radiology, University of Wisconsin-Madison, Madison, WI 53792, USA
| | - Trang Le
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, WI 53792, USA
| | - KyungMann Kim
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, WI 53792, USA
| | - Bryan Bednarz
- Department of Radiology, University of Wisconsin-Madison, Madison, WI 53792, USA
| | - Paul M Sondel
- Department of Human Oncology, University of Wisconsin-Madison, Madison, WI 53792, USA
- Department of Pediatrics, University of Wisconsin-Madison, Madison, WI 53792, USA
| | - Jamey Weichert
- Department of Radiology, University of Wisconsin-Madison, Madison, WI 53792, USA
| | - Zachary S Morris
- Department of Human Oncology, University of Wisconsin-Madison, Madison, WI 53792, USA.
| |
Collapse
|
271
|
Van Broeckhoven J, Sommer D, Dooley D, Hendrix S, Franssen AJPM. Macrophage phagocytosis after spinal cord injury: when friends become foes. Brain 2021; 144:2933-2945. [PMID: 34244729 DOI: 10.1093/brain/awab250] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 06/12/2021] [Accepted: 06/20/2021] [Indexed: 11/14/2022] Open
Abstract
After spinal cord injury (SCI), macrophages can exert either beneficial or detrimental effects depending on their phenotype. Aside from their critical role in inflammatory responses, macrophages are also specialized in the recognition, engulfment, and degradation of pathogens, apoptotic cells, and tissue debris. They promote remyelination and axonal regeneration by removing inhibitory myelin components and cellular debris. However, excessive intracellular presence of lipids and dysregulated intracellular lipid homeostasis result in the formation of foamy macrophages. These develop a pro-inflammatory phenotype that may contribute to further neurological decline. Additionally, myelin-activated macrophages play a crucial role in axonal dieback and retraction. Here, we review the opposing functional consequences of phagocytosis by macrophages in SCI, including remyelination and regeneration versus demyelination, degeneration, and axonal dieback. Furthermore, we discuss how targeting the phagocytic ability of macrophages may have therapeutic potential for the treatment of SCI.
Collapse
Affiliation(s)
- Jana Van Broeckhoven
- Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
| | - Daniela Sommer
- Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
| | - Dearbhaile Dooley
- School of Medicine, Health Sciences Centre, University College Dublin, Belfield Dublin 4, Ireland.,UCD Conway Institute of Biomolecular & Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland
| | - Sven Hendrix
- Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium.,Medical School Hamburg, Hamburg, Germany
| | - Aimée J P M Franssen
- Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
| |
Collapse
|
272
|
Kodet O, Němejcova K, Strnadová K, Havlínová A, Dundr P, Krajsová I, Štork J, Smetana K, Lacina L. The Abscopal Effect in the Era of Checkpoint Inhibitors. Int J Mol Sci 2021; 22:ijms22137204. [PMID: 34281259 PMCID: PMC8267720 DOI: 10.3390/ijms22137204] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/19/2021] [Accepted: 07/01/2021] [Indexed: 12/13/2022] Open
Abstract
Therapy targeting immune checkpoints represents an integral part of the treatment for patients suffering from advanced melanoma. However, the mechanisms of resistance are responsible for a lower therapeutic outcome than expected. Concerning melanoma, insufficient stimulation of the immune system by tumour neoantigens is a likely explanation. As shown previously, radiotherapy is a known option for increasing the production of tumour neoantigens and their release into the microenvironment. Consequently, neoantigens could be recognized by antigen presenting cells (APCs) and subjected to effector T lymphocytes. Enhancing the immune reaction can trigger the therapeutic response also at distant metastases, a phenomenon known as an abscopal effect (from “ab scopus”, that is, away from the target). To illustrate this, we present the case of a 78-year old male treated by anti-CTLA-4/ipilimumab for metastatic melanoma. The patient received the standard four doses of ipilimumab administered every three weeks. However, the control CT scans detected disease progression in the form of axillary lymph nodes metastasis and liver metastasis two months after ipilimumab. At this stage, palliative cryotherapy of the skin metastases was initiated to alleviate the tumour burden. Surprisingly, the effect of cryotherapy was also observed in untreated metastases and deep subcutaneous metastases on the back. Moreover, we observed the disease remission of axillary lymph nodes and liver metastasis two months after the cryotherapy. The rarity of the abscopal effect suggests that even primed anti-tumour CD8+ T cells cannot overcome the tumour microenvironment’s suppressive effect and execute immune clearance. However, the biological mechanism underlying this phenomenon is yet to be elucidated. The elicitation of a systemic response by cryotherapy with documented abscopal effect was rarely reported, although the immune response induction is presumably similar to a radiotherapy-induced one. The report is a combination case study and review of the abscopal effect in melanoma treated with checkpoint inhibitors.
Collapse
Affiliation(s)
- Ondřej Kodet
- Department of Dermatovenereology, First Faculty of Medicine and General University Hospital, Charles University, 128 00 Prague, Czech Republic; (A.H.); (I.K.); (J.Š.)
- Institute of Anatomy, First Faculty of Medicine, Charles University, 128 00 Prague, Czech Republic; (K.S.); (K.S.J.)
- Biotechnology and Biomedicine Center, Academy of Science and Charles University, 252 50 Vestec, Czech Republic
- Correspondence: (O.K); (L.L.)
| | - Kristýna Němejcova
- Institute of Pathology, First Faculty of Medicine and General University Hospital, Charles University, 128 00 Prague, Czech Republic; (K.N.); (P.D.)
| | - Karolína Strnadová
- Institute of Anatomy, First Faculty of Medicine, Charles University, 128 00 Prague, Czech Republic; (K.S.); (K.S.J.)
| | - Andrea Havlínová
- Department of Dermatovenereology, First Faculty of Medicine and General University Hospital, Charles University, 128 00 Prague, Czech Republic; (A.H.); (I.K.); (J.Š.)
| | - Pavel Dundr
- Institute of Pathology, First Faculty of Medicine and General University Hospital, Charles University, 128 00 Prague, Czech Republic; (K.N.); (P.D.)
| | - Ivana Krajsová
- Department of Dermatovenereology, First Faculty of Medicine and General University Hospital, Charles University, 128 00 Prague, Czech Republic; (A.H.); (I.K.); (J.Š.)
| | - Jiří Štork
- Department of Dermatovenereology, First Faculty of Medicine and General University Hospital, Charles University, 128 00 Prague, Czech Republic; (A.H.); (I.K.); (J.Š.)
| | - Karel Smetana
- Institute of Anatomy, First Faculty of Medicine, Charles University, 128 00 Prague, Czech Republic; (K.S.); (K.S.J.)
- Biotechnology and Biomedicine Center, Academy of Science and Charles University, 252 50 Vestec, Czech Republic
| | - Lukáš Lacina
- Department of Dermatovenereology, First Faculty of Medicine and General University Hospital, Charles University, 128 00 Prague, Czech Republic; (A.H.); (I.K.); (J.Š.)
- Institute of Anatomy, First Faculty of Medicine, Charles University, 128 00 Prague, Czech Republic; (K.S.); (K.S.J.)
- Biotechnology and Biomedicine Center, Academy of Science and Charles University, 252 50 Vestec, Czech Republic
- Correspondence: (O.K); (L.L.)
| |
Collapse
|
273
|
Galsky MD, Balar AV, Black PC, Campbell MT, Dykstra GS, Grivas P, Gupta S, Hoimes CJ, Lopez LP, Meeks JJ, Plimack ER, Rosenberg JE, Shore N, Steinberg GD, Kamat AM. Society for Immunotherapy of Cancer (SITC) clinical practice guideline on immunotherapy for the treatment of urothelial cancer. J Immunother Cancer 2021; 9:e002552. [PMID: 34266883 PMCID: PMC8286774 DOI: 10.1136/jitc-2021-002552] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/24/2021] [Indexed: 12/12/2022] Open
Abstract
A number of immunotherapies have been developed and adopted for the treatment of urothelial cancer (encompassing cancers arising from the bladder, urethra, or renal pelvis). For these immunotherapies to positively impact patient outcomes, optimal selection of agents and treatment scheduling, especially in conjunction with existing treatment paradigms, is paramount. Immunotherapies also warrant specific and unique considerations regarding patient management, emphasizing both the prompt identification and treatment of potential toxicities. In order to address these issues, the Society for Immunotherapy of Cancer (SITC) convened a panel of experts in the field of immunotherapy for urothelial cancer. The expert panel developed this clinical practice guideline (CPG) to inform healthcare professionals on important aspects of immunotherapeutic treatment for urothelial cancer, including diagnostic testing, treatment planning, immune-related adverse events (irAEs), and patient quality of life (QOL) considerations. The evidence- and consensus-based recommendations in this CPG are intended to give guidance to cancer care providers treating patients with urothelial cancer.
