251
|
Davison KM, Gondara L. A Comparison of Mental Health, Food Insecurity, and Diet Quality Indicators between Foreign-Born Immigrants of Canada and Native-Born Canadians. JOURNAL OF HUNGER & ENVIRONMENTAL NUTRITION 2019. [DOI: 10.1080/19320248.2019.1672601] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Karen M. Davison
- School of Nursing, University of British Columbia, Vancouver, Canada
- Department of Biology, Kwantlen Polytechnic University, Surrey, Canada
| | - Lovedeep Gondara
- Department of Computer Science, University of Illinois Springfield, Springfield, USA
- Department of Computer Science, Simon Fraser University, Burnaby, Canada
| |
Collapse
|
252
|
Wahab RJ, Beth SA, Derks IPM, Jansen PW, Moll HA, Kiefte-de Jong JC. Celiac Disease Autoimmunity and Emotional and Behavioral Problems in Childhood. Pediatrics 2019; 144:peds.2018-3933. [PMID: 31492765 DOI: 10.1542/peds.2018-3933] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/12/2019] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND AND OBJECTIVES Celiac disease (CeD) is associated with psychopathology in children. It is unknown whether this association is present in children with celiac disease autoimmunity (CDA) identified by screening. We examined the associations between subclinical CDA and emotional and behavioral problems in children without previous CeD diagnosis. METHODS In a population-based cohort study of 3715 children (median age: 6 years), blood titers of tissue transglutaminase autoantibodies were analyzed. CDA was defined as a measurement of tissue transglutaminase autoantibodies ≥7 U/mL (n = 51). Children with previous CeD diagnosis or children on a gluten-free diet, were excluded. The Child Behavior Checklist (CBCL) was filled in by parents and was used to assess behavioral and emotional problems of children at a median age of 5.9 years. Multiple linear regression models were applied to evaluate the cross-sectional associations between CDA and CBCL scores. Sensitivity analyses were done in a subgroup of children who were seropositive carrying the HLA antigen risk alleles for CeD. RESULTS In basic models, CDA was not associated with emotional and behavioral problems on the CBCL scales. After adjustment for confounders, CDA was significantly associated with anxiety problems (β = .29; 95% confidence interval 0.02 to 0.55; P = .02). After exclusion of children who did not carry the HLA-DQ2 and/or HLA-DQ8 risk alleles (n = 4), CDA was additionally associated with oppositional defiant problems (β = .35; 95% confidence interval 0.02 to 0.69). Associations were not explained by gastrointestinal complaints. CONCLUSIONS Our results reveal that CDA, especially combined with the HLA-DQ2 and HLA-DQ8 risk alleles, is associated with anxiety problems and oppositional defiant problems. Further research should be used to establish whether behavioral problems are a reflection of subclinical CeD.
Collapse
Affiliation(s)
- Rama J Wahab
- Generation R Study Group and.,Department of Pediatrics, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Sytske A Beth
- Generation R Study Group and.,Department of Pediatrics, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Ivonne P M Derks
- Generation R Study Group and.,Departments of Child and Adolescent Psychiatry and Psychology and
| | - Pauline W Jansen
- Departments of Child and Adolescent Psychiatry and Psychology and.,Psychology, Education, and Child Studies, Erasmus University Rotterdam, Rotterdam, Netherlands; and
| | - Henriëtte A Moll
- Department of Pediatrics, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Jessica C Kiefte-de Jong
- Department of Pediatrics, Erasmus University Medical Center, Rotterdam, Netherlands; .,Department of Public Health and Primary Care, Campus The Hague, Leiden University Medical Center, The Hague, Netherlands
| |
Collapse
|
253
|
Zhan G, Yang N, Li S, Huang N, Fang X, Zhang J, Zhu B, Yang L, Yang C, Luo A. Abnormal gut microbiota composition contributes to cognitive dysfunction in SAMP8 mice. Aging (Albany NY) 2019; 10:1257-1267. [PMID: 29886457 PMCID: PMC6046237 DOI: 10.18632/aging.101464] [Citation(s) in RCA: 123] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Accepted: 05/30/2018] [Indexed: 12/12/2022]
Abstract
Alzheimer’s disease is characterized by cognitive dysfunction and aging is an important predisposing factor; however, the pathological and therapeutic mechanisms are not fully understood. Recently, the role of gut microbiota in Alzheimer’s disease has received increasing attention. The cognitive function in senescence-accelerated mouse prone 8 (SAMP8) mice was significantly decreased and the Chao 1 and Shannon indices, principal coordinates analysis, and principal component analysis results were notably abnormal compared with that of those in senescence-accelerated mouse resistant 1 (SAMR1) mice. Moreover, 27 gut bacteria at six phylogenetic levels differed between SAMP8 and SAMR1 mice. In a separate study, we transplanted fecal bacteria from SAMP8 or SAMR1 mice into pseudo germ-free mice. Interestingly, the pseudo germ-free mice had significantly lower cognitive function prior to transplant. Pseudo germ-free mice that received fecal bacteria transplants from SAMR1 mice but not from SAMP8 mice showed improvements in behavior and in α-diversity and β-diversity indices. In total, 14 bacteria at six phylogenetic levels were significantly altered by the gut microbiota transplant. These results suggest that cognitive dysfunction in SAMP8 mice is associated with abnormal composition of the gut microbiota. Thus, improving abnormal gut microbiota may provide an alternative treatment for cognitive dysfunction and Alzheimer’s disease.
Collapse
Affiliation(s)
- Gaofeng Zhan
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ning Yang
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shan Li
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Niannian Huang
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xi Fang
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jie Zhang
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bin Zhu
- Department of Cardiology and Critical Care Medicine, The Third Affiliated Hospital of Soochow University, Suzhou, China
| | - Ling Yang
- Department of Cardiology and Critical Care Medicine, The Third Affiliated Hospital of Soochow University, Suzhou, China
| | - Chun Yang
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ailin Luo
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
254
|
Cen ME, Wang F, Su Y, Zhang WJ, Sun B, Wang G. Gastrointestinal microecology: a crucial and potential target in acute pancreatitis. Apoptosis 2019; 23:377-387. [PMID: 29926313 DOI: 10.1007/s10495-018-1464-9] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In the early stage of acute pancreatitis (AP), abundant cytokines induced by local pancreatic inflammation enter the bloodstream, further cause systemic inflammatory response syndrome (SIRS) by "trigger effect", which eventually leads to multiple organ dysfunction syndrome (MODS). During SIRS and MODS, the intestinal barrier function was seriously damaged accompanied by the occurrence of gut-derived infection which forms a "second hit summit" by inflammatory overabundance. Gastrointestinal microecology, namely the biologic barrier, could be transformed into a pathogenic state, which is called microflora dysbiosis when interfered by the inflammatory stress during AP. More and more evidences indicate that gastrointestinal microflora dysbiosis plays a key role in "the second hit" induced by AP gut-derived infection. Therefore, the maintenance of gastrointestinal microecology balance is likely to provide an effective method in modulating systemic infection of AP. This article reviewed the progress of gastrointestinal microecology in AP to provide a reference for deeply understanding the pathogenic mechanisms of AP and identifying new therapeutic targets.
Collapse
Affiliation(s)
- Meng-Er Cen
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, 23 Youzheng Street, Nangang District, Harbin, 150001, Heilongjiang, China.,Kidney Disease Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.,Key Laboratory of Nephropathy, Hangzhou, Zhejiang, China
| | - Feng Wang
- Department of Ophthalmology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Ying Su
- Department of Ophthalmology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Wang-Jun Zhang
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, 23 Youzheng Street, Nangang District, Harbin, 150001, Heilongjiang, China
| | - Bei Sun
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, 23 Youzheng Street, Nangang District, Harbin, 150001, Heilongjiang, China
| | - Gang Wang
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, 23 Youzheng Street, Nangang District, Harbin, 150001, Heilongjiang, China.
| |
Collapse
|
255
|
New and Preliminary Evidence on Altered Oral and Gut Microbiota in Individuals with Autism Spectrum Disorder (ASD): Implications for ASD Diagnosis and Subtyping Based on Microbial Biomarkers. Nutrients 2019; 11:nu11092128. [PMID: 31489949 PMCID: PMC6770733 DOI: 10.3390/nu11092128] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Revised: 08/16/2019] [Accepted: 08/23/2019] [Indexed: 02/06/2023] Open
Abstract
Autism Spectrum Disorder (ASD) is a complex neurological and developmental disorder characterized by behavioral and social impairments as well as multiple co-occurring conditions, such as gastrointestinal abnormalities, dental/periodontal diseases, and allergies. The etiology of ASD likely involves interaction between genetic and environmental factors. Recent studies suggest that oral and gut microbiome play important roles in the pathogenesis of inflammation, immune dysfunction, and disruption of the gut–brain axis, which may contribute to ASD pathophysiology. The majority of previous studies used unrelated neurotypical individuals as controls, and they focused on the gut microbiome, with little attention paid to the oral flora. In this pilot study, we used a first degree-relative matched design combined with high fidelity 16S rRNA (ribosomal RNA) gene amplicon sequencing in order to characterize the oral and gut microbiotas of patients with ASD compared to neurotypical individuals, and explored the utility of microbiome markers for ASD diagnosis and subtyping of clinical comorbid conditions. Additionally, we aimed to develop microbiome biomarkers to monitor responses to a subsequent clinical trial using probiotics supplementation. We identified distinct features of gut and salivary microbiota that differed between ASD patients and neurotypical controls. We next explored the utility of some differentially enriched markers for ASD diagnosis and examined the association between the oral and gut microbiomes using network analysis. Due to the tremendous clinical heterogeneity of the ASD population, we explored the relationship between microbiome and clinical indices as an attempt to extract microbiome signatures assocociated with clinical subtypes, including allergies, abdominal pain, and abnormal dietary habits. The diagnosis of ASD currently relies on psychological testing with potentially high subjectivity. Given the emerging role that the oral and gut microbiome plays in systemic diseases, our study will provide preliminary evidence for developing microbial markers that can be used to diagnose or guide treatment of ASD and comorbid conditions. These preliminary results also serve as a starting point to test whether altering the oral and gut microbiome could improve co-morbid conditions in patients with ASD and further modify the core symptoms of ASD.
Collapse
|
256
|
Holton KF, Johnstone JM, Brandley ET, Nigg JT. Evaluation of dietary intake in children and college students with and without attention-deficit/hyperactivity disorder. Nutr Neurosci 2019; 22:664-677. [PMID: 29361884 PMCID: PMC6309508 DOI: 10.1080/1028415x.2018.1427661] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Objectives: To evaluate dietary intake among individuals with and without attention-deficit hyperactivity disorder (ADHD), to evaluate the likelihood that those with ADHD have inadequate intakes. Methods: Children, 7-12 years old, with (n = 23) and without (n = 22) ADHD, and college students, 18-25 years old, with (n = 21) and without (n = 30) ADHD comprised the samples. Children's dietary intake was assessed by a registered dietitian using 24-hour recalls over 3 days. College students kept a detailed food record over three days. Dietary information for both groups was entered into the Nutrition Data Systems for Research database, and output was analyzed using SAS 9.4. Nutrient analyses included the Healthy Eating Index-2010, Micronutrient Index (as a measure of overall micronutrient intake), and individual amino acids necessary for neurotransmission. Logistic regression was used to model the association of nutrient intake with ADHD. Models were adjusted for age, sex, IQ (or GPA), and energy intake (or total protein intake) as appropriate. Significance was evaluated at P = 0.05, and using the Benjamini-Hochberg corrected P-value for multiple comparisons. Results: No evidence existed for reduced nutrient intake among those with ADHD compared to controls in either age group. Across both groups, inadequate intakes of vitamin D and potassium were reported in 95% of participants. Children largely met nutrient intake guidelines, while college students failed to meet these guidelines for nine nutrients. In regards to amino acid intake in children, an increased likelihood of having ADHD was associated with higher consumption of aspartate, OR = 12.61 (P = 0.01) and glycine OR = 11.60 (P = 0.05); and a reduced likelihood of ADHD with higher intakes of glutamate, OR = 0.34 (P = 0.03). Among young adults, none of the amino acids were significantly associated with ADHD, though glycine and tryptophan approached significance. Discussion: Results fail to support the hypothesis that ADHD is driven solely by dietary micronutrient inadequacy. However, amino acids associated with neurotransmission, specifically those affecting glutamatergic neurotransmission, differed by ADHD status in children. Amino acids did not reliably vary among college students. Future larger scale studies are needed to further examine whether or not dietary intake of amino acids may be a modulating factor in ADHD.
