251
|
Pecoraro N, Dallman MF, Warne JP, Ginsberg AB, Laugero KD, la Fleur SE, Houshyar H, Gomez F, Bhargava A, Akana SF. From Malthus to motive: how the HPA axis engineers the phenotype, yoking needs to wants. Prog Neurobiol 2006; 79:247-340. [PMID: 16982128 DOI: 10.1016/j.pneurobio.2006.07.004] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2006] [Revised: 07/17/2006] [Accepted: 07/24/2006] [Indexed: 01/28/2023]
Abstract
The hypothalamo-pituitary-adrenal (HPA) axis is the critical mediator of the vertebrate stress response system, responding to environmental stressors by maintaining internal homeostasis and coupling the needs of the body to the wants of the mind. The HPA axis has numerous complex drivers and highly flexible operating characterisitics. Major drivers include two circadian drivers, two extra-hypothalamic networks controlling top-down (psychogenic) and bottom-up (systemic) threats, and two intra-hypothalamic networks coordinating behavioral, autonomic, and neuroendocrine outflows. These various networks jointly and flexibly control HPA axis output of periodic (oscillatory) functions and a range of adventitious systemic or psychological threats, including predictable daily cycles of energy flow, actual metabolic deficits over many time scales, predicted metabolic deficits, and the state-dependent management of post-prandial responses to feeding. Evidence is provided that reparation of metabolic derangement by either food or glucocorticoids results in a metabolic signal that inhibits HPA activity. In short, the HPA axis is intimately involved in managing and remodeling peripheral energy fluxes, which appear to provide an unidentified metabolic inhibitory feedback signal to the HPA axis via glucocorticoids. In a complementary and perhaps a less appreciated role, adrenocortical hormones also act on brain to provide not only feedback, but feedforward control over the HPA axis itself and its various drivers, as well as coordinating behavioral and autonomic outflows, and mounting central incentive and memorial networks that are adaptive in both appetitive and aversive motivational modes. By centrally remodeling the phenotype, the HPA axis provides ballistic and predictive control over motor outflows relevant to the type of stressor. Evidence is examined concerning the global hypothesis that the HPA axis comprehensively induces integrative phenotypic plasticity, thus remodeling the body and its governor, the brain, to yoke the needs of the body to the wants of the mind. Adverse side effects of this yoking under conditions of glucocorticoid excess are discussed.
Collapse
Affiliation(s)
- Norman Pecoraro
- Department of Physiology, University of California, San Francisco, CA 94143-0444, United States.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
252
|
Abstract
AIMS The purpose of this review is to provide a synthesis of our knowledge of the neurobiological bases of addiction relevant for the diagnosis of addiction. METHODS A heuristic framework of neuroadaptive changes within key brain neurocircuitry responsible for different stages of the addiction cycle is outlined and linked to human studies to provide important future translational links for diagnosis. RESULTS Animal studies have revealed dysregulation of specific neurochemical mechanisms (dopamine, opioid peptides) in the brain reward systems and recruitment of brain stress systems (corticotropin-releasing factor) during the development of dependence that convey vulnerability to relapse. Animal studies have implicated the prefrontal cortex and basolateral amygdala in drug- and cue-induced relapse, respectively, and the brain stress systems in stress-induced relapse. Genetic studies suggest roles for the genes encoding the neurochemical elements involved in both the brain reward and stress systems in the vulnerability to addiction, and molecular studies have identified transduction and transcription factors that may mediate dependence-induced reward dysregulation. Human imaging studies reveal similar neurocircuits involved in acute intoxication, chronic drug dependence and vulnerability to relapse. CONCLUSIONS Major neurobiological changes in substance abuse disorders common to human and animal studies relevant for diagnosis include a compromised reward system, overactivated brain stress systems and compromised orbitofrontal/prefrontal cortex function. No biological markers of substance abuse disorders currently exist, but there are many promising neurobiological features of substance abuse disorders that will eventually aid in the specific diagnoses of substance use, misuse and dependence.
Collapse
Affiliation(s)
- George F Koob
- Molecular and Integrative Neurosciences Department, The Scripps Research Institute, La Jolla, CA, USA.
| |
Collapse
|
253
|
Abstract
Over the past decade, bupropion has become a major pharmacotherapy for smoking cessation in the Western world. Unlike other smoking cessation pharmacotherapies, bupropion is a non-nicotine treatment. Compared with a placebo control, bupropion approximately doubles smoking quit rates. Most smoking cessation pharmacotherapies are thought to work, in part, by reducing nicotine withdrawal and craving. This article reviews preclinical, human laboratory and clinical trial studies of the effect of bupropion on nicotine withdrawal and craving. Preclinical studies demonstrate that in rats undergoing nicotine withdrawal, bupropion can dose-dependently lower changes in brain-reward threshold and somatic signs of nicotine withdrawal. Human laboratory studies have demonstrated that bupropion can alleviate some nicotine withdrawal symptoms, including depressed mood, irritability, difficulty concentrating and increased appetite. Moreover, bupropion has shown some efficacy in alleviating craving to smoke. Clinical trials of bupropion have offered mixed support of its ability to reduce nicotine withdrawal, weight gain during treatment and craving. Strong mediational evidence of bupropion's action through relief of withdrawal and craving in smoking cessation is growing. Greater understanding of the psychological mechanisms of bupropion action will likely be obtained through advances in the conceptualization and measurement of withdrawal and craving. Improvements in the efficacy of bupropion may be achieved through pharmacogenetic studies, with particular emphasis on its metabolites. Ultimately, the efficacy of bupropion may be augmented by combination with other agents that target withdrawal and craving through complementary neurobiological processes.
Collapse
Affiliation(s)
- Marc E Mooney
- University of Minnesota, Department of Psychiatry, Tobacco Use Research Center 2701 University Avenue, Suite 201, Minneapolis, MN 55414, USA.
| | | |
Collapse
|
254
|
Jasmin L, Narasaiah M, Tien D. Noradrenaline is necessary for the hedonic properties of addictive drugs. Vascul Pharmacol 2006; 45:243-50. [PMID: 16899413 DOI: 10.1016/j.vph.2005.08.030] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2005] [Accepted: 08/01/2005] [Indexed: 11/18/2022]
Abstract
To determine whether noradrenaline (NA) is an essential neurotransmitter for addictive and appetitive behaviors, we measured drug and food seeking in transgenic mice lacking dopamine beta-hydroxylase (Dbh), the enzyme responsible for synthesizing NA. Using the conditioned place preference test (CPP), we show that Dbh -/- mice do not exhibit rewarding behavior to morphine, cocaine, or the mixed reuptake inhibitor bupropion. In spite of their lack of preference for drugs, Dbh -/- mice had an unaltered preference for food. Drug seeking was induced when NA was restored to the central nervous system of Dbh -/- mice by administration of l-threo-3,4-dihydroxyphenylserine (DOPS) and carbidopa. When a NK1 receptor antagonist was co-administered with morphine or cocaine, it produced aversive behavior in Dbh -/- mice while it abolished place preference in the controls. NK1 antagonists alone did not have any rewarding or aversive effect in the CPP suggesting that substance P opposes some of the unpleasant effects of morphine and cocaine. Our results show that NAergic transmission is necessary for motivated behaviors, the dysregulation of which is a co-morbid factor of many depressive states. The reversibility of this phenomenon, by restoring NA, indicates that even when this behavioral deficit is genetically determined it can be reversed.
Collapse
Affiliation(s)
- Luc Jasmin
- Department of Neurological Surgery and W.M. Keck Foundation Center for Integrative Neuroscience, University of California San Francisco, San Francisco, CA 94143, USA.
| | | | | |
Collapse
|
255
|
Grueter BA, Gosnell HB, Olsen CM, Schramm-Sapyta NL, Nekrasova T, Landreth GE, Winder DG. Extracellular-signal regulated kinase 1-dependent metabotropic glutamate receptor 5-induced long-term depression in the bed nucleus of the stria terminalis is disrupted by cocaine administration. J Neurosci 2006; 26:3210-9. [PMID: 16554472 PMCID: PMC6674094 DOI: 10.1523/jneurosci.0170-06.2006] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The bed nucleus of the stria terminalis (BNST) is a key component of the CNS stress and reward circuit. Synaptic plasticity in this region could in part underlie the persistent behavioral alterations in generalized anxiety and addiction. Group I metabotropic glutamate receptors (mGluRs) have been implicated in stress, addiction, and synaptic plasticity, but their roles in the BNST are unknown. We find that activation of group I mGluRs in the dorsal BNST induces depression of excitatory synaptic transmission through two distinct mechanisms. First, a combined activation of group I mGluRs (mGluR1 and mGluR5) induces a transient depression that is cannabinoid 1 receptor dependent. Second, as with endocannabinoid-independent group I mGluR long-term depression (LTD) in the adult hippocampus, we find that activation of mGluR5 induces an extracellular signal-regulated kinase (ERK)-dependent LTD. Surprisingly, our data demonstrate that this LTD requires the ERK1 rather than ERK2 isoform, establishing a key role for this isoform in the CNS. Finally, we find that this LTD is dramatically reduced after multiple exposures but not a single exposure to cocaine, suggesting a role for this form of plasticity in the actions of psychostimulants on anxiety and reward circuitries and their emergent control of animal behavior.
Collapse
MESH Headings
- Animals
- Anxiety Disorders/metabolism
- Anxiety Disorders/physiopathology
- Cocaine/pharmacology
- Cocaine-Related Disorders/metabolism
- Cocaine-Related Disorders/physiopathology
- Disease Models, Animal
- Dopamine Uptake Inhibitors/pharmacology
- Long-Term Synaptic Depression/drug effects
- Long-Term Synaptic Depression/physiology
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Mitogen-Activated Protein Kinase 3/drug effects
- Mitogen-Activated Protein Kinase 3/metabolism
- Organ Culture Techniques
- Receptor, Cannabinoid, CB1/drug effects
- Receptor, Cannabinoid, CB1/metabolism
- Receptor, Metabotropic Glutamate 5
- Receptors, Metabotropic Glutamate/drug effects
- Receptors, Metabotropic Glutamate/metabolism
- Reward
- Septal Nuclei/drug effects
- Septal Nuclei/metabolism
- Stress, Psychological/metabolism
- Stress, Psychological/physiopathology
- Synaptic Transmission/drug effects
- Synaptic Transmission/physiology
Collapse
|
256
|
Harris AC, Atkinson DM, Aase DM, Gewirtz JC. Double dissociation in the neural substrates of acute opiate dependence as measured by withdrawal-potentiated startle. Neuroscience 2006; 139:1201-10. [PMID: 16600512 DOI: 10.1016/j.neuroscience.2006.01.048] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2005] [Revised: 01/05/2006] [Accepted: 01/15/2006] [Indexed: 11/30/2022]
Abstract
The basolateral amygdala and portions of the "extended" amygdala (i.e. central nucleus of the amygdala, bed nucleus of the stria terminalis and shell of the nucleus accumbens) have been implicated in the aversive aspects of withdrawal from chronic opiate administration. Given that similar withdrawal signs are observed following a single opiate exposure, these structures may also play a role in "acute opiate dependence." In the current study, drug-naïve rats underwent naloxone-precipitated withdrawal from acute morphine (10 mg/kg) exposure on two successive days. On either the first or second day of testing, the basolateral amygdala, central nucleus of the amygdala, bed nucleus of the stria terminalis, or nucleus accumbens was temporarily inactivated immediately prior to naloxone injection by microinfusion of the glutamatergic alpha-amino-3-hydroxy-5-methyl-4-isoxazole proprionic acid receptor antagonist 1,2,3,4-tetrahydro-6-nitro-2,3-dioxo-benzo(f)quinoxaline-7-sulfonamide (3 microg/0.5 microl). On the first day, inactivation of the basolateral amygdala, central nucleus of the amygdala, or bed nucleus of the stria terminalis, but not the nucleus accumbens blocked withdrawal-potentiated startle, a behavioral measure of the anxiogenic effects of withdrawal. On the second day, inactivation of the nucleus accumbens, but not the basolateral amygdala, central nucleus of the amygdala, or bed nucleus of the stria terminalis disrupted the withdrawal effect. Effects of structural inactivations on withdrawal-potentiated startle were not influenced by differences in withdrawal severity on the two days of testing. A fear-potentiated startle procedure provided functional confirmation of correct cannulae placement in basolateral amygdale- and central nucleus of the amygdala-implanted animals. Our findings indicate a double dissociation in the neural substrates of withdrawal-potentiated startle following a first versus second morphine exposure, and may reflect a reorganization of the neural circuitry underlying the expression of withdrawal-induced negative affect during the earliest stages of opiate dependence.
