251
|
Afdal P, AbdelMassih AF. Is pulmonary vascular disease reversible with PPAR ɣ agonists? Microcirculation 2018; 25:e12444. [DOI: 10.1111/micc.12444] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2017] [Accepted: 02/04/2018] [Indexed: 12/24/2022]
Affiliation(s)
- Peter Afdal
- Faculty of Medicine; Cairo University; Cairo Egypt
| | | |
Collapse
|
252
|
Global Proteomics Deciphered Novel-Function of Osthole Against Pulmonary Arterial Hypertension. Sci Rep 2018; 8:5556. [PMID: 29615702 PMCID: PMC5882969 DOI: 10.1038/s41598-018-23775-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 03/19/2018] [Indexed: 12/13/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) is a progressive cardiovascular-disease with high mortality lacking high-efficiency drug. Our efforts attempted to delineate therapeutic action of osthole produced by Angelica Pubescens Maxim, which has the capacity to treat PAH by exploiting an iTRAQ-based proteomic method. Excitingly, osthole was observed to significantly restore 98 of 315 differential proteins significantly modified by PAH progression. They were primarily annotated into 24 signaling pathways. Four mostly affected proteins (RPL15, Cathepsin S, Histone H3.3 and HMGB1) were experimentially validated which belonged to ribosome pathway, oxidative phosphorylation pathway, systemic lupus erythematosus pathway, complement and coagulation cascades pathway, whose modifications and modulations mostly accounted for therapeutic capacity of this compound against PAH. Altogether, our findings demonstrated that global proteomics is a promising systems-biology approach for deciphering therapeutic actions and associated mechanisms of natural products derived from traditional Chinese medicine. Importantly, osthole is supposed to be a candidate compound for new drug development to treat PAH.
Collapse
|
253
|
Malzer E, Dominicus CS, Chambers JE, Dickens JA, Mookerjee S, Marciniak SJ. The integrated stress response regulates BMP signalling through effects on translation. BMC Biol 2018; 16:34. [PMID: 29609607 PMCID: PMC5881181 DOI: 10.1186/s12915-018-0503-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2018] [Accepted: 03/08/2018] [Indexed: 12/29/2022] Open
Abstract
Background Developmental pathways must be responsive to the environment. Phosphorylation of eIF2α enables a family of stress-sensing kinases to trigger the integrated stress response (ISR), which has pro-survival and developmental consequences. Bone morphogenetic proteins (BMPs) regulate multiple developmental processes in organisms from insects to mammals. Results Here we show in Drosophila that GCN2 antagonises BMP signalling through direct effects on translation and indirectly via the transcription factor crc (dATF4). Expression of a constitutively active GCN2 or loss of the eIF2α phosphatase dPPP1R15 impairs developmental BMP signalling in flies. In cells, inhibition of translation by GCN2 blocks downstream BMP signalling. Moreover, loss of d4E-BP, a target of crc, augments BMP signalling in vitro and rescues tissue development in vivo. Conclusion These results identify a novel mechanism by which the ISR modulates BMP signalling during development. Electronic supplementary material The online version of this article (10.1186/s12915-018-0503-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Elke Malzer
- Cambridge Institute for Medical Research (CIMR), University of Cambridge, Wellcome Trust/MRC Building, Hills Road, Cambridge, CB2 0XY, UK.,Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Hills Rd, Cambridge, CB2 0SP, UK
| | - Caia S Dominicus
- Cambridge Institute for Medical Research (CIMR), University of Cambridge, Wellcome Trust/MRC Building, Hills Road, Cambridge, CB2 0XY, UK.,Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Hills Rd, Cambridge, CB2 0SP, UK
| | - Joseph E Chambers
- Cambridge Institute for Medical Research (CIMR), University of Cambridge, Wellcome Trust/MRC Building, Hills Road, Cambridge, CB2 0XY, UK.,Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Hills Rd, Cambridge, CB2 0SP, UK
| | - Jennifer A Dickens
- Cambridge Institute for Medical Research (CIMR), University of Cambridge, Wellcome Trust/MRC Building, Hills Road, Cambridge, CB2 0XY, UK.,Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Hills Rd, Cambridge, CB2 0SP, UK
| | - Souradip Mookerjee
- Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Hills Rd, Cambridge, CB2 0SP, UK
| | - Stefan J Marciniak
- Cambridge Institute for Medical Research (CIMR), University of Cambridge, Wellcome Trust/MRC Building, Hills Road, Cambridge, CB2 0XY, UK. .,Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Hills Rd, Cambridge, CB2 0SP, UK.
| |
Collapse
|
254
|
Abstract
Bone morphogenetic proteins (BMPs) constitute the largest subdivision of the transforming growth factor (TGF)-β family of ligands and exert most of their effects through the canonical effectors Smad1, 5, and 8. Appropriate regulation of BMP signaling is critical for the development and homeostasis of numerous human organ systems. Aberrations in BMP pathways or their regulation are increasingly associated with diverse human pathologies, and there is an urgent and growing need to develop effective approaches to modulate BMP signaling in the clinic. In this review, we provide a wide perspective on diseases and/or conditions associated with dysregulated BMP signal transduction, outline the current strategies available to modulate BMP pathways, highlight emerging second-generation technologies, and postulate prospective avenues for future investigation.
Collapse
Affiliation(s)
- Jonathan W Lowery
- Division of Biomedical Science, Marian University College of Osteopathic Medicine, Indianapolis, Indiana 46222
| | - Vicki Rosen
- Department of Developmental Biology, Harvard School of Dental Medicine, Boston, Massachusetts 02115
| |
Collapse
|
255
|
Frump A, Prewitt A, de Caestecker MP. BMPR2 mutations and endothelial dysfunction in pulmonary arterial hypertension (2017 Grover Conference Series). Pulm Circ 2018; 8:2045894018765840. [PMID: 29521190 PMCID: PMC5912278 DOI: 10.1177/2045894018765840] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 02/26/2018] [Indexed: 12/22/2022] Open
Abstract
Despite the discovery more than 15 years ago that patients with hereditary pulmonary arterial hypertension (HPAH) inherit BMP type 2 receptor ( BMPR2) mutations, it is still unclear how these mutations cause disease. In part, this is attributable to the rarity of HPAH and difficulty obtaining tissue samples from patients with early disease. However, in addition, limitations to the approaches used to study the effects of BMPR2 mutations on the pulmonary vasculature have restricted our ability to determine how individual mutations give rise to progressive pulmonary vascular pathology in HPAH. The importance of understanding the mechanisms by which BMPR2 mutations cause disease in patients with HPAH is underscored by evidence that there is reduced BMPR2 expression in patients with other, more common, non-hereditary form of PAH, and that restoration of BMPR2 expression reverses established disease in experimental models of pulmonary hypertension. In this paper, we focus on the effects on endothelial function. We discuss some of the controversies and challenges that have faced investigators exploring the role of BMPR2 mutations in HPAH, focusing specifically on the effects different BMPR2 mutation have on endothelial function, and whether there are qualitative differences between different BMPR2 mutations. We discuss evidence that BMPR2 signaling regulates a number of responses that may account for endothelial abnormalities in HPAH and summarize limitations of the models that are used to study these effects. Finally, we discuss evidence that BMPR2-dependent effects on endothelial metabolism provides a unifying explanation for the many of the BMPR2 mutation-dependent effects that have been described in patients with HPAH.
Collapse
Affiliation(s)
- Andrea Frump
- Division
of Pulmonary, Critical Care, Sleep and Occupational Medicine, Indiana University
School of Medicine, Indianapolis, IN,
USA
| | | | - Mark P. de Caestecker
- Division
of Nephrology and Hypertension, Department of Medicine, Vanderbilt University
Medical center, Nashville, TN, USA
| |
Collapse
|
256
|
Abstract
Bone morphogenetic proteins (BMPs) are a diverse class of molecules with over 20 growth factor proteins that belong to the transforming growth factor-β (TGF-β) family and are highly associated with bone formation and disease development. Aberrant expression of various BMPs has been reported in several cancer tissues. Biological function studies have elicited the dual role of BMPs in both cancer development and suppression. Furthermore, a variety of BMP antagonists, ligands, and receptors have been shown to reduce or enhance tumorigenesis and metastasis. Knockout mouse models of BMP signaling components have also revealed that the suppression of BMP signaling impairs cancer metastasis. Herein, we highlight the basic clinical background and involvement of BMPs in modulating cancer progression and their dynamic interactions (e.g., with microRNAs) in the tumor microenvironment in addition to their mutations and roles in chemoprevention. We also suggest that BMPs should be considered a powerful putative therapeutic target in tumorigenesis and bone metastasis.
Collapse
Affiliation(s)
- Duc-Hiep Bach
- College of Pharmacy, Natural Products Research Institute, Seoul National University, Seoul 151-742, Republic of Korea
| | - Hyen Joo Park
- College of Pharmacy, Natural Products Research Institute, Seoul National University, Seoul 151-742, Republic of Korea
| | - Sang Kook Lee
- College of Pharmacy, Natural Products Research Institute, Seoul National University, Seoul 151-742, Republic of Korea
| |
Collapse
|
257
|
Kim MJ, Park SY, Chang HR, Jung EY, Munkhjargal A, Lim JS, Lee MS, Kim Y. Clinical significance linked to functional defects in bone morphogenetic protein type 2 receptor, BMPR2. BMB Rep 2018; 50:308-317. [PMID: 28391780 PMCID: PMC5498141 DOI: 10.5483/bmbrep.2017.50.6.059] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2017] [Indexed: 12/18/2022] Open
Abstract
Bone morphogenetic protein type 2 receptor (BMPR2) is one of the transforming growth factor-β (TGF-β) superfamily receptors, performing diverse roles during embryonic development, vasculogenesis, and osteogenesis. Human BMPR2 consists of 1,038 amino acids, and contains functionally conserved extracellular, transmembrane, kinase, and C-terminal cytoplasmic domains. Bone morphogenetic proteins (BMPs) engage the tetrameric complex, composed of BMPR2 and its corresponding type 1 receptors, which initiates SMAD proteins-mediated signal transduction leading to the expression of target genes implicated in the development or differentiation of the embryo, organs and bones. In particular, genetic alterations of BMPR2 gene are associated with several clinical disorders, including representative pulmonary arterial hypertension, cancers, and metabolic diseases, thus demonstrating the physiological importance of BMPR2. In this mini review, we summarize recent findings regarding the molecular basis of BMPR2 functions in BMP signaling, and the versatile roles of BMPR2. In addition, various aspects of experimentally validated pathogenic mutations of BMPR2 and the linked human diseases will also be discussed, which are important in clinical settings for diagnostics and treatment.