Collapse
Affiliation(s)
- Kathleen F. Holton
- Department of Health Studies, Center for Behavioral Neuroscience, American University, 4400 Massachusetts Ave NW, Gray Hall 119, Washington, D.C. 20016; (202) 885-3797
| | - Jeanette M. Johnstone
- Departments of Neurology and Child and Adolescent Psychiatry, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd, Portland, OR 97239, DC7P; (503) 494-7340,
| | - Elizabeth T. Brandley
- Department of Health Studies, American University, 4400 Massachusetts Ave NW, Washington, D.C. 20016; (603)313-9176;
| | - Joel T. Nigg
- Department of Child and Adolescent Psychiatry, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd, Portland, OR 97239; (503) 346-0640,
| |
Collapse
|
257
|
Zyoud SH, Smale S, Waring WS, Sweileh WM, Al-Jabi SW. Global research trends in microbiome-gut-brain axis during 2009-2018: a bibliometric and visualized study. BMC Gastroenterol 2019; 19:158. [PMID: 31470803 PMCID: PMC6716890 DOI: 10.1186/s12876-019-1076-z] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 08/23/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The pathways and mechanism by which associations between the gut microbiome and the brain, termed the microbiome-gut-brain axis (MGBA), are manifest but remain to be fully elucidated. This study aims to use bibliometric analysis to estimate the global activity within this rapidly developing field and to identify particular areas of focus that are of current relevance to the MGBA during the last decade (2009-2018). METHODS The current study uses the Scopus for data collection. We used the key terms "microbiome-gut-brain axis" and its synonyms because we are concerned with MGBA per se as a new concept in research rather than related topics. A VOSviewer version 1.6.11 was used to visualize collaboration pattern between countries and authors, and evolving research topics by analysis of the term co-occurrence in the title and abstract of publications. RESULTS Between 2009 and 2018, there were 51,504 published documents related to the microbiome, including 1713 articles related to the MGBA: 829 (48.4%) original articles, 658(38.4%) reviews, and 226 (13.2%) other articles such as notes, editorials or letters. The USA took the first place with 385 appearances, followed by Ireland (n = 161), China (n = 155), and Canada (n = 144).The overall citation h-index was 106, and the countries with the highest h-index values were the USA (69), Ireland (58), and Canada (43). The cluster analysis demonstrated that the dominant fields of the MGBA include four clusters with four research directions: "modeling MGBA in animal systems", "interplay between the gut microbiota and the immune system", "irritable bowel syndrome related to gut microbiota", and "neurodegenerative diseases related to gut microbiota". CONCLUSIONS This study demonstrates that the research on the MGBA has been becoming progressively more extensive at global level over the past 10 years. Overall, our study found that a large amount of work on MGBA focused on immunomodulation, irritable bowel syndrome, and neurodevelopmental disorders. Despite considerable progress illustrating the communication between the gut microbiome and the brain over the past 10 years, many issues remain about their relevance for therapeutic intervention of many diseases.
Collapse
Affiliation(s)
- Sa’ed H. Zyoud
- 0000 0004 0631 5695grid.11942.3fPoison Control and Drug Information Center (PCDIC), College of Medicine and Health Sciences, An-Najah National University, Nablus, 44839 Palestine
- 0000 0004 0631 5695grid.11942.3fDepartment of Clinical and Community Pharmacy, College of Medicine and Health Sciences, An-Najah National University, Nablus, 44839 Palestine
- 0000 0004 0631 5695grid.11942.3fClinical Research Centre, An-Najah National University Hospital, Nablus, 44839 Palestine
| | - Simon Smale
- grid.439905.2Department of Gastroenterology, York Hospital, York Teaching Hospital NHS Foundation Trust, Wigginton Road, York, YO31 8HE UK
| | - W. Stephen Waring
- grid.439905.2Acute Medical Unit, York Teaching Hospitals NHS Foundation Trust, Wigginton Road, York, YO31 8HE UK
| | - Waleed M. Sweileh
- 0000 0004 0631 5695grid.11942.3fDepartment of Pharmacology and Toxicology, College of Medicine and Health Sciences, An-Najah National University, Nablus, 44839 Palestine
| | - Samah W. Al-Jabi
- 0000 0004 0631 5695grid.11942.3fDepartment of Clinical and Community Pharmacy, College of Medicine and Health Sciences, An-Najah National University, Nablus, 44839 Palestine
| |
Collapse
|
258
|
Hamad AF, Alessi-Severini S, Mahmud SM, Brownell M, Kuo IF. Prenatal antibiotics exposure and the risk of autism spectrum disorders: A population-based cohort study. PLoS One 2019; 14:e0221921. [PMID: 31465485 PMCID: PMC6715235 DOI: 10.1371/journal.pone.0221921] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 06/25/2019] [Indexed: 12/23/2022] Open
Abstract
Background Prenatal antibiotic exposure induces changes in infants’ gut microbiota composition and is suggested as a possible contributor in the development of autism spectrum disorders (ASD). In this study, we examined the association between prenatal antibiotic exposure and the risk of ASD. Methods This was a population-based cohort study utilizing the Manitoba Population Research Data Repository. The cohort included 214 834 children born in Manitoba, Canada between April 1, 1998 and March 31, 2016. Exposure was defined as having filled one or more antibiotic prescription during pregnancy. The outcome was autism spectrum disorder diagnosis. Multivariable Cox proportional hazards regression was used to estimate the risk of developing ASD in the overall cohort and in a sibling cohort. Results Of all subjects, 80 750 (37.6%) were exposed to antibiotics prenatally. During follow-up, 2965 children received an ASD diagnosis. Compared to children who were not exposed to antibiotics prenatally, those who were exposed had a higher risk of ASD: (adjusted HR 1.10 [95% CI 1.01, 1.19]). The association was observed in those exposed to antibiotics in the second or third trimester (HR 1.11 [95% CI 1.01, 1.23] and 1.17 [95% CI 1.06, 1.30], respectively). In the siblings’ cohort, ASD risk estimate remained unchanged (adjusted HR 1.08 [95% CI 0.90, 1.30], although it was not statistically significant. Conclusions Prenatal antibiotic exposure is associated with a small increase in the risk of ASD. Given the potential of residual confounding beyond what it was controlled through our study design and because of possible confounding by indication, such a small risk increase in the population is not expected to be clinically significant.
Collapse
Affiliation(s)
- Amani F. Hamad
- College of Pharmacy, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada
| | - Silvia Alessi-Severini
- College of Pharmacy, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada
- Manitoba Centre for Health Policy, Max Ray College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada
| | - Salaheddin M. Mahmud
- College of Pharmacy, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada
- Department of Community Health Sciences, Max Ray College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada
- Vaccine and Drug Evaluation Centre, University of Manitoba, Winnipeg, Canada
| | - Marni Brownell
- Manitoba Centre for Health Policy, Max Ray College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada
- Department of Community Health Sciences, Max Ray College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada
| | - I fan Kuo
- College of Pharmacy, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada
- * E-mail:
| |
Collapse
|
259
|
Wu S, Kim E, Li J, Bentley WE, Shi XW, Payne GF. Catechol-Based Capacitor for Redox-Linked Bioelectronics. ACS APPLIED ELECTRONIC MATERIALS 2019; 1:1337-1347. [PMID: 32090203 PMCID: PMC7034937 DOI: 10.1021/acsaelm.9b00272] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
A common bioelectronics goal is to enable communication between biology and electronics, and success is critically dependent on the communication modality. When a biorelevant modality aligns with instrumentation capabilities, remarkable successes have been observed (e.g., electrodes provide a powerful tool to observe and actuate biology through its ion-based electrical modality). Emerging biological research demonstrates that redox is another biologically relevant modality, and recent research has shown that advanced electrochemical methods enable biodevice communication through this redox modality. Here, we briefly summarize the biological relevance of this redox modality and the use of redox mediators to enable access to this modality through electrochemical measurements. Next, we describe the fabrication of a catechol-chitosan redox capacitor that is redox-active but nonconducting and thus offers a unique set of molecular electronic properties that enhance access to redox-based information. Finally, we cite several recent studies that demonstrate the broad potential for this capacitor to access redox-based biological information. In summary, we envision the redox capacitor will become a vital component in the integrated circuitry of redox-linked bioelectronics.
Collapse
Affiliation(s)
- Si Wu
- School of Resource and Environmental Science, Hubei Biomass-Resource Chemistry and Environmental Biotechnology Key Laboratory, Wuhan University, Wuhan 430079, China
- Institute for Bioscience and Biotechnology Research, University of Maryland, College Park, Maryland 20742, United States
| | - Eunkyoung Kim
- Institute for Bioscience and Biotechnology Research, University of Maryland, College Park, Maryland 20742, United States
| | - Jinyang Li
- Institute for Bioscience and Biotechnology Research, University of Maryland, College Park, Maryland 20742, United States
- Fischell Department of Bioengineering and Research, University of Maryland, College Park, Maryland 20742, United States
| | - William E. Bentley
- Institute for Bioscience and Biotechnology Research, University of Maryland, College Park, Maryland 20742, United States
- Fischell Department of Bioengineering and Research, University of Maryland, College Park, Maryland 20742, United States
| | - Xiao-Wen Shi
- School of Resource and Environmental Science, Hubei Biomass-Resource Chemistry and Environmental Biotechnology Key Laboratory, Wuhan University, Wuhan 430079, China
| | - Gregory F. Payne
- Institute for Bioscience and Biotechnology Research, University of Maryland, College Park, Maryland 20742, United States
| |
Collapse
|
260
|
Choi JG, Huh E, Kim N, Kim DH, Oh MS. High-throughput 16S rRNA gene sequencing reveals that 6-hydroxydopamine affects gut microbial environment. PLoS One 2019; 14:e0217194. [PMID: 31404072 PMCID: PMC6690581 DOI: 10.1371/journal.pone.0217194] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 07/24/2019] [Indexed: 12/26/2022] Open
Abstract
Recently, there has been a rapid increase in studies on the relationship between brain diseases and gut microbiota, and clinical evidence on gut microbial changes in Parkinson's disease (PD) has accumulated. 6-Hydroxydopamine (6-OHDA) is a widely used neurotoxin that leads to PD pathogenesis, but whether 6-OHDA affects gut microbial environment has not been investigated. Here we performed the 16S rRNA gene sequencing to analyze the gut microbial community of mice. We found that there were no significant changes in species richness and its diversity in the 6-OHDA-lesioned mice. The relative abundance of Lactobacillus gasseri and L. reuteri probiotic species in feces of 6-OHDA-lesioned mice was significantly decreased compared with those of sham-operated mice, while the commensal bacterium Bacteroides acidifaciens in 6-OHDA-treated mice was remarkably higher than sham-operated mice. These results provide a baseline for understanding the microbial communities of 6-OHDA-induced PD model to investigate the role of gut microbiota in the pathogenesis of PD.
Collapse
Affiliation(s)
- Jin Gyu Choi
- Department of Oriental Pharmaceutical Science, College of Pharmacy and Kyung Hee East-West Pharmaceutical Research Institute, Kyung Hee University, Dongdaemun-gu, Seoul, Republic of Korea
| | - Eugene Huh
- Department of Oriental Pharmaceutical Science, College of Pharmacy and Kyung Hee East-West Pharmaceutical Research Institute, Kyung Hee University, Dongdaemun-gu, Seoul, Republic of Korea
- Department of Medical Science of Meridian, Graduate School, Kyung Hee University, Dongdaemun-gu, Seoul, Republic of Korea
| | - Namkwon Kim
- Department of Life and Nanopharmaceutical Sciences, Graduate School, Kyung Hee University, Dongdaemun-gu, Seoul, Republic of Korea
| | - Dong-Hyun Kim
- Department of Life and Nanopharmaceutical Sciences, Graduate School, Kyung Hee University, Dongdaemun-gu, Seoul, Republic of Korea
| | - Myung Sook Oh
- Department of Oriental Pharmaceutical Science, College of Pharmacy and Kyung Hee East-West Pharmaceutical Research Institute, Kyung Hee University, Dongdaemun-gu, Seoul, Republic of Korea
- Department of Life and Nanopharmaceutical Sciences, Graduate School, Kyung Hee University, Dongdaemun-gu, Seoul, Republic of Korea
- * E-mail:
| |
Collapse
|
261
|
Marshall BL, Liu Y, Farrington MJ, Mao J, Helferich WG, Schenk AK, Bivens NJ, Sarma SJ, Lei Z, Sumner LW, Joshi T, Rosenfeld CS. Early genistein exposure of California mice and effects on the gut microbiota-brain axis. J Endocrinol 2019; 242:139-157. [PMID: 31189133 PMCID: PMC6885123 DOI: 10.1530/joe-19-0214] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 06/10/2019] [Indexed: 12/12/2022]
Abstract
Human offspring encounter high amounts of phytoestrogens, such as genistein (GEN), through maternal diet and soy-based formulas. Such chemicals can exert estrogenic activity and thereby disrupt neurobehavioral programming. Besides inducing direct host effects, GEN might cause gut dysbiosis and alter gut metabolites. To determine whether exposure to GEN affects these parameters, California mice (Peromyscus californicus) dams were placed 2 weeks prior to breeding and throughout gestation and lactation on a diet supplemented with GEN (250 mg/kg feed weight) or AIN93G phytoestrogen-free control diet (AIN). At weaning, offspring socio-communicative behaviors, gut microbiota and metabolite profiles were assayed. Exposure of offspring to GEN-induced sex-dependent changes in gut microbiota and metabolites. GEN exposed females were less likely to investigate a novel female mouse when tested in a three-chamber social test. When isolated, GEN males and females exhibited increased latency to elicit their first call, suggestive of reduced motivation to communicate with other individuals. Correlation analyses revealed interactions between GEN-induced microbiome, metabolome and socio-communicative behaviors. Comparison of GEN males with AIN males revealed the fraction of calls above 20 kHz was associated with daidzein, α-tocopherol, Flexispira spp. and Odoribacter spp. Results suggest early GEN exposure disrupts normal socio-communicative behaviors in California mice, which are otherwise evident in these social rodents. Such effects may be due to GEN disruptions on neural programming but might also be attributed to GEN-induced microbiota shifts and resultant changes in gut metabolites. Findings indicate cause for concern that perinatal exposure to GEN may detrimentally affect the offspring microbiome-gut-brain axis.