Collapse
Affiliation(s)
- Matthew D Galsky
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Arjun V Balar
- Perlmutter Cancer Center, New York University Langone Medical Center, New York, New York, USA
| | - Peter C Black
- Department of Urologic Sciences, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Matthew T Campbell
- Department of Genitourinary Medical Oncology, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Gail S Dykstra
- Bladder Cancer Advocacy Network (BCAN), Bethesda, Maryland, USA
- Dykstra Research, Seattle, Washington, USA
| | - Petros Grivas
- Department of Medicine, Division of Oncology, University of Washington, Seattle, Washington, USA
- Seattle Cancer Care Alliance, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Shilpa Gupta
- Department of Hematology and Oncology, Cleveland Clinic Taussig Cancer Institute, Cleveland, Ohio, USA
| | - Christoper J Hoimes
- Department of Medicine, Duke Cancer Institute, Duke University, Durham, North Carolina, USA
| | - Lidia P Lopez
- Division of Hematology-Oncology, Department of Medicine, University of California Los Angeles, Los Angeles, California, USA
| | - Joshua J Meeks
- Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
- The Jesse Brown VA Medical Center, Chicago, Illinois, USA
| | - Elizabeth R Plimack
- Department of Hematology/Oncology, Fox Chase Cancer Center, Philadelphia, Pennsylvania, USA
| | - Jonathan E Rosenberg
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
- Deparment of Medicine, Weill Cornell Medical College, New York, New York, USA
| | - Neal Shore
- Carolina Urologic Research Center, Myrtle Beach, South Carolina, USA
| | - Gary D Steinberg
- Department of Urology and Perlmutter Cancer Center, NYU Langone Medical Center, New York, New York, USA
| | - Ashish M Kamat
- Department of Urology under Division of Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
274
|
Cockram TOJ, Dundee JM, Popescu AS, Brown GC. The Phagocytic Code Regulating Phagocytosis of Mammalian Cells. Front Immunol 2021; 12:629979. [PMID: 34177884 PMCID: PMC8220072 DOI: 10.3389/fimmu.2021.629979] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 05/18/2021] [Indexed: 01/21/2023] Open
Abstract
Mammalian phagocytes can phagocytose (i.e. eat) other mammalian cells in the body if they display certain signals, and this phagocytosis plays fundamental roles in development, cell turnover, tissue homeostasis and disease prevention. To phagocytose the correct cells, phagocytes must discriminate which cells to eat using a 'phagocytic code' - a set of over 50 known phagocytic signals determining whether a cell is eaten or not - comprising find-me signals, eat-me signals, don't-eat-me signals and opsonins. Most opsonins require binding to eat-me signals - for example, the opsonins galectin-3, calreticulin and C1q bind asialoglycan eat-me signals on target cells - to induce phagocytosis. Some proteins act as 'self-opsonins', while others are 'negative opsonins' or 'phagocyte suppressants', inhibiting phagocytosis. We review known phagocytic signals here, both established and novel, and how they integrate to regulate phagocytosis of several mammalian targets - including excess cells in development, senescent and aged cells, infected cells, cancer cells, dead or dying cells, cell debris and neuronal synapses. Understanding the phagocytic code, and how it goes wrong, may enable novel therapies for multiple pathologies with too much or too little phagocytosis, such as: infectious disease, cancer, neurodegeneration, psychiatric disease, cardiovascular disease, ageing and auto-immune disease.
Collapse
Affiliation(s)
| | | | | | - Guy C. Brown
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
275
|
Dead cell and debris clearance in the atherosclerotic plaque: Mechanisms and therapeutic opportunities to promote inflammation resolution. Pharmacol Res 2021; 170:105699. [PMID: 34087352 DOI: 10.1016/j.phrs.2021.105699] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 05/05/2021] [Accepted: 05/28/2021] [Indexed: 01/08/2023]
Abstract
Phagocytic clearance of dead cells and debris is critical for inflammation resolution and maintenance of tissue homeostasis. Consequently, defective clearance of dead cells and debris is associated with initiation and exacerbation of several autoimmune disorders and chronic inflammatory diseases such as atherosclerosis. The progressive loss of dead cell clearance capacity within the atherosclerotic plaque leads to accumulation of necrotic cells, chronic non-resolving inflammation, and expansion of the necrotic core, which triggers atherosclerotic plaque rupture and clinical manifestation of acute thrombotic cardiovascular adverse events. In this review, we describe the fundamental molecular and cellular mechanisms of dead cell clearance and how it goes awry in atherosclerosis. Finally, we highlight novel therapeutic strategies that enhance dead cell and debris clearance within the atherosclerotic plaque to promote inflammation resolution and atherosclerotic plaque stabilization.
Collapse
|
276
|
van Schaik TA, Chen KS, Shah K. Therapy-Induced Tumor Cell Death: Friend or Foe of Immunotherapy? Front Oncol 2021; 11:678562. [PMID: 34141622 PMCID: PMC8204251 DOI: 10.3389/fonc.2021.678562] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 05/03/2021] [Indexed: 12/13/2022] Open
Abstract
Combinatory treatments using surgery, radiotherapy and/or chemotherapy together with immunotherapy have shown encouraging results for specific subsets of tumors, but a significant proportion of tumors remains unsusceptible. Some of these inconsistencies are thought to be the consequence of an immunosuppressive tumor microenvironment (TME) caused by therapy-induced tumor cell death (TCD). An increased understanding of the molecular mechanisms governing TCD has provided valuable insights in specific signaling cascades activated by treatment and the subsequent effects on the TME. Depending on the treatment variables of conventional chemo-, radio- and immunotherapy and the genetic composition of the tumor cells, particular cell death pathways are activated. Consequently, TCD can either have tolerogenic or immunogenic effects on the local environment and thereby affect the post-treatment anti-tumor response of immune cells. Thus, identification of these events can provide new rationales to increase the efficacy of conventional therapies combined with immunotherapies. In this review, we sought to provide an overview of the molecular mechanisms initiated by conventional therapies and the impact of treatment-induced TCD on the TME. We also provide some perspectives on how we can circumvent tolerogenic effects by adequate treatment selection and manipulation of key signaling cascades.
Collapse
Affiliation(s)
- Thijs A van Schaik
- Center for Stem Cell Therapeutics and Imaging (CSTI), Harvard Medical School, Boston, MA, United States.,Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Kok-Siong Chen
- Center for Stem Cell Therapeutics and Imaging (CSTI), Harvard Medical School, Boston, MA, United States.,Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Khalid Shah
- Center for Stem Cell Therapeutics and Imaging (CSTI), Harvard Medical School, Boston, MA, United States.,Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States.,Harvard Stem Cell Institute, Harvard University, Cambridge, MA, United States
| |
Collapse
|
277
|
Chen J, Su Y, Pi S, Hu B, Mao L. The Dual Role of Low-Density Lipoprotein Receptor-Related Protein 1 in Atherosclerosis. Front Cardiovasc Med 2021; 8:682389. [PMID: 34124208 PMCID: PMC8192809 DOI: 10.3389/fcvm.2021.682389] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 05/05/2021] [Indexed: 12/26/2022] Open
Abstract
Low-density lipoprotein receptor–related protein-1 (LRP1) is a large endocytic and signaling receptor belonging to the LDL receptor (LDLR) gene family and that is widely expressed in several tissues. LRP1 comprises a large extracellular domain (ECD; 515 kDa, α chain) and a small intracellular domain (ICD; 85 kDa, β chain). The deletion of LRP1 leads to embryonic lethality in mice, revealing a crucial but yet undefined role in embryogenesis and development. LRP1 has been postulated to participate in numerous diverse physiological and pathological processes ranging from plasma lipoprotein homeostasis, atherosclerosis, tumor evolution, and fibrinolysis to neuronal regeneration and survival. Many studies using cultured cells and in vivo animal models have revealed the important roles of LRP1 in vascular remodeling, foam cell biology, inflammation and atherosclerosis. However, its role in atherosclerosis remains controversial. LRP1 not only participates in the removal of atherogenic lipoproteins and proatherogenic ligands in the liver but also mediates the uptake of aggregated LDL to promote the formation of macrophage- and vascular smooth muscle cell (VSMC)-derived foam cells, which causes a prothrombotic transformation of the vascular wall. The dual and opposing roles of LRP1 may also represent an interesting target for atherosclerosis therapeutics. This review highlights the influence of LRP1 during atherosclerosis development, focusing on its dual role in vascular cells and immune cells.
Collapse
Affiliation(s)
- Jiefang Chen
- Department of Neurology, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Ying Su
- Department of Neurology, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Shulan Pi
- Department of Neurology, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Bo Hu
- Department of Neurology, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Ling Mao
- Department of Neurology, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
278
|
Santagostino SF, Assenmacher CA, Tarrant JC, Adedeji AO, Radaelli E. Mechanisms of Regulated Cell Death: Current Perspectives. Vet Pathol 2021; 58:596-623. [PMID: 34039100 DOI: 10.1177/03009858211005537] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Balancing cell survival and cell death is fundamental to development and homeostasis. Cell death is regulated by multiple interconnected signaling pathways and molecular mechanisms. Regulated cell death (RCD) is implicated in fundamental processes such as organogenesis and tissue remodeling, removal of unnecessary structures or cells, and regulation of cell numbers. RCD can also be triggered by exogenous perturbations of the intracellular or extracellular microenvironment when the adaptive processes that respond to stress fail. During the past few years, many novel forms of non-apoptotic RCD have been identified, and the characterization of RCD mechanisms at a molecular level has deepened our understanding of diseases encountered in human and veterinary medicine. Given the complexity of these processes, it has become clear that the identification of RCD cannot be based simply on morphologic characteristics and that descriptive and diagnostic terms presently used by pathologists-such as individual cell apoptosis or necrosis-appear inadequate and possibly misleading. In this review, the current understanding of the molecular machinery of each type of non-apoptotic RCD mechanisms is outlined. Due to the continuous discovery of new mechanisms or nuances of previously described processes, the limitations of the terms apoptosis and necrosis to indicate microscopic findings are also reported. In addition, the need for a standard panel of biomarkers and functional tests to adequately characterize the underlying RCD and its role as a mechanism of disease is considered.