Collapse
Affiliation(s)
- Myung-Jin Kim
- Department of Biological Sciences, Sookmyung Women's University, Seoul 04310, Korea
| | - Seon Young Park
- Department of Biological Sciences, Sookmyung Women's University, Seoul 04310, Korea
| | - Hae Ryung Chang
- Department of Biological Sciences, Sookmyung Women's University, Seoul 04310, Korea
| | - Eun Young Jung
- Department of Biological Sciences, Sookmyung Women's University, Seoul 04310, Korea
| | - Anudari Munkhjargal
- Department of Biological Sciences, Sookmyung Women's University, Seoul 04310, Korea
| | - Jong-Seok Lim
- Department of Biological Sciences, Sookmyung Women's University, Seoul 04310, Korea
| | - Myeong-Sok Lee
- Department of Biological Sciences, Sookmyung Women's University, Seoul 04310, Korea
| | - Yonghwan Kim
- Department of Biological Sciences, Sookmyung Women's University, Seoul 04310, Korea
| |
Collapse
|
258
|
Lee HW, Park SH. Elevated microRNA-135a is associated with pulmonary arterial hypertension in experimental mouse model. Oncotarget 2018; 8:35609-35618. [PMID: 28415675 PMCID: PMC5482602 DOI: 10.18632/oncotarget.16011] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2017] [Accepted: 03/02/2017] [Indexed: 12/12/2022] Open
Abstract
Multiple causes are associated with the complex mechanism of pathogenesis of pulmonary arterial hypertension (PAH), but the molecular pathway in the pathogenesis of PAH is still insufficiently understood. In this study, we investigated epigenetic changes that cause PAH induced by exposure to combined Th2 antigen (Ovalbumin, OVA) and urban particulate matter (PM) in mice. To address that, we focused on the epigenetic mechanism, linked to microRNA (miR)-135a. We found that miR-135a levels were significantly increased, and levels of bone morphogenetic protein receptor type II (BMPR2) which is the target of miR-135a, were significantly decreased in this experimental PAH mouse model. Therefore to evaluate the role of miR-135a, we injected AntagomiR-135a into this mouse model. AntagomiR-135a injected mice showed decreased right ventricular systolic pressures (RVSPs), right ventricular hypertrophy (RVH), and the percentage of severely thickened pulmonary arteries compared to control scrambled miRNA injected mice. Both mRNA and protein expression of BMPR2 were recovered in the AntagomiR-135a injected mice compared to control mice. Our study understands if miR-135a could serve as a biomarker helping to manage PAH. The blocking of miR-135a could lead to new therapeutic modalities to alleviate exacerbation of PAH caused by exposure to Th2 antigen and urban air pollution.
Collapse
Affiliation(s)
- Hyun-Wook Lee
- Department of Environmental Medicine, New York University School of Medicine, Tuxedo, New York, USA
| | - Sung-Hyun Park
- Department of Environmental Medicine, New York University School of Medicine, Tuxedo, New York, USA
| |
Collapse
|
259
|
Frank BS, Ivy DD. Diagnosis, Evaluation and Treatment of Pulmonary Arterial Hypertension in Children. CHILDREN (BASEL, SWITZERLAND) 2018; 5:E44. [PMID: 29570688 PMCID: PMC5920390 DOI: 10.3390/children5040044] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/01/2018] [Revised: 02/28/2018] [Accepted: 03/16/2018] [Indexed: 12/23/2022]
Abstract
Pulmonary Hypertension (PH), the syndrome of elevated pressure in the pulmonary arteries, is associated with significant morbidity and mortality for affected children. PH is associated with a wide variety of potential underlying causes, including cardiac, pulmonary, hematologic and rheumatologic abnormalities. Regardless of the cause, for many patients the natural history of PH involves progressive elevation in pulmonary arterial resistance and pressure, right ventricular dysfunction, and eventually heart failure. In recent years, a number of pulmonary arterial hypertension (PAH)-targeted therapies have become available to reduce pulmonary artery pressure and improve outcome. A growing body of evidence in both the adult and pediatric literature demonstrates enhanced quality of life, functional status, and survival among treated patients. This review provides a description of select etiologies of PH seen in pediatrics and an update on the most recent data pertaining to evaluation and management of children with PH/PAH. The available evidence for specific classes of PAH-targeted therapies in pediatrics is additionally discussed.
Collapse
Affiliation(s)
- Benjamin S Frank
- Section of Cardiology, Department of Pediatrics, University of Colorado School of Medicine and Children's Hospital Colorado, Aurora, CO 80045, USA.
| | - D Dunbar Ivy
- Section of Cardiology, Department of Pediatrics, University of Colorado School of Medicine and Children's Hospital Colorado, Aurora, CO 80045, USA.
| |
Collapse
|
260
|
Genomic Identification and Functional Characterization of Essential Genes in Caenorhabditis elegans. G3-GENES GENOMES GENETICS 2018; 8:981-997. [PMID: 29339407 PMCID: PMC5844317 DOI: 10.1534/g3.117.300338] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Using combined genetic mapping, Illumina sequencing, bioinformatics analyses, and experimental validation, we identified 60 essential genes from 104 lethal mutations in two genomic regions of Caenorhabditis elegans totaling ∼14 Mb on chromosome III(mid) and chromosome V(left). Five of the 60 genes had not previously been shown to have lethal phenotypes by RNA interference depletion. By analyzing the regions around the lethal missense mutations, we identified four putative new protein functional domains. Furthermore, functional characterization of the identified essential genes shows that most are enzymes, including helicases, tRNA synthetases, and kinases in addition to ribosomal proteins. Gene Ontology analysis indicated that essential genes often encode for enzymes that conduct nucleic acid binding activities during fundamental processes, such as intracellular DNA replication, transcription, and translation. Analysis of essential gene shows that they have fewer paralogs, encode proteins that are in protein interaction hubs, and are highly expressed relative to nonessential genes. All these essential gene traits in C. elegans are consistent with those of human disease genes. Most human orthologs (90%) of the essential genes in this study are related to human diseases. Therefore, functional characterization of essential genes underlines their importance as proxies for understanding the biological functions of human disease genes.
Collapse
|
261
|
Chinnappan M, Mohan A, Agarwal S, Dalvi P, Dhillon NK. Network of MicroRNAs Mediate Translational Repression of Bone Morphogenetic Protein Receptor-2: Involvement in HIV-Associated Pulmonary Vascular Remodeling. J Am Heart Assoc 2018; 7:e008472. [PMID: 29478969 PMCID: PMC5866341 DOI: 10.1161/jaha.117.008472] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/01/2018] [Accepted: 01/26/2018] [Indexed: 01/19/2023]
Abstract
BACKGROUND Earlier, we reported that the simultaneous exposure of pulmonary arterial smooth muscle cells to HIV proteins and cocaine results in the attenuation of antiproliferative bone morphogenetic protein receptor-2 (BMPR2) protein expression without any decrease in its mRNA levels. Therefore, in this study, we aimed to investigate the micro RNA-mediated posttranscriptional regulation of BMPR2 expression. METHODS AND RESULTS We identified a network of BMPR2 targeting micro RNAs including miR-216a to be upregulated in response to cocaine and Tat-mediated augmentation of oxidative stress and transforming growth factor-β signaling in human pulmonary arterial smooth muscle cells. By using a loss or gain of function studies, we observed that these upregulated micro RNAs are involved in the Tat- and cocaine-mediated smooth muscle hyperplasia via regulation of BMPR2 protein expression. These in vitro findings were further corroborated using rat pulmonary arterial smooth muscle cells isolated from HIV transgenic rats exposed to cocaine. More importantly, luciferase reporter and in vitro translation assays demonstrated that direct binding of novel miR-216a and miR-301a to 3'UTR of BMPR2 results in the translational repression of BMPR2 without any degradation of its mRNA. CONCLUSIONS We identified for the first time miR-216a as a negative modulator of BMPR2 translation and observed it to be involved in HIV protein(s) and cocaine-mediated enhanced proliferation of pulmonary smooth muscle cells.
Collapse
MESH Headings
- 3' Untranslated Regions
- Animals
- Binding Sites
- Bone Morphogenetic Protein Receptors, Type II/genetics
- Bone Morphogenetic Protein Receptors, Type II/metabolism
- Cell Proliferation
- Cells, Cultured
- Cocaine/pharmacology
- Down-Regulation
- Humans
- MicroRNAs/genetics
- MicroRNAs/metabolism
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Muscle, Smooth, Vascular/physiopathology
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Pulmonary Artery/metabolism
- Pulmonary Artery/pathology
- Pulmonary Artery/physiopathology
- Rats, Transgenic
- Signal Transduction
- Vascular Remodeling/drug effects
- tat Gene Products, Human Immunodeficiency Virus/genetics
- tat Gene Products, Human Immunodeficiency Virus/metabolism
Collapse
Affiliation(s)
- Mahendran Chinnappan
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Kansas Medical Center, Kansas City, KS
| | - Aradhana Mohan
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Kansas Medical Center, Kansas City, KS
| | - Stuti Agarwal
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Kansas Medical Center, Kansas City, KS
| | - Pranjali Dalvi
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Kansas Medical Center, Kansas City, KS
| | - Navneet K Dhillon
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Kansas Medical Center, Kansas City, KS
- Department of Molecular & Integrative Physiology, University of Kansas Medical Center, Kansas City, KS
| |
Collapse
|
262
|
Abstract
Following its initial description over a century ago, pulmonary arterial hypertension (PAH) continues to challenge researchers committed to understanding its pathobiology and finding a cure. The last two decades have seen major developments in our understanding of the genetics and molecular basis of PAH that drive cells within the pulmonary vascular wall to produce obstructive vascular lesions; presently, the field of PAH research has taken numerous approaches to dissect the complex amalgam of genetic, molecular and inflammatory pathways that interact to initiate and drive disease progression. In this review, we discuss the current understanding of PAH pathology and the role that genetic factors and environmental influences share in the development of vascular lesions and abnormal cell function. We also discuss how animal models can assist in elucidating gene function and the study of novel therapeutics, while at the same time addressing the limitations of the most commonly used rodent models. Novel experimental approaches based on application of next generation sequencing, bioinformatics and epigenetics research are also discussed as these are now being actively used to facilitate the discovery of novel gene mutations and mechanisms that regulate gene expression in PAH. Finally, we touch on recent discoveries concerning the role of inflammation and immunity in PAH pathobiology and how they are being targeted with immunomodulatory agents. We conclude that the field of PAH research is actively expanding and the major challenge in the coming years is to develop a unified theory that incorporates genetic and mechanistic data to address viable areas for disease modifying drugs that can target key processes that regulate the evolution of vascular pathology of PAH.
Collapse
|
263
|
Affiliation(s)
- J E Cannon
- Pulmonary Vascular Diseases Unit, Papworth Hospital, Cambridge, UK
| | - J Pepke-Zaba
- Pulmonary Vascular Diseases Unit, Papworth Hospital, Cambridge, UK
| |
Collapse
|
264
|
Goumans MJ, Ten Dijke P. TGF-β Signaling in Control of Cardiovascular Function. Cold Spring Harb Perspect Biol 2018; 10:cshperspect.a022210. [PMID: 28348036 DOI: 10.1101/cshperspect.a022210] [Citation(s) in RCA: 192] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Genetic studies in animals and humans indicate that gene mutations that functionally perturb transforming growth factor β (TGF-β) signaling are linked to specific hereditary vascular syndromes, including Osler-Rendu-Weber disease or hereditary hemorrhagic telangiectasia and Marfan syndrome. Disturbed TGF-β signaling can also cause nonhereditary disorders like atherosclerosis and cardiac fibrosis. Accordingly, cell culture studies using endothelial cells or smooth muscle cells (SMCs), cultured alone or together in two- or three-dimensional cell culture assays, on plastic or embedded in matrix, have shown that TGF-β has a pivotal effect on endothelial and SMC proliferation, differentiation, migration, tube formation, and sprouting. Moreover, TGF-β can stimulate endothelial-to-mesenchymal transition, a process shown to be of key importance in heart valve cushion formation and in various pathological vascular processes. Here, we discuss the roles of TGF-β in vasculogenesis, angiogenesis, and lymphangiogenesis and the deregulation of TGF-β signaling in cardiovascular diseases.
Collapse
Affiliation(s)
- Marie-José Goumans
- Department of Molecular Cell Biology and Cancer Genomics Centre Netherlands, Leiden University Medical Center, 2300 RC Leiden, The Netherlands
| | - Peter Ten Dijke
- Department of Molecular Cell Biology and Cancer Genomics Centre Netherlands, Leiden University Medical Center, 2300 RC Leiden, The Netherlands
| |
Collapse
|
265
|
Goumans MJ, Zwijsen A, Ten Dijke P, Bailly S. Bone Morphogenetic Proteins in Vascular Homeostasis and Disease. Cold Spring Harb Perspect Biol 2018; 10:cshperspect.a031989. [PMID: 28348038 DOI: 10.1101/cshperspect.a031989] [Citation(s) in RCA: 101] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
It is well established that control of vascular morphogenesis and homeostasis is regulated by vascular endothelial growth factor (VEGF), fibroblast growth factor (FGF), Delta-like 4 (Dll4), angiopoietin, and ephrin signaling. It has become clear that signaling by bone morphogenetic proteins (BMPs), which have a long history of studies in bone and early heart development, are also essential for regulating vascular function. Indeed, mutations that cause deregulated BMP signaling are linked to two human vascular diseases, hereditary hemorrhagic telangiectasia and pulmonary arterial hypertension. These observations are corroborated by data obtained with vascular cells in cell culture and in mouse models. BMPs are required for normal endothelial cell differentiation and for venous/arterial and lymphatic specification. In adult life, BMP signaling orchestrates neo-angiogenesis as well as vascular inflammation, remodeling, and calcification responses to shear and oxidative stress. This review emphasizes the pivotal role of BMPs in the vascular system, based on studies of mouse models and human vascular disorders.