Collapse
Affiliation(s)
- Brittney L Marshall
- Bond Life Sciences Center, University of Missouri, Columbia, Missouri, USA
- Biomedical Sciences, University of Missouri, Columbia, Missouri, USA
| | - Yang Liu
- Bond Life Sciences Center, University of Missouri, Columbia, Missouri, USA
- Informatics Institute, University of Missouri, Columbia, Missouri, USA
| | - Michelle J Farrington
- Bond Life Sciences Center, University of Missouri, Columbia, Missouri, USA
- Biomedical Sciences, University of Missouri, Columbia, Missouri, USA
| | - Jiude Mao
- Bond Life Sciences Center, University of Missouri, Columbia, Missouri, USA
- Biomedical Sciences, University of Missouri, Columbia, Missouri, USA
| | - William G Helferich
- Food Science and Human Nutrition, University of Illinois, Urbana, Illinois, USA
| | | | - Nathan J Bivens
- DNA Core Facility, University of Missouri, Columbia, Missouri, USA
| | - Saurav J Sarma
- Bond Life Sciences Center, University of Missouri, Columbia, Missouri, USA
- MU Metabolomics Center, University of Missouri, Columbia, Missouri, USA
| | - Zhentian Lei
- Bond Life Sciences Center, University of Missouri, Columbia, Missouri, USA
- MU Metabolomics Center, University of Missouri, Columbia, Missouri, USA
- Department of Biochemistry, University of Missouri, Columbia, Missouri, USA
| | - Lloyd W Sumner
- Bond Life Sciences Center, University of Missouri, Columbia, Missouri, USA
- MU Metabolomics Center, University of Missouri, Columbia, Missouri, USA
- Department of Biochemistry, University of Missouri, Columbia, Missouri, USA
| | - Trupti Joshi
- Bond Life Sciences Center, University of Missouri, Columbia, Missouri, USA
- Informatics Institute, University of Missouri, Columbia, Missouri, USA
- Department of Health Management and Informatics, School of Medicine, University of Missouri, Columbia, Missouri, USA
| | - Cheryl S Rosenfeld
- Bond Life Sciences Center, University of Missouri, Columbia, Missouri, USA
- Biomedical Sciences, University of Missouri, Columbia, Missouri, USA
- Informatics Institute, University of Missouri, Columbia, Missouri, USA
- Thompson Center for Autism and Neurobehavioral Disorders, University of Missouri, Columbia, Missouri, USA
- Genetics Area Program, University of Missouri, Columbia, Missouri, USA
| |
Collapse
|
262
|
Kemis JH, Linke V, Barrett KL, Boehm FJ, Traeger LL, Keller MP, Rabaglia ME, Schueler KL, Stapleton DS, Gatti DM, Churchill GA, Amador-Noguez D, Russell JD, Yandell BS, Broman KW, Coon JJ, Attie AD, Rey FE. Genetic determinants of gut microbiota composition and bile acid profiles in mice. PLoS Genet 2019; 15:e1008073. [PMID: 31465442 PMCID: PMC6715156 DOI: 10.1371/journal.pgen.1008073] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 06/14/2019] [Indexed: 02/03/2023] Open
Abstract
The microbial communities that inhabit the distal gut of humans and other mammals exhibit large inter-individual variation. While host genetics is a known factor that influences gut microbiota composition, the mechanisms underlying this variation remain largely unknown. Bile acids (BAs) are hormones that are produced by the host and chemically modified by gut bacteria. BAs serve as environmental cues and nutrients to microbes, but they can also have antibacterial effects. We hypothesized that host genetic variation in BA metabolism and homeostasis influence gut microbiota composition. To address this, we used the Diversity Outbred (DO) stock, a population of genetically distinct mice derived from eight founder strains. We characterized the fecal microbiota composition and plasma and cecal BA profiles from 400 DO mice maintained on a high-fat high-sucrose diet for ~22 weeks. Using quantitative trait locus (QTL) analysis, we identified several genomic regions associated with variations in both bacterial and BA profiles. Notably, we found overlapping QTL for Turicibacter sp. and plasma cholic acid, which mapped to a locus containing the gene for the ileal bile acid transporter, Slc10a2. Mediation analysis and subsequent follow-up validation experiments suggest that differences in Slc10a2 gene expression associated with the different strains influences levels of both traits and revealed novel interactions between Turicibacter and BAs. This work illustrates how systems genetics can be utilized to generate testable hypotheses and provide insight into host-microbe interactions.
Collapse
Affiliation(s)
- Julia H. Kemis
- Department of Bacteriology, University of Wisconsin–Madison, Madison, Wisconsin, United States of America
| | - Vanessa Linke
- Department of Chemistry, University of Wisconsin–Madison, Madison, Wisconsin, United States of America
| | - Kelsey L. Barrett
- Department of Bacteriology, University of Wisconsin–Madison, Madison, Wisconsin, United States of America
| | - Frederick J. Boehm
- Department of Statistics, University of Wisconsin–Madison, Madison, Wisconsin, United States of America
| | - Lindsay L. Traeger
- Department of Bacteriology, University of Wisconsin–Madison, Madison, Wisconsin, United States of America
| | - Mark P. Keller
- Department of Biochemistry, University of Wisconsin–Madison, Madison, Wisconsin, United States of America
| | - Mary E. Rabaglia
- Department of Biochemistry, University of Wisconsin–Madison, Madison, Wisconsin, United States of America
| | - Kathryn L. Schueler
- Department of Biochemistry, University of Wisconsin–Madison, Madison, Wisconsin, United States of America
| | - Donald S. Stapleton
- Department of Biochemistry, University of Wisconsin–Madison, Madison, Wisconsin, United States of America
| | - Daniel M. Gatti
- Jackson Laboratory, Bar Harbor, Maine, United States of America
| | | | - Daniel Amador-Noguez
- Department of Bacteriology, University of Wisconsin–Madison, Madison, Wisconsin, United States of America
| | - Jason D. Russell
- Department of Chemistry, University of Wisconsin–Madison, Madison, Wisconsin, United States of America
| | - Brian S. Yandell
- Department of Statistics, University of Wisconsin–Madison, Madison, Wisconsin, United States of America
| | - Karl W. Broman
- Department of Biostatistics and Medical Informatics, University of Wisconsin–Madison, Madison, Wisconsin, United States of America
| | - Joshua J. Coon
- Department of Chemistry, University of Wisconsin–Madison, Madison, Wisconsin, United States of America
- Morgridge Institute for Research, Madison, Wisconsin, United States of America
- Department of Biomolecular Chemistry, University of Wisconsin–Madison, Madison, Wisconsin, United States of America
| | - Alan D. Attie
- Department of Biochemistry, University of Wisconsin–Madison, Madison, Wisconsin, United States of America
| | - Federico E. Rey
- Department of Bacteriology, University of Wisconsin–Madison, Madison, Wisconsin, United States of America
| |
Collapse
|
263
|
Di YZ, Han BS, Di JM, Liu WY, Tang Q. Role of the brain-gut axis in gastrointestinal cancer. World J Clin Cases 2019; 7:1554-1570. [PMID: 31367615 PMCID: PMC6658366 DOI: 10.12998/wjcc.v7.i13.1554] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2019] [Revised: 04/04/2019] [Accepted: 05/02/2019] [Indexed: 02/05/2023] Open
Abstract
Several studies have largely focused on the significant role of the nervous and immune systems in the process of tumorigenesis, including tumor growth, proliferation, apoptosis, and metastasis. The brain-gut-axis is a new paradigm in neuroscience, which describes the biochemical signaling between the gastrointestinal (GI) tract and the central nervous system. This axis may play a critical role in the tumorigenesis and development of GI cancers. Mechanistically, the bidirectional signal transmission of the brain-gut-axis is complex and remains to be elucidated. In this article, we review the current findings concerning the relationship between the brain-gut axis and GI cancer cells, focusing on the significant role of the brain-gut axis in the processes of tumor proliferation, invasion, apoptosis, autophagy, and metastasis. It appears that the brain might modulate GI cancer by two pathways: the anatomical nerve pathway and the neuroendocrine route. The simulation and inactivation of the central nervous, sympathetic, and parasympathetic nervous systems, or changes in the innervation of the GI tract might contribute to a higher incidence of GI cancers. In addition, neurotransmitters and neurotrophic factors can produce stimulatory or inhibitory effects in the progression of GI cancers. Insights into these mechanisms may lead to the discovery of potential prognostic and therapeutic targets.
Collapse
Affiliation(s)
- Yang-Zi Di
- Department of General Surgery, Shiyan Taihe Hospital, Hubei University of Medicine, Shiyan 442000, Hubei Province, China
| | - Bo-Sheng Han
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 443000, Hubei Province, China
| | - Jun-Mao Di
- Department of General Surgery, Shiyan Taihe Hospital, Hubei University of Medicine, Shiyan 442000, Hubei Province, China
| | - Wei-Yan Liu
- Department of General Surgery, Shiyan Taihe Hospital, Hubei University of Medicine, Shiyan 442000, Hubei Province, China
| | - Qiang Tang
- Department of General Surgery, Shiyan Taihe Hospital, Hubei University of Medicine, Shiyan 442000, Hubei Province, China
| |
Collapse
|
264
|
Hamad AF, Alessi-Severini S, Mahmud SM, Brownell M, Kuo IF. Early childhood antibiotics use and autism spectrum disorders: a population-based cohort study. Int J Epidemiol 2019; 47:1497-1506. [PMID: 30101312 DOI: 10.1093/ije/dyy162] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/10/2018] [Indexed: 01/15/2023] Open
Abstract
Background Changes in microbiota composition as a result of antibiotics use in early life has been proposed as a possible contributor in the aetiology of autism spectrum disorders (ASD). We aimed to examine the association between early life antibiotic exposure and risk of ASD. Methods This was a population-based cohort study which included all live births in Manitoba, Canada, between 1 April 1998 and 31 March 2016. We used administrative health data from the Manitoba Population Research Data Repository. Exposure was defined as having filled one or more antibiotic prescription during the first year of life. The main outcome was ASD diagnosis. Cox proportional hazards regression models were used to estimate the risk of developing ASD in the overall population and in a sibling cohort. Results Of all subjects in the cohort (n = 214 834), 94 024 (43.8%) filled an antibiotic prescription during the first year of life. During follow-up, 2965 children received an ASD diagnosis. Compared with children who did not use antibiotics during the first year of life, those who received antibiotics had a reduced risk of ASD [adjusted hazardz ratio (HR) 0.91, 95% confidence interval (CI) 0.84-0.99). Number of treatment courses and cumulative duration of antibiotic exposure were not associated with ASD. In the sibling-controlled analysis, early life antibiotic exposure was not associated with ASD (adjusted HR 1.03, 95% CI 0.86-1.23). Conclusions Our findings suggested no clinically significant association between early life antibiotics exposure and risk of autism spectrum disorders, and should provide reassurance to concerned prescribers and parents.
Collapse
Affiliation(s)
- Amani F Hamad
- College of Pharmacy, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Silvia Alessi-Severini
- College of Pharmacy, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada.,Manitoba Centre for Health Policy, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB, Canada
| | - Salaheddin M Mahmud
- College of Pharmacy, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada.,Department of Community Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB, Canada.,Vaccine and Drug Evaluation Centre, University of Manitoba, Winnipeg, MB, Canada
| | - Marni Brownell
- Manitoba Centre for Health Policy, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB, Canada.,Department of Community Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB, Canada
| | - I Fan Kuo
- College of Pharmacy, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
265
|
Modeling gut-brain interactions in zebrafish. Brain Res Bull 2019; 148:55-62. [DOI: 10.1016/j.brainresbull.2019.03.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 03/10/2019] [Accepted: 03/13/2019] [Indexed: 12/11/2022]
|
266
|
The Possible Role of the Microbiota-Gut-Brain-Axis in Autism Spectrum Disorder. Int J Mol Sci 2019; 20:ijms20092115. [PMID: 31035684 PMCID: PMC6539237 DOI: 10.3390/ijms20092115] [Citation(s) in RCA: 220] [Impact Index Per Article: 36.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 04/17/2019] [Accepted: 04/28/2019] [Indexed: 02/08/2023] Open
Abstract
New research points to a possible link between autism spectrum disorder (ASD) and the gut microbiota as many autistic children have co-occurring gastrointestinal problems. This review focuses on specific alterations of gut microbiota mostly observed in autistic patients. Particularly, the mechanisms through which such alterations may trigger the production of the bacterial metabolites, or leaky gut in autistic people are described. Various altered metabolite levels were observed in the blood and urine of autistic children, many of which were of bacterial origin such as short chain fatty acids (SCFAs), indoles and lipopolysaccharides (LPS). A less integrative gut-blood-barrier is abundant in autistic individuals. This explains the leakage of bacterial metabolites into the patients, triggering new body responses or an altered metabolism. Some other co-occurring symptoms such as mitochondrial dysfunction, oxidative stress in cells, altered tight junctions in the blood-brain barrier and structural changes in the cortex, hippocampus, amygdala and cerebellum were also detected. Moreover, this paper suggests that ASD is associated with an unbalanced gut microbiota (dysbiosis). Although the cause-effect relationship between ASD and gut microbiota is not yet well established, the consumption of specific probiotics may represent a side-effect free tool to re-establish gut homeostasis and promote gut health. The diagnostic and therapeutic value of bacterial-derived compounds as new possible biomarkers, associated with perturbation in the phenylalanine metabolism, as well as potential therapeutic strategies will be discussed.
Collapse
|
267
|
Jang HM, Lee KE, Kim DH. The Preventive and Curative Effects of Lactobacillus reuteri NK33 and Bifidobacterium adolescentis NK98 on Immobilization Stress-Induced Anxiety/Depression and Colitis in Mice. Nutrients 2019; 11:nu11040819. [PMID: 30979031 PMCID: PMC6521032 DOI: 10.3390/nu11040819] [Citation(s) in RCA: 132] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 04/03/2019] [Accepted: 04/09/2019] [Indexed: 01/01/2023] Open
Abstract
The gut dysbiosis by stressors such as immobilization deteriorates psychiatric disorders through microbiota-gut-brain axis activation. To understand whether probiotics could simultaneously alleviate anxiety/depression and colitis, we examined their effects on immobilization stress (IS)-induced anxiety/depression and colitis in mice. The probiotics Lactobacillus reuteri NK33 and Bifidobacterium adolescentis NK98 were isolated from healthy human feces. Mice with anxiety/depression and colitis were prepared by IS treatment. NK33 and NK98 potently suppressed NF-κB activation in lipopolysaccharide (LPS)-induced BV-2 cells. Treatment with NK33 and/or NK98, which were orally gavaged in mice before or after IS treatment, significantly suppressed the occurrence and development of anxiety/depression, infiltration of Iba1+ and LPS+/CD11b+ cells (activated microglia) into the hippocampus, and corticosterone, IL-6, and LPS levels in the blood. Furthermore, they induced hippocampal BDNF expression while NF-κB activation was suppressed. NK33 and/or NK98 treatments suppressed IS-induced colon shortening, myeloperoxidase activity, infiltration of CD11b+/CD11c+ cells, and IL-6 expression in the colon. Their treatments also suppressed the IS-induced fecal Proteobacteria population and excessive LPS production. They also induced BDNF expression in LPS-induced SH-SY5Y cells in vitro. In conclusion, NK33 and NK98 synergistically alleviated the occurrence and development of anxiety/depression and colitis through the regulation of gut immune responses and microbiota composition.
