251
|
Cecarini V, Bonfili L, Amici M, Angeletti M, Keller JN, Eleuteri AM. Amyloid peptides in different assembly states and related effects on isolated and cellular proteasomes. Brain Res 2008; 1209:8-18. [PMID: 18400214 DOI: 10.1016/j.brainres.2008.03.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2007] [Revised: 02/25/2008] [Accepted: 03/03/2008] [Indexed: 11/28/2022]
Abstract
The role of amyloid-beta protein (Abeta) in the pathogenesis of Alzheimer's disease (AD) has been widely investigated and amyloid aggregates are considered a major cause of neuronal dysfunction. Increasing evidence has identified a correlation between this protein and the proteasome, the cellular proteolytic machinery, in particular the ubiquitin-proteasome system. The 20S proteasome is the catalytic core of a complex, known as 26S proteasome, and is the main responsible for the clearance of misfolded and oxidized proteins. In this work we have investigated the effects of different assembly states of two major amyloid peptides, Abeta (1-40) and Abeta (1-42) on the 20S proteasome functionality and on the ubiquitin-dependent pathway of protein degradation. In particular, we have tested proteasome activities after Abeta treatment on purified 20S complexes and on lysates of a human neuroblastoma cell line. Our findings show a significant decrease in proteasome activity, more evident in cell lysates than in isolated complexes, and an increased amount of ubiquitin-protein conjugates and of a known proteasome substrate (p27). Furthermore, the altered proteasome functionality is not associated with a decrease in cell viability, but is linked with increased levels of protein oxidation.
Collapse
Affiliation(s)
- Valentina Cecarini
- Department of Molecular, Cellular and Animal Biology, University of Camerino, 62032 Camerino (MC), Italy.
| | | | | | | | | | | |
Collapse
|
252
|
Marquez-Quiñones A, Paris A, Roussel B, Perez-Carreon J, Le Berre V, François JM, Villa-Treviño S, Guéraud F. Proteasome activity deregulation in LEC rat hepatitis: following the insights of transcriptomic analysis. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2008; 11:367-84. [PMID: 18092909 DOI: 10.1089/omi.2007.0039] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
LEC rats show spontaneous hepatitis and hepatocarcinoma development related to oxidative stress due to abnormal copper accumulation in the liver. We used DNA microarrays bearing 22,012 genes to investigate at the transcriptomic level the progression of the hepatitis in LEC rats in comparison to a control obtained from LEC rats treated with D-penicillamine, a copper chelating agent known to block hepatitis development. Multivariate statistical analyses as partial least square (PLS) regression between transcriptomic data and hepatitis markers in plasma led us to select 483 genes related to hepatitis development in these rats. After a complementary discriminant analysis (PLS-DA), 239 important genes for the separation between the different rat groups were selected. Gene ontology classification revealed an overrepresentation of genes involved in protein metabolism-related functions. More importantly, some genes implicated in proteasome pathway were upregulated. However, analysis of 20S proteasome activity showed that trypsin-like and peptidylglutamyl peptide hydrolase activities were diminished during hepatitis. Because oxidative stress is known to promote the inactivation of the proteasome complex, we propose the deregulation of the proteasome genes expression as a result of oxidative inactivation of proteasome activity during hepatitis in LEC rats. These results bring new insights in the hepatitis and the hepatocarcinogenesis development.
Collapse
|
253
|
McClung JM, Whidden MA, Kavazis AN, Falk DJ, Deruisseau KC, Powers SK. Redox regulation of diaphragm proteolysis during mechanical ventilation. Am J Physiol Regul Integr Comp Physiol 2008; 294:R1608-17. [PMID: 18321950 DOI: 10.1152/ajpregu.00044.2008] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Prevention of oxidative stress via antioxidants attenuates diaphragm myofiber atrophy associated with mechanical ventilation (MV). However, the specific redox-sensitive mechanisms responsible for this remain unknown. We tested the hypothesis that regulation of skeletal muscle proteolytic activity is a critical site of redox action during MV. Sprague-Dawley rats were assigned to five experimental groups: 1) control, 2) 6 h of MV, 3) 6 h of MV with infusion of the antioxidant Trolox, 4) 18 h of MV, and 5) 18 h of MV with Trolox. Trolox did not attenuate MV-induced increases in diaphragmatic levels of ubiquitin-protein conjugation, polyubiquitin mRNA, and gene expression of proteasomal subunits (20S proteasome alpha-subunit 7, 14-kDa E2, and proteasome-activating complex PA28). However, Trolox reduced both chymotrypsin-like and peptidylglutamyl peptide hydrolyzing (PGPH)-like 20S proteasome activities in the diaphragm after 18 h of MV. In addition, Trolox rescued diaphragm myofilament protein concentration (mug/mg muscle) and the percentage of easily releasable myofilament protein independent of alterations in ribosomal capacity for protein synthesis. In summary, these data are consistent with the notion that the protective effect of antioxidants on the diaphragm during MV is due, at least in part, to decreasing myofilament protein substrate availability to the proteasome.
Collapse
Affiliation(s)
- J M McClung
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL 32611, USA.
| | | | | | | | | | | |
Collapse
|
254
|
Mok E, Constantin B, Favreau F, Neveux N, Magaud C, Delwail A, Hankard R. l-Glutamine administration reduces oxidized glutathione and MAP kinase signaling in dystrophic muscle of mdx mice. Pediatr Res 2008; 63:268-73. [PMID: 18287965 DOI: 10.1203/pdr.0b013e318163a259] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
To determine whether glutamine (Gln) reduces the ratio of oxidized to total glutathione (GSSG/GSH) and extracellular signal-regulated kinase (ERK1/2) activation in dystrophic muscle. Four-week old mdx mice, an animal model for Duchenne muscular dystrophy and control (C57BL/10) received daily intraperitoneal injections of l-Gln (500 mg/kg/d) or 0.9% NaCl for 3 d. GSH and GSSG concentrations in gastrocnemius were measured using a standard enzymatic recycling procedure. Free amino acid concentrations in gastrocnemius were determined by ion exchange chromatography. Phosphorylated protein levels of ERK1/2 in quadriceps were examined using Western Blot. l-Gln decreased GSSG and GSSG/GSH (an indicator of oxidative stress). This was associated with decreased ERK1/2 phosphorylation. Muscle free Gln, glutamate (Glu), and the sum (Gln + Glu) were higher in mdx versus C57BL/10, at the basal level. Exogenous Gln decreased muscle free Glu and Gln + Glu in mdx only, whereas Gln was not affected. In conclusion, exogenous Gln reduces GSSG/GSH and ERK1/2 activation in dystrophic skeletal muscle of young mdx mice, which is associated with decreased muscle free Glu and Gln + Glu. This antioxidant protective mechanism provides a molecular basis for Gln's antiproteolytic effect in Duchenne muscular dystrophy children.
Collapse
Affiliation(s)
- Elise Mok
- Institut de Physiologie et Biologie Cellulaires, EA 3813, Université de Poitiers, Poitiers 86000, France
| | | | | | | | | | | | | |
Collapse
|
255
|
Li Q, Harvey LM, McNeil B. Oxygen enrichment effects on protein oxidation, proteolytic activity and the energy status of submerged batch cultures of Aspergillus niger B1-D. Process Biochem 2008. [DOI: 10.1016/j.procbio.2007.11.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
256
|
Djebali W, Gallusci P, Polge C, Boulila L, Galtier N, Raymond P, Chaibi W, Brouquisse R. Modifications in endopeptidase and 20S proteasome expression and activities in cadmium treated tomato (Solanum lycopersicum L.) plants. PLANTA 2008; 227:625-39. [PMID: 17952456 DOI: 10.1007/s00425-007-0644-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2007] [Accepted: 09/28/2007] [Indexed: 05/13/2023]
Abstract
The effects of cadmium (Cd) on cellular proteolytic responses were investigated in the roots and leaves of tomato (Solanum lycopersicum L., var Ibiza) plants. Three-week-old plants were grown for 3 and 10 days in the presence of 0.3-300 microM Cd and compared to control plants grown in the absence of Cd. Roots of Cd treated plants accumulated four to fivefold Cd as much as mature leaves. Although 10 days of culture at high Cd concentrations inhibited plant growth, tomato plants recovered and were still able to grow again after Cd removal. Tomato roots and leaves are not modified in their proteolytic response with low Cd concentrations (< or =3 microM) in the incubation medium. At higher Cd concentration, protein oxidation state and protease activities are modified in roots and leaves although in different ways. The soluble protein content of leaves decreased and protein carbonylation level increased indicative of an oxidative stress. Conversely, protein content of roots increased from 30 to 50%, but the amount of oxidized proteins decreased by two to threefold. Proteolysis responded earlier in leaves than in root to Cd stress. Additionally, whereas cysteine- and metallo-endopeptidase activities, as well as proteasome chymotrypsin activity and subunit expression level, increased in roots and leaves, serine-endopeptidase activities increased only in leaves. This contrasted response between roots and leaves may reflect differences in Cd compartmentation and/or complexation, antioxidant responses and metabolic sensitivity to Cd between plant tissues. The up-regulation of the 20S proteasome gene expression and proteolytic activity argues in favor of the involvement of the 20S proteasome in the degradation of oxidized proteins in plants.
