251
|
Jiang J, Dhakal NP, Guo Y, Andre C, Thompson L, Skalli O, Peng C. Controlled Dynamics of Neural Tumor Cells by Templated Liquid Crystalline Polymer Networks. Adv Healthc Mater 2020; 9:e2000487. [PMID: 32378330 DOI: 10.1002/adhm.202000487] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 04/09/2020] [Indexed: 01/25/2023]
Abstract
The ability to control the alignment and organization of cell populations has great potential for tissue engineering and regenerative medicine. A variety of approaches such as nano/microtopographical patterning, mechanical loading, and nanocomposite synthesis have been developed to engineer scaffolds able to control cellular properties and behaviors. In this work, a patterned liquid crystal polymer network (LCN) film is synthesized by using a nematic liquid crystal template in which the molecular orientations are predesigned by photopatterning technique. Various configurations of polymer networks such as linear and circular patterns are created. When neural tumor cells are plated onto the templated LCN films, the cell alignment, migration, and proliferation are directed in both linear and curvilinear fashions following the pattern of the aligned polymer chains. A complex LCN pattern with zigzag geometry is also fabricated and found to be capable of controlling cell alignment and collective cellular organization. The demonstrated control of cell dynamics and organization by LCN films with various molecular alignments opens new opportunities to design scaffolds to control cultured cell organization in a manner resembling that found in tissues and to develop novel advanced materials for nerve repair, tissue engineering, and regenerative medicine applications.
Collapse
Affiliation(s)
- Jinghua Jiang
- Department of Physics and Materials ScienceThe University of Memphis Memphis TN 38152 USA
| | - Netra Prasad Dhakal
- Department of Physics and Materials ScienceThe University of Memphis Memphis TN 38152 USA
| | - Yubing Guo
- Advanced Materials and Liquid Crystal InstituteKent State University Kent OH 44242 USA
| | - Christian Andre
- Department of Physics and Materials ScienceThe University of Memphis Memphis TN 38152 USA
| | - Lauren Thompson
- Department of BiologyThe University of Memphis Memphis TN 38152 USA
| | - Omar Skalli
- Department of BiologyThe University of Memphis Memphis TN 38152 USA
| | - Chenhui Peng
- Department of Physics and Materials ScienceThe University of Memphis Memphis TN 38152 USA
| |
Collapse
|
252
|
Single-cell approaches to cell competition: High-throughput imaging, machine learning and simulations. Semin Cancer Biol 2020; 63:60-68. [DOI: 10.1016/j.semcancer.2019.05.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 05/09/2019] [Accepted: 05/13/2019] [Indexed: 02/06/2023]
|
253
|
Liverpool TB. Steady-state distributions and nonsteady dynamics in nonequilibrium systems. Phys Rev E 2020; 101:042107. [PMID: 32422705 DOI: 10.1103/physreve.101.042107] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 02/10/2020] [Indexed: 11/07/2022]
Abstract
We search for steady states in a class of fluctuating and driven physical systems that exhibit sustained currents. We find that the physical concept of a steady state, well known for systems at equilibrium, must be generalized to describe such systems. In these, the generalization of a steady state is associated with a stationary probability density of microstates and a deterministic dynamical system whose trajectories the system follows on average. These trajectories are a manifestation of nonstationary macroscopic currents observed in these systems. We determine precise conditions for the steady state to exist as well as the requirements for it to be stable. We illustrate this with some examples.
Collapse
|
254
|
Gompper G, Winkler RG, Speck T, Solon A, Nardini C, Peruani F, Löwen H, Golestanian R, Kaupp UB, Alvarez L, Kiørboe T, Lauga E, Poon WCK, DeSimone A, Muiños-Landin S, Fischer A, Söker NA, Cichos F, Kapral R, Gaspard P, Ripoll M, Sagues F, Doostmohammadi A, Yeomans JM, Aranson IS, Bechinger C, Stark H, Hemelrijk CK, Nedelec FJ, Sarkar T, Aryaksama T, Lacroix M, Duclos G, Yashunsky V, Silberzan P, Arroyo M, Kale S. The 2020 motile active matter roadmap. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2020; 32:193001. [PMID: 32058979 DOI: 10.1088/1361-648x/ab6348] [Citation(s) in RCA: 154] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Activity and autonomous motion are fundamental in living and engineering systems. This has stimulated the new field of 'active matter' in recent years, which focuses on the physical aspects of propulsion mechanisms, and on motility-induced emergent collective behavior of a larger number of identical agents. The scale of agents ranges from nanomotors and microswimmers, to cells, fish, birds, and people. Inspired by biological microswimmers, various designs of autonomous synthetic nano- and micromachines have been proposed. Such machines provide the basis for multifunctional, highly responsive, intelligent (artificial) active materials, which exhibit emergent behavior and the ability to perform tasks in response to external stimuli. A major challenge for understanding and designing active matter is their inherent nonequilibrium nature due to persistent energy consumption, which invalidates equilibrium concepts such as free energy, detailed balance, and time-reversal symmetry. Unraveling, predicting, and controlling the behavior of active matter is a truly interdisciplinary endeavor at the interface of biology, chemistry, ecology, engineering, mathematics, and physics. The vast complexity of phenomena and mechanisms involved in the self-organization and dynamics of motile active matter comprises a major challenge. Hence, to advance, and eventually reach a comprehensive understanding, this important research area requires a concerted, synergetic approach of the various disciplines. The 2020 motile active matter roadmap of Journal of Physics: Condensed Matter addresses the current state of the art of the field and provides guidance for both students as well as established scientists in their efforts to advance this fascinating area.
Collapse
Affiliation(s)
- Gerhard Gompper
- Theoretical Soft Matter and Biophysics, Institute of Complex Systems and Institute for Advanced Simulation, Forschungszentrum Jülich, 52425 Jülich, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
255
|
Crystal-like order and defects in metazoan epithelia with spherical geometry. Sci Rep 2020; 10:7652. [PMID: 32376904 PMCID: PMC7203251 DOI: 10.1038/s41598-020-64598-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 04/20/2020] [Indexed: 01/23/2023] Open
Abstract
Since Robert Hooke studied cork cell patterns in 1665, scientists have been puzzled by why cells form such ordered structures. The laws underlying this type of organization are universal, and we study them comparing the living and non-living two-dimensional systems self-organizing at the spherical surface. Such-type physical systems often possess trigonal order with specific elongated defects, scars and pleats, where the 5-valence and 7-valence vertices alternate. In spite of the fact that the same physical and topological rules are involved in the structural organization of biological systems, such topological defects were never reported in epithelia. We have discovered them in the follicular spherical epithelium of ascidians that are emerging models in developmental biology. Surprisingly, the considered defects appear in the epithelium even when the number of cells in it is significantly less than the previously known threshold value. We explain this result by differences in the cell sizes and check our hypothesis considering the self-assembly of different random size particles on the spherical surface. Scars, pleats and other complex defects found in ascidian samples can play an unexpected and decisive role in the permanent renewal and reorganization of epithelia, which forms or lines many tissues and organs in metazoans.
Collapse
|
256
|
Turiv T, Krieger J, Babakhanova G, Yu H, Shiyanovskii SV, Wei QH, Kim MH, Lavrentovich OD. Topology control of human fibroblast cells monolayer by liquid crystal elastomer. SCIENCE ADVANCES 2020; 6:eaaz6485. [PMID: 32426499 PMCID: PMC7220327 DOI: 10.1126/sciadv.aaz6485] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 03/02/2020] [Indexed: 05/18/2023]
Abstract
Eukaryotic cells in living tissues form dynamic patterns with spatially varying orientational order that affects important physiological processes such as apoptosis and cell migration. The challenge is how to impart a predesigned map of orientational order onto a growing tissue. Here, we demonstrate an approach to produce cell monolayers of human dermal fibroblasts with predesigned orientational patterns and topological defects using a photoaligned liquid crystal elastomer (LCE) that swells anisotropically in an aqueous medium. The patterns inscribed into the LCE are replicated by the tissue monolayer and cause a strong spatial variation of cells phenotype, their surface density, and number density fluctuations. Unbinding dynamics of defect pairs intrinsic to active matter is suppressed by anisotropic surface anchoring allowing the estimation of the elastic characteristics of the tissues. The demonstrated patterned LCE approach has potential to control the collective behavior of cells in living tissues, cell differentiation, and tissue morphogenesis.
Collapse
Affiliation(s)
- Taras Turiv
- Chemical Physics Interdisciplinary Program, Kent State University, Kent, OH 44242, USA
- Advanced Materials and Liquid Crystal Institute, Kent State University, Kent, OH 44242, USA
- Corresponding author. (T.T.); (O.D.L.)
| | - Jess Krieger
- School of Biomedical Sciences, Kent State University, Kent, OH 44242, USA
| | - Greta Babakhanova
- Chemical Physics Interdisciplinary Program, Kent State University, Kent, OH 44242, USA
- Advanced Materials and Liquid Crystal Institute, Kent State University, Kent, OH 44242, USA
| | - Hao Yu
- Chemical Physics Interdisciplinary Program, Kent State University, Kent, OH 44242, USA
- Advanced Materials and Liquid Crystal Institute, Kent State University, Kent, OH 44242, USA
| | - Sergij V. Shiyanovskii
- Advanced Materials and Liquid Crystal Institute, Kent State University, Kent, OH 44242, USA
| | - Qi-Huo Wei
- Chemical Physics Interdisciplinary Program, Kent State University, Kent, OH 44242, USA
- Advanced Materials and Liquid Crystal Institute, Kent State University, Kent, OH 44242, USA
- Department of Physics, Kent State University, Kent, OH 44242, USA
| | - Min-Ho Kim
- School of Biomedical Sciences, Kent State University, Kent, OH 44242, USA
- Department of Biological Sciences, Kent State University, Kent, OH 44242, USA
| | - Oleg D. Lavrentovich
- Chemical Physics Interdisciplinary Program, Kent State University, Kent, OH 44242, USA
- Advanced Materials and Liquid Crystal Institute, Kent State University, Kent, OH 44242, USA
- Department of Physics, Kent State University, Kent, OH 44242, USA
- Corresponding author. (T.T.); (O.D.L.)
| |
Collapse
|
257
|
Hoshika S, Sun X, Kuranaga E, Umetsu D. Reduction of endocytic activity accelerates cell elimination during tissue remodeling of the Drosophila epidermal epithelium. Development 2020; 147:dev.179648. [PMID: 32156754 DOI: 10.1242/dev.179648] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 02/24/2020] [Indexed: 12/22/2022]
Abstract
Epithelial tissues undergo cell turnover both during development and for homeostatic maintenance. Cells that are no longer needed are quickly removed without compromising the barrier function of the tissue. During metamorphosis, insects undergo developmentally programmed tissue remodeling. However, the mechanisms that regulate this rapid tissue remodeling are not precisely understood. Here, we show that the temporal dynamics of endocytosis modulate physiological cell properties to prime larval epidermal cells for cell elimination. Endocytic activity gradually reduces as tissue remodeling progresses. This reduced endocytic activity accelerates cell elimination through the regulation of Myosin II subcellular reorganization, junctional E-cadherin levels, and caspase activation. Whereas the increased Myosin II dynamics accelerates cell elimination, E-cadherin plays a protective role against cell elimination. Reduced E-cadherin is involved in the amplification of caspase activation by forming a positive-feedback loop with caspase. These findings reveal the role of endocytosis in preventing cell elimination and in the cell-property switching initiated by the temporal dynamics of endocytic activity to achieve rapid cell elimination during tissue remodeling.