Collapse
Affiliation(s)
- Hyo-Min Jang
- Neurobiota Research Center, Department of Life and Nanopharmaceutical Sciences, College of Pharmacy, Kyung Hee University, Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Korea.
| | - Kyung-Eon Lee
- Neurobiota Research Center, Department of Life and Nanopharmaceutical Sciences, College of Pharmacy, Kyung Hee University, Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Korea.
| | - Dong-Hyun Kim
- Neurobiota Research Center, Department of Life and Nanopharmaceutical Sciences, College of Pharmacy, Kyung Hee University, Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Korea.
| |
Collapse
|
268
|
Luo C, Wang X, Huang H, Mao X, Zhou H, Liu Z. Effect of Metformin on Antipsychotic-Induced Metabolic Dysfunction: The Potential Role of Gut-Brain Axis. Front Pharmacol 2019; 10:371. [PMID: 31024322 PMCID: PMC6465968 DOI: 10.3389/fphar.2019.00371] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 03/26/2019] [Indexed: 12/31/2022] Open
Abstract
Antipsychotics are the first-line medications prescribed for patients with schizophrenia or other mental disorders. Cumulative evidence has revealed that metabolic dysfunctions frequently occur in patients receiving antipsychotics, especially second-generation antipsychotics, and these effects may decrease patient compliance and increase health costs. Metformin is an effective pharmaceutical adjuvant for ameliorating antipsychotic-induced metabolic dysfunction (AIMD) in clinical practice. However, the mechanism of the effects of metformin on AIMD remains unclear. The gut-brain axis is a bidirectional communication system between the gastrointestinal tract and the central nervous system and has been associated with many pathological and physiological conditions, such as those related to metabolism. Antipsychotics interact with and have affinity for dopamine receptors and other receptors in the brain, and treatment with these antipsychotics has been shown to influence gut microbiota metabolism and composition, as observed in both animal and human studies. Metformin exerts an antidiabetic effect that is correlated with activation of AMP-kinase in the hypothalamus, and metformin also influences gut flora. Therefore, the gut-brain axis may play a role in the effect of metformin on AIMD. Since no direct evidence is available, this perspective may provide a direction for further research.
Collapse
Affiliation(s)
- Chao Luo
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Pharmacogenetics, Institute of Clinical Pharmacology, Central South University, Changsha, China.,School of Life Sciences, Central South University, Changsha, China
| | - Xu Wang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Pharmacogenetics, Institute of Clinical Pharmacology, Central South University, Changsha, China
| | - Hanxue Huang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Pharmacogenetics, Institute of Clinical Pharmacology, Central South University, Changsha, China
| | - Xiaoyuan Mao
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Pharmacogenetics, Institute of Clinical Pharmacology, Central South University, Changsha, China
| | - Honghao Zhou
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Pharmacogenetics, Institute of Clinical Pharmacology, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Zhaoqian Liu
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Pharmacogenetics, Institute of Clinical Pharmacology, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
269
|
Smith LK, Wissel EF. Microbes and the Mind: How Bacteria Shape Affect, Neurological Processes, Cognition, Social Relationships, Development, and Pathology. PERSPECTIVES ON PSYCHOLOGICAL SCIENCE 2019; 14:397-418. [DOI: 10.1177/1745691618809379] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Recent data suggest that the human body is not so exclusively human after all. Specifically, humans share their bodies with approximately 10 trillion microorganisms, collectively known as the microbiome. Chief among these microbes are bacteria, and there is a growing consensus that they are critical to virtually all facets of normative functioning. This article reviews the ways in which bacteria shape affect, neurological processes, cognition, social relationships, development, and psychological pathology. To date, the vast majority of research on interactions between microbes and humans has been conducted by scientists outside the field of psychology, despite the fact that psychological scientists are experts in many of the topics being explored. This review aims to orient psychological scientists to the most relevant research and perspectives regarding the microbiome so that we might contribute to the now widespread, interdisciplinary effort to understand the relationship between microbes and the mind.
Collapse
Affiliation(s)
- Leigh K. Smith
- Department of Psychology, University of California, Davis
| | | |
Collapse
|
270
|
Tangestani Fard M, Stough C. A Review and Hypothesized Model of the Mechanisms That Underpin the Relationship Between Inflammation and Cognition in the Elderly. Front Aging Neurosci 2019; 11:56. [PMID: 30930767 PMCID: PMC6425084 DOI: 10.3389/fnagi.2019.00056] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 02/26/2019] [Indexed: 12/13/2022] Open
Abstract
Age is associated with increased risk for several disorders including dementias, cardiovascular disease, atherosclerosis, obesity, and diabetes. Age is also associated with cognitive decline particularly in cognitive domains associated with memory and processing speed. With increasing life expectancies in many countries, the number of people experiencing age-associated cognitive impairment is increasing and therefore from both economic and social terms the amelioration or slowing of cognitive aging is an important target for future research. However, the biological causes of age associated cognitive decline are not yet, well understood. In the current review, we outline the role of inflammation in cognitive aging and describe the role of several inflammatory processes, including inflamm-aging, vascular inflammation, and neuroinflammation which have both direct effect on brain function and indirect effects on brain function via changes in cardiovascular function.
Collapse
Affiliation(s)
| | - Con Stough
- Centre for Human Psychopharmacology, Swinburne University of Technology, Melbourne, VIC, Australia
| |
Collapse
|
271
|
Wu Y, Zhu B, Chen Z, Duan J, Luo A, Yang L, Yang C. New Insights Into the Comorbidity of Coronary Heart Disease and Depression. Curr Probl Cardiol 2019; 46:100413. [PMID: 31005351 DOI: 10.1016/j.cpcardiol.2019.03.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Accepted: 03/03/2019] [Indexed: 12/19/2022]
Abstract
Coronary heart disease (CHD) and depression are common disorders that markedly impair quality of life and impose a great financial burden on society. They are also frequently comorbid, exacerbating patient condition, and worsening prognosis. This comorbidity strongly suggests shared pathologic mechanisms. This review focuses on the incidence of depression in patients with CHD, deleterious effects of depression on CHD symptoms, and the potential mechanisms underlying comorbidity. In addition to the existing frequent mechanisms that are well known for decades, this review summarized interesting and original potential mechanisms to underlie the comorbidity, such as endocrine substances, gut microbiome, and microRNA. Finally, there are several treatment strategies for the comorbidity, involving drugs and psychotherapy, which may provide a theoretical basis for further basic research and clinical investigations on improved therapeutic interventions.
Collapse
|
272
|
Huang TT, Lai JB, Du YL, Xu Y, Ruan LM, Hu SH. Current Understanding of Gut Microbiota in Mood Disorders: An Update of Human Studies. Front Genet 2019; 10:98. [PMID: 30838027 PMCID: PMC6389720 DOI: 10.3389/fgene.2019.00098] [Citation(s) in RCA: 151] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 01/29/2019] [Indexed: 02/06/2023] Open
Abstract
Gut microbiota plays an important role in the bidirectional communication between the gut and the central nervous system. Mounting evidence suggests that gut microbiota can influence the brain function via neuroimmune and neuroendocrine pathways as well as the nervous system. Advances in gene sequencing techniques further facilitate investigating the underlying relationship between gut microbiota and psychiatric disorders. In recent years, researchers have preliminarily explored the gut microbiota in patients with mood disorders. The current review aims to summarize the published human studies of gut microbiota in mood disorders. The findings showed that microbial diversity and taxonomic compositions were significantly changed compared with healthy individuals. Most of these findings revealed that short-chain fatty acids-producing bacterial genera were decreased, while pro-inflammatory genera and those involved in lipid metabolism were increased in patients with depressive episodes. Interestingly, the abundance of Actinobacteria, Enterobacteriaceae was increased and Faecalibacterium was decreased consistently in patients with either bipolar disorder or major depressive disorder. Some studies further indicated that specific bacteria were associated with clinical characteristics, inflammatory profiles, metabolic markers, and pharmacological treatment. These studies present preliminary evidence of the important role of gut microbiota in mood disorders, through the brain-gut-microbiota axis, which emerges as a promising target for disease diagnosis and therapeutic interventions in the future.
Collapse
Affiliation(s)
- Ting-Ting Huang
- Department of Psychiatry, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jian-Bo Lai
- Department of Psychiatry, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,The Key Laboratory of Mental Disorder's Management of Zhejiang Province, Hangzhou, China.,Brain Research Institute of Zhejiang University, Hangzhou, China
| | - Yan-Li Du
- Department of Psychiatry, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yi Xu
- Department of Psychiatry, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,The Key Laboratory of Mental Disorder's Management of Zhejiang Province, Hangzhou, China.,Brain Research Institute of Zhejiang University, Hangzhou, China
| | - Lie-Min Ruan
- Department of Mental Health, Ningbo First Hospital, Ningbo, China
| | - Shao-Hua Hu
- Department of Psychiatry, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,The Key Laboratory of Mental Disorder's Management of Zhejiang Province, Hangzhou, China.,Brain Research Institute of Zhejiang University, Hangzhou, China
| |
Collapse
|
273
|
Yeruva T, Lee CH. Regulation of Vaginal Microbiome by Nitric Oxide. Curr Pharm Biotechnol 2019; 20:17-31. [PMID: 30727888 DOI: 10.2174/1389201020666190207092850] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 07/18/2018] [Accepted: 01/30/2019] [Indexed: 12/15/2022]
Abstract
In this review, the composition and regulation of vaginal microbiome that displays an apparent microbial diversity and interacts with other microbiota in the body are presented. The role of nitric oxide (NO) in the regulation of vaginal microflora in which lactobacillus species typically dominate has been delineated from the perspective of maintaining gynecologic ecosystem and prevention of onset of bacteriostatic vaginosis (BV) and/or sexually transmitted diseases (STD) including HIV-1 transmission. The interactions between NO and vaginal microbiome and its influence on the levels of Lactobacillus, hormones and other components are described. The recent progress, such as NO drugs, probiotic Lactobacilli and Lactobacillus microbots, that can be explored to alleviate abnormality of vagina microbiome, is also discussed. An identification of Oral-GI-Vagina axis, as well as the relationship between NO and Lactobacillus regulation in the healthy or pathological status of vagina microbiome, surely offers the advanced drug delivery option against BV or STD including AIDS.
Collapse
Affiliation(s)
- Taj Yeruva
- Division of Pharmaceutical Sciences, School of Pharmacy, University of Missouri, Kansas City, MO, 64108, United States
| | - Chi H Lee
- Division of Pharmaceutical Sciences, School of Pharmacy, University of Missouri, Kansas City, MO, 64108, United States
| |
Collapse
|
274
|
Influence of pharmacological and epigenetic factors to suppress neurotrophic factors and enhance neural plasticity in stress and mood disorders. Cogn Neurodyn 2019; 13:219-237. [PMID: 31168328 DOI: 10.1007/s11571-019-09522-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 12/17/2018] [Accepted: 01/16/2019] [Indexed: 02/08/2023] Open
Abstract
Stress-induced major depression and mood disorders are characterized by behavioural abnormalities and psychiatric illness, leading to disability and immature mortality worldwide. Neurobiological mechanisms of stress and mood disorders are discussed considering recent findings, and challenges to enhance pharmacological effects of antidepressant, and mood stabilizers. Pharmacological enhancement of ketamine and scopolamine regulates depression at the molecular level, increasing synaptic plasticity in prefrontal regions. Blood-derived neurotrophic factors facilitate mood-deficit symptoms. Epigenetic factors maintain stress-resilience in hippocampal region. Regulation of neurotrophic factors blockades stress, and enhances neuronal survival though it paralyzes limbic regions. Molecular agents and neurotrophic factors also control behavioral and synaptic plasticity in addiction and stress disorders. Future research on neuronal dynamics and cellular actions can be directed to obtain the etiology of synaptic dysregulation in mood disorder and stress. For the first time, the current review contributes to the literature of synaptic plasticity representing the role of epigenetic mechanisms and glucocorticoid receptors to predict depression and anxiety in clinical conditions.
