251
|
IRF4 Regulates the Ratio of T-Bet to Eomesodermin in CD8+ T Cells Responding to Persistent LCMV Infection. PLoS One 2015; 10:e0144826. [PMID: 26714260 PMCID: PMC4699851 DOI: 10.1371/journal.pone.0144826] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 11/15/2015] [Indexed: 12/14/2022] Open
Abstract
CD8+ T cell exhaustion commonly occurs in chronic infections and cancers. During T cell exhaustion there is a progressive and hierarchical loss of effector cytokine production, up-regulation of inhibitory co-stimulatory molecules, and eventual deletion of antigen specific cells by apoptosis. A key factor that regulates T cell exhaustion is persistent TCR stimulation. Loss of this interaction results in restoration of CD8+ T cell effector functions in previously exhausted CD8+ T cells. TCR stimulation is also important for the differentiation of Eomeshi anti-viral CD8+ effector T cells from T-bethi precursors, both of which are required for optimal viral control. However, the molecular mechanisms regulating the differentiation of these two cell subsets and the relative ratios required for viral clearance have not been described. We show that TCR signal strength regulates the relative expression of T-bet and Eomes in antigen-specific CD8+ T cells by modulating levels of IRF4. Reduced IRF4 expression results in skewing of this ratio in the favor of Eomes, leading to lower proportions and numbers of T-bet+ Eomes- precursors and poor control of LCMV-clone 13 infection. Manipulation of this ratio in the favor of T-bet restores the differentiation of T-bet+ Eomes- precursors and the protective balance of T-bet to Eomes required for efficient viral control. These data highlight a critical role for IRF4 in regulating protective anti-viral CD8+ T cell responses by ensuring a balanced ratio of T-bet to Eomes, leading to the ultimate control of this chronic viral infection.
Collapse
|
252
|
Abstract
Memory for antigen is a defining feature of adaptive immunity. Antigen-specific lymphocyte populations show an increase in number and function after antigen encounter and more rapidly re-expand upon subsequent antigen exposure. Studies of immune memory have primarily focused on effector B cells and T cells with microbial specificity, using prime-challenge models of infection. However, recent work has also identified persistently expanded populations of antigen-specific regulatory T cells that protect against aberrant immune responses. In this Review, we consider the parallels between memory effector T cells and memory regulatory T cells, along with the functional implications of regulatory memory in autoimmunity, antimicrobial host defence and maternal-fetal tolerance. In addition, we discuss emerging evidence for regulatory T cell memory in humans and key unanswered questions in this rapidly evolving field.
Collapse
Affiliation(s)
- Michael D Rosenblum
- Department of Dermatology, University of California San Francisco, San Francisco, California 94143, USA
| | - Sing Sing Way
- Division of Infectious Diseases and Perinatal Institute, Cincinnati Children's Hospital, Cincinnati, Ohio 45229, USA
| | - Abul K Abbas
- Department of Pathology, University of California San Francisco, San Francisco, California 94143, USA
| |
Collapse
|
253
|
Ji Y, Hocker JD, Gattinoni L. Enhancing adoptive T cell immunotherapy with microRNA therapeutics. Semin Immunol 2015; 28:45-53. [PMID: 26710685 DOI: 10.1016/j.smim.2015.11.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Revised: 11/20/2015] [Accepted: 11/25/2015] [Indexed: 12/15/2022]
Abstract
Adoptive T cell-based immunotherapies can mediate complete and durable regressions in patients with advanced cancer, but current response rates remain inadequate. Maneuvers to improve the fitness and antitumor efficacy of transferred T cells have been under extensive exploration in the field. Small non-coding microRNAs have emerged as critical modulators of immune system homeostasis and T cell immunity. Here, we summarize recent advances in our understanding of the role of microRNAs in regulating T cell activation, differentiation, and function. We also discuss how microRNA therapeutics could be employed to fine-tune T cell receptor signaling and enhance T cell persistence and effector functions, paving the way for the next generation of adoptive immunotherapies.
Collapse
Affiliation(s)
- Yun Ji
- Experimental Transplantation and Immunology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 10 Center Drive, Bethesda, MD, USA.
| | - James D Hocker
- Experimental Transplantation and Immunology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 10 Center Drive, Bethesda, MD, USA
| | - Luca Gattinoni
- Experimental Transplantation and Immunology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 10 Center Drive, Bethesda, MD, USA.
| |
Collapse
|
254
|
Moretto MM, Khan IA. IL-21 Is Important for Induction of KLRG1+ Effector CD8 T Cells during Acute Intracellular Infection. THE JOURNAL OF IMMUNOLOGY 2015; 196:375-84. [PMID: 26597007 DOI: 10.4049/jimmunol.1501258] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Accepted: 10/30/2015] [Indexed: 11/19/2022]
Abstract
Microsporidia, a latent opportunistic infection associated with mild inflammation, is characterized by a strong CD8 T cell response, which has been shown to be CD4 T cell dependent. In this manuscript, we demonstrate that CD4 help is provided via IL-21 production, a common γ-chain cytokine closely related to IL-2. The peak of IL-21 expression, observed during the acute infection, is associated with an elevated IL-21(+) CD4 T subset, and these cells bear a phenotypic resemblance to T follicular helper cells. We observed that, during per-oral microsporidial infection, IL-21 was critical for the generation of an optimal effector CD8 T cell immunity. Sharply decreased effector KLRG1(+) CD8 response was observed in IL-21R knockout mice, and although these cells exhibited reduced functional properties, they retained the ability to proliferate. The role of IL-21 in the generation of CD8 effectors was cell intrinsic, as stronger defects were observed in the IL-21-deficient compartment from the bone marrow chimeric mice (IL-21R knockout/wild-type). These findings are different from those reported for viral infections in which IL-21 has been primarily associated with the generation and maintenance of CD8 memory response. To the best of our knowledge, this report demonstrates a critical role for IL-21 in the generation of a primary effector CD8 T cell response to an infectious disease model.
Collapse
Affiliation(s)
- Magali M Moretto
- Department of Microbiology, Immunology and Tropical Medicine, George Washington University, Washington, D.C. 20037
| | - Imtiaz A Khan
- Department of Microbiology, Immunology and Tropical Medicine, George Washington University, Washington, D.C. 20037
| |
Collapse
|
255
|
Smad4 represses the generation of memory-precursor effector T cells but is required for the differentiation of central memory T cells. Cell Death Dis 2015; 6:e1984. [PMID: 26583325 PMCID: PMC4670941 DOI: 10.1038/cddis.2015.337] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Revised: 10/18/2015] [Accepted: 10/19/2015] [Indexed: 12/16/2022]
Abstract
The transcriptional regulation underlying the differentiation of CD8+ effector and memory T cells remains elusive. Here, we show that 18-month-old mice lacking the transcription factor Smad4 (homolog 4 of mothers against decapentaplegic, Drosophila), a key intracellular signaling effector for the TGF-β superfamily, in T cells exhibited lower percentages of CD44hiCD8+ T cells. To explore the role of Smad4 in the activation/memory of CD8+ T cells, 6- to 8-week-old mice with or without Smad4 in T cells were challenged with Listeria monocytogenes. Smad4 deficiency did not affect antigen-specific CD8+ T-cell expansion but led to partially impaired cytotoxic function. Less short-lived effector T cells but more memory-precursor effector T cells were generated in the absence of Smad4. Despite that, Smad4 deficiency led to reduced memory CD8+ T-cell responses. Further exploration revealed that the generation of central memory T cells was impaired in the absence of Smad4 and the cells showed survival issue. In mechanism, Smad4 deficiency led to aberrant transcriptional programs in antigen-specific CD8+ T cells. These findings demonstrated an essential role of Smad4 in the control of effector and memory CD8+ T-cell responses to infection.
Collapse
|
256
|
Manni M, Gupta S, Nixon BG, Weaver CT, Jessberger R, Pernis AB. IRF4-Dependent and IRF4-Independent Pathways Contribute to DC Dysfunction in Lupus. PLoS One 2015; 10:e0141927. [PMID: 26544714 PMCID: PMC4636285 DOI: 10.1371/journal.pone.0141927] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Accepted: 10/14/2015] [Indexed: 01/01/2023] Open
Abstract
Interferon Regulatory Factors (IRFs) play fundamental roles in dendritic cell (DC) differentiation and function. In particular, IRFs are critical transducers of TLR signaling and dysregulation in this family of factors is associated with the development of autoimmune disorders such as Systemic Lupus Erythematosus (SLE). While several IRFs are expressed in DCs their relative contribution to the aberrant phenotypic and functional characteristics that DCs acquire in autoimmune disease has not been fully delineated. Mice deficient in both DEF6 and SWAP-70 (= Double-knock-out or DKO mice), two members of a unique family of molecules that restrain IRF4 function, spontaneously develop a lupus-like disease. Although autoimmunity in DKO mice is accompanied by dysregulated IRF4 activity in both T and B cells, SWAP-70 is also known to regulate multiple aspects of DC biology leading us to directly evaluate DC development and function in these mice. By monitoring Blimp1 expression and IL-10 competency in DKO mice we demonstrate that DCs in these mice exhibit dysregulated IL-10 production, which is accompanied by aberrant Blimp1 expression in the spleen but not in the peripheral lymph nodes. We furthermore show that DCs from these mice are hyper-responsive to multiple TLR ligands and that IRF4 plays a differential role in in these responses by being required for the TLR4-mediated but not the TLR9-mediated upregulation of IL-10 expression. Thus, DC dysfunction in lupus-prone mice relies on both IRF4-dependent and IRF4-independent pathways.
Collapse
Affiliation(s)
- Michela Manni
- Autoimmunity and Inflammation Program, Hospital for Special Surgery, New York, New York, United States of America
| | - Sanjay Gupta
- Autoimmunity and Inflammation Program, Hospital for Special Surgery, New York, New York, United States of America
| | - Briana G. Nixon
- Graduate Program in Immunology and Microbial Pathogenesis, Weill Cornell Graduate School of Medical Sciences, New York, New York, United States of America
| | - Casey T. Weaver
- Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Rolf Jessberger
- Institute of Physiological Chemistry, Technische Universität Dresden, Dresden, Germany
| | - Alessandra B. Pernis
- Autoimmunity and Inflammation Program, Hospital for Special Surgery, New York, New York, United States of America
- Graduate Program in Immunology and Microbial Pathogenesis, Weill Cornell Graduate School of Medical Sciences, New York, New York, United States of America
- Department of Medicine, Weill Cornell Medical College, Cornell University, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
257
|
Mathieu C, Beltra JC, Charpentier T, Bourbonnais S, Di Santo JP, Lamarre A, Decaluwe H. IL-2 and IL-15 regulate CD8+ memory T-cell differentiation but are dispensable for protective recall responses. Eur J Immunol 2015; 45:3324-38. [PMID: 26426795 DOI: 10.1002/eji.201546000] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Revised: 08/11/2015] [Accepted: 09/25/2015] [Indexed: 11/09/2022]
Abstract
The ability to mount effective secondary responses is a cardinal feature of memory CD8(+) T cells. An understanding of the factors that regulate the generation and recall capacities of memory T cells remains to be ascertained. Several cues indicate that two highly related cytokines, IL-2 and IL-15, share redundant functions in this process. To establish their combined roles in memory CD8(+) T-cell development, maintenance, and secondary responses, we compared the outcome of adoptively transferred IL2Rβ(+/-) or IL2Rβ(-/-) CD8(+) T cells after an acute viral infection in mice. Our results demonstrate that both IL-2 and IL-15 signals condition the differentiation of primary and secondary short-lived effector cells by altering the transcriptional network governing lineage choices. These two cytokines also regulate the homeostasis of the memory T-cell pool, with effector memory CD8(+) T cells being the most sensitive to these two interleukins. Noticeably, the inability to respond to both cytokines limits the proliferation and survival of primary and secondary effectors cells, whereas it does not preclude potent cytotoxic functions and viral control either initially or upon rechallenge. Globally, these results indicate that lack of IL-2 and IL-15 signaling modulates the CD8(+) T-cell differentiation program but does not impede adequate effector functions.