Collapse
Affiliation(s)
- Shinichiro Hoshika
- Laboratory for Histogenetic Dynamics, Department of Ecological Developmental Adaptability Life Sciences, Graduate School of Life Sciences, Tohoku University, Sendai, 980-8578, Japan
| | - Xiaofei Sun
- Laboratory for Histogenetic Dynamics, Department of Ecological Developmental Adaptability Life Sciences, Graduate School of Life Sciences, Tohoku University, Sendai, 980-8578, Japan
| | - Erina Kuranaga
- Laboratory for Histogenetic Dynamics, Department of Ecological Developmental Adaptability Life Sciences, Graduate School of Life Sciences, Tohoku University, Sendai, 980-8578, Japan
| | - Daiki Umetsu
- Laboratory for Histogenetic Dynamics, Department of Ecological Developmental Adaptability Life Sciences, Graduate School of Life Sciences, Tohoku University, Sendai, 980-8578, Japan
| |
Collapse
|
258
|
Okuda S, Fujimoto K. A Mechanical Instability in Planar Epithelial Monolayers Leads to Cell Extrusion. Biophys J 2020; 118:2549-2560. [PMID: 32333862 PMCID: PMC7231918 DOI: 10.1016/j.bpj.2020.03.028] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 03/09/2020] [Accepted: 03/11/2020] [Indexed: 12/12/2022] Open
Abstract
In cell extrusion, a cell embedded in an epithelial monolayer loses its apical or basal surface and is subsequently squeezed out of the monolayer by neighboring cells. Cell extrusions occur during apoptosis, epithelial-mesenchymal transition, or precancerous cell invasion. They play important roles in embryogenesis, homeostasis, carcinogenesis, and many other biological processes. Although many of the molecular factors involved in cell extrusion are known, little is known about the mechanical basis of cell extrusion. We used a three-dimensional (3D) vertex model to investigate the mechanical stability of cells arranged in a monolayer with 3D foam geometry. We found that when the cells composing the monolayer have homogeneous mechanical properties, cells are extruded from the monolayer when the symmetry of the 3D geometry is broken because of an increase in cell density or a decrease in the number of topological neighbors around single cells. Those results suggest that mechanical instability inherent in the 3D foam geometry of epithelial monolayers is sufficient to drive epithelial cell extrusion. In the situation in which cells in the monolayer actively generate contractile or adhesive forces under the control of intrinsic genetic programs, the forces act to break the symmetry of the monolayer, leading to cell extrusion that is directed to the apical or basal side of the monolayer by the balance of contractile and adhesive forces on the apical and basal sides. Although our analyses are based on a simple mechanical model, our results are in accordance with observations of epithelial monolayers in vivo and consistently explain cell extrusions under a wide range of physiological and pathophysiological conditions. Our results illustrate the importance of a mechanical understanding of cell extrusion and provide a basis by which to link molecular regulation to physical processes.
Collapse
Affiliation(s)
- Satoru Okuda
- WPI Nano Life Science Institute, Kanazawa University, Kakuma-cho, Kanazawa, Japan.
| | - Koichi Fujimoto
- Department of Biological Sciences, Osaka University, Machikaneyama-cho, Toyonaka, Japan
| |
Collapse
|
259
|
He S, Green Y, Saeidi N, Li X, Fredberg JJ, Ji B, Pismen LM. A theoretical model of collective cell polarization and alignment. JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS 2020; 137:103860. [PMID: 33518805 PMCID: PMC7842695 DOI: 10.1016/j.jmps.2019.103860] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Collective cell polarization and alignment play important roles in tissue morphogenesis, wound healing and cancer metastasis. How cells sense the direction and position in these processes, however, has not been fully understood. Here we construct a theoretical model based on describing cell layer as a nemato-elastic medium, by which the cell polarization, cell alignment and cell active contraction are explicitly expressed as functions of components of the nematic order parameter. To determine the order parameter we derive two sets of governing equations, one for the force equilibrium of the system, and the other for the minimization of the system's free energy including the energy of cell polarization and alignment. By solving these coupled governing equations, we can predict the effects of substrate stiffness, geometries of cell layers, external forces and myosin activity on the direction- and position-dependent cell aspect ratio and cell orientation. Moreover, the axisymmetric problem with cells on a ring-like pattern is solved analytically, and the analytical solution for cell aspect ratio are governed by parameter groups which include the stiffness of the cell and the substrate, the strength of myosin activity and the external forces. Our predictions of the cell aspect ratio and orientation are generally comparable to experimental observations. These results show that the pattern of cell polarization is determined by the anisotropic degree of active contractile stress, and suggest a stress-driven polarization mechanism that enables cells to sense their spatial positions to develop direction- and position-dependent behavior. This, in turn, sheds light on the ways to control pattern formation in tissue engineering for potential biomedical applications.
Collapse
Affiliation(s)
- Shijie He
- Department of Applied Mechanics, School of Aerospace Engineering, Beijing Institute of Technology, Beijing 100081, China
- Center for Engineering in Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Yoav Green
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
- Department of Mechanical Engineering, Ben-Gurion University of the Negev, Beersheva 8410501, Israel
| | - Nima Saeidi
- Center for Engineering in Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Xiaojun Li
- Department of Applied Mechanics, School of Aerospace Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Jeffrey J. Fredberg
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Baohua Ji
- Department of Applied Mechanics, School of Aerospace Engineering, Beijing Institute of Technology, Beijing 100081, China
- Department of Engineering Mechanics, Zhejiang University, Hangzhou 310027, China
- Corresponding authors. (B. Ji), (L.M. Pismen)
| | - Len M. Pismen
- Department of Chemical Engineering, Technion – Israel Institute of Technology, Haifa 32000, Israel
- Corresponding authors. (B. Ji), (L.M. Pismen)
| |
Collapse
|
260
|
Wang X, Sun J, Wang Z, Li C, Mao B. EphA7 is required for otic epithelial homeostasis by modulating Claudin6 in Xenopus. Biochem Biophys Res Commun 2020; 526:375-380. [PMID: 32222280 DOI: 10.1016/j.bbrc.2020.03.099] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 03/18/2020] [Indexed: 12/20/2022]
Abstract
Receptor tyrosine kinase EphA7 is specifically expressed in otic region in Xenopus early development. However, its role in otocyst development remains unknown. Knockdown of EphA7 by a specific morpholino oligonucleotide (MO) reduced the size of the otocyst and triggered otic epithelial cell extrusion. Interestingly, EphA7 depletion attenuated the membrane level of the tight junction protein Claudin6 (CLDN6). Utilizing the Cldn6 MO, we further confirmed that CLDN6 attenuation also led to otic epithelial cell extrusion. Our work suggested that EphA7 modulates the otic epithelial homeostasis through stabilizing the CLDN6 membrane level.
Collapse
Affiliation(s)
- Xiaolei Wang
- Medical College, Qingdao University, Qingdao, 266071, China; State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
| | - Jian Sun
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China; Cancer and Developmental Biology Laboratory, National Cancer Institute, National Institute of Health, Frederick, MD, 21702, USA
| | - Zhaobao Wang
- School of Control Science and Engineering, Shandong University, Jinan, 250061, China; Energy-rich Compounds Production by Photosynthetic Carbon Fixation Research Center, College of Life Sciences, Qingdao Agricultural University, Qingdao, 266109, China
| | - Chaocui Li
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
| | - Bingyu Mao
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China.
| |
Collapse
|
261
|
Duclos G, Adkins R, Banerjee D, Peterson MSE, Varghese M, Kolvin I, Baskaran A, Pelcovits RA, Powers TR, Baskaran A, Toschi F, Hagan MF, Streichan SJ, Vitelli V, Beller DA, Dogic Z. Topological structure and dynamics of three-dimensional active nematics. Science 2020; 367:1120-1124. [PMID: 32139540 DOI: 10.1126/science.aaz4547] [Citation(s) in RCA: 92] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 02/07/2020] [Indexed: 12/30/2022]
Abstract
Topological structures are effective descriptors of the nonequilibrium dynamics of diverse many-body systems. For example, motile, point-like topological defects capture the salient features of two-dimensional active liquid crystals composed of energy-consuming anisotropic units. We dispersed force-generating microtubule bundles in a passive colloidal liquid crystal to form a three-dimensional active nematic. Light-sheet microscopy revealed the temporal evolution of the millimeter-scale structure of these active nematics with single-bundle resolution. The primary topological excitations are extended, charge-neutral disclination loops that undergo complex dynamics and recombination events. Our work suggests a framework for analyzing the nonequilibrium dynamics of bulk anisotropic systems as diverse as driven complex fluids, active metamaterials, biological tissues, and collections of robots or organisms.
Collapse
Affiliation(s)
- Guillaume Duclos
- Department of Physics, Brandeis University, Waltham, MA 02453, USA
| | - Raymond Adkins
- Department of Physics, University of California, Santa Barbara, CA 93111, USA
| | - Debarghya Banerjee
- Max Planck Institute for Dynamics and Self-Organization, 37077 Göttingen, Germany.,Instituut-Lorentz, Universiteit Leiden, 2300 RA Leiden, Netherlands
| | | | - Minu Varghese
- Department of Physics, Brandeis University, Waltham, MA 02453, USA
| | - Itamar Kolvin
- Department of Physics, University of California, Santa Barbara, CA 93111, USA
| | - Arvind Baskaran
- Department of Physics, Brandeis University, Waltham, MA 02453, USA
| | | | - Thomas R Powers
- School of Engineering, Brown University, Providence, RI 02912, USA.,Department of Physics, Brown University, Providence, RI 02912, USA
| | - Aparna Baskaran
- Department of Physics, Brandeis University, Waltham, MA 02453, USA
| | - Federico Toschi
- Department of Applied Physics, Eindhoven University of Technology, 5600 MB Eindhoven, Netherlands.,Instituto per le Applicazioni del Calcolo CNR, 00185 Rome, Italy
| | - Michael F Hagan
- Department of Physics, Brandeis University, Waltham, MA 02453, USA
| | | | - Vincenzo Vitelli
- James Frank Institute and Department of Physics, The University of Chicago, Chicago, IL 60637, USA
| | - Daniel A Beller
- Department of Physics, University of California, Merced, CA 95343, USA.
| | - Zvonimir Dogic
- Department of Physics, Brandeis University, Waltham, MA 02453, USA. .,Department of Physics, University of California, Santa Barbara, CA 93111, USA
| |
Collapse
|
262
|
Henkes S, Kostanjevec K, Collinson JM, Sknepnek R, Bertin E. Dense active matter model of motion patterns in confluent cell monolayers. Nat Commun 2020; 11:1405. [PMID: 32179745 PMCID: PMC7075903 DOI: 10.1038/s41467-020-15164-5] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Accepted: 02/07/2020] [Indexed: 11/09/2022] Open
Abstract
Epithelial cell monolayers show remarkable displacement and velocity correlations over distances of ten or more cell sizes that are reminiscent of supercooled liquids and active nematics. We show that many observed features can be described within the framework of dense active matter, and argue that persistent uncoordinated cell motility coupled to the collective elastic modes of the cell sheet is sufficient to produce swirl-like correlations. We obtain this result using both continuum active linear elasticity and a normal modes formalism, and validate analytical predictions with numerical simulations of two agent-based cell models, soft elastic particles and the self-propelled Voronoi model together with in-vitro experiments of confluent corneal epithelial cell sheets. Simulations and normal mode analysis perfectly match when tissue-level reorganisation occurs on times longer than the persistence time of cell motility. Our analytical model quantitatively matches measured velocity correlation functions over more than a decade with a single fitting parameter.