Collapse
Affiliation(s)
- Marie-José Goumans
- Department of Molecular Cell Biology, Leiden University Medical Center, 2300 RC Leiden, The Netherlands
| | - An Zwijsen
- VIB Center for the Biology of Disease, 3000 Leuven, Belgium.,KU Leuven Department of Human Genetics, 3000 Leuven, Belgium
| | - Peter Ten Dijke
- Department of Molecular Cell Biology, Leiden University Medical Center, 2300 RC Leiden, The Netherlands.,Cancer Genomics Centre Netherlands, Leiden University Medical Center, 2300 RC Leiden, The Netherlands
| | - Sabine Bailly
- Institut National de la Santé et de la Recherche Mécale (INSERM), U1036, 38000 Grenoble, France.,Laboratoire Biologie du Cancer et de l'Infection, Commissariat à l'Énergie Atomique et aux Energies Alternatives, Biosciences and Biotechnology Institute of Grenoble, 38000 Grenoble, France.,University of Grenoble Alpes, 38000 Grenoble, France
| |
Collapse
|
266
|
Abstract
PURPOSE OF REVIEW The purpose of this review is to present our current understanding of the genetic etiologies that may cause or predispose to heart failure. We highlight known phenotypes for which a genetic evaluation has clinical utility. RECENT FINDINGS The literature continues to demonstrate and confirm a genetic basis for conditions that cause heart failure. Evidence suggests a genetic model involving rare and common variants of strong or weak effect, in combination with environmental factors that may manifest as familial or simplex disease. Clinical genetic testing is available for several phenotypes, which can aid in the diagnosis and identification of at-risk family members. The evaluation of heart failure should include investigating etiologies with a genetic basis. Conducting a genetic evaluation in patients with heart failure requires the ability to identify possible genetic etiologies in an individual's phenotype, obtain relevant family history, and clinically interpret genetic testing results.
Collapse
|
267
|
Gamou S, Kataoka M, Aimi Y, Chiba T, Momose Y, Isobe S, Hirayama T, Yoshino H, Fukuda K, Satoh T. Genetics in pulmonary arterial hypertension in a large homogeneous Japanese population. Clin Genet 2018; 94:70-80. [DOI: 10.1111/cge.13154] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 10/04/2017] [Accepted: 10/05/2017] [Indexed: 12/13/2022]
Affiliation(s)
- S. Gamou
- Kyorin University Center for Comprehensive Regional Collaboration; Tokyo Japan
| | - M. Kataoka
- Department of Cardiology; Keio University School of Medicine; Tokyo Japan
| | - Y. Aimi
- Division of Cardiology, Second Department of Internal Medicine; Kyorin University School of Medicine; Tokyo Japan
| | - T. Chiba
- Department of Pathology; Kyorin University School of Medicine; Tokyo Japan
| | - Y. Momose
- Division of Cardiology, Second Department of Internal Medicine; Kyorin University School of Medicine; Tokyo Japan
| | - S. Isobe
- Department of Cardiology; Keio University School of Medicine; Tokyo Japan
| | - T. Hirayama
- Department of Cardiology; Keio University School of Medicine; Tokyo Japan
- Division of Cardiology, Second Department of Internal Medicine; Kyorin University School of Medicine; Tokyo Japan
| | - H. Yoshino
- Division of Cardiology, Second Department of Internal Medicine; Kyorin University School of Medicine; Tokyo Japan
| | - K. Fukuda
- Department of Cardiology; Keio University School of Medicine; Tokyo Japan
| | - T. Satoh
- Division of Cardiology, Second Department of Internal Medicine; Kyorin University School of Medicine; Tokyo Japan
| |
Collapse
|
268
|
Yang K, Zhao M, Huang J, Zhang C, Zheng Q, Chen Y, Jiang H, Lu W, Wang J. Pharmacological activation of PPARγ inhibits hypoxia-induced proliferation through a caveolin-1-targeted and -dependent mechanism in PASMCs. Am J Physiol Cell Physiol 2018; 314:C428-C438. [PMID: 29351409 DOI: 10.1152/ajpcell.00143.2017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Previously, we and others have demonstrated that activation of peroxisome proliferator-activated receptor γ (PPARγ) by specific pharmacological agonists inhibits the pathogenesis of chronic hypoxia-induced pulmonary hypertension (CHPH) by suppressing the proliferation and migration in distal pulmonary arterial smooth muscle cells (PASMCs). Moreover, these beneficial effects of PPARγ are mediated by targeting the intracellular calcium homeostasis and store-operated calcium channel (SOCC) proteins, including the main caveolae component caveolin-1. However, other than the caveolin-1 targeted mechanism, in this study, we further uncovered a caveolin-1 dependent mechanism within the activation of PPARγ by the specific agonist GW1929. First, effective knockdown of caveolin-1 by small-interfering RNA (siRNA) markedly abolished the upregulation of GW1929 on PPARγ expression at both mRNA and protein levels; Then, in HEK293T, which has previously been reported with low endogenous caveolin-1 expression, exogenous expression of caveolin-1 significantly enhanced the upregulation of GW1929 on PPARγ expression compared with nontransfection control. In addition, inhibition of PPARγ by either siRNA or pharmacological inhibitor T0070907 led to increased phosphorylation of cellular mitogen-activated protein kinases ERK1/2 and p38. In parallel, GW1929 dramatically decreased the expression of the proliferative regulators (cyclin D1 and PCNA), whereas it increased the apoptotic factors (p21, p53, and mdm2) in hypoxic PASMCs. Furthermore, these effects of GW1929 could be partially reversed by recovery of the drug treatment. In combination, PPARγ activation by GW1929 reversibly drove the cell toward an antiproliferative and proapoptotic phenotype in a caveolin-1-dependent and -targeted mechanism.
Collapse
Affiliation(s)
- Kai Yang
- State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Diseases, The First Affiliated Hospital of Guangzhou Medical University , Guangzhou, Guangdong , China
| | - Mingming Zhao
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, National Institutes of Health , Baltimore, Maryland
| | - Junyi Huang
- State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Diseases, The First Affiliated Hospital of Guangzhou Medical University , Guangzhou, Guangdong , China
| | - Chenting Zhang
- State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Diseases, The First Affiliated Hospital of Guangzhou Medical University , Guangzhou, Guangdong , China
| | - Qiuyu Zheng
- State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Diseases, The First Affiliated Hospital of Guangzhou Medical University , Guangzhou, Guangdong , China
| | - Yuqin Chen
- State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Diseases, The First Affiliated Hospital of Guangzhou Medical University , Guangzhou, Guangdong , China
| | - Haiyang Jiang
- Division of Pulmonary and Critical Care Medicine, The Johns Hopkins University School of Medicine , Baltimore, Maryland
| | - Wenju Lu
- State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Diseases, The First Affiliated Hospital of Guangzhou Medical University , Guangzhou, Guangdong , China
| | - Jian Wang
- State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Diseases, The First Affiliated Hospital of Guangzhou Medical University , Guangzhou, Guangdong , China.,Division of Translational and Regenerative Medicine, Department of Medicine, University of Arizona College of Medicine , Tucson, Arizona
| |
Collapse
|
269
|
Abstract
Transcriptome analysis is a powerful tool in the study of pulmonary vascular disease and pulmonary hypertension. Pulmonary hypertension is a disease process that consists of several unique pathologies sharing a common clinical definition, that of elevated pressure within the pulmonary circulation. As such, it has become increasingly important to identify both similarities and differences among the different classes of pulmonary hypertension. Transcriptome analysis has been an invaluable tool both in the basic science research on animal models as well as clinical research among the various different groups of pulmonary hypertension. This work has identified new potential candidate genes, implicated numerous biochemical and molecular pathways in diseased onset and progression, developed gene signatures to appropriately classify types of pulmonary hypertension and severity of illness, and identified novel gene mutations leading to hereditary forms of the disease.
Collapse
Affiliation(s)
- Dustin R Fraidenburg
- Division of Pulmonary, Critical Care, Sleep and Allergy, Department of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Roberto F Machado
- Division of Pulmonary, Critical Care, Sleep and Allergy, Department of Medicine, University of Illinois at Chicago, Chicago, IL, USA.
- Division of Pulmonary, Critical Care, Sleep, and Occupational Medicine, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA.
| |
Collapse
|
270
|
|
271
|
Ranchoux B, Harvey LD, Ayon RJ, Babicheva A, Bonnet S, Chan SY, Yuan JXJ, Perez VDJ. Endothelial dysfunction in pulmonary arterial hypertension: an evolving landscape (2017 Grover Conference Series). Pulm Circ 2018; 8:2045893217752912. [PMID: 29283043 PMCID: PMC5798691 DOI: 10.1177/2045893217752912] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 12/18/2017] [Indexed: 02/06/2023] Open
Abstract
Endothelial dysfunction is a major player in the development and progression of vascular pathology in pulmonary arterial hypertension (PAH), a disease associated with small vessel loss and obstructive vasculopathy that leads to increased pulmonary vascular resistance, subsequent right heart failure, and premature death. Over the past ten years, there has been tremendous progress in our understanding of pulmonary endothelial biology as it pertains to the genetic and molecular mechanisms that orchestrate the endothelial response to direct or indirect injury, and how their dysregulation can contribute to the pathogenesis of PAH. As one of the major topics included in the 2017 Grover Conference Series, discussion centered on recent developments in four areas of pulmonary endothelial biology: (1) angiogenesis; (2) endothelial-mesenchymal transition (EndMT); (3) epigenetics; and (4) biology of voltage-gated ion channels. The present review will summarize the content of these discussions and provide a perspective on the most promising aspects of endothelial dysfunction that may be amenable for therapeutic development.