Collapse
Affiliation(s)
- Wahbi Djebali
- Département de Biologie, Faculté des Sciences de Tunis El Manar, Unité de Recherche de Biologie et Physiologie Cellulaires Végétales, 1060 Tunis, Tunisia
| | | | | | | | | | | | | | | |
Collapse
|
257
|
Barelli S, Canellini G, Thadikkaran L, Crettaz D, Quadroni M, Rossier JS, Tissot JD, Lion N. Oxidation of proteins: Basic principles and perspectives for blood proteomics. Proteomics Clin Appl 2008; 2:142-57. [DOI: 10.1002/prca.200780009] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
258
|
Bigelow DJ. Nitrotyrosine-modified SERCA2: a cellular sensor of reactive nitrogen species. Pflugers Arch 2008; 457:701-10. [DOI: 10.1007/s00424-007-0429-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2007] [Revised: 12/06/2007] [Accepted: 12/10/2007] [Indexed: 12/31/2022]
|
259
|
|
260
|
Pierce AP, de Waal E, McManus LM, Shireman PK, Chaudhuri AR. Oxidation and structural perturbation of redox-sensitive enzymes in injured skeletal muscle. Free Radic Biol Med 2007; 43:1584-93. [PMID: 18037124 DOI: 10.1016/j.freeradbiomed.2007.08.019] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2007] [Revised: 07/19/2007] [Accepted: 08/17/2007] [Indexed: 10/22/2022]
Abstract
Molecular events that control skeletal muscle injury and regeneration are poorly understood. However, inflammation associated with oxidative stress is considered a key player in modulating this process. To understand the consequences of oxidative stress associated with muscle injury, inflammation, and regeneration, hind-limb muscles of C57Bl/6J mice were studied after injection of cardiotoxin (CT). Within 1 day post-CT injection, polymorphonuclear neutrophilic leukocyte accumulation was extensive. Compared to baseline, tissue myeloperoxidase (MPO) activity was elevated eight- and fivefold at 1 and 7 days post-CT, respectively. Ubiquitinylated protein was elevated 1 day postinjury and returned to baseline by 21 days. Cysteine residues of creatine kinase (CK) and glyceraldehyde-3-phosphate dehydrogenase (GAPDH) were irreversibly oxidized within 1 day post-CT injection and were associated with protein conformational changes that fully recovered after 21 days. Importantly, protein structural alterations occurred in conjunction with significant decreases in CK activity at 1, 3, and 7 days post-CT injury. Interestingly, elevations in tissue MPO activity paralleled the time course of conformational changes in CK and GAPDH. In combination, these results demonstrate that muscle proteins in vivo are structurally and functionally altered via the generation of reactive oxygen species produced during inflammatory events after muscle injury and preceding muscle regeneration.
Collapse
Affiliation(s)
- Anson P Pierce
- Sam and Ann Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center, San Antonio, TX 78229-3900, USA
| | | | | | | | | |
Collapse
|
261
|
Montes-Nieto R, Fuentes-Almagro CA, Bonilla-Valverde D, Prieto-Álamo MJ, Jurado J, Carrascal M, Gómez-Ariza JL, López-Barea J, Pueyo C. Proteomics in free-livingMus spretus to monitor terrestrial ecosystems. Proteomics 2007; 7:4376-87. [DOI: 10.1002/pmic.200700409] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
262
|
Burcham PC, Raso A, Thompson C, Tan D. Intermolecular protein cross-linking during acrolein toxicity: efficacy of carbonyl scavengers as inhibitors of heat shock protein-90 cross-linking in A549 cells. Chem Res Toxicol 2007; 20:1629-37. [PMID: 17907782 DOI: 10.1021/tx700192e] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The smoke-borne electrophile acrolein reacts extensively with proteins, forming carbonyl-retaining Michael adducts that may be attacked by adjacent protein nucleophiles to form cross-links. Because little information is available concerning the extent of intermolecular protein cross-linking during acrolein toxicity in cells, we used an antibody against a known target for toxic carbonyls, the chaperone protein Hsp90, to detect the formation of high-mass protein complexes in acrolein-exposed A549 cells. A 3 h exposure to acrolein (0 to 200 microM) resulted in concentration-dependent formation of a single high-mass band (approx. 180 kDa). This species was detected in cells exposed to just 50 microM acrolein, a concentration that did not elicit acute cell death as assessed by measurements of cell ATP levels. The formation of cross-linked Hsp90 coincided with a rapid loss of carbonyl adducts within cells that had been subjected to a brief "pulse" exposure to a subtoxic concentration of acrolein, suggesting Michael adducts are short-lived within cells due in part to consumption during reactions with protein nucleophiles. Cross-linked Hsp90 persisted following an overnight recovery incubation, suggesting the cellular ability to repair or degrade these species is limited. Two known carbonyl scavengers, hydralazine and bisulfite, strongly protected against the ATP depletion accompanying acrolein exposure, but only the latter suppressed protein adduction and Hsp90 cross-linking. As previously shown for hydralazine, mass spectrometry studies using a model peptide indicated that bisulfite traps carbonyl groups possessed by Michael addition adducts, and such adduct-trapping reactivity appeared to contribute to the blockade of Hsp90 cross-linking in acrolein-preloaded cells. Collectively, these findings establish that formation of stable intermolecular protein cross-links accompanies exposure to acrolein. Future clarification of the chemistry underlying this damage may provide novel biomarkers of acrolein exposure.
Collapse
Affiliation(s)
- Philip C Burcham
- Pharmacology and Anaesthesiology Unit, School of Medicine & Pharmacology, The University of Western Australia, Crawley, WA 6009, Australia.
| | | | | | | |
Collapse
|
263
|
Harrigan JA, Piotrowski J, Di Noto L, Levine RL, Bohr VA. Metal-catalyzed oxidation of the Werner syndrome protein causes loss of catalytic activities and impaired protein-protein interactions. J Biol Chem 2007; 282:36403-11. [PMID: 17911100 DOI: 10.1074/jbc.m706107200] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Metal-catalyzed oxidation reactions target amino acids in the metal binding pocket of proteins. Such oxidation reactions generally result in either preferential degradation of the protein or accumulation of a catalytically inactive pool of protein with age. Consistently, levels of oxidized proteins have been shown to increase with age. The segmental, progeroid disorder Werner syndrome results from loss of the Werner syndrome protein (WRN). WRN is a member of the RecQ family of DNA helicases and possesses exonuclease and ATP-dependent helicase activities. Furthermore, each of the helicase and exonuclease domains of WRN contains a metal binding pocket. In this report we examined for metal-catalyzed oxidation of WRN in the presence of iron or copper. We found that WRN was oxidized in vitro by iron but not by copper. Iron-mediated oxidation resulted in the inhibition of both WRN helicase and exonuclease activities. Oxidation of WRN also inhibited binding to several known protein partners. In addition, we did not observe degradation of oxidized WRN by the 20 S proteasome in vitro. Finally, exposure of cells to hydrogen peroxide resulted in oxidation of WRN in vivo. Therefore, our results demonstrate that WRN undergoes metal-catalyzed oxidation in the presence of iron, and iron-mediated oxidation of WRN likely results in the accumulation of a catalytically inactive form of the protein, which may contribute to age-related phenotypes.
Collapse
Affiliation(s)
- Jeanine A Harrigan
- Laboratory of Molecular Gerontology, NIA, National Institutes of Health, Baltimore, Maryland 21224, USA
| | | | | | | | | |
Collapse
|
264
|
Luo S, McNeill M, Myers TG, Hohman RJ, Levine RL. Lon protease promotes survival of Escherichia coli during anaerobic glucose starvation. Arch Microbiol 2007; 189:181-5. [PMID: 17891379 PMCID: PMC3397802 DOI: 10.1007/s00203-007-0304-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2007] [Revised: 08/26/2007] [Accepted: 08/31/2007] [Indexed: 11/27/2022]
Abstract
In Escherichia coli, Lon is an ATP-dependent protease which degrades misfolded proteins and certain rapidly-degraded regulatory proteins. Given that oxidatively damaged proteins are generally degraded rather than repaired, we anticipated that Lon deficient cells would exhibit decreased viability during aerobic, but not anaerobic, carbon starvation. We found that the opposite actually occurs. Wild-type and Lon deficient cells survived equally well under aerobic conditions, but Lon deficient cells died more rapidly than the wild-type under anaerobiosis. Aerobic induction of the Clp family of ATP-dependent proteases could explain these results, but direct quantitation of Clp protein established that its level was not affected by Lon deficiency and overexpression of Clp did not rescue the cells under anaerobic conditions. We conclude that the Lon protease supports survival during anaerobic carbon starvation by a mechanism which does not depend on Clp.
Collapse
Affiliation(s)
| | | | - Timothy G. Myers
- Research Technologies Branch, National Institute of Allergy and Infectious Diseases, NIH, 5640 Fishers Lane, Rockville, MD 20852 USA
| | - Robert J. Hohman
- Research Technologies Branch, National Institute of Allergy and Infectious Diseases, NIH, 5640 Fishers Lane, Rockville, MD 20852 USA
| | - Rodney L. Levine
- Corresponding author: Laboratory of Biochemistry, NHLBI, Building 50, Room 2351, Bethesda, MD 20892-8012 USA. Phone +1 301 496 2310. Fax +1 301 496 0599
| |
Collapse
|
265
|
Scherz-Shouval R, Elazar Z. ROS, mitochondria and the regulation of autophagy. Trends Cell Biol 2007; 17:422-7. [PMID: 17804237 DOI: 10.1016/j.tcb.2007.07.009] [Citation(s) in RCA: 745] [Impact Index Per Article: 41.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2007] [Revised: 07/01/2007] [Accepted: 07/01/2007] [Indexed: 12/19/2022]
Abstract
Accumulation of reactive oxygen species (ROS) is an oxidative stress to which cells respond by activating various defense mechanisms or, finally, by dying. At low levels, however, ROS act as signaling molecules in various intracellular processes. Autophagy, a process by which eukaryotic cells degrade and recycle macromolecules and organelles, has an important role in the cellular response to oxidative stress. Here, we review recent reports suggesting a regulatory role for ROS of mitochondrial origin as signaling molecules in autophagy, leading, under different circumstances, to either survival or cell death. We then discuss the relationship between mitochondria and autophagosomes and propose that mitochondria have an essential role in autophagosome biogenesis.