Collapse
Affiliation(s)
- Silke Henkes
- School of Mathematics, University of Bristol, Bristol, BS8 1TW, United Kingdom.
- Institute of Complex Systems and Mathematical Biology, University of Aberdeen, Aberdeen, AB24 3UE, United Kingdom.
| | - Kaja Kostanjevec
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, AB25 2ZD, United Kingdom
| | - J Martin Collinson
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, AB25 2ZD, United Kingdom
| | - Rastko Sknepnek
- School of Science and Engineering, University of Dundee, Dundee, DD1 4HN, United Kingdom.
- School of Life Sciences, University of Dundee, Dundee, DD1 5EH, United Kingdom.
| | - Eric Bertin
- Université Grenoble Alpes and CNRS, LIPHY, F-38000, Grenoble, France.
| |
Collapse
|
263
|
Michel M, Dahmann C. Tissue mechanical properties modulate cell extrusion in the Drosophila abdominal epidermis. Development 2020; 147:147/5/dev179606. [DOI: 10.1242/dev.179606] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 01/28/2020] [Indexed: 01/22/2023]
Abstract
ABSTRACT
The replacement of cells is a common strategy during animal development. In the Drosophila pupal abdomen, larval epidermal cells (LECs) are replaced by adult progenitor cells (histoblasts). Previous work showed that interactions between histoblasts and LECs result in apoptotic extrusion of LECs during early pupal development. Extrusion of cells is closely preceded by caspase activation and is executed by contraction of a cortical actomyosin cable. Here, we identify a population of LECs that extrudes independently of the presence of histoblasts during late pupal development. Extrusion of these LECs is not closely preceded by caspase activation, involves a pulsatile medial actomyosin network, and correlates with a developmental time period when mechanical tension and E-cadherin turnover at adherens junctions is particularly high. Our work reveals a developmental switch in the cell extrusion mechanism that correlates with changes in tissue mechanical properties.
Collapse
Affiliation(s)
- Marcus Michel
- Institute of Genetics, Technische Universität Dresden, 01062 Dresden, Germany
| | - Christian Dahmann
- Institute of Genetics, Technische Universität Dresden, 01062 Dresden, Germany
- Cluster of Excellence Physics of Life, Technische Universität Dresden, 01062 Dresden, Germany
| |
Collapse
|
264
|
Binysh J, Kos Ž, Čopar S, Ravnik M, Alexander GP. Three-Dimensional Active Defect Loops. PHYSICAL REVIEW LETTERS 2020; 124:088001. [PMID: 32167362 DOI: 10.1103/physrevlett.124.088001] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 01/23/2020] [Indexed: 06/10/2023]
Abstract
We describe the flows and morphological dynamics of topological defect lines and loops in three-dimensional active nematics and show, using theory and numerical modeling, that they are governed by the local profile of the orientational order surrounding the defects. Analyzing a continuous span of defect loop profiles, ranging from radial and tangential twist to wedge ±1/2 profiles, we show that the distinct geometries can drive material flow perpendicular or along the local defect loop segment, whose variation around a closed loop can lead to net loop motion, elongation, or compression of shape, or buckling of the loops. We demonstrate a correlation between local curvature and the local orientational profile of the defect loop, indicating dynamic coupling between geometry and topology. To address the general formation of defect loops in three dimensions, we show their creation via bend instability from different initial elastic distortions.
Collapse
Affiliation(s)
- Jack Binysh
- Mathematics Institute, Zeeman Building, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Žiga Kos
- Faculty of Mathematics and Physics, University of Ljubljana, Jadranska 19, 1000 Ljubljana, Slovenia
| | - Simon Čopar
- Faculty of Mathematics and Physics, University of Ljubljana, Jadranska 19, 1000 Ljubljana, Slovenia
| | - Miha Ravnik
- Faculty of Mathematics and Physics, University of Ljubljana, Jadranska 19, 1000 Ljubljana, Slovenia
- Jožef Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia
| | - Gareth P Alexander
- Department of Physics and Centre for Complexity Science, University of Warwick, Coventry CV4 7AL, United Kingdom
| |
Collapse
|
265
|
Ludwig NB, Weirch KL, Alster E, Witten TA, Gardel ML, Dasbiswas K, Vaikuntanathan S. Nucleation and shape dynamics of model nematic tactoids around adhesive colloids. J Chem Phys 2020; 152:084901. [PMID: 32113348 DOI: 10.1063/1.5141997] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Recent experiments have shown how nematically ordered tactoid shaped actin droplets can be reorganized and divided by the action of myosin molecular motors. In this paper, we consider how similar morphological changes can potentially be achieved under equilibrium conditions. Using simulations, both atomistic and continuum, and a simple macroscopic model, we explore how the nucleation dynamics, shape changes, and the final steady state of a nematic tactoid droplet can be modified by interactions with model adhesive colloids that mimic a myosin motor cluster. We show how tactoid reorganization may occur in an equilibrium colloidal-nematic setting. We then suggest based on the simple macroscopic model how the simulation models may be extended to potentially stabilize divided tactoids.
Collapse
Affiliation(s)
- Nicholas B Ludwig
- Department of Chemistry and The James Franck Institute, The University of Chicago, Chicago, Illinois 60637, USA
| | - Kimberly L Weirch
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, Illinois 60637, USA
| | - Eli Alster
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, USA
| | - Thomas A Witten
- Department of Physics and The James Franck Institute, The University of Chicago, Chicago, Illinois 60637, USA
| | - Margaret L Gardel
- Department of Physics and The James Franck Institute, The University of Chicago, Chicago, Illinois 60637, USA
| | - Kinjal Dasbiswas
- Department of Physics, University of California, Merced, Merced, California 95343, USA
| | | |
Collapse
|
266
|
Thijssen K, Metselaar L, Yeomans JM, Doostmohammadi A. Active nematics with anisotropic friction: the decisive role of the flow aligning parameter. SOFT MATTER 2020; 16:2065-2074. [PMID: 32003382 DOI: 10.1039/c9sm01963d] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
We use continuum simulations to study the impact of anisotropic hydrodynamic friction on the emergent flows of active nematics. We show that, depending on whether the active particles align with or tumble in their collectively self-induced flows, anisotropic friction can result in markedly different patterns of motion. In a flow-aligning regime and at high anisotropic friction, the otherwise chaotic flows are streamlined into flow lanes with alternating directions, reproducing the experimental laning state that has been obtained by interfacing microtubule-motor protein mixtures with smectic liquid crystals. Within a flow-tumbling regime, however, we find that no such laning state is possible. Instead, the synergistic effects of friction anisotropy and flow tumbling can lead to the emergence of bound pairs of topological defects that align at an angle to the easy flow direction and navigate together throughout the domain. In addition to confirming the mechanism behind the laning states observed in experiments, our findings emphasise the role of the flow aligning parameter in the dynamics of active nematics.
Collapse
Affiliation(s)
- Kristian Thijssen
- The Rudolf Peierls Centre for Theoretical Physics, Department of Physics, University of Oxford, Parks Road, Oxford OX1 3PU, UK.
| | - Luuk Metselaar
- The Rudolf Peierls Centre for Theoretical Physics, Department of Physics, University of Oxford, Parks Road, Oxford OX1 3PU, UK.
| | - Julia M Yeomans
- The Rudolf Peierls Centre for Theoretical Physics, Department of Physics, University of Oxford, Parks Road, Oxford OX1 3PU, UK.
| | - Amin Doostmohammadi
- The Niels Bohr Institute, University of Copenhagen, Blegdamsvej 17, 2100 Copenhagen, Denmark.
| |
Collapse
|
267
|
Dow LP, Khankhel AH, Abram J, Valentine MT. 3D-printable cell crowding device enables imaging of live cells in compression. Biotechniques 2020; 68:275-278. [PMID: 32096656 DOI: 10.2144/btn-2019-0160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
We designed and fabricated, using low-cost 3D printing technologies, a device that enables direct control of cell density in epithelial monolayers. The device operates by varying the tension of a silicone substrate upon which the cells are adhered. Multiple devices can be manufactured easily and placed in any standard incubator. This allows long-term culturing of cells on pretensioned substrates until the user decreases the tension, thereby inducing compressive forces in plane and subsequent instantaneous cell crowding. Moreover, the low-profile device is completely portable and can be mounted directly onto an inverted optical microscope. This enables visualization of the morphology and dynamics of living cells in stretched or compressed conditions using a wide range of high-resolution microscopy techniques.
Collapse
Affiliation(s)
- Liam P Dow
- Biomolecular Science & Engineering Program, University of California, Santa Barbara, CA 93106, USA
| | - Aimal H Khankhel
- Biomolecular Science & Engineering Program, University of California, Santa Barbara, CA 93106, USA
| | - John Abram
- Department of Mechanical Engineering, University of California, Santa Barbara, CA 93106, USA
| | - Megan T Valentine
- Department of Mechanical Engineering, University of California, Santa Barbara, CA 93106, USA
| |
Collapse
|
268
|
Balcioglu HE, Balasubramaniam L, Stirbat TV, Doss BL, Fardin MA, Mège RM, Ladoux B. A subtle relationship between substrate stiffness and collective migration of cell clusters. SOFT MATTER 2020; 16:1825-1839. [PMID: 31970382 DOI: 10.1039/c9sm01893j] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
The physical cues from the extracellular environment mediates cell signaling spatially and temporally. Cells respond to physical cues from their environment in a non-monotonic fashion. Despite our understanding of the role of substrate rigidity on single cell migration, how cells respond collectively to increasing extracellular matrix stiffness is not well established. Here we patterned multicellular epithelial Madin-Darby canine kidney (MDCK) islands on polyacrylamide gels of varying stiffness and studied their expansion. Our findings show that the MDCK islands expanded faster with increasing stiffness only up to an optimum stiffness, over which the expansion plateaued. We then focused on the expansion of the front of the assemblies and the formation of leader cells. We observed cell front destabilization only above substrate stiffness of a few kPa. The extension of multicellular finger-like structures at the edges of the colonies for intermediate and high stiffnesses from 6 to 60 kPa responded to higher substrate stiffness by increasing focal adhesion areas and actin cable assembly. Additionally, the number of leader cells at the finger-like protrusions increased with stiffness in correlation with an increase of the area of these multicellular protrusions. Consequently, the force profile along the epithelial fingers in the parallel and transverse directions of migration showed an unexpected relationship leading to a global force decrease with the increase of stiffness. Taken together, our findings show that epithelial cell colonies respond to substrate stiffness but in a non-trivial manner that may be of importance to understand morphogenesis and collective cell invasion during tumour progression.