Collapse
Affiliation(s)
- Cédric Mathieu
- Cytokines and Adaptive Immunity Laboratory, CHU Sainte-Justine Research Center, Montreal, Quebec, Canada.,Department of Microbiology and Immunology, Faculty of Medicine, University of Montreal, Montreal, Quebec, Canada
| | - Jean-Christophe Beltra
- Cytokines and Adaptive Immunity Laboratory, CHU Sainte-Justine Research Center, Montreal, Quebec, Canada.,Department of Microbiology and Immunology, Faculty of Medicine, University of Montreal, Montreal, Quebec, Canada
| | - Tania Charpentier
- Immunovirology Laboratory, INRS-Institut Armand-Frappier, Laval, Quebec, Canada
| | - Sara Bourbonnais
- Cytokines and Adaptive Immunity Laboratory, CHU Sainte-Justine Research Center, Montreal, Quebec, Canada
| | - James P Di Santo
- Innate Immunity Unit, INSERM U668, Institut Pasteur, Paris, France
| | - Alain Lamarre
- Immunovirology Laboratory, INRS-Institut Armand-Frappier, Laval, Quebec, Canada
| | - Hélène Decaluwe
- Cytokines and Adaptive Immunity Laboratory, CHU Sainte-Justine Research Center, Montreal, Quebec, Canada.,Department of Microbiology and Immunology, Faculty of Medicine, University of Montreal, Montreal, Quebec, Canada.,Immunology and Rheumatology Division, Department of Pediatrics, Faculty of Medicine, University of Montreal, Montreal, Quebec, Canada
| |
Collapse
|
258
|
Dominguez CX, Amezquita RA, Guan T, Marshall HD, Joshi NS, Kleinstein SH, Kaech SM. The transcription factors ZEB2 and T-bet cooperate to program cytotoxic T cell terminal differentiation in response to LCMV viral infection. J Exp Med 2015; 212:2041-56. [PMID: 26503446 PMCID: PMC4647261 DOI: 10.1084/jem.20150186] [Citation(s) in RCA: 199] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Accepted: 09/15/2015] [Indexed: 12/16/2022] Open
Abstract
The transcription factor T-bet is critical for cytotoxic T lymphocyte (CTL) differentiation, but it is unclear how it operates in a graded manner in the formation of both terminal effector and memory precursor cells during viral infection. We find that, at high concentrations, T-bet induced expression of Zeb2 mRNA, which then triggered CTLs to adopt terminally differentiated states. ZEB2 and T-bet cooperate to switch on a terminal CTL differentiation program, while simultaneously repressing genes necessary for central memory CTL development. Chromatin immunoprecipitation sequencing showed that a large proportion of these genes were bound by T-bet, and this binding was altered by ZEB2 deficiency. Furthermore, T-bet overexpression could not fully bypass ZEB2 function. Thus, the coordinated actions of T-bet and ZEB2 outline a novel genetic pathway that forces commitment of CTLs to terminal differentiation, thereby restricting their memory cell potential.
Collapse
Affiliation(s)
- Claudia X Dominguez
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520
| | - Robert A Amezquita
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520 Howard Hughes Medical Institute, Chevy Chase, MD 20815
| | - Tianxia Guan
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520 Howard Hughes Medical Institute, Chevy Chase, MD 20815
| | - Heather D Marshall
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520
| | - Nikhil S Joshi
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520
| | - Steven H Kleinstein
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520 Interdepartmental Program in Computational Biology and Bioinformatics, Yale University School of Medicine, New Haven, CT 06520 Department of Pathology, Yale University School of Medicine, New Haven, CT 06520
| | - Susan M Kaech
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520 Howard Hughes Medical Institute, Chevy Chase, MD 20815
| |
Collapse
|
259
|
Regulation of CD8+ T-cell cytotoxicity in HIV-1 infection. Cell Immunol 2015; 298:126-33. [PMID: 26520669 DOI: 10.1016/j.cellimm.2015.10.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Revised: 10/20/2015] [Accepted: 10/23/2015] [Indexed: 01/03/2023]
Abstract
Understanding the mechanisms involved in cellular immune responses against control of human immunodeficiency virus (HIV) infection is key to development of effective immunotherapeutic strategies against viral proliferation. Clear insights into the regulation of cytotoxic CD8+ T cells is crucial to development of effective immunotherapeutic strategies due to their unique ability to eliminate virus-infected cells during the course of infection. Here, we reviewed the roles of transcription factors, co-inhibitory molecules and regulatory cytokines following HIV infection and their potential significance in regulating the cytotoxic potentials of CD8+ T cells.
Collapse
|
260
|
Ray JP, Staron MM, Shyer JA, Ho PC, Marshall HD, Gray SM, Laidlaw BJ, Araki K, Ahmed R, Kaech SM, Craft J. The Interleukin-2-mTORc1 Kinase Axis Defines the Signaling, Differentiation, and Metabolism of T Helper 1 and Follicular B Helper T Cells. Immunity 2015; 43:690-702. [PMID: 26410627 PMCID: PMC4618086 DOI: 10.1016/j.immuni.2015.08.017] [Citation(s) in RCA: 233] [Impact Index Per Article: 25.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Revised: 06/26/2015] [Accepted: 08/19/2015] [Indexed: 01/10/2023]
Abstract
The differentiation of CD4(+) helper T cell subsets with diverse effector functions is accompanied by changes in metabolism required to meet their bioenergetic demands. We find that follicular B helper T (Tfh) cells exhibited less proliferation, glycolysis, and mitochondrial respiration, accompanied by reduced mTOR kinase activity compared to T helper 1 (Th1) cells in response to acute viral infection. IL-2-mediated activation of the Akt kinase and mTORc1 signaling was both necessary and sufficient to shift differentiation away from Tfh cells, instead promoting that of Th1 cells. These findings were not the result of generalized signaling attenuation in Tfh cells, because they retained the ability to flux calcium and activate NFAT-transcription-factor-dependent cytokine production. These data identify the interleukin-2 (IL-2)-mTORc1 axis as a critical orchestrator of the reciprocal balance between Tfh and Th1 cell fates and their respective metabolic activities after acute viral infection.
Collapse
Affiliation(s)
- John P Ray
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Matthew M Staron
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Justin A Shyer
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Ping-Chih Ho
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Heather D Marshall
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Simon M Gray
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Brian J Laidlaw
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Koichi Araki
- Emory Vaccine Center and Department of Microbiology and Immunology, Atlanta, GA 30322, USA
| | - Rafi Ahmed
- Emory Vaccine Center and Department of Microbiology and Immunology, Atlanta, GA 30322, USA
| | - Susan M Kaech
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA; Howard Hughes Medical Institute, 4000 Jones Bridge Road, Chevy Chase, MD 20815-6789, USA.
| | - Joe Craft
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA; Department of Medicine (Rheumatology), Yale University School of Medicine, New Haven, CT 06520, USA.
| |
Collapse
|
261
|
Shakya A, Goren A, Shalek A, German CN, Snook J, Kuchroo VK, Yosef N, Chan RC, Regev A, Williams MA, Tantin D. Oct1 and OCA-B are selectively required for CD4 memory T cell function. J Exp Med 2015; 212:2115-31. [PMID: 26481684 PMCID: PMC4647264 DOI: 10.1084/jem.20150363] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Accepted: 09/25/2015] [Indexed: 12/31/2022] Open
Abstract
Shakya et al. identify the transcription factor Oct1 and its cofactor OCA-B as central mediators for generating memory T cell responses in mice. Epigenetic changes are crucial for the generation of immunological memory. Failure to generate or maintain these changes will result in poor memory responses. Similarly, augmenting or stabilizing the correct epigenetic states offers a potential method of enhancing memory. Yet the transcription factors that regulate these processes are poorly defined. We find that the transcription factor Oct1 and its cofactor OCA-B are selectively required for the in vivo generation of CD4+ memory T cells. More importantly, the memory cells that are formed do not respond properly to antigen reencounter. In vitro, both proteins are required to maintain a poised state at the Il2 target locus in resting but previously stimulated CD4+ T cells. OCA-B is also required for the robust reexpression of multiple other genes including Ifng. ChIPseq identifies ∼50 differentially expressed direct Oct1 and OCA-B targets. We identify an underlying mechanism involving OCA-B recruitment of the histone lysine demethylase Jmjd1a to targets such as Il2, Ifng, and Zbtb32. The findings pinpoint Oct1 and OCA-B as central mediators of CD4+ T cell memory.
Collapse
Affiliation(s)
- Arvind Shakya
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT 84112
| | - Alon Goren
- Broad Technology Labs, The Broad Institute of MIT and Harvard, Cambridge, MA 02142
| | - Alex Shalek
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138 Department of Physics, Harvard University, Cambridge, MA 02138 The Broad Institute of MIT and Harvard, Cambridge, MA 02142
| | - Cody N German
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT 84112
| | - Jeremy Snook
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT 84112
| | - Vijay K Kuchroo
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115 The Broad Institute of MIT and Harvard, Cambridge, MA 02142
| | - Nir Yosef
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115 The Broad Institute of MIT and Harvard, Cambridge, MA 02142
| | - Raymond C Chan
- Department of Human Genetics, University of Michigan, Ann Arbor, MI 48109
| | - Aviv Regev
- Howard Hughes Medical Institute, Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139 The Broad Institute of MIT and Harvard, Cambridge, MA 02142
| | - Matthew A Williams
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT 84112
| | - Dean Tantin
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT 84112
| |
Collapse
|
262
|
Khan SH, Martin MD, Starbeck-Miller GR, Xue HH, Harty JT, Badovinac VP. The Timing of Stimulation and IL-2 Signaling Regulate Secondary CD8 T Cell Responses. PLoS Pathog 2015; 11:e1005199. [PMID: 26431533 PMCID: PMC4592272 DOI: 10.1371/journal.ppat.1005199] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Accepted: 09/09/2015] [Indexed: 11/19/2022] Open
Abstract
Memory CD8 T cells provide protection to immune hosts by eliminating pathogen-infected cells during re-infection. While parameters influencing the generation of primary (1°) CD8 T cells are well established, the factors controlling the development of secondary (2°) CD8 T cell responses remain largely unknown. Here, we address the mechanisms involved in the generation and development of 2° memory (M) CD8 T cells. We observed that the time at which 1° M CD8 T cells enter into immune response impacts their fate and differentiation into 2° M CD8 T cells. Late-entry of 1° M CD8 T cells into an immune response (relative to the onset of infection) not only facilitated the expression of transcription factors associated with memory formation in 2° effector CD8 T cells, but also influenced the ability of 2° M CD8 T cells to localize within the lymph nodes, produce IL-2, and undergo Ag-driven proliferation. The timing of stimulation of 1° M CD8 T cells also impacted the duration of expression of the high-affinity IL-2 receptor (CD25) on 2° effector CD8 T cells and their sensitivity to IL-2 signaling. Importantly, by blocking or enhancing IL-2 signaling in developing 2° CD8 T cells, we provide direct evidence for the role of IL-2 in controlling the differentiation of Ag-driven 2° CD8 T cell responses. Thus, our data suggest that the process of 1° M to 2° M CD8 T cell differentiation is not fixed and can be manipulated, a notion with relevance for the design of future prime-boost vaccination approaches.
Collapse
Affiliation(s)
- Shaniya H. Khan
- Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, Iowa, United States of America
| | - Matthew D. Martin
- Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, Iowa, United States of America
| | - Gabriel R. Starbeck-Miller
- Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, Iowa, United States of America
| | - Hai-Hui Xue
- Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, Iowa, United States of America
- Department of Microbiology, University of Iowa, Iowa City, Iowa, United States of America
| | - John T. Harty
- Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, Iowa, United States of America
- Department of Microbiology, University of Iowa, Iowa City, Iowa, United States of America
- Department of Pathology, University of Iowa, Iowa City, Iowa, United States of America
| | - Vladimir P. Badovinac
- Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, Iowa, United States of America
- Department of Pathology, University of Iowa, Iowa City, Iowa, United States of America
- * E-mail:
| |
Collapse
|
263
|
Erickson JJ, Lu P, Wen S, Hastings AK, Gilchuk P, Joyce S, Shyr Y, Williams JV. Acute Viral Respiratory Infection Rapidly Induces a CD8+ T Cell Exhaustion-like Phenotype. THE JOURNAL OF IMMUNOLOGY 2015; 195:4319-30. [PMID: 26401005 DOI: 10.4049/jimmunol.1403004] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Accepted: 08/21/2015] [Indexed: 11/19/2022]
Abstract
Acute viral infections typically generate functional effector CD8(+) T cells (TCD8) that aid in pathogen clearance. However, during acute viral lower respiratory infection, lung TCD8 are functionally impaired and do not optimally control viral replication. T cells also become unresponsive to Ag during chronic infections and cancer via signaling by inhibitory receptors such as programmed cell death-1 (PD-1). PD-1 also contributes to TCD8 impairment during viral lower respiratory infection, but how it regulates TCD8 impairment and the connection between this state and T cell exhaustion during chronic infections are unknown. In this study, we show that PD-1 operates in a cell-intrinsic manner to impair lung TCD8. In light of this, we compared global gene expression profiles of impaired epitope-specific lung TCD8 to functional spleen TCD8 in the same human metapneumovirus-infected mice. These two populations differentially regulate hundreds of genes, including the upregulation of numerous inhibitory receptors by lung TCD8. We then compared the gene expression of TCD8 during human metapneumovirus infection to those in acute or chronic lymphocytic choriomeningitis virus infection. We find that the immunophenotype of lung TCD8 more closely resembles T cell exhaustion late into chronic infection than do functional effector T cells arising early in acute infection. Finally, we demonstrate that trafficking to the infected lung alone is insufficient for TCD8 impairment or inhibitory receptor upregulation, but that viral Ag-induced TCR signaling is also required. Our results indicate that viral Ag in infected lungs rapidly induces an exhaustion-like state in lung TCD8 characterized by progressive functional impairment and upregulation of numerous inhibitory receptors.