Collapse
Affiliation(s)
| | - Charles-Antoine Assenmacher
- Department of Pathobiology, School of Veterinary Medicine, 6572University of Pennsylvania, Philadelphia, PA, USA
| | - James C Tarrant
- Department of Pathobiology, School of Veterinary Medicine, 6572University of Pennsylvania, Philadelphia, PA, USA
| | | | - Enrico Radaelli
- Department of Pathobiology, School of Veterinary Medicine, 6572University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
279
|
Kelley SM, Ravichandran KS. Putting the brakes on phagocytosis: "don't-eat-me" signaling in physiology and disease. EMBO Rep 2021; 22:e52564. [PMID: 34041845 DOI: 10.15252/embr.202152564] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 03/12/2021] [Accepted: 04/29/2021] [Indexed: 12/12/2022] Open
Abstract
Timely removal of dying or pathogenic cells by phagocytes is essential to maintaining host homeostasis. Phagocytes execute the clearance process with high fidelity while sparing healthy neighboring cells, and this process is at least partially regulated by the balance of "eat-me" and "don't-eat-me" signals expressed on the surface of host cells. Upon contact, eat-me signals activate "pro-phagocytic" receptors expressed on the phagocyte membrane and signal to promote phagocytosis. Conversely, don't-eat-me signals engage "anti-phagocytic" receptors to suppress phagocytosis. We review the current knowledge of don't-eat-me signaling in normal physiology and disease contexts where aberrant don't-eat-me signaling contributes to pathology.
Collapse
Affiliation(s)
- Shannon M Kelley
- Center for Cell Clearance, University of Virginia, Charlottesville, VA, USA.,Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, VA, USA
| | - Kodi S Ravichandran
- Center for Cell Clearance, University of Virginia, Charlottesville, VA, USA.,Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, VA, USA.,VIB-UGent Center for Inflammation Research, Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| |
Collapse
|
280
|
Extracellularly Released Calreticulin Induced by Endoplasmic Reticulum Stress Impairs Syncytialization of Cytotrophoblast Model BeWo Cells. Cells 2021; 10:cells10061305. [PMID: 34073978 PMCID: PMC8225044 DOI: 10.3390/cells10061305] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/20/2021] [Accepted: 05/21/2021] [Indexed: 12/12/2022] Open
Abstract
The pregnancy-specific syndrome preeclampsia is a major cause of maternal mortality throughout the world. The initial insult resulting in the development of preeclampsia is inadequate trophoblast invasion, which may lead to reduced maternal perfusion of the placenta and placental dysfunction, such as insufficient trophoblast syncytialization. Endoplasmic reticulum (ER) stress has been implicated in the pathology of preeclampsia and serves as the major risk factor. Our previous studies suggested critical roles of calreticulin (CRT), which is an ER-resident stress response protein, in extravillous trophoblast invasion and cytotrophoblast syncytialization. Here, we studied the mechanism by which ER stress exposes the placenta to the risk of preeclampsia. We found that CRT was upregulated in the serum samples, but not in the placental specimens, from preeclamptic women. By using BeWo cells, an established model of cytotrophoblasts that syncytialize in the presence of forskolin, we demonstrated that thapsigargin-induced ER stress caused extracellular release of CRT from BeWo cells and that the extracellular CRT suppressed forskolin-induced release of β-human chorionic gonadotropin and altered subcellular localization of E-cadherin, which is a key adhesion molecule associated with syncytialization. Our results together provide evidence that induction of ER stress leads to extracellular CRT release, which may contribute to placental dysfunction by suppressing cytotrophoblast syncytialization.
Collapse
|
281
|
Zheng C, Sui B, Zhang X, Hu J, Chen J, Liu J, Wu D, Ye Q, Xiang L, Qiu X, Liu S, Deng Z, Zhou J, Liu S, Shi S, Jin Y. Apoptotic vesicles restore liver macrophage homeostasis to counteract type 2 diabetes. J Extracell Vesicles 2021; 10:e12109. [PMID: 34084287 PMCID: PMC8144839 DOI: 10.1002/jev2.12109] [Citation(s) in RCA: 129] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 04/26/2021] [Accepted: 05/12/2021] [Indexed: 12/12/2022] Open
Abstract
Apoptosis is a naturally occurring process generating plenty of apoptotic vesicles (apoVs), but the feature, fate and function of apoVs remain largely unknown. Notably, as an appealing source for cell therapy, mesenchymal stem cells (MSCs) undergo necessary apoptosis and release apoVs during therapeutic application. In this study, we characterized and used MSC‐derived apoVs to treat type 2 diabetes (T2D) mice, and we found that apoVs were efferocytosed by macrophages and functionally modulated liver macrophage homeostasis to counteract T2D. We showed that apoVs can induce macrophage reprogramming at the transcription level in an efferocytosis‐dependent manner, leading to inhibition of macrophage accumulation and transformation of macrophages towards an anti‐inflammation phenotype in T2D liver. At the molecular level, we discovered that calreticulin (CRT) was exposed on the surface of apoVs to act as a critical ‘eat‐me’ signal mediating apoV efferocytosis and macrophage regulatory effects. Importantly, we demonstrated that CRT‐mediated efferocytosis of MSC‐derived apoVs contributes to T2D therapy with alleviation of T2D phenotypes including glucose intolerance and insulin resistance. These findings uncover that functional efferocytosis of apoVs restores liver macrophage homeostasis and ameliorates T2D.
Collapse
Affiliation(s)
- Chenxi Zheng
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases Center for Tissue Engineering School of Stomatology The Fourth Military Medical University Xi'an Shaanxi China
| | - Bingdong Sui
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases Center for Tissue Engineering School of Stomatology The Fourth Military Medical University Xi'an Shaanxi China.,Department of Anatomy and Cell Biology School of Dental Medicine University of Pennsylvania Philadelphia Pennsylvania USA
| | - Xiao Zhang
- Department of Prosthodontics National Laboratory for Digital and Material Technology of Stomatology Beijing Key Laboratory of Digital Stomatology National Clinical Research Center for Oral Diseases Peking University School and Hospital of Stomatology Beijing China.,Department of Anatomy and Cell Biology School of Dental Medicine University of Pennsylvania Philadelphia Pennsylvania USA
| | - Jiachen Hu
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases Center for Tissue Engineering School of Stomatology The Fourth Military Medical University Xi'an Shaanxi China
| | - Ji Chen
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases Center for Tissue Engineering School of Stomatology The Fourth Military Medical University Xi'an Shaanxi China
| | - Jin Liu
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases Center for Tissue Engineering School of Stomatology The Fourth Military Medical University Xi'an Shaanxi China
| | - Di Wu
- South China Center of Craniofacial Stem Cell Research Guanghua School and Hospital of Stomatology Sun Yat-sen University Guangzhou Guangdong China
| | - Qingyuan Ye
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases Center for Tissue Engineering School of Stomatology The Fourth Military Medical University Xi'an Shaanxi China
| | - Lei Xiang
- South China Center of Craniofacial Stem Cell Research Guanghua School and Hospital of Stomatology Sun Yat-sen University Guangzhou Guangdong China
| | - Xinyu Qiu
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases Center for Tissue Engineering School of Stomatology The Fourth Military Medical University Xi'an Shaanxi China
| | - Siying Liu
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases Center for Tissue Engineering School of Stomatology The Fourth Military Medical University Xi'an Shaanxi China
| | - Zhihong Deng
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases Center for Tissue Engineering School of Stomatology The Fourth Military Medical University Xi'an Shaanxi China
| | - Jun Zhou
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases Center for Tissue Engineering School of Stomatology The Fourth Military Medical University Xi'an Shaanxi China
| | - Shiyu Liu
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases Center for Tissue Engineering School of Stomatology The Fourth Military Medical University Xi'an Shaanxi China
| | - Songtao Shi
- South China Center of Craniofacial Stem Cell Research Guanghua School and Hospital of Stomatology Sun Yat-sen University Guangzhou Guangdong China.,Department of Anatomy and Cell Biology School of Dental Medicine University of Pennsylvania Philadelphia Pennsylvania USA
| | - Yan Jin
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases Center for Tissue Engineering School of Stomatology The Fourth Military Medical University Xi'an Shaanxi China
| |
Collapse
|
282
|
Zhang C, Liang Z, Ma S, Liu X. Radiotherapy and Cytokine Storm: Risk and Mechanism. Front Oncol 2021; 11:670464. [PMID: 34094967 PMCID: PMC8173139 DOI: 10.3389/fonc.2021.670464] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Accepted: 04/20/2021] [Indexed: 12/27/2022] Open
Abstract
Radiotherapy (RT) shows advantages as one of the most important precise therapy strategies for cancer treatment, especially high-dose hypofractionated RT which is widely used in clinical applications due to the protection of local anatomical structure and relatively mild impairment. With the increase of single dose, ranging from 2~20 Gy, and the decrease of fractionation, the question that if there is any uniform standard of dose limits for different therapeutic regimens attracts more and more attention, and the potential adverse effects of higher dose radiation have not been elucidated. In this study, the immunological adverse responses induced by radiation, especially the cytokine storm and the underlying mechanisms such as DAMPs release, pro-inflammatory cytokine secretion and cGAS-STING pathway activation, will be elucidated, which contributes to achieving optimal hypofractionated RT regimen, improving the killing of cancer cells and avoiding the severe side effects.