Collapse
Affiliation(s)
- A C Harris
- Department of Psychology, University of Minnesota, Minneapolis, 55455, USA
| | | | | | | |
Collapse
|
257
|
Jonkman S, Markou A. Blockade of nicotinic acetylcholine or dopamine D1-like receptors in the central nucleus of the amygdala or the bed nucleus of the stria terminalis does not precipitate nicotine withdrawal in nicotine-dependent rats. Neurosci Lett 2006; 400:140-5. [PMID: 16563623 DOI: 10.1016/j.neulet.2006.02.030] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2005] [Revised: 02/08/2006] [Accepted: 02/11/2006] [Indexed: 12/23/2022]
Abstract
Approximately 70% of tobacco smokers wish to quit, but attempts are often unsuccessful partly due to the aversive nicotine withdrawal syndrome. We investigated the possible involvement of nicotinic and dopaminergic signalling in the central nucleus of the amygdala (CeA) and dorsolateral bed nucleus of the stria terminalis (dlBNST) in the anhedonic depression-like effect of precipitated nicotine withdrawal in rats. Nicotine-dependent rats exhibit elevations in intracranial self-stimulation (ICSS) thresholds compared to control rats after cessation of chronic nicotine administration (spontaneous withdrawal) or systemic or intra-ventral tegmental area (VTA), but not intra-nucleus accumbens (NAcc), administration of nicotinic acetylcholine receptor (nAchR) antagonists while exposed to nicotine (precipitated withdrawal). We examined whether intracerebral administration of the nAChR antagonist dihydro-beta-erythroidine (DHbetaE; 0.6-20 microg total bilateral dose) or the dopamine D1-like receptor antagonist SCH 23390 (2-16 microg total bilateral dose) into the CeA and dlBNST results in withdrawal-like threshold elevations in nicotine-treated rats. Nicotinic acetylcholine and D1-like receptor blockade in the CeA or the dlBNST did not induce differential threshold elevations in nicotine- and saline-treated rats. Further, the highest SCH 23390 dose (16 microg bilateral dose) injected into the dlBNST, but not the CeA, elevated thresholds similarly in both saline- and nicotine-treated rats, suggesting that dopaminergic signalling in the dlBNST may regulate brain reward function under baseline conditions. These results suggest that nACh and D1-like signalling in the CeA and the dlBNST does not develop neuroadaptations with the development of nicotine dependence that may be involved in the depression-like aspects of nicotine withdrawal.
Collapse
Affiliation(s)
- Sietse Jonkman
- Molecular and Integrative Neurosciences Department, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | |
Collapse
|
258
|
Olson VG, Heusner CL, Bland RJ, During MJ, Weinshenker D, Palmiter RD. Role of noradrenergic signaling by the nucleus tractus solitarius in mediating opiate reward. Science 2006; 311:1017-20. [PMID: 16484499 DOI: 10.1126/science.1119311] [Citation(s) in RCA: 104] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Norepinephrine (NE) is widely implicated in opiate withdrawal, but much less is known about its role in opiate-induced locomotion and reward. In mice lacking dopamine beta-hydroxylase (DBH), an enzyme critical for NE synthesis, we found that NE was necessary for morphine-induced conditioned place preference (CPP; a measure of reward) and locomotion. These deficits were rescued by systemic NE restoration. Viral restoration of DBH expression in the nucleus tractus solitarius, but not in the locus coeruleus, restored CPP for morphine. Morphine-induced locomotion was partially restored by DBH expression in either brain region. These data suggest that NE signaling by the nucleus tractus solitarius is necessary for morphine reward.
Collapse
Affiliation(s)
- Valerie G Olson
- Howard Hughes Medical Institute and Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | | | | | | | | | | |
Collapse
|
259
|
Kim KS, Lee KW, Lee KW, Im JY, Yoo JY, Kim SW, Lee JK, Nestler EJ, Han PL. Adenylyl cyclase type 5 (AC5) is an essential mediator of morphine action. Proc Natl Acad Sci U S A 2006; 103:3908-13. [PMID: 16537460 PMCID: PMC1533788 DOI: 10.1073/pnas.0508812103] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Opioid drugs produce their pharmacological effects by activating inhibitory guanine nucleotide-binding regulatory protein-linked mu, delta, and kappa opioid receptors. One major effector for these receptors is adenylyl cyclase, which is inhibited upon receptor activation. However, little is known about which of the ten known forms of adenylyl cyclase are involved in mediating opioid actions. Here we show that all of the major behavioral effects of morphine, including locomotor activation, analgesia, tolerance, reward, and physical dependence and withdrawal symptoms, are attenuated in mice lacking adenylyl cyclase type 5 (AC5), a form of adenylyl cyclase that is highly enriched in striatum. Furthermore, the behavioral effects of selective mu or delta opioid receptor agonists are lost in AC5-/- mice, whereas the behavioral effects of selective kappa opioid receptor agonists are unaffected. These behavioral data are consistent with the observation that the ability of a mu or delta opioid receptor agonist to suppress adenylyl cyclase activity was absent in striatum of AC5-/- mice. Together, these results establish AC5 as an important component of mu and delta opioid receptor signal transduction mechanisms in vivo and provide further support for the importance of the cAMP pathway as a critical mediator of opioid action.
Collapse
MESH Headings
- Adenylyl Cyclases/deficiency
- Adenylyl Cyclases/genetics
- Adenylyl Cyclases/metabolism
- Animals
- Behavior, Animal/drug effects
- Behavior, Animal/physiology
- Conditioning, Psychological/drug effects
- Corpus Striatum/drug effects
- Corpus Striatum/enzymology
- Isoenzymes/deficiency
- Isoenzymes/genetics
- Isoenzymes/metabolism
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Morphine/pharmacology
- Motor Activity/drug effects
- Pain Measurement
- Receptors, Opioid/agonists
- Receptors, Opioid/drug effects
- Receptors, Opioid/physiology
- Receptors, Opioid, delta/drug effects
- Receptors, Opioid, delta/physiology
- Receptors, Opioid, mu/drug effects
- Receptors, Opioid, mu/physiology
- Signal Transduction
- Substance Withdrawal Syndrome
Collapse
Affiliation(s)
- Kyoung-Shim Kim
- *Department of Neuroscience, Medical Research Institute, Ewha Womans University School of Medicine, Seoul 110-783, Korea
| | - Ko-Woon Lee
- *Department of Neuroscience, Medical Research Institute, Ewha Womans University School of Medicine, Seoul 110-783, Korea
| | - Kang-Woo Lee
- *Department of Neuroscience, Medical Research Institute, Ewha Womans University School of Medicine, Seoul 110-783, Korea
| | - Joo-Young Im
- *Department of Neuroscience, Medical Research Institute, Ewha Womans University School of Medicine, Seoul 110-783, Korea
| | - Ji Yeoun Yoo
- *Department of Neuroscience, Medical Research Institute, Ewha Womans University School of Medicine, Seoul 110-783, Korea
| | - Seung-Woo Kim
- Department of Anatomy, Inha University School of Medicine, Inchon 400-712, Korea; and
| | - Ja-Kyeong Lee
- Department of Anatomy, Inha University School of Medicine, Inchon 400-712, Korea; and
| | - Eric J. Nestler
- Department of Psychiatry and Center for Basic Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX 75390-9070
| | - Pyung-Lim Han
- *Department of Neuroscience, Medical Research Institute, Ewha Womans University School of Medicine, Seoul 110-783, Korea
- To whom correspondence should be addressed at:
Department of Neuroscience, Ewha Womans University School of Medicine, 911-1, Mok-6-dong, Yangchun-Gu, Seoul 158-710, Korea. E-mail:
| |
Collapse
|
260
|
Fendt M, Siegl S, Steiniger-Brach B. Noradrenaline transmission within the ventral bed nucleus of the stria terminalis is critical for fear behavior induced by trimethylthiazoline, a component of fox odor. J Neurosci 2006; 25:5998-6004. [PMID: 15976089 PMCID: PMC6724787 DOI: 10.1523/jneurosci.1028-05.2005] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The bed nucleus of the stria terminalis (BNST) is involved in the mediation of fear behavior in rats. A previous study of our laboratory demonstrated that temporary inactivation of the BNST blocks fear behavior induced by exposure to trimethylthiazoline (TMT), a component of fox odor. The present study investigates whether noradrenaline release within the BNST is critical for TMT-induced fear behavior. First, we confirmed previous studies showing that the ventral BNST is the part of the BNST that receives the densest noradrenaline innervation. Second, using in vivo microdialysis, we showed that noradrenaline release within the BNST is strongly increased during TMT exposure, and that this increase can be blocked by local infusions of the alpha2-receptor blocker clonidine. Third, using intracerebral injections, we showed that clonidine injections into the ventral BNST, but not into neighboring brain sites, completely blocked TMT-induced potentiation of freezing behavior. The present data clearly show that the noradrenergic innervation of the ventral BNST is important for the full expression of behavioral signs of fear to the predator odor TMT.
Collapse
Affiliation(s)
- Markus Fendt
- Tierphysiologie, Zoologisches Institut, Universität Tübingen, D-72076 Tübingen, Germany.
| | | | | |
Collapse
|
261
|
Van Bockstaele EJ, Rudoy C, Mannelli P, Oropeza V, Qian Y. Elevated μ-opioid receptor expression in the nucleus of the solitary tract accompanies attenuated withdrawal signs after chronic low dose naltrexone in opiate-dependent rats. J Neurosci Res 2006; 83:508-14. [PMID: 16385558 DOI: 10.1002/jnr.20738] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
We previously described a decrease in withdrawal behaviors in opiate-dependent rats that were chronically treated with very low doses of naltrexone in their drinking water. Attenuated expression of withdrawal behaviors correlated with decreased c-Fos expression and intracellular signal transduction elements [protein kinase A regulatory subunit II (PKA) and phosphorylated cAMP response element binding protein (pCREB)] in brainstem noradrenergic nuclei. In this study, to determine whether similar cellular changes occurred in forebrain nuclei associated with drug reward, expressions of PKA and pCREB were analyzed in the ventral tegmental area, frontal cortex, striatum, and amygdala of opiate-treated rats that received low doses of naltrexone in their drinking water. No significant difference in PKA or pCREB was detected in these regions following drug treatment. To examine further the cellular mechanisms in noradrenergic nuclei that could underlie attenuated withdrawal behaviors following low dose naltrexone administration, the nucleus of the solitary tract (NTS) and locus coeruleus (LC) were examined for opioid receptor (OR) protein expression. Results showed a significant increase in muOR expression in the NTS of morphine-dependent rats that received low doses of naltrexone in their drinking water, and increases in muOR expression were also found to be dose dependent. Protein expression of muOR in the LC and deltaOR in either brain region remained unchanged. In conclusion, our previously reported decreases in c-Fos and PKA expression in the NTS following pretreatment with low doses of naltrexone may be partially explained by a greater inhibition of NTS neurons resulting from increased muOR expression in this region.