Collapse
Affiliation(s)
- Ruth Scherz-Shouval
- Department of Biological Chemistry, The Weizmann Institute of Science, Rehovot, 76100 Israel
| | | |
Collapse
|
266
|
Rokushima M, Omi K, Imura K, Araki A, Furukawa N, Itoh F, Miyazaki M, Yamamoto J, Rokushima M, Okada M, Torii M, Kato I, Ishizaki J. Toxicogenomics of Drug-Induced Hemolytic Anemia by Analyzing Gene Expression Profiles in the Spleen. Toxicol Sci 2007; 100:290-302. [PMID: 17698508 DOI: 10.1093/toxsci/kfm216] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Hemolytic anemia is a serious adverse effect of therapeutic drugs that is caused by increased destruction of drug-damaged erythrocytes by macrophages in the spleen and liver. We previously applied a toxicogenomic approach to the toxicity by analyzing microarray data of the liver of rats dosed with two hemolytic agents: phenylhydrazine and phenacetin. In the present study, we analyzed gene expression profiles in the spleen, the primary organ for destruction of damaged erythrocytes, of the same models in order to identify splenic gene expression alterations that could be used to predict the hematotoxicity. Microarray analyses revealed hundreds of genes commonly deregulated under all severe hemolytic conditions, which included genes related to splenic events characteristic of the hematotoxicity, such as proteolysis and iron metabolism. Eleven upregulated genes were selected as biomarker candidates, and their expression changes were validated by quantitative real-time PCR. The transcript levels of most of these genes showed strong correlation with the results of classical toxicological assays (e.g., histopathology and hematology). Furthermore, hierarchical clustering analysis suggested that altered expression patterns of the 11 genes sensitively reflected the erythrocyte damage even under a condition that caused no decrease in erythrocyte counts. Among the selected genes, heme oxygenase 1 was one of the most promising biomarker candidates, the upregulation of which on the protein level was confirmed by immunohistochemistry. These results indicate that altered splenic expression of a subset of genes may allow detection of drug-induced hemolytic anemia, with better sensitivity than that of erythrocyte counts in the blood.
Collapse
Affiliation(s)
- Masatomo Rokushima
- Discovery Technologies 1, Discovery Research Laboratories, Shionogi & Co., Ltd, 12-4, Sagisu 5-chome, Fukushima-ku, Osaka 553-0002, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
267
|
Kavazis AN, DeRuisseau KC, McClung JM, Whidden MA, Falk DJ, Smuder AJ, Sugiura T, Powers SK. Diaphragmatic proteasome function is maintained in the ageing Fisher 344 rat. Exp Physiol 2007; 92:895-901. [PMID: 17631517 DOI: 10.1113/expphysiol.2007.038307] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The diaphragm is the most important inspiratory muscle in mammals and is essential for normal ventilation. Therefore, maintenance of diaphragm function is critical to overall health throughout the lifespan. Evidence indicates that the ubiquitin proteasome pathway (UPP) function is diminished in locomotor skeletal muscle of ageing animals, but the function of the UPP in the senescent diaphragm has not yet been studied. Diaphragms were harvested from 6- and 24- to 26-month-old Fisher 344 rats (n = 8 per group), and a comprehensive assessment of key components of the UPP, proteasome activity and ubiquitin-conjugating enzyme activity was performed. Gene expression and diaphragmatic protein levels of several key proteasome components are not altered in the diaphragm by ageing. Furthermore and most importantly, the senescent diaphragm exhibited no age-related changes in the content of endogenous ubiquitin-protein conjugates or 20S proteasome activity. In conclusion, in contrast to locomotor skeletal muscle, proteasome function and ubiquitin-conjugating enzyme activity are preserved during senescence in diaphragm. A more thorough understanding of the divergent molecular mechanisms and pathways regulating the UPP in different skeletal muscles could lead to the enhancement of therapeutic strategies aimed at improving morbidity and mortality outcomes in different clinical populations.
Collapse
Affiliation(s)
- Andreas N Kavazis
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL 32611, USA
| | | | | | | | | | | | | | | |
Collapse
|
268
|
Sas K, Robotka H, Toldi J, Vécsei L. Mitochondria, metabolic disturbances, oxidative stress and the kynurenine system, with focus on neurodegenerative disorders. J Neurol Sci 2007; 257:221-39. [PMID: 17462670 DOI: 10.1016/j.jns.2007.01.033] [Citation(s) in RCA: 319] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The mitochondria have several important functions in the cell. A mitochondrial dysfunction causes an abatement in ATP production, oxidative damage and the induction of apoptosis, all of which are involved in the pathogenesis of numerous disorders. This review focuses on mitochondrial dysfunctions and discusses their consequences and potential roles in the pathomechanism of neurodegenerative disorders. Other pathogenetic factors are also briefly surveyed. The second part of the review deals with the kynurenine metabolic pathway, its alterations and their potential association with cellular energy impairment in certain neurodegenerative diseases. During energy production, most of the O(2) consumed by the mitochondria is reduced fully to water, but 1-2% of the O(2) is reduced incompletely to give the superoxide anion (O(2)(-)). If the function of one or more respiratory chain complexes is impaired for any reason, the enhanced production of free radicals further worsens the mitochondrial function by causing oxidative damage to macromolecules, and by opening the mitochondrial permeability transition pores thereby inducing apoptosis. These high-conductance pores offer a pathway which can open in response to certain stimuli, leading to the induction of the cells' own suicide program. This program plays an essential role in regulating growth and development, in the differentiation of immune cells, and in the elimination of abnormal cells from the organism. Both failure and exaggeration of apoptosis in a human body can lead to disease. The increasing amount of superoxide anions can react with nitric oxide to yield the highly toxic peroxynitrite anion, which can destroy cellular macromolecules. The roles of oxidative, nitrative and nitrosative damage are discussed. Senescence is accompanied by a higher degree of reactive oxygen species production, and by diminished functions of the endoplasmic reticulum and the proteasome system, which are responsible for maintenance of the normal protein homeostasis of the cell. In the event of a dysfunction of the endoplasmic reticulum, unfolded proteins aggregate in it, forming potentially toxic deposits which tend to be resistant to degradation. Cells possess adaptive mechanisms with which to avoid the accumulation of incorrectly folded proteins. These involve molecular chaperones that fold proteins correctly, and the ubiquitin proteasome system which degrades misfolded, unwanted proteins. Both the endoplasmic reticulum and the ubiquitin proteasome system fulfill cellular protein quality control functions. The kynurenine system: Tryptophan is metabolized via several pathways, the main one being the kynurenine pathway. A central compound of the pathway is kynurenine (KYN), which can be metabolized in two separate ways: one branch furnishing kynurenic acid, and the other 3-hydroxykynurenine and quinolinic acid, the precursors of NAD. An important feature of kynurenic acid is the fact that it is one of the few known endogenous excitatory amino acid receptor blockers with a broad spectrum of antagonistic properties in supraphysiological concentrations. One of its recently confirmed sites of action is the alpha7-nicotinic acetylcholine receptor and interestingly, a more recently identified one is a higher affinity positive modulatory binding site at the AMPA receptor. Kynurenic acid has proven to be neuroprotective in several experimental settings. On the other hand, quinolinic acid is a specific agonist at the N-methyl-d-aspartate receptors, and a potent neurotoxin with an additional and marked free radical-producing property. There are a number of neurodegenerative disorders whose pathogenesis has been demonstrated to involve multiple imbalances of the kynurenine pathway metabolism. These changes may disturb normal brain function and can add to the pathomechanisms of the diseases. In certain disorders, there is a quinolinic acid overproduction, while in others the alterations in brain kynurenic acid levels are more pronounced. A more precise knowledge of these alterations yields a basis for getting better therapeutic possibilities. The last part of the review discusses metabolic disturbances and changes in the kynurenine metabolic pathway in Parkinson's, Alzheimer's and Huntington's diseases.
Collapse
Affiliation(s)
- Katalin Sas
- Department of Neurology, University of Szeged, POB 427, H-6701 Szeged, Hungary
| | | | | | | |
Collapse
|
269
|
Pena LB, Pasquini LA, Tomaro ML, Gallego SM. 20S proteasome and accumulation of oxidized and ubiquitinated proteins in maize leaves subjected to cadmium stress. PHYTOCHEMISTRY 2007; 68:1139-46. [PMID: 17399749 DOI: 10.1016/j.phytochem.2007.02.022] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2006] [Revised: 02/08/2007] [Accepted: 02/19/2007] [Indexed: 05/14/2023]
Abstract
In order to examine the possible involvement of the 20S proteasome in degradation of oxidized proteins, the effects of different cadmium concentrations on its activities, protein abundance and oxidation level were studied using maize (Zea mays L.) leaf segments. The accumulation of carbonylated and ubiquitinated proteins was also investigated. Treatment with 50 microM CdCl(2) increased both trypsin- and PGPH-like activities of the 20S proteasome. The incremental changes in 20S proteasome activities were probably caused by an increased level of 20S proteasome oxidation, with this being responsible for degradation of the oxidized proteins. When leaf segments were treated with 100 microM CdCl(2), the chymotrysin- and trypsin-like activities of the 20S proteasome also decreased, with a concomitant increase in accumulation of carbonylated and ubiquitinated proteins. With both Cd(2+) concentrations, the abundance of the 20S proteasome protein remained similar to the control experiments. These results provide evidence for the involvement of this proteolytic system in cadmium-stressed plants.