Collapse
Affiliation(s)
- John J Erickson
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - Pengcheng Lu
- Department of Biostatistics, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - Sherry Wen
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - Andrew K Hastings
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - Pavlo Gilchuk
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - Sebastian Joyce
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN 37232; Veterans Administration Tennessee Valley Healthcare System, Nashville, TN 37232
| | - Yu Shyr
- Department of Biostatistics, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - John V Williams
- Department of Pediatrics, Vanderbilt University School of Medicine, Nashville, TN 37232; and Department of Pediatrics, University of Pittsburgh School of Medicine, Children's Hospital of Pittsburgh of University of Pittsburgh Medical Center, Pittsburgh, PA 15224
| |
Collapse
|
264
|
Waugh KA, Leach SM, Slansky JE. Targeting Transcriptional Regulators of CD8+ T Cell Dysfunction to Boost Anti-Tumor Immunity. Vaccines (Basel) 2015; 3:771-802. [PMID: 26393659 PMCID: PMC4586477 DOI: 10.3390/vaccines3030771] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Revised: 09/09/2015] [Accepted: 09/10/2015] [Indexed: 02/07/2023] Open
Abstract
Transcription is a dynamic process influenced by the cellular environment: healthy, transformed, and otherwise. Genome-wide mRNA expression profiles reflect the collective impact of pathways modulating cell function under different conditions. In this review we focus on the transcriptional pathways that control tumor infiltrating CD8+ T cell (TIL) function. Simultaneous restraint of overlapping inhibitory pathways may confer TIL resistance to multiple mechanisms of suppression traditionally referred to as exhaustion, tolerance, or anergy. Although decades of work have laid a solid foundation of altered transcriptional networks underlying various subsets of hypofunctional or “dysfunctional” CD8+ T cells, an understanding of the relevance in TIL has just begun. With recent technological advances, it is now feasible to further elucidate and utilize these pathways in immunotherapy platforms that seek to increase TIL function.
Collapse
Affiliation(s)
- Katherine A Waugh
- University of Colorado School of Medicine, 12800 East 19th Avenue, Mail Stop 8333, Aurora, CO 80045, USA.
| | - Sonia M Leach
- Center for Genes, Environment and Health, National Jewish Health, Denver, CO 80206, USA.
| | - Jill E Slansky
- University of Colorado School of Medicine, 12800 East 19th Avenue, Mail Stop 8333, Aurora, CO 80045, USA.
| |
Collapse
|
265
|
Vieira Braga FA, Hertoghs KML, Kragten NAM, Doody GM, Barnes NA, Remmerswaal EBM, Hsiao CC, Moerland PD, Wouters D, Derks IAM, van Stijn A, Demkes M, Hamann J, Eldering E, Nolte MA, Tooze RM, ten Berge IJM, van Gisbergen KPJM, van Lier RAW. Blimp-1 homolog Hobit identifies effector-type lymphocytes in humans. Eur J Immunol 2015; 45:2945-58. [DOI: 10.1002/eji.201545650] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Revised: 06/16/2015] [Accepted: 07/13/2015] [Indexed: 01/17/2023]
Affiliation(s)
- Felipe A. Vieira Braga
- Department of Hematopoiesis; Sanquin Research and Landsteiner Laboratory AMC/UvA; Amsterdam The Netherlands
| | | | - Natasja A. M. Kragten
- Department of Hematopoiesis; Sanquin Research and Landsteiner Laboratory AMC/UvA; Amsterdam The Netherlands
- Department of Experimental Immunology; AMC; Amsterdam The Netherlands
| | - Gina M. Doody
- Section of Experimental Haematology; Leeds Institute of Cancer and Pathology; University of Leeds; Leeds UK
| | - Nicholas A. Barnes
- Section of Experimental Haematology; Leeds Institute of Cancer and Pathology; University of Leeds; Leeds UK
| | - Ester B. M. Remmerswaal
- Department of Experimental Immunology; AMC; Amsterdam The Netherlands
- Internal Medicine; Renal Transplant Unit; AMC; Amsterdam The Netherlands
| | - Cheng-Chih Hsiao
- Department of Experimental Immunology; AMC; Amsterdam The Netherlands
| | | | - Diana Wouters
- Department of Hematopoiesis; Sanquin Research and Landsteiner Laboratory AMC/UvA; Amsterdam The Netherlands
| | | | - Amber van Stijn
- Department of Experimental Immunology; AMC; Amsterdam The Netherlands
- Internal Medicine; Renal Transplant Unit; AMC; Amsterdam The Netherlands
| | - Marc Demkes
- Department of Experimental Immunology; AMC; Amsterdam The Netherlands
| | - Jörg Hamann
- Department of Experimental Immunology; AMC; Amsterdam The Netherlands
| | - Eric Eldering
- Department of Experimental Immunology; AMC; Amsterdam The Netherlands
| | - Martijn A. Nolte
- Department of Hematopoiesis; Sanquin Research and Landsteiner Laboratory AMC/UvA; Amsterdam The Netherlands
- Department of Experimental Immunology; AMC; Amsterdam The Netherlands
| | - Reuben M. Tooze
- Section of Experimental Haematology; Leeds Institute of Cancer and Pathology; University of Leeds; Leeds UK
| | | | - Klaas P. J. M. van Gisbergen
- Department of Hematopoiesis; Sanquin Research and Landsteiner Laboratory AMC/UvA; Amsterdam The Netherlands
- Department of Experimental Immunology; AMC; Amsterdam The Netherlands
| | - René A. W. van Lier
- Department of Hematopoiesis; Sanquin Research and Landsteiner Laboratory AMC/UvA; Amsterdam The Netherlands
- Department of Experimental Immunology; AMC; Amsterdam The Netherlands
| |
Collapse
|
266
|
Vieira Braga FA, Hertoghs KML, van Lier RAW, van Gisbergen KPJM. Molecular characterization of HCMV-specific immune responses: Parallels between CD8(+) T cells, CD4(+) T cells, and NK cells. Eur J Immunol 2015; 45:2433-45. [PMID: 26228786 DOI: 10.1002/eji.201545495] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2015] [Revised: 07/15/2015] [Accepted: 07/28/2015] [Indexed: 11/07/2022]
Abstract
CD8(+) T cells are important for immunity against human cytomegalovirus (HCMV). The HCMV-specific CD8(+) T-cell response is characterized by the accumulation of terminally differentiated effector cells that have downregulated the costimulatory molecules CD27 and CD28. These HCMV-specific CD8(+) T cells maintain high levels of cytotoxic molecules such as granzyme B and rapidly produce the inflammatory cytokine IFN-γ upon activation. Remarkably, HCMV-specific CD8(+) T cells are able to persist long term as fully functional effector cells, suggesting a unique differentiation pathway that is distinct from the formation of memory CD8(+) T cells after infection with acute viruses. In this review, we aim to highlight the most recent developments in HCMV-specific CD8(+) T-cell differentiation, maintenance, tissue distribution, metabolism and function. HCMV also induces the differentiation of effector CD4(+) T cells and NK cells, which share characteristics with HCMV-specific CD8(+) T cells. We propose that the overlap in differentiation of NK cells, CD4(+) and CD8(+) T cells after HCMV infection may be regulated by a shared transcriptional machinery. A better understanding of the molecular framework of HCMV-specific CD8(+) T-cell responses may benefit vaccine design, as these cells uniquely combine the capacity to rapidly respond to infection with long-term survival.
Collapse
Affiliation(s)
- Felipe A Vieira Braga
- Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory AMC/UvA, Amsterdam, The Netherlands
| | - Kirsten M L Hertoghs
- Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory AMC/UvA, Amsterdam, The Netherlands
| | - René A W van Lier
- Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory AMC/UvA, Amsterdam, The Netherlands
| | - Klaas P J M van Gisbergen
- Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory AMC/UvA, Amsterdam, The Netherlands
| |
Collapse
|
267
|
Laidlaw BJ, Cui W, Amezquita RA, Gray SM, Guan T, Lu Y, Kobayashi Y, Flavell RA, Kleinstein SH, Craft J, Kaech SM. Production of IL-10 by CD4(+) regulatory T cells during the resolution of infection promotes the maturation of memory CD8(+) T cells. Nat Immunol 2015; 16:871-9. [PMID: 26147684 PMCID: PMC4713030 DOI: 10.1038/ni.3224] [Citation(s) in RCA: 153] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Accepted: 06/04/2015] [Indexed: 12/14/2022]
Abstract
Memory CD8(+) T cells are critical for host defense upon reexposure to intracellular pathogens. We found that interleukin 10 (IL-10) derived from CD4(+) regulatory T cells (Treg cells) was necessary for the maturation of memory CD8(+) T cells following acute infection with lymphocytic choriomeningitis virus (LCMV). Treg cell-derived IL-10 was most important during the resolution phase, calming inflammation and the activation state of dendritic cells. Adoptive transfer of IL-10-sufficient Treg cells during the resolution phase 'restored' the maturation of memory CD8(+) T cells in IL-10-deficient mice. Our data indicate that Treg cell-derived IL-10 is needed to insulate CD8(+) T cells from inflammatory signals, and reveal that the resolution phase of infection is a critical period that influences the quality and function of developing memory CD8(+) T cells.
Collapse
Affiliation(s)
- Brian J Laidlaw
- Department of Immunobiology, Yale School of Medicine, New Haven, Connecticut, USA
| | - Weiguo Cui
- Department of Immunobiology, Yale School of Medicine, New Haven, Connecticut, USA
| | - Robert A Amezquita
- 1] Department of Immunobiology, Yale School of Medicine, New Haven, Connecticut, USA. [2] Howard Hughes Medical Institute, Chevy Chase, Maryland, USA
| | - Simon M Gray
- Department of Immunobiology, Yale School of Medicine, New Haven, Connecticut, USA
| | - Tianxia Guan
- Department of Immunobiology, Yale School of Medicine, New Haven, Connecticut, USA
| | - Yisi Lu
- Department of Immunobiology, Yale School of Medicine, New Haven, Connecticut, USA
| | - Yasushi Kobayashi
- Department of Immunobiology, Yale School of Medicine, New Haven, Connecticut, USA
| | - Richard A Flavell
- 1] Department of Immunobiology, Yale School of Medicine, New Haven, Connecticut, USA. [2] Howard Hughes Medical Institute, Chevy Chase, Maryland, USA
| | - Steven H Kleinstein
- 1] Department of Immunobiology, Yale School of Medicine, New Haven, Connecticut, USA. [2] Department of Pathology, Yale School of Medicine, New Haven, Connecticut, USA. [3] Interdepartmental Program in Computational Biology and Bioinformatics, Yale School of Medicine, New Haven, Connecticut, USA
| | - Joe Craft
- 1] Department of Immunobiology, Yale School of Medicine, New Haven, Connecticut, USA. [2] Department of Internal Medicine (Rheumatology), Yale School of Medicine, New Haven, Connecticut, USA
| | - Susan M Kaech
- 1] Department of Immunobiology, Yale School of Medicine, New Haven, Connecticut, USA. [2] Howard Hughes Medical Institute, Chevy Chase, Maryland, USA
| |
Collapse
|
268
|
Mould AW, Morgan MAJ, Nelson AC, Bikoff EK, Robertson EJ. Blimp1/Prdm1 Functions in Opposition to Irf1 to Maintain Neonatal Tolerance during Postnatal Intestinal Maturation. PLoS Genet 2015; 11:e1005375. [PMID: 26158850 PMCID: PMC4497732 DOI: 10.1371/journal.pgen.1005375] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Accepted: 06/19/2015] [Indexed: 11/18/2022] Open
Abstract
The neonatal intestine is a very complex and dynamic organ that must rapidly adapt and remodel in response to a barrage of environmental stimuli during the first few postnatal weeks. Recent studies demonstrate that the zinc finger transcriptional repressor Blimp1/Prdm1 plays an essential role governing postnatal reprogramming of intestinal enterocytes during this period. Functional loss results in global changes in gene expression patterns, particularly in genes associated with metabolic function. Here we engineered a knock-in allele expressing an eGFP-tagged fusion protein under control of the endogenous regulatory elements and performed genome wide ChIP-seq analysis to identify direct Blimp1 targets and further elucidate the function of Blimp1 in intestinal development. Comparison with published human and mouse datasets revealed a highly conserved core set of genes including interferon-inducible promoters. Here we show that the interferon-inducible transcriptional activator Irf1 is constitutively expressed throughout fetal and postnatal intestinal epithelium development. ChIP-seq demonstrates closely overlapping Blimp1 and Irf1 peaks at key components of the MHC class I pathway in fetal enterocytes. The onset of MHC class I expression coincides with down-regulated Blimp1 expression during the suckling to weaning transition. Collectively, these experiments strongly suggest that in addition to regulating the enterocyte metabolic switch, Blimp1 functions as a gatekeeper in opposition to Irf1 to prevent premature activation of the MHC class I pathway in villus epithelium to maintain tolerance in the neonatal intestine. The transcriptional repressor Blimp1/Prdm1 plays a pivotal role in the metabolic switch that occurs in the small intestine during the suckling to weaning transition. Notably, expression profiling of perinatal Blimp1-deficient small intestine revealed premature activation of metabolic genes normally restricted to post-weaning enterocytes. To further elucidate the function of Blimp1 in intestinal development, we engineered a novel Blimp1-eGFP-fusion knock-in mouse strain to perform ChIP-seq analysis. In addition to identifying which metabolic genes are direct Blimp1 targets, ChIP-seq analysis revealed a highly conserved Blimp1/Irf-1 overlapping sites that function to control MHC class I antigen processing during acquisition of neonatal tolerance in the first weeks after birth during early colonization of the intestinal tract by commensal microorganisms. Moreover, immunohistochemical analysis of human fetal intestine suggests that a BLIMP1/IRF-1 axis may also function in human intestinal epithelium development.