Collapse
Affiliation(s)
- Hayri E Balcioglu
- Mechanobiology Institute, National University of Singapore, Singapore 117411, Singapore
| | | | | | | | | | | | | |
Collapse
|
269
|
Ollech D, Pflästerer T, Shellard A, Zambarda C, Spatz JP, Marcq P, Mayor R, Wombacher R, Cavalcanti-Adam EA. An optochemical tool for light-induced dissociation of adherens junctions to control mechanical coupling between cells. Nat Commun 2020; 11:472. [PMID: 31980653 PMCID: PMC6981158 DOI: 10.1038/s41467-020-14390-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 01/02/2020] [Indexed: 01/19/2023] Open
Abstract
The cadherin-catenin complex at adherens junctions (AJs) is essential for the formation of cell-cell adhesion and epithelium integrity; however, studying the dynamic regulation of AJs at high spatio-temporal resolution remains challenging. Here we present an optochemical tool which allows reconstitution of AJs by chemical dimerization of the force bearing structures and their precise light-induced dissociation. For the dimerization, we reconstitute acto-myosin connection of a tailless E-cadherin by two ways: direct recruitment of α-catenin, and linking its cytosolic tail to the transmembrane domain. Our approach enables a specific ON-OFF switch for mechanical coupling between cells that can be controlled spatially on subcellular or tissue scale via photocleavage. The combination with cell migration analysis and traction force microscopy shows a wide-range of applicability and confirms the mechanical contribution of the reconstituted AJs. Remarkably, in vivo our tool is able to control structural and functional integrity of the epidermal layer in developing Xenopus embryos.
Collapse
Affiliation(s)
- Dirk Ollech
- Department of Cellular Biophysics, Max Planck Institute for Medical Research, Jahnstraße 29, D-69120, Heidelberg, Germany
- Department of Biophysical Chemistry, Institute of Physical Chemistry, Heidelberg University, INF 253, D-69120, Heidelberg, Germany
- Applied Physics Department, Science for Life Laboratory and KTH Royal Technical University, Tomtebodavägen 23A, S-17165, Stockholm, Sweden
| | - Tim Pflästerer
- Department of Cellular Biophysics, Max Planck Institute for Medical Research, Jahnstraße 29, D-69120, Heidelberg, Germany
- Department of Biophysical Chemistry, Institute of Physical Chemistry, Heidelberg University, INF 253, D-69120, Heidelberg, Germany
- Department of Pharmaceutical Chemistry, Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, INF 364, D-69120, Heidelberg, Germany
| | - Adam Shellard
- Department of Cell and Developmental Biology, University College London, London, WC1E 6BT, UK
| | - Chiara Zambarda
- Department of Cellular Biophysics, Max Planck Institute for Medical Research, Jahnstraße 29, D-69120, Heidelberg, Germany
- Department of Biophysical Chemistry, Institute of Physical Chemistry, Heidelberg University, INF 253, D-69120, Heidelberg, Germany
| | - Joachim Pius Spatz
- Department of Cellular Biophysics, Max Planck Institute for Medical Research, Jahnstraße 29, D-69120, Heidelberg, Germany
- Department of Biophysical Chemistry, Institute of Physical Chemistry, Heidelberg University, INF 253, D-69120, Heidelberg, Germany
| | - Philippe Marcq
- PMMH, CNRS, ESPCI Paris, PSL University, Sorbonne Université, Université de Paris, F-75005, Paris, France
| | - Roberto Mayor
- Department of Cell and Developmental Biology, University College London, London, WC1E 6BT, UK
| | - Richard Wombacher
- Department of Pharmaceutical Chemistry, Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, INF 364, D-69120, Heidelberg, Germany.
| | - Elisabetta Ada Cavalcanti-Adam
- Department of Cellular Biophysics, Max Planck Institute for Medical Research, Jahnstraße 29, D-69120, Heidelberg, Germany.
- Department of Biophysical Chemistry, Institute of Physical Chemistry, Heidelberg University, INF 253, D-69120, Heidelberg, Germany.
| |
Collapse
|
270
|
Hoffmann LA, Schakenraad K, Merks RMH, Giomi L. Chiral stresses in nematic cell monolayers. SOFT MATTER 2020; 16:764-774. [PMID: 31830190 DOI: 10.1039/c9sm01851d] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Recent experiments on monolayers of spindle-like cells plated on adhesive stripe-shaped domains have provided a convincing demonstration that certain types of collective phenomena in epithelia are well described by active nematic hydrodynamics. While recovering some of the hallmark predictions of this framework, however, these experiments have also revealed a number of unexpected features that could be ascribed to the existence of chirality over length scales larger than the typical size of a cell. In this article we elaborate on the microscopic origin of chiral stresses in nematic cell monolayers and investigate how chirality affects the motion of topological defects, as well as the collective motion in stripe-shaped domains. We find that chirality introduces a characteristic asymmetry in the collective cellular flow, from which the ratio between chiral and non-chiral active stresses can be inferred by particle-image-velocimetry measurements. Furthermore, we find that chirality changes the nature of the spontaneous flow transition under confinement and that, for specific anchoring conditions, the latter has the structure of an imperfect pitchfork bifurcation.
Collapse
Affiliation(s)
- Ludwig A Hoffmann
- Instituut-Lorentz, Leiden University, P.O. Box 9506, 2300 RA Leiden, The Netherlands.
| | | | | | | |
Collapse
|
271
|
Mesarec L, Góźdź W, Iglič A, Kralj-Iglič V, Virga EG, Kralj S. Normal red blood cells' shape stabilized by membrane's in-plane ordering. Sci Rep 2019; 9:19742. [PMID: 31875042 PMCID: PMC6930264 DOI: 10.1038/s41598-019-56128-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 12/04/2019] [Indexed: 11/19/2022] Open
Abstract
Red blood cells (RBCs) are present in almost all vertebrates and their main function is to transport oxygen to the body tissues. RBCs' shape plays a significant role in their functionality. In almost all mammals in normal conditions, RBCs adopt a disk-like (discocyte) shape, which optimizes their flow properties in vessels and capillaries. Experimentally measured values of the reduced volume (v) of stable discocyte shapes range in a relatively broad window between v ~ 0.58 and 0.8. However, these observations are not supported by existing theoretical membrane-shape models, which predict that discocytic RBC shape is stable only in a very narrow interval of v values, ranging between v ~ 0.59 and 0.65. In this study, we demonstrate that this interval is broadened if a membrane's in-plane ordering is taken into account. We model RBC structures by using a hybrid Helfrich-Landau mesoscopic approach. We show that an extrinsic (deviatoric) curvature free energy term stabilizes the RBC discocyte shapes. In particular, we show on symmetry grounds that the role of extrinsic curvature is anomalously increased just below the nematic in-plane order-disorder phase transition temperature.
Collapse
Affiliation(s)
- L Mesarec
- Laboratory of Biophysics, Faculty of Electrical Engineering, University of Ljubljana, 1000, Ljubljana, Slovenia
| | - W Góźdź
- Institute of Physical Chemistry, Polish Academy of Sciences, 01-224, Warsaw, Poland
| | - A Iglič
- Laboratory of Biophysics, Faculty of Electrical Engineering, University of Ljubljana, 1000, Ljubljana, Slovenia
- Laboratory of Mass Spectrometry and Proteomics, Institute of Biosciences and BioResources, National Research Council of Italy, Napoli, 80132, Italy
| | - V Kralj-Iglič
- Laboratory of Mass Spectrometry and Proteomics, Institute of Biosciences and BioResources, National Research Council of Italy, Napoli, 80132, Italy
- Laboratory of Clinical Biophysics, Faculty of Health Sciences, University of Ljubljana, 1000, Ljubljana, Slovenia
- Laboratory of Clinical Biophysics, Faculty of Medicine, University of Ljubljana, 1000, Ljubljana, Slovenia
| | - E G Virga
- Department of Mathematics, University of Pavia, Via Ferrata 5, 27100, Pavia, Italy
| | - S Kralj
- Department of Physics, Faculty of Natural Sciences and Mathematics, University of Maribor, 2000, Maribor, Slovenia.
- Condensed Matter Physics Department, Jožef Stefan Institute, 1000, Ljubljana, Slovenia.
| |
Collapse
|
272
|
Patelli A, Djafer-Cherif I, Aranson IS, Bertin E, Chaté H. Understanding Dense Active Nematics from Microscopic Models. PHYSICAL REVIEW LETTERS 2019; 123:258001. [PMID: 31922774 DOI: 10.1103/physrevlett.123.258001] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 09/13/2019] [Indexed: 06/10/2023]
Abstract
We study dry, dense active nematics at both particle and continuous levels. Specifically, extending the Boltzmann-Ginzburg-Landau approach, we derive well-behaved hydrodynamic equations from a Vicsek-style model with nematic alignment and pairwise repulsion. An extensive study of the phase diagram shows qualitative agreement between the two levels of description. We find in particular that the dynamics of topological defects strongly depends on parameters and can lead to "arch" solutions forming a globally polar, smecticlike arrangement of Néel walls. We show how these configurations are at the origin of the defect ordered states reported previously. This work offers a detailed understanding of the theoretical description of dense active nematics directly rooted in their microscopic dynamics.
Collapse
Affiliation(s)
- Aurelio Patelli
- Service de Physique de l'Etat Condensé, CEA, CNRS, Université Paris-Saclay, CEA-Saclay, 91191 Gif-sur-Yvette, France
| | - Ilyas Djafer-Cherif
- Service de Physique de l'Etat Condensé, CEA, CNRS, Université Paris-Saclay, CEA-Saclay, 91191 Gif-sur-Yvette, France
- School of Mathematics, University of Bristol, Bristol BS8 1TW, United Kingdom
| | - Igor S Aranson
- Department of Biomedical Engineering, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Eric Bertin
- Univ. Grenoble Alpes, CNRS, LIPhy, 38000 Grenoble, France
| | - Hugues Chaté
- Service de Physique de l'Etat Condensé, CEA, CNRS, Université Paris-Saclay, CEA-Saclay, 91191 Gif-sur-Yvette, France
- Computational Science Research Center, Beijing 100094, China
- LPTMC, Sorbonne Université, CNRS, 75005 Paris, France
| |
Collapse
|
273
|
Zheng S, Lavrenyuk K, Lamson NG, Fein KC, Whitehead KA, Dahl KN. Piperazine Derivatives Enhance Epithelial Cell Monolayer Permeability by Increased Cell Force Generation and Loss of Cadherin Structures. ACS Biomater Sci Eng 2019; 6:367-374. [PMID: 33463243 DOI: 10.1021/acsbiomaterials.9b01660] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
A major obstacle for topical and enteral drug delivery is the poor transport of macromolecular drugs through the epithelium. One potential solution is the use of permeation enhancers that alter epithelial structures. Piperazine derivatives are known permeation enhancers that modulate epithelial structures, reduce transepithelial electrical resistance, and augment the absorption of macromolecular drugs. The mechanism by which piperazine derivatives disrupt the structures of epithelial monolayers is not well understood. Here, the effects of 1-phenylpiperazine and 1-methyl-4-phenylpiperazine are modeled in the epithelial cell line NRK-52E. Live-cell imaging reveals a dose-dependent gross reorganization of monolayers at high concentrations, but reorganization differs based on the piperazine molecule. Results show that low concentrations of piperazine derivatives increase myosin force generation within the cells and do not disrupt the cytoskeletal structure. Also, cytoskeletally attached cadherin junctions are disrupted before tight junctions. In summary, piperazines appear to increase myosin-mediated contraction followed by disruption of cell-cell contacts. These results provide new mechanistic insight into how transient epithelial permeation enhancers act and will inform of the development of future generations of transepithelial delivery systems.