Collapse
Affiliation(s)
- E J Van Bockstaele
- Department of Neurosurgery, Farber Institute for Neurosciences, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA.
| | | | | | | | | |
Collapse
|
262
|
Frenois F, Le Moine C, Cador M. The motivational component of withdrawal in opiate addiction: role of associative learning and aversive memory in opiate addiction from a behavioral, anatomical and functional perspective. Rev Neurosci 2006; 16:255-76. [PMID: 16323564 DOI: 10.1515/revneuro.2005.16.3.255] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
A major challenge in current drug addiction research is not only to understand the immediate effects of drugs of abuse on brain operations, but also to define at the behavioral and neural levels how cognitive, emotional and motivational processes interact with drug use in order to lead to this psychopathological state which defines addiction. It is now clear that factors other than the direct effects of drugs of abuse are able to powerfully affect drug-seeking and drug-taking behaviors. In former opiate addicts, re-exposure to environmental situations previously paired with withdrawal is able to induce strong craving episodes. It has been proposed that these conditioned stimuli could be strongly involved in precipitating relapse in drug-taking behavior by re-activating the neurobiological circuits which are engaged in an unconditioned way by the withdrawal state itself, leading to a powerful aversive state relieved by drug consumption renewal. In the present review, we provide evidence from a neuropsychopharmacological viewpoint that environmental situations previously paired with the opiate withdrawal syndrome might be able to maintain drug-seeking motivation. Using behavioral models which allow assessment of the aversive and motivational properties of opiate withdrawal both in the unconditioned and conditioned situations, we have recently investigated using extensive mapping the neurobiological correlates which underlie acute withdrawal and the trace of its memory in the brain in terms of localization and neuronal population involved, with an anatomical and functional approach. Thus, on the basis of our results, and together with a number of data in the literature, we provide a functional model for the formation and retrieval of opiate withdrawal memories.
Collapse
Affiliation(s)
- François Frenois
- Interactions Neuronales et Comportements, Université Victor Segalen, Bordeaux, France.
| | | | | |
Collapse
|
263
|
Myers EA, Banihashemi L, Rinaman L. The anxiogenic drug yohimbine activates central viscerosensory circuits in rats. J Comp Neurol 2006; 492:426-41. [PMID: 16228990 DOI: 10.1002/cne.20727] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Systemic administration of the alpha(2)-adrenoceptor antagonist yohimbine (YO) activates the HPA stress axis and promotes anxiety in humans and experimental animals. We propose that visceral malaise contributes to the stressful and anxiogenic effects of systemic YO and that YO recruits brainstem noradrenergic (NA) and peptidergic neurons that relay viscerosensory signals to the hypothalamus and limbic forebrain. To begin testing these hypotheses, the present study explored dose-related effects of YO on food intake, conditioned flavor avoidance (CFA), and Fos immunolabeling in rats. Systemic YO (5.0 mg/kg BW, i.p.) inhibited food intake, supported CFA, and increased Fos immunolabeling in identified NA neurons in the ventrolateral medulla, nucleus of the solitary tract, and locus coeruleus. YO also increased Fos in the majority of corticotropin releasing hormone-positive neurons in the paraventricular nucleus of the hypothalamus. YO administered at 1.0 mg/kg BW did not inhibit food intake, did not support CFA, and did not increase Fos immunolabeling. Retrograde neural tracing demonstrated that neurons activated by YO at 5.0 mg/kg BW included medullary and pontine neurons that project to the central nucleus of the amygdala and to the lateral bed nucleus of the stria terminalis, the latter region receiving comparatively greater input by Fos-positive neurons. We conclude that YO produces anorexigenic and aversive effects that correlate with activation of brainstem viscerosensory inputs to the limbic forebrain. These findings invite continued investigation of how central viscerosensory signaling pathways interact with hypothalamic and limbic regions to influence interrelated physiological and behavioral components of anxiety, stress, and visceral malaise.
Collapse
|
264
|
Abstract
The symptoms of opiate withdrawal in infants are defined as neonatal abstinence syndrome (NAS). NAS is a significant cause of morbidity in term and preterm infants. Factors, such as polysubstance abuse, inadequate prenatal care, nutritional deprivation, and the biology of the developing central nervous system contribute to the challenge of evaluating and treating opiate-induced alterations in the newborn. Although research on the effects of opiates in neonatal animal models is limited, the data from adult animal models have greatly contributed to understanding and treating opiate tolerance, addiction, and withdrawal in adult humans. Yet the limited neonatal data that are available indicate that the mechanisms involved in these processes in the newborn differ from those in adult animals, and that neonatal models of opiate withdrawal are needed to understand and develop effective treatment regimens for NAS. In this review, the behavioral and neurochemical evidence from the literature is presented and suggests that mechanisms responsible for opiate tolerance, dependence, and withdrawal differ between adult and neonatal models. Also reviewed are studies that have used neonatal rodent models, the authors' preliminary data based on the use of neonatal rat and mouse models of opiate withdrawal, and other neonatal models that have been proposed for the study of neonatal opiate withdrawal.
Collapse
Affiliation(s)
- Kimberlei A Richardson
- Department of Pediatrics, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | | | | |
Collapse
|
265
|
Smith HR, Beveridge TJR, Porrino LJ. Distribution of norepinephrine transporters in the non-human primate brain. Neuroscience 2006; 138:703-14. [PMID: 16427744 DOI: 10.1016/j.neuroscience.2005.11.033] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2005] [Revised: 11/03/2005] [Accepted: 11/20/2005] [Indexed: 11/23/2022]
Abstract
Noradrenergic terminals in the central nervous system are widespread; as such this system plays a role in varying functions such as stress responses, sympathetic regulation, attention, and memory processing, and its dysregulation has been linked to several pathologies. In particular, the norepinephrine transporter is a target in the brain of many therapeutic and abused drugs. We used the selective ligand [(3)H]nisoxetine, therefore, to describe autoradiographically the normal regional distribution of the norepinephrine transporter in the non-human primate central nervous system, thereby providing a baseline to which alterations due to pathological conditions can be compared. The norepinephrine transporter in the monkey brain was distributed heterogeneously, with highest levels occurring in the locus coeruleus complex and raphe nuclei, and moderate binding density in the hypothalamus, midline thalamic nuclei, bed nucleus of the stria terminalis, central nucleus of the amygdala, and brainstem nuclei such as the dorsal motor nucleus of the vagus and nucleus of the solitary tract. Low levels of binding to the norepinephrine transporter were measured in basolateral amygdala and cortical, hippocampal, and striatal regions. The distribution of the norepinephrine transporter in the non-human primate brain was comparable overall to that described in other species, however disparities exist between the rodent and the monkey in brain regions that play a role in such critical processes as memory and learning. The differences in such areas point to the possibility of important functional differences in noradrenergic information processing across species, and suggest the use of caution in applying findings made in the rodent to the human condition.
Collapse
Affiliation(s)
- H R Smith
- Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157, USA
| | | | | |
Collapse
|
266
|
Geerling JC, Loewy AD. Aldosterone-sensitive neurons in the nucleus of the solitary tract: Efferent projections. J Comp Neurol 2006; 497:223-50. [PMID: 16705681 DOI: 10.1002/cne.20993] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The nucleus of the solitary tract (NTS) contains a subpopulation of neurons that express the enzyme 11-beta-hydroxysteroid dehydrogenase type 2 (HSD2), which makes them uniquely sensitive to aldosterone. These neurons may drive sodium appetite, which is enhanced by aldosterone. Anterograde and retrograde neural tracing techniques were used to reveal the efferent projections of the HSD2 neurons in the rat. First, the anterograde tracer Phaseolus vulgaris leucoagglutinin was used to label axonal projections from the medial NTS. Then, NTS-innervated brain regions were injected with a retrograde tracer, cholera toxin beta subunit, to determine which sites are innervated by the HSD2 neurons. The HSD2 neurons project mainly to the ventrolateral bed nucleus of the stria terminalis (BSTvl), the pre-locus coeruleus (pre-LC), and the inner division of the external lateral parabrachial nucleus (PBel). They also send minor axonal projections to the midbrain ventral tegmental area, lateral and paraventricular hypothalamic nuclei, central nucleus of the amygdala, and periaqueductal gray matter. The HSD2 neurons do not innervate the ventrolateral medulla, a key brainstem autonomic site. Additionally, our tracing experiments confirmed that the BSTvl receives direct axonal projections from the neighboring A2 noradrenergic neurons in the NTS, and from the same pontine sites that receive major inputs from the HSD2 neurons (PBel and pre-LC). The efferent projections of the HSD2 neurons may provide new insights into the brain circuitry responsible for sodium appetite.
Collapse
Affiliation(s)
- Joel C Geerling
- Department of Anatomy and Neurobiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | |
Collapse
|
267
|
Laurent P, Becker JAJ, Valverde O, Ledent C, de Kerchove d'Exaerde A, Schiffmann SN, Maldonado R, Vassart G, Parmentier M. The prolactin-releasing peptide antagonizes the opioid system through its receptor GPR10. Nat Neurosci 2005; 8:1735-41. [PMID: 16299503 DOI: 10.1038/nn1585] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2005] [Accepted: 09/30/2005] [Indexed: 11/08/2022]
Abstract
Prolactin-releasing peptide (PrRP) and its receptor G protein-coupled receptor 10 (GPR10) are expressed in brain areas involved in the processing of nociceptive signals. We investigated the role of this new neuropeptidergic system in GPR10-knockout mice. These mice had higher nociceptive thresholds and stronger stress-induced analgesia than wild-type mice, differences that were suppressed by naloxone treatment. In addition, potentiation of morphine-induced antinociception and reduction of morphine tolerance were observed in mutants. Intracerebroventricular administration of PrRP in wild-type mice promoted hyperalgesia and reversed morphine-induced antinociception. PrRP administration had no effect on GPR10-mutant mice, showing that its effects are mediated by GPR10. Anti-opioid effects of neuropeptide FF were found to require a functional PrRP-GPR10 system. Finally, GPR10 deficiency enhanced the acquisition of morphine-induced conditioned place preference and decreased the severity of naloxone-precipitated morphine withdrawal syndrome. Altogether, our data identify the PrRP-GPR10 system as a new and potent negative modulator of the opioid system.
Collapse
Affiliation(s)
- Patrick Laurent
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (I.R.I.B.H.M.), Université Libre de Bruxelles, Campus Erasme, Route de Lennik 808, Brussels, Belgium
| | | | | | | | | | | | | | | | | |
Collapse
|
268
|
|
269
|
Georges F, Caillé S, Vouillac C, Le Moine C, Stinus L. Role of imidazoline receptors in the anti-aversive properties of clonidine during opiate withdrawal in rats. Eur J Neurosci 2005; 22:1812-6. [PMID: 16197523 DOI: 10.1111/j.1460-9568.2005.04356.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Clonidine is used as a treatment for heroin addiction. Previous studies have reported that clonidine attenuated conditioned place aversion (CPA) to naloxone-precipitated opiate withdrawal by acting on alpha2 adrenoceptors (alpha2R). However, clonidine acts as a partial agonist both at alpha2R and at imidazoline-1 receptors (I1Rs). The current study was designed to determine the role of I1R in the induction of naloxone-induced CPA in morphine-dependent rats. Morphine dependence was induced by subcutaneous implantation of morphine pellets. Morphine-dependent rats were tested in a three-chamber place-aversion apparatus. A range of agonists were chosen on the basis of their differential selectivity for alpha2R and I1R. As expected, pretreatment with clonidine prevented naloxone-induced CPA. By contrast, pretreatment with a selective alpha2R agonist (UK14304) failed to prevent the CPA. We then tested whether the high affinity of clonidine for I1R was responsible for the difference between these two alpha2R agonists. Rilmenidine (a mixed alpha2R/I1R agonist) attenuated aversion to opiate withdrawal in a dose-dependent manner. The action of clonidine on I1R was studied by co-administering clonidine with RX821002, a specific alpha2R antagonist. Co-treatment with RX821002 and clonidine blocked naloxone-induced CPA. These results indicate that the pharmacologically protective effects of clonidine on naloxone-induced CPA are related to actions on I1RS as well as alpha2Rs.