Collapse
Affiliation(s)
- Arne W. Mould
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Marc A. J. Morgan
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Andrew C. Nelson
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Elizabeth K. Bikoff
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
- * E-mail: (EKB); (EJR)
| | - Elizabeth J. Robertson
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
- * E-mail: (EKB); (EJR)
| |
Collapse
|
269
|
Giardino Torchia ML, Munitic I, Castro E, Herz J, McGavern DB, Ashwell JD. c-IAP ubiquitin protein ligase activity is required for 4-1BB signaling and CD8(+) memory T-cell survival. Eur J Immunol 2015; 45:2672-82. [PMID: 26096449 DOI: 10.1002/eji.201445342] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Revised: 05/28/2015] [Accepted: 06/17/2015] [Indexed: 11/10/2022]
Abstract
Cellular inhibitor of apoptosis proteins (c-IAP) 1 and 2 are widely expressed ubiquitin protein ligases that regulate a variety of cellular functions, including the sensitivity of T cells to costimulation. 4-1BB is a TNF receptor family member that signals via a complex that includes TRAF family members and the c-IAPs to upregulate NF-κB and ERK, and has been implicated in memory T-cell survival. Here, we show that effector and memory T cells from mice expressing a dominant negative E3-inactive c-IAP2 (c-IAP2(H570A)) have impaired signaling downstream of 4-1BB. When infected with lymphocytic choriomeningitis virus, unlike mice in which c-IAPs were acutely downregulated by c-IAP antagonists, the primary response of c-IAP2(H570A) mice was normal. However, the number of antigen-specific CD8(+) but not CD4(+) T cells declined more rapidly and to a greater extent in c-IAP2(H570A) mice than in WT controls. Studies with T-cell adoptive transfer demonstrated that the enhanced decay of memory cells was T-cell intrinsic. Thus, c-IAP E3 activity is required for 4-1BB coreceptor signaling and maintenance of CD8(+) T-cell memory.
Collapse
Affiliation(s)
| | - Ivana Munitic
- Laboratory of Immune Cell Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Ehydel Castro
- Laboratory of Immune Cell Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Jasmin Herz
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Dorian B McGavern
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Jonathan D Ashwell
- Laboratory of Immune Cell Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
270
|
Mathieu M, Duval F, Daudelin JF, Labrecque N. The Notch signaling pathway controls short-lived effector CD8+ T cell differentiation but is dispensable for memory generation. THE JOURNAL OF IMMUNOLOGY 2015; 194:5654-62. [PMID: 25972473 DOI: 10.4049/jimmunol.1402837] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Accepted: 04/19/2015] [Indexed: 11/19/2022]
Abstract
Following an infection, naive CD8(+) T cells expand and differentiate into two main populations of effectors: short-lived effector cells (SLECs) and memory precursor effector cells (MPECs). There is limited understanding of the molecular mechanism and cellular processes governing this cell fate. Notch is a key regulator of cell fate decision relevant in many immunological pathways. In this study, we add to the role of Notch in cell fate decision and demonstrate that the Notch signaling pathway controls the MPEC/SLEC differentiation choice following both Listeria infection and dendritic cell immunization of mice. Although fewer SLECs were generated, Notch deficiency did not alter the rate of memory CD8(+) T cell generation. Moreover, we reveal that the Notch signaling pathway plays a context-dependent role for optimal cytokine production by effector CD8(+) T cells. Together, our results unravel critical functions for the Notch signaling pathway during effector CD8(+) T cell differentiation.
Collapse
Affiliation(s)
- Mélissa Mathieu
- Maisonneuve-Rosemont Hospital Research Center, Montreal, Quebec H1T 2M4, Canada; Department of Microbiology, Infectiology and Immunology, University of Montreal, Montreal, Quebec H3T 1J4, Canada; and
| | - Frédéric Duval
- Maisonneuve-Rosemont Hospital Research Center, Montreal, Quebec H1T 2M4, Canada; Department of Microbiology, Infectiology and Immunology, University of Montreal, Montreal, Quebec H3T 1J4, Canada; and
| | | | - Nathalie Labrecque
- Maisonneuve-Rosemont Hospital Research Center, Montreal, Quebec H1T 2M4, Canada; Department of Microbiology, Infectiology and Immunology, University of Montreal, Montreal, Quebec H3T 1J4, Canada; and Department of Medicine, University of Montreal, Montreal, Quebec H3T 1J4, Canada
| |
Collapse
|
271
|
Gray SM, Kaech SM, Staron MM. The interface between transcriptional and epigenetic control of effector and memory CD8⁺ T-cell differentiation. Immunol Rev 2015; 261:157-68. [PMID: 25123283 DOI: 10.1111/imr.12205] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Immunity to many intracellular pathogens requires the proliferation, differentiation, and function of CD8(+) cytotoxic T lymphocytes (CTLs). While the majority of effector CTLs die upon clearance of the pathogen, a small proportion of them survive to become long-lived memory CTLs. Memory CTLs can provide protective immunity against re-exposure to the same pathogen and are the principle motivation behind T-cell- based vaccine design. While a large body of cellular immunologic research has proven invaluable to define effector and memory CTLs by their different phenotypes and functions, an emerging focus in the field has been to understand how environmental cues regulate CTL differentiation on a genomic level. Genome-wide studies to profile transcriptional and epigenetic changes during infection have revealed that dynamic changes in DNA methylation patterns and histone modifications accompany transcriptional signatures that define and regulate CTL differentiation states. In this review, we emphasize the importance of epigenetic regulation of CD8(+) T-cell differentiation and the likely role that transcription factors play in this process.
Collapse
Affiliation(s)
- Simon M Gray
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | | | | |
Collapse
|
272
|
Wojta-Stremayr D, Neunkirchner A, Srinivasan B, Trapin D, Schmetterer KG, Pickl WF. CD8+ T Cell Fate and Function Influenced by Antigen-Specific Virus-Like Nanoparticles Co-Expressing Membrane Tethered IL-2. PLoS One 2015; 10:e0126034. [PMID: 25946103 PMCID: PMC4422701 DOI: 10.1371/journal.pone.0126034] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Accepted: 03/27/2015] [Indexed: 01/21/2023] Open
Abstract
A variety of adjuvants fostering humoral immunity are known as of today. However, there is a lack of adjuvants or adjuvant strategies, which directly target T cellular effector functions and memory. We here determined whether systemically toxic cytokines such as IL-2 can be restricted to the site of antigen presentation and used as ‘natural adjuvants’. Therefore, we devised antigen-presenting virus-like nanoparticles (VNP) co-expressing IL-2 attached to different membrane-anchors and assessed their potency to modulate CD8+ T cell responses in vitro and in vivo. Efficient targeting of IL-2 to lipid rafts and ultimately VNP was achieved by fusing IL-2 at its C-terminus to a minimal glycosylphosphatidylinositol (GPI)-anchor acceptor sequence. To identify optimal membrane-anchor dimensions we inserted one (1Ig), two (2Ig) or four (4Ig) immunoglobulin(Ig)-like domains of CD16b between IL-2 and the minimal GPI-anchor acceptor sequence of CD16b (GPI). We found that the 2IgGPI version was superior to all other evaluated IL-2 variants (IL-2v) in terms of its i) degree of targeting to lipid rafts and to the VNP surface, ii) biological activity, iii) co-stimulation of cognate T cells in the absence of bystander activation and iv) potency to induce differentiation and acquisition of CD8+ T cell effector functions in vitro and in vivo. In contrast, the GPI version rather favored memory precursor cell formation. These results exemplify novel beneficial features of membrane-bound IL-2, which in addition to its mere T cell stimulatory capacity include the induction of differential effector and memory functions in CD8+ T lymphocytes.
Collapse
Affiliation(s)
- Daniela Wojta-Stremayr
- Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria; Christian Doppler Laboratory for Immunomodulation, Vienna, Austria
| | - Alina Neunkirchner
- Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria; Christian Doppler Laboratory for Immunomodulation, Vienna, Austria
| | - Bharani Srinivasan
- Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Doris Trapin
- Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Klaus G Schmetterer
- Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Winfried F Pickl
- Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria; Christian Doppler Laboratory for Immunomodulation, Vienna, Austria
| |
Collapse
|
273
|
Crotty S, Pipkin ME. In vivo RNAi screens: concepts and applications. Trends Immunol 2015; 36:315-22. [PMID: 25937561 DOI: 10.1016/j.it.2015.03.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Revised: 03/16/2015] [Accepted: 03/17/2015] [Indexed: 11/17/2022]
Abstract
Functional genomics approaches that leverage the RNAi pathway have been applied in vivo to examine the roles of hundreds or thousands of genes; mainly in the context of cancer. Here, we discuss principles guiding the design of RNAi screens, parameters that determine success and recent developments that have improved accuracy and expanded the applicability of these approaches to other in vivo settings, including the immune system. We review recent studies that have applied in vivo RNAi screens in T cells to examine genes that regulate T cell differentiation during viral infection, and that control their accumulation in tumors in a model of adoptive T cell therapy. In this context, we put forward an argument as to why RNAi approaches in vivo are likely to provide particularly salient insight into immunology.
Collapse
Affiliation(s)
- Shane Crotty
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, CA, 92037, USA
| | - Matthew E Pipkin
- Department of Cancer Biology, The Scripps Research Institute, Jupiter, FL, 33458, USA.
| |
Collapse
|
274
|
Crompton JG, Narayanan M, Cuddapah S, Roychoudhuri R, Ji Y, Yang W, Patel SJ, Sukumar M, Palmer DC, Peng W, Wang E, Marincola FM, Klebanoff CA, Zhao K, Tsang JS, Gattinoni L, Restifo NP. Lineage relationship of CD8+ T cell subsets is revealed by progressive changes in the epigenetic landscape. Cell Mol Immunol 2015. [DOI: 10.1038/cmi.2015.032] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|
275
|
Böttcher J, Knolle PA. Global transcriptional characterization of CD8+ T cell memory. Semin Immunol 2015; 27:4-9. [PMID: 25841628 DOI: 10.1016/j.smim.2015.03.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2014] [Revised: 02/28/2015] [Accepted: 03/03/2015] [Indexed: 12/24/2022]
Abstract
The differentiation of memory CD8T cells after acute infections comprises generation of functionally distinct populations that either have proliferative potential or display cytotoxic effector functions and that either recirculate into lymphoid tissues or remain tissue-resident. The development of these functionally distinct cell populations is dictated by defined signals from the microenvironment that result in a coordinated expression of a network of transcription factors, which determine the functionality of memory T cells. Distinct transcriptional regulation observed during chronic viral infection that results in generation of T cells that control viral replication in the absence of immunopathology suggests the existence of so far unappreciated functional adaptation of T cell function to the particular need during chronic infections to control infection and avoid immunopathology. Furthermore, the non-canonical generation of CD8T cell memory outside of lymphoid tissues in the liver in the absence of inflammation is correlated with a distinct transcriptional profile and indicates further complexity in the commensurate immune response to infectious pathogens that escape innate immunity. Taken together, distinct profiles of transcriptional regulation are linked to CD8T cells with different functions and provide important mechanistic insight into the continuous functional adaptation of CD8T cells to generate a commensurate immune response to infectious challenges.