Collapse
Affiliation(s)
| | - Lloyd D. Harvey
- University of Pittsburgh Vascular Medicine Institute Division of Cardiology, Pittsburgh, PA, USA
| | - Ramon J. Ayon
- Division of Translational and Regenerative Medicine, The University of Arizona College of Medicine, Tucson, AZ, USA
| | - Aleksandra Babicheva
- Division of Translational and Regenerative Medicine, The University of Arizona College of Medicine, Tucson, AZ, USA
| | | | - Stephen Y. Chan
- University of Pittsburgh Vascular Medicine Institute Division of Cardiology, Pittsburgh, PA, USA
| | - Jason X.-J. Yuan
- Division of Translational and Regenerative Medicine, The University of Arizona College of Medicine, Tucson, AZ, USA
| | - Vinicio de Jesus Perez
- Division of Pulmonary and Critical Care Medicine, Stanford University Medical Center, Stanford, CA, USA
- The Vera Moulton Wall Center for Pulmonary Vascular Medicine, Stanford University Medical Center, Stanford, CA, USA
- Stanford Cardiovascular Institute, Stanford University Medical Center, Stanford, CA, USA
| |
Collapse
|
272
|
Roman BL, Cuttica MJ. Classifying Pulmonary Hypertension in Hereditary Hemorrhagic Telangiectasia. Hemodynamics Matter. Am J Respir Crit Care Med 2017; 196:1244-1246. [PMID: 29140123 DOI: 10.1164/rccm.201704-0765ed] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Affiliation(s)
- Beth L Roman
- 1 Department of Human Genetics University of Pittsburgh Graduate School of Public Health Pittsburgh, Pennsylvania and
| | - Michael J Cuttica
- 2 Division of Pulmonary and Critical Care Medicine Northwestern University Feinberg School of Medicine Chicago, Illinois
| |
Collapse
|
273
|
Roman BL, St Hilaire C. Catching a Disease: A Molecular Trap as a Therapy for Pulmonary Arterial Hypertension. Am J Respir Crit Care Med 2017; 194:1047-1049. [PMID: 27797615 DOI: 10.1164/rccm.201605-0920ed] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Affiliation(s)
- Beth L Roman
- 1 University of Pittsburgh Pittsburgh, Pennsylvania
| | | |
Collapse
|
274
|
Tang H, Desai AA, Yuan JXJ. Genetic Insights into Pulmonary Arterial Hypertension. Application of Whole-Exome Sequencing to the Study of Pathogenic Mechanisms. Am J Respir Crit Care Med 2017; 194:393-7. [PMID: 27525458 DOI: 10.1164/rccm.201603-0577ed] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Affiliation(s)
- Haiyang Tang
- 1 Department of Medicine University of Arizona College of Medicine Tucson, Arizona
| | - Ankit A Desai
- 1 Department of Medicine University of Arizona College of Medicine Tucson, Arizona
| | - Jason X-J Yuan
- 1 Department of Medicine University of Arizona College of Medicine Tucson, Arizona
| |
Collapse
|
275
|
Roman BL, Hinck AP. ALK1 signaling in development and disease: new paradigms. Cell Mol Life Sci 2017; 74:4539-4560. [PMID: 28871312 PMCID: PMC5687069 DOI: 10.1007/s00018-017-2636-4] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2017] [Revised: 08/01/2017] [Accepted: 08/28/2017] [Indexed: 12/21/2022]
Abstract
Activin A receptor like type 1 (ALK1) is a transmembrane serine/threonine receptor kinase in the transforming growth factor-beta receptor family that is expressed on endothelial cells. Defects in ALK1 signaling cause the autosomal dominant vascular disorder, hereditary hemorrhagic telangiectasia (HHT), which is characterized by development of direct connections between arteries and veins, or arteriovenous malformations (AVMs). Although previous studies have implicated ALK1 in various aspects of sprouting angiogenesis, including tip/stalk cell selection, migration, and proliferation, recent work suggests an intriguing role for ALK1 in transducing a flow-based signal that governs directed endothelial cell migration within patent, perfused vessels. In this review, we present an updated view of the mechanism of ALK1 signaling, put forth a unified hypothesis to explain the cellular missteps that lead to AVMs associated with ALK1 deficiency, and discuss emerging roles for ALK1 signaling in diseases beyond HHT.
Collapse
Affiliation(s)
- Beth L Roman
- Department of Human Genetics, University of Pittsburgh Graduate School of Public Health, 130 DeSoto St, Pittsburgh, PA, 15261, USA.
| | - Andrew P Hinck
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
276
|
Jia D, Zhu Q, Liu H, Zuo C, He Y, Chen G, Lu A. Osteoprotegerin Disruption Attenuates HySu-Induced Pulmonary Hypertension Through Integrin αvβ3/FAK/AKT Pathway Suppression. ACTA ACUST UNITED AC 2017; 10:CIRCGENETICS.116.001591. [PMID: 28077433 DOI: 10.1161/circgenetics.116.001591] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 11/29/2016] [Indexed: 01/07/2023]
Abstract
BACKGROUND Pulmonary arterial remodeling characterized by increased vascular smooth muscle proliferation is commonly seen in life-threatening disease, pulmonary arterial hypertension (PAH). Clinical studies have suggested a correlation between osteoprotegerin serum levels and PAH severity. Here, we aimed to invhestigate vascular osteoprotegerin expression and its effects on pulmonary arterial smooth muscle cell proliferation in vitro and in vivo, as well as examine the signal transduction pathways mediating its activity. METHODS AND RESULTS Serum osteoprotegerin levels were significantly elevated in patients with PAH and correlated with disease severity as determined by the World Health Organization (WHO) functional classifications and 6-minute walking distance tests. Similarly, increased osteoprotegerin expression was observed in the pulmonary arteries of hypoxia plus SU5416- and monocrotaline-induced PAH animal models. Moreover, osteoprotegerin disruption attenuated hypoxia plus SU5416-induced PAH progression by reducing pulmonary vascular remodeling, whereas lentiviral osteoprotegerin reconstitution exacerbated PAH by increasing pulmonary arterial smooth muscle cell proliferation. Furthermore, pathway analysis revealed that osteoprotegerin induced pulmonary arterial smooth muscle cell proliferation by interacting with integrin αvβ3 to elicit downstream focal adhesion kinase and AKT pathway activation. CONCLUSIONS Osteoprotegerin facilitates PAH pathogenesis by regulating pulmonary arterial smooth muscle cell proliferation, suggesting that it may be a potential biomarker and therapeutic target in this disease.
Collapse
Affiliation(s)
- Daile Jia
- From the Department of Cardiology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Qian Zhu
- From the Department of Cardiology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Huan Liu
- From the Department of Cardiology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Caojian Zuo
- From the Department of Cardiology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yuhu He
- From the Department of Cardiology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Guilin Chen
- From the Department of Cardiology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Ankang Lu
- From the Department of Cardiology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.
| |
Collapse
|
277
|
Sánchez-Duffhues G, García de Vinuesa A, Ten Dijke P. Endothelial-to-mesenchymal transition in cardiovascular diseases: Developmental signaling pathways gone awry. Dev Dyn 2017; 247:492-508. [PMID: 28891150 DOI: 10.1002/dvdy.24589] [Citation(s) in RCA: 110] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 08/30/2017] [Accepted: 08/30/2017] [Indexed: 01/05/2023] Open
Abstract
The process named endothelial-to-mesenchymal transition (EndMT) was observed for the first time during the development of the chicken embryo several decades ago. Of interest, accumulating evidence suggests that EndMT plays a critical role in the onset and progression of multiple postnatal cardiovascular diseases. EndMT is controlled by a set of developmental signaling pathways, very similar to the process of epithelial-to-mesenchymal transition, which determine the activity of several EndMT transcriptional effectors. Once activated, these EndMT effectors regulate the expression of endothelial- and mesenchymal-specific genes, in part by interacting with specific motifs in promoter regions, eventually leading to the down-regulation of endothelial-specific features and acquisition of a fibroblast-like phenotype. Important technical advances in lineage tracing methods combined with experimental mouse models demonstrated the pathophysiological importance of EndMT for human diseases. In this review, we discuss the major signal transduction pathways involved in the activation and regulation of the EndMT program. Furthermore, we will review the latest discoveries on EndMT, focusing on cardiovascular diseases, and in particular on its role in vascular calcification, pulmonary arterial hypertension, and organ fibrosis. Developmental Dynamics 247:492-508, 2018. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Gonzalo Sánchez-Duffhues
- Department of Molecular Cell Biology and Cancer Genomics Centre Netherlands, Leiden University Medical Center, The Netherlands
| | - Amaya García de Vinuesa
- Department of Molecular Cell Biology and Cancer Genomics Centre Netherlands, Leiden University Medical Center, The Netherlands
| | - Peter Ten Dijke
- Department of Molecular Cell Biology and Cancer Genomics Centre Netherlands, Leiden University Medical Center, The Netherlands
| |
Collapse
|
278
|
Talwar A, Garcia JGN, Tsai H, Moreno M, Lahm T, Zamanian RT, Machado R, Kawut SM, Selej M, Mathai S, D'Anna LH, Sahni S, Rodriquez EJ, Channick R, Fagan K, Gray M, Armstrong J, Rodriguez Lopez J, de Jesus Perez V. Health Disparities in Patients with Pulmonary Arterial Hypertension: A Blueprint for Action. An Official American Thoracic Society Statement. Am J Respir Crit Care Med 2017; 196:e32-e47. [PMID: 29028375 DOI: 10.1164/rccm.201709-1821st] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Health disparities have a major impact in the quality of life and clinical care received by minorities in the United States. Pulmonary arterial hypertension (PAH) is a rare cardiopulmonary disorder that affects children and adults and that, if untreated, results in premature death. The impact of health disparities in the diagnosis, treatment, and clinical outcome of patients with PAH has not been systematically investigated. OBJECTIVES The specific goals of this research statement were to conduct a critical review of the literature concerning health disparities in PAH, identify major research gaps and prioritize direction for future research. METHODS Literature searches from multiple reference databases were performed using medical subject headings and text words for pulmonary hypertension and health disparities. Members of the committee discussed the evidence and provided recommendations for future research. RESULTS Few studies were found discussing the impact of health disparities in PAH. Using recent research statements focused on health disparities, the group identified six major study topics that would help address the contribution of health disparities to PAH. Representative studies in each topic were discussed and specific recommendations were made by the group concerning the most urgent questions to address in future research studies. CONCLUSIONS At present, there are few studies that address health disparities in PAH. Given the potential adverse impact of health disparities, we recommend that research efforts be undertaken to address the topics discussed in the document. Awareness of health disparities will likely improve advocacy efforts, public health policy and the quality of care of vulnerable populations with PAH.
Collapse
|
279
|
Ayme-Dietrich E, Lawson R, Côté F, de Tapia C, Da Silva S, Ebel C, Hechler B, Gachet C, Guyonnet J, Rouillard H, Stoltz J, Quentin E, Banas S, Daubeuf F, Frossard N, Gasser B, Mazzucotelli JP, Hermine O, Maroteaux L, Monassier L. The role of 5-HT 2B receptors in mitral valvulopathy: bone marrow mobilization of endothelial progenitors. Br J Pharmacol 2017; 174:4123-4139. [PMID: 28806488 DOI: 10.1111/bph.13981] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 07/03/2017] [Accepted: 08/03/2017] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND AND PURPOSE Valvular heart disease (VHD) is highly prevalent in industrialized countries. Chronic use of anorexigens, amphetamine or ergot derivatives targeting the 5-HT system is associated with VHD. Here, we investigated the contribution of 5-HT receptors in a model of valve degeneration induced by nordexfenfluramine, the main metabolite of the anorexigens, dexfenfluramine and benfluorex. EXPERIMENTAL APPROACH Nordexfenfluramine was infused chronically (28 days) in mice ((WT and transgenic Htr2B -/- , Htr2A -/- , and Htr2B/2A -/- ) to induce mitral valve lesions. Bone marrow transplantation was also carried out. Haemodynamics were measured with echocardiography; tissues and cells were analysed by histology, immunocytochemistry, flow cytometry and RT -qPCR. Samples of human prolapsed mitral valves were also analysed. KEY RESULTS Chronic treatment of mice with nordexfenfluramine activated 5-HT2B receptors and increased valve thickness and cell density in a thick extracellular matrix, mimicking early steps of mitral valve remodelling. Lesions were prevented by 5-HT2A or 5-HT2B receptor antagonists and in transgenic Htr2B -/- or Htr2A/2B -/- mice. Surprisingly, valve lesions were mainly formed by numerous non-proliferative CD34+ endothelial progenitors. These progenitors originated from bone marrow (BM) as revealed by BM transplantation. The initial steps of mitral valve remodelling involved mobilization of BM-derived CD34+ CD31+ cells by 5-HT2B receptor stimulation. Analysis of human prolapsed mitral valves showing spontaneous degenerative lesions, demonstrated the presence of non-proliferating CD34+ /CD309+ /NOS3+ endothelial progenitors expressing 5-HT2B receptors. CONCLUSIONS AND IMPLICATIONS BM-derived endothelial progenitor cells make a crucial contribution to the remodelling of mitral valve tissue. Our data describe a new and important mechanism underlying human VHD.