Collapse
|
275
|
Castillo-Álvarez F, Marzo-Sola ME. El holobionte enfermo, el ejemplo de la esclerosis múltiple. Med Clin (Barc) 2019; 152:147-153. [DOI: 10.1016/j.medcli.2018.08.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 08/30/2018] [Accepted: 08/31/2018] [Indexed: 12/19/2022]
|
276
|
Luan H, Wang X, Cai Z. Mass spectrometry-based metabolomics: Targeting the crosstalk between gut microbiota and brain in neurodegenerative disorders. MASS SPECTROMETRY REVIEWS 2019; 38:22-33. [PMID: 29130504 DOI: 10.1002/mas.21553] [Citation(s) in RCA: 121] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 10/12/2017] [Indexed: 05/10/2023]
Abstract
Metabolomics seeks to take a "snapshot" in a time of the levels, activities, regulation and interactions of all small molecule metabolites in response to a biological system with genetic or environmental changes. The emerging development in mass spectrometry technologies has shown promise in the discovery and quantitation of neuroactive small molecule metabolites associated with gut microbiota and brain. Significant progress has been made recently in the characterization of intermediate role of small molecule metabolites linked to neural development and neurodegenerative disorder, showing its potential in understanding the crosstalk between gut microbiota and the host brain. More evidence reveals that small molecule metabolites may play a critical role in mediating microbial effects on neurotransmission and disease development. Mass spectrometry-based metabolomics is uniquely suitable for obtaining the metabolic signals in bidirectional communication between gut microbiota and brain. In this review, we summarized major mass spectrometry technologies including liquid chromatography-mass spectrometry, gas chromatography-mass spectrometry, and imaging mass spectrometry for metabolomics studies of neurodegenerative disorders. We also reviewed the recent advances in the identification of new metabolites by mass spectrometry and metabolic pathways involved in the connection of intestinal microbiota and brain. These metabolic pathways allowed the microbiota to impact the regular function of the brain, which can in turn affect the composition of microbiota via the neurotransmitter substances. The dysfunctional interaction of this crosstalk connects neurodegenerative diseases, including Parkinson's disease, Alzheimer's disease and Huntington's disease. The mass spectrometry-based metabolomics analysis provides information for targeting dysfunctional pathways of small molecule metabolites in the development of the neurodegenerative diseases, which may be valuable for the investigation of underlying mechanism of therapeutic strategies.
Collapse
Affiliation(s)
- Hemi Luan
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR, China
| | - Xian Wang
- Key Laboratory of Analytical Chemistry of State Ethnic Affairs Commission, College of Chemistry and Materials Science, South-Central University for Nationalities, Wuhan, Hubei, China
| | - Zongwei Cai
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR, China
| |
Collapse
|
277
|
Agorastos A, Pervanidou P, Chrousos GP, Baker DG. Developmental Trajectories of Early Life Stress and Trauma: A Narrative Review on Neurobiological Aspects Beyond Stress System Dysregulation. Front Psychiatry 2019; 10:118. [PMID: 30914979 PMCID: PMC6421311 DOI: 10.3389/fpsyt.2019.00118] [Citation(s) in RCA: 206] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 02/15/2019] [Indexed: 12/21/2022] Open
Abstract
Early life stressors display a high universal prevalence and constitute a major public health problem. Prolonged psychoneurobiological alterations as sequelae of early life stress (ELS) could represent a developmental risk factor and mediate risk for disease, leading to higher physical and mental morbidity rates in later life. ELS could exert a programming effect on sensitive neuronal brain networks related to the stress response during critical periods of development and thus lead to enduring hyper- or hypo-activation of the stress system and altered glucocorticoid signaling. In addition, alterations in emotional and autonomic reactivity, circadian rhythm disruption, functional and structural changes in the brain, as well as immune and metabolic dysregulation have been lately identified as important risk factors for a chronically impaired homeostatic balance after ELS. Furthermore, human genetic background and epigenetic modifications through stress-related gene expression could interact with these alterations and explain inter-individual variation in vulnerability or resilience to stress. This narrative review presents relevant evidence from mainly human research on the ten most acknowledged neurobiological allostatic pathways exerting enduring adverse effects of ELS even decades later (hypothalamic-pituitary-adrenal axis, autonomic nervous system, immune system and inflammation, oxidative stress, cardiovascular system, gut microbiome, sleep and circadian system, genetics, epigenetics, structural, and functional brain correlates). Although most findings back a causal relation between ELS and psychobiological maladjustment in later life, the precise developmental trajectories and their temporal coincidence has not been elucidated as yet. Future studies should prospectively investigate putative mediators and their temporal sequence, while considering the potentially delayed time-frame for their phenotypical expression. Better screening strategies for ELS are needed for a better individual prevention and treatment.
Collapse
Affiliation(s)
- Agorastos Agorastos
- II. Department of Psychiatry, Division of Neurosciences, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Panagiota Pervanidou
- Unit of Developmental and Behavioral Pediatrics, First Department of Pediatrics, School of Medicine, Aghia Sophia Children's Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - George P Chrousos
- Unit of Developmental and Behavioral Pediatrics, First Department of Pediatrics, School of Medicine, Aghia Sophia Children's Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Dewleen G Baker
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, United States.,VA Center of Excellence for Stress and Mental Health, San Diego, La Jolla, CA, United States
| |
Collapse
|
278
|
Zang L, Ma Y, Huang W, Ling Y, Sun L, Wang X, Zeng A, Dahlgren RA, Wang C, Wang H. Dietary Lactobacillus plantarum ST-III alleviates the toxic effects of triclosan on zebrafish (Danio rerio) via gut microbiota modulation. FISH & SHELLFISH IMMUNOLOGY 2019; 84:1157-1169. [PMID: 30423455 DOI: 10.1016/j.fsi.2018.11.007] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2018] [Revised: 10/29/2018] [Accepted: 11/01/2018] [Indexed: 06/09/2023]
Abstract
The probiotics, Lactobacillus plantarum ST-III, plays an important role in modulating microbiota and alleviating intestinal metabolic disorders. Herein, we reported that Lactobacillus increases biodiversity of zebrafish gut flora, and attenuates toxic effects from chronic triclosan (TCS) exposure. Lactobacillus-feeding recovered the species and amount of microorganisms in the intestines of zebrafish, and inhibited toxin production by saprophytic bacterial growth. Abnormal physiological indexes and malonaldeyhde content resulting from TCS exposure were effectively alleviated. Additionally, lipid-metabolism disorders, such as increased triglyceride and total cholesterol levels, were attenuated by a probiotics diet. The number of CD4+ T cell lymphocytes in the lamina propria of the duodenal mucosa was decreased in zebrafish receiving a Lactobacillus diet compared to the TCS-exposed group, showing a consistent expression trend for six immune genes (NF-κB, IL-1β, TNF-α, lysozyme, TLR4α, IL-10) in the intestinal mucosa. Histopathological observations of intestines, spleen and kidney showed that TCS exposure produced severe damage to the morphology and structure of immune and metabolism-related organs. Lactobacillus was capable of mitigating this damage, but bile salt hydrolase, an active extract of Lactobacillus, was not an effective mitigation strategy. The Lactobacillus-induced decrease in the number of inflammatory cells confirmed its role in preventing inflammatory injury. Three behavioral tests (T-maze, bottom dwelling and social interaction) indicated that a probiotics diet improved zebrafish movement and learning/memory capacity, effectively alleviating anxiety behavior due to TCS exposure. These findings inform development of beneficial strategies to alleviate intestinal metabolic syndromes and neurodegenerative diseases resulting from exposure to environmental contaminants through modifying gut flora with a probiotics diet.
Collapse
Affiliation(s)
- Luxiu Zang
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Yan Ma
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Wenhao Huang
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Yuhang Ling
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Limei Sun
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Xuedong Wang
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China.
| | - Aibing Zeng
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China.
| | - Randy A Dahlgren
- Department of Land, Air and Water Resources, University of California, Davis, CA, 95616, USA
| | - Caihong Wang
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Huili Wang
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China; National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, Suzhou University of Science and Technology, Suzhou, 215009, China.
| |
Collapse
|
279
|
Taherian M, Mahin Samadi P, Rastegar H, Faramarzi MA, Rostami-Nejad M, Yazdi MH, Rezaei-Tavirani M, Yazdi Z. An Overview on Probiotics as an Alternative Strategy for Prevention and Treatment of Human Diseases. IRANIAN JOURNAL OF PHARMACEUTICAL RESEARCH : IJPR 2019; 18:31-50. [PMID: 32802088 PMCID: PMC7393061 DOI: 10.22037/ijpr.2020.112232.13620] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Probiotics are viable and useful microorganisms, which are beneficial factors for human and animal health by altering their microbial flora. Most of the probiotics belong to a large group of bacteria in the human gastrointestinal tract. There are several clinical shreds of evidence that show anti-carcinogenic effects of probiotics through altering digestive enzymes, inhibition of carcinogenic agents, and modulating the immune responses in experimental animals. Many studies have been performed to evaluate the potential effectiveness of probiotics in treating or preventing neurological diseases such as MS and novel treatment modality for T1D. The purpose of this study is to have an overview on probiotic microorganisms and to review the previous researches on the effects of probiotics on health through currently available literatures. The study was performed using following keywords; Probiotics, Cancer, Immune system, Multiple Sclerosis (MS) and Diabetes mellitus. PubMed/Medline, Clinicaltrials.gov, Ovid, Google Scholar, and Reaxcys databases used to find the full text of related articles. According to the current available data on probiotics and related health-promoting benefits, it seems that, consumption of probiotics can lead to the prevention and reduction the risk of cancer, diabetes, and multiple sclerosis. Although for the better and more decisive conclusion, there is a need to larger sample size clinical studies with more focus on the safety of these biological agents and their possible beneficial effects on different population.
Collapse
Affiliation(s)
- Mahdi Taherian
- Food and Drug Laboratory Research Center, Iran Food and Drug Organization (FDO), Ministry of Health and Medical Education (MOH), Tehran, Iran.
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Pariya Mahin Samadi
- Biotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.
| | - Hossein Rastegar
- Food and Drug Cosmetic Research Center, Iran Food and Drug Organization (FDO), Ministry of Health and Medical Education (MOH), Tehran, Iran.
| | - Mohammad Ali Faramarzi
- Department of Pharmaceutical Biotechnology and Biotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.
| | - Mohammad Rostami-Nejad
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Mohammad Hossein Yazdi
- Biotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.
- Recombinant Vaccine Research Center, Tehran University of Medical Sciences, Tehran, Iran.
- Evidence-based Evaluation of Cost-Effectiveness and Clinical Outcomes, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran.
| | - Mostafa Rezaei-Tavirani
- Proteomics Research Center, Faculty of Paramedical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Zeinab Yazdi
- Department of Medicine and epidemiology, School of veterinary Medicine, University of California, Davis, USA.
| |
Collapse
|
280
|
Li Y, Hao Y, Fan F, Zhang B. The Role of Microbiome in Insomnia, Circadian Disturbance and Depression. Front Psychiatry 2018; 9:669. [PMID: 30568608 PMCID: PMC6290721 DOI: 10.3389/fpsyt.2018.00669] [Citation(s) in RCA: 140] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 11/20/2018] [Indexed: 12/31/2022] Open
Abstract
Good sleep and mood are important for health and for keeping active. Numerous studies have suggested that the incidence of insomnia and depressive disorder are linked to biological rhythms, immune function, and nutrient metabolism, but the exact mechanism is not yet clear. There is considerable evidence showing that the gut microbiome not only affects the digestive, metabolic, and immune functions of the host but also regulates host sleep and mental states through the microbiome-gut-brain axis. Preliminary evidence indicates that microorganisms and circadian genes can interact with each other. The characteristics of the gastrointestinal microbiome and metabolism are related to the host's sleep and circadian rhythm. Moreover, emotion and physiological stress can also affect the composition of the gut microorganisms. The gut microbiome and inflammation may be linked to sleep loss, circadian misalignment, affective disorders, and metabolic disease. In this review article, we discuss various functions of the gut microbiome and how its activities interact with the circadian rhythms and emotions of the host. Exploring the effects of the gut microbiome on insomnia and depression will help further our understanding of the pathogenesis of mental disorders. It is therefore important to regulate and maintain a normal gastrointestinal micro-ecological environment in patients when treating mental disorders.
Collapse
Affiliation(s)
- Yuanyuan Li
- Key Laboratory of Mental Health and Cognitive Science of Guangdong Province, and School of Psychology, Center for Studies of Psychological Application, South China Normal University, Guangdong, China
| | - Yanli Hao
- Department of Anatomy, Guangzhou Medical University, Guangdong, China
| | - Fang Fan
- Key Laboratory of Mental Health and Cognitive Science of Guangdong Province, and School of Psychology, Center for Studies of Psychological Application, South China Normal University, Guangdong, China
| | - Bin Zhang
- Department of Psychiatry, Nanfang Hospital, Southern Medical University, Guangdong, China
| |
Collapse
|
281
|
Arony DA, Gazda S, Kitara DL. Could Nodding Syndrome (NS) in Northern Uganda be an environmentally induced alteration of ancestral microbiota? Pan Afr Med J 2018; 31:152. [PMID: 31086613 PMCID: PMC6488260 DOI: 10.11604/pamj.2018.31.152.14142] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 10/19/2018] [Indexed: 01/15/2023] Open
Abstract
Hippocrates stated in 460-C.370 BC that, “All diseases begin in the Gut.” This statement may be beginning to have meanings in the advent of new diseases such as Nodding Syndrome (NS) and Autism Spectrum Disorder (ASD). Interestingly, a recent publication from China in the journal of microbiology in 2017 suggests that high grain diet had dynamically shifted the composition of mucosa-associated microbiota and induced mucosal Injuries in the colon of Sheep. NS is a devastating childhood neurological disorder characterized by atonic seizure, cognitive impairment, head nodding, wasting and stunted growth. In addition, NS in Northern Uganda is clustered in time (those who were in IDPs), in space (discretely observed on either sides of the two rivers of Aswa and Pager) and in person (onset mainly between the ages of 5-15 years) and therefore exhibits spatial temporality. The first case of NS was noticed in Kitgum district in 1997, one year after the reported displacement of that community into IDP. Prior to that internal displacement, there were no reported cases of NS. The same scenario occurred in the IDPs of Odek, Gulu district where the population was displaced into IDPs in 2001 and approximately a year later in 2002, cases of NS began to appear. In the IDPs, children that eventually developed NS fed nearly exclusively on food ration provided by relief agencies and roughly a year later, cases of NS began to appear. In the other East African countries, there were no reported cases of NS prior to internal displacement and dependence on food ration. The observed common factors in the three East African regions where NS occurs at endemic proportion are perhaps: Internal displacement and feeding on relief food. These researchers suggest that NS may have perhaps resulted from dietary and environmental factors during IDPs which may have been foreign to their GIT and links this observation to the concept of microbiota-gut-brain axis.