Collapse
Affiliation(s)
- Liliana B Pena
- Departamento de Química Biológica, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junín 956, Buenos Aires (C1113AAC), Argentina
| | | | | | | |
Collapse
|
270
|
Abstract
Underlying the pathogenesis of chronic disease is the state of oxidative stress. Oxidative stress is an imbalance in oxidant and antioxidant levels. If an overproduction of oxidants overwhelms the antioxidant defenses, oxidative damage of cells, tissues, and organs ensues. In some cases, oxidative stress is assigned a causal role in disease pathogenesis, whereas in others the link is less certain. Along with underlying oxidative stress, chronic disease is often accompanied by muscle wasting. It has been hypothesized that catabolic programs leading to muscle wasting are mediated by oxidative stress. In cases where disease is localized to the muscle, this concept is easy to appreciate. Transmission of oxidative stress from diseased remote organs to skeletal muscle is thought to be mediated by humoral factors such as inflammatory cytokines. This review examines the relationship between oxidative stress, chronic disease, and muscle wasting, and the mechanisms by which oxidative stress acts as a catabolic signal.
Collapse
Affiliation(s)
- Jennifer S Moylan
- Department of Physiology, University of Kentucky, 800 Rose Street, Room MS-509, Lexington, Kentucky 40536-0298, USA
| | | |
Collapse
|
271
|
Jung T, Bader N, Grune T. Oxidized proteins: intracellular distribution and recognition by the proteasome. Arch Biochem Biophys 2007; 462:231-7. [PMID: 17362872 DOI: 10.1016/j.abb.2007.01.030] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2006] [Revised: 01/11/2007] [Accepted: 01/22/2007] [Indexed: 10/23/2022]
Abstract
The formation of oxidized proteins is one of the highlights of oxidative stress. In order not to accumulate such proteins have to be degraded. The major proteolytic system responsible for the removal of oxidized proteins is the proteasome. The proteasome is distributed throughout the cytosolic and nuclear compartment of mammalian cells, with high concentrations in the nucleus. On the other hand a major part of protein oxidation is taking place in the cytosol. The present review highlights the current knowledge on the intracellular distribution of oxidized proteins and put it into contrast with the concentration and distribution of the proteasome.
Collapse
Affiliation(s)
- Tobias Jung
- Research Institute of Environmental Medicine at the Heinrich Heine University, Düsseldorf, Germany
| | | | | |
Collapse
|
272
|
Abstract
Skeletal muscle inactivity is associated with a loss of muscle protein and reduced force-generating capacity. This disuse-induced muscle atrophy results from both increased proteolysis and decreased protein synthesis. Investigations of the cell signaling pathways that regulate disuse muscle atrophy have increased our understanding of this complex process. Emerging evidence implicates oxidative stress as a key regulator of cell signaling pathways, leading to increased proteolysis and muscle atrophy during periods of prolonged disuse. This review will discuss the role of reactive oxygen species in the regulation of inactivity-induced skeletal muscle atrophy. The specific objectives of this article are to provide an overview of muscle proteases, outline intracellular sources of reactive oxygen species, and summarize the evidence that connects oxidative stress to signaling pathways contributing to disuse muscle atrophy. Moreover, this review will also discuss the specific role that oxidative stress plays in signaling pathways responsible for muscle proteolysis and myonuclear apoptosis and highlight gaps in our knowledge of disuse muscle atrophy. By presenting unresolved issues and suggesting topics for future research, it is hoped that this review will serve as a stimulus for the expansion of knowledge in this exciting field.
Collapse
Affiliation(s)
- Scott K Powers
- Department of Applied Physiology and Kinesiology, PO Box 118205, University of Florida, Gainesville, FL 32611, USA.
| | | | | |
Collapse
|
273
|
Ethen CM, Hussong SA, Reilly C, Feng X, Olsen TW, Ferrington DA. Transformation of the proteasome with age-related macular degeneration. FEBS Lett 2007; 581:885-90. [PMID: 17289037 PMCID: PMC1850528 DOI: 10.1016/j.febslet.2007.01.061] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2007] [Accepted: 01/21/2007] [Indexed: 11/27/2022]
Abstract
The proteasome mediates pathways associated with oxidative stress and inflammation, two pathogenic events correlated with age-related macular degeneration (AMD). In human donor eyes corresponding to four stages of AMD, we found the proteasomal chymotrypsin-like activity increased in neurosensory retina with disease progression. Increased activity correlated with a dramatic increase in the inducible subunits of the immunoproteasome, which was not due to an increase in CD45 positive immune cells in the retina. The novel observation of proteasome transformation may reflect retinal response to local inflammation or oxidative stress with AMD.
Collapse
Affiliation(s)
- Cheryl M. Ethen
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455
| | - Stacy A. Hussong
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455
| | - Cavan Reilly
- Division of Biostatistics, University of Minnesota, Minneapolis, MN 55455
| | - Xiao Feng
- Department of Ophthalmology, University of Minnesota, Minneapolis, MN 55455
| | - Timothy W. Olsen
- Department of Ophthalmology, University of Minnesota, Minneapolis, MN 55455
| | | |
Collapse
|
274
|
Petropoulos I, Friguet B. Maintenance of proteins and aging: the role of oxidized protein repair. Free Radic Res 2007; 40:1269-76. [PMID: 17090416 DOI: 10.1080/10715760600917144] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
According to the free radical theory of aging proposed by Denham Harman (Journal of Gerontology 1956, 11, pp. 298-300), the continuous oxidative damage to cellular components over an organism's life span is a causal factor of the aging process. The age-related build-up of oxidized protein is therefore resulting from increased protein oxidative damage and/or decreased elimination of oxidized proteins. In this mini-review, we will address the fate, during aging, of the protein maintenance systems that are involved in the degradation of irreversibly oxidized proteins and in the repair of reversible protein oxidative damage with a special focus on the methionine sulfoxide reductases system. Since these protein degradation and repair systems have been found to be impaired with age, it is proposed that not only failure of redox homeostasis but, as importantly, failure of protein maintenance are critical factors in the aging process.
Collapse
Affiliation(s)
- Isabelle Petropoulos
- Laboratoire de Biologie et Biochimie Cellulaire du Vieillissement, EA 3106/IFR 117, Université Denis Diderot-Paris 7, CC 7128, 2 Place Jussieu, Paris Cedex, France
| | | |
Collapse
|
275
|
Ding Q, Cecarini V, Keller JN. Interplay between protein synthesis and degradation in the CNS: physiological and pathological implications. Trends Neurosci 2007; 30:31-6. [PMID: 17126920 DOI: 10.1016/j.tins.2006.11.003] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2006] [Revised: 09/28/2006] [Accepted: 11/16/2006] [Indexed: 01/23/2023]
Abstract
Compromise of the ubiquitin-proteasome system (UPS) is a potential basis for multiple physiological abnormalities and pathologies in the CNS. This could be because reduced protein turnover leads to bulk intracellular protein accumulation. However, conditions associated with compromised UPS function are also associated with impairments in protein synthesis, and impairment of UPS function is sufficient to inhibit protein synthesis. These data suggest that the toxicity of UPS inhibition need not depend on gross intracellular protein accumulation, and indicate the potential for crosstalk between the UPS and protein-synthesis pathways. In this review, we discuss evidence for interplay between the UPS and protein-synthesis machinery, and outline the implications of this crosstalk for physiological and pathological processes in the CNS.
Collapse
Affiliation(s)
- Qunxing Ding
- Department of Anatomy and Neurobiology, and Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY 40536-0230, USA
| | | | | |
Collapse
|
276
|
Poppek D, Keck S, Ermak G, Jung T, Stolzing A, Ullrich O, Davies K, Grune T. Phosphorylation inhibits turnover of the tau protein by the proteasome: influence of RCAN1 and oxidative stress. Biochem J 2006; 400:511-20. [PMID: 16939415 PMCID: PMC1698600 DOI: 10.1042/bj20060463] [Citation(s) in RCA: 123] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Hyperphosphorylated tau proteins accumulate in the paired helical filaments of neurofibrillary tangles seen in such tauopathies as Alzheimer's disease. In the present paper we show that tau turnover is dependent on degradation by the proteasome (inhibited by MG132) in HT22 neuronal cells. Recombinant human tau was rapidly degraded by the 20 S proteasome in vitro, but tau phosphorylation by GSK3beta (glycogen synthase kinase 3beta) significantly inhibited proteolysis. Tau phosphorylation was increased in HT22 cells by OA [okadaic acid; which inhibits PP (protein phosphatase) 1 and PP2A] or CsA [cyclosporin A; which inhibits PP2B (calcineurin)], and in PC12 cells by induction of a tet-off dependent RCAN1 transgene (which also inhibits PP2B). Inhibition of PP1/PP2A by OA was the most effective of these treatments, and tau hyperphosphorylation induced by OA almost completely blocked tau degradation in HT22 cells (and in cell lysates to which purified proteasome was added) even though proteasome activity actually increased. Many tauopathies involve both tau hyperphosphorylation and the oxidative stress of chronic inflammation. We tested the effects of both cellular oxidative stress, and direct tau oxidative modification in vitro, on tau proteolysis. In HT22 cells, oxidative stress alone caused no increase in tau phosphorylation, but did subtly change the pattern of tau phosphorylation. Tau was actually less susceptible to direct oxidative modification than most cell proteins, and oxidized tau was degraded no better than untreated tau. The combination of oxidative stress plus OA treatment caused extensive tau phosphorylation and significant inhibition of tau degradation. HT22 cells transfected with tau-CFP (cyan fluorescent protein)/tau-GFP (green fluorescent protein) constructs exhibited significant toxicity following tau hyperphosphorylation and oxidative stress, with loss of fibrillar tau structure throughout the cytoplasm. We suggest that the combination of tau phosphorylation and tau oxidation, which also occurs in tauopathies, may be directly responsible for the accumulation of tau aggregates.