Collapse
Affiliation(s)
- Estelle Ayme-Dietrich
- Laboratoire de Neurobiologie et Pharmacologie Cardiovasculaire (EA7296), Faculté de Médecine, Fédération de Médecine Translationnelle, Université et Centre Hospitalier de Strasbourg, Strasbourg, France
| | - Roland Lawson
- Laboratoire de Neurobiologie et Pharmacologie Cardiovasculaire (EA7296), Faculté de Médecine, Fédération de Médecine Translationnelle, Université et Centre Hospitalier de Strasbourg, Strasbourg, France
| | - Francine Côté
- Department of Hematology, Institut Imagine, INSERM U1183 CNRS ERL 8254, Université Paris Descartes-Sorbonne Paris Cité, Hôpital Universitaire Necker Enfants Malades, Paris, France.,Laboratory of Excellence GR-Ex, Paris, France
| | - Claudia de Tapia
- Laboratoire de Neurobiologie et Pharmacologie Cardiovasculaire (EA7296), Faculté de Médecine, Fédération de Médecine Translationnelle, Université et Centre Hospitalier de Strasbourg, Strasbourg, France
| | - Sylvia Da Silva
- Laboratoire de Neurobiologie et Pharmacologie Cardiovasculaire (EA7296), Faculté de Médecine, Fédération de Médecine Translationnelle, Université et Centre Hospitalier de Strasbourg, Strasbourg, France
| | - Claudine Ebel
- Department of Flow Cytometry, Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France
| | - Béatrice Hechler
- Etablissement Français du sang (EFS) Alsace, Inserm U949, Strasbourg, France
| | - Christian Gachet
- Etablissement Français du sang (EFS) Alsace, Inserm U949, Strasbourg, France
| | - Jérome Guyonnet
- Pharmaceutical Research Department, CEVA Santé Animale, Libourne, France
| | - Hélène Rouillard
- Laboratoire de Pathologie, Centre Hospitalier Emile Muller, Mulhouse, France
| | - Jordane Stoltz
- Laboratoire de Pathologie, Centre Hospitalier Emile Muller, Mulhouse, France
| | - Emily Quentin
- INSERM UMR-S 839, Paris, France.,Sorbonne Université́, UPMC Univ Paris 06, Paris, France.,Institut du Fer à Moulin, Paris, France
| | - Sophie Banas
- INSERM UMR-S 839, Paris, France.,Sorbonne Université́, UPMC Univ Paris 06, Paris, France.,Institut du Fer à Moulin, Paris, France
| | - François Daubeuf
- Laboratoire d'Innovation Thérapeutique, UMR7200 CNRS/Université de Strasbourg, LabExMedalis, Faculté de Pharmacie, Illkirch, France
| | - Nelly Frossard
- Laboratoire d'Innovation Thérapeutique, UMR7200 CNRS/Université de Strasbourg, LabExMedalis, Faculté de Pharmacie, Illkirch, France
| | - Bernard Gasser
- Laboratoire de Pathologie, Centre Hospitalier Emile Muller, Mulhouse, France
| | | | - Olivier Hermine
- Department of Hematology, Institut Imagine, INSERM U1183 CNRS ERL 8254, Université Paris Descartes-Sorbonne Paris Cité, Hôpital Universitaire Necker Enfants Malades, Paris, France.,Laboratory of Excellence GR-Ex, Paris, France
| | - Luc Maroteaux
- INSERM UMR-S 839, Paris, France.,Sorbonne Université́, UPMC Univ Paris 06, Paris, France.,Institut du Fer à Moulin, Paris, France
| | - Laurent Monassier
- Laboratoire de Neurobiologie et Pharmacologie Cardiovasculaire (EA7296), Faculté de Médecine, Fédération de Médecine Translationnelle, Université et Centre Hospitalier de Strasbourg, Strasbourg, France
| |
Collapse
|
280
|
Abstract
Tremendous progress has been made in understanding the genetics of pulmonary arterial hypertension (PAH) since its description in the 1950s as a primary disorder of the pulmonary vasculature. Heterozygous germline mutations in the gene coding bone morphogenetic receptor type 2 (BMPR2) are detectable in the majority of cases of heritable PAH, and in approximately 20% of cases of idiopathic pulmonary arterial hypertension (IPAH). However, recent advances in gene discovery methods have facilitated the discovery of additional genes with mutations among those with and without familial PAH. Heritable PAH is an autosomal dominant disease characterized by reduced penetrance, variable expressivity, and female predominance. Biallelic germline mutations in the gene EIF2AK4 are now associated with pulmonary veno-occlusive disease and pulmonary capillary hemangiomatosis. Growing genetic knowledge enhances our capacity to pursue and provide genetic counseling, although the issue remains complex given that the majority of carriers of PAH-related mutations will never be diagnosed with the disease.
Collapse
Affiliation(s)
- Joshua D. Chew
- Division of Cardiology, Department of Pediatrics, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - James E. Loyd
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Eric D. Austin
- Division of Pulmonary, Allergy, and Immunology Medicine, Department of Pediatrics, Vanderbilt University School of Medicine, Nashville, Tennessee
| |
Collapse
|
281
|
Siebel C, Lendahl U. Notch Signaling in Development, Tissue Homeostasis, and Disease. Physiol Rev 2017; 97:1235-1294. [PMID: 28794168 DOI: 10.1152/physrev.00005.2017] [Citation(s) in RCA: 617] [Impact Index Per Article: 88.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 05/19/2017] [Accepted: 05/26/2017] [Indexed: 02/07/2023] Open
Abstract
Notch signaling is an evolutionarily highly conserved signaling mechanism, but in contrast to signaling pathways such as Wnt, Sonic Hedgehog, and BMP/TGF-β, Notch signaling occurs via cell-cell communication, where transmembrane ligands on one cell activate transmembrane receptors on a juxtaposed cell. Originally discovered through mutations in Drosophila more than 100 yr ago, and with the first Notch gene cloned more than 30 yr ago, we are still gaining new insights into the broad effects of Notch signaling in organisms across the metazoan spectrum and its requirement for normal development of most organs in the body. In this review, we provide an overview of the Notch signaling mechanism at the molecular level and discuss how the pathway, which is architecturally quite simple, is able to engage in the control of cell fates in a broad variety of cell types. We discuss the current understanding of how Notch signaling can become derailed, either by direct mutations or by aberrant regulation, and the expanding spectrum of diseases and cancers that is a consequence of Notch dysregulation. Finally, we explore the emerging field of Notch in the control of tissue homeostasis, with examples from skin, liver, lung, intestine, and the vasculature.
Collapse
Affiliation(s)
- Chris Siebel
- Department of Discovery Oncology, Genentech Inc., DNA Way, South San Francisco, California; and Department of Cell and Molecular Biology, Karolinska Institute, Stockholm, Sweden
| | - Urban Lendahl
- Department of Discovery Oncology, Genentech Inc., DNA Way, South San Francisco, California; and Department of Cell and Molecular Biology, Karolinska Institute, Stockholm, Sweden
| |
Collapse
|
282
|
Girerd B, Weatherald J, Montani D, Humbert M. Heritable pulmonary hypertension: from bench to bedside. Eur Respir Rev 2017; 26:26/145/170037. [DOI: 10.1183/16000617.0037-2017] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 06/02/2017] [Indexed: 02/06/2023] Open
Abstract
Mutations in the BMPR2 gene, and more rarely in ACVRL1, endoglin, caveolin-1, KCNK3 and TBX4 genes predispose to heritable pulmonary arterial hypertension, an autosomal dominant disease with incomplete penetrance. Bi-allelic mutations in the EIF2AK4 gene predispose to heritable pulmonary veno-occlusive disease/pulmonary capillary haemangiomatosis, an autosomal recessive disease with an unknown penetrance.In France, the national pulmonary hypertension referral centre offers genetic counselling and testing to adults and children. Predictive testing is also proposed to adult relatives at risk of carrying a predisposing mutation. In that context, we offer all asymptomatic BMPR2 mutation carriers a programme to detect pulmonary arterial hypertension at an early phase, as recommended by the 2015 European Society Society of Cardiology/European Respiratory Society pulmonary hypertension guidelines. Finally, pre-implantation genetic diagnosis has been conducted on five embryos from two couples in which the fathers were carriers of a pathogenic BMPR2 mutation.
Collapse
|
283
|
Sphingosine Kinase 1: A Potential Therapeutic Target in Pulmonary Arterial Hypertension? Trends Mol Med 2017; 23:786-798. [DOI: 10.1016/j.molmed.2017.07.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 07/04/2017] [Accepted: 07/10/2017] [Indexed: 12/22/2022]
|
284
|
|
285
|
Kimura M, Tamura Y, Guignabert C, Takei M, Kosaki K, Tanabe N, Tatsumi K, Saji T, Satoh T, Kataoka M, Kamitsuji S, Kamatani N, Thuillet R, Tu L, Humbert M, Fukuda K, Sano M. A genome-wide association analysis identifies PDE1A| DNAJC10 locus on chromosome 2 associated with idiopathic pulmonary arterial hypertension in a Japanese population. Oncotarget 2017; 8:74917-74926. [PMID: 29088834 PMCID: PMC5650389 DOI: 10.18632/oncotarget.20459] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 07/25/2017] [Indexed: 12/23/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) is a lethal disease that often affects the young. Although Bone Morphogenetic Protein Receptor Type 2 gene (BMPR2) mutations are related with idiopathic and heritable PAH, the low penetrance and variable expressivity in PAH suggest the existence of other genetic and/or environmental factors. In this study, we aimed to identify novel genetic factors associated with PAH, irrespective of BMPR2 mutation. We performed genome-wide association study (GWAS) in a Japanese population comprising 44 individuals with idiopathic and heritable PAH, and 2,993 controls. Seven loci identified in the genome-wide study were submitted to the validation study, and a novel susceptibility locus, PDE1A|DNAJC10, was identified that maps to 2q32.1 (rs71427857, P = 7.9 × 10-9, odds ratio in the validation study = 5.18; 95% CI 1.86 – 14.42). We also found the augmentation of PDE1A protein in distal remodeled pulmonary artery walls in idiopathic PAH patients. Given that phosphodiesterase 5 inhibitors are effective for the treatment of idiopathic and heritable PAH, our findings suggest that PDE1A could be a novel therapeutic target of PAH.