Collapse
Affiliation(s)
- Chen Zhang
- School of Public Health and Management, Wenzhou Medical University, Wenzhou, China
| | - Zhenzhen Liang
- NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun, China
| | - Shumei Ma
- School of Public Health and Management, Wenzhou Medical University, Wenzhou, China.,Key Laboratory of Watershed Science and Health of Zhejiang Province, Wenzhou Medical University, Wenzhou, China
| | - Xiaodong Liu
- School of Public Health and Management, Wenzhou Medical University, Wenzhou, China.,Key Laboratory of Watershed Science and Health of Zhejiang Province, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
283
|
Having an Old Friend for Dinner: The Interplay between Apoptotic Cells and Efferocytes. Cells 2021; 10:cells10051265. [PMID: 34065321 PMCID: PMC8161178 DOI: 10.3390/cells10051265] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 05/12/2021] [Accepted: 05/17/2021] [Indexed: 02/02/2023] Open
Abstract
Apoptosis, the programmed and intentional death of senescent, damaged, or otherwise superfluous cells, is the natural end-point for most cells within multicellular organisms. Apoptotic cells are not inherently damaging, but if left unattended, they can lyse through secondary necrosis. The resulting release of intracellular contents drives inflammation in the surrounding tissue and can lead to autoimmunity. These negative consequences of secondary necrosis are avoided by efferocytosis—the phagocytic clearance of apoptotic cells. Efferocytosis is a product of both apoptotic cells and efferocyte mechanisms, which cooperate to ensure the rapid and complete removal of apoptotic cells. Herein, we review the processes used by apoptotic cells to ensure their timely removal, and the receptors, signaling, and cellular processes used by efferocytes for efferocytosis, with a focus on the receptors and signaling driving this process.
Collapse
|
284
|
Gurunathan S, Kang MH, Qasim M, Khan K, Kim JH. Biogenesis, Membrane Trafficking, Functions, and Next Generation Nanotherapeutics Medicine of Extracellular Vesicles. Int J Nanomedicine 2021; 16:3357-3383. [PMID: 34040369 PMCID: PMC8140893 DOI: 10.2147/ijn.s310357] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 04/25/2021] [Indexed: 12/15/2022] Open
Abstract
Extracellular vesicles (EVs) are a heterogeneous group of membrane-limited vesicles and multi-signal messengers loaded with biomolecules. Exosomes and ectosomes are two different types of EVs generated by all cell types. Their formation depends on local microdomains assembled in endocytic membranes for exosomes and in the plasma membrane for ectosomes. Further, EV release is a fundamental process required for intercellular communication in both normal physiology and pathological conditions to transmit/exchange bioactive molecules to recipient cells and the extracellular environment. The unique structure and composition of EVs enable them to serve as natural nanocarriers, and their physicochemical properties and biological functions can be used to develop next-generation nano and precision medicine. Knowledge of the cellular processes that govern EVs biology and membrane trafficking is essential for their clinical applications. However, in this rapidly expanding field, much remains unknown regarding EV origin, biogenesis, cargo sorting, and secretion, as well as EV-based theranostic platform generation. Hence, we present a comprehensive overview of the recent advances in biogenesis, membrane trafficking, and functions of EVs, highlighting the impact of nanoparticles and oxidative stress on EVs biogenesis and release and finally emphasizing the role of EVs as nanotherapeutic agents.
Collapse
Affiliation(s)
- Sangiliyandi Gurunathan
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul, 05029, Korea
| | - Min-Hee Kang
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul, 05029, Korea
| | - Muhammad Qasim
- Center of Bioengineering and Nanomedicine, Department of Food Science, University of Otago, Dunedin, 9054, New Zealand
| | - Khalid Khan
- Science and Technology KPK, Peshawar, Pakistan
| | - Jin-Hoi Kim
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul, 05029, Korea
| |
Collapse
|
285
|
Schoenwaelder N, Salewski I, Engel N, Krause M, Schneider B, Müller M, Riess C, Lemcke H, Skorska A, Grosse-Thie C, Junghanss C, Maletzki C. The Individual Effects of Cyclin-Dependent Kinase Inhibitors on Head and Neck Cancer Cells-A Systematic Analysis. Cancers (Basel) 2021; 13:cancers13102396. [PMID: 34063457 PMCID: PMC8157193 DOI: 10.3390/cancers13102396] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 04/07/2021] [Accepted: 05/11/2021] [Indexed: 12/24/2022] Open
Abstract
Cyclin-dependent kinase inhibitors (CDKi´s) display cytotoxic activity against different malignancies, including head and neck squamous cell carcinomas (HNSCC). By coordinating the DNA damage response, these substances may be combined with cytostatics to enhance cytotoxicity. Here, we investigated the influence of different CDKi´s (palbociclib, dinaciclib, THZ1) on two HNSCC cell lines in monotherapy and combination therapy with clinically-approved drugs (5-FU, Cisplatin, cetuximab). Apoptosis/necrosis, cell cycle, invasiveness, senescence, radiation-induced γ-H2AX DNA double-strand breaks, and effects on the actin filament were studied. Furthermore, the potential to increase tumor immunogenicity was assessed by analyzing Calreticulin translocation and immune relevant surface markers. Finally, an in vivo mouse model was used to analyze the effect of dinaciclib and Cisplatin combination therapy. Dinaciclib, palbociclib, and THZ1 displayed anti-neoplastic activity after low-dose treatment, while the two latter substances slightly enhanced radiosensitivity. Dinaciclib decelerated wound healing, decreased invasiveness, and induced MHC-I, accompanied by high amounts of surface-bound Calreticulin. Numbers of early and late apoptotic cells increased initially (24 h), while necrosis dominated afterward. Antitumoral effects of the selective CDKi palbociclib were weaker, but combinations with 5-FU potentiated effects of the monotherapy. Additionally, CDKi and CDKi/chemotherapy combinations induced MHC I, indicative of enhanced immunogenicity. The in vivo studies revealed a cell line-specific response with best tumor growth control in the combination approach. Global acting CDKi's should be further investigated as targeting agents for HNSCC, either individually or in combination with selected drugs. The ability of dinaciclib to increase the immunogenicity of tumor cells renders this substance a particularly interesting candidate for immune-based oncological treatment regimens.
Collapse
Affiliation(s)
- Nina Schoenwaelder
- Department of Internal Medicine, Medical Clinic III—Hematology, Oncology, Palliative Medicine, University Medical Center Rostock, 18057 Rostock, Germany; (I.S.); (M.K.); (C.R.); (C.G.-T.); (C.J.); (C.M.)
- Correspondence: ; Tel.: +49-381-494-5764
| | - Inken Salewski
- Department of Internal Medicine, Medical Clinic III—Hematology, Oncology, Palliative Medicine, University Medical Center Rostock, 18057 Rostock, Germany; (I.S.); (M.K.); (C.R.); (C.G.-T.); (C.J.); (C.M.)
| | - Nadja Engel
- Department of Oral and Maxillofacial Surgery, Facial Plastic Surgery, University Medical Center Rostock, 18057 Rostock, Germany;
| | - Mareike Krause
- Department of Internal Medicine, Medical Clinic III—Hematology, Oncology, Palliative Medicine, University Medical Center Rostock, 18057 Rostock, Germany; (I.S.); (M.K.); (C.R.); (C.G.-T.); (C.J.); (C.M.)
| | - Björn Schneider
- Institute of Pathology, University Medical Center Rostock, Strempelstr.14, 18057 Rostock, Germany;
| | - Michael Müller
- Core Facility for Cell Sorting & Cell Analysis, Laboratory for Clinical Immunology, University Medical Center Rostock, 18057 Rostock, Germany;
| | - Christin Riess
- Department of Internal Medicine, Medical Clinic III—Hematology, Oncology, Palliative Medicine, University Medical Center Rostock, 18057 Rostock, Germany; (I.S.); (M.K.); (C.R.); (C.G.-T.); (C.J.); (C.M.)
- University Children’s Hospital, Rostock University Medical Centre, 18057 Rostock, Germany
| | - Heiko Lemcke
- Department of Cardiac Surgery, Reference and Translation Center for Cardiac Stem Cell Therapy (RTC), University Medical Center Rostock, 18057 Rostock, Germany; (H.L.); (A.S.)