Collapse
Affiliation(s)
| | - Kirill Lavrenyuk
- Molecular Biophysics and Structural Biology, University of Pittsburgh and Carnegie Mellon University, 3501 Fifth Avenue, Pittsburgh, Pennsylvania 15260, United States
| | | | | | | | - Kris Noel Dahl
- Molecular Biophysics and Structural Biology, University of Pittsburgh and Carnegie Mellon University, 3501 Fifth Avenue, Pittsburgh, Pennsylvania 15260, United States
| |
Collapse
|
274
|
Ding H, Guo W, Su B. Imaging Cell‐Matrix Adhesions and Collective Migration of Living Cells by Electrochemiluminescence Microscopy. Angew Chem Int Ed Engl 2019; 59:449-456. [DOI: 10.1002/anie.201911190] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 10/03/2019] [Indexed: 12/22/2022]
Affiliation(s)
- Hao Ding
- Institute of Analytical Chemistry Department of Chemistry Zhejiang University Hangzhou 310058 China
| | - Weiliang Guo
- Institute of Analytical Chemistry Department of Chemistry Zhejiang University Hangzhou 310058 China
| | - Bin Su
- Institute of Analytical Chemistry Department of Chemistry Zhejiang University Hangzhou 310058 China
| |
Collapse
|
275
|
Ding H, Guo W, Su B. Imaging Cell‐Matrix Adhesions and Collective Migration of Living Cells by Electrochemiluminescence Microscopy. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201911190] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Hao Ding
- Institute of Analytical Chemistry Department of Chemistry Zhejiang University Hangzhou 310058 China
| | - Weiliang Guo
- Institute of Analytical Chemistry Department of Chemistry Zhejiang University Hangzhou 310058 China
| | - Bin Su
- Institute of Analytical Chemistry Department of Chemistry Zhejiang University Hangzhou 310058 China
| |
Collapse
|
276
|
Sone K, Ashida Y. Anomalous Topological Active Matter. PHYSICAL REVIEW LETTERS 2019; 123:205502. [PMID: 31809111 DOI: 10.1103/physrevlett.123.205502] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Indexed: 06/10/2023]
Abstract
Active systems exhibit spontaneous flows induced by self-propulsion of microscopic constituents and can reach a nonequilibrium steady state without an external drive. Constructing the analogy between the quantum anomalous Hall insulators and active matter with spontaneous flows, we show that topologically protected sound modes can arise in a steady-state active system in continuum space. We point out that the net vorticity of the steady-state flow, which acts as a counterpart of the gauge field in condensed-matter settings, must vanish under realistic conditions for active systems. The quantum anomalous Hall effect thus provides design principles for realizing topological metamaterials. We propose and analyze the concrete minimal model and numerically calculate its band structure and eigenvectors, demonstrating the emergence of nonzero bulk topological invariants with the corresponding edge sound modes. This new type of topological active systems can potentially expand possibilities for their experimental realizations and may have broad applications to practical active metamaterials. Possible realization of non-Hermitian topological phenomena in active systems is also discussed.
Collapse
Affiliation(s)
- Kazuki Sone
- Department of Applied Physics, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Yuto Ashida
- Department of Applied Physics, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
- Department of Physics, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
277
|
aPKCi triggers basal extrusion of luminal mammary epithelial cells by tuning contractility and vinculin localization at cell junctions. Proc Natl Acad Sci U S A 2019; 116:24108-24114. [PMID: 31699818 PMCID: PMC6883778 DOI: 10.1073/pnas.1906779116] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
This study shows that an oncogenic mammary epithelial cell surrounded by normal cells can extrude basally in vivo and invade surrounding tissues without formation of a primary tumor. Here, we show that overexpression of the key polarity protein atypical protein kinase C ι (aPKCi) is sufficient for triggering basally oriented epithelial cell extrusion and early cell invasion into the mammary gland stroma. Moreover, we highlight the importance of the difference between the mechanical properties of aPKCi-overexpressing cells and those of the normal surrounding cells associated with the decrease of vinculin at the cell junction, which triggers cell segregation, the first step toward promoting and controlling the direction of cell extrusion. Metastasis is the main cause of cancer-related deaths. How a single oncogenic cell evolves within highly organized epithelium is still unknown. Here, we found that the overexpression of the protein kinase atypical protein kinase C ι (aPKCi), an oncogene, triggers basally oriented epithelial cell extrusion in vivo as a potential mechanism for early breast tumor cell invasion. We found that cell segregation is the first step required for basal extrusion of luminal cells and identify aPKCi and vinculin as regulators of cell segregation. We propose that asymmetric vinculin levels at the junction between normal and aPKCi+ cells trigger an increase in tension at these cell junctions. Moreover, we show that aPKCi+ cells acquire promigratory features, including increased vinculin levels and vinculin dynamics at the cell–substratum contacts. Overall, this study shows that a balance between cell contractility and cell–cell adhesion is crucial for promoting basally oriented cell extrusion, a mechanism for early breast cancer cell invasion.
Collapse
|
278
|
Liu Y, Xu GK, Zhang LY, Gao H. Stress-driven cell extrusion can maintain homeostatic cell density in response to overcrowding. SOFT MATTER 2019; 15:8441-8449. [PMID: 31465066 DOI: 10.1039/c9sm01219b] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Epithelial tissues can become overcrowded during proliferation and growth, in which case excessive cells need to be constantly removed. Here, we employed a vertex dynamics model to explore the microscopic mechanisms that govern homeostasis in an overcrowded monolayer of epithelial cells. It is demonstrated that the monolayer under mechanical compression can maintain a constant cell density and an optimal stress level through cell extrusion. Interestingly, cells are always extruded at sites of stress singularity in the monolayer, which may be spontaneously generated through random movements of cell groups near the extruding cells, and the fluctuation of protein molecules aggregating along the cell surface facilitates the restoration of the monolayer to its equilibrium state. Our results provide a foundation to interpret recent experiments as well as shed light on the mechanisms that underlie epithelial development and maintenance.
Collapse
Affiliation(s)
- Yang Liu
- International Center for Applied Mechanics, SVL, Xi'an Jiaotong University, Xi'an 710049, China.
| | | | | | | |
Collapse
|
279
|
You Z, Pearce DJG, Sengupta A, Giomi L. Mono- to Multilayer Transition in Growing Bacterial Colonies. PHYSICAL REVIEW LETTERS 2019; 123:178001. [PMID: 31702266 DOI: 10.1103/physrevlett.123.178001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 06/20/2019] [Indexed: 06/10/2023]
Abstract
The transition from monolayers to multilayered structures in bacterial colonies is a fundamental step in biofilm development. Observed across different morphotypes and species, this transition is triggered within freely growing bacterial microcolonies comprising a few hundred cells. Using a combination of numerical simulations and analytical modeling, here we demonstrate that this transition originates from the competition between growth-induced in-plane active stresses and vertical restoring forces, due to the cell-substrate interactions. Using a simple chainlike colony of laterally confined cells, we show that the transition sets when individual cells become unstable to rotations; thus it is localized and mechanically deterministic. Asynchronous cell division renders the process stochastic, so that all the critical parameters that control the onset of the transition are continuously distributed random variables. Here we demonstrate that the occurrence of the first division in the colony can be approximated as a Poisson process in the limit of large cell numbers. This allows us to approximately calculate the probability distribution function of the position and time associated with the first extrusion. The rate of such a Poisson process can be identified as the order parameter of the transition, thus highlighting its mixed deterministic-stochastic nature.
Collapse
Affiliation(s)
- Zhihong You
- Instituut-Lorentz, Universiteit Leiden, P.O. Box 9506, 2300 RA Leiden, Netherlands
| | - Daniel J G Pearce
- Instituut-Lorentz, Universiteit Leiden, P.O. Box 9506, 2300 RA Leiden, Netherlands
| | - Anupam Sengupta
- Physics and Materials Science Research Unit, University of Luxembourg, 162 A, Avenue de la Faïencerie, Luxembourg City, L-1511 Luxembourg
| | - Luca Giomi
- Instituut-Lorentz, Universiteit Leiden, P.O. Box 9506, 2300 RA Leiden, Netherlands
| |
Collapse
|
280
|
Lee SW, Morishita Y. Critical contractility and cell size for mechanical cell elimination from epithelial tissue. Phys Rev E 2019; 100:032407. [PMID: 31640042 DOI: 10.1103/physreve.100.032407] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Indexed: 11/07/2022]
Abstract
A defense mechanism in epithelial tissue can mechanically eliminate abnormal cells by contracting the cell boundary or area via actomyosin activity. From numerical simulations of the vertex dynamics model and approximate analytical solutions based on deviations from the ground state, here we derived general conditions for mechanical cell elimination (MCE) occurring via cell contraction. In particular, we found that MCE is realized by saddle-node bifurcation in a wide parameter range, and that the size of the eliminated cell is almost constant at the bifurcation point, suggesting the existence of an intrinsic threshold cell area for MCE.
Collapse
Affiliation(s)
- Sang-Woo Lee
- Laboratory for Developmental Morphogeometry, RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo 650-0047, Japan
| | - Yoshihiro Morishita
- Laboratory for Developmental Morphogeometry, RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo 650-0047, Japan.,Precursory Research for Embryonic Science and Technology (PRESTO) Program, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama, 332-0012, Japan
| |
Collapse
|
281
|
Bajpai A, Tong J, Qian W, Peng Y, Chen W. The Interplay Between Cell-Cell and Cell-Matrix Forces Regulates Cell Migration Dynamics. Biophys J 2019; 117:1795-1804. [PMID: 31706566 DOI: 10.1016/j.bpj.2019.10.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 09/18/2019] [Accepted: 10/08/2019] [Indexed: 12/18/2022] Open
Abstract
Cells in vivo encounter and exert forces as they interact with the extracellular matrix (ECM) and neighboring cells during migration. These mechanical forces play crucial roles in regulating cell migratory behaviors. Although a variety of studies have focused on describing single-cell or the collective cell migration behaviors, a fully mechanistic understanding of how the cell-cell (intercellular) and cell-ECM (extracellular) traction forces individually and cooperatively regulate single-cell migration and coordinate multicellular movement in a cellular monolayer is still lacking. Here, we developed an integrated experimental and analytical system to examine both the intercellular and extracellular traction forces acting on individual cells within an endothelial cell colony as well as their roles in guiding cell migratory behaviors (i.e., cell translation and rotation). Combined with force, multipole, and moment analysis, our results revealed that traction force dominates in regulating cell active translation, whereas intercellular force actively modulates cell rotation. Our findings advance the understanding of the intricacies of cell-cell and cell-ECM forces in regulating cellular migratory behaviors that occur during the monolayer development and may yield deeper insights into the single-cell dynamic behaviors during tissue development, embryogenesis, and wound healing.