Collapse
Affiliation(s)
- Mai Kimura
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan
| | - Yuichi Tamura
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan.,Univ Paris-Sud, Université Paris-Saclay, Le Kremlin-Bicêtre, France.,AP-HP, Service de Pneumologie, Hôpital Bicêtre, Le Kremlin-Bicêtre, France.,Inserm UMR_S 999, Hôpital Marie Lannelongue, Le Plessis-Robinson, France.,Department of Cardiology, International University of Health and Welfare Mita Hospital, Tokyo, Japan
| | - Christophe Guignabert
- Univ Paris-Sud, Université Paris-Saclay, Le Kremlin-Bicêtre, France.,Inserm UMR_S 999, Hôpital Marie Lannelongue, Le Plessis-Robinson, France
| | - Makoto Takei
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan
| | - Kenjiro Kosaki
- Center for Medical Genetics, Keio University School of Medicine, Tokyo, Japan
| | - Nobuhiro Tanabe
- Department of Respirology, Graduate School of Medicine, Chiba University, Chiba, Japan.,Department of Advanced Medicine in Pulmonary Hypertension, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Koichiro Tatsumi
- Department of Respirology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Tsutomu Saji
- Department of Pediatrics, Toho University, Medical Center, Omori Hospital, Tokyo, Japan
| | - Toru Satoh
- Department of Cardiology, Kyorin University School of Medicine, Tokyo, Japan
| | - Masaharu Kataoka
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan
| | | | | | - Raphaël Thuillet
- Univ Paris-Sud, Université Paris-Saclay, Le Kremlin-Bicêtre, France.,Inserm UMR_S 999, Hôpital Marie Lannelongue, Le Plessis-Robinson, France
| | - Ly Tu
- Univ Paris-Sud, Université Paris-Saclay, Le Kremlin-Bicêtre, France.,Inserm UMR_S 999, Hôpital Marie Lannelongue, Le Plessis-Robinson, France
| | - Marc Humbert
- Univ Paris-Sud, Université Paris-Saclay, Le Kremlin-Bicêtre, France.,AP-HP, Service de Pneumologie, Hôpital Bicêtre, Le Kremlin-Bicêtre, France.,Inserm UMR_S 999, Hôpital Marie Lannelongue, Le Plessis-Robinson, France
| | - Keiichi Fukuda
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan
| | - Motoaki Sano
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
286
|
Sondhi D, Stiles KM, De BP, Crystal RG. Genetic Modification of the Lung Directed Toward Treatment of Human Disease. Hum Gene Ther 2017; 28:3-84. [PMID: 27927014 DOI: 10.1089/hum.2016.152] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Genetic modification therapy is a promising therapeutic strategy for many diseases of the lung intractable to other treatments. Lung gene therapy has been the subject of numerous preclinical animal experiments and human clinical trials, for targets including genetic diseases such as cystic fibrosis and α1-antitrypsin deficiency, complex disorders such as asthma, allergy, and lung cancer, infections such as respiratory syncytial virus (RSV) and Pseudomonas, as well as pulmonary arterial hypertension, transplant rejection, and lung injury. A variety of viral and non-viral vectors have been employed to overcome the many physical barriers to gene transfer imposed by lung anatomy and natural defenses. Beyond the treatment of lung diseases, the lung has the potential to be used as a metabolic factory for generating proteins for delivery to the circulation for treatment of systemic diseases. Although much has been learned through a myriad of experiments about the development of genetic modification of the lung, more work is still needed to improve the delivery vehicles and to overcome challenges such as entry barriers, persistent expression, specific cell targeting, and circumventing host anti-vector responses.
Collapse
Affiliation(s)
- Dolan Sondhi
- Department of Genetic Medicine, Weill Cornell Medical College , New York, New York
| | - Katie M Stiles
- Department of Genetic Medicine, Weill Cornell Medical College , New York, New York
| | - Bishnu P De
- Department of Genetic Medicine, Weill Cornell Medical College , New York, New York
| | - Ronald G Crystal
- Department of Genetic Medicine, Weill Cornell Medical College , New York, New York
| |
Collapse
|
287
|
van der Bruggen CE, Tedford RJ, Handoko ML, van der Velden J, de Man FS. RV pressure overload: from hypertrophy to failure. Cardiovasc Res 2017; 113:1423-1432. [DOI: 10.1093/cvr/cvx145] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 07/31/2017] [Indexed: 01/31/2023] Open
Affiliation(s)
- Cathelijne E.E. van der Bruggen
- Department of Pulmonology, Amsterdam Cardiovascular Sciences, VU University Medical Center Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands
| | - Ryan J. Tedford
- Division of Cardiology, Department of Medicine, Medical University of South Carolina, Charleston, SC, USA
| | | | - Jolanda van der Velden
- Department of Physiology, Amsterdam Cardiovascular Sciences, VU University Medical Center Amsterdam, Amsterdam, The Netherlands
| | - Frances S. de Man
- Department of Pulmonology, Amsterdam Cardiovascular Sciences, VU University Medical Center Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands
| |
Collapse
|
288
|
Ghataorhe P, Rhodes CJ, Harbaum L, Attard M, Wharton J, Wilkins MR. Pulmonary arterial hypertension - progress in understanding the disease and prioritizing strategies for drug development. J Intern Med 2017; 282:129-141. [PMID: 28524624 DOI: 10.1111/joim.12623] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Pulmonary arterial hypertension (PAH), at one time a largely overlooked disease, is now the subject of intense study in many academic and biotech groups. The availability of new treatments has increased awareness of the condition. This in turn has driven a change in the demographics of PAH, with an increase in the mean age at diagnosis. The diagnosis of PAH in more elderly patients has highlighted the need for careful phenotyping of patients and for further studies to understand how best to manage pulmonary hypertension associated with, for example, left heart disease. The breadth and depth of expertise focused on unravelling the molecular pathology of PAH has yielded novel insights, including the role of growth factors, inflammation and metabolic remodelling. The description of the genetic architecture of PAH is accelerating in parallel, with novel variants, such as those reported in potassium two-pore domain channel subfamily K member 3 (KCNK3), adding to the list of more established mutations in genes associated with bone morphogenetic protein receptor type 2 (BMPR2) signalling. These insights have supported a paradigm shift in treatment strategies away from simply addressing the imbalance of vasoactive mediators observed in PAH towards tackling more directly the structural remodelling of the pulmonary vasculature. Here, we summarize the changing clinical and molecular landscape of PAH. We highlight novel drug therapies that are in various stages of clinical development, targeting for example cell proliferation, metabolic, inflammatory/immune and BMPR2 dysfunction, and the challenges around developing these treatments. We argue that advances in the treatment of PAH will come through deep molecular phenotyping with the integration of clinical, genomic, transcriptomic, proteomic and metabolomic information in large populations of patients through international collaboration. This approach provides the best opportunity for identifying key signalling pathways, both as potential drug targets and as biomarkers for patient selection. The expectation is that together these will enable the prioritization of potential therapies in development and the evolution of personalized medicine for PAH.
Collapse
Affiliation(s)
- P Ghataorhe
- Department of Medicine, Imperial College London, London, UK
| | - C J Rhodes
- Department of Medicine, Imperial College London, London, UK
| | - L Harbaum
- Department of Medicine, Imperial College London, London, UK
| | - M Attard
- Department of Medicine, Imperial College London, London, UK
| | - J Wharton
- Department of Medicine, Imperial College London, London, UK
| | - M R Wilkins
- Department of Medicine, Imperial College London, London, UK
| |
Collapse
|
289
|
Yung LM, Nikolic I, Paskin-Flerlage SD, Pearsall RS, Kumar R, Yu PB. A Selective Transforming Growth Factor-β Ligand Trap Attenuates Pulmonary Hypertension. Am J Respir Crit Care Med 2017; 194:1140-1151. [PMID: 27115515 DOI: 10.1164/rccm.201510-1955oc] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
RATIONALE Transforming growth factor-β (TGF-β) ligands signal via type I and type II serine-threonine kinase receptors to regulate broad transcriptional programs. Excessive TGF-β-mediated signaling is implicated in the pathogenesis of pulmonary arterial hypertension, based in part on the ability of broad inhibition of activin-like kinase (ALK) receptors 4/5/7 recognizing TGF-β, activin, growth and differentiation factor, and nodal ligands to attenuate experimental pulmonary hypertension (PH). These broad inhibition strategies do not delineate the specific contribution of TGF-β versus a multitude of other ligands, and their translation is limited by cardiovascular and systemic toxicity. OBJECTIVES We tested the impact of a soluble TGF-β type II receptor extracellular domain expressed as an immunoglobulin-Fc fusion protein (TGFBRII-Fc), serving as a selective TGF-β1/3 ligand trap, in several experimental PH models. METHODS Signaling studies used cultured human pulmonary artery smooth muscle cells. PH was studied in monocrotaline-treated Sprague-Dawley rats, SU5416/hypoxia-treated Sprague-Dawley rats, and SU5416/hypoxia-treated C57BL/6 mice. PH, cardiac function, vascular remodeling, and valve structure were assessed by ultrasound, invasive hemodynamic measurements, and histomorphometry. MEASUREMENTS AND MAIN RESULTS TGFBRII-Fc is an inhibitor of TGF-β1 and TGF-β3, but not TGF-β2, signaling. In vivo treatment with TGFBRII-Fc attenuated Smad2 phosphorylation, normalized expression of plasminogen activator inhibitor-1, and mitigated PH and pulmonary vascular remodeling in monocrotaline-treated rats, SU5416/hypoxia-treated rats, and SU5416/hypoxia-treated mice. Administration of TGFBRII-Fc to monocrotaline-treated or SU5416/hypoxia-treated rats with established PH improved right ventricular systolic pressures, right ventricular function, and survival. No cardiac structural or valvular abnormalities were observed after treatment with TGFBRII-Fc. CONCLUSIONS Our findings are consistent with a pathogenetic role of TGF-β1/3, demonstrating the efficacy and tolerability of selective TGF-β ligand blockade for improving hemodynamics, remodeling, and survival in multiple experimental PH models.
Collapse
Affiliation(s)
- Lai-Ming Yung
- 1 Division of Cardiology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts; and
| | - Ivana Nikolic
- 1 Division of Cardiology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts; and
| | - Samuel D Paskin-Flerlage
- 1 Division of Cardiology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts; and
| | | | | | - Paul B Yu
- 1 Division of Cardiology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts; and
| |
Collapse
|
290
|
Aschner Y, Downey GP. Transforming Growth Factor-β: Master Regulator of the Respiratory System in Health and Disease. Am J Respir Cell Mol Biol 2017; 54:647-55. [PMID: 26796672 DOI: 10.1165/rcmb.2015-0391tr] [Citation(s) in RCA: 165] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
In this article, we review the biology and physiological importance of transforming growth factor-β (TGF-β) to homeostasis in the respiratory system, its importance to innate and adaptive immune responses in the lung, and its pathophysiological role in various chronic pulmonary diseases including pulmonary arterial hypertension, chronic obstructive pulmonary disease, asthma, and pulmonary fibrosis. The TGF-β family is responsible for initiation of the intracellular signaling pathways that direct numerous cellular activities including proliferation, differentiation, extracellular matrix synthesis, and apoptosis. When TGF-β signaling is dysregulated or essential control mechanisms are unbalanced, the consequences of organ and tissue dysfunction can be profound. The complexities and myriad checkpoints built into the TGF-β signaling pathways provide attractive targets for the treatment of these disease states, many of which are currently being investigated. This review focuses on those aspects of TGF-β biology that are most relevant to pulmonary diseases and that hold promise as novel therapeutic targets.
Collapse
Affiliation(s)
- Yael Aschner
- 1 Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, and
| | - Gregory P Downey
- 1 Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, and.,2 Department of Immunology and Microbiology, University of Colorado, Aurora, Colorado; and.,3 Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, and.,4 Departments of Pediatrics, and.,5 Biomedical Research, National Jewish Health, Denver, Colorado
| |
Collapse
|
291
|
Kelly NJ, Radder JE, Baust JJ, Burton CL, Lai YC, Potoka KC, Agostini BA, Wood JP, Bachman TN, Vanderpool RR, Dandachi N, Leme AS, Gregory AD, Morris A, Mora AL, Gladwin MT, Shapiro SD. Mouse Genome-Wide Association Study of Preclinical Group II Pulmonary Hypertension Identifies Epidermal Growth Factor Receptor. Am J Respir Cell Mol Biol 2017; 56:488-496. [PMID: 28085498 DOI: 10.1165/rcmb.2016-0176oc] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Pulmonary hypertension (PH) is associated with features of obesity and metabolic syndrome that translate to the induction of PH by chronic high-fat diet (HFD) in some inbred mouse strains. We conducted a genome-wide association study (GWAS) to identify candidate genes associated with susceptibility to HFD-induced PH. Mice from 36 inbred and wild-derived strains were fed with regular diet or HFD for 20 weeks beginning at 6-12 weeks of age, after which right ventricular (RV) and left ventricular (LV) end-systolic pressure (ESP) and maximum pressure (MaxP) were measured by cardiac catheterization. We tested for association of RV MaxP and RV ESP and identified genomic regions enriched with nominal associations to both of these phenotypes. We excluded genomic regions if they were also associated with LV MaxP, LV ESP, or body weight. Genes within significant regions were scored based on the shortest-path betweenness centrality, a measure of network connectivity, of their human orthologs in a gene interaction network of human PH-related genes. WSB/EiJ, NON/ShiLtJ, and AKR/J mice had the largest increases in RV MaxP after high-fat feeding. Network-based scoring of GWAS candidates identified epidermal growth factor receptor (Egfr) as having the highest shortest-path betweenness centrality of GWAS candidates. Expression studies of lung homogenate showed that EGFR expression is increased in the AKR/J strain, which developed a significant increase in RV MaxP after high-fat feeding as compared with C57BL/6J, which did not. Our combined GWAS and network-based approach adds evidence for a role for Egfr in murine PH.