- Department of Cardiology, University Medical Center Rostock, 18059 Rostock, Germany
- Department Life, Light & Matter, Faculty of Interdisciplinary Research, University Rostock, 18059 Rostock, Germany
| | - Anna Skorska
- Department of Cardiac Surgery, Reference and Translation Center for Cardiac Stem Cell Therapy (RTC), University Medical Center Rostock, 18057 Rostock, Germany; (H.L.); (A.S.)
- Department of Cardiology, University Medical Center Rostock, 18059 Rostock, Germany
- Department Life, Light & Matter, Faculty of Interdisciplinary Research, University Rostock, 18059 Rostock, Germany
| | - Christina Grosse-Thie
- Department of Internal Medicine, Medical Clinic III—Hematology, Oncology, Palliative Medicine, University Medical Center Rostock, 18057 Rostock, Germany; (I.S.); (M.K.); (C.R.); (C.G.-T.); (C.J.); (C.M.)
| | - Christian Junghanss
- Department of Internal Medicine, Medical Clinic III—Hematology, Oncology, Palliative Medicine, University Medical Center Rostock, 18057 Rostock, Germany; (I.S.); (M.K.); (C.R.); (C.G.-T.); (C.J.); (C.M.)
| | - Claudia Maletzki
- Department of Internal Medicine, Medical Clinic III—Hematology, Oncology, Palliative Medicine, University Medical Center Rostock, 18057 Rostock, Germany; (I.S.); (M.K.); (C.R.); (C.G.-T.); (C.J.); (C.M.)
| |
Collapse
|
286
|
Abstract
Significance: Genomic instability, a hallmark of cancer, renders cancer cells susceptible to genomic stress from both endogenous and exogenous origins, resulting in the increased tendency to accrue DNA damage, chromosomal instability, or aberrant DNA localization. Apart from the cell autonomous tumor-promoting effects, genomic stress in cancer cells could have a profound impact on the tumor microenvironment. Recent Advances: Recently, it is increasingly appreciated that harnessing genomic stress could provide a promising strategy to revive antitumor immunity, and thereby offer new therapeutic opportunities in cancer treatment. Critical Issues: Genomic stress is closely intertwined with antitumor immunity via mechanisms involving the direct crosstalk with DNA damage response components, upregulation of immune-stimulatory/inhibitory ligands, release of damage-associated molecular patterns, increase of neoantigen repertoire, and activation of DNA sensing pathways. A better understanding of these mechanisms will provide molecular basis for exploiting the genomic stress to boost antitumor immunity. Future Directions: Future research should pay attention to the heterogeneity between individual cancers in the genomic instability and the associated immune response, and how to balance the toxicity and benefit by specifying the types, potency, and treatment sequence of genomic stress inducer in therapeutic practice. Antioxid. Redox Signal. 34, 1128-1150.
Collapse
Affiliation(s)
- Congying Pu
- Division of Antitumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Siyao Tao
- Division of Antitumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Jun Xu
- Division of Antitumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Min Huang
- Division of Antitumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
287
|
Ricketts TD, Prieto-Dominguez N, Gowda PS, Ubil E. Mechanisms of Macrophage Plasticity in the Tumor Environment: Manipulating Activation State to Improve Outcomes. Front Immunol 2021; 12:642285. [PMID: 34025653 PMCID: PMC8139576 DOI: 10.3389/fimmu.2021.642285] [Citation(s) in RCA: 110] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 04/16/2021] [Indexed: 12/12/2022] Open
Abstract
Macrophages are a specialized class of innate immune cells with multifaceted roles in modulation of the inflammatory response, homeostasis, and wound healing. While developmentally derived or originating from circulating monocytes, naïve macrophages can adopt a spectrum of context-dependent activation states ranging from pro-inflammatory (classically activated, M1) to pro-wound healing (alternatively activated, M2). Tumors are known to exploit macrophage polarization states to foster a tumor-permissive milieu, particularly by skewing macrophages toward a pro-tumor (M2) phenotype. These pro-tumoral macrophages can support cancer progression by several mechanisms including immune suppression, growth factor production, promotion of angiogenesis and tissue remodeling. By preventing the adoption of this pro-tumor phenotype or reprogramming these macrophages to a more pro-inflammatory state, it may be possible to inhibit tumor growth. Here, we describe types of tumor-derived signaling that facilitate macrophage reprogramming, including paracrine signaling and activation of innate immune checkpoints. We also describe intervention strategies targeting macrophage plasticity to limit disease progression and address their implications in cancer chemo- and immunotherapy.
Collapse
Affiliation(s)
| | | | | | - Eric Ubil
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
288
|
Tuo QZ, Zhang ST, Lei P. Mechanisms of neuronal cell death in ischemic stroke and their therapeutic implications. Med Res Rev 2021; 42:259-305. [PMID: 33957000 DOI: 10.1002/med.21817] [Citation(s) in RCA: 381] [Impact Index Per Article: 95.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 03/31/2021] [Accepted: 04/23/2021] [Indexed: 02/05/2023]
Abstract
Ischemic stroke caused by arterial occlusion is the most common type of stroke, which is among the most frequent causes of disability and death worldwide. Current treatment approaches involve achieving rapid reperfusion either pharmacologically or surgically, both of which are time-sensitive; moreover, blood flow recanalization often causes ischemia/reperfusion injury. However, even though neuroprotective intervention is urgently needed in the event of stroke, the exact mechanisms of neuronal death during ischemic stroke are still unclear, and consequently, the capacity for drug development has remained limited. Multiple cell death pathways are implicated in the pathogenesis of ischemic stroke. Here, we have reviewed these potential neuronal death pathways, including intrinsic and extrinsic apoptosis, necroptosis, autophagy, ferroptosis, parthanatos, phagoptosis, and pyroptosis. We have also reviewed the latest results of pharmacological studies on ischemic stroke and summarized emerging drug targets with a focus on clinical trials. These observations may help to further understand the pathological events in ischemic stroke and bridge the gap between basic and translational research to reveal novel neuroprotective interventions.
Collapse
Affiliation(s)
- Qing-Zhang Tuo
- Department of Geriatrics and State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Shu-Ting Zhang
- Department of Neurology and State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Peng Lei
- Department of Neurology and State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| |
Collapse
|
289
|
Lovászi M, Branco Haas C, Antonioli L, Pacher P, Haskó G. The role of P2Y receptors in regulating immunity and metabolism. Biochem Pharmacol 2021; 187:114419. [PMID: 33460626 DOI: 10.1016/j.bcp.2021.114419] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 01/07/2021] [Accepted: 01/11/2021] [Indexed: 02/07/2023]
Abstract
P2Y receptors are G protein-coupled receptors whose physiological agonists are the nucleotides ATP, ADP, UTP, UDP and UDP-glucose. Eight P2Y receptors have been cloned in humans: P2Y1R, P2Y2R, P2Y4R, P2Y6R, P2Y11R, P2Y12R, P2Y13R and P2Y14R. P2Y receptors are expressed in lymphoid tissues such as thymus, spleen and bone marrow where they are expressed on lymphocytes, macrophages, dendritic cells, neutrophils, eosinophils, mast cells, and platelets. P2Y receptors regulate many aspects of immune cell function, including phagocytosis and killing of pathogens, antigen presentation, chemotaxis, degranulation, cytokine production, and lymphocyte activation. Consequently, P2Y receptors shape the course of a wide range of infectious, autoimmune, and inflammatory diseases. P2Y12R ligands have already found their way into the therapeutic arena, and we envision additional ligands as future drugs for the treatment of diseases caused by or associated with immune dysregulation.
Collapse
Affiliation(s)
- Marianna Lovászi
- Department of Anesthesiology, Columbia University, New York, NY, USA
| | | | - Luca Antonioli
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Pál Pacher
- Laboratory of Cardiovascular Physiology and Tissue Injury, National Institutes of Health/NIAAA, Bethesda, MD, USA
| | - György Haskó
- Department of Anesthesiology, Columbia University, New York, NY, USA.
| |
Collapse
|
290
|
Mike JK, Ferriero DM. Efferocytosis Mediated Modulation of Injury after Neonatal Brain Hypoxia-Ischemia. Cells 2021; 10:1025. [PMID: 33925299 PMCID: PMC8146813 DOI: 10.3390/cells10051025] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/22/2021] [Accepted: 04/23/2021] [Indexed: 02/06/2023] Open
Abstract
Neonatal brain hypoxia-ischemia (HI) is a leading cause of morbidity and long-term disabilities in children. While we have made significant progress in describing HI mechanisms, the limited therapies currently offered for HI treatment in the clinical setting stress the importance of discovering new targetable pathways. Efferocytosis is an immunoregulatory and homeostatic process of clearance of apoptotic cells (AC) and cellular debris, best described in the brain during neurodevelopment. The therapeutic potential of stimulating defective efferocytosis has been recognized in neurodegenerative diseases. In this review, we will explore the involvement of efferocytosis after a stroke and HI as a promising target for new HI therapies.