Collapse
Affiliation(s)
- Diana Poppek
- *Research Institute of Environmental Medicine, Heinrich Heine University, Düsseldorf, Germany
| | - Susi Keck
- †Neuroscience Research Center, Humboldt University, Berlin, Germany
| | - Gennady Ermak
- ‡Ethel Percy Andrus Gerontology Center, and Division of Molecular and Computational Biology, The University of Southern California, Los Angeles, CA 90089-0191, U.S.A
| | - Tobias Jung
- *Research Institute of Environmental Medicine, Heinrich Heine University, Düsseldorf, Germany
| | | | - Oliver Ullrich
- §Institute of Immunology, University of Magdeburg, Germany
| | - Kelvin J. A. Davies
- ‡Ethel Percy Andrus Gerontology Center, and Division of Molecular and Computational Biology, The University of Southern California, Los Angeles, CA 90089-0191, U.S.A
| | - Tilman Grune
- *Research Institute of Environmental Medicine, Heinrich Heine University, Düsseldorf, Germany
- †Neuroscience Research Center, Humboldt University, Berlin, Germany
- To whom correspondence should be addressed (email )
| |
Collapse
|
277
|
Yewdell JW. Plumbing the sources of endogenous MHC class I peptide ligands. Curr Opin Immunol 2006; 19:79-86. [PMID: 17140786 DOI: 10.1016/j.coi.2006.11.010] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2006] [Accepted: 11/21/2006] [Indexed: 11/24/2022]
Abstract
From fish to fowl to pharaohs, nearly all cells in jawed vertebrates constitutively process and present peptides derived from endogenously synthesized polypeptides. Such peptides, snug in the binding groove of cell surface MHC class I molecules, enable CD8(+) T cell mediated immunosurveillance of viruses, other intracellular pathogens, and spontaneously arising tumors. The MHC class I system also plays an important role in olfactory-based vertebrate mate selection and perhaps even in preventing direct transmission of tumors between individuals. Recent findings indicate that MHC class I bound peptides are generated at higher efficiency from rapidly degraded polypeptides (including defective ribosomal products) than from old proteins. Intimately linking translation and antigen presentation makes perfect sense for immunosurveillance of acute virus infections, in which speed is of the essence to minimize viral replication, pathogenesis and transmission. The intriguing question of how translation is linked to presentation has prompted the immunoribosome hypothesis of immunosurveillance, which posits that MHC class I peptide ligands are preferentially generated from a subset of translation products.
Collapse
Affiliation(s)
- Jonathan W Yewdell
- Cellular Biology Section, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, Bethesda, MD 20892-0440, USA.
| |
Collapse
|
278
|
Sultana R, Perluigi M, Butterfield DA. Protein oxidation and lipid peroxidation in brain of subjects with Alzheimer's disease: insights into mechanism of neurodegeneration from redox proteomics. Antioxid Redox Signal 2006; 8:2021-37. [PMID: 17034347 DOI: 10.1089/ars.2006.8.2021] [Citation(s) in RCA: 153] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Alzheimer's disease (AD), the leading cause of dementia, involves regionalized neuronal death, synaptic loss, and an accumulation of intraneuronal, neurofibrillary tangles and extracellular senile plaques. Although the initiating causes leading to AD are unknown, a number of previous studies reported the role of oxidative stress in AD brain. Postmortem analysis of AD brain showed elevated markers of oxidative stress including protein nitrotyrosine, carbonyls in proteins, lipid oxidation products, and oxidized DNA bases. In this review, we focus our attention on the role of protein oxidation and lipid peroxidation in the pathogenesis of AD. Particular attention is given to the current knowledge about the redox proteomics identification of oxidatively modified proteins in AD brain.
Collapse
Affiliation(s)
- Rukhsana Sultana
- Department of Chemistry, and Sanders-Brown Center on Aging, University of Kentucky, Lexington, Kentucky 40506-0055, USA
| | | | | |
Collapse
|
279
|
Halliwell B. Proteasomal dysfunction: a common feature of neurodegenerative diseases? Implications for the environmental origins of neurodegeneration. Antioxid Redox Signal 2006; 8:2007-19. [PMID: 17034346 DOI: 10.1089/ars.2006.8.2007] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The neurodegenerative diseases that afflict humans affect different part of the nervous system and have different symptoms and prognoses, yet they have certain things in common. One of them is defects in the clearance of abnormal or other "unwanted" proteins, particularly affecting the proteasome system. In this review, I advance two concepts: (a) that defects in protein clearance can be a fundamental cause of neurodegeneration, and (b) that because proteasome inhibitors are widespread in nature, their ingestion may contribute to "spontaneous" neurodegeneration.
Collapse
Affiliation(s)
- B Halliwell
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.
| |
Collapse
|
280
|
Gianazza E, Crawford J, Miller I. Detecting oxidative post-translational modifications in proteins. Amino Acids 2006; 33:51-6. [PMID: 17021655 DOI: 10.1007/s00726-006-0410-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2006] [Accepted: 08/30/2006] [Indexed: 10/24/2022]
Abstract
Oxidative stress induces various post-translational modifications (PTM); some are reversible in vivo via enzymatic catalysis. The present paper reviews specific procedures for the detection of oxidative PTM in proteins, most of them including electrophoresis. Main topics are carbonylated and glutathionylated proteins as well as modification of selected amino acids (Cys, Tyr, Met, Trp, Lys).
Collapse
Affiliation(s)
- E Gianazza
- Gruppo di Studio per la Proteomica e la Struttura delle Proteine, Dipartimento di Scienze Farmacologiche, Università degli Studi di Milano, Milano, Italy.
| | | | | |
Collapse
|
281
|
Navarro A, Boveris A. The mitochondrial energy transduction system and the aging process. Am J Physiol Cell Physiol 2006; 292:C670-86. [PMID: 17020935 DOI: 10.1152/ajpcell.00213.2006] [Citation(s) in RCA: 476] [Impact Index Per Article: 25.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Aged mammalian tissues show a decreased capacity to produce ATP by oxidative phosphorylation due to dysfunctional mitochondria. The mitochondrial content of rat brain and liver is not reduced in aging and the impairment of mitochondrial function is due to decreased rates of electron transfer by the selectively diminished activities of complexes I and IV. Inner membrane H(+) impermeability and F(1)-ATP synthase activity are only slightly affected by aging. Dysfunctional mitochondria in aged rodents are characterized, besides decreased electron transfer and O(2) uptake, by an increased content of oxidation products of phospholipids, proteins and DNA, a decreased membrane potential, and increased size and fragility. Free radical-mediated oxidations are determining factors of mitochondrial dysfunction and turnover, cell apoptosis, tissue function, and lifespan. Inner membrane enzyme activities, such as those of complexes I and IV and mitochondrial nitric oxide synthase, decrease upon aging and afford aging markers. The activities of these three enzymes in mice brain are linearly correlated with neurological performance, as determined by the tightrope and the T-maze tests. The same enzymatic activities correlated positively with mice survival and negatively with the mitochondrial content of lipid and protein oxidation products. Conditions that increase survival, as vitamin E dietary supplementation, caloric restriction, high spontaneous neurological activity, and moderate physical exercise, ameliorate mitochondrial dysfunction in aged brain and liver. The pleiotropic signaling of mitochondrial H(2)O(2) and nitric oxide diffusion to the cytosol seems modified in aged animals and to contribute to the decreased mitochondrial biogenesis in old animals.
Collapse
Affiliation(s)
- Ana Navarro
- Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Plaza Fragela 9, 11003 Cádiz, Spain.
| | | |
Collapse
|
282
|
Martínez-Sánchez G, Giuliani A, Pérez-Davison G, León-Fernández OS. Oxidized proteins and their contribution to redox homeostasis. Redox Rep 2006; 10:175-85. [PMID: 16259785 DOI: 10.1179/135100005x57382] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Proteins are major target for radicals and other oxidants when these are formed in both intra- and extracellular environments in vivo. Formation of lesions on proteins may be highly sensitive protein-based biomarkers for oxidative damage in mammalian systems. Oxidized proteins are often functionally inactive and their unfolding is associated with enhanced susceptibility to proteinases. ROS scavenging activities of intact proteins are weaker than those of misfolded proteins or equivalent concentrations of their constituent amino acids. Protein oxidation and enhanced proteolytic degradation, therefore, have been suggested to cause a net increase in ROS scavenging capacity. However, certain oxidized proteins are poorly handled by cells, and together with possible alterations in the rate of production of oxidized proteins, may contribute to the observed accumulation and damaging actions of oxidized proteins during ageing and in pathologies such as diabetes, arteriosclerosis and neurodegenerative diseases. Protein oxidation may play a controlling role in cellular remodelling and cell growth. There is some evidence that antioxidant supplementation may protect against protein oxidation, but additional controlled studies of antioxidant intake to evaluate the significance of dietary/pharmacological antioxidants in preventing physiological/pathological oxidative changes are needed.