Collapse
Affiliation(s)
| | | | | | | | - Yen-Chun Lai
- 1 Department of Medicine.,2 Vascular Medicine Institute, and
| | - Karin C Potoka
- 1 Department of Medicine.,3 Department of Pediatrics, University of Pittsburgh and University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | | | | | | | | | | | | | | | | | - Ana L Mora
- 1 Department of Medicine.,2 Vascular Medicine Institute, and
| | - Mark T Gladwin
- 1 Department of Medicine.,2 Vascular Medicine Institute, and
| | | |
Collapse
|
292
|
Mitrofan CG, Appleby SL, Nash GB, Mallat Z, Chilvers ER, Upton PD, Morrell NW. Bone morphogenetic protein 9 (BMP9) and BMP10 enhance tumor necrosis factor-α-induced monocyte recruitment to the vascular endothelium mainly via activin receptor-like kinase 2. J Biol Chem 2017. [PMID: 28646109 PMCID: PMC5566526 DOI: 10.1074/jbc.m117.778506] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Bone morphogenetic proteins 9 and 10 (BMP9/BMP10) are circulating cytokines with important roles in endothelial homeostasis. The aim of this study was to investigate the roles of BMP9 and BMP10 in mediating monocyte-endothelial interactions using an in vitro flow adhesion assay. Herein, we report that whereas BMP9/BMP10 alone had no effect on monocyte recruitment, at higher concentrations both cytokines synergized with tumor necrosis factor-α (TNFα) to increase recruitment to the vascular endothelium. The BMP9/BMP10-mediated increase in monocyte recruitment in the presence of TNFα was associated with up-regulated expression levels of E-selectin, vascular cell adhesion molecule (VCAM-1), and intercellular adhesion molecule 1 (ICAM-1) on endothelial cells. Using siRNAs to type I and II BMP receptors and the signaling intermediaries (Smads), we demonstrated a key role for ALK2 in the BMP9/BMP10-induced surface expression of E-selectin, and both ALK1 and ALK2 in the up-regulation of VCAM-1 and ICAM-1. The type II receptors, BMPR-II and ACTR-IIA were both required for this response, as was Smad1/5. The up-regulation of cell surface adhesion molecules by BMP9/10 in the presence of TNFα was inhibited by LDN193189, which inhibits ALK2 but not ALK1. Furthermore, LDN193189 inhibited monocyte recruitment induced by TNFα and BMP9/10. BMP9/10 increased basal IκBα protein expression, but did not alter p65/RelA levels. Our findings suggest that higher concentrations of BMP9/BMP10 synergize with TNFα to induce the up-regulation of endothelial selectins and adhesion molecules, ultimately resulting in increased monocyte recruitment to the vascular endothelium. This process is mediated mainly via the ALK2 type I receptor, BMPR-II/ACTR-IIA type II receptors, and downstream Smad1/5 signaling.
Collapse
Affiliation(s)
- Claudia-Gabriela Mitrofan
- From the Department of Medicine, University of Cambridge School of Clinical Medicine, Cambridge CB2 0QQ and
| | - Sarah L Appleby
- From the Department of Medicine, University of Cambridge School of Clinical Medicine, Cambridge CB2 0QQ and
| | - Gerard B Nash
- the Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Ziad Mallat
- From the Department of Medicine, University of Cambridge School of Clinical Medicine, Cambridge CB2 0QQ and
| | - Edwin R Chilvers
- From the Department of Medicine, University of Cambridge School of Clinical Medicine, Cambridge CB2 0QQ and
| | - Paul D Upton
- From the Department of Medicine, University of Cambridge School of Clinical Medicine, Cambridge CB2 0QQ and
| | - Nicholas W Morrell
- From the Department of Medicine, University of Cambridge School of Clinical Medicine, Cambridge CB2 0QQ and
| |
Collapse
|
293
|
Tojais NF, Cao A, Lai YJ, Wang L, Chen PI, Alcazar MAA, de Jesus Perez VA, Hopper RK, Rhodes CJ, Bill MA, Sakai LY, Rabinovitch M. Codependence of Bone Morphogenetic Protein Receptor 2 and Transforming Growth Factor-β in Elastic Fiber Assembly and Its Perturbation in Pulmonary Arterial Hypertension. Arterioscler Thromb Vasc Biol 2017; 37:1559-1569. [PMID: 28619995 DOI: 10.1161/atvbaha.117.309696] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 05/26/2017] [Indexed: 02/07/2023]
Abstract
OBJECTIVE We determined in patients with pulmonary arterial (PA) hypertension (PAH) whether in addition to increased production of elastase by PA smooth muscle cells previously reported, PA elastic fibers are susceptible to degradation because of their abnormal assembly. APPROACH AND RESULTS Fibrillin-1 and elastin are the major components of elastic fibers, and fibrillin-1 binds bone morphogenetic proteins (BMPs) and the large latent complex of transforming growth factor-β1 (TGFβ1). Thus, we considered whether BMPs like TGFβ1 contribute to elastic fiber assembly and whether this process is perturbed in PAH particularly when the BMP receptor, BMPR2, is mutant. We also assessed whether in mice with Bmpr2/1a compound heterozygosity, elastic fibers are susceptible to degradation. In PA smooth muscle cells and adventitial fibroblasts, TGFβ1 increased elastin mRNA, but the elevation in elastin protein was dependent on BMPR2; TGFβ1 and BMP4, via BMPR2, increased extracellular accumulation of fibrillin-1. Both BMP4- and TGFβ1-stimulated elastic fiber assembly was impaired in idiopathic (I) PAH-PA adventitial fibroblast versus control cells, particularly those with hereditary (H) PAH and a BMPR2 mutation. This was related to profound reductions in elastin and fibrillin-1 mRNA. Elastin protein was increased in IPAH PA adventitial fibroblast by TGFβ1 but only minimally so in BMPR2 mutant cells. Fibrillin-1 protein increased only modestly in IPAH or HPAH PA adventitial fibroblasts stimulated with BMP4 or TGFβ1. In Bmpr2/1a heterozygote mice, reduced PA fibrillin-1 was associated with elastic fiber susceptibility to degradation and more severe pulmonary hypertension. CONCLUSIONS Disrupting BMPR2 impairs TGFβ1- and BMP4-mediated elastic fiber assembly and is of pathophysiologic significance in PAH.
Collapse
MESH Headings
- Animals
- Bone Morphogenetic Protein 4/pharmacology
- Bone Morphogenetic Protein Receptors, Type I/deficiency
- Bone Morphogenetic Protein Receptors, Type I/genetics
- Bone Morphogenetic Protein Receptors, Type II/deficiency
- Bone Morphogenetic Protein Receptors, Type II/genetics
- Bone Morphogenetic Protein Receptors, Type II/metabolism
- Case-Control Studies
- Cells, Cultured
- Disease Models, Animal
- Elastic Tissue/metabolism
- Elastic Tissue/pathology
- Elastic Tissue/physiopathology
- Elastin/genetics
- Elastin/metabolism
- Familial Primary Pulmonary Hypertension/genetics
- Familial Primary Pulmonary Hypertension/metabolism
- Familial Primary Pulmonary Hypertension/pathology
- Familial Primary Pulmonary Hypertension/physiopathology
- Fibrillin-1/genetics
- Fibrillin-1/metabolism
- Fibroblasts/drug effects
- Fibroblasts/metabolism
- Fibroblasts/pathology
- Genetic Predisposition to Disease
- Humans
- Hypertension, Pulmonary/genetics
- Hypertension, Pulmonary/metabolism
- Hypertension, Pulmonary/pathology
- Hypertension, Pulmonary/physiopathology
- Mice, 129 Strain
- Mice, Inbred C57BL
- Mice, Knockout
- Mutation
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Phenotype
- Pulmonary Artery/drug effects
- Pulmonary Artery/metabolism
- Pulmonary Artery/pathology
- Pulmonary Artery/physiopathology
- RNA Interference
- Transfection
- Transforming Growth Factor beta/pharmacology
- Vascular Remodeling
Collapse
Affiliation(s)
- Nancy F Tojais
- From the Department of Pediatrics (N.F.T., A.C., Y.-J.L., L.W., P.I.C., M.A.A.A., R.K.H., C.J.R., M.R.) and Department of Medicine (V.A.d.J.P., M.A.B.), the Vera Moulton Wall Center for Pulmonary Vascular Disease and the Cardiovascular Institute, Stanford University School of Medicine, CA; and Shriners Hospital for Children, Oregon Health & Science University, Portland (L.Y.S.)
| | - Aiqin Cao
- From the Department of Pediatrics (N.F.T., A.C., Y.-J.L., L.W., P.I.C., M.A.A.A., R.K.H., C.J.R., M.R.) and Department of Medicine (V.A.d.J.P., M.A.B.), the Vera Moulton Wall Center for Pulmonary Vascular Disease and the Cardiovascular Institute, Stanford University School of Medicine, CA; and Shriners Hospital for Children, Oregon Health & Science University, Portland (L.Y.S.)
| | - Ying-Ju Lai
- From the Department of Pediatrics (N.F.T., A.C., Y.-J.L., L.W., P.I.C., M.A.A.A., R.K.H., C.J.R., M.R.) and Department of Medicine (V.A.d.J.P., M.A.B.), the Vera Moulton Wall Center for Pulmonary Vascular Disease and the Cardiovascular Institute, Stanford University School of Medicine, CA; and Shriners Hospital for Children, Oregon Health & Science University, Portland (L.Y.S.)
| | - Lingli Wang
- From the Department of Pediatrics (N.F.T., A.C., Y.-J.L., L.W., P.I.C., M.A.A.A., R.K.H., C.J.R., M.R.) and Department of Medicine (V.A.d.J.P., M.A.B.), the Vera Moulton Wall Center for Pulmonary Vascular Disease and the Cardiovascular Institute, Stanford University School of Medicine, CA; and Shriners Hospital for Children, Oregon Health & Science University, Portland (L.Y.S.)
| | - Pin-I Chen
- From the Department of Pediatrics (N.F.T., A.C., Y.-J.L., L.W., P.I.C., M.A.A.A., R.K.H., C.J.R., M.R.) and Department of Medicine (V.A.d.J.P., M.A.B.), the Vera Moulton Wall Center for Pulmonary Vascular Disease and the Cardiovascular Institute, Stanford University School of Medicine, CA; and Shriners Hospital for Children, Oregon Health & Science University, Portland (L.Y.S.)
| | - Miguel A Alejandre Alcazar
- From the Department of Pediatrics (N.F.T., A.C., Y.-J.L., L.W., P.I.C., M.A.A.A., R.K.H., C.J.R., M.R.) and Department of Medicine (V.A.d.J.P., M.A.B.), the Vera Moulton Wall Center for Pulmonary Vascular Disease and the Cardiovascular Institute, Stanford University School of Medicine, CA; and Shriners Hospital for Children, Oregon Health & Science University, Portland (L.Y.S.)
| | - Vinicio A de Jesus Perez
- From the Department of Pediatrics (N.F.T., A.C., Y.-J.L., L.W., P.I.C., M.A.A.A., R.K.H., C.J.R., M.R.) and Department of Medicine (V.A.d.J.P., M.A.B.), the Vera Moulton Wall Center for Pulmonary Vascular Disease and the Cardiovascular Institute, Stanford University School of Medicine, CA; and Shriners Hospital for Children, Oregon Health & Science University, Portland (L.Y.S.)