Collapse
Affiliation(s)
| | - Jie Tong
- Department of Mechanical and Aerospace Engineering
| | - Weiyi Qian
- Department of Mechanical and Aerospace Engineering
| | - Yansong Peng
- Department of Mechanical and Aerospace Engineering
| | - Weiqiang Chen
- Department of Mechanical and Aerospace Engineering; Department of Biomedical Engineering, New York University, Brooklyn, New York.
| |
Collapse
|
282
|
Sohn HRO, Liu CD, Smalyukh II. Schools of skyrmions with electrically tunable elastic interactions. Nat Commun 2019; 10:4744. [PMID: 31628338 PMCID: PMC6802192 DOI: 10.1038/s41467-019-12723-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Accepted: 09/20/2019] [Indexed: 12/03/2022] Open
Abstract
Coexistence of order and fluidity in soft matter often mimics that in biology, allowing for complex dynamics and applications-like displays. In active soft matter, emergent order can arise because of such dynamics. Powered by local energy conversion, this behavior resembles motions in living systems, like schooling of fish. Similar dynamics at cellular levels drive biological processes and generate macroscopic work. Inanimate particles capable of such emergent behavior could power nanomachines, but most active systems have biological origins. Here we show that thousands-to-millions of topological solitons, dubbed “skyrmions”, while each converting macroscopically-supplied electric energy, exhibit collective motions along spontaneously-chosen directions uncorrelated with the direction of electric field. Within these “schools” of skyrmions, we uncover polar ordering, reconfigurable multi-skyrmion clustering and large-scale cohesion mediated by out-of-equilibrium elastic interactions. Remarkably, this behavior arises under conditions similar to those in liquid crystal displays and may enable dynamic materials with strong emergent electro-optic responses. While flocking and schooling are more often associated with birds and fish, these types of behaviour can also be observed in inanimate systems. Here the authors demonstrate schooling of topological solitons in a liquid crystal system powered by oscillating electric fields.
Collapse
Affiliation(s)
- Hayley R O Sohn
- Department of Physics and Materials Science and Engineering Program, University of Colorado, Boulder, CO 80309, USA
| | - Changda D Liu
- Department of Physics and Materials Science and Engineering Program, University of Colorado, Boulder, CO 80309, USA
| | - Ivan I Smalyukh
- Department of Physics and Materials Science and Engineering Program, University of Colorado, Boulder, CO 80309, USA. .,Department of Electrical, Computer, and Energy Engineering and Soft Materials Research Center, University of Colorado, Boulder, CO 80309, USA. .,Renewable and Sustainable Energy Institute, National Renewable Energy Laboratory and University of Colorado, Boulder, CO 80309, USA.
| |
Collapse
|
283
|
Kempf F, Mueller R, Frey E, Yeomans JM, Doostmohammadi A. Active matter invasion. SOFT MATTER 2019; 15:7538-7546. [PMID: 31451816 DOI: 10.1039/c9sm01210a] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Biologically active materials such as bacterial biofilms and eukaryotic cells thrive in confined micro-spaces. Here, we show through numerical simulations that confinement can serve as a mechanical guidance to achieve distinct modes of collective invasion when combined with growth dynamics and the intrinsic activity of biological materials. We assess the dynamics of the growing interface and classify these collective modes of invasion based on the activity of the constituent particles of the growing matter. While at small and moderate activities the active material grows as a coherent unit, we find that blobs of active material collectively detach from the cohort above a well-defined activity threshold. We further characterise the mechanical mechanisms underlying the crossovers between different modes of invasion and quantify their impact on the overall invasion speed.
Collapse
Affiliation(s)
- Felix Kempf
- Arnold Sommerfeld Center for Theoretical Physics and Center for NanoScience, Department of Physics, Ludwig-Maximilians-Universität München - Theresienstr. 37, D-80333 Munich, Germany
| | - Romain Mueller
- The Rudolf Peierls Centre for Theoretical Physics - Clarendon Laboratory, Parks Road, Oxford, OX1 3PU, UK.
| | - Erwin Frey
- Arnold Sommerfeld Center for Theoretical Physics and Center for NanoScience, Department of Physics, Ludwig-Maximilians-Universität München - Theresienstr. 37, D-80333 Munich, Germany
| | - Julia M Yeomans
- The Rudolf Peierls Centre for Theoretical Physics - Clarendon Laboratory, Parks Road, Oxford, OX1 3PU, UK.
| | - Amin Doostmohammadi
- The Rudolf Peierls Centre for Theoretical Physics - Clarendon Laboratory, Parks Road, Oxford, OX1 3PU, UK.
| |
Collapse
|
284
|
Abstract
Cell-cell junctions are specializations of the plasma membrane responsible for physically integrating cells into tissues. We are now beginning to appreciate the diverse impacts that mechanical forces exert upon the integrity and function of these junctions. Currently, this is best understood for cadherin-based adherens junctions in epithelia and endothelia, where cell-cell adhesion couples the contractile cytoskeletons of cells together to generate tissue-scale tension. Junctional tension participates in morphogenesis and tissue homeostasis. Changes in tension can also be detected by mechanotransduction pathways that allow cells to communicate with each other. In this review, we discuss progress in characterising the forces present at junctions in physiological conditions; the cellular mechanisms that generate intrinsic tension and detect changes in tension; and, finally, we consider how tissue integrity is maintained in the face of junctional stresses.
Collapse
|
285
|
Vishwakarma M, Di Russo J. Why does epithelia display heterogeneity? Bridging physical and biological concepts. Biophys Rev 2019; 11:683-687. [PMID: 31494837 PMCID: PMC6815311 DOI: 10.1007/s12551-019-00583-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 08/27/2019] [Indexed: 12/11/2022] Open
Affiliation(s)
- Medhavi Vishwakarma
- School of Cellular and Molecular Medicine, University Walk, University of Bristol, Bristol, BS1 8TD, UK.
- Max Planck Institute for Medical Research, Jahnstrasse 29, 69120, Heidelberg, Germany.
| | - Jacopo Di Russo
- Max Planck Institute for Medical Research, Jahnstrasse 29, 69120, Heidelberg, Germany.
- Interdisciplinary Centre for Clinical Research, RWTH Aachen University, Pauwelstrasse 30, 52074, Aachen, Germany.
| |
Collapse
|
286
|
Cell-Size Pleomorphism Drives Aberrant Clone Dispersal in Proliferating Epithelia. Dev Cell 2019; 51:49-61.e4. [PMID: 31495693 DOI: 10.1016/j.devcel.2019.08.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 06/18/2019] [Accepted: 08/06/2019] [Indexed: 11/22/2022]
Abstract
As epithelial tissues develop, groups of cells related by descent tend to associate in clonal populations rather than dispersing within the cell layer. While this is frequently assumed to be a result of differential adhesion, precise mechanisms controlling clonal cohesiveness remain unknown. Here we employ computational simulations to modulate epithelial cell size in silico and show that junctions between small cells frequently collapse, resulting in clone-cell dispersal among larger neighbors. Consistent with similar dynamics in vivo, we further demonstrate that mosaic disruption of Drosophila Tor generates small cells and results in aberrant clone dispersal in developing wing disc epithelia. We propose a geometric basis for this phenomenon, supported in part by the observation that soap-foam cells exhibit similar size-dependent junctional rearrangements. Combined, these results establish a link between cell-size pleomorphism and the control of epithelial cell packing, with potential implications for understanding tumor cell dispersal in human disease.
Collapse
|
287
|
Mechanical Forces Regulate Cardiomyocyte Myofilament Maturation via the VCL-SSH1-CFL Axis. Dev Cell 2019; 51:62-77.e5. [PMID: 31495694 DOI: 10.1016/j.devcel.2019.08.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 07/02/2019] [Accepted: 08/07/2019] [Indexed: 01/07/2023]
Abstract
Mechanical forces regulate cell behavior and tissue morphogenesis. During cardiac development, mechanical stimuli from the heartbeat are required for cardiomyocyte maturation, but the underlying molecular mechanisms remain unclear. Here, we first show that the forces of the contracting heart regulate the localization and activation of the cytoskeletal protein vinculin (VCL), which we find to be essential for myofilament maturation. To further analyze the role of VCL in this process, we examined its interactome in contracting versus non-contracting cardiomyocytes and, in addition to several known interactors, including actin regulators, identified the slingshot protein phosphatase SSH1. We show how VCL recruits SSH1 and its effector, the actin depolymerizing factor cofilin (CFL), to regulate F-actin rearrangement and promote cardiomyocyte myofilament maturation. Overall, our results reveal that mechanical forces generated by cardiac contractility regulate cardiomyocyte maturation through the VCL-SSH1-CFL axis, providing further insight into how mechanical forces are transmitted intracellularly to regulate myofilament maturation.
Collapse
|
288
|
Heuzé ML, Sankara Narayana GHN, D'Alessandro J, Cellerin V, Dang T, Williams DS, Van Hest JC, Marcq P, Mège RM, Ladoux B. Myosin II isoforms play distinct roles in adherens junction biogenesis. eLife 2019; 8:46599. [PMID: 31486768 PMCID: PMC6756789 DOI: 10.7554/elife.46599] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 09/05/2019] [Indexed: 12/27/2022] Open
Abstract
Adherens junction (AJ) assembly under force is essential for many biological processes like epithelial monolayer bending, collective cell migration, cell extrusion and wound healing. The acto-myosin cytoskeleton acts as a major force-generator during the de novo formation and remodeling of AJ. Here, we investigated the role of non-muscle myosin II isoforms (NMIIA and NMIIB) in epithelial junction assembly. NMIIA and NMIIB differentially regulate biogenesis of AJ through association with distinct actin networks. Analysis of junction dynamics, actin organization, and mechanical forces of control and knockdown cells for myosins revealed that NMIIA provides the mechanical tugging force necessary for cell-cell junction reinforcement and maintenance. NMIIB is involved in E-cadherin clustering, maintenance of a branched actin layer connecting E-cadherin complexes and perijunctional actin fibres leading to the building-up of anisotropic stress. These data reveal unanticipated complementary functions of NMIIA and NMIIB in the biogenesis and integrity of AJ.
Collapse
Affiliation(s)
- Mélina L Heuzé
- Institut Jacques Monod, Université de Paris and CNRS UMR 7592, Paris, France
| | | | - Joseph D'Alessandro
- Institut Jacques Monod, Université de Paris and CNRS UMR 7592, Paris, France
| | - Victor Cellerin
- Institut Jacques Monod, Université de Paris and CNRS UMR 7592, Paris, France
| | - Tien Dang
- Institut Jacques Monod, Université de Paris and CNRS UMR 7592, Paris, France
| | - David S Williams
- Department of Chemistry, College of Science, Swansea University, Swansea, United Kingdom
| | - Jan Cm Van Hest
- Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, Netherlands
| | - Philippe Marcq
- Laboratoire Physique et Mécanique des Milieux Hétérogènes, Sorbonne Université and CNRS UMR 7636, Paris, France
| | - René-Marc Mège
- Institut Jacques Monod, Université de Paris and CNRS UMR 7592, Paris, France
| | - Benoit Ladoux
- Institut Jacques Monod, Université de Paris and CNRS UMR 7592, Paris, France
| |
Collapse
|
289
|
Gagliardi PA, Primo L. Death for life: a path from apoptotic signaling to tissue-scale effects of apoptotic epithelial extrusion. Cell Mol Life Sci 2019; 76:3571-3581. [PMID: 31143959 PMCID: PMC11105432 DOI: 10.1007/s00018-019-03153-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 05/13/2019] [Accepted: 05/16/2019] [Indexed: 12/24/2022]
Abstract
Apoptosis plays a crucial role in clearing old or critically compromised cells, and actively maintains epithelial homeostasis and epithelial morphogenesis during embryo development. But how is the apoptotic signaling pathway able to orchestrate such complex and dynamic multi-cellular morphological events at the tissue scale? In this review we collected the most updated knowledge regarding how apoptosis controls different cytoskeletal components. We describe how apoptosis can control epithelial homeostasis though epithelial extrusion, a highly orchestrated process based on high- order actomyosin structures and on the coordination between the apoptotic and the neighboring cells. Finally, we describe how the synergy among forces generated by multiple apoptotic cells can shape epithelia in embryo development.