Collapse
Affiliation(s)
- Jan Böttcher
- Immunobiology Laboratory, Cancer Research UK, United Kingdom
| | - Percy A Knolle
- Institute of Molecular Immunology, München Rechts der Isar, Technische Universität München, Germany; Institute of Experimental Immunology, Universität Bonn, Germany.
| |
Collapse
|
276
|
Abstract
Memory CD8 T cells generated after acute viral infections or live vaccines can persist for extended periods, in some instances for life, and play an important role in protective immunity. This long-lived immunity is achieved in part through cytokine-mediated homeostatic proliferation of memory T cells while maintaining the acquired capacity for rapid recall of effector cytokines and cytolytic molecules. The ability of memory CD8 T cells to retain their acquired properties, including their ability to remain poised to recall effector functions, is a truly impressive feat given that these acquired properties can be maintained for decades without exposure to cognate antigen. Here, we discuss general mechanisms for acquisition and maintenance of transcriptional programs in memory CD8 T cells and the potential role of epigenetic programming in maintaining the phenotypic and functional heterogeneity of cellular subsets among the pool of memory cells.
Collapse
Affiliation(s)
- Ben Youngblood
- Department of Microbiology and Immunology, Emory University1510 Clifton Road, Atlanta, GA 30322USA
- Department of Immunology, St Jude Children's Research Hospital262 Danny Thomas Place, Memphis, TN 38105-3678USA
| | - J. Scott Hale
- Department of Microbiology and Immunology, Emory University1510 Clifton Road, Atlanta, GA 30322USA
- Emory Vaccine Center, Emory University School of MedicineAtlanta, GA 30329
| | - Rafi Ahmed
- Department of Microbiology and Immunology, Emory University1510 Clifton Road, Atlanta, GA 30322USA
- Emory Vaccine Center, Emory University School of MedicineAtlanta, GA 30329
| |
Collapse
|
277
|
Billingsley JM, Rajakumar PA, Connole MA, Salisch NC, Adnan S, Kuzmichev YV, Hong HS, Reeves RK, Kang HJ, Li W, Li Q, Haase AT, Johnson RP. Characterization of CD8+ T cell differentiation following SIVΔnef vaccination by transcription factor expression profiling. PLoS Pathog 2015; 11:e1004740. [PMID: 25768938 PMCID: PMC4358830 DOI: 10.1371/journal.ppat.1004740] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Accepted: 02/10/2015] [Indexed: 01/03/2023] Open
Abstract
The onset of protective immunity against pathogenic SIV challenge in SIVΔnef-vaccinated macaques is delayed for 15-20 weeks, a process that is related to qualitative changes in CD8+ T cell responses induced by SIVΔnef. As a novel approach to characterize cell differentiation following vaccination, we used multi-target qPCR to measure transcription factor expression in naïve and memory subsets of CD8++ T cells, and in SIV-specific CD8+ T cells obtained from SIVΔnef-vaccinated or wild type SIVmac239-infected macaques. Unsupervised clustering of expression profiles organized naïve and memory CD8+ T cells into groups concordant with cell surface phenotype. Transcription factor expression patterns in SIV-specific CD8+ T cells in SIVΔnef-vaccinated animals were distinct from those observed in purified CD8+ T cell subsets obtained from naïve animals, and were intermediate to expression profiles of purified central memory and effector memory T cells. Expression of transcription factors elicited by SIVΔnef vaccination also varied over time: cells obtained at later time points, temporally associated with greater protection, appeared more central-memory like than cells obtained at earlier time points, which appeared more effector memory-like. Expression of transcription factors associated with effector differentiation, such as ID2 and RUNX3, were decreased over time, while expression of transcription factors associated with quiescence or memory differentiation, such as TCF7, BCOR and EOMES, increased. CD8+ T cells specific for a more conserved epitope expressed higher levels of TBX21 and BATF, and appeared more effector-like than cells specific for an escaped epitope, consistent with continued activation by replicating vaccine virus. These data suggest transcription factor expression profiling is a novel method that can provide additional data complementary to the analysis of memory cell differentiation based on classical phenotypic markers. Additionally, these data support the hypothesis that ongoing stimulation by SIVΔnef promotes a distinct protective balance of CD8+ T cell differentiation and activation states. The live attenuated vaccine SIVΔnef can induce robust CD8+ T cell- mediated protection against infection with pathogenic SIV in macaques. Thus, there is substantial interest in characterizing these immune responses to inform HIV vaccine design. Animals challenged at 15–20 weeks post vaccination exhibit robust protection, whereas animals challenged at 5 weeks post-vaccination manifest little protection. Since the frequency of SIV-specific T cells decreases from week 5 to week 20, it is likely that the quality of the response to challenge changes as virus-specific cells differentiate. We applied a novel approach of transcription factor expression profiling to characterize the differences in SIV-specific cell function and phenotype at more protected and less protected time points. Using unsupervised clustering methods informed by expression profiles assessed in purified CD8+ T cell subsets, we show that SIV-specific cells display expression profiles different than any purified CD8+ T cell subset, and intermediate to sorted effector memory and central memory subsets. SIV-specific cells overall appear more effector memory-like at week 5 post-vaccination, and more central memory-like at week 20 post-vaccination. Distinct profiles of CD8+ T cells specific for different SIV epitopes having different immune escape kinetics suggests maturation is regulated by ongoing low-level replication of vaccine virus.
Collapse
Affiliation(s)
- James M. Billingsley
- Division of Immunology, New England Primate Research Center, Harvard Medical School, Southborough, Massachusetts, United States of America
- Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, United States of America
| | - Premeela A. Rajakumar
- Division of Immunology, New England Primate Research Center, Harvard Medical School, Southborough, Massachusetts, United States of America
- Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, United States of America
| | - Michelle A. Connole
- Division of Immunology, New England Primate Research Center, Harvard Medical School, Southborough, Massachusetts, United States of America
| | - Nadine C. Salisch
- Division of Immunology, New England Primate Research Center, Harvard Medical School, Southborough, Massachusetts, United States of America
- Crucell Holland BV, Leiden, The Netherlands
| | - Sama Adnan
- Division of Immunology, New England Primate Research Center, Harvard Medical School, Southborough, Massachusetts, United States of America
- Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, United States of America
| | - Yury V. Kuzmichev
- Division of Immunology, New England Primate Research Center, Harvard Medical School, Southborough, Massachusetts, United States of America
| | - Henoch S. Hong
- Division of Immunology, New England Primate Research Center, Harvard Medical School, Southborough, Massachusetts, United States of America
| | - R. Keith Reeves
- Division of Immunology, New England Primate Research Center, Harvard Medical School, Southborough, Massachusetts, United States of America
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, Massachusetts, United States of America
| | - Hyung-joo Kang
- Division of Preventive and Behavioral Medicine, University of Massachusetts Medical Center, Worcester, Massachusetts, United States of America
| | - Wenjun Li
- Division of Preventive and Behavioral Medicine, University of Massachusetts Medical Center, Worcester, Massachusetts, United States of America
| | - Qingsheng Li
- Nebraska Center for Virology and School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska, United States of America
| | - Ashley T. Haase
- University of Minnesota, Microbiology Department, Minneapolis, Minnesota, United States of America
| | - R. Paul Johnson
- Division of Immunology, New England Primate Research Center, Harvard Medical School, Southborough, Massachusetts, United States of America
- Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, United States of America
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
278
|
The interplay of effector and regulatory T cells in cancer. Curr Opin Immunol 2015; 33:101-11. [PMID: 25728990 DOI: 10.1016/j.coi.2015.02.003] [Citation(s) in RCA: 108] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Revised: 01/19/2015] [Accepted: 02/06/2015] [Indexed: 01/05/2023]
Abstract
Regulatory T (Treg) cells suppress effector T (Teff) cells and prevent immune-mediated rejection of cancer. Much less appreciated are mechanisms by which Teff cells antagonize Treg cells. Herein, we consider how complex reciprocal interactions between Teff and Treg cells shape their population dynamics within tumors. Under states of tolerance, including during tumor escape, suppressed Teff cells support Treg cell populations through antigen-dependent provision of interleukin (IL)-2. During immune activation, Teff cells can lose this supportive capacity and directly antagonize Treg cell populations to neutralize their immunosuppressive function. While this latter state is rarely achieved spontaneously within tumors, we propose that therapeutic induction of immune activation has the potential to stably disrupt immunosuppressive population states resulting in durable cancer regression.
Collapse
|
279
|
Lee N, You S, Shin MS, Lee WW, Kang KS, Kim SH, Kim WU, Homer RJ, Kang MJ, Montgomery RR, Dela Cruz CS, Shaw AC, Lee PJ, Chupp GL, Hwang D, Kang I. IL-6 receptor α defines effector memory CD8+ T cells producing Th2 cytokines and expanding in asthma. Am J Respir Crit Care Med 2015; 190:1383-94. [PMID: 25390970 DOI: 10.1164/rccm.201403-0601oc] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
RATIONALE Cytokine receptors can be markers defining different T-cell subsets and considered as therapeutic targets. The association of IL-6 and IL-6 receptor α (IL-6Rα) with asthma was reported, suggesting their involvement in asthma. OBJECTIVES To determine whether and how IL-6Rα defines a distinct effector memory (EM) CD8+ T-cell population in health and disease. METHODS EM CD8+ T cells expressing IL-6Rα (IL-6Rα(high)) were identified in human peripheral blood and analyzed for function, gene, and transcription factor expression. The relationship of these cells with asthma was determined using blood and sputum. MEASUREMENTS AND MAIN RESULTS A unique population of IL-6Rα(high) EM CD8+ T cells was found in peripheral blood. These cells that potently proliferated, survived, and produced high levels of the Th2-type cytokines IL-5 and IL-13 had increased levels of GATA3 and decreased levels of T-bet and Blimp-1 in comparison with other EM CD8+ T cells. In fact, GATA3 was required for IL-6Rα expression. Patients with asthma had an increased frequency of IL-6Rα(high) EM CD8+ T cells in peripheral blood compared with healthy control subjects. Also, IL-6Rα(high) EM CD8+ T cells exclusively produced IL-5 and IL-13 in response to asthma-associated respiratory syncytial virus and bacterial superantigens. CONCLUSIONS Human IL-6Rα(high) EM CD8+ T cells is a unique cell subset that may serve as a reservoir for effector CD8+ T cells, particularly the ones producing Th2-type cytokines, and expand in asthma.
Collapse
Affiliation(s)
- Naeun Lee
- 1 Department of Internal Medicine and
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
280
|
Kaczmarek Michaels K, Natarajan M, Euler Z, Alter G, Viglianti G, Henderson AJ. Blimp-1, an intrinsic factor that represses HIV-1 proviral transcription in memory CD4+ T cells. THE JOURNAL OF IMMUNOLOGY 2015; 194:3267-74. [PMID: 25710909 DOI: 10.4049/jimmunol.1402581] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
CD4(+) T cell subsets differentially support HIV-1 replication. For example, quiescent CD4(+) memory T cells are susceptible to HIV-1 infection but do not support robust HIV-1 transcription and have been implicated as the primary reservoir of latent HIV-1. T cell transcription factors that regulate maturation potentially limit HIV-1 transcription and mediate the establishment and maintenance of HIV-1 latency. We report that B lymphocyte-induced maturation protein-1 (Blimp-1), a critical regulator of B and T cell differentiation, is highly expressed in memory CD4(+) T cells compared with naive CD4(+) T cells and represses basal and Tat-mediated HIV-1 transcription. Blimp-1 binds an IFN-stimulated response element within HIV-1 provirus, and it is displaced following T cell activation. Reduction of Blimp-1 in infected primary T cells including CD4(+) memory T cells increases RNA polymerase II processivity, histone acetylation, and baseline HIV-1 transcription. Therefore, the transcriptional repressor, Blimp-1, is an intrinsic factor that predisposes CD4(+) memory T cells to latent HIV-1 infection.