Collapse
Affiliation(s)
- F Georges
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5541 'Interactions Neuronales et Comportements', BP28, Université Victor Segalen, Bordeaux 2, 146 rue Léo Saignat, 33076 Bordeaux cedex, France.
| | | | | | | | | |
Collapse
|
270
|
Beveridge TJR, Smith HR, Nader MA, Porrino LJ. Effects of chronic cocaine self-administration on norepinephrine transporters in the nonhuman primate brain. Psychopharmacology (Berl) 2005; 180:781-8. [PMID: 15739079 DOI: 10.1007/s00213-005-2162-1] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2004] [Accepted: 12/22/2004] [Indexed: 02/04/2023]
Abstract
RATIONALE While cocaine blocks dopamine and serotonin transporters, considerably less emphasis has been placed on its effects following blockade of the norepinephrine transporter (NET). To date, no studies have made a systematic investigation of the effects of chronic cocaine on primate NET density. OBJECTIVE We previously reported increases in NET density in portions of the monkey bed nucleus of stria terminalis after 100 days of cocaine self-administration. In the present study we extend these findings and assess the changes in [3H]nisoxetine binding in additional brain regions of rhesus monkeys chronically self-administrating cocaine. RESULTS [3H]Nisoxetine binding sites in the A1 noradrenergic cell group were significantly higher after 5 days of cocaine exposure. One hundred days of self-administration also induced a higher density of NET binding within the A1 cell group; however, in addition, the effects extended to the nucleus prepositus, as well as forebrain regions such as hypothalamic nuclei, basolateral amygdala, parasubiculum, and entorhinal cortex. CONCLUSIONS These data demonstrate that cocaine self-administration alters the noradrenergic system of nonhuman primates. Although cocaine affected NET binding sites in the forebrain projections of both the ventral (VNAB) and dorsal (DNAB) noradrenergic bundles, the alteration in the A1 cell group at the early time-point suggests that the VNAB appears to be more sensitive than the DNAB to the effects of cocaine. Given the role of norepinephrine in arousal and attention, as well as mediating responses to stress, long-term exposure to cocaine is likely to result in significant changes in the way in which information is perceived and processed by the central nervous system of long-term cocaine users.
Collapse
Affiliation(s)
- Thomas J R Beveridge
- Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157, USA
| | | | | | | |
Collapse
|
271
|
Dumont EC, Williams JT. Noradrenaline triggers GABAA inhibition of bed nucleus of the stria terminalis neurons projecting to the ventral tegmental area. J Neurosci 2005; 24:8198-204. [PMID: 15385602 PMCID: PMC4011825 DOI: 10.1523/jneurosci.0425-04.2004] [Citation(s) in RCA: 124] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The lateral part of the ventral bed nucleus of the stria terminalis (vlBNST) is a critical site for the antiaversive effects of noradrenergic drugs during opioid withdrawal. The objective of the present study is to identify the cellular action(s) of noradrenaline in the vlBNST after withdrawal from a 5d treatment with morphine. The vlBNST is a heterogeneous cell group with multiple efferent projections. Therefore, neurons projecting to the midbrain were identified by retrograde transport of fluorescent microspheres injected in the ventral tegmental area (VTA). Whole-cell voltage clamp recordings of these neurons and of those sharing physiological properties were done in brain slices. Noradrenaline activated alpha1-adrenergic receptors to increase GABA(A)-IPSC frequency. Noradrenaline produced a similar increase in GABA(A)-IPSCs during acute opioid withdrawal, but this increase resulted from activation of beta-adrenergic receptors, adenylyl cyclase, and protein kinase A, as well as alpha1-adrenergic receptors. Given that neurons in the vlBNST send an excitatory projection to the VTA, noradrenaline may reduce excitatory drive to mesolimbic dopamine cells. This mechanism might contribute to the withdrawal-induced inhibition of dopamine neurons and explain how noradrenergic drugs microinjected into the vlBNST reduce aversive aspects of opioid withdrawal.
Collapse
Affiliation(s)
- Eric C Dumont
- Vollum Institute, Oregon Health Sciences University, Portland, Oregon 97239, USA
| | | |
Collapse
|
272
|
Grueter BA, Winder DG. Group II and III metabotropic glutamate receptors suppress excitatory synaptic transmission in the dorsolateral bed nucleus of the stria terminalis. Neuropsychopharmacology 2005; 30:1302-11. [PMID: 15812571 DOI: 10.1038/sj.npp.1300672] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Conditions such as anxiety, drug abuse, and post-traumatic stress disorder are thought to reflect alterations in central nervous system stress and reward circuitry. Recent evidence suggests a key component of this circuitry is the bed nucleus of the stria terminalis (BNST). In particular, regulation of glutamatergic transmission in the BNST plays a critical role in animal performance on anxiety tasks. Metabotropic glutamate receptors (mGluRs) have been implicated in stress and drug addiction and are known to regulate glutamatergic transmission in many brain regions. We have utilized both extracellular field potential and whole-cell patch-clamp recording in an in vitro slice preparation of mouse dorsal anterolateral BNST to determine whether G(i/o)-linked mGluRs modulate excitatory transmission in this region. We find that activation of group II and group III mGluRs in an in vitro slice preparation of the dBNST causes a depression of excitatory transmission. The depression evoked by group II mGluR activation may represent a form of synaptic plasticity as prolonged activation of the receptor produces a long-term depression of glutamatergic transmission. Based on paired-pulse ratio analysis, initiation of depression by group II and group III mGluR subfamilies appears to, at least in part, involve decreased glutamate release. In total, our data suggest a plausible site of action for some of the anxiolytic effects of group II and group III mGluR agonists.
Collapse
Affiliation(s)
- Brad A Grueter
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | | |
Collapse
|
273
|
Erb S, Funk D, Lê AD. Cocaine pre-exposure enhances CRF-induced expression of c-fos mRNA in the central nucleus of the amygdala: an effect that parallels the effects of cocaine pre-exposure on CRF-induced locomotor activity. Neurosci Lett 2005; 383:209-14. [PMID: 15955413 DOI: 10.1016/j.neulet.2005.04.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2005] [Revised: 03/28/2005] [Accepted: 04/04/2005] [Indexed: 11/29/2022]
Abstract
There is evidence that cocaine pre-exposure produces changes in the responsivity of central corticotropin-releasing factor (CRF) systems and that these systems mediate some of the drug-related behavioural effects of acute stressors. The present experiment was conducted to assess the effects of repeated cocaine exposure on CRF-induced neuronal activation within two regions of the extended amygdala, the central nucleus of the amygdala (CeA) and lateral bed nucleus of the stria terminalis (BNST). In addition, CRF-induced neuronal activation was compared with CRF-induced locomotor activity. Rats were injected for 7 days with cocaine (days 1 and 7 in test chambers; days 2-6 in homecages) or saline. After 10 drug-free days, locomotor responsiveness to intracerebroventricular (i.c.v.) injections of CRF and Vehicle was assessed over 2-h test periods. Twenty-four to 48 h following testing for locomotor activity, animals were injected with either CRF or Vehicle, 30 min before being sacrificed. Subsequently, the brains were processed by in situ hybridization for c-fos mRNA, a widely used marker of neuronal activation, in the CeA and BNST. In CeA, i.c.v. CRF enhanced the expression of c-fos mRNA in cocaine, but not saline, pre-exposed animals; in the same animals, i.c.v. CRF resulted in enhanced locomotor activity in cocaine, but not saline, pre-exposed animals. The results demonstrate that repeated exposure to cocaine changes the neuronal response to CRF in the CeA; furthermore, they suggest that these changes in the CeA could potentially be of functional significance in the effects of repeated cocaine exposure on CRF-induced locomotor activity.
Collapse
Affiliation(s)
- Suzanne Erb
- Centre for the Neurobiology of Stress, Departments of Life Science and Psychology, University of Toronto at Scarborough, 1265 Military Trail, Toronto, Ont., Canada M1C 1A4.
| | | | | |
Collapse
|
274
|
Egli RE, Kash TL, Choo K, Savchenko V, Matthews RT, Blakely RD, Winder DG. Norepinephrine modulates glutamatergic transmission in the bed nucleus of the stria terminalis. Neuropsychopharmacology 2005; 30:657-68. [PMID: 15602500 DOI: 10.1038/sj.npp.1300639] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The bed nucleus of the stria terminalis (BNST) and its adrenergic input are key components in stress-induced reinstatement and maintenance of drug use. Intra-BNST injections of either beta-adrenergic receptor (beta-AR) antagonists or alpha2-adrenergic receptor (alpha2-AR) agonists can inhibit footshock-induced reinstatement and maintenance of cocaine- and morphine-seeking. Using electrophysiological recording methods in an in vitro slice preparation from C57/Bl6j adult male mouse BNST, we have examined the effects of adrenergic receptor activation on excitatory synaptic transmission in the lateral dorsal supracommissural BNST (dBNST) and subcommissural BNST (vBNST). Alpha2-AR activation via UK-14,304 (10 microM) results in a decrease in excitatory transmission in both dBNST and vBNST, an effect predominantly dependent upon the alpha2A-AR subtype. Beta-AR activation via isoproterenol (1 microM) results in an increase in excitatory transmission in dBNST, but not in vBNST. Consistent with the work with receptor subtype specific agonists, application of the endogenous ligand norepinephrine (NE, 100 microM) elicits two distinct effects on glutamatergic transmission. In dBNST, NE elicits an increase in transmission (62% of dBNST NE experiments) or a decrease in transmission (38% of dBNST NE experiments). In vBNST, NE elicits a decrease in transmission in 100% of the experiments. In dBNST, the NE-induced increase in synaptic transmission is blocked by beta1/beta2- and beta2-, but not beta1-specific antagonists. In addition, this increase is also reduced by the alpha2-AR antagonist yohimbine and is absent in the alpha2A-AR knockout mouse. In vBNST, the NE-induced decrease in synaptic transmission is markedly reduced in the alpha2A-AR knockout mouse. Further experiments demonstrate that the actions of NE on glutamatergic transmission can be correlated with beta-AR function.
Collapse
Affiliation(s)
- Regula E Egli
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN 37232-0615, USA
| | | | | | | | | | | | | |
Collapse
|
275
|
Harris AC, Gewirtz JC. Acute opioid dependence: characterizing the early adaptations underlying drug withdrawal. Psychopharmacology (Berl) 2005; 178:353-66. [PMID: 15696323 DOI: 10.1007/s00213-005-2155-0] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2004] [Accepted: 12/24/2004] [Indexed: 11/26/2022]
Abstract
RATIONALE While opioid withdrawal is typically studied under conditions of chronic (i.e., continuous) drug administration, withdrawal signs can also be demonstrated in both humans and animals after a single opioid exposure. This phenomenon, termed acute dependence, may be useful in understanding the early stages of opioid dependence and addiction. OBJECTIVE This review provides an overview of acute dependence by comparing withdrawal from acute and chronic opioid exposure across dimensions ranging from symptomatology to neural substrates. Assessment of repeated withdrawals from acute opioid administration is also presented as a tool for better understanding the adaptive changes induced by multiple drug exposures. CONCLUSIONS Although not identical phenomena, acute and chronic dependence share a number of characteristics. Examining potentiations of withdrawal severity across multiple acute opioid exposures may be especially valuable in characterizing the development of drug dependence. Further study of acute dependence promises to lead to more effective treatments for opioid withdrawal and addiction.