Collapse
Affiliation(s)
- Paolo Armando Gagliardi
- Candiolo Cancer Institute-FPO IRCCS, 10060, Candiolo, Italy
- Institute of Cell Biology, University of Bern, Baltzerstrasse 4, 3012, Bern, Switzerland
| | - Luca Primo
- Candiolo Cancer Institute-FPO IRCCS, 10060, Candiolo, Italy.
- Department of Oncology, University of Torino, 10060, Turin, Italy.
| |
Collapse
|
290
|
Leggett SE, Neronha ZJ, Bhaskar D, Sim JY, Perdikari TM, Wong IY. Motility-limited aggregation of mammary epithelial cells into fractal-like clusters. Proc Natl Acad Sci U S A 2019; 116:17298-17306. [PMID: 31413194 PMCID: PMC6717304 DOI: 10.1073/pnas.1905958116] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Migratory cells transition between dispersed individuals and multicellular collectives during development, wound healing, and cancer. These transitions are associated with coordinated behaviors as well as arrested motility at high cell densities, but remain poorly understood at lower cell densities. Here, we show that dispersed mammary epithelial cells organize into arrested, fractal-like clusters at low density in reduced epidermal growth factor (EGF). These clusters exhibit a branched architecture with a fractal dimension of [Formula: see text], reminiscent of diffusion-limited aggregation of nonliving colloidal particles. First, cells display diminished motility in reduced EGF, which permits irreversible adhesion upon cell-cell contact. Subsequently, leader cells emerge that guide collectively migrating strands and connect clusters into space-filling networks. Thus, this living system exhibits gelation-like arrest at low cell densities, analogous to the glass-like arrest of epithelial monolayers at high cell densities. We quantitatively capture these behaviors with a jamming-like phase diagram based on local cell density and EGF. These individual to collective transitions represent an intriguing link between living and nonliving systems, with potential relevance for epithelial morphogenesis into branched architectures.
Collapse
Affiliation(s)
- Susan E Leggett
- School of Engineering, Center for Biomedical Engineering, Brown University, Providence, RI 02912
- Pathobiology Graduate Program, Brown University, Providence, RI 02912
| | - Zachary J Neronha
- School of Engineering, Center for Biomedical Engineering, Brown University, Providence, RI 02912
| | - Dhananjay Bhaskar
- School of Engineering, Center for Biomedical Engineering, Brown University, Providence, RI 02912
| | - Jea Yun Sim
- School of Engineering, Center for Biomedical Engineering, Brown University, Providence, RI 02912
| | - Theodora Myrto Perdikari
- School of Engineering, Center for Biomedical Engineering, Brown University, Providence, RI 02912
| | - Ian Y Wong
- School of Engineering, Center for Biomedical Engineering, Brown University, Providence, RI 02912;
- Pathobiology Graduate Program, Brown University, Providence, RI 02912
| |
Collapse
|
291
|
Sakanoue H, Sohn WY, Katayama K. Molecular Orientation Change Nearby Topological Defects Observed by Photo-Induced Polarization/Phase Microscopy. ACS OMEGA 2019; 4:13936-13942. [PMID: 31497711 PMCID: PMC6714601 DOI: 10.1021/acsomega.9b01611] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Accepted: 07/30/2019] [Indexed: 06/10/2023]
Abstract
Topological defects in liquid crystals (LCs) have been intensively studied and intentionally generated in an organized way recently because they could control the alignment and motion of LCs. We studied how the topological defects could change the molecular orientation/alignment from the observation of photo-induced orientation change of a photo-responsive LC. The photo-induced dynamics was observed by an LED-induced time-resolved polarization/phase microscopy with white light illumination. From the color image sequence, we found that the molecular orientation change started from the topological defects and the orientation change propagated as a pair of defects and was connected, and further disordering was induced as a next step after the initial orientation change finished.
Collapse
Affiliation(s)
- Haruka Sakanoue
- Department
of Applied Chemistry, Chuo University, Tokyo 112-8551, Japan
| | - Woon Yong Sohn
- Department
of Applied Chemistry, Chuo University, Tokyo 112-8551, Japan
| | - Kenji Katayama
- Department
of Applied Chemistry, Chuo University, Tokyo 112-8551, Japan
- PRESTO, Japan
Science and Technology Agency (JST), Kawaguchi 332-0012, Saitama, Japan
| |
Collapse
|
292
|
Matamoro-Vidal A, Levayer R. Multiple Influences of Mechanical Forces on Cell Competition. Curr Biol 2019; 29:R762-R774. [DOI: 10.1016/j.cub.2019.06.030] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
293
|
Bain N, Bartolo D. Dynamic response and hydrodynamics of polarized crowds. Science 2019; 363:46-49. [PMID: 30606837 DOI: 10.1126/science.aat9891] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 07/21/2018] [Accepted: 11/09/2018] [Indexed: 11/02/2022]
Abstract
Modeling crowd motion is central to situations as diverse as risk prevention in mass events and visual effects rendering in the motion picture industry. The difficulty of performing quantitative measurements in model experiments has limited our ability to model pedestrian flows. We use tens of thousands of road-race participants in starting corrals to elucidate the flowing behavior of polarized crowds by probing its response to boundary motion. We establish that speed information propagates over system-spanning scales through polarized crowds, whereas orientational fluctuations are locally suppressed. Building on these observations, we lay out a hydrodynamic theory of polarized crowds and demonstrate its predictive power. We expect this description of human groups as active continua to provide quantitative guidelines for crowd management.
Collapse
Affiliation(s)
- Nicolas Bain
- Laboratoire de Physique, ENS de Lyon, Université de Lyon, Université Claude Bernard, CNRS, F-69342 Lyon, France.
| | - Denis Bartolo
- Laboratoire de Physique, ENS de Lyon, Université de Lyon, Université Claude Bernard, CNRS, F-69342 Lyon, France.
| |
Collapse
|
294
|
Abstract
Mechanical forces drive the remodeling of tissues during morphogenesis. This relies on the transmission of forces between cells by cadherin-based adherens junctions, which couple the force-generating actomyosin cytoskeletons of neighboring cells. Moreover, components of cadherin adhesions adopt force-dependent conformations that induce changes in the composition of adherens junctions, enabling transduction of mechanical forces into an intracellular response. Cadherin mechanotransduction can mediate reinforcement of cell–cell adhesions to withstand forces but also induce biochemical signaling to regulate cell behavior or direct remodeling of cell–cell adhesions to enable cell rearrangements. By transmission and transduction of mechanical forces, cadherin adhesions coordinate cellular behaviors underlying morphogenetic processes of collective cell migration, cell division, and cell intercalation. Here, we review recent advances in our understanding of this central role of cadherin adhesions in force-dependent regulation of morphogenesis.
Collapse
Affiliation(s)
- Willem-Jan Pannekoek
- Molecular Cancer Research, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Johan de Rooij
- Molecular Cancer Research, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Martijn Gloerich
- Molecular Cancer Research, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
295
|
Peyret G, Mueller R, d'Alessandro J, Begnaud S, Marcq P, Mège RM, Yeomans JM, Doostmohammadi A, Ladoux B. Sustained Oscillations of Epithelial Cell Sheets. Biophys J 2019; 117:464-478. [PMID: 31307676 DOI: 10.1016/j.bpj.2019.06.013] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 06/11/2019] [Accepted: 06/14/2019] [Indexed: 12/22/2022] Open
Abstract
Morphological changes during development, tissue repair, and disease largely rely on coordinated cell movements and are controlled by the tissue environment. Epithelial cell sheets are often subjected to large-scale deformation during tissue formation. The active mechanical environment in which epithelial cells operate have the ability to promote collective oscillations, but how these cellular movements are generated and relate to collective migration remains unclear. Here, combining in vitro experiments and computational modeling, we describe a form of collective oscillations in confined epithelial tissues in which the oscillatory motion is the dominant contribution to the cellular movements. We show that epithelial cells exhibit large-scale coherent oscillations when constrained within micropatterns of varying shapes and sizes and that their period and amplitude are set by the smallest confinement dimension. Using molecular perturbations, we then demonstrate that force transmission at cell-cell junctions and its coupling to cell polarity are pivotal for the generation of these collective movements. We find that the resulting tissue deformations are sufficient to trigger osillatory mechanotransduction of YAP within cells, potentially affecting a wide range of cellular processes.
Collapse
Affiliation(s)
- Grégoire Peyret
- Institut Jacques Monod, CNRS UMR 7592 et Université Paris Diderot, Paris, France
| | - Romain Mueller
- The Rudolf Peierls Centre for Theoretical Physics, University of Oxford, Oxford, United Kingdom
| | - Joseph d'Alessandro
- Institut Jacques Monod, CNRS UMR 7592 et Université Paris Diderot, Paris, France
| | - Simon Begnaud
- Institut Jacques Monod, CNRS UMR 7592 et Université Paris Diderot, Paris, France
| | - Philippe Marcq
- Laboratoire Physique et Mécanique des Milieux Hétérogènes, CNRS UMR 7636, Sorbonne Université, ESPCI, Paris, France
| | - René-Marc Mège
- Institut Jacques Monod, CNRS UMR 7592 et Université Paris Diderot, Paris, France
| | - Julia M Yeomans
- The Rudolf Peierls Centre for Theoretical Physics, University of Oxford, Oxford, United Kingdom
| | - Amin Doostmohammadi
- The Rudolf Peierls Centre for Theoretical Physics, University of Oxford, Oxford, United Kingdom.
| | - Benoît Ladoux
- Institut Jacques Monod, CNRS UMR 7592 et Université Paris Diderot, Paris, France.
| |
Collapse
|
296
|
Cai P, Li Z, Keneth ES, Wang L, Wan C, Jiang Y, Hu B, Wu YL, Wang S, Lim CT, Makeyev EV, Magdassi S, Chen X. Differential Homeostasis of Sessile and Pendant Epithelium Reconstituted in a 3D-Printed "GeminiChip". ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1900514. [PMID: 31081206 DOI: 10.1002/adma.201900514] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 04/18/2019] [Indexed: 06/09/2023]
Abstract
Local mechanical cues can affect crucial fate decisions of living cells. Transepithelial stress has been discussed in the context of epithelial monolayers, but the lack of appropriate experimental systems leads current studies to approximate it simply as an in-plane stress. To evaluate possible contribution of force vectors acting in other directions, double epithelium in a 3D-printed "GeminiChip" containing a sessile and a pendant channel is reconstituted. Intriguingly, the sessile epithelia is prone to apoptotic cell extrusion upon crowding, whereas the pendant counterpart favors live cell delamination. Transcriptome analyses show upregulation of RhoA, BMP2, and hypoxia-signaling genes in the pendant epithelium, consistent with the onset of an epithelial-mesenchymal transition program. HepG2 microtumor spheroids also display differential spreading patterns in the sessile and pendant configuration. Using this multilayered GeminiChip, these results uncover a progressive yet critical role of perpendicular force vectors in collective cell behaviors and point at fundamental importance of these forces in the biology of cancer.