Collapse
Affiliation(s)
- Katarzyna Kaczmarek Michaels
- Section of Infectious Diseases, Department of Medicine, Boston University School of Medicine, Boston, MA 02118; Graduate Program in Molecular and Translational Medicine, Boston University School of Medicine, Boston, MA 02118
| | | | - Zelda Euler
- Ragon Institute of MGH, MIT and Harvard University, Boston, MA 02139; and
| | - Galit Alter
- Ragon Institute of MGH, MIT and Harvard University, Boston, MA 02139; and
| | - Gregory Viglianti
- Department of Microbiology, Boston University School of Medicine, Boston, MA 02118
| | - Andrew J Henderson
- Section of Infectious Diseases, Department of Medicine, Boston University School of Medicine, Boston, MA 02118; Graduate Program in Molecular and Translational Medicine, Boston University School of Medicine, Boston, MA 02118; Department of Microbiology, Boston University School of Medicine, Boston, MA 02118
| |
Collapse
|
281
|
Li J, Valentin A, Ng S, Beach RK, Alicea C, Bergamaschi C, Felber BK, Pavlakis GN. Differential effects of IL-15 on the generation, maintenance and cytotoxic potential of adaptive cellular responses induced by DNA vaccination. Vaccine 2015; 33:1188-96. [PMID: 25559187 DOI: 10.1016/j.vaccine.2014.12.046] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Revised: 11/24/2014] [Accepted: 12/18/2014] [Indexed: 11/30/2022]
Abstract
IL-15 is an important cytokine for the regulation of lymphocyte homeostasis. However, the role of IL-15 in the generation, maintenance and cytotoxic potential of antigen specific T cells is not fully understood. Because the route of antigenic delivery and the vaccine modality could influence the IL-15 requirement for mounting and preserving cytotoxic T cell responses, we have investigated the immunogenicity of DNA-based vaccines in IL-15 KO mice. DNA vaccination with SIV Gag induced antigen-specific CD4(+) and CD8(+) T cells in the absence of IL-15. However, the absolute number of antigen-specific CD8(+) T cells was decreased in IL-15 KO mice compared to WT animals, suggesting that IL-15 is important for the generation of maximal number of antigen-specific CD8(+) T cells. Interestingly, antigen-specific memory CD8 cells could be efficiently boosted 8 months after the final vaccination in both WT and KO strains of mice, suggesting that the maintenance of antigen-specific long-term memory T cells induced by DNA vaccination is comparable in the absence and presence of IL-15. Importantly, boosting by DNA 8-months after vaccination revealed severely reduced granzyme B content in CD8(+) T cells of IL-15 KO mice compared to WT mice. This suggests that the cytotoxic potential of the long-term memory CD8(+) T cells is impaired. These results suggest that IL-15 is not essential for the generation and maintenance of adaptive cellular responses upon DNA vaccination, but it is critical for the preservation of maximal numbers and for the activity of cytotoxic CD8(+) T cells.
Collapse
Affiliation(s)
- Jinyao Li
- Human Retrovirus Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD 21702, United States
| | - Antonio Valentin
- Human Retrovirus Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD 21702, United States.
| | - Sinnie Ng
- Human Retrovirus Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD 21702, United States
| | - Rachel Kelly Beach
- Human Retrovirus Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD 21702, United States; Human Retrovirus Pathogenesis Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD 21702, United States
| | - Candido Alicea
- Human Retrovirus Pathogenesis Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD 21702, United States
| | - Cristina Bergamaschi
- Human Retrovirus Pathogenesis Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD 21702, United States
| | - Barbara K Felber
- Human Retrovirus Pathogenesis Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD 21702, United States
| | - George N Pavlakis
- Human Retrovirus Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD 21702, United States.
| |
Collapse
|
282
|
Abstract
UNLABELLED Viral infection results in the generation of massive numbers of activated effector CD8(+) T cells that recognize viral components. Most of these are short-lived effector T cells (SLECs) that die after clearance of the virus. However, a small proportion of this population survives and forms antigen-specific memory precursor effector cells (MPECs), which ultimately develop into memory cells. These can participate in a recall response upon reexposure to antigen even at protracted times postinfection. Here, antiapoptotic myeloid cell leukemia 1 (MCL1) was found to prolong survival upon T cell stimulation, and mice expressing human MCL1 as a transgene exhibited a skewing in the proportion of CD8(+) T cells, away from SLECs toward MPECs, during the acute phase of vaccinia virus infection. A higher frequency and total number of antigen-specific CD8(+) T cells were observed in MCL1 transgenic mice. These findings show that MCL1 can shape the makeup of the CD8(+) T cell response, promoting the formation of long-term memory. IMPORTANCE During an immune response to a virus, CD8(+) T cells kill cells infected by the virus, and most die when the infection resolves. However, a small proportion of cells survives and differentiates into long-lived memory cells that confer protection from reinfection by the same virus. This report shows that transgenic expression of an MCL1 protein enhances survival of memory CD8(+) T cells following infection with vaccinia virus. This is important because it shows that MCL1 expression may be an important determinant of the formation of long-term CD8(+) T cell memory.
Collapse
|
283
|
Chang JT, Wherry EJ, Goldrath AW. Molecular regulation of effector and memory T cell differentiation. Nat Immunol 2014; 15:1104-15. [PMID: 25396352 PMCID: PMC4386685 DOI: 10.1038/ni.3031] [Citation(s) in RCA: 421] [Impact Index Per Article: 42.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Accepted: 10/14/2014] [Indexed: 02/07/2023]
Abstract
Immunological memory is a cardinal feature of adaptive immunity and an important goal of vaccination strategies. Here we highlight advances in the understanding of the diverse T lymphocyte subsets that provide acute and long-term protection from infection. These include new insights into the transcription factors, and the upstream 'pioneering' factors that regulate their accessibility to key sites of gene regulation, as well as metabolic regulators that contribute to the differentiation of effector and memory subsets; ontogeny and defining characteristics of tissue-resident memory lymphocytes; and origins of the remarkable heterogeneity exhibited by activated T cells. Collectively, these findings underscore progress in delineating the underlying pathways that control diversification in T cell responses but also reveal gaps in the knowledge, as well as the challenges that arise in the application of this knowledge to rationally elicit desired T cell responses through vaccination and immunotherapy.
Collapse
Affiliation(s)
- John T Chang
- Department of Medicine, University of California San Diego, La Jolla, California, USA
| | - E John Wherry
- 1] Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA. [2] Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Ananda W Goldrath
- Division of Biological Sciences, University of California San Diego, La Jolla, California, USA
| |
Collapse
|
284
|
Chen R, Bélanger S, Frederick MA, Li B, Johnston RJ, Xiao N, Liu YC, Sharma S, Peters B, Rao A, Crotty S, Pipkin ME. In vivo RNA interference screens identify regulators of antiviral CD4(+) and CD8(+) T cell differentiation. Immunity 2014; 41:325-38. [PMID: 25148027 DOI: 10.1016/j.immuni.2014.08.002] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Accepted: 08/04/2014] [Indexed: 12/19/2022]
Abstract
Classical genetic approaches to examine the requirements of genes for T cell differentiation during infection are time consuming. Here we developed a pooled approach to screen 30-100+ genes individually in separate antigen-specific T cells during infection using short hairpin RNAs in a microRNA context (shRNAmir). Independent screens using T cell receptor (TCR)-transgenic CD4(+) and CD8(+) T cells responding to lymphocytic choriomeningitis virus (LCMV) identified multiple genes that regulated development of follicular helper (Tfh) and T helper 1 (Th1) cells, and short-lived effector and memory precursor cytotoxic T lymphocytes (CTLs). Both screens revealed roles for the positive transcription elongation factor (P-TEFb) component Cyclin T1 (Ccnt1). Inhibiting expression of Cyclin T1, or its catalytic partner Cdk9, impaired development of Th1 cells and protective short-lived effector CTL and enhanced Tfh cell and memory precursor CTL formation in vivo. This pooled shRNA screening approach should have utility in numerous immunological studies.
Collapse
Affiliation(s)
- Runqiang Chen
- Division of Signaling and Gene Expression, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037, USA; Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037, USA; Department of Cancer Biology, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Simon Bélanger
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037, USA
| | - Megan A Frederick
- Department of Cancer Biology, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Bin Li
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037, USA
| | - Robert J Johnston
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037, USA
| | - Nengming Xiao
- Division of Cell Biology, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037, USA
| | - Yun-Cai Liu
- Division of Cell Biology, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037, USA
| | - Sonia Sharma
- Division of Cell Biology, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037, USA
| | - Bjoern Peters
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037, USA
| | - Anjana Rao
- Division of Signaling and Gene Expression, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037, USA
| | - Shane Crotty
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037, USA.
| | - Matthew E Pipkin
- Department of Cancer Biology, The Scripps Research Institute, Jupiter, FL 33458, USA.
| |
Collapse
|
285
|
Andersson KME, Svensson MND, Erlandsson MC, Jonsson IM, Bokarewa MI. Down-regulation of survivin alleviates experimental arthritis. J Leukoc Biol 2014; 97:135-45. [PMID: 25381389 DOI: 10.1189/jlb.3a0714-317r] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Survivin is a proto-oncogene that regulates cell division and apoptosis. It is a molecular marker of cancer. Recently, survivin has emerged as a feature of RA, associated with severe joint damage and poor treatment response. The present study examined if inhibition of survivin affects experimental arthritis, which was induced in mBSA-immunized mice by an injection of mBSA in the knee joint or developed spontaneously in collagen type II-immunized mice. The inhibition of survivin transcription by a lentivirus shRNA construct alleviated joint inflammation and reduced bone damage. The inhibition of survivin reduced the levels of metalloproteinases, β-catenin, and vimentin, limiting the invasive capacity of synovia, while no inhibition of osteoclastogenesis could be found. The inhibition of survivin led to a p53-independent reduction of T cell proliferation and favored the transcription and activity of Blimp-1, which limited IL-2 production and facilitated formation of regulatory Foxp3(+)CD4(+) and effector CD8(+) T cells. The study shows that the inhibition of survivin is sufficient to reduce joint inflammation and bone damage in preclinical models of arthritis. Antiarthritic effects of survivin inhibition are related to p53-independent control of lymphocyte proliferation.
Collapse
Affiliation(s)
- K M E Andersson
- Department of Rheumatology and Inflammation Research, Sahlgrenska University Hospital, University of Gothenburg, Sweden
| | - M N D Svensson
- Department of Rheumatology and Inflammation Research, Sahlgrenska University Hospital, University of Gothenburg, Sweden
| | - M C Erlandsson
- Department of Rheumatology and Inflammation Research, Sahlgrenska University Hospital, University of Gothenburg, Sweden
| | - I-M Jonsson
- Department of Rheumatology and Inflammation Research, Sahlgrenska University Hospital, University of Gothenburg, Sweden
| | - M I Bokarewa
- Department of Rheumatology and Inflammation Research, Sahlgrenska University Hospital, University of Gothenburg, Sweden
| |
Collapse
|
286
|
Tiemessen MM, Baert MRM, Kok L, van Eggermond MCJA, van den Elsen PJ, Arens R, Staal FJT. T Cell factor 1 represses CD8+ effector T cell formation and function. THE JOURNAL OF IMMUNOLOGY 2014; 193:5480-7. [PMID: 25355919 DOI: 10.4049/jimmunol.1303417] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The Wnt-responsive transcription factor T cell factor 1 (Tcf1) is well known for its role in thymic T cell development and the formation of memory CD8(+) T cells. However, its role in the initial phases of CD8(+) T effector cell formation has remained unexplored. We report that high levels of Wnt signaling and Tcf1 are operational in naive and memory CD8(+) T cells, whereas Wnt signaling and Tcf1 were low in effector CD8(+) T cells. CD8(+) T cells deficient in Tcf1 produce IFN-γ more rapidly, coinciding with increased demethylation of the IFN-γ enhancer and higher expression of the transcription factors Tbet and Blimp1. Moreover, virus-specific Tcf1(-/-) CD8(+) T cells show accelerated expansion in acute infection, which is associated with increased IFN-γ and TNF production and lower viral load. Genetic complementation experiments with various Tcf1 isoforms indicate that Tcf1 dosage and protein stability are critical in suppressing IFN-γ production. Isoforms lacking the β-catenin binding domain are equally effective in inhibiting CD8(+) effector T cell formation. Thus, Tcf1 functions as a repressor of CD8(+) effector T cell formation in a β-catenin/Wnt-independent manner.
Collapse
Affiliation(s)
- Machteld M Tiemessen
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, 2300 RC/Leiden, the Netherlands
| | - Miranda R M Baert
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, 2300 RC/Leiden, the Netherlands
| | - Lianne Kok
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, 2300 RC/Leiden, the Netherlands
| | - Marja C J A van Eggermond
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, 2300 RC/Leiden, the Netherlands
| | - Peter J van den Elsen
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, 2300 RC/Leiden, the Netherlands
| | - Ramon Arens
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, 2300 RC/Leiden, the Netherlands
| | - Frank J T Staal
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, 2300 RC/Leiden, the Netherlands
| |
Collapse
|
287
|
Lin R, Chen L, Chen G, Hu C, Jiang S, Sevilla J, Wan Y, Sampson JH, Zhu B, Li QJ. Targeting miR-23a in CD8+ cytotoxic T lymphocytes prevents tumor-dependent immunosuppression. J Clin Invest 2014; 124:5352-67. [PMID: 25347474 DOI: 10.1172/jci76561] [Citation(s) in RCA: 97] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Accepted: 09/11/2014] [Indexed: 12/12/2022] Open
Abstract
CD8(+) cytotoxic T lymphocytes (CTLs) have potent antitumor activity and therefore are leading candidates for use in tumor immunotherapy. The application of CTLs for clinical use has been limited by the susceptibility of ex vivo-expanded CTLs to become dysfunctional in response to immunosuppressive microenvironments. Here, we developed a microRNA-targeting (miRNA-targeting) approach that augments CTL cytotoxicity and preserves immunocompetence. Specifically, we screened for miRNAs that modulate cytotoxicity and identified miR-23a as a strong functional repressor of the transcription factor BLIMP-1, which promotes CTL cytotoxicity and effector cell differentiation. In a cohort of advanced lung cancer patients, miR-23a was upregulated in tumor-infiltrating CTLs, and expression correlated with impaired antitumor potential of patient CTLs. We determined that tumor-derived TGF-β directly suppresses CTL immune function by elevating miR-23a and downregulating BLIMP-1. Functional blocking of miR-23a in human CTLs enhanced granzyme B expression, and in mice with established tumors, immunotherapy with just a small number of tumor-specific CTLs in which miR-23a was inhibited robustly hindered tumor progression. Together, our findings provide a miRNA-based strategy that subverts the immunosuppression of CTLs that is often observed during adoptive cell transfer tumor immunotherapy and identify a TGF-β-mediated tumor immune-evasion pathway.