Collapse
Affiliation(s)
- Andrew C Harris
- Department of Psychology, University of Minnesota, 75 East River Road, Minneapolis, MN 55455, USA
| | | |
Collapse
|
276
|
Ozdogan UK, Lähdesmäki J, Hakala K, Scheinin M. The involvement of alpha 2A-adrenoceptors in morphine analgesia, tolerance and withdrawal in mice. Eur J Pharmacol 2005; 497:161-71. [PMID: 15306201 DOI: 10.1016/j.ejphar.2004.06.051] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2004] [Revised: 06/24/2004] [Accepted: 06/25/2004] [Indexed: 11/16/2022]
Abstract
Alpha(2)-adrenoceptor agonists potentiate opioid analgesia and alleviate opioid withdrawal. The effects of two alpha(2)-adrenoceptor agonists, clonidine (2 mg/kg) and dexmedetomidine (20 and 100 microg/kg), and the alpha(1)-adrenoceptor antagonist prazosin (0.5 mg/kg) were tested on morphine analgesia, tolerance, and withdrawal in wild-type and alpha(2A)-adrenoceptor knock-out (KO) mice. Analgesia and tolerance were assessed with the tail-flick test. Withdrawal was precipitated with naloxone. Prazosin potentiated morphine analgesia equally in both genotypes. Clonidine and dexmedetomidine had no analgesic effects in alpha(2A)-adrenoceptor KO mice, but morphine analgesia and tolerance were similar in both genotypes. Alpha(2A)-Adrenoceptor KO mice exhibited 70% fewer naloxone-precipitated jumps than wild-type mice; weight loss was similar in both genotypes. The alpha(2)-adrenoceptor agonists reduced opioid withdrawal signs only in wild-type mice. We conclude that alpha(2A)-adrenoceptors are not directly involved in morphine analgesia and tolerance, and not critical for potentiation of morphine analgesia by prazosin, but that alpha(2A)-adrenoceptors modulate the expression of opioid withdrawal signs in mice.
Collapse
Affiliation(s)
- Umit Kazim Ozdogan
- Department of Pharmacology and Clinical Pharmacology, University of Turku, Itäinen Pitkäkatu 4, FI-20520 Turku, Finland
| | | | | | | |
Collapse
|
277
|
Erb S, Lopak V, Smith C. Cocaine pre-exposure produces a sensitized and context-specific c-fos mRNA response to footshock stress in the central nucleus of the AMYGDALA. Neuroscience 2005; 129:719-25. [PMID: 15541892 DOI: 10.1016/j.neuroscience.2004.08.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/04/2004] [Indexed: 10/26/2022]
Abstract
In recent years, there has been growing interest in the putative relationship between stress and vulnerability to relapse in former drug addicts. In animal studies aimed at exploring this relationship, it has been shown that brief exposure to intermittent footshock stress produces reliable reinstatement of drug seeking after prolonged drug-free periods. Whereas footshock reinstates drug seeking, it does not reinstate behaviors maintained by non-drug reinforcers, suggesting that prior drug experience may produce a form of sensitization within neuronal systems that mediate stress-induced reinstatement. The primary objective of the present experiments was to determine whether pre-exposure to cocaine produces a long-lasting, sensitized neuronal response to footshock stress within two brain regions known to mediate footshock-induced reinstatement; the central nucleus of the amygdala (CeA) and bed nucleus of the stria terminalis (BNST). In experiment 1, animals were injected for 7 days with cocaine (days 1 and 7 in test chambers; days 2-6 in homecages) or saline. After 21 drug-free days, they were exposed to footshock or no footshock. In experiment 2, rats were injected daily for 7 days with cocaine in one of two contexts and saline in the alternate context. After 21 drug-free days, they were given footshock either in the same context that they were given cocaine in or the alternate context. In CeA, footshock produced enhanced expression of c-fos mRNA in cocaine, but not saline, pre-exposed animals. Furthermore, this effect was gated by the environmental context in which cocaine was given; footshock only enhanced c-fos mRNA expression when it was given in a context that had previously been paired with cocaine. Although footshock induced c-fos mRNA expression in the BNST, its effects in this region were not dependent on drug history. The major findings are that a history of cocaine exposure produces sensitization to an acute stressor within CeA, and this effect is gated by environmental context.
Collapse
Affiliation(s)
- S Erb
- Centre for the Neurobiology of Stress, Department of Life Science and Psychology, University of Toronto at Scarborough, 1265 Military Trail, Scarborough, Ontario, M1C 1A4 Canada.
| | | | | |
Collapse
|
278
|
Dumont EC, Mark GP, Mader S, Williams JT. Self-administration enhances excitatory synaptic transmission in the bed nucleus of the stria terminalis. Nat Neurosci 2005; 8:413-4. [PMID: 15735642 PMCID: PMC4011824 DOI: 10.1038/nn1414] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2004] [Accepted: 02/01/2005] [Indexed: 11/08/2022]
Abstract
Understanding the neurobiology of motivation might help in reducing compulsive behaviors such as drug addiction or eating disorders. This study shows that excitatory synaptic transmission was enhanced in the bed nucleus of the stria terminalis of rats that performed an operant task to obtain cocaine or palatable food. There was no effect when cocaine or food was delivered passively, suggesting that synaptic plasticity in this area is involved in reward-seeking behaviors.
Collapse
Affiliation(s)
- Eric C Dumont
- The Vollum Institute and Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, Oregon 97239, USA
| | | | | | | |
Collapse
|
279
|
Ventura R, Alcaro A, Puglisi-Allegra S. Prefrontal Cortical Norepinephrine Release Is Critical for Morphine-induced Reward, Reinstatement and Dopamine Release in the Nucleus Accumbens. Cereb Cortex 2005; 15:1877-86. [PMID: 15728739 DOI: 10.1093/cercor/bhi066] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Increasing evidence suggests that in addition to the mesoaccumbens dopamine (DA) system other neurotransmitter and brain systems are also involved in opiate addiction. Recent evidence points to a major involvement of brain norepinephrine (NE) in the behavioral and central effects of opiates and, more specifically, indicates that NE in the prefrontal cortex may have a critical role in rewarding effects of opiates. Moreover, a body of data points to regions within the medial prefrontal cortex (mpFC) acting as final common pathway of drug relapse behavior. The present experiments were aimed at investigating the possibility of a selective involvement of the prefrontal cortical NE in the rewarding and reinstating effects of morphine. In a first set of experiments, we found that morphine enhances NE and DA release in the mpFC and DA release in the nucleus accumbens, as measured by intra-cerebral microdialysis. Selective depletion of medial prefrontal cortical noradrenergic afferents abolished the morphine-induced increase in DA release in the nucleus accumbens. In a second series of experiments, we demonstrated that the same lesion impaired both conditioned place preference (CPP) induced by morphine and reinstatement of an extinguished CPP. The present results indicate that an intact prefrontal cortical NE transmission is necessary for morphine-induced rewarding effects, reinstatement, and mesoaccumbens dopamine release.
Collapse
Affiliation(s)
- Rossella Ventura
- Dipartimento di Psicologia, Università La Sapienza, via dei Marsi n. 78, 00185 Rome, Italy.
| | | | | |
Collapse
|
280
|
Frenois F, Stinus L, Di Blasi F, Cador M, Le Moine C. A specific limbic circuit underlies opiate withdrawal memories. J Neurosci 2005; 25:1366-74. [PMID: 15703390 PMCID: PMC6725999 DOI: 10.1523/jneurosci.3090-04.2005] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2003] [Revised: 12/10/2004] [Accepted: 12/10/2004] [Indexed: 11/21/2022] Open
Abstract
Compulsive drug-seeking behavior and its renewal in former drug addicts is promoted by several situations, among which reactivation of drug withdrawal memories plays a crucial role. A neural hypothesis is that such memories reactivate the circuits involved in withdrawal itself and promote a motivational state leading to drug seeking or taking. To test this hypothesis, we have analyzed the neural circuits and cell populations recruited when opiate-dependent rats are reexposed to stimuli previously paired with withdrawal (memory retrieval) and compared them with those underlying acute withdrawal during conditioning (memory formation). Using in situ hybridization for c-fos expression, we report here that reexposure to a withdrawal-paired environment induced conditioned c-fos responses in a specific limbic circuit, which can be partially dissociated from the structures involved in acute withdrawal. At the amygdala level, c-fos responses were doubly dissociated between the central and basolateral (BLA) nuclei, when comparing the two situations. Detailed phenotypical analyses in the amygdala and ventral tegmental area (VTA) show that specific subpopulations in the BLA are differentially involved in the formation and retrieval of withdrawal memories, and strikingly that a population of VTA dopamine neurons is activated in both situations. Together, this indicates that withdrawal memories can drive activity changes in specific neuronal populations of interconnected limbic areas known to be involved in aversive motivational processes. This first study on the neural substrates of withdrawal memories strongly supports an incentive-motivational view of withdrawal in opiate addiction that could be crucial in compulsive drug seeking and relapse.
Collapse
Affiliation(s)
- François Frenois
- Centre National de la Recherche Scientifique Unité Mixte de Recherche 5541 Interactions Neuronales et Comportements, Université Victor Segalen Bordeaux 2, 33076 Bordeaux cedex, France
| | | | | | | | | |
Collapse
|
281
|
Mizutani A, Arvidsson J, Chahl LA. Sensitization to morphine withdrawal in guinea-pigs. Eur J Pharmacol 2005; 509:135-43. [PMID: 15733548 DOI: 10.1016/j.ejphar.2004.12.043] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2004] [Accepted: 12/24/2004] [Indexed: 11/21/2022]
Abstract
The aim of this study was to determine whether sensitization occurred to morphine withdrawal. Guinea-pigs were treated twice daily with increasing doses of morphine (10-100 mg/kg s.c.) for 3 days followed by injection of morphine 100 mg/kg on the fourth day. Sixty min after the last morphine injection, animals were withdrawn from morphine with naltrexone, 15 mg/kg s.c., and locomotor activity and all other behaviours scored over 90 min. Animals were then rested for 3 days. This procedure was repeated twice over the next 2 weeks. Control animals were treated with saline for the first two treatment cycles. Guinea-pigs subjected to three cycles of morphine withdrawal showed a significant increase in the total number of withdrawal behaviour counts over the 90-min observation period following the third cycle of withdrawal compared with the first and second withdrawal cycles. However, locomotor activity, a major sign of morphine withdrawal in guinea-pigs, was not significantly increased. Fos-LI was markedly increased in the repeatedly withdrawn animals in several brain regions, including amygdala, dorsal striatum, thalamus, ventral tegmental area, and ventrolateral periaqueductal gray area. It is concluded that sensitization to morphine withdrawal occurs in guinea-pigs.