Collapse
Affiliation(s)
- Jana Krystofova Mike
- Department of Pediatrics, University of California San Francisco, San Francisco, CA 94143, USA;
| | - Donna Marie Ferriero
- Department of Pediatrics, University of California San Francisco, San Francisco, CA 94143, USA;
- Department of Neurology Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA 94143, USA
| |
Collapse
|
291
|
I'm Infected, Eat Me! Innate Immunity Mediated by Live, Infected Cells Signaling To Be Phagocytosed. Infect Immun 2021; 89:IAI.00476-20. [PMID: 33558325 DOI: 10.1128/iai.00476-20] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Innate immunity against pathogens is known to be mediated by barriers to pathogen invasion, activation of complement, recruitment of immune cells, immune cell phagocytosis of pathogens, death of infected cells, and activation of the adaptive immunity via antigen presentation. Here, we propose and review evidence for a novel mode of innate immunity whereby live, infected host cells induce phagocytes to phagocytose the infected cell, thereby potentially reducing infection. We discuss evidence that host cells, infected by virus, bacteria, or other intracellular pathogens (i) release nucleotides and chemokines as find-me signals, (ii) expose on their surface phosphatidylserine and calreticulin as eat-me signals, (iii) release and bind opsonins to induce phagocytosis, and (iv) downregulate don't-eat-me signals CD47, major histocompatibility complex class I (MHC1), and sialic acid. As long as the pathogens of the host cell are destroyed within the phagocyte, then infection can be curtailed; if antigens from the pathogens are cross-presented by the phagocyte, then an adaptive response would also be induced. Phagocytosis of live infected cells may thereby mediate innate immunity.
Collapse
|
292
|
Moriya T, Kitagawa K, Hayakawa Y, Hemmi H, Kaisho T, Ueha S, Ikebuchi R, Yasuda I, Nakanishi Y, Honda T, Matsushima K, Kabashima K, Ueda M, Kusumoto Y, Chtanova T, Tomura M. Immunogenic tumor cell death promotes dendritic cell migration and inhibits tumor growth via enhanced T cell immunity. iScience 2021; 24:102424. [PMID: 33997702 PMCID: PMC8102907 DOI: 10.1016/j.isci.2021.102424] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 02/04/2021] [Accepted: 04/09/2021] [Indexed: 12/21/2022] Open
Abstract
Immunogenic tumor cell death enhances anti-tumor immunity. However, the mechanisms underlying this effect are incompletely understood. We established a system to induce tumor cell death in situ and investigated its effect on dendritic cell (DC) migration and T cell responses using intravital photolabeling in mice expressing KikGR photoconvertible protein. We demonstrate that tumor cell death induces phagocytosis of tumor cells by tumor-infiltrating (Ti)-DCs, and HMGB1-TLR4 and ATP-P2X7 receptor signaling-dependent Ti-DC emigration to draining lymph nodes (dLNs). This led to an increase in anti-tumor CD8+ T cells of memory precursor effector phenotype and secondary tumor growth inhibition in a CD103+ DC-dependent manner. However, combining tumor cell death induction with lipopolysaccharide treatment stimulated Ti-DC maturation and emigration to dLNs but did not improve tumor immunity. Thus, immunogenic tumor cell death enhances tumor immunity by increasing Ti-DC migration to dLNs where they promote anti-tumor T cell responses and tumor growth inhibition. Immunogenic cell death (ICD) promotes egress of tumor-infiltrating (Ti)-DCs to dLNs ICD induced Ti-DC migration to dLNs utilizes P2X7R and HMGB1 signaling pathways LPS treatment attenuates the anti-tumor effects of ICD CD103+ DCs are required at the time of ICD for suppression of secondary tumor growth
Collapse
Affiliation(s)
- Taiki Moriya
- Laboratory of Immunology, Faculty of Pharmacy, Osaka Ohtani University, Tondabayashi, Osaka 584-8540, Japan
| | - Kurumi Kitagawa
- Laboratory of Immunology, Faculty of Pharmacy, Osaka Ohtani University, Tondabayashi, Osaka 584-8540, Japan
| | - Yuuki Hayakawa
- Laboratory of Immunology, Faculty of Pharmacy, Osaka Ohtani University, Tondabayashi, Osaka 584-8540, Japan
| | - Hiroaki Hemmi
- Department of Immunology, Institute of Advanced Medicine, Wakayama Medical University, Graduate school of Medicine, Wakayama, Wakayama 641-8509, Japan
| | - Tsuneyasu Kaisho
- Department of Immunology, Institute of Advanced Medicine, Wakayama Medical University, Graduate school of Medicine, Wakayama, Wakayama 641-8509, Japan
| | - Satoshi Ueha
- Division of Molecular Regulation of Inflammatory and Immune Diseases, Research Institute for Biomedical Sciences, Tokyo University of Science, Noda City Chiba 278-0022, Japan
| | - Ryoyo Ikebuchi
- Laboratory of Immunology, Faculty of Pharmacy, Osaka Ohtani University, Tondabayashi, Osaka 584-8540, Japan.,Research Fellow of Japan Society for the Promotion of Science, Tokyo, Japan
| | - Ippei Yasuda
- Laboratory of Immunology, Faculty of Pharmacy, Osaka Ohtani University, Tondabayashi, Osaka 584-8540, Japan
| | - Yasutaka Nakanishi
- Laboratory of Immunology, Faculty of Pharmacy, Osaka Ohtani University, Tondabayashi, Osaka 584-8540, Japan
| | - Tetsuya Honda
- Department of Dermatology, Kyoto University, Graduate School of Medicine, Sakyou-ku, Kyoto 606-8507, Japan
| | - Koji Matsushima
- Division of Molecular Regulation of Inflammatory and Immune Diseases, Research Institute for Biomedical Sciences, Tokyo University of Science, Noda City Chiba 278-0022, Japan
| | - Kenji Kabashima
- Department of Dermatology, Kyoto University, Graduate School of Medicine, Sakyou-ku, Kyoto 606-8507, Japan
| | - Mizuki Ueda
- Laboratory of Immunology, Faculty of Pharmacy, Osaka Ohtani University, Tondabayashi, Osaka 584-8540, Japan
| | - Yutaka Kusumoto
- Laboratory of Immunology, Faculty of Pharmacy, Osaka Ohtani University, Tondabayashi, Osaka 584-8540, Japan
| | - Tatyana Chtanova
- Immunology Theme, Garvan Institute of Medical Research, Darlinghurst, NSW 2010, Australia.,School of Biotechnology and Biomolecular Sciences, Faculty of Science, University of New South Wales Sydney, Kensington, NSW 2033 Australia
| | - Michio Tomura
- Laboratory of Immunology, Faculty of Pharmacy, Osaka Ohtani University, Tondabayashi, Osaka 584-8540, Japan
| |
Collapse
|
293
|
Phagocytic clearance of apoptotic, necrotic, necroptotic and pyroptotic cells. Biochem Soc Trans 2021; 49:793-804. [PMID: 33843978 PMCID: PMC8106503 DOI: 10.1042/bst20200696] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 03/08/2021] [Accepted: 03/10/2021] [Indexed: 12/27/2022]
Abstract
Although millions of cells in the human body will undergo programmed cell death each day, dying cells are rarely detected under homeostatic settings in vivo. The swift removal of dying cells is due to the rapid recruitment of phagocytes to the site of cell death which then recognise and engulf the dying cell. Apoptotic cell clearance - the engulfment of apoptotic cells by phagocytes - is a well-defined process governed by a series of molecular factors including 'find-me', 'eat-me', 'don't eat-me' and 'good-bye' signals. However, in recent years with the rapid expansion of the cell death field, the removal of other necrotic-like cell types has drawn much attention. Depending on the type of death, dying cells employ different mechanisms to facilitate engulfment and elicit varying functional impacts on the phagocyte, from wound healing responses to inflammatory cytokine secretion. Nevertheless, despite the mechanism of death, the clearance of dying cells is a fundamental process required to prevent the uncontrolled release of pro-inflammatory mediators and inflammatory disease. This mini-review summarises the current understandings of: (i) apoptotic, necrotic, necroptotic and pyroptotic cell clearance; (ii) the functional consequences of dying cell engulfment and; (iii) the outstanding questions in the field.
Collapse
|
294
|
Lin H, Kryczek I, Li S, Green MD, Ali A, Hamasha R, Wei S, Vatan L, Szeliga W, Grove S, Li X, Li J, Wang W, Yan Y, Choi JE, Li G, Bian Y, Xu Y, Zhou J, Yu J, Xia H, Wang W, Alva A, Chinnaiyan AM, Cieslik M, Zou W. Stanniocalcin 1 is a phagocytosis checkpoint driving tumor immune resistance. Cancer Cell 2021; 39:480-493.e6. [PMID: 33513345 PMCID: PMC8044011 DOI: 10.1016/j.ccell.2020.12.023] [Citation(s) in RCA: 104] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 12/16/2020] [Accepted: 12/23/2020] [Indexed: 12/31/2022]
Abstract
Immunotherapy induces durable clinical responses in a fraction of patients with cancer. However, therapeutic resistance poses a major challenge to current immunotherapies. Here, we identify that expression of tumor stanniocalcin 1 (STC1) correlates with immunotherapy efficacy and is negatively associated with patient survival across diverse cancer types. Gain- and loss-of-function experiments demonstrate that tumor STC1 supports tumor progression and enables tumor resistance to checkpoint blockade in murine tumor models. Mechanistically, tumor STC1 interacts with calreticulin (CRT), an "eat-me" signal, and minimizes CRT membrane exposure, thereby abrogating membrane CRT-directed phagocytosis by antigen-presenting cells (APCs), including macrophages and dendritic cells. Consequently, this impairs APC capacity of antigen presentation and T cell activation. Thus, tumor STC1 inhibits APC phagocytosis and contributes to tumor immune evasion and immunotherapy resistance. We suggest that STC1 is a previously unappreciated phagocytosis checkpoint and targeting STC1 and its interaction with CRT may sensitize to cancer immunotherapy.