Collapse
|
288
|
Backer RA, Helbig C, Gentek R, Kent A, Laidlaw BJ, Dominguez CX, de Souza YS, van Trierum SE, van Beek R, Rimmelzwaan GF, ten Brinke A, Willemsen AM, van Kampen AHC, Kaech SM, Blander JM, van Gisbergen K, Amsen D. A central role for Notch in effector CD8(+) T cell differentiation. Nat Immunol 2014; 15:1143-51. [PMID: 25344724 PMCID: PMC4232996 DOI: 10.1038/ni.3027] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Accepted: 10/03/2014] [Indexed: 12/14/2022]
Abstract
Activated CD8+ T cells choose between terminal effector cell (TEC) or memory precursor cell (MPC) fates. We show that Notch controls this choice. Notch promoted differentiation of immediately protective TECs and was correspondingly required for clearance of an acute influenza virus infection. Notch activated a major portion of the TEC-specific gene expression program and suppressed the MPC-specific program. Expression of Notch receptors was induced on naïve CD8+ T cells by inflammatory mediators and interleukin 2 (IL-2) via mTOR and T-bet dependent pathways. These pathways were subsequently amplified downstream of Notch, creating a positive feedback loop. Notch thus functions as a central hub where information from different sources converges to match effector T cell differentiation to the demands of the infection.
Collapse
Affiliation(s)
- Ronald A Backer
- 1] Department of Cell Biology and Histology, Academic Medical Center, Amsterdam, the Netherlands. [2] Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory, Amsterdam, the Netherlands
| | - Christina Helbig
- 1] Department of Cell Biology and Histology, Academic Medical Center, Amsterdam, the Netherlands. [2] Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory, Amsterdam, the Netherlands
| | - Rebecca Gentek
- Department of Cell Biology and Histology, Academic Medical Center, Amsterdam, the Netherlands
| | - Andrew Kent
- The Icahn School of Medicine at Mount Sinai, Immunology Institute and Tisch Cancer Institute, Department of Medicine, New York, New York, USA
| | - Brian J Laidlaw
- Department of Immunobiology and Howard Hughes Medical Institute, Yale University, School of Medicine, New Haven, Connecticut, USA
| | - Claudia X Dominguez
- Department of Immunobiology and Howard Hughes Medical Institute, Yale University, School of Medicine, New Haven, Connecticut, USA
| | - Yevan S de Souza
- Department of Cell Biology and Histology, Academic Medical Center, Amsterdam, the Netherlands
| | - Stella E van Trierum
- Department of Viroscience, Erasmus Medical Center, Rotterdam, the Netherlands; Viroclinics Biosciences BV, Rotterdam, the Netherlands
| | - Ruud van Beek
- Department of Viroscience, Erasmus Medical Center, Rotterdam, the Netherlands; Viroclinics Biosciences BV, Rotterdam, the Netherlands
| | - Guus F Rimmelzwaan
- Department of Viroscience, Erasmus Medical Center, Rotterdam, the Netherlands; Viroclinics Biosciences BV, Rotterdam, the Netherlands
| | - Anja ten Brinke
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory, Amsterdam, the Netherlands
| | - A Marcel Willemsen
- Bioinformatics Laboratory, Clinical Epidemiology, Biostatistics and Bioinformatics, Academic Medical Center, Amsterdam, the Netherlands
| | - Antoine H C van Kampen
- Bioinformatics Laboratory, Clinical Epidemiology, Biostatistics and Bioinformatics, Academic Medical Center, Amsterdam, the Netherlands
| | - Susan M Kaech
- Department of Immunobiology and Howard Hughes Medical Institute, Yale University, School of Medicine, New Haven, Connecticut, USA
| | - J Magarian Blander
- The Icahn School of Medicine at Mount Sinai, Immunology Institute and Tisch Cancer Institute, Department of Medicine, New York, New York, USA
| | - Klaas van Gisbergen
- Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory, Amsterdam, the Netherlands
| | - Derk Amsen
- 1] Department of Cell Biology and Histology, Academic Medical Center, Amsterdam, the Netherlands. [2] Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory, Amsterdam, the Netherlands
| |
Collapse
|
289
|
Shih HY, Sciumè G, Poholek AC, Vahedi G, Hirahara K, Villarino AV, Bonelli M, Bosselut R, Kanno Y, Muljo SA, O'Shea JJ. Transcriptional and epigenetic networks of helper T and innate lymphoid cells. Immunol Rev 2014; 261:23-49. [PMID: 25123275 PMCID: PMC4321863 DOI: 10.1111/imr.12208] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The discovery of the specification of CD4(+) helper T cells to discrete effector 'lineages' represented a watershed event in conceptualizing mechanisms of host defense and immunoregulation. However, our appreciation for the actual complexity of helper T-cell subsets continues unabated. Just as the Sami language of Scandinavia has 1000 different words for reindeer, immunologists recognize the range of fates available for a CD4(+) T cell is numerous and may be underestimated. Added to the crowded scene for helper T-cell subsets is the continuously growing family of innate lymphoid cells (ILCs), endowed with common effector responses and the previously defined 'master regulators' for CD4(+) helper T-cell subsets are also shared by ILC subsets. Within the context of this extraordinary complexity are concomitant advances in the understanding of transcriptomes and epigenomes. So what do terms like 'lineage commitment' and helper T-cell 'specification' mean in the early 21st century? How do we put all of this together in a coherent conceptual framework? It would be arrogant to assume that we have a sophisticated enough understanding to seriously answer these questions. Instead, we review the current status of the flexibility of helper T-cell responses in relation to their genetic regulatory networks and epigenetic landscapes. Recent data have provided major surprises as to what master regulators can or cannot do, how they interact with other transcription factors and impact global genome-wide changes, and how all these factors come together to influence helper cell function.
Collapse
Affiliation(s)
- Han-Yu Shih
- Molecular Immunology and Inflammation Branch, National Institute of Arthritis, and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
290
|
Gammaherpesvirus latency differentially impacts the generation of primary versus secondary memory CD8+ T cells during subsequent infection. J Virol 2014; 88:12740-51. [PMID: 25142586 DOI: 10.1128/jvi.02106-14] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
UNLABELLED Unlike laboratory animals, humans are infected with multiple pathogens, including the highly prevalent herpesviruses. The purpose of these studies was to determine the effect of gammaherpesvirus latency on T cell number and differentiation during subsequent heterologous viral infections. Mice were first infected with murine gammaherpesvirus 68 (MHV68), a model of Epstein-Barr virus (EBV) infection, and then after latency was established, they were challenged with the Armstrong strain of lymphocytic choriomeningitis virus (LCMV). The initial replication of LCMV was lower in latently infected mice, and the maturation of dendritic cells was abated. Although the number of LCMV-specific effector CD8(+) T cells was not altered, they were skewed to a memory phenotype. In contrast, LCMV-specific effector CD4(+) T cells were increased in latently infected mice compared to those in mice infected solely with LCMV. When the memory phase was reached, latently infected mice had an LCMV-specific memory T cell pool that was increased relative to that found in singly infected mice. Importantly, LCMV-specific memory CD8(+) T cells had decreased CD27 and increased killer cell lectin-like receptor G1 (KLRG1) expression. Upon secondary challenge, LCMV-specific secondary effector CD8(+) T cells expanded and cleared the infection. However, the LCMV-specific secondary memory CD8(+) T cell pool was decreased in latently infected animals, abrogating the boosting effect normally observed following rechallenge. Taken together, these results demonstrate that ongoing gammaherpesvirus latency affects the number and phenotype of primary versus secondary memory CD8(+) T cells during acute infection. IMPORTANCE CD8(+) T cells are critical for the clearance of intracellular pathogens, including viruses, certain bacteria, and tumors. However, current models for memory CD8(+) T cell differentiation are derived from pathogen-free laboratory mice challenged with a single pathogen or vaccine vector. Unlike laboratory animals, all humans are infected with multiple acute and chronic pathogens, including the highly prevalent herpesviruses Epstein-Barr virus (EBV), cytomegalovirus (CMV), herpes simplex viruses (HSV), and varicella-zoster virus (VZV). The purpose of these studies was to determine the effect of gammaherpesvirus latency on T cell number and differentiation during subsequent heterologous viral infections. We observed that ongoing gammaherpesvirus latency affects the number and phenotype of primary versus secondary memory CD8(+) T cells during acute infection. These results suggest that unlike pathogen-free laboratory mice, infection or immunization of latently infected humans may result in the generation of T cells with limited potential for long-term protection.
Collapse
|
291
|
Bim controls IL-15 availability and limits engagement of multiple BH3-only proteins. Cell Death Differ 2014; 22:174-84. [PMID: 25124553 DOI: 10.1038/cdd.2014.118] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Revised: 05/27/2013] [Accepted: 07/10/2014] [Indexed: 01/16/2023] Open
Abstract
During the effector CD8+ T-cell response, transcriptional differentiation programs are engaged that promote effector T cells with varying memory potential. Although these differentiation programs have been used to explain which cells die as effectors and which cells survive and become memory cells, it is unclear if the lack of cell death enhances memory. Here, we investigated effector CD8+ T-cell fate in mice whose death program has been largely disabled because of the loss of Bim. Interestingly, the absence of Bim resulted in a significant enhancement of effector CD8+ T cells with more memory potential. Bim-driven control of memory T-cell development required T-cell-specific, but not dendritic cell-specific, expression of Bim. Both total and T-cell-specific loss of Bim promoted skewing toward memory precursors, by enhancing the survival of memory precursors, and limiting the availability of IL-15. Decreased IL-15 availability in Bim-deficient mice facilitated the elimination of cells with less memory potential via the additional pro-apoptotic molecules Noxa and Puma. Combined, these data show that Bim controls memory development by limiting the survival of pre-memory effector cells. Further, by preventing the consumption of IL-15, Bim limits the role of Noxa and Puma in causing the death of effector cells with less memory potential.
Collapse
|
292
|
Chaix J, Nish SA, Lin WHW, Rothman NJ, Ding L, Wherry EJ, Reiner SL. Cutting edge: CXCR4 is critical for CD8+ memory T cell homeostatic self-renewal but not rechallenge self-renewal. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2014; 193:1013-6. [PMID: 24973450 PMCID: PMC4108510 DOI: 10.4049/jimmunol.1400488] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Central memory (CM) CD8(+) T cells "remember" prior encounters because they maintain themselves through cell division in the absence of ongoing challenge (homeostatic self-renewal), as well as reproduce the CM fate while manufacturing effector cells during secondary Ag encounters (rechallenge self-renewal). We tested the consequence of conditional deletion of the bone marrow homing receptor CXCR4 on antiviral T cell responses. CXCR4-deficient CD8(+) T cells have impaired memory cell maintenance due to defective homeostatic proliferation. Upon rechallenge, however, CXCR4-deficient T cells can re-expand and renew the CM pool while producing secondary effector cells. The critical bone marrow-derived signals essential for CD8(+) T cell homeostatic self-renewal appear to be dispensable to yield self-renewing, functionally asymmetric cell fates during rechallenge.