Collapse
Affiliation(s)
- Akiko Mizutani
- School of Biomedical Sciences, Faculty of Health, University of Newcastle, Newcastle, NSW 2308, Australia
| | | | | |
Collapse
|
282
|
Baicy K, Bearden CE, Monterosso J, Brody AL, Isaacson AJ, London ED. Common Substrates of Dysphoria in Stimulant Drug Abuse and Primary Depression: Therapeutic Targets. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2005; 65:117-45. [PMID: 16140055 DOI: 10.1016/s0074-7742(04)65005-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Affiliation(s)
- Kate Baicy
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, Los Angeles California 90024, USA
| | | | | | | | | | | |
Collapse
|
283
|
Castle M, Comoli E, Loewy AD. Autonomic brainstem nuclei are linked to the hippocampus. Neuroscience 2005; 134:657-69. [PMID: 15975727 DOI: 10.1016/j.neuroscience.2005.04.031] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2005] [Revised: 04/04/2005] [Accepted: 04/12/2005] [Indexed: 11/28/2022]
Abstract
Vagal nerve stimulation has been reported to enhance memory in both rats and humans, and to be an effective treatment for epilepsy in some patients, but the underlying neuroanatomical substrate(s) responsible for these effects remains unknown. Since there is no direct anatomical projection from the nucleus tractus solitarius, the main vagal relay site of the brain, to the hippocampus, we tested whether a multisynaptic pathway exists. Pseudorabies virus, a pig herpesvirus that can be used as a retrograde transneuronal tracer, was injected into the ventral CA1 hippocampus of rats, and after 4 days, pseudorabies virus infected neurons were identified in the general visceral portion of the nucleus tractus solitarius, with the majority being localized in the A2 noradrenergic cell group. Other autonomic brainstem nuclei, including the parabrachial nucleus, locus coeruleus, A1 and A5 noradrenergic cell groups, and C1 adrenergic cell group, were labeled. In order to identify some of the potential relay sites of the nucleus tractus solitarius-->hippocampal pathway, immunotoxin lesions of the ventral CA1 region were made that selectively destroyed either the noradrenergic or cholinergic fibers. After 2 weeks' recovery, pseudorabies virus was injected in this same CA1 area, and 4 days later, the transneuronal labeling in the nucleus tractus solitarius was reduced by approximately 65%. These findings suggest that the noradrenergic neurons of the locus coeruleus and cholinergic neurons of the medial septum/diagonal band are likely to be relay sites for this pathway. Other potential linkages are discussed. In summary, this is the first anatomical report to show that the general visceral region of nucleus tractus solitarius is linked via multisynaptic relays to the hippocampus.
Collapse
Affiliation(s)
- M Castle
- Department of Anatomy and Neurobiology, Washington University School of Medicine, 660 South Euclid Avenue, Box 8108, St. Louis, MO 63110, USA
| | | | | |
Collapse
|
284
|
Stinus L, Cador M, Zorrilla EP, Koob GF. Buprenorphine and a CRF1 antagonist block the acquisition of opiate withdrawal-induced conditioned place aversion in rats. Neuropsychopharmacology 2005; 30:90-8. [PMID: 15138444 DOI: 10.1038/sj.npp.1300487] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Conditioned place aversion in rats has face validity as a measure of the aversive stimulus effects of opiate withdrawal that reflects an important motivational component of opiate dependence. The purpose of the present study was to validate conditioned place aversion as sensitive to medications that will alleviate the aversive stimulus effects of opiate withdrawal in humans, and to extend this model to the exploration of the neuropharmacological basis of the motivational effects of opiate withdrawal. Male Sprague-Dawley rats were implanted with two subcutaneous morphine pellets and 5 days later began place conditioning training following subcutaneous administration of a low dose of naloxone. Animals were subjected to three pairings of a low dose of naloxone (15 microg/kg, s.c.) to one arm of a three-chambered place conditioning apparatus. Buprenorphine administered prior to each pairing dose-dependently blocked the place aversion produced by precipitated opiate withdrawal. A corticotropin-releasing factor-1 (CRF1) receptor antagonist (antalarmin) also reversed the place aversion produced by precipitated opiate withdrawal. Antalarmin did not produce a place preference or place aversion by itself in morphine-dependent rats. No effect was observed with pretreatment of the dopamine partial agonist terguride or the selective serotonin reuptake inhibitor fluoxetine. Also, chronic pretreatment with acamprosate (a glutamate receptor modulator used to prevent relapse in alcohol dependence) did not alter naloxone-induced place aversion. Buprenorphine by itself in dependent rats produced a mild place preference at low doses and a mild place aversion at higher doses. These results suggest that buprenorphine blocks the aversive stimulus effects of precipitated opiate withdrawal in rats and provides some validity for the use of place conditioning as a measure that is sensitive to potential opiate-dependence medications. In addition, these results suggest that CRF1 antagonists can block the aversive stimulus effects of opiate withdrawal and may be potential therapeutic targets for opiate dependence.
Collapse
Affiliation(s)
- Luis Stinus
- Laboratoire de Neuropsychobiologie des Desadaptations, Universite de Bordeaux II, Bordeaux, Cedex, France.
| | | | | | | |
Collapse
|
285
|
Nakagawa T, Yamamoto R, Fujio M, Suzuki Y, Minami M, Satoh M, Kaneko S. Involvement of the bed nucleus of the stria terminalis activated by the central nucleus of the amygdala in the negative affective component of morphine withdrawal in rats. Neuroscience 2005; 134:9-19. [PMID: 15939543 DOI: 10.1016/j.neuroscience.2005.03.029] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2005] [Revised: 03/12/2005] [Accepted: 03/25/2005] [Indexed: 11/22/2022]
Abstract
The central nucleus of the amygdala (Ce) and the bed nucleus of the stria terminalis (BST) are key structures of the extended amygdala, which is suggested to be involved in drug addiction and reward. We have previously reported that the Ce plays a crucial role in the negative affective component of morphine withdrawal. In the present study, we examined the involvement of the neural pathway between the Ce and the BST in the negative affective component of morphine withdrawal in rats. Rats were rendered morphine dependent by s.c. implantation of a 75-mg morphine pellet for 3 days, and morphine withdrawal was precipitated by an i.p. injection of naloxone (0.3 mg/kg). In the place-conditioning paradigm, discrete bilateral excitotoxic lesions of the Ce or the BST significantly reduced naloxone-precipitated morphine withdrawal-induced conditioned place aversion. On the other hand, they had little effect on morphine withdrawal-induced somatic signs. In an immunohistochemical study for c-Fos protein, naloxone-precipitated morphine withdrawal dramatically induced c-Fos-immunoreactive neurons in the capsular part of the Ce, and the lateral and medial divisions of the BST. Bilateral excitotoxic lesion of the Ce reduced the number of morphine withdrawal-induced c-Fos-immunoreactive neurons in the lateral and medial BST, with significant decreases in the posterior, ventral and juxtacapsular parts of lateral division, and anterior part of the medial division, but not in the ventral part of the medial division of the BST. On the other hand, bilateral excitotoxic lesion of the BST had no effect on such c-Fos induction within the capsular part, nor the ventral and medial divisions of the Ce. These results suggest that activation of the BST mediated through the neural pathway from the Ce contributes to the negative affective component of morphine withdrawal.
Collapse
Affiliation(s)
- T Nakagawa
- Department of Molecular Pharmacology, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8501, Japan.
| | | | | | | | | | | | | |
Collapse
|
286
|
Santibañez M, Gysling K, Forray MI. Adrenalectomy decreases corticotropin-releasing hormone gene expression and increases noradrenaline and dopamine extracellular levels in the rat lateral bed nucleus of the stria terminalis. J Neurosci Res 2005; 81:140-52. [PMID: 15931675 DOI: 10.1002/jnr.20538] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The bed nucleus of the stria terminalis (BNST) has a high density of corticotropin-releasing hormone (CRH)-containing neurons that are significantly innervated by noradrenergic and dopaminergic nerve terminals. This limbic structure is involved in the extrahypothalamic response to stress. The purpose of the present work is to study whether the absence of glucocorticoids, induced by a long-term adrenalectomy, regulates CRH gene expression and noradrenaline and dopamine extracellular levels in the rat BNST. The results showed that adrenalectomy decreases CRH mRNA in the dorsal lateral BNST but not in the ventral lateral BNST. Adrenalectomy also decreases CRH-like immunoreactivity both in BNST subnuclei and in the central nucleus of the amygdala. In addition, adrenalectomy significantly increases noradrenaline and dopamine extracellular levels in the lateral BNST. The present results suggest that adrenalectomy regulates CRH gene expression and noradrenaline and dopamine extracellular levels in the BNST in an opposite way. Thus, the present study adds novel evidence further supporting that the BNST and the central nucleus of the amygdala form part of an adrenal steroid-sensitive extrahypothalamic circuit that has been involved in fear and anxiety responses and in clinical syndromes such as melancholic depression, posttraumatic stress disorders, and addiction.
Collapse
Affiliation(s)
- Marcos Santibañez
- Department of Cell and Molecular Biology, Faculty of Biological Sciences, Catholic University of Chile, Santiago, Chile
| | | | | |
Collapse
|
287
|
Schweimer J, Fendt M, Schnitzler HU. Effects of clonidine injections into the bed nucleus of the stria terminalis on fear and anxiety behavior in rats. Eur J Pharmacol 2004; 507:117-24. [PMID: 15659301 DOI: 10.1016/j.ejphar.2004.11.044] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2004] [Revised: 11/15/2004] [Accepted: 11/19/2004] [Indexed: 11/15/2022]
Abstract
Emotions such as fear and anxiety are mediated by a neural network containing nuclei like the amygdala, the bed nucleus of the stria terminalis and the periaqueductal gray. Noradrenaline is a neurotransmitter closely connected with the processing of stimuli eliciting these emotions. The bed nucleus of the stria terminalis contains the highest density of noradrenaline within the brain. In the present study, we investigated effects of injections of the noradrenergic alpha2-adrenoceptor agonist clonidine into the bed nucleus of the stria terminalis on learned and unlearned fear (anxiety) in rats on different animal models of fear and anxiety: acquisition and expression of fear-potentiated startle, sensitization of the acoustic startle response by foot shocks and light-enhanced startle. Clonidine injections disrupted acquisition and expression of fear-potentiated startle, as well as light-enhanced startle, whereas sensitization was not affected. These results indicate that noradrenaline within the bed nucleus of the stria terminalis mediates both fear and anxiety. We suggest that there is rather a neurochemical than a neuroanatomical dissociation between learned fear and anxiety as hypothesized by Walker and Davis (Walker, D.L. and M. Davis, 1997b, Double dissociation between the involvement of the bed nucleus of the stria terminalis and the central nucleus of the amygdala in startle increases produced by conditioned versus unconditioned fear, J. Neurosci. 17, 9375-9383.).
Collapse
Affiliation(s)
- Judith Schweimer
- Tierphysiologie, Universität Tübingen, Auf der Morgenstelle 28, D-72076 Tübingen, Germany
| | | | | |
Collapse
|
288
|
Glass MJ, Kruzich PJ, Kreek MJ, Pickel VM. Decreased plasma membrane targeting of NMDA-NR1 receptor subunit in dendrites of medial nucleus tractus solitarius neurons in rats self-administering morphine. Synapse 2004; 53:191-201. [PMID: 15266550 DOI: 10.1002/syn.20049] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Opioid abuse is associated with repeated administration and escalation of dose that can result in profound adaptations in homeostatic processes. Potential cellular mechanisms and neural sites mediating opiate-dependent adaptations may involve NMDA-dependent synaptic plasticity within brain areas participating in behaviors related to consumption of natural reinforcers, as well as affective-autonomic integration, notably the medial nucleus tractus solitarius (mNTS). NMDA-dependent synaptic plasticity may be mediated by changes in the intracellular and surface targeting of NMDA receptors, particularly in postsynaptic sites including spines or small distal dendrites. High-resolution immunogold electron microscopic immunocytochemistry combined with morphometry were used to measure changes in targeting of the NMDA-NR1 (NR1) receptor subunit between intracellular and plasmalemmal sites in dendrites of neurons of the intermediate mNTS of rats self-administering escalating doses of morphine (EMSA). In control and EMSA rats, the density of plasmalemmal and cytosolic gold particles was inversely related to profile size. Collapsed across all NR1-labeled dendrites, rats self-administering morphine had a lower number of plasmalemmal gold particles per unit surface area (7.1 +/- 0.8 vs. 14.4 +/- 1 per 100 microm), but had a higher number of intracellular gold particles per unit cross-sectional area (169 +/- 6.1 vs. 148 +/- 5.1 per 100 microm2) compared to saline self-administering rats. Morphometric analysis showed that the decrease in plasma membrane labeling of NR1 was most robust in small dendritic profiles (<1 microm), where there was a reciprocal increase in the density of intracellular particles. These results indicate that the plasmalemmal distribution of the essential NR1 subunits in distal sites may prominently contribute to NMDA receptor-dependent modulation of neural circuitry regulating homeostatic processes, and targeting of these proteins can be prominently affected by morphine self-administration.