Collapse
Affiliation(s)
- Heng Lin
- Department of Surgery, University of Michigan School of Medicine, Ann Arbor, MI, USA; Center of Excellence for Cancer Immunology and Immunotherapy, University of Michigan Rogel Cancer Center, University of Michigan School of Medicine, Ann Arbor, MI, USA
| | - Ilona Kryczek
- Department of Surgery, University of Michigan School of Medicine, Ann Arbor, MI, USA; Center of Excellence for Cancer Immunology and Immunotherapy, University of Michigan Rogel Cancer Center, University of Michigan School of Medicine, Ann Arbor, MI, USA
| | - Shasha Li
- Department of Surgery, University of Michigan School of Medicine, Ann Arbor, MI, USA; Center of Excellence for Cancer Immunology and Immunotherapy, University of Michigan Rogel Cancer Center, University of Michigan School of Medicine, Ann Arbor, MI, USA; Department of Computational Medicine & Bioinformatics, University of Michigan School of Medicine, Ann Arbor, MI, USA
| | - Michael D Green
- Center of Excellence for Cancer Immunology and Immunotherapy, University of Michigan Rogel Cancer Center, University of Michigan School of Medicine, Ann Arbor, MI, USA; Department of Radiation Oncology and Veterans Affairs Ann Arbor Healthcare System, University of Michigan School of Medicine, Ann Arbor, MI, USA
| | - Alicia Ali
- Department of Internal Medicine, University of Michigan School of Medicine, Ann Arbor, MI, USA
| | - Reema Hamasha
- Department of Internal Medicine, University of Michigan School of Medicine, Ann Arbor, MI, USA
| | - Shuang Wei
- Department of Surgery, University of Michigan School of Medicine, Ann Arbor, MI, USA; Center of Excellence for Cancer Immunology and Immunotherapy, University of Michigan Rogel Cancer Center, University of Michigan School of Medicine, Ann Arbor, MI, USA
| | - Linda Vatan
- Department of Surgery, University of Michigan School of Medicine, Ann Arbor, MI, USA; Center of Excellence for Cancer Immunology and Immunotherapy, University of Michigan Rogel Cancer Center, University of Michigan School of Medicine, Ann Arbor, MI, USA
| | - Wojciech Szeliga
- Department of Surgery, University of Michigan School of Medicine, Ann Arbor, MI, USA; Center of Excellence for Cancer Immunology and Immunotherapy, University of Michigan Rogel Cancer Center, University of Michigan School of Medicine, Ann Arbor, MI, USA
| | - Sara Grove
- Department of Surgery, University of Michigan School of Medicine, Ann Arbor, MI, USA; Center of Excellence for Cancer Immunology and Immunotherapy, University of Michigan Rogel Cancer Center, University of Michigan School of Medicine, Ann Arbor, MI, USA
| | - Xiong Li
- Department of Surgery, University of Michigan School of Medicine, Ann Arbor, MI, USA; Center of Excellence for Cancer Immunology and Immunotherapy, University of Michigan Rogel Cancer Center, University of Michigan School of Medicine, Ann Arbor, MI, USA
| | - Jing Li
- Department of Surgery, University of Michigan School of Medicine, Ann Arbor, MI, USA; Center of Excellence for Cancer Immunology and Immunotherapy, University of Michigan Rogel Cancer Center, University of Michigan School of Medicine, Ann Arbor, MI, USA
| | - Weichao Wang
- Department of Surgery, University of Michigan School of Medicine, Ann Arbor, MI, USA; Center of Excellence for Cancer Immunology and Immunotherapy, University of Michigan Rogel Cancer Center, University of Michigan School of Medicine, Ann Arbor, MI, USA
| | - Yijian Yan
- Department of Surgery, University of Michigan School of Medicine, Ann Arbor, MI, USA; Center of Excellence for Cancer Immunology and Immunotherapy, University of Michigan Rogel Cancer Center, University of Michigan School of Medicine, Ann Arbor, MI, USA
| | - Jae Eun Choi
- Center of Excellence for Cancer Immunology and Immunotherapy, University of Michigan Rogel Cancer Center, University of Michigan School of Medicine, Ann Arbor, MI, USA; Department of Pathology, University of Michigan School of Medicine, Ann Arbor, MI, USA; Michigan Center for Translational Pathology, University of Michigan School of Medicine, Ann Arbor, MI, USA
| | - Gaopeng Li
- Department of Surgery, University of Michigan School of Medicine, Ann Arbor, MI, USA; Center of Excellence for Cancer Immunology and Immunotherapy, University of Michigan Rogel Cancer Center, University of Michigan School of Medicine, Ann Arbor, MI, USA
| | - Yingjie Bian
- Department of Surgery, University of Michigan School of Medicine, Ann Arbor, MI, USA; Center of Excellence for Cancer Immunology and Immunotherapy, University of Michigan Rogel Cancer Center, University of Michigan School of Medicine, Ann Arbor, MI, USA
| | - Ying Xu
- Department of Surgery, University of Michigan School of Medicine, Ann Arbor, MI, USA; Center of Excellence for Cancer Immunology and Immunotherapy, University of Michigan Rogel Cancer Center, University of Michigan School of Medicine, Ann Arbor, MI, USA
| | - Jiajia Zhou
- Department of Surgery, University of Michigan School of Medicine, Ann Arbor, MI, USA; Center of Excellence for Cancer Immunology and Immunotherapy, University of Michigan Rogel Cancer Center, University of Michigan School of Medicine, Ann Arbor, MI, USA
| | - Jiali Yu
- Department of Surgery, University of Michigan School of Medicine, Ann Arbor, MI, USA; Center of Excellence for Cancer Immunology and Immunotherapy, University of Michigan Rogel Cancer Center, University of Michigan School of Medicine, Ann Arbor, MI, USA
| | - Houjun Xia
- Department of Surgery, University of Michigan School of Medicine, Ann Arbor, MI, USA; Center of Excellence for Cancer Immunology and Immunotherapy, University of Michigan Rogel Cancer Center, University of Michigan School of Medicine, Ann Arbor, MI, USA
| | - Weimin Wang
- Department of Surgery, University of Michigan School of Medicine, Ann Arbor, MI, USA; Center of Excellence for Cancer Immunology and Immunotherapy, University of Michigan Rogel Cancer Center, University of Michigan School of Medicine, Ann Arbor, MI, USA
| | - Ajjai Alva
- Department of Internal Medicine, University of Michigan School of Medicine, Ann Arbor, MI, USA
| | - Arul M Chinnaiyan
- Department of Pathology, University of Michigan School of Medicine, Ann Arbor, MI, USA; Michigan Center for Translational Pathology, University of Michigan School of Medicine, Ann Arbor, MI, USA; Howard Hughes Medical Institute, University of Michigan, Ann Arbor, MI, USA; Department of Urology, University of Michigan School of Medicine, Ann Arbor, MI, USA
| | - Marcin Cieslik
- Department of Computational Medicine & Bioinformatics, University of Michigan School of Medicine, Ann Arbor, MI, USA; Department of Pathology, University of Michigan School of Medicine, Ann Arbor, MI, USA
| | - Weiping Zou
- Department of Surgery, University of Michigan School of Medicine, Ann Arbor, MI, USA; Center of Excellence for Cancer Immunology and Immunotherapy, University of Michigan Rogel Cancer Center, University of Michigan School of Medicine, Ann Arbor, MI, USA; Department of Pathology, University of Michigan School of Medicine, Ann Arbor, MI, USA; Graduate Program in Immunology, University of Michigan School of Medicine, Ann Arbor, MI, USA; Graduate Program in Cancer Biology, University of Michigan School of Medicine, Ann Arbor, MI, USA.
| |
Collapse
|
295
|
Ji M, Ryu HJ, Hong JH. Signalling and putative therapeutic molecules on the regulation of synoviocyte signalling in rheumatoid arthritis. Bone Joint Res 2021; 10:285-297. [PMID: 33890482 PMCID: PMC8077181 DOI: 10.1302/2046-3758.104.bjr-2020-0331.r1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Rheumatoid arthritis (RA) is an autoimmune disease characterized by symmetrical and chronic polyarthritis. Fibroblast-like synoviocytes are mainly involved in joint inflammation and cartilage and bone destruction by inflammatory cytokines and matrix-degrading enzymes in RA. Approaches that induce various cellular growth alterations of synoviocytes are considered as potential strategies for treating RA. However, since synoviocytes play a critical role in RA, the mechanism and hyperplastic modulation of synoviocytes and their motility need to be addressed. In this review, we focus on the alteration of synoviocyte signalling and cell fate provided by signalling proteins, various antioxidant molecules, enzymes, compounds, clinical candidates, to understand the pathology of the synoviocytes, and finally to achieve developed therapeutic strategies of RA. Cite this article: Bone Joint Res 2021;10(4):285–297.