Collapse
Affiliation(s)
- Pingqiang Cai
- Innovative Center for Flexible Devices (iFLEX), School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Zhuyun Li
- Innovative Center for Flexible Devices (iFLEX), School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Ela Sachyani Keneth
- Institute of Chemistry, Centre for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel
| | - Luying Wang
- CAS Key Laboratory of Bioinspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Science, Beijing, 100190, P. R. China
| | - Changjin Wan
- Innovative Center for Flexible Devices (iFLEX), School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Ying Jiang
- Innovative Center for Flexible Devices (iFLEX), School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Benhui Hu
- Innovative Center for Flexible Devices (iFLEX), School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Yun-Long Wu
- Innovative Center for Flexible Devices (iFLEX), School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Shutao Wang
- CAS Key Laboratory of Bioinspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Science, Beijing, 100190, P. R. China
| | - Chwee Teck Lim
- Mechanobiology Institute, Department of Biomedical Engineering, National University of Singapore, 5A Engineering Drive 1, Singapore, 117411, Singapore
| | - Eugene V Makeyev
- Centre for Developmental Neurobiology, King's College London, New Hunt's House, London, SE1 1UL, UK
| | - Shlomo Magdassi
- Institute of Chemistry, Centre for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel
| | - Xiaodong Chen
- Innovative Center for Flexible Devices (iFLEX), School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| |
Collapse
|
297
|
Yeo MS, Subhash VV, Suda K, Balcıoğlu HE, Zhou S, Thuya WL, Loh XY, Jammula S, Peethala PC, Tan SH, Xie C, Wong FY, Ladoux B, Ito Y, Yang H, Goh BC, Wang L, Yong WP. FBXW5 Promotes Tumorigenesis and Metastasis in Gastric Cancer via Activation of the FAK-Src Signaling Pathway. Cancers (Basel) 2019; 11:cancers11060836. [PMID: 31213005 PMCID: PMC6627937 DOI: 10.3390/cancers11060836] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 06/10/2019] [Accepted: 06/14/2019] [Indexed: 12/26/2022] Open
Abstract
F-box/WD repeat-containing protein 5 (FBXW5) is a member of the FBXW subclass of F-box proteins. Despite its known function as a component of the Skp1-Cullin-F-box (SCF) ubiquitin ligase complex, the role of FBXW5 in gastric cancer tumorigenesis and metastasis has not been investigated. The present study investigates the role of FBXW5 in tumorigenesis and metastasis, as well as the regulation of key signaling pathways in gastric cancer; using in-vitro FBXW5 knockdown/overexpression cell line and in-vivo models. In-vitro knockdown of FBXW5 results in a decrease in cell proliferation and cell cycle progression, with a concomitant increase in cell apoptosis and caspase-3 activity. Furthermore, knockdown of FBXW5 also leads to a down regulation in cell migration and adhesion, characterized by a reduction in actin polymerization, focal adhesion turnover and traction forces. This study also delineates the mechanistic role of FBXW5 in oncogenic signaling as its inhibition down regulates RhoA-ROCK 1 (Rho-associated protein kinase 1) and focal adhesion kinase (FAK) signaling cascades. Overexpression of FBXW5 promotes in-vivo tumor growth, whereas its inhibition down regulates in-vivo tumor metastasis. When considered together, our study identifies the novel oncogenic role of FBXW5 in gastric cancer and draws further interest regarding its clinical utility as a potential therapeutic target.
Collapse
Affiliation(s)
- Mei Shi Yeo
- Department of Haematology-Oncology, National University Hospital of Singapore, Singapore 119228, Singapore.
| | - Vinod Vijay Subhash
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore.
- Lowy Cancer Research Centre, University of New South Wales, Sydney 20152, Australia.
| | - Kazuto Suda
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore.
| | - Hayri Emrah Balcıoğlu
- Mechanobiology Institute, National University of Singapore, Singapore 117411, Singapore.
| | - Siqin Zhou
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore.
| | - Win Lwin Thuya
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore.
| | - Xin Yi Loh
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore.
| | - Sriganesh Jammula
- Cancer Research UK Cambridge Institute, University of Cambridge, CB2 0RE Cambridge, UK.
| | - Praveen C Peethala
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore.
| | - Shi Hui Tan
- Department of Haematology-Oncology, National University Hospital of Singapore, Singapore 119228, Singapore.
| | - Chen Xie
- Department of Haematology-Oncology, National University Hospital of Singapore, Singapore 119228, Singapore.
| | - Foong Ying Wong
- Department of Haematology-Oncology, National University Hospital of Singapore, Singapore 119228, Singapore.
| | - Benoit Ladoux
- Mechanobiology Institute, National University of Singapore, Singapore 117411, Singapore.
- Institut Jacques Monod, Centre National de la Recherche Scientifique, CNRS UMR 7592, Université Paris-Diderot, CEDEX 13, 75205 Paris, France.
| | - Yoshiaki Ito
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore.
| | - Henry Yang
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore.
| | - Boon Cher Goh
- Department of Haematology-Oncology, National University Hospital of Singapore, Singapore 119228, Singapore.
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore.
| | - Lingzhi Wang
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore.
| | - Wei Peng Yong
- Department of Haematology-Oncology, National University Hospital of Singapore, Singapore 119228, Singapore.
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore.
| |
Collapse
|
298
|
Morales-Navarrete H, Nonaka H, Scholich A, Segovia-Miranda F, de Back W, Meyer K, Bogorad RL, Koteliansky V, Brusch L, Kalaidzidis Y, Jülicher F, Friedrich BM, Zerial M. Liquid-crystal organization of liver tissue. eLife 2019; 8:e44860. [PMID: 31204997 PMCID: PMC6598764 DOI: 10.7554/elife.44860] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 06/14/2019] [Indexed: 12/13/2022] Open
Abstract
Functional tissue architecture originates by self-assembly of distinct cell types, following tissue-specific rules of cell-cell interactions. In the liver, a structural model of the lobule was pioneered by Elias in 1949. This model, however, is in contrast with the apparent random 3D arrangement of hepatocytes. Since then, no significant progress has been made to derive the organizing principles of liver tissue. To solve this outstanding problem, we computationally reconstructed 3D tissue geometry from microscopy images of mouse liver tissue and analyzed it applying soft-condensed-matter-physics concepts. Surprisingly, analysis of the spatial organization of cell polarity revealed that hepatocytes are not randomly oriented but follow a long-range liquid-crystal order. This does not depend exclusively on hepatocytes receiving instructive signals by endothelial cells, since silencing Integrin-β1 disrupted both liquid-crystal order and organization of the sinusoidal network. Our results suggest that bi-directional communication between hepatocytes and sinusoids underlies the self-organization of liver tissue.
Collapse
Affiliation(s)
| | - Hidenori Nonaka
- Max Planck Institute of Molecular Cell Biology and GeneticsDresdenGermany
| | - André Scholich
- Max Planck Institute for the Physics of Complex SystemsDresdenGermany
| | | | - Walter de Back
- Institute for Medical Informatics and Biometry, Faculty of Medicine Carl Gustav CarusTechnische Universität DresdenDresdenGermany
- Centre for Information Services and High Performance ComputingTechnische Universität DresdenDresdenGermany
| | - Kirstin Meyer
- Max Planck Institute of Molecular Cell Biology and GeneticsDresdenGermany
| | - Roman L Bogorad
- David H. Koch Institute for Integrative Cancer ResearchMassachusetts Institute of TechnologyCambridgeUnited States
| | - Victor Koteliansky
- Skolkovo Institute of Science and TechnologySkolkovoRussia
- Department of ChemistryMV Lomonosov Moscow State UniversityMoscowRussia
| | - Lutz Brusch
- Centre for Information Services and High Performance ComputingTechnische Universität DresdenDresdenGermany
| | - Yannis Kalaidzidis
- Max Planck Institute of Molecular Cell Biology and GeneticsDresdenGermany
| | - Frank Jülicher
- Max Planck Institute for the Physics of Complex SystemsDresdenGermany
- Cluster of Excellence Physics of LifeTU DresdenDresdenGermany
| | - Benjamin M Friedrich
- Cluster of Excellence Physics of LifeTU DresdenDresdenGermany
- Center for Advancing Electronics DresdenTechnische Universität DresdenDresdenGermany
| | - Marino Zerial
- Max Planck Institute of Molecular Cell Biology and GeneticsDresdenGermany
- Cluster of Excellence Physics of LifeTU DresdenDresdenGermany
| |
Collapse
|
299
|
Bächer C, Gekle S. Computational modeling of active deformable membranes embedded in three-dimensional flows. Phys Rev E 2019; 99:062418. [PMID: 31330647 DOI: 10.1103/physreve.99.062418] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Indexed: 06/10/2023]
Abstract
Active gel theory has recently been very successful in describing biologically active materials such as actin filaments or moving bacteria in temporally fixed and simple geometries such as cubes or spheres. Here we develop a computational algorithm to compute the dynamic evolution of an arbitrarily shaped, deformable thin membrane of active material embedded in a three-dimensional flowing liquid. For this, our algorithm combines active gel theory with the classical theory of thin elastic shells. To compute the actual forces resulting from active stresses, we apply a parabolic fitting procedure to the triangulated membrane surface. Active forces are then dynamically coupled via an immersed-boundary method to the surrounding fluid whose dynamics can be solved by any standard, e.g., Lattice-Boltzmann, flow solver. We validate our algorithm using the Green's functions of Berthoumieux et al. [New J. Phys. 16, 065005 (2014)10.1088/1367-2630/16/6/065005] for an active cylindrical membrane subjected (i) to a locally increased active stress and (ii) to a homogeneous active stress. For the latter scenario, we predict in addition a nonaxisymmetric instability. We highlight the versatility of our method by analyzing the flow field inside an actively deforming cell embedded in external shear flow. Further applications may be cytoplasmic streaming or active membranes in blood flows.
Collapse
Affiliation(s)
- Christian Bächer
- Biofluid Simulation and Modeling, Theoretische Physik VI, Universität Bayreuth, Universitätsstrasse 30, Bayreuth, Germany
| | - Stephan Gekle
- Biofluid Simulation and Modeling, Theoretische Physik VI, Universität Bayreuth, Universitätsstrasse 30, Bayreuth, Germany
| |
Collapse
|
300
|
Emergence of active nematics in chaining bacterial biofilms. Nat Commun 2019; 10:2285. [PMID: 31123251 PMCID: PMC6533293 DOI: 10.1038/s41467-019-10311-z] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 05/01/2019] [Indexed: 01/06/2023] Open
Abstract
Growing tissue and bacterial colonies are active matter systems where cell divisions and cellular motion generate active stress. Although they operate in the non-equilibrium regime, these biological systems can form large-scale ordered structures. How mechanical instabilities drive the dynamics of active matter systems and form ordered structures are not well understood. Here, we use chaining Bacillus subtilis, also known as a biofilm, to study the relation between mechanical instabilities and nematic ordering. We find that bacterial biofilms have intrinsic length scales above which a series of mechanical instabilities occur. Localized stress and friction drive buckling and edge instabilities which further create nematically aligned structures and topological defects. We also observe that topological defects control stress distribution and initiate the formation of sporulation sites by creating three-dimensional structures. In this study we propose an alternative active matter platform to study the essential roles of mechanics in growing biological tissue.
Collapse
|