Collapse
Affiliation(s)
- Michael J Glass
- Department of Neurology and Neuroscience, Weill Medical College of Cornell University, New York, New York 10021, USA
| | | | | | | |
Collapse
|
289
|
Jin C, Araki H, Nagata M, Suemaru K, Shibata K, Kawasaki H, Hamamura T, Gomita Y. Withdrawal-induced c-Fos expression in the rat centromedial amygdala 24 h following a single morphine exposure. Psychopharmacology (Berl) 2004; 175:428-35. [PMID: 15175841 DOI: 10.1007/s00213-004-1844-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
RATIONALE An opiate antagonist was found to induce motivational withdrawal signs 24 h or even up to 48 h after a single dose of morphine in rats. OBJECTIVE The present study was undertaken to determine whether such a withdrawal state would modify the neuronal activity in the brain. METHODS A conditioned place aversion was established following a one-trial paradigm in rats undergoing a single exposure to morphine (10 mg/kg) 24 h prior to naloxone administration (0.5 mg/kg). Subsequently, the expression of the protein product of c-fos gene (c-Fos) following naloxone administration was measured within the extended amygdala. RESULTS A significant increase in c-Fos immunoreactivity was seen in the centromedial amygdala (CMA), but not in the bed nucleus of the stria terminalis (BST) and the shell (AcbSh) of the nucleus accumbens (Acb) in rats treated with both morphine and naloxone. Further examination of the distribution of c-Fos-positive neurons along the rostrocaudal axis within CMA showed that the positive neurons distributed throughout this brain area and the caudal level of its central division (the central nucleus of the amygdala, CeA) exhibited the most robust labeling. CONCLUSIONS Neuronal activity can be increased by naloxone at a dose that produces conditioned place aversion 24 h after a single morphine exposure. CMA, particularly the caudal level of its central division, was of high sensitivity. The current data also suggest a possible involvement of CMA in negative motivational component of precipitated withdrawal from acute morphine dependence.
Collapse
Affiliation(s)
- Chunyu Jin
- Department of Clinical Pharmaceutical Science, Graduate School of Natural Science and Technology, Okayama University, 1-1-1, Tsushima-naka, Okayama, 700-8530, Japan
| | | | | | | | | | | | | | | |
Collapse
|
290
|
Buller KM, Allen T, Wilson LD, Munro F, Day TA. A critical role for the parabrachial nucleus in generating central nervous system responses elicited by a systemic immune challenge. J Neuroimmunol 2004; 152:20-32. [PMID: 15223234 DOI: 10.1016/j.jneuroim.2004.03.013] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2003] [Revised: 01/26/2004] [Accepted: 03/15/2004] [Indexed: 11/21/2022]
Abstract
Using Fos immunolabelling as a marker of neuronal activation, we investigated the role of the parabrachial nucleus in generating central neuronal responses to the systemic administration of the proinflammatory cytokine interleukin-1beta (1 microg/kg, i.a.). Relative to intact animals, parabrachial nucleus lesions significantly reduced the number of Fos-positive cells observed in the central amygdala (CeA), the bed nucleus of the stria terminalis (BNST), and the ventrolateral medulla (VLM) after systemic interleukin-1beta. In a subsequent experiment in which animals received parabrachial-directed deposits of a retrograde tracer, it was found that many neurons located in the nucleus tractus solitarius (NTS) and the VLM neurons were both retrogradely labelled and Fos-positive after interleukin-1beta administration. These results suggest that the parabrachial nucleus plays a critical role in interleukin-1beta-induced Fos expression in CeA, BNST and VLM neurons and that neurons of the NTS and VLM may serve to trigger or at least influence changes in parabrachial nucleus activity that follows systemic interleukin-1beta administration.
Collapse
Affiliation(s)
- K M Buller
- Department of Physiology and Pharmacology, School of Biomedical Sciences, University of Queensland, St. Lucia, QLD 4072, Australia.
| | | | | | | | | |
Collapse
|
291
|
Schulteis G, Morse AC, Liu J. Repeated experience with naloxone facilitates acute morphine withdrawal: potential role for conditioning processes in acute opioid dependence. Pharmacol Biochem Behav 2004; 76:493-503. [PMID: 14643849 DOI: 10.1016/j.pbb.2003.09.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Single injections with morphine can induce a state of acute opioid dependence in humans and animals, typically measured as precipitated withdrawal when an antagonist such as naloxone is administered 4-24 h after morphine. Repeated treatment with morphine at 24-h intervals can result in a progressive shift in potency of naloxone to produce such acute withdrawal signs, including suppression of operant responding for food reward. The current study characterized fully both morphine and naloxone dose-effect functions in an effort to establish the relative contributions of repeated morphine vs. repeated naloxone (Nal) experience to these potency shifts. Rats trained on an FR15 schedule for food received four vehicle or morphine injections (0.56-5.6 mg/kg sc), spaced 24 h apart. Four hours after each morphine pretreatment (Repeat Nal), or 4 h after the fourth and final morphine pretreatment only (Single Nal), a cumulative dose-effect function for naloxone-induced suppression of responding was determined. Vehicle-pretreated (Morphine Naive) rats showed little change in the naloxone dose effect function even after four cumulative dose-effect determinations. By contrast, a progressive increase in naloxone potency was observed following successive pretreatments with morphine under Repeat Nal conditions, and the magnitude of naloxone potency shift was morphine dose dependent. At a morphine dose of 5.6 mg/kg, repeated naloxone experience in the presence of morphine was not an absolute requirement to produce an increase in naloxone potency across days, but repeated naloxone could potentiate the magnitude of the observed shift, indicating both experience-independent and experience-dependent processes at work. At lower doses of morphine (1.0 and 3.3 mg/kg) no shift in naloxone potency was observed across days of morphine treatment in the absence of repeated naloxone experience (Single Nal conditions), indicating an increasing contribution of naloxone experience-dependent processes as dose of morphine was decreased. It is argued that these experience-dependent processes in the progressive shift of naloxone potency observed in the current study may reflect an important role of conditioning in the early development of opioid dependence.
Collapse
Affiliation(s)
- Gery Schulteis
- Department of Anesthesiology, University of California-San Diego, UCSD School of Medicine, VAMC 125a, 3350 La Jolla Village Drive, San Diego, CA 92161-5008, USA.
| | | | | |
Collapse
|
292
|
Mannelli P, Gottheil E, Peoples JF, Oropeza VC, Van Bockstaele EJ. Chronic very low dose naltrexone administration attenuates opioid withdrawal expression. Biol Psychiatry 2004; 56:261-8. [PMID: 15312814 DOI: 10.1016/j.biopsych.2004.05.013] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2003] [Revised: 04/22/2004] [Accepted: 05/26/2004] [Indexed: 11/18/2022]
Abstract
BACKGROUND Different regimens of agonist and antagonist drugs have been used in opioid withdrawal management, with variable results. We examined whether administering extremely small quantities of opiate antagonists in the presence of opiate agonist drugs reduces withdrawal expression. METHODS Forty-one male Sprague-Dawley rats were implanted with morphine or placebo pellets for eight days. Starting on day 3, some rats received naltrexone in their drinking water (5 mg/L), or unadulterated water. On day 8, rats were injected with saline or naltrexone (100 mg/kg) and evaluated for behavioral signs of withdrawal. Next, sections through the locus coeruleus (LC) and nucleus of the solitary tract (NTS), brainstem areas exhibiting cellular activation following opiate withdrawal, were processed for c-Fos to detect early gene expression. Finally, the same nuclei were examined for protein kinase A regulatory subunit II (PKA) and phosphorylated cyclic adenosine monophosphate response element binding protein (pCREB), using Western blot analysis. RESULTS Withdrawal was attenuated and c-Fos, PKA, and pCREB expression was decreased in the NTS and LC of rats receiving chronic very low doses of naltrexone. CONCLUSIONS Reduction of withdrawal upon chronic very low naltrexone administration may be due in part to decreased activation of brainstem noradrenergic neurons in morphine dependent rats.
Collapse
Affiliation(s)
- Paolo Mannelli
- Department of Psychiatry and Human Behavior, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA
| | | | | | | | | |
Collapse
|
293
|
Goncharuk V, Zeng Z, Wang R, MacTavish D, Jhamandas JH. Distribution of the neuropeptide FF1 receptor (hFF1) in the human hypothalamus and surrounding basal forebrain structures: immunohistochemical study. J Comp Neurol 2004; 474:487-503. [PMID: 15174068 DOI: 10.1002/cne.20132] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Neuropeptides with C-terminal RFamide and their receptors NPFF1 (FF1) and NPFF2 (FF2) have been implicated in a wide variety of functions, including nociception and autonomic and neuroendocrine regulation. Recent studies indicate that the FF1, but not FF2, mRNA is highly expressed in the human hypothalamus. In the present study, localization of FF1 in the human hypothalamus and surrounding regions was studied immunohistochemically by using an antibody against human FF1 (hFF1). Brain sections from healthy 30-50-year-old individuals were used for hFF1 immunohistochemistry. The highest density of hFF1-stained cells was found in the posterior division of the bed nucleus of the stria terminalis and in the zona incerta. A moderate density of cells was observed in the perifornical nucleus, infundibular nucleus, tuberomammillary nucleus, and lateral tuberal nucleus. A lesser density was revealed in the dorsomedial hypothalamic nucleus, basal nucleus of Meynert, and anterior amygdaloid area. Only scattered hFF1 cells were found in the suprachiasmatic nucleus and hypothalamic paraventricular nucleus. hFF1 cells and fibers were absent in the supraoptic and mammillary nuclei. Single and double strands of hFF1-immunopositive punctate varicosities marked cellular processes of different caliber. The density of hFF1-immunostained fiber networks did not always coincide with that of hFF1-immunostained cells. hFF1 immunoreactivity was also found in the wall of blood vessels within most brain areas studied. Localization of hFF1 in discrete regions of the hypothalamus and extended amygdala may provide important insights into the role of amidated neuropeptides in central autonomic and neuroendocrine control in the human brain.
Collapse
|
294
|
Valverde O, Mantamadiotis T, Torrecilla M, Ugedo L, Pineda J, Bleckmann S, Gass P, Kretz O, Mitchell JM, Schütz G, Maldonado R. Modulation of anxiety-like behavior and morphine dependence in CREB-deficient mice. Neuropsychopharmacology 2004; 29:1122-33. [PMID: 15029152 DOI: 10.1038/sj.npp.1300416] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The transcription factor cAMP-responsive element binding protein (CREB) has been shown to regulate different physiological responses including drug addiction and emotional behavior. Molecular changes including adaptive modifications of the transcription factor CREB are produced during drug dependence in many regions of the brain, including the locus coeruleus (LC), but the molecular mechanisms involving CREB within these regions have remained controversial. To further investigate the involvement of CREB in emotional behavior, drug reward and opioid physical dependence, we used two independently generated CREB-deficient mice. We employed the Cre/loxP system to generate mice with a conditional CREB mutation restricted to the nervous system, where all CREB isoforms are lacking in the brain (Crebl(NesCre)). A genetically defined cohort of the previously described hypomorphic Crebl(alphadelta) mice, in which the two major transcriptionally active isoforms (alpha and delta) are disrupted throughout the organism, were also used. First, we investigated the responses to stress of the CREB-deficient mice in several paradigms, and we found an increased anxiogenic-like response in the both Creb1 mutant mice in different behavioral models. We investigated the rewarding properties of drugs of abuse (cocaine and morphine) and natural reward (food) using the conditioned place-preference paradigm. No modification of motivational responses of morphine, cocaine, or food was observed in mutant mice. Finally, we evaluated opioid dependence by measuring the behavioral expression of morphine withdrawal and electrophysiological recordings of LC neurons. We showed an important attenuation of the behavioral expression of abstinence and a decrease in the hyperactivity of LC neurons in both Creb1 mutant mice. Our results emphasize the selective role played by neuronal CREB in emotional-like behavior and the somatic expression morphine withdrawal, without participating in the rewarding properties induced by morphine and cocaine.