Collapse
Affiliation(s)
- Minjeong Ji
- Department of Physiology, College of Medicine, Gachon University, Lee Gil Ya Cancer and Diabetes Institute, Incheon, South Korea
| | - Hee Jung Ryu
- Department of Rheumatology, Gachon University Gil Medical Center, Incheon, South Korea
| | - Jeong Hee Hong
- Department of Physiology, College of Medicine, Gachon University, Lee Gil Ya Cancer and Diabetes Institute, Incheon, South Korea.,Department of Health Sciences and Technology, GAIHST, Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon, South Korea
| |
Collapse
|
296
|
Xiong H, Wang C, Wang Z, Lu H, Yao J. Self-assembled nano-activator constructed ferroptosis-immunotherapy through hijacking endogenous iron to intracellular positive feedback loop. J Control Release 2021; 332:539-552. [DOI: 10.1016/j.jconrel.2021.03.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 02/28/2021] [Accepted: 03/03/2021] [Indexed: 12/31/2022]
|
297
|
Abstract
Acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) are clinical syndromes that cause significant mortality in clinical settings and morbidity among survivors accompanied by huge healthcare costs. Lung-resident cell dysfunction/death and neutrophil alveolitis accompanied by proteinous edema are the main pathological features of ALI/ARDS. While understanding of the mechanisms underlying ALI/ARDS pathogenesis is progressing and potential treatments such as statin therapy, nutritional strategies, and mesenchymal cell therapy are emerging, poor clinical outcomes in ALI/ARDS patients persist. Thus, a better understanding of lung-resident cell death and neutrophil alveolitis and their mitigation and clearance mechanisms may provide new therapeutic strategies to accelerate lung repair and improve outcomes in critically ill patients. Macrophages are required for normal tissue development and homeostasis as well as regulating tissue injury and repair through modulation of inflammation and other cellular processes. While macrophages mediate various functions, here we review recent dead cell clearance (efferocytosis) mechanisms mediated by these immune cells for maintaining tissue homeostasis after infectious and non-infectious lung injury.
Collapse
Affiliation(s)
- Patrick M Noone
- Department of Pediatrics, College of Medicine, University of Illinois at Chicago, IL 60612, USA
| | - Sekhar P Reddy
- Department of Pediatrics, College of Medicine, University of Illinois at Chicago, IL 60612, USA
- Department of Pathology, College of Medicine, University of Illinois at Chicago, IL 60612, USA
| |
Collapse
|
298
|
Cytotoxic chemotherapeutic agents and the EGFR-TKI osimertinib induce calreticulin exposure in non-small cell lung cancer. Lung Cancer 2021; 155:144-150. [PMID: 33819860 DOI: 10.1016/j.lungcan.2021.03.018] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 02/27/2021] [Accepted: 03/21/2021] [Indexed: 11/20/2022]
Abstract
OBJECTIVES Synergistic anticancer efficacy of combination treatment with immune checkpoint inhibitors (ICIs) and platinum-based chemotherapy in patients with advanced non-small cell lung cancer (NSCLC) may be attributable in part to the phenomenon of immunogenic cell death (ICD), which is characterized by the release of damage-associated molecular patterns (DAMPs) from dying tumor cells. The ability of cytotoxic chemotherapeutic agents and molecularly targeted drugs such as epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs) to induce DAMPs during the treatment of NSCLC has remained unclear, however. MATERIALS AND METHODS We investigated the ability of seven cytotoxic chemotherapeutic agents and the third-generation EGFR-TKI osimertinib to induce translocation of the DAMP calreticulin to the cell surface in multiple NSCLC cell lines. The plasma concentration of soluble CRT in advanced NSCLC patients treated with cytotoxic chemotherapy or osimertinib was measured. RESULTS Antimetabolites and microtubule inhibitors induced expression of CRT at the cell surface (ecto-CRT) to a greater extent than did platinum agents in six NSCLC cell lines, exhibiting higher up-regulation of phosphorylation of eukaryotic initiation factor-2α (eIF2α). Ecto-CRT expression was positively correlated with apoptosis induction in NSCLC cells treated with these various chemotherapeutic agents. The drug-induced up-regulation of ecto-CRT in NSCLC cells was attenuated by the pan-caspase inhibitor Z-VAD-FMK. Osimertinib similarly increased ecto-CRT expression in association with apoptosis induction in five EGFR-mutated NSCLC cell lines. Furthermore, the plasma concentration of soluble CRT in 16 NSCLC patients treated with single-agent pemetrexed or docetaxel and in nine EGFR-mutated NSCLC patients treated with osimertinib was increased after treatment onset. CONCLUSION Our findings indicate that antimetabolites, microtubule inhibitors, and osimertinib are effective inducers both of CRT exposure in NSCLC cell lines and of soluble CRT release in patients with advanced NSCLC, suggesting that these agents might prove effective for promotion of antitumor immunity in combination immunotherapy.
Collapse
|
299
|
Butler CA, Popescu AS, Kitchener EJA, Allendorf DH, Puigdellívol M, Brown GC. Microglial phagocytosis of neurons in neurodegeneration, and its regulation. J Neurochem 2021; 158:621-639. [PMID: 33608912 DOI: 10.1111/jnc.15327] [Citation(s) in RCA: 158] [Impact Index Per Article: 39.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 01/13/2021] [Accepted: 02/10/2021] [Indexed: 02/06/2023]
Abstract
There is growing evidence that excessive microglial phagocytosis of neurons and synapses contributes to multiple brain pathologies. RNA-seq and genome-wide association (GWAS) studies have linked multiple phagocytic genes to neurodegenerative diseases, and knock-out of phagocytic genes has been found to protect against neurodegeneration in animal models, suggesting that excessive microglial phagocytosis contributes to neurodegeneration. Here, we review recent evidence that microglial phagocytosis of live neurons and synapses causes neurodegeneration in animal models of Alzheimer's disease and other tauopathies, Parkinson's disease, frontotemporal dementias, multiple sclerosis, retinal degeneration and neurodegeneration induced by ischaemia, infection or ageing. We also review factors regulating microglial phagocytosis of neurons, including: nucleotides, frackalkine, phosphatidylserine, calreticulin, UDP, CD47, sialylation, complement, galectin-3, Apolipoprotein E, phagocytic receptors, Siglec receptors, cytokines, microglial epigenetics and expression profile. Some of these factors may be potential treatment targets to prevent neurodegeneration mediated by excessive microglial phagocytosis of live neurons and synapses.
Collapse
Affiliation(s)
- Claire A Butler
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Alma S Popescu
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | | | | | - Mar Puigdellívol
- Department of Biochemistry, University of Cambridge, Cambridge, UK.,Departament de Biomedicina, Facultat de Medicina, Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain
| | - Guy C Brown
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| |
Collapse
|
300
|
Tajbakhsh A, Read M, Barreto GE, Ávila-Rodriguez M, Gheibi-Hayat SM, Sahebkar A. Apoptotic neurons and amyloid-beta clearance by phagocytosis in Alzheimer's disease: Pathological mechanisms and therapeutic outlooks. Eur J Pharmacol 2021; 895:173873. [PMID: 33460611 DOI: 10.1016/j.ejphar.2021.173873] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 01/06/2021] [Accepted: 01/11/2021] [Indexed: 12/13/2022]
Abstract
Neuronal survival and axonal renewal following central nervous system damage and in neurodegenerative illnesses, such as Alzheimer's disease (AD), can be enhanced by fast clearance of neuronal apoptotic debris, as well as the removal of amyloid beta (Aβ) by phagocytic cells through the process of efferocytosis. This process quickly inhibits the release of proinflammatory and antigenic autoimmune constituents, enhancing the formation of a microenvironment vital for neuronal survival and axonal regeneration. Therefore, the detrimental features associated with microglial phagocytosis uncoupling, such as the accumulation of apoptotic cells, inflammation and phagoptosis, could exacerbate the pathology in brain disease. Some mechanisms of efferocytosis could be targeted by several promising agents, such as curcumin, URMC-099 and Y-P30, which have emerged as potential treatments for AD. This review aims to investigate and update the current research regarding the signaling molecules and pathways involved in efferocytosis and how these could be targeted as a potential therapy in AD.
Collapse
Affiliation(s)
- Amir Tajbakhsh
- Department of Modern Sciences & Technologies, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Morgayn Read
- Department of Pharmacology, School of Medical Sciences, University of Otago, Dunedin, New Zealand
| | - George E Barreto
- Department of Biological Sciences, University of Limerick, Limerick, Ireland; Health Research Institute, University of Limerick, Limerick, Ireland
| | | | - Seyed Mohammad Gheibi-Hayat
- Department of Medical Biotechnology, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Polish Mother's Memorial Hospital Research Institute (PMMHRI), Lodz, Poland.
| |
Collapse
|