Collapse
Affiliation(s)
- Julie Chaix
- Department of Microbiology and Immunology, College of Physicians and Surgeons, Columbia University, New York, NY 10032; Department of Pediatrics, College of Physicians and Surgeons, Columbia University, New York, NY 10032
| | - Simone A Nish
- Department of Microbiology and Immunology, College of Physicians and Surgeons, Columbia University, New York, NY 10032; Department of Pediatrics, College of Physicians and Surgeons, Columbia University, New York, NY 10032
| | - Wen-Hsuan W Lin
- Department of Microbiology and Immunology, College of Physicians and Surgeons, Columbia University, New York, NY 10032; Department of Pediatrics, College of Physicians and Surgeons, Columbia University, New York, NY 10032
| | - Nyanza J Rothman
- Department of Microbiology and Immunology, College of Physicians and Surgeons, Columbia University, New York, NY 10032; Department of Pediatrics, College of Physicians and Surgeons, Columbia University, New York, NY 10032
| | - Lei Ding
- Department of Microbiology and Immunology, College of Physicians and Surgeons, Columbia University, New York, NY 10032; Department of Rehabilitation and Regenerative Medicine, Columbia University, New York, NY 10032; and
| | - E John Wherry
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104
| | - Steven L Reiner
- Department of Microbiology and Immunology, College of Physicians and Surgeons, Columbia University, New York, NY 10032; Department of Pediatrics, College of Physicians and Surgeons, Columbia University, New York, NY 10032;
| |
Collapse
|
293
|
Zaunders JJ, Lévy Y, Seddiki N. Exploiting differential expression of the IL-7 receptor on memory T cells to modulate immune responses. Cytokine Growth Factor Rev 2014; 25:391-401. [PMID: 25130296 DOI: 10.1016/j.cytogfr.2014.07.012] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Interleukin-7 is a non-redundant growth, differentiation and survival factor for human T lymphocytes. Most circulating, mature T cells express the receptor for IL-7, but not all. Importantly, CD4 Tregs express greatly reduced levels of IL-7R compared to conventional CD4 T cells, presenting an opportunity to selectively target the latter cells with either more IL-7 to boost responses, or to block IL-7 signalling to limit responses. This article reviews what is known about regulation of IL-7R expression, and recent progress in therapeutic approaches related to IL-7 and its receptor.
Collapse
Affiliation(s)
- John J Zaunders
- Centre for Applied Medical Research, St. Vincent's Hospital, Australia; Kirby Institute, University of New South Wales, Sydney, NSW, Australia
| | - Yves Lévy
- Inserm, U955, Equipe 16, Créteil, 94000, France; Université Paris Est, Faculté de médecine, Créteil, 94000, France; Vaccine Research Institute (VRI), Créteil, 94000, France; AP-HP, Hôpital H. Mondor-A. Chenevier, Service d'immunologie Clinique et maladies infectieuses, Créteil, 94000, France
| | - Nabila Seddiki
- Inserm, U955, Equipe 16, Créteil, 94000, France; Université Paris Est, Faculté de médecine, Créteil, 94000, France; Vaccine Research Institute (VRI), Créteil, 94000, France.
| |
Collapse
|
294
|
Memory B cells contribute to rapid Bcl6 expression by memory follicular helper T cells. Proc Natl Acad Sci U S A 2014; 111:11792-7. [PMID: 25071203 DOI: 10.1073/pnas.1404671111] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
In primary humoral responses, B-cell lymphoma 6 (Bcl6) is a master regulator of follicular helper T (TFH) cell differentiation; however, its activation mechanisms and role in memory responses remain unclear. Here we demonstrate that survival of CXCR5(+) TFH memory cells, and thus subsequent recall antibody response, require Bcl6 expression. Furthermore, we show that, upon rechallenge with soluble antigen Bcl6 in memory TFH cells is rapidly induced in a dendritic cell-independent manner and that peptide:class II complexes (pMHC) on cognate memory B cells significantly contribute to this induction. Given the previous evidence that antigen-specific B cells residing in the follicles acquire antigens within minutes of injection, our results suggest that memory B cells present antigens to the cognate TFH memory cells, thereby contributing to rapid Bcl6 reexpression and differentiation of the TFH memory cells during humoral memory responses.
Collapse
|
295
|
Hu G, Chen J. A genome-wide regulatory network identifies key transcription factors for memory CD8⁺ T-cell development. Nat Commun 2014; 4:2830. [PMID: 24335726 DOI: 10.1038/ncomms3830] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Accepted: 10/28/2013] [Indexed: 01/02/2023] Open
Abstract
Memory CD8⁺ T-cell development is defined by the expression of a specific set of memory signature genes. Despite recent progress, many components of the transcriptional control of memory CD8⁺ T-cell development are still unknown. To identify transcription factors and their interactions in memory CD8⁺ T-cell development, we construct a genome-wide regulatory network and apply it to identify key transcription factors that regulate memory signature genes. Most of the known transcription factors having a role in memory CD8⁺ T-cell development are rediscovered and about a dozen new ones are also identified. Sox4, Bhlhe40, Bach2 and Runx2 are experimentally verified, and Bach2 is further shown to promote both development and recall proliferation of memory CD8⁺ T cells through Prdm1 and Id3. Gene perturbation study identifies the interactions between the transcription factors, with Sox4 positioned as a hub. The identified transcription factors and insights into their interactions should facilitate further dissection of molecular mechanisms underlying memory CD8⁺ T-cell development.
Collapse
Affiliation(s)
- Guangan Hu
- David H. Koch Institute for Integrative Cancer Research and Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Jianzhu Chen
- David H. Koch Institute for Integrative Cancer Research and Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| |
Collapse
|
296
|
Boulet S, Daudelin JF, Labrecque N. IL-2 induction of Blimp-1 is a key in vivo signal for CD8+ short-lived effector T cell differentiation. THE JOURNAL OF IMMUNOLOGY 2014; 193:1847-54. [PMID: 25015830 DOI: 10.4049/jimmunol.1302365] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
During infection or vaccination, only a small proportion of CD8(+) T cells differentiate into memory cells. The mechanisms underlying the differentiation of CD8(+) T cells into short-lived effector cells (SLECs) or memory precursor effector cells are poorly defined. It was recently shown in infectious models that the transcriptional repressor B lymphocyte-induced maturation protein 1 (Blimp-1) enhances the formation of SLECs. The factors controlling Blimp-1 expression leading to the in vivo formation of SLECs are still not known. However, it has been shown that cytokines such as IL-2 induce Blimp-1 expression in vitro. In this study, we took advantage of the low-inflammation model of dendritic cell immunization to study the role of the IL-2/Blimp-1 axis in SLEC differentiation as well as the importance of Blimp-1 expression in memory precursor effector cells for proper CD8(+) memory generation. Our results show that Blimp-1 deficiency affects effector differentiation and function in the absence of inflammation. Unexpectedly, memory generation was not affected in Blimp-1-deficient OT-I cells responding to vaccination. In addition, modulation of the bioavailability of IL-2 by injection either of a blocking Ab or of the cytokine, demonstrates a link between IL-2, Blimp-1 induction, and SLEC formation in wild-type cells. Conversely, injection of IL-2 had less effect on Blimp-1-deficient CD8(+) T cells, indicating that the effect of IL-2 on in vivo SLEC differentiation is mediated by Blimp-1. In conclusion, IL-2 induction of Blimp-1 expression is a key regulator of SLEC differentiation in vivo.
Collapse
Affiliation(s)
- Salix Boulet
- Maisonneuve-Rosemont Hospital Research Center, Montreal, Quebec H1T 2M4, Canada
| | | | - Nathalie Labrecque
- Maisonneuve-Rosemont Hospital Research Center, Montreal, Quebec H1T 2M4, Canada; Department of Medicine, University of Montreal, Montreal, Quebec H3C 3J7, Canada; and Department of Microbiology, Immunology and Infectiology, University of Montreal, Montreal, Quebec H3C 3J7, Canada
| |
Collapse
|
297
|
Parish IA, Marshall HD, Staron MM, Lang PA, Brüstle A, Chen JH, Cui W, Tsui YC, Perry C, Laidlaw BJ, Ohashi PS, Weaver CT, Kaech SM. Chronic viral infection promotes sustained Th1-derived immunoregulatory IL-10 via BLIMP-1. J Clin Invest 2014; 124:3455-68. [PMID: 25003188 DOI: 10.1172/jci66108] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Accepted: 05/22/2014] [Indexed: 01/19/2023] Open
Abstract
During the course of many chronic viral infections, the antiviral T cell response becomes attenuated through a process that is regulated in part by the host. While elevated expression of the immunosuppressive cytokine IL-10 is involved in the suppression of viral-specific T cell responses, the relevant cellular sources of IL-10, as well as the pathways responsible for IL-10 induction, remain unclear. In this study, we traced IL-10 production over the course of chronic lymphocytic choriomeningitis virus (LCMV) infection in an IL-10 reporter mouse line. Using this model, we demonstrated that virus-specific T cells with reduced inflammatory function, particularly Th1 cells, display elevated and sustained IL-10 expression during chronic LCMV infection. Furthermore, ablation of IL-10 from the T cell compartment partially restored T cell function and reduced viral loads in LCMV-infected animals. We found that viral persistence is needed for sustained IL-10 production by Th1 cells and that the transcription factor BLIMP-1 is required for IL-10 expression by Th1 cells. Restimulation of Th1 cells from LCMV-infected mice promoted BLIMP-1 and subsequent IL-10 expression, suggesting that constant antigen exposure likely induces the BLIMP-1/IL-10 pathway during chronic viral infection. Together, these data indicate that effector T cells self-limit their responsiveness during persistent viral infection via an IL-10-dependent negative feedback loop.
Collapse
|
298
|
Heterogeneity in the Differentiation and Function of CD8+ T Cells. Arch Immunol Ther Exp (Warsz) 2014; 62:449-58. [DOI: 10.1007/s00005-014-0293-y] [Citation(s) in RCA: 124] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Accepted: 04/24/2014] [Indexed: 01/01/2023]
|
299
|
Nayar R, Schutten E, Bautista B, Daniels K, Prince AL, Enos M, Brehm MA, Swain SL, Welsh RM, Berg LJ. Graded levels of IRF4 regulate CD8+ T cell differentiation and expansion, but not attrition, in response to acute virus infection. THE JOURNAL OF IMMUNOLOGY 2014; 192:5881-93. [PMID: 24835398 DOI: 10.4049/jimmunol.1303187] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
In response to acute virus infections, CD8(+) T cells differentiate to form a large population of short-lived effectors and a stable pool of long-lived memory cells. The characteristics of the CD8(+) T cell response are influenced by TCR affinity, Ag dose, and the inflammatory cytokine milieu dictated by the infection. To address the mechanism by which differences in TCR signal strength could regulate CD8(+) T cell differentiation, we investigated the transcription factor, IFN regulatory factor 4 (IRF4). We show that IRF4 is transiently upregulated to differing levels in murine CD8(+) T cells, based on the strength of TCR signaling. In turn, IRF4 controls the magnitude of the CD8(+) T cell response to acute virus infection in a dose-dependent manner. Modest differences in IRF4 expression dramatically influence the numbers of short-lived effector cells at the peak of the infection, but have no impact on the kinetics of the infection or on the rate of T cell contraction. Furthermore, the expression of key transcription factors such as T cell factor 1 and Eomesodermin are highly sensitive to graded levels of IRF4. In contrast, T-bet expression is less dependent on IRF4 levels and is influenced by the nature of the infection. These data indicate that IRF4 is a key component that translates the strength of TCR signaling into a graded response of virus-specific CD8(+) T cells.
Collapse
Affiliation(s)
- Ribhu Nayar
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA 01655; and
| | - Elizabeth Schutten
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA 01655; and
| | - Bianca Bautista
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA 01655; and
| | - Keith Daniels
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA 01655; and
| | - Amanda L Prince
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA 01655; and
| | - Megan Enos
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA 01655; and
| | - Michael A Brehm
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01655
| | - Susan L Swain
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA 01655; and
| | - Raymond M Welsh
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA 01655; and
| | - Leslie J Berg
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA 01655; and
| |
Collapse
|
300
|
Berezhnoy A, Rajagopalan A, Gilboa E. A clinically useful approach to enhance immunological memory and antitumor immunity. Oncoimmunology 2014; 3:e28811. [PMID: 25057446 PMCID: PMC4091317 DOI: 10.4161/onci.28811] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Accepted: 04/07/2014] [Indexed: 11/19/2022] Open
Abstract
Persistence of vaccine-induced immune responses, not the initial magnitude, best correlates with protective antitumor immunity. In mice, oligonucleotide aptamer-targeted siRNA inhibition of mammalian target of rapamycin (mTOR) activity in activated CD8+ T cells promotes their differentiation into functionally competent memory cells leading to enhanced antitumor immunity, a protective effect superior to that of non-targeted administration of the mTOR inhibitor rapamycin.
Collapse
Affiliation(s)
- Alex Berezhnoy
- Department of Microbiology & Immunology; Dodson Interdisciplinary Immunotherapy Institute; Sylvester Comprehensive Cancer Center; Miller School of Medicine; University of Miami; Miami, FL USA
| | - Anugraha Rajagopalan
- Department of Microbiology & Immunology; Dodson Interdisciplinary Immunotherapy Institute; Sylvester Comprehensive Cancer Center; Miller School of Medicine; University of Miami; Miami, FL USA
| | - Eli Gilboa
- Department of Microbiology & Immunology; Dodson Interdisciplinary Immunotherapy Institute; Sylvester Comprehensive Cancer Center; Miller School of Medicine; University of Miami; Miami, FL USA
| |
Collapse
|