Collapse
Affiliation(s)
- Gregorio Martínez-Sánchez
- Centre for Research and Biological Evaluations, Institute of Pharmacy and Food Sciences, Havana University, Cuba.
| | | | | | | |
Collapse
|
283
|
Cronauer MV, Ince Y, Engers R, Rinnab L, Weidemann W, Suschek CV, Burchardt M, Kleinert H, Wiedenmann J, Sies H, Ackermann R, Kröncke KD. Nitric oxide-mediated inhibition of androgen receptor activity: possible implications for prostate cancer progression. Oncogene 2006; 26:1875-84. [PMID: 16983333 DOI: 10.1038/sj.onc.1209984] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Chronic inflammation increases the risk of cancer and many cancers, including prostate cancer, arise at sites of chronic inflammation. Inducible nitric oxide synthase (iNOS) is an enzyme dominantly expressed during inflammatory reactions. Although synthesis of high amounts of nitric oxide (NO) by iNOS has been demonstrated in pathophysiological processes, such as acute or chronic inflammation, autoimmune diseases or tumorigenesis, the role of iNOS activity in most of these diseases is poorly understood. Analysing prostate cancer biopsies by immunohistochemistry we found iNOS protein expression in tumor cells strongly paralleled by nitrotyrosine suggesting that iNOS is fully active. In vitro, NO inhibits androgen receptor-dependent promoter activity and prostate specific antigen production as well as DNA-binding activity of the androgen receptor (AR) in a concentration-dependent manner. Inhibition of the activity of androgen receptor-dependent reporter constructs is neither owing to diminished AR protein levels nor owing to an inhibition of its nuclear import. In addition, NO inhibits the proliferation of androgen receptor-positive prostate cancer cells significantly more efficiently than proliferation of androgen receptor-negative prostate cancer cells. In summary, our findings suggest that intratumoral iNOS activity favors development of prostate cancer cells that are able to proliferate androgen receptor-independently, thereby promoting prostate tumor progression.
Collapse
Affiliation(s)
- M V Cronauer
- Department of Urology, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
284
|
Kaushik S, Cuervo AM. Autophagy as a cell-repair mechanism: activation of chaperone-mediated autophagy during oxidative stress. Mol Aspects Med 2006; 27:444-54. [PMID: 16978688 PMCID: PMC1855281 DOI: 10.1016/j.mam.2006.08.007] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Proper removal of oxidized proteins is an important determinant of success when evaluating the ability of cells to handle oxidative stress. The ubiquitin/proteasome system has been considered the main responsible mechanism for the removal of oxidized proteins, as it can discriminate between normal and altered proteins, and selectively target the latter ones for degradation. A possible role for lysosomes, the other major intracellular proteolytic system, in the removal of oxidized proteins has been often refused, mostly on the basis of the lack of selectivity of this system. Although most of the degradation of intracellular components in lysosomes (autophagy) takes place through "in bulk" sequestration of complete cytosolic regions, selective targeting of proteins to lysosomes for their degradation is also possible via what is known as chaperone-mediated autophagy (CMA). In this work, we review recent evidence supporting the participation of CMA in the clearance of oxidized proteins in the forefront of the cellular response to oxidative stress. The consequences of an impairment in CMA activity, observed during aging and in some age-related disorders, are also discussed.
Collapse
Affiliation(s)
- S Kaushik
- Department of Anatomy and Structural Biology, Marion Bessin Liver Research Center, Albert Einstein College of Medicine, Ullmann Building room 611D, Bronx, NY 10461, USA
| | | |
Collapse
|
285
|
Michelet L, Zaffagnini M, Massot V, Keryer E, Vanacker H, Miginiac-Maslow M, Issakidis-Bourguet E, Lemaire SD. Thioredoxins, glutaredoxins, and glutathionylation: new crosstalks to explore. PHOTOSYNTHESIS RESEARCH 2006; 89:225-45. [PMID: 17089213 DOI: 10.1007/s11120-006-9096-2] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2006] [Accepted: 08/17/2006] [Indexed: 05/12/2023]
Abstract
Oxidants are widely considered as toxic molecules that cells have to scavenge and detoxify efficiently and continuously. However, emerging evidence suggests that these oxidants can play an important role in redox signaling, mainly through a set of reversible post-translational modifications of thiol residues on proteins. The most studied redox system in photosynthetic organisms is the thioredoxin (TRX) system, involved in the regulation of a growing number of target proteins via thiol/disulfide exchanges. In addition, recent studies suggest that glutaredoxins (GRX) could also play an important role in redox signaling especially by regulating protein glutathionylation, a post-translational modification whose importance begins to be recognized in mammals while much less is known in photosynthetic organisms. This review focuses on oxidants and redox signaling with particular emphasis on recent developments in the study of functions, regulation mechanisms and targets of TRX, GRX and glutathionylation. This review will also present the complex emerging interplay between these three components of redox-signaling networks.
Collapse
Affiliation(s)
- Laure Michelet
- Institut de Biotechnologie des Plantes, Unité Mixte de Recherche 8618, Centre National de la Recherche Scientifique/Université Paris-Sud, Bâtiment 630, Orsay Cedex, 91405, France
| | | | | | | | | | | | | | | |
Collapse
|
286
|
Sacksteder CA, Whittier JE, Xiong Y, Li J, Galeva NA, Jacoby ME, Purvine SO, Williams TD, Rechsteiner MC, Bigelow DJ, Squier TC. Tertiary structural rearrangements upon oxidation of Methionine145 in calmodulin promotes targeted proteasomal degradation. Biophys J 2006; 91:1480-93. [PMID: 16751245 PMCID: PMC1518657 DOI: 10.1529/biophysj.106.086033] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2006] [Accepted: 05/19/2006] [Indexed: 11/18/2022] Open
Abstract
The selectivity underlying the recognition of oxidized calmodulin (CaM) by the 20S proteasome in complex with Hsp90 was identified using mass spectrometry. We find that degradation of oxidized CaM (CaMox) occurs in a multistep process, which involves an initial cleavage that releases a large N-terminal fragment (A1-F92) as well as multiple smaller carboxyl-terminus peptides ranging from 17 to 26 amino acids in length. These latter small peptides are enriched in methionine sulfoxides (MetO), suggesting a preferential degradation around MetO within the carboxyl-terminal domain. To confirm the specificity of CaMox degradation and to identify the structural signals underlying the preferential recognition and degradation by the proteasome/Hsp90, we have investigated how the oxidation of individual methionines affect the degradation of CaM using mutants in which all but selected methionines in CaM were substituted with leucines. Substitution of all methionines with leucines except Met144 and Met145 has no detectable effect on the structure of CaM, permitting a determination of how site-specific substitutions and the oxidation of Met144 and Met145 affects the recognition and degradation of CaM by the proteasome/Hsp90. Comparable rates of degradation are observed upon the selective oxidation of Met144 and Met145 in CaM-L7 relative to that observed upon oxidation of all nine methionines in wild-type CaM. Substitution of leucines for either Met144 or Met145 promotes a limited recognition and degradation by the proteasome that correlates with decreases in the helical content of CaM. The specific oxidation of Met144 has little effect on rates of proteolytic degradation by the proteasome/Hsp90 or the structure of CaM. In contrast, the specific oxidation of Met145 results in both large increases in the rate of degradation by the proteasome/Hsp90 and significant circular dichroic spectral shape changes that are indicative of changes in tertiary rather than secondary structure. Thus, tertiary structural changes resulting from the site-specific oxidation of a single methionine (i.e., Met145) promote the degradation of CaM by the proteasome/Hsp90, suggesting a mechanism to regulate cellular metabolism through the targeted modulation of CaM abundance in response to oxidative stress.
Collapse
Affiliation(s)
- Colette A Sacksteder
- Cell Biology and Biochemistry Group, Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
287
|
Abstract
The brain and nervous system are prone to oxidative stress, and are inadequately equipped with antioxidant defense systems to prevent 'ongoing' oxidative damage, let alone the extra oxidative damage imposed by the neurodegenerative diseases. Indeed, increased oxidative damage, mitochondrial dysfunction, accumulation of oxidized aggregated proteins, inflammation, and defects in protein clearance constitute complex intertwined pathologies that conspire to kill neurons. After a long lag period, therapeutic and other interventions based on a knowledge of redox biology are on the horizon for at least some of the neurodegenerative diseases.
Collapse
Affiliation(s)
- Barry Halliwell
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| |
Collapse
|
288
|
Abstract
Different mechanisms target intracellular components for their degradation into lysosomes through what is known as autophagy. In mammals, three main forms of autophagy have been described: macroautophagy, microautophagy, and chaperone-mediated autophagy (CMA). CMA is the only autophagic pathway that allows selective degradation of soluble proteins in lysosomes. In contrast to the other mammalian forms of autophagy, CMA does not require vesicle formation or major changes in the lysosomal membrane. Instead, substrate proteins directly cross the lysosomal membrane to reach the lumen, where they are rapidly degraded. The substrate proteins are targeted to the lysosomal membrane by recognition of a targeting motif (a KFERQ-like motif), by a chaperone complex, consisting of hsc70 and its cochaperones, in the cytoplasm. Once at the lysosomal membrane, the protein interacts with a lysosomal receptor for this pathway, lysosomal associated membrane protein type 2A (LAMP-2A), and it is translocated across the membrane into the lysosomal lumen assisted by a lysosome resident chaperone. These two characteristics--selectivity and direct substrate translocation--determine the particular role of CMA in different physiological and pathological conditions. In this chapter, we cover current findings on the molecular mechanisms for CMA and the possible pathophysiological relevance of this selective lysosomal degradation.