Collapse
Affiliation(s)
- Olga Valverde
- Laboratori de Neurofarmacologia, Facultat de Ciènces de la Salut i de la Vida, Universitat Pompeu Fabra, Barcelona, Spain
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
295
|
Nestler EJ. Historical review: Molecular and cellular mechanisms of opiate and cocaine addiction. Trends Pharmacol Sci 2004; 25:210-8. [PMID: 15063085 DOI: 10.1016/j.tips.2004.02.005] [Citation(s) in RCA: 285] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
The National Institute on Drug Abuse was founded in 1974, and since that time there have been significant advances in understanding the processes by which drugs of abuse cause addiction. The initial protein targets for almost all drugs of abuse are now known. Animal models that replicate key features of addiction are available, and these models have made it possible to characterize the brain regions that are important for addiction and other drug effects, such as physical dependence. A large number of drug-induced changes at the molecular and cellular levels have been identified in these brain areas and rapid progress is being made in relating individual changes to specific behavioral abnormalities in animal models of addiction. The current challenges are to translate this increasingly impressive knowledge of the basic neurobiology of addiction to human addicts, and to identify the specific genes that make some individuals either particularly vulnerable or resistant to addiction. In this article, I present a historical review of basic research on opiate and cocaine addiction.
Collapse
Affiliation(s)
- Eric J Nestler
- Department of Psychiatry and Center for Basic Neuroscience The University of Texas Southwestern Medical Center 5323 Harry Hines Blvd, Dallas, TX 75390-9070, USA.
| |
Collapse
|
296
|
Hammack SE, Richey KJ, Watkins LR, Maier SF. Chemical Lesion of the Bed Nucleus of the Stria Terminalis Blocks the Behavioral Consequences of Uncontrollable Stress. Behav Neurosci 2004; 118:443-8. [PMID: 15113272 DOI: 10.1037/0735-7044.118.2.443] [Citation(s) in RCA: 111] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Uncontrollable or inescapable shock (IS) produces behavioral changes that are characterized by a sensitized fear system and a deficit in fight-flight responding. These behavioral changes have been argued to represent an anxiety-like state produced by the uncontrollability of the stressor. The bed nucleus of the stria terminalis (BNST) has been implicated in the mediation of long-duration responses to unpredictable stressors, which have also been argued to represent anxiety. In the present study, the effects of BNST chemical lesion on the IS-induced sensitization of freezing to an environment previously paired with shock and the IS-induced impairment of escape responding were investigated. BNST chemical lesion blocked the potentiation of freezing and the increases in escape latency that normally follow IS.
Collapse
Affiliation(s)
- Sayamwong E Hammack
- Department of Psychiatry, Emory University School of Medicine, Atlanta, GA 30322, USA.
| | | | | | | |
Collapse
|
297
|
Erb S, Funk D, Borkowski S, Watson SJ, Akil H. Effects of chronic cocaine exposure on corticotropin-releasing hormone binding protein in the central nucleus of the amygdala and bed nucleus of the stria terminalis. Neuroscience 2004; 123:1003-9. [PMID: 14751291 DOI: 10.1016/j.neuroscience.2003.10.031] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The neuropeptide, corticotropin-releasing hormone (CRH), has been shown to play a role in behavioral and neurobiological effects of drugs of abuse. An important modulator of CRH, the CRH binding protein (CRH-BP), has not, on the other hand, been assessed for its role in drug-associated effects. The primary objective of the present experiment was to assess whether prior, chronic exposure to cocaine modulates expression of CRH-BP, and to compare expression of the BP with that of the peptide itself. We assessed CRH-BP and CRH mRNA expression in two brain regions where CRH is known to affect responses to drugs of abuse; namely, the central nucleus of the amygdala (CeA) and bed nucleus of the stria terminalis (BNST). Male Long-Evans rats were given 14 daily injections of cocaine (30 mg/kg, i.p.) or saline. One, 3, 10, 28, or 42 days post-treatment, animals were killed and adjacent brain sections through the CeA and BNST were processed for CRH-BP and CRH by in situ hybridization. In the CeA, cocaine pre-exposure increased both CRH and CRH-BP mRNA expression 1 day post-treatment. In the dorsal BNST, cocaine pre-exposure elevated levels of CRH-BP, but not CRH, mRNA 3 days post-treatment. Taken together, the results suggest that withdrawal-induced changes in the expression of the CRH-BP, and CRH itself, are relatively short-lived and that a dysregulation in basal expression of either gene is not likely responsible for long-lasting behavioral effects noted with cocaine and other drugs of abuse.
Collapse
Affiliation(s)
- S Erb
- Centre for the Neurobiology of Stress, Department of Life Science and Psychology, University of Toronto at Scarborough, 1265 Military Trail, Scarborough, Ontario M1C 1A4, Canada.
| | | | | | | | | |
Collapse
|
298
|
Aston-Jones G, Harris GC. Brain substrates for increased drug seeking during protracted withdrawal. Neuropharmacology 2004; 47 Suppl 1:167-79. [PMID: 15464135 DOI: 10.1016/j.neuropharm.2004.06.020] [Citation(s) in RCA: 172] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2004] [Revised: 05/26/2004] [Accepted: 06/30/2004] [Indexed: 10/26/2022]
Abstract
Studies are reviewed indicating that both increased anxiety and altered hedonic processing accompany protracted withdrawal from opiates. Increased anxiety may be most apparent in response to stress, whereas decreased motivation for natural rewards but increased interest in drugs reveals substantial alterations in hedonic values. Our recent work indicates that increased norepinephrine (NE) release in the bed nucleus of the stria terminalis (BNST) may underlie anxiety associated with protracted withdrawal. Altered plasticity in afferents to the ventral tegmental area (VTA; accumbens, amygdala and lateral hypothalamus), or in the VTA itself, may be involved in the altered hedonic processing that occurs during protracted withdrawal. We hypothesize that conditioned release of NE in the BNST in response to stressors (including drug-associated stimuli) may elevate anxiety which then augments the reward value of drugs by a negative reinforcement mechanism. We also propose that plasticity in VTA neurons and their afferents during chronic drug exposure and protracted withdrawal decreases the valence of natural rewards whereas sensitization occurs to the motivational effects of drugs that increases their motivational valence. The combination of anxiety, decreased valence of natural rewards, and sensitized incentive for drugs make a potent formula for relapse and drug seeking during protracted withdrawal.
Collapse
Affiliation(s)
- Gary Aston-Jones
- Department of Psychiatry, University of Pennsylvania, 705 Stellar Chance/6100, 422 Curie Blvd, Philadelphia, PA 19104-6100, USA.
| | | |
Collapse
|
299
|
Ma S, Morilak DA. Induction of FOS expression by acute immobilization stress is reduced in locus coeruleus and medial amygdala of Wistar–Kyoto rats compared to Sprague–Dawley rats. Neuroscience 2004; 124:963-72. [PMID: 15026136 DOI: 10.1016/j.neuroscience.2003.12.028] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/18/2003] [Indexed: 10/26/2022]
Abstract
Activation of the brain noradrenergic system during acute stress is thought to play an important integrative function in coping and stress adaptation by facilitating transmission in many brain regions involved in regulating behavioral and physiologic components of the stress response. Compared with outbred control Sprague-Dawley (SD) rats, inbred Wistar-Kyoto (WKY) rats exhibit an exaggerated hypothalamic-pituitary-adrenal (HPA) response as well as increased susceptibility to certain forms of stress-related pathology. However, we have also shown previously that WKY rats exhibit reduced anxiety-like behavioral reactivity to acute stress, associated with reduced activation of the brain noradrenergic system. Thus, to understand better the possible neurobiological mechanisms underlying dysregulation of the stress response in WKY rats, we investigated potential strain differences in stress-induced neuronal activation in brain regions that are both involved in regulating behavioral and neuroendocrine stress responses, and are related to the noradrenergic system, either as targets of noradrenergic modulation or as sources of afferent innervation of noradrenergic neurons. This was accomplished by visualizing stress-induced expression of Fos immunoreactivity in the paraventricular nucleus of the hypothalamus, lateral bed nucleus of the stria terminalis, central nucleus of the amygdala, and medial nucleus of the amygdala (MeA), as well as the noradrenergic nucleus locus coeruleus (LC). Stress-induced Fos expression was found to be decreased in the LC and MeA of WKY rats compared with similarly stressed SD rats, whereas no strain differences were observed in any of the other brain regions. This suggests that strain-related differences in activation of the MeA may be involved in the abnormal neuroendocrine and behavioral stress responses exhibited by WKY rats. Moreover, as the MeA is both an afferent as well as an efferent target of the brainstem noradrenergic system, reduced MeA activation may either be a source of reduced noradrenergic reactivity seen in WKY rats, or possibly a consequence. Nonetheless, understanding the mechanisms underlying altered stress reactivity in models such as the WKY rat may contribute to a better understanding of stress-related psychopathologies such as depression, post-traumatic stress disorder or other anxiety disorders.
Collapse
Affiliation(s)
- S Ma
- Department of Pharmacology and Center for Biomedical Neuroscience, MC 7764, University of Texas Health Science Center, 7703 Floyd Curl Drive, San Antonio, TX 78229-3900, USA
| | | |
Collapse
|
300
|
Crane JW, Buller KM, Day TA. Evidence that the bed nucleus of the stria terminalis contributes to the modulation of hypophysiotropic corticotropin-releasing factor cell responses to systemic interleukin-1beta. J Comp Neurol 2003; 467:232-42. [PMID: 14595770 DOI: 10.1002/cne.10918] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Systemic infection activates the hypothalamic-pituitary-adrenal (HPA) axis, and brainstem catecholamine cells have been shown to contribute to this response. However, recent work also suggests an important role for the central amygdala (CeA). Because direct connections between the CeA and the hypothalamic apex of the HPA axis are minimal, the present study investigated whether the bed nucleus of the stria terminalis (BNST) might act as a relay between them. This was done by using an animal model of acute systemic infection involving intravascular delivery of the proinflammatory cytokine interleukin-1beta (IL-1beta, 1 microg/kg). Unilateral ibotenic acid lesions encompassing the ventral BNST significantly reduced both IL-1beta-induced increases in Fos immunoreactivity in corticotropin-releasing factor (CRF) cells of the hypothalamic paraventricular nucleus (PVN) and corresponding increases in adrenocorticotropic hormone (ACTH) secretion. Similar lesions had no effect on CRF cell responses to physical restraint, suggesting that the effects of BNST lesions were not due to a nonspecific effect on stress responses. In further studies, we examined the functional connections between PVN, BNST, and CeA by combining retrograde tracing with mapping of IL-1beta-induced increases in Fos in BNST and CeA cells. In the case of the BNST, these studies showed that systemic IL-1beta administration recruits ventral BNST cells that project directly to the PVN. In the case of the CeA, the results obtained were consistent with an arrangement whereby lateral CeA cells recruited by systemic IL-1beta could regulate the activity of medial CeA cells projecting directly to the BNST. In conclusion, the present findings are consistent with the hypothesis that the BNST acts as a relay between the CeA and PVN, thereby contributing to CeA modulation of hypophysiotropic CRF cell responses to systemic administration of IL-1beta.
Collapse
Affiliation(s)
- James W Crane
- School of Biomedical Sciences, University of Queensland, Brisbane, Queensland 4072, Australia
| | | | | |
Collapse
|