251
|
Steinberg SF. Decoding the Cardiac Actions of Protein Kinase D Isoforms. Mol Pharmacol 2021; 100:558-567. [PMID: 34531296 PMCID: PMC8626784 DOI: 10.1124/molpharm.121.000341] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 09/07/2021] [Indexed: 11/22/2022] Open
Abstract
Protein kinase D (PKD) consists of a family of three structurally related enzymes that play key roles in a wide range of biological functions that contribute to the evolution of cardiac hypertrophy and heart failure. PKD1 (the founding member of this enzyme family) has been implicated in the phosphorylation of substrates that regulate cardiac hypertrophy, contraction, and susceptibility to ischemia/reperfusion injury, and de novo PRKD1 (protein kinase D1 gene) mutations have been identified in patients with syndromic congenital heart disease. However, cardiomyocytes coexpress all three PKDs. Although stimulus-specific activation patterns for PKD1, PKD2, and PKD3 have been identified in cardiomyocytes, progress toward identifying PKD isoform-specific functions in the heart have been hampered by significant gaps in our understanding of the molecular mechanisms that regulate PKD activity. This review incorporates recent conceptual breakthroughs in our understanding of various alternative mechanisms for PKD activation, with an emphasis on recent evidence that PKDs activate certain effector responses as dimers, to consider the role of PKD isoforms in signaling pathways that drive cardiac hypertrophy and ischemia/reperfusion injury. The focus is on whether the recently identified activation mechanisms that enhance the signaling repertoire of PKD family enzymes provide novel therapeutic strategies to target PKD enzymes and prevent or slow the evolution of cardiac injury and pathological cardiac remodeling. SIGNIFICANCE STATEMENT: PKD isoforms regulate a large number of fundamental biological processes, but the understanding of the biological actions of individual PKDs (based upon studies using adenoviral overexpression or gene-silencing methods) remains incomplete. This review focuses on dimerization, a recently identified mechanism for PKD activation, and the notion that this mechanism provides a strategy to develop novel PKD-targeted pharmaceuticals that restrict proliferation, invasion, or angiogenesis in cancer and prevent or slow the evolution of cardiac injury and pathological cardiac remodeling.
Collapse
|
252