Collapse
Affiliation(s)
- Ashish C Massey
- Department of Anatomy and Structural Biology, Marion Bessin Liver Research Center, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | | | |
Collapse
|
289
|
Chambellan A, Cruickshank PJ, McKenzie P, Cannady SB, Szabo K, Comhair SAA, Erzurum SC. Gene expression profile of human airway epithelium induced by hyperoxia in vivo. Am J Respir Cell Mol Biol 2006; 35:424-35. [PMID: 16690988 PMCID: PMC2643263 DOI: 10.1165/rcmb.2005-0251oc] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Hyperoxia leads to oxidative modification and damage of macromolecules in the respiratory tract with loss of biological functions. Given the lack of antioxidant gene induction with acute exposure to 100% oxygen, we hypothesized that clearance pathways for oxidatively modified proteins may be induced and serve in the immediate cellular response to preserve the epithelial layer. To test this, airway epithelial cells were obtained from individuals under ambient oxygen conditions and after breathing 100% oxygen for 12 h. Gene expression profiling identified induction of genes in the chaperone and proteasome-ubiquitin-conjugation pathways that together comprise an integrated cellular response to manage and degrade damaged proteins. Analyses also revealed gene expression changes associated with oxidoreductase function, cell cycle regulation, and ATP synthesis. Increased HSP70, protein ubiquitination, and intracellular ATP were validated in cells exposed to hyperoxia in vitro. Inhibition of proteasomal degradation revealed the importance of accelerated protein catabolism for energy production of cells exposed to hyperoxia. Thus, the human airway early response to hyperoxia relies predominantly upon induction of cytoprotective chaperones and the ubiquitin-proteasome-dependent protein degradation system to maintain airway homeostatic integrity.
Collapse
Affiliation(s)
- Arnaud Chambellan
- Institut du Thorax, INSERM U533, Faculté de Médecine, Nantes, France
| | | | | | | | | | | | | |
Collapse
|
290
|
Picot CR, Perichon M, Lundberg KC, Friguet B, Szweda LI, Petropoulos I. Alterations in mitochondrial and cytosolic methionine sulfoxide reductase activity during cardiac ischemia and reperfusion. Exp Gerontol 2006; 41:663-7. [PMID: 16677789 DOI: 10.1016/j.exger.2006.03.011] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2006] [Revised: 03/14/2006] [Accepted: 03/17/2006] [Indexed: 12/11/2022]
Abstract
During cardiac ischemia/reperfusion, proteins are targets of reactive oxygen species produced by the mitochondrial respiratory chain resulting in the accumulation of oxidatively modified protein. Sulfur-containing amino acids are among the most sensitive to oxidation. Certain cysteine and methionine oxidation products can be reversed back to their reduced form within proteins by specific repair enzymes. Oxidation of methionine in protein produces methionine-S-sulfoxide and methionine-R-sulfoxide that can be catalytically reduced by two stereospecific enzymes, methionine sulfoxide reductases A and B, respectively. Due to the importance of the methionine sulfoxide reductase system in the maintenance of protein structure and function during conditions of oxidative stress, the fate of this system during ischemia/reperfusion was investigated. Mitochondrial and cytosolic methionine sulfoxide reductase activities are decreased during ischemia and at early times of reperfusion, respectively. Partial recovery of enzyme activity was observed upon extended periods of reperfusion. Evidence indicates that loss in activity is not due to a decrease in the level of MsrA but may involve structural modification of the enzyme.
Collapse
Affiliation(s)
- Cédric R Picot
- Laboratoire de Biologie et Biochimie Cellulaire du Vieillissement, EA 3106/IFR 117, Université Paris 7-Denis Diderot, 2 place Jussieu, Tour 33-23, 1er étage, CC 7128, 75251 Paris Cedex 05, France
| | | | | | | | | | | |
Collapse
|
291
|
Martinez-Vicente M, Sovak G, Cuervo AM. Protein degradation and aging. Exp Gerontol 2006; 40:622-33. [PMID: 16125351 DOI: 10.1016/j.exger.2005.07.005] [Citation(s) in RCA: 182] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2005] [Revised: 07/08/2005] [Accepted: 07/08/2005] [Indexed: 12/19/2022]
Abstract
Continuous turnover of intracellular proteins is essential for the maintenance of cellular homeostasis and for the regulation of multiple cellular functions. The first reports showing a decrease in total rates of protein degradation with age are dated more than 50 years ago, when the major players in protein degradation where still to be discovered. The current advances in the molecular characterization of the two main intracellular proteolytic systems, the lysosomal and the ubiquitin proteasome system, offer now the possibility of a systematic search for the defect(s) that lead to the declined activity of these systems in old organisms. We discuss here, in light of the current findings, how malfunctioning of these two proteolytic systems can contribute to different aspects of the phenotype of aging and to the pathogenesis of some age-related diseases.
Collapse
Affiliation(s)
- Marta Martinez-Vicente
- Department of Anatomy and Structural Biology, Marion Bessin Liver Research Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | | | | |
Collapse
|
292
|
Stolzing A, Widmer R, Jung T, Voss P, Grune T. Degradation of glycated bovine serum albumin in microglial cells. Free Radic Biol Med 2006; 40:1017-27. [PMID: 16540397 DOI: 10.1016/j.freeradbiomed.2005.10.061] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2005] [Revised: 09/28/2005] [Accepted: 10/21/2005] [Indexed: 10/25/2022]
Abstract
Glycated protein products are formed upon binding of sugars to lysine and arginine residues and have been shown to accumulate during aging and in pathologies such as Alzheimer disease and diabetes. Often these glycated proteins are transformed into advanced glycation end products (AGEs) by a series of intramolecular rearrangements. In the study presented here we tested the ability of microglial cells to degrade BSA-AGE formed by glycation reactions of bovine serum albumin (BSA) with glucose and fructose. Microglial cells are able to degrade BSA-AGEs to a certain degree by proteasomal and lysosomal pathways. However, the proteasome and lysosomal proteases are severely inhibited by cross-linked BSA-AGEs. BSA-AGEs are furthermore able to activate microglial cells. This activation is accompanied by an enhanced degradation of BSA-AGE. Therefore, we conclude that microglial cells are able to degrade glycated proteins, although cross-linked protein-AGEs have an inhibitory effect on proteolytic systems in microglial cells.
Collapse
Affiliation(s)
- Alexandra Stolzing
- Kroto Research Institute and Centre for Nanoscience and Technology, North Campus, Sheffield University, Sheffield, UK
| | | | | | | | | |
Collapse
|
293
|
Cesari M, Kritchevsky SB, Leeuwenburgh C, Pahor M. Oxidative damage and platelet activation as new predictors of mobility disability and mortality in elders. Antioxid Redox Signal 2006; 8:609-19. [PMID: 16677104 DOI: 10.1089/ars.2006.8.609] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Mobility disability is an early phase of the disablement process in older adults, and represents a major risk factor for physical disability and mortality. Pathophysiological mechanisms responsible for the onset of mobility limitation are still largely unknown. Oxidative damage, responsible for the disruption of the equilibrium of biological systems by damaging major constituent molecules, might play an important role in the pathway leading to major health-related events. It has been suggested the existence of a vicious cycle involving oxidative damage, platelet activation, and inflammation as promoter of pathophysiological changes occurring with aging. This hypothesis is based on the following observations: (a) oxidative damage is associated with diseases and clinical conditions potentially leading to disability and mortality; (b) oxidative damage is associated with platelet activation, and a vicious cycle involving oxidative damage, platelet activation, and inflammation has been demonstrated in several metabolic disorders potentially leading to mobility disability; (c) the age-related physical decline may be associated to the oxidative damage due to the excess of free radicals; (d) antioxidant defense and behavioral factors (e.g., physical activity, dietary restriction, smoking cessation) play an important role in the reduction of oxidative damage levels and are associated with improved physical performance and muscle strength.
Collapse
Affiliation(s)
- Matteo Cesari
- Department of Aging and Geriatric Research, College of Medicine, Institute on Aging, University of Florida, Gainesville, Florida 36208, USA.
| | | | | | | |
Collapse
|
294
|
Lashin OM, Szweda PA, Szweda LI, Romani AMP. Decreased complex II respiration and HNE-modified SDH subunit in diabetic heart. Free Radic Biol Med 2006; 40:886-96. [PMID: 16520240 DOI: 10.1016/j.freeradbiomed.2005.10.040] [Citation(s) in RCA: 114] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2005] [Revised: 10/11/2005] [Accepted: 10/16/2005] [Indexed: 11/21/2022]
Abstract
Several lines of research suggest that mitochondria play a role in the etiopathogenesis of diabetic cardiomyopathy, although the mechanisms involved are still debated. In the present study, we report that State 3 oxygen consumption decreases by approximately 35% with glutamate and by approximately 30% with succinate in mitochondria from diabetic rat hearts compared to controls. In these mitochondria the enzymatic activities of complex I and complex II are also decreased to a comparable extent. Western blot analysis of mitochondrial protein pattern using antibodies recognizing proteins modified by the lipid peroxidation product 4-hydroxynonenal indicates the FAD-containing subunit of succinate dehydrogenase as one of the targets of this highly reactive aldehyde. In rats diabetic for 6 or 12 weeks, insulin supplementation for 2 weeks decreases the level of protein modified by 4-hydroxynonenal and restores mitochondrial respiration and enzyme activity to control level. Taken together, these results: (1) indicate that 4-hydroxynonenal is endogenously produced within diabetic mitochondria and forms an adduct with selective mitochondrial proteins, (2) identify one of these proteins as a subunit of succinate dehydrogenase, and (3) provide strong evidence that insulin treatment can reverse and ameliorate free radical damage and mitochondrial function under diabetic conditions.