| | - Rachel K Hopper
- From the Department of Pediatrics (N.F.T., A.C., Y.-J.L., L.W., P.I.C., M.A.A.A., R.K.H., C.J.R., M.R.) and Department of Medicine (V.A.d.J.P., M.A.B.), the Vera Moulton Wall Center for Pulmonary Vascular Disease and the Cardiovascular Institute, Stanford University School of Medicine, CA; and Shriners Hospital for Children, Oregon Health & Science University, Portland (L.Y.S.)
| | - Christopher J Rhodes
- From the Department of Pediatrics (N.F.T., A.C., Y.-J.L., L.W., P.I.C., M.A.A.A., R.K.H., C.J.R., M.R.) and Department of Medicine (V.A.d.J.P., M.A.B.), the Vera Moulton Wall Center for Pulmonary Vascular Disease and the Cardiovascular Institute, Stanford University School of Medicine, CA; and Shriners Hospital for Children, Oregon Health & Science University, Portland (L.Y.S.)
| | - Matthew A Bill
- From the Department of Pediatrics (N.F.T., A.C., Y.-J.L., L.W., P.I.C., M.A.A.A., R.K.H., C.J.R., M.R.) and Department of Medicine (V.A.d.J.P., M.A.B.), the Vera Moulton Wall Center for Pulmonary Vascular Disease and the Cardiovascular Institute, Stanford University School of Medicine, CA; and Shriners Hospital for Children, Oregon Health & Science University, Portland (L.Y.S.)
| | - Lynn Y Sakai
- From the Department of Pediatrics (N.F.T., A.C., Y.-J.L., L.W., P.I.C., M.A.A.A., R.K.H., C.J.R., M.R.) and Department of Medicine (V.A.d.J.P., M.A.B.), the Vera Moulton Wall Center for Pulmonary Vascular Disease and the Cardiovascular Institute, Stanford University School of Medicine, CA; and Shriners Hospital for Children, Oregon Health & Science University, Portland (L.Y.S.)
| | - Marlene Rabinovitch
- From the Department of Pediatrics (N.F.T., A.C., Y.-J.L., L.W., P.I.C., M.A.A.A., R.K.H., C.J.R., M.R.) and Department of Medicine (V.A.d.J.P., M.A.B.), the Vera Moulton Wall Center for Pulmonary Vascular Disease and the Cardiovascular Institute, Stanford University School of Medicine, CA; and Shriners Hospital for Children, Oregon Health & Science University, Portland (L.Y.S.).
| |
Collapse
|
294
|
Maloney JP. Putting skin in the game: dermis-derived stem cells provide insight into familial pulmonary hypertension. Stem Cell Investig 2017; 4:35. [PMID: 28607909 DOI: 10.21037/sci.2017.04.05] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 04/07/2017] [Indexed: 11/06/2022]
Affiliation(s)
- James P Maloney
- Pulmonary Vascular Disease Center, University of Colorado at Denver, Aurora, CO, USA
| |
Collapse
|
295
|
Yang K, Wang J, Lu W. Bone morphogenetic protein signalling in pulmonary hypertension: advances and therapeutic implications. Exp Physiol 2017; 102:1083-1089. [PMID: 28449240 DOI: 10.1113/ep086041] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Accepted: 04/24/2017] [Indexed: 01/07/2023]
Abstract
NEW FINDINGS What is the topic of this review? This review covers recent evidence highlighting the crucial pathophysiological roles and molecular mechanisms of the bone morphogenetic protein (BMP) signalling pathway during the progression of pulmonary hypertension (PH) and discusses targeting of BMP signalling as a new treatment option against PH. What advances does it highlight? A series of breakthrough findings have greatly enriched our understanding about the mechanism of action of BMP signalling in PH and proved the feasibility of BMP targeting strategies in experimental PH models. This review collects these ideas and discusses the frontiers of BMP signalling-targeted PH therapy at different steps of the signal transduction. The bone morphogenetic protein (BMP)-mediated signalling pathway plays crucial roles in the development and progression of pulmonary hypertension (PH). Typical BMP signalling involves BMP ligands, specific transmembrane serine/threonine kinase receptors, cellular responsive kinases and secreted antagonists. As more and more studies have been conducted, the specific protective or pathogenic roles of these molecules within all these subgroups of BMP signalling have been continuously uncovered. Based on this evidence, specific strategies have been designed by targeting these factors as a new treatment approach to PH. In this review, we have collected recent advances in the exciting findings that link BMP signalling with the pathogenesis of PH and we discuss the potential future frontiers in therapeutic design.
Collapse
Affiliation(s)
- Kai Yang
- State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Diseases, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China.,State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China
| | - Jian Wang
- State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Diseases, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China.,Division of Translational and Regenerative Medicine, Department of Medicine, The University of Arizona, Tucson, AZ, USA
| | - Wenju Lu
- State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Diseases, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
296
|
TGF-β activation by bone marrow-derived thrombospondin-1 causes Schistosoma- and hypoxia-induced pulmonary hypertension. Nat Commun 2017; 8:15494. [PMID: 28555642 PMCID: PMC5459967 DOI: 10.1038/ncomms15494] [Citation(s) in RCA: 103] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 04/03/2017] [Indexed: 12/11/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) is an obstructive disease of the precapillary pulmonary arteries. Schistosomiasis-associated PAH shares altered vascular TGF-β signalling with idiopathic, heritable and autoimmune-associated etiologies; moreover, TGF-β blockade can prevent experimental pulmonary hypertension (PH) in pre-clinical models. TGF-β is regulated at the level of activation, but how TGF-β is activated in this disease is unknown. Here we show TGF-β activation by thrombospondin-1 (TSP-1) is both required and sufficient for the development of PH in Schistosoma-exposed mice. Following Schistosoma exposure, TSP-1 levels in the lung increase, via recruitment of circulating monocytes, while TSP-1 inhibition or knockout bone marrow prevents TGF-β activation and protects against PH development. TSP-1 blockade also prevents the PH in a second model, chronic hypoxia. Lastly, the plasma concentration of TSP-1 is significantly increased in subjects with scleroderma following PAH development. Targeting TSP-1-dependent activation of TGF-β could thus be a therapeutic approach in TGF-β-dependent vascular diseases. Thrombospondin-1 (TSP-1) activates latent TGF-β in the extracellular matrix. Here the authors show that inappropriate activation of latent TGF-β in murine, bovine and human lung by monocyte-produced TSP-1 causes pulmonary hypertension, and that interference with the activation process prevents disease development.
Collapse
|
297
|
Mao H, Xie L, Pi X. Low-Density Lipoprotein Receptor-Related Protein-1 Signaling in Angiogenesis. Front Cardiovasc Med 2017; 4:34. [PMID: 28589128 PMCID: PMC5438976 DOI: 10.3389/fcvm.2017.00034] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 05/01/2017] [Indexed: 11/13/2022] Open
Abstract
Low-density lipoprotein receptor-related protein-1 (LRP1) plays multifunctional roles in lipid homeostasis, signaling transduction, and endocytosis. It has been recognized as an endocytic receptor for many ligands and is involved in the signaling pathways of many growth factors or cytokines. Dysregulation of LRP1-dependent signaling events contributes to the development of pathophysiologic processes such as Alzheimer’s disease, atherosclerosis, inflammation, and coagulation. Interestingly, recent studies have linked LRP1 with endothelial function and angiogenesis, which has been underappreciated for a long time. During zebrafish embryonic development, LRP1 is required for the formation of vascular network, especially for the venous development. LRP1 depletion in the mouse embryo proper leads to angiogenic defects and disruption of endothelial integrity. Moreover, in a mouse oxygen-induced retinopathy model, specific depletion of LRP1 in endothelial cells results in abnormal development of neovessels. These loss-of-function studies suggest that LRP1 plays a pivotal role in angiogenesis. The review addresses the recent advances in the roles of LRP1-dependent signaling during angiogenesis.
Collapse
Affiliation(s)
- Hua Mao
- Department of Medicine, Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX, USA
| | - Liang Xie
- Department of Medicine, Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX, USA
| | - Xinchun Pi
- Department of Medicine, Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
298
|
Woodcock HV, José RJ, Jenkins G. Review of the British Thoracic Society Winter Meeting 2016, 7-9 December, London, UK. Thorax 2017; 72:600-665. [PMID: 28473505 DOI: 10.1136/thoraxjnl-2017-210154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 03/27/2017] [Accepted: 04/04/2017] [Indexed: 11/04/2022]
Abstract
This article reviews the British Thoracic Society Winter Meeting 2016 and highlights the new developments in scientific and clinical research across the breadth of respiratory medicine.
Collapse
Affiliation(s)
- Hannah V Woodcock
- Department of Respiratory Medicine, Whipps Cross Hospital, London, UK
| | - Ricardo J José
- Centre for Inflammation and Tissue Repair, University College London, London, UK
| | - Gisli Jenkins
- Centre for Respiratory Research, University of Nottingham, Nottingham, UK
| | | |
Collapse
|
299
|
BMP type II receptor as a therapeutic target in pulmonary arterial hypertension. Cell Mol Life Sci 2017; 74:2979-2995. [PMID: 28447104 PMCID: PMC5501910 DOI: 10.1007/s00018-017-2510-4] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 03/09/2017] [Accepted: 03/17/2017] [Indexed: 12/30/2022]
Abstract
Pulmonary arterial hypertension (PAH) is a chronic disease characterized by a progressive elevation in mean pulmonary arterial pressure. This occurs due to abnormal remodeling of small peripheral lung vasculature resulting in progressive occlusion of the artery lumen that eventually causes right heart failure and death. The most common cause of PAH is inactivating mutations in the gene encoding a bone morphogenetic protein type II receptor (BMPRII). Current therapeutic options for PAH are limited and focused mainly on reversal of pulmonary vasoconstriction and proliferation of vascular cells. Although these treatments can relieve disease symptoms, PAH remains a progressive lethal disease. Emerging data suggest that restoration of BMPRII signaling in PAH is a promising alternative that could prevent and reverse pulmonary vascular remodeling. Here we will focus on recent advances in rescuing BMPRII expression, function or signaling to prevent and reverse pulmonary vascular remodeling in PAH and its feasibility for clinical translation. Furthermore, we summarize the role of described miRNAs that directly target the BMPR2 gene in blood vessels. We discuss the therapeutic potential and the limitations of promising new approaches to restore BMPRII signaling in PAH patients. Different mutations in BMPR2 and environmental/genetic factors make PAH a heterogeneous disease and it is thus likely that the best approach will be patient-tailored therapies.
Collapse
|
300
|
First identification of Krüppel-like factor 2 mutation in heritable pulmonary arterial hypertension. Clin Sci (Lond) 2017; 131:689-698. [DOI: 10.1042/cs20160930] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Revised: 01/27/2017] [Accepted: 02/10/2017] [Indexed: 01/13/2023]
Abstract
Heritable pulmonary arterial hypertension (HPAH) is an autosomal dominantly inherited disease caused by mutations in the bone morphogenic protein receptor 2 (BMPR2) gene and/or genes of its signalling pathway in approximately 85% of patients. We clinically and genetically analysed an HPAH family without mutations in previously described pulmonary arterial hypertension (PAH) genes. Clinical assessment included electrocardiogram, lung function, blood gas analysis, chest X-ray, laboratory testing, echocardiography and right heart catheterization in case of suspected disease. Genetic diagnostics were performed using a PAH-specific gene panel including all known 12 PAH genes and 20 further candidate genes by next-generation sequencing (NGS). HPAH was invasively confirmed in two sisters and their father who died aged 32 years. No signs of HPAH were detected in five first-degree family members. Both sisters were lung transplanted and remained stable during a follow-up of >20 years. We detected a novel missense mutation in the Krüppel-like factor 2 (KLF2) likely leading to a disruption of gene function. The same KLF2 mutation has been described as a recurrent somatic mutation in B-cell lymphoma. Neither the healthy family members carried the mutation nor >120000 controls. These findings point to KLF2 as a new PAH gene. Further studies are needed to assess frequency and implication of KLF2 mutations in PAH patients.
Collapse
|