Collapse
Affiliation(s)
- Denis Anywar Arony
- Gulu University, Faculty of Medicine, Department of Biochemistry, Gulu, Uganda
| | - Suzanne Gazda
- Founding President of Hope for Humans (HfH) and Neurologist, San Antonio, Texas, USA
| | - David Lagoro Kitara
- Gulu University, Faculty of Medicine, Department of Biochemistry, Gulu, Uganda.,Gulu University, Faculty of Medicine, Department of Surgery, Gulu, Uganda
| |
Collapse
|
282
|
Cuomo A, Maina G, Rosso G, Beccarini Crescenzi B, Bolognesi S, Di Muro A, Giordano N, Goracci A, Neal SM, Nitti M, Pieraccini F, Fagiolini A. The Microbiome: A New Target for Research and Treatment of Schizophrenia and its Resistant Presentations? A Systematic Literature Search and Review. Front Pharmacol 2018; 9:1040. [PMID: 30374300 PMCID: PMC6196757 DOI: 10.3389/fphar.2018.01040] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2018] [Accepted: 08/27/2018] [Indexed: 12/15/2022] Open
Abstract
Background: The gastrointestinal system hosts roughly 1,800 distinct phyla and about 40,000 bacterial classes, which are known as microbiota, and which are able to influence the brain. For instance, microbiota can also influence the immune response through the activation of the immune system or through the release of mediators that are able to cross the brain blood barrier or that can interact with other substances that have free access to the brain, such as tryptophan and kynurenic acid, which is a metabolite of tryptophan and which has been involved in the pathogenesis of schizophrenia. Objectives: This paper reviews the possible relationships between microbiome, schizophrenia and treatment resistance. Given the possibility of a role of immune activation and alterations, we also describe the relationship between schizophrenia and immune inflammatory response. Finally, we report on the studies about the use of probiotic and prebiotics in schizophrenia. Methods: Cochrane library and PubMed were searched from the year 2000 to 2018 for publications about microbiome, immune-mediated pathology, schizophrenia and neurodevelopmental disorders. The following search string was used: (microbiome or immune mediated) AND (schizophrenia OR neurodevelopmental disorder). Associated publications were hand-searched from the list of references of the identified papers. A narrative review was also conducted about the use of probiotics and prebiotics in schizophrenia. Results: There exists a close relationship between the central nervous system and the gastrointestinal tract, which makes it likely that there is a relationship between schizophrenia, including its resistant forms, and microbiota. This paper provides a summary of the most important studies that we identified on the topic. Conclusions: Schizophrenia in particular, remain a challenge for researchers and practitioners and the possibility of a role of the microbiome and of immune-mediated pathology should be better explored, not only in animal models but also in clinical trials of agents that are able to alter gut microbiota and possibly influence the mechanisms of gastrointestinal inflammation. Microbiome targeted treatments have not been well-studied yet in patients with mental illness in general, and with schizophrenia in particular. Nonetheless, the field is well worth of being appropriately investigated.
Collapse
Affiliation(s)
- Alessandro Cuomo
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Giuseppe Maina
- Department of Neuroscience, University of Torino, Turin, Italy
| | - Gianluca Rosso
- Psychiatric Unit, San Luigi Gonzaga Hospital of Orbassano, University of Torino, Turin, Italy
| | | | - Simone Bolognesi
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Angela Di Muro
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Nicola Giordano
- Department of Medicine, Surgical and Neurological Sciences, University of Siena, Siena, Italy
| | - Arianna Goracci
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Stephen M. Neal
- Department of Psychiatry, West Virginia School of Osteopathic Medicine, Lewisburg, WV, United States
| | - Maria Nitti
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Fulvio Pieraccini
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Andrea Fagiolini
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| |
Collapse
|
283
|
de J.R. De-Paula V, Forlenza AS, Forlenza OV. Relevance of gutmicrobiota in cognition, behaviour and Alzheimer’s disease. Pharmacol Res 2018; 136:29-34. [DOI: 10.1016/j.phrs.2018.07.007] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 05/30/2018] [Accepted: 07/10/2018] [Indexed: 12/22/2022]
|
284
|
Colonetti K, Roesch LF, Schwartz IVD. The microbiome and inborn errors of metabolism: Why we should look carefully at their interplay? Genet Mol Biol 2018; 41:515-532. [PMID: 30235399 PMCID: PMC6136378 DOI: 10.1590/1678-4685-gmb-2017-0235] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 01/19/2018] [Indexed: 12/26/2022] Open
Abstract
Research into the influence of the microbiome on the human body has been shedding new light on diseases long known to be multifactorial, such as obesity, mood disorders, autism, and inflammatory bowel disease. Although inborn errors of metabolism (IEMs) are monogenic diseases, genotype alone is not enough to explain the wide phenotypic variability observed in patients with these conditions. Genetics and diet exert a strong influence on the microbiome, and diet is used (alone or as an adjuvant) in the treatment of many IEMs. This review will describe how the effects of the microbiome on the host can interfere with IEM phenotypes through interactions with organs such as the liver and brain, two of the structures most commonly affected by IEMs. The relationships between treatment strategies for some IEMs and the microbiome will also be addressed. Studies on the microbiome and its influence in individuals with IEMs are still incipient, but are of the utmost importance to elucidating the phenotypic variety observed in these conditions.
Collapse
Affiliation(s)
- Karina Colonetti
- Programa de Pós-Graduação em Genética e Biologia Molecular, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
- Laboratory of Basic Research and Advanced Investigations in Neurosciences (BRAIN), Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
| | - Luiz Fernando Roesch
- Interdisciplinary Research Center on Biotechnology-CIP-Biotec, Universidade Federal do Pampa, Bagé, RS, Brazil
| | - Ida Vanessa Doederlein Schwartz
- Programa de Pós-Graduação em Genética e Biologia Molecular, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
- Laboratory of Basic Research and Advanced Investigations in Neurosciences (BRAIN), Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
- Medical Genetics Service, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
| |
Collapse
|
285
|
Oriá RB, Malva JO, Foley PL, Freitas RS, Bolick DT, Guerrant RL. Revisiting Inbred Mouse Models to Study the Developing Brain: The Potential Role of Intestinal Microbiota. Front Hum Neurosci 2018; 12:358. [PMID: 30283311 PMCID: PMC6156437 DOI: 10.3389/fnhum.2018.00358] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 08/20/2018] [Indexed: 12/23/2022] Open
Affiliation(s)
- Reinaldo B Oriá
- Laboratory of Tissue Healing, Ontogeny and Nutrition, Department of Morphology and the Institute of Biomedicine, School of Medicine, Federal University of Ceara, Fortaleza, Brazil
| | - João O Malva
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Patricia L Foley
- Division of Comparative Medicine, Department of Microbiology and Immunology, Georgetown University, Washington, DC, United States
| | - Raul S Freitas
- Laboratory of Tissue Healing, Ontogeny and Nutrition, Department of Morphology and the Institute of Biomedicine, School of Medicine, Federal University of Ceara, Fortaleza, Brazil
| | - David T Bolick
- Division of Infectious Diseases and International Health, Center for Global Health, University of Virginia, Charlottesville, VA, United States
| | - Richard L Guerrant
- Division of Infectious Diseases and International Health, Center for Global Health, University of Virginia, Charlottesville, VA, United States
| |
Collapse
|
286
|
Targeting the gut microbiota to influence brain development and function in early life. Neurosci Biobehav Rev 2018; 95:191-201. [PMID: 30195933 DOI: 10.1016/j.neubiorev.2018.09.002] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 09/03/2018] [Accepted: 09/04/2018] [Indexed: 12/16/2022]
Abstract
In the first 2-3 years of life, the gut microbiota of infants quickly becomes diverse and rich. Disruptions in the evolving gut microbiota during this critical developmental period can impact brain development. Communication between the microbiota, gut and brain is driven by hormonal and neural regulation, as well as immune and metabolic pathways, however, our understanding of how the parallel developments that may underlie this communication are limited. In this paper, we review the known associations between the gut microbiota and brain development and brain function in early life, speculate on the potential mechanisms involved in this complex relationship and describe how nutritional intervention can further modulate the microbiota and, ultimately, brain development and function.
Collapse
|
287
|
Arai YC, Shiro Y, Funak Y, Kasugaii K, Omichi Y, Sakurai H, Matsubara T, Inoue M, Shimo K, Saisu H, Ikemoto T, Owari K, Nishihara M, Ushida T. The Association Between Constipation or Stool Consistency and Pain Severity in Patients With Chronic Pain. Anesth Pain Med 2018; 8:e69275. [PMID: 30250817 PMCID: PMC6139698 DOI: 10.5812/aapm.69275] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 06/01/2018] [Accepted: 08/03/2018] [Indexed: 12/13/2022] Open
Abstract
Background Bacteria can influence a variety of gut functions. Some studies showed that stool consistency and constipation were associated with gut microbiome (GM) composition, and enterotype, dysbiosis. Growing evidence indicates the significant role of GM in the homeostatic function of the host body. The GM may regulate multiple neurochemical and neurometabolic pathways. Chronicity of the pain is actively modulated at the molecular to the network level by means of several neurotransmitters. The GM to some extent can affect pain perception. Objectives The current study aimed at investigating the relationship between constipation state or usual stool form and pain severity of patients with chronic pain. Methods The current study was conducted on 365 patients with chronic pain. The participants were evaluated on their stool form (the Bristol stool form scale; BSFS), constipation state (the Cleveland clinic constipation score; CCCS), body mass index (BMI), and usual pain severity (numerical rating scale; NRS). In addition, the participants were assigned into five groups according to the pain region (i e, low back and/or lower limb, whole body, neck and/or upper back and/or upper limb, head and/or face, chest and/or abdominal). Results The CCS showed a significant and positive association with the pain severity of the total patients and patients with low back and/or lower limb pain. Simultaneous multiple linear regression analyses revealed that a predictor of the pain severity was the CCS for the total patients and patients with low back and/or lower limb, whole body pain. Conclusions Constipation displayed a significant and positive association with the pain severity of the total patients and patients with low back and/or lower limb pain, whole body.
Collapse
Affiliation(s)
- Young-Chang Arai
- Multidisciplinary Pain Center, Aichi Medical University, Nagakute, Japan
- Institute of Physical Fitness, Sports Medicine and Rehabilitation, School of Medicine, Aichi Medical University, Nagakute, Japan
| | - Yukiko Shiro
- Multidisciplinary Pain Center, Aichi Medical University, Nagakute, Japan
- Department of Physical Therapy, Faculty of Rehabilitation Sciences, Nagoya Gakuin University, Seto, Aichi, Japan
- Corresponding Author: Department of Physical Therapy, Faculty of Rehabilitation Sciences, Nagoya Gakuin University, P.O. Box: 4801298, Kamisinano-cho, Seto, Aichi, Japan. Tel: +81-561420351, Fax: +81-561420629,
| | - Yasushi Funak
- Department of Gastroenterology, School of Medicine, Aichi Medical University, Nagakute, Japan
| | - Kunio Kasugaii
- Department of Gastroenterology, School of Medicine, Aichi Medical University, Nagakute, Japan
| | - Yusuke Omichi
- Multidisciplinary Pain Center, Aichi Medical University, Nagakute, Japan
| | - Hiroki Sakurai
- Multidisciplinary Pain Center, Aichi Medical University, Nagakute, Japan
| | - Takako Matsubara
- Multidisciplinary Pain Center, Aichi Medical University, Nagakute, Japan
| | - Masayuki Inoue
- Multidisciplinary Pain Center, Aichi Medical University, Nagakute, Japan
- Institute of Physical Fitness, Sports Medicine and Rehabilitation, School of Medicine, Aichi Medical University, Nagakute, Japan
| | - Kazuhiro Shimo
- Multidisciplinary Pain Center, Aichi Medical University, Nagakute, Japan
- Institute of Physical Fitness, Sports Medicine and Rehabilitation, School of Medicine, Aichi Medical University, Nagakute, Japan
| | - Hironori Saisu
- Multidisciplinary Pain Center, Aichi Medical University, Nagakute, Japan
| | - Tatsunori Ikemoto
- Multidisciplinary Pain Center, Aichi Medical University, Nagakute, Japan
- Institute of Physical Fitness, Sports Medicine and Rehabilitation, School of Medicine, Aichi Medical University, Nagakute, Japan
| | - Keiko Owari
- Multidisciplinary Pain Center, Aichi Medical University, Nagakute, Japan
| | - Makoto Nishihara
- Multidisciplinary Pain Center, Aichi Medical University, Nagakute, Japan
| | - Takahiro Ushida
- Multidisciplinary Pain Center, Aichi Medical University, Nagakute, Japan
- Institute of Physical Fitness, Sports Medicine and Rehabilitation, School of Medicine, Aichi Medical University, Nagakute, Japan
| |
Collapse
|
288
|
Hatziagelaki E, Adamaki M, Tsilioni I, Dimitriadis G, Theoharides TC. Myalgic Encephalomyelitis/Chronic Fatigue Syndrome-Metabolic Disease or Disturbed Homeostasis due to Focal Inflammation in the Hypothalamus? J Pharmacol Exp Ther 2018; 367:155-167. [PMID: 30076265 DOI: 10.1124/jpet.118.250845] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 08/01/2018] [Indexed: 12/13/2022] Open
Abstract
Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a complex disease characterized by debilitating fatigue, lasting for at least 6 months, with associated malaise, headaches, sleep disturbance, and cognitive impairment, which severely impacts quality of life. A significant percentage of ME/CFS patients remain undiagnosed, mainly due to the complexity of the disease and the lack of reliable objective biomarkers. ME/CFS patients display decreased metabolism and the severity of symptoms appears to be directly correlated to the degree of metabolic reduction that may be unique to each individual patient. However, the precise pathogenesis is still unknown, preventing the development of effective treatments. The ME/CFS phenotype has been associated with abnormalities in energy metabolism, which are apparently due to mitochondrial dysfunction in the absence of mitochondrial diseases, resulting in reduced oxidative metabolism. Such mitochondria may be further contributing to the ME/CFS symptomatology by extracellular secretion of mitochondrial DNA, which could act as an innate pathogen and create an autoinflammatory state in the hypothalamus. We propose that stimulation of hypothalamic mast cells by environmental, neuroimmune, pathogenic and stress triggers activates microglia, leading to focal inflammation in the brain and disturbed homeostasis. This process could be targeted for the development of novel effective treatments.