Collapse
Affiliation(s)
- Ossama M Lashin
- Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, OH 44106-4970, USA.
| | | | | | | |
Collapse
|
295
|
Woods AK, Storey KB. Vertebrate freezing survival: Regulation of the multicatalytic proteinase complex and controls on protein degradation. Biochim Biophys Acta Gen Subj 2006; 1760:395-403. [PMID: 16448758 DOI: 10.1016/j.bbagen.2005.12.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2005] [Revised: 12/14/2005] [Accepted: 12/15/2005] [Indexed: 11/29/2022]
Abstract
The wood frog, Rana sylvatica, survives weeks of whole body freezing during winter hibernation, expressing numerous metabolic adaptations that deal not only with freezing but with its consequences including organ ischemia and cellular dehydration. The present study analyzes the 20s multicatalytic proteinase (MCP) complex from skeletal muscle to determine how protein degradation is managed in the ischemic frozen state. MCP was partially purified and assayed fluorometrically using three AMC-labeled substrates to compare multiple states: control (5 degrees C acclimated), 24 h frozen at -2.5 degrees C, 4 or 8 h thawed at 5 degrees C, 8 h anoxia, and 40% dehydration. MCP from frozen frogs showed significantly different K(m) and V(max) values compared with controls; e.g., K(m) Z-LLE-AMC increased by 45% during freezing and 52% under anoxia whereas V(max) decreased by 40%. After thawing, K(m) was restored and V(max) rose by 2.2-fold. Incubations promoting protein kinase or phosphatase action on MCP showed that phosphatase treatment strongly increased V(max) implicating reversible phosphorylation in MCP regulation during freeze-thaw. Western blotting showed a 36% decrease in MCP protein in muscle from frozen frogs. The 20s MCP preferentially degrades oxidatively-damaged proteins and evidence of impaired function during freezing came from a 1.4-fold increase in protein carbonyl content in muscle and liver during freezing. Ubiquitin and ubiquitin conjugate levels were unchanged in muscle but changed markedly in liver during freeze-thaw.
Collapse
Affiliation(s)
- Ashley K Woods
- Institute of Biochemistry and Department of Biology, College of Natural Sciences, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario, Canada K1S 5B6
| | | |
Collapse
|
296
|
Dalle-Donne I, Rossi R, Colombo R, Giustarini D, Milzani A. Biomarkers of oxidative damage in human disease. Clin Chem 2006; 52:601-23. [PMID: 16484333 DOI: 10.1373/clinchem.2005.061408] [Citation(s) in RCA: 1090] [Impact Index Per Article: 57.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Oxidative/nitrosative stress, a pervasive condition of increased amounts of reactive oxygen/nitrogen species, is now recognized to be a prominent feature of many acute and chronic diseases and even of the normal aging process. However, definitive evidence for this association has often been lacking because of recognized shortcomings with biomarkers and/or methods available to assess oxidative stress status in humans. Emphasis is now being placed on biomarkers of oxidative stress, which are objectively measured and evaluated as indicators of normal biological processes, pathogenic processes, or pharmacologic responses to therapeutic intervention. To be a predictor of disease, a biomarker must be validated. Validation criteria include intrinsic qualities such as specificity, sensitivity, degree of inter- and intraindividual variability, and knowledge of the confounding and modifying factors. In addition, characteristics of the sampling and analytical procedures are of relevance, including constraints and noninvasiveness of sampling, stability of potential biomarkers, and the simplicity, sensitivity, specificity, and speed of the analytical method. Here we discuss some of the more commonly used biomarkers of oxidative/nitrosative damage and include selected examples of human studies.
Collapse
|
297
|
Chen Q, Thorpe J, Dohmen JR, Li F, Keller JN. Ump1 extends yeast lifespan and enhances viability during oxidative stress: central role for the proteasome? Free Radic Biol Med 2006; 40:120-6. [PMID: 16337885 DOI: 10.1016/j.freeradbiomed.2005.08.048] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2005] [Revised: 08/09/2005] [Accepted: 08/17/2005] [Indexed: 11/20/2022]
Abstract
Increasing evidence suggests that the proteasome may play an important role in both oxidative stress response and cellular aging, although considerable controversy exists as to the exact role the proteasome plays in each of these paradigms. In the present study we examined the contribution of impaired proteasome function to the regulation of oxidative damage (oxidized protein levels) following the administration of oxidative stressors, and to the cytotoxicity observed in aging and oxidatively challenged cells. In these studies the preservation of proteasome-mediated protein degradation was achieved via increased expression of the proteasome assembly protein Ump1. We observed that Saccharomyces cerevisiae transformed to express increased levels of Ump1 exhibited increased viability in response to a variety of oxidative stressors (menadione, hydrogen peroxide, 4-hydroxynonenal). The increased viability observed in each of these paradigms was associated with an enhanced preservation of proteasome-mediated protein degradation, consistent with the preservation of proteasome function being sufficient to ameliorate oxidative stress-induced cytotoxicity. Interestingly, cells expressing Ump1 were observed to initially have robust elevations in oxidized protein levels following the addition of oxidative stressors, but exhibited a significantly reduced level of oxidized proteins following the removal of oxidative stressors. Cells expressing elevated levels of Ump1 also exhibited an enhanced preservation of proteasome-mediated protein degradation, and enhanced viability during stationary-phase aging. Taken together these data strongly support a role for the proteasome serving as a central regulator of cellular viability during oxidative stress and during aging.
Collapse
Affiliation(s)
- Qinghua Chen
- Sanders-Brown Center on Aging, Department of Anatomy and Neurobiology, University of Kentucky, Lexington, KY 40536-0230, USA
| | | | | | | | | |
Collapse
|
298
|
Divald A, Powell SR. Proteasome mediates removal of proteins oxidized during myocardial ischemia. Free Radic Biol Med 2006; 40:156-64. [PMID: 16337889 DOI: 10.1016/j.freeradbiomed.2005.09.022] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2005] [Revised: 09/06/2005] [Accepted: 09/22/2005] [Indexed: 10/25/2022]
Abstract
Numerous proteins are known to be lost following myocardial ischemia/reperfusion yet little is known about the mediating proteinases. This study examines the hypothesis that proteasome plays a significant role in the removal of proteins oxidized during myocardial ischemia. Proteasome was inhibited by perfusing isolated rat hearts with buffer containing lactacystin, 2 micromol/L, for 10 min, which resulted in 51 and 42% decreases in 20S and 26S proteasome activities that persisted for a minimum of 90 min. Lactacystin pretreatment had minor effects on postischemic recovery of isolated hearts exposed to 30 min global ischemia and 60 min reperfusion. Protein carbonyl content of lactacystin-pretreated ischemic hearts was significantly (P < 0.05) increased. One band with approximate molecular mass of 50 kDa is known to contain oxidized actin. Actin degradation was quantitated by analysis of 3-methylhistidine which was significantly (P < 0.05) decreased by 15% following 30 min ischemia and 60 min reperfusion. Pretreatment of ischemic hearts with lactacystin prevented much of the loss (-6.5%) of 3-methylhistidine. Probing immunoprecipitated actin with an antibody specific for ubiquitin revealed no bands containing ubiquitinated homologues of this protein. These observations support the conclusion that proteasome mediates removal of some of the proteins oxidized during myocardial ischemia/reperfusion, and that at least oxidized actin is removed by the 20S proteasome.
Collapse
Affiliation(s)
- Andras Divald
- Department of Medicine, Institute for Medical Research, North Shore-Long Island Jewish Health System, New Hyde Park, NY 11042, USA
| | | |
Collapse
|
299
|
Abstract
The proteasome has an important role in the degradation of normal, damaged, mutant, or misfolded proteins. This includes the degradation of normal and regulatory proteins in the cellular metabolism and additionally the removal of damaged proteins as a stress response. The two well-described proteasome regulators, the 11S and the 19S regulators, forming together with the 20S 'core' proteasome various forms of the proteasome, including the ATP-stimulated 26S proteasome. As a result of aerobic metabolism, reactive oxygen species (ROS) are constantly generated during the lifetime of biological organisms. Consequently a permanent generation of oxidative damage takes place. This includes the formation of oxidatively modified proteins. These oxidized protein derivatives tend to aggregate, and accumulation of these aggregates may lead to cell death. To prevent this, such oxidatively modified proteins are selectively recognized and either repaired or degraded by the proteasome. The current knowledge of the repair systems and the degradation mechanism is reviewed here. The possible interactions between the ubiquitin-proteasome-system, the chaperone system, the protein repair mechanisms, and other antioxidative defense strategies are highlighted.
Collapse
Affiliation(s)
- Diana Poppek
- Research Institute of Environmental Medicine, Heinrich Heine University, Duesseldorf, Germany
| | | |
Collapse
|
300
|
Abstract
Organisms respond to oxidative injury by orchestrating a stress response to prevent further damage. An increase in the intracellular levels of antioxidant agents, and at the same time the removal of already damaged components, are both part of the oxidative stress response. Lysosomes have been classically considered one of the main targets of the reactive oxygen species. In fact, the destabilization of the lysosomal membrane during oxidizing conditions promotes the leakage of the enzymes contained in these organelles and contributes to cellular damage. However, recent evidence supports a protective role of the lysosomal system, which can eliminate altered intracellular components through autophagy, at least in the first stages of oxidative injury. Consequently, activation of the main intracellular proteolytic systems, the ubiquitin/proteasome, and also the lysosomal/autophagic system occurs during the oxidative stress response. The opposing roles for the lysosomal system under oxidizing conditions are discussed in this review.
Collapse
Affiliation(s)
- Roberta Kiffin
- Department of Anatomy and Structural Biology, Marion Bessin Liver Research Center, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | | | |
Collapse
|