Collapse
Affiliation(s)
- Erifili Hatziagelaki
- Second Department of Internal Medicine, Attikon General Hospital, Athens Medical School, Athens, Greece (E.H., M.A., G.D.); Laboratory of Molecular Immunopharmacology and Drug Discovery, Department of Immunology (I.T., T.C.T.) and Sackler School of Graduate Biomedical Sciences (T.C.T.), Tufts University School of Medicine, Boston, Massachusetts; and Departments of Internal Medicine and Psychiatry, Tufts University School of Medicine and Tufts Medical Center, Boston, Massachusetts (T.C.T.)
| | - Maria Adamaki
- Second Department of Internal Medicine, Attikon General Hospital, Athens Medical School, Athens, Greece (E.H., M.A., G.D.); Laboratory of Molecular Immunopharmacology and Drug Discovery, Department of Immunology (I.T., T.C.T.) and Sackler School of Graduate Biomedical Sciences (T.C.T.), Tufts University School of Medicine, Boston, Massachusetts; and Departments of Internal Medicine and Psychiatry, Tufts University School of Medicine and Tufts Medical Center, Boston, Massachusetts (T.C.T.)
| | - Irene Tsilioni
- Second Department of Internal Medicine, Attikon General Hospital, Athens Medical School, Athens, Greece (E.H., M.A., G.D.); Laboratory of Molecular Immunopharmacology and Drug Discovery, Department of Immunology (I.T., T.C.T.) and Sackler School of Graduate Biomedical Sciences (T.C.T.), Tufts University School of Medicine, Boston, Massachusetts; and Departments of Internal Medicine and Psychiatry, Tufts University School of Medicine and Tufts Medical Center, Boston, Massachusetts (T.C.T.)
| | - George Dimitriadis
- Second Department of Internal Medicine, Attikon General Hospital, Athens Medical School, Athens, Greece (E.H., M.A., G.D.); Laboratory of Molecular Immunopharmacology and Drug Discovery, Department of Immunology (I.T., T.C.T.) and Sackler School of Graduate Biomedical Sciences (T.C.T.), Tufts University School of Medicine, Boston, Massachusetts; and Departments of Internal Medicine and Psychiatry, Tufts University School of Medicine and Tufts Medical Center, Boston, Massachusetts (T.C.T.)
| | - Theoharis C Theoharides
- Second Department of Internal Medicine, Attikon General Hospital, Athens Medical School, Athens, Greece (E.H., M.A., G.D.); Laboratory of Molecular Immunopharmacology and Drug Discovery, Department of Immunology (I.T., T.C.T.) and Sackler School of Graduate Biomedical Sciences (T.C.T.), Tufts University School of Medicine, Boston, Massachusetts; and Departments of Internal Medicine and Psychiatry, Tufts University School of Medicine and Tufts Medical Center, Boston, Massachusetts (T.C.T.)
| |
Collapse
|
289
|
Abstract
Intestinal microbial flora, known as the second gene pool of the human body, play an important role in immune function, nutrient uptake, and various activities of host cells, as well as in human disease. Intestinal microorganisms are involved in a variety of mechanisms that affect bone health. Gut microbes are closely related to genetic variation, and gene regulation plays an important part in the development of bone-related diseases such as osteoporosis. Intestinal microorganisms can disrupt the balance between bone formation and resorption by indirectly stimulating or inhibiting osteoblasts and osteoclasts. In addition, intestinal microorganisms affect bone metabolism by regulating growth factors or altering bone immune status and can also alter the metabolism of serotonin, cortisol, and sex hormones, thereby affecting bone mass in mice. Moreover, probiotics, antibiotics, and diet can change the composition of the intestinal microbial flora, thus affecting bone health and also potentially helping to treat bone disease. Studying the relationship between intestinal flora and osteoblasts, osteoclasts, and bone marrow mesenchymal stem cells may provide a basis for preventing and treating bone diseases. This paper reviews recent advances in the study of the relationship between intestinal microflora and bone disease.
Collapse
Affiliation(s)
- Jian Zhang
- Key Laboratory for Biotech-Drugs Ministry of Health, Key Laboratory for Rare & Uncommon Diseases of Shandong Province, Shandong Medicinal Biotechnology Centre, Shandong Academy of Medical Sciences, Ji'nan, China
- School of Medicine and Life Sciences, University of Ji'nan-Shandong Academy of Medical Sciences, Ji'nan, China
| | - Yanqin Lu
- Key Laboratory for Biotech-Drugs Ministry of Health, Key Laboratory for Rare & Uncommon Diseases of Shandong Province, Shandong Medicinal Biotechnology Centre, Shandong Academy of Medical Sciences, Ji'nan, China
- School of Medicine and Life Sciences, University of Ji'nan-Shandong Academy of Medical Sciences, Ji'nan, China
- Address correspondence to:Dr. Jinxiang Han and Dr. Yanqin Lu, Shandong Medicinal Biotechnology Centre, Shandong Academy of Medical Sciences, 18877 Jingshi Road, Ji'nan 250062, China. E-mail: (JH); (YL)
| | - Yanzhou Wang
- Department of Paediatric Surgery, Shandong Provincial Hospital, Ji'nan, China
| | - Xiuzhi Ren
- Department of Orthopaedic Surgery, The People’s Hospital of Wuqing District, Tianjin, China
| | - Jinxiang Han
- Key Laboratory for Biotech-Drugs Ministry of Health, Key Laboratory for Rare & Uncommon Diseases of Shandong Province, Shandong Medicinal Biotechnology Centre, Shandong Academy of Medical Sciences, Ji'nan, China
- School of Medicine and Life Sciences, University of Ji'nan-Shandong Academy of Medical Sciences, Ji'nan, China
- Address correspondence to:Dr. Jinxiang Han and Dr. Yanqin Lu, Shandong Medicinal Biotechnology Centre, Shandong Academy of Medical Sciences, 18877 Jingshi Road, Ji'nan 250062, China. E-mail: (JH); (YL)
| |
Collapse
|
290
|
Riaz Rajoka MS, Zhao H, Li N, Lu Y, Lian Z, Shao D, Jin M, Li Q, Zhao L, Shi J. Origination, change, and modulation of geriatric disease-related gut microbiota during life. Appl Microbiol Biotechnol 2018; 102:8275-8289. [PMID: 30066188 DOI: 10.1007/s00253-018-9264-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 07/21/2018] [Accepted: 07/26/2018] [Indexed: 12/21/2022]
Abstract
The age-related changes in the diversity and composition of the gut microbiota are well described in recent studies. These changes have been suggested to be influenced by age-associated weakening of the immune system and low-grade chronic inflammation, resulting in numerous age-associated pathological conditions. Gut microbiota homeostasis is important throughout the life of the host by providing vital functions to regulate various immunological functions and homeostasis. Based on published results, we summarize the relationship between the gut microbiota and aging-related diseases, especially Parkinson's disease, immunosenescence, rheumatoid arthritis, bone loss, and metabolic syndrome. The change in composition of the gut microbiota and gut ecosystem during life and its influence on the host immunologic and metabolic phenotype are also analyzed to determine factors that affect aging-related diseases. Approaches to maintain host health and prevent or cure geriatric diseases are also discussed.
Collapse
Affiliation(s)
- Muhammad Shahid Riaz Rajoka
- Key Laboratory for Space Bioscience and Space Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, Shaanxi, People's Republic of China.,Department of Food Science and Engineering, College of Chemistry and Chemical Engineering, Shenzhen University, Shenzhen, Guangdong, People's Republic of China
| | - Haobin Zhao
- Key Laboratory for Space Bioscience and Space Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, Shaanxi, People's Republic of China
| | - Na Li
- Key Laboratory for Space Bioscience and Space Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, Shaanxi, People's Republic of China
| | - Yao Lu
- Key Laboratory for Space Bioscience and Space Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, Shaanxi, People's Republic of China
| | - Ziyang Lian
- Key Laboratory for Space Bioscience and Space Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, Shaanxi, People's Republic of China
| | - Dongyan Shao
- Key Laboratory for Space Bioscience and Space Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, Shaanxi, People's Republic of China
| | - Mingliang Jin
- Key Laboratory for Space Bioscience and Space Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, Shaanxi, People's Republic of China
| | - Qi Li
- Key Laboratory for Space Bioscience and Space Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, Shaanxi, People's Republic of China
| | - Liqing Zhao
- Department of Food Science and Engineering, College of Chemistry and Chemical Engineering, Shenzhen University, Shenzhen, Guangdong, People's Republic of China
| | - Junling Shi
- Key Laboratory for Space Bioscience and Space Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, Shaanxi, People's Republic of China.
| |
Collapse
|
291
|
Filip M, Tzaneva V, Dumitrascu DL. Fecal transplantation: digestive and extradigestive clinical applications. ACTA ACUST UNITED AC 2018; 91:259-265. [PMID: 30093802 PMCID: PMC6082619 DOI: 10.15386/cjmed-946] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2017] [Accepted: 12/06/2017] [Indexed: 12/19/2022]
Abstract
Background and aim Fecal transplantation or fecal material transplantation (FMT) became a hot topic in gastroenterology in recent years. Therefore it is important to disseminate the up-to-date information on FMT. The aim of the paper is to review the knowledge on FMT and its clinical applications. Methods An extensive review of the literature was carried out. Titles from Pubmed were searched and analyzed. A narrative review has been written with emphasis on indications of FMT in different conditions. Results The guidelines recommend FMT in relapsing infection with Clostridium difficile. Several attempts to use FMT in other conditions have been analyzed. Attempts were recorded in other bowel disorders like IBD, IBS, chronic constipation and even colorectal cancer. The attempt to change the microbiota by FMT in diabetes and obesity represent challenges for the future. Conclusions Fecal transplantation represents an important therapeutic method, intensively investigated these years. Beside the indication for persistent and recurrent Clostridium difficile infection, several attempts were undertaken in other intestinal diseases and in metabolic conditions. The efficiency of these applications has to be demonstrated.
Collapse
Affiliation(s)
- Mihaela Filip
- 2nd Deptartment Internal Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | | | - Dan L Dumitrascu
- 2nd Deptartment Internal Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| |
Collapse
|
292
|
Gao L, Li J, Zhou Y, Huang X, Qin X, Du G. Effects of Baicalein on Cortical Proinflammatory Cytokines and the Intestinal Microbiome in Senescence Accelerated Mouse Prone 8. ACS Chem Neurosci 2018; 9:1714-1724. [PMID: 29668250 DOI: 10.1021/acschemneuro.8b00074] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Baicalein, a flavonoid derived from the roots of Scutellariae baicalensis Georgi, has shown health benefits for an array of human diseases including dementia. The senescence-accelerated mouse prone 8 (SAMP8) strain is extensively used as a senile dementia model. To further investigate the effects of baicalein in SAMP8 mice, behavioral testing, biochemical detection, and gut microbiota analysis were performed. The results demonstrated that treatment with baicalein ameliorated the senescence status of the SAMP8 mice, as manifested by reducing the grading score of senescence. Additionally, baicalein improved the cognitive functions of the SAMP8 mice, including spatial learning and memory abilities, object recognition memory, and olfactory memory. Furthermore, baicalein significantly inhibited the release of proinflammatory cytokines such as interleukin-6 (IL-6), interleukin-1 beta (IL-1β), and tumor necrosis factor-α (TNF-α) in the brain cortex of SAMP8 mice. Gut microbiota analysis revealed that treatment with baicalein markedly altered the abundance of six genera in SAMP8 mice. Correlation analysis indicated that the abundances of Mucispirillum, Bacteroides, and Sutterella were negatively correlated with cognitive abilities and that Christensenellaceae was positively correlated with cognition. Furthermore, the abundance of Christensenellaceae was negatively correlated with the levels of IL-6 and TNF-α, while [ Prevotella] was positively correlated with the levels of IL-1β and IL-6. In addition, Mucispirillum and Bacteroides were positively correlated with the level of IL-6 in the brain cortex. These data indicated that baicalein ameliorates senescence status and improves cognitive function in SAMP8 mice and that this effect might be attributable to suppression of cortical proinflammatory cytokines and modulation of the intestinal microbiome.
Collapse
Affiliation(s)
- Li Gao
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan 030006, PR China
| | - Jiaqi Li
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan 030006, PR China
- College of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, PR China
| | - Yuzhi Zhou
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan 030006, PR China
| | - Xudong Huang
- Neurochemistry Laboratory, Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114, United States
| | - Xuemei Qin
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan 030006, PR China
| | - Guanhua Du
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan 030006, PR China
- Institute of Materia Medica, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing 100050, PR China
| |
Collapse
|
293
|
|
294
|
Prehn-Kristensen A, Zimmermann A, Tittmann L, Lieb W, Schreiber S, Baving L, Fischer A. Reduced microbiome alpha diversity in young patients with ADHD. PLoS One 2018; 13:e0200728. [PMID: 30001426 PMCID: PMC6042771 DOI: 10.1371/journal.pone.0200728] [Citation(s) in RCA: 167] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Accepted: 07/02/2018] [Indexed: 12/16/2022] Open
Abstract
ADHD is a psychiatric disorder which is characterized by hyperactivity, impulsivity and attention problems. Due to recent findings of microbial involvement in other psychiatric disorders like autism and depression, a role of the gut microbiota in ADHD pathogenesis is assumed but has not yet been investigated. In this study, the gut microbiota of 14 male ADHD patients (mean age: 11.9 yrs.) and 17 male controls (mean age: 13.1 yrs.) was examined via next generation sequencing of 16S rDNA and analyzed for diversity and biomarkers. We found that the microbial diversity (alpha diversity) was significantly decreased in ADHD patients compared to controls (pShannon = 0.036) and that the composition (beta diversity) differed significantly between patients and controls (pANOSIM = 0.033, pADONIS = 0.006, pbetadisper = 0.002). In detail, the bacterial family Prevotellacae was associated with controls, while patients with ADHD showed elevated levels of Bacteroidaceae, and both Neisseriaceae and Neisseria spec. were found as possible biomarkers for juvenile ADHD. Our results point to a possible link of certain microbiota with ADHD, with Neisseria spec. being a very promising ADHD-associated candidate. This finding provides the basis for a systematic, longitudinal assessment of the role of the gut microbiome in ADHD, yielding promising potential for both prevention and therapeutic intervention.
Collapse
Affiliation(s)
- Alexander Prehn-Kristensen
- Department of Child and Adolescent Psychiatry and Psychotherapy, Centre for Integrative Psychiatry, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Alexandra Zimmermann
- Department of Child and Adolescent Psychiatry and Psychotherapy, Centre for Integrative Psychiatry, University Hospital Schleswig-Holstein, Kiel, Germany
- Institute of Clinical Molecular Biology, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Lukas Tittmann
- Institute of Clinical Molecular Biology, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Wolfgang Lieb
- Institute for Epidemiology, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Stefan Schreiber
- Institute of Clinical Molecular Biology, University Hospital Schleswig-Holstein, Kiel, Germany
- Clinic of Internal Medicine I, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Lioba Baving
- Department of Child and Adolescent Psychiatry and Psychotherapy, Centre for Integrative Psychiatry, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Annegret Fischer
- Institute of Clinical Molecular Biology, University Hospital Schleswig-Holstein, Kiel, Germany
| |
Collapse
|
295
|
Salem I, Ramser A, Isham N, Ghannoum MA. The Gut Microbiome as a Major Regulator of the Gut-Skin Axis. Front Microbiol 2018; 9:1459. [PMID: 30042740 PMCID: PMC6048199 DOI: 10.3389/fmicb.2018.01459] [Citation(s) in RCA: 333] [Impact Index Per Article: 47.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 06/12/2018] [Indexed: 12/12/2022] Open
Abstract
The adult intestine hosts a myriad of diverse bacterial species that reside mostly in the lower gut maintaining a symbiosis with the human habitat. In the current review, we describe the neoteric advancement in our comprehension of how the gut microbiota communicates with the skin as one of the main regulators in the gut-skin axis. We attempted to explore how this potential link affects skin differentiation and keratinization, its influence on modulating the cutaneous immune response in various diseases, and finally how to take advantage of this communication in the control of different skin conditions.
Collapse
Affiliation(s)
- Iman Salem
- Center for Medical Mycology, Department of Dermatology, Case Western Reserve University, Cleveland, OH, United States
| | - Amy Ramser
- Dermatology, University Hospitals Cleveland Medical Center, Cleveland, OH, United States
| | - Nancy Isham
- Center for Medical Mycology, Department of Dermatology, Case Western Reserve University, Cleveland, OH, United States
| | - Mahmoud A. Ghannoum
- Center for Medical Mycology, Department of Dermatology, Case Western Reserve University, Cleveland, OH, United States
- Dermatology, University Hospitals Cleveland Medical Center, Cleveland, OH, United States
| |
Collapse
|
296
|
Enciu AM, Codrici E, Mihai S, Manole E, Pop S, Codorean E, Niculite CM, Necula L, Tarcomnicu I, Gille E, Tanase CP. Role of Nutraceuticals in Modulation of Gut-Brain Axis in Elderly Persons. Gerontology 2018. [DOI: 10.5772/intechopen.73005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
|
297
|
Chen T, Tian P, Huang Z, Zhao X, Wang H, Xia C, Wang L, Wei H. Engineered commensal bacteria prevent systemic inflammation-induced memory impairment and amyloidogenesis via producing GLP-1. Appl Microbiol Biotechnol 2018; 102:7565-7575. [PMID: 29955935 DOI: 10.1007/s00253-018-9155-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 04/30/2018] [Accepted: 06/04/2018] [Indexed: 12/31/2022]
Abstract
The anti-obesity drug GLP-1 has been proven to have an impact on central nervous system, while its extremely short half-life greatly limited its use. In this study, our group constructed two engineering strains MG1363-pMG36e-GLP-1 and VNP20009-pLIVE-GLP-1 to continuously express GLP-1, and supplementation of these strains, especially MG1363-pMG36e-GLP-1, had significantly restored the spatial learning and memory impairment of mice caused by LPS (p < 0.05), suppressed glia activation and Aβ accumulation, and downregulated inflammatory expressions of COX-2, TLR-4, TNF-a, and IL-1β. In addition, MG1363-pMG36e-GLP-1 had significantly blocked the translocation of NF-κB signal and inhibited the phosphorylation of redox-sensitive cytoplasmic signalings of MAPKs and PI3K/AKT. These data suggest that MG1363-pMG36e-GLP-1 could be used as a safe and effective nonabsorbed oral treatment for neuroinflammation-related diseases such as Alzheimer's disease (AD).
Collapse
Affiliation(s)
- Tingtao Chen
- School of Life Sciences, Nanchang University, Nanchang, Jiangxi, 330031, People's Republic of China.,Institute of Translational Medicine, Nanchang University, Nanchang, Jiangxi, 330031, People's Republic of China
| | - Puyuan Tian
- School of Life Sciences, Nanchang University, Nanchang, Jiangxi, 330031, People's Republic of China.,Institute of Translational Medicine, Nanchang University, Nanchang, Jiangxi, 330031, People's Republic of China
| | - Zhixiang Huang
- Institute of Translational Medicine, Nanchang University, Nanchang, Jiangxi, 330031, People's Republic of China
| | - Xiaoxiao Zhao
- Institute of Translational Medicine, Nanchang University, Nanchang, Jiangxi, 330031, People's Republic of China
| | - Huan Wang
- Institute of Translational Medicine, Nanchang University, Nanchang, Jiangxi, 330031, People's Republic of China
| | - Chaofei Xia
- Institute of Translational Medicine, Nanchang University, Nanchang, Jiangxi, 330031, People's Republic of China
| | - Le Wang
- School of Life Sciences, Nanchang University, Nanchang, Jiangxi, 330031, People's Republic of China
| | - Hua Wei
- School of Life Sciences, Nanchang University, Nanchang, Jiangxi, 330031, People's Republic of China. .,State Key Laboratory of Food Science and Technology, Nanchang, Jiangxi, 330031, People's Republic of China. .,State Key Laboratory of Food Science and Technology, Nanchang University 235 Nanjing Donglu, Nanchang, Jiangxi, 330047, People's Republic of China.
| |
Collapse
|
298
|
Stefano GB, Pilonis N, Ptacek R, Raboch J, Vnukova M, Kream RM. Gut, Microbiome, and Brain Regulatory Axis: Relevance to Neurodegenerative and Psychiatric Disorders. Cell Mol Neurobiol 2018; 38:1197-1206. [PMID: 29802603 PMCID: PMC6061125 DOI: 10.1007/s10571-018-0589-2] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 05/07/2018] [Indexed: 12/23/2022]
Abstract
It has become apparent that the molecular and biochemical integrity of interactive families, genera, and species of human gut microflora is critically linked to maintaining complex metabolic and behavioral processes mediated by peripheral organ systems and central nervous system neuronal groupings. Relatively recent studies have established intrinsic ratios of enterotypes contained within the human microbiome across demographic subpopulations and have empirically linked significant alterations in the expression of bacterial enterotypes with the initiation and persistence of several major metabolic and psychiatric disorders. Accordingly, the goal of our review is to highlight potential thematic/functional linkages of pathophysiological alterations in gut microbiota and bidirectional gut-brain signaling pathways with special emphasis on the potential roles of gut dysbiosis on the pathophysiology of psychiatric illnesses. We provide critical discussion of putative thematic linkages of Parkinson's disease (PD) data sets to similar pathophysiological events as potential causative factors in the development and persistence of diverse psychiatric illnesses. Finally, we include a concise review of preclinical paradigms that involve immunologically-induced GI deficits and dysbiosis of maternal microflora that are functionally linked to impaired neurodevelopmental processes leading to affective behavioral syndromes in the offspring.
Collapse
Affiliation(s)
- G B Stefano
- Department of Psychiatry, First Faculty of Medicine Charles University in Prague and General University Hospital in Prague, Center for Cognitive and Molecular Neuroscience, Ke Karlovu 11, 120 00, Prague 2, Czech Republic.
| | - N Pilonis
- Warsaw Medical University, Public Central Teaching Hospital, Warsaw, Poland
| | - R Ptacek
- Department of Psychiatry, First Faculty of Medicine Charles University in Prague and General University Hospital in Prague, Center for Cognitive and Molecular Neuroscience, Ke Karlovu 11, 120 00, Prague 2, Czech Republic
| | - J Raboch
- Department of Psychiatry, First Faculty of Medicine Charles University in Prague and General University Hospital in Prague, Center for Cognitive and Molecular Neuroscience, Ke Karlovu 11, 120 00, Prague 2, Czech Republic
| | - M Vnukova
- Department of Psychiatry, First Faculty of Medicine Charles University in Prague and General University Hospital in Prague, Center for Cognitive and Molecular Neuroscience, Ke Karlovu 11, 120 00, Prague 2, Czech Republic
| | - R M Kream
- Department of Psychiatry, First Faculty of Medicine Charles University in Prague and General University Hospital in Prague, Center for Cognitive and Molecular Neuroscience, Ke Karlovu 11, 120 00, Prague 2, Czech Republic
| |
Collapse
|
299
|
Penesová A, Dean Z, Kollár B, Havranová A, Imrich R, Vlček M, Rádiková Ž. Nutritional intervention as an essential part of multiple sclerosis treatment? Physiol Res 2018; 67:521-533. [PMID: 29750884 DOI: 10.33549/physiolres.933694] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Multiple sclerosis (MS) is a chronic inflammatory and demyelinating disease of the central nervous system. In addition to the genetic, epigenetic and immunological components, various other factors, e.g. unhealthy dietary habits, play a role in the MS pathogenesis. Dietary intervention is a highly appealing approach, as it presents a simple and relatively low risk method to potentially improve outcomes in patients with brain disorders in order to achieve remission and improvement of clinical status, well-being and life expectancy of patients with MS. The importance of saturated fat intake restriction for the clinical status improvement of MS patients was pointed for the first time in 1950s. Recently, decreased risk of first clinical diagnosis of CNS demyelination associated with higher intake of omega-3 polyunsaturated fatty acids particularly originating from fish was reported. Only few clinical trials have been performed to address the question of the role of dietary intervention, such is e.g. low saturated fat diet in MS treatment. This review summarizes current knowledge about the effect of different dietary approaches (diets low in saturated fat and dietary supplements such as fish oil, lipoic acid, omega-3 polyunsaturated fatty acids, seeds oils, high fiber diet, vitamin D, etc.) on neurological signs, patient's well-being, physical and inflammatory status. So far the results are not conclusive, therefore much more research is needed to confirm and to understand the effectiveness of these dietary interventions in the long term and well defined studies.
Collapse
Affiliation(s)
- A Penesová
- Institute of Clinical and Translational Research, Biomedical Research Center of the Slovak Academy of Sciences, Bratislava, Slovakia.
| | | | | | | | | | | | | |
Collapse
|
300
|
Jeon SW, Kim YK. The role of neuroinflammation and neurovascular dysfunction in major depressive disorder. J Inflamm Res 2018; 11:179-192. [PMID: 29773951 PMCID: PMC5947107 DOI: 10.2147/jir.s141033] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Although depression has generally been explained with monoamine theory, it is far more multifactorial, and therapies that address the disease’s pathway have not been developed. In this context, an understanding of neuroinflammation and neurovascular dysfunction would enable a more comprehensive approach to depression. Inflammation is in a sense a type of allostatic load involving the immune, endocrine, and nervous systems. Neuroinflammation is involved in the pathophysiology of depression by increasing proinflammatory cytokines, activating the hypothalamus–pituitary–adrenal axis, increasing glucocorticoid resistance, and affecting serotonin synthesis and metabolism, neuronal apoptosis and neurogenesis, and neuroplasticity. In future, identifying the subtypes of depression with increased vulnerability to inflammation and testing the effects of inflammatory modulating agents in these patient groups through clinical trials will lead to more concrete conclusions on the matter. The vascular depression hypothesis is supported by evidence for the association between vascular disease and late-onset depression and between ischemic brain lesions and distinctive depressive symptoms. Vascular depression may be the entity most suitable for studies of the mechanisms of depression. Pharmacotherapies used in the prevention and treatment of cerebrovascular disease may help prevent vascular depression. In future, developments in structural and functional imaging, electrophysiology, chronobiology, and genetics will reveal the association between depression and brain lesions. This article aims to give a general review of the existing issues examined in the literature pertaining to depression-related neuroinflammatory and vascular functions, related pathophysiology, applicability to depression treatment, and directions for future research.
Collapse
Affiliation(s)
- Sang Won Jeon
- Department of Psychiatry, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul
| | - Yong-Ku Kim
- Department of Psychiatry, Korea University Ansan Hospital, Korea University College of Medicine, Ansan, South Korea
| |
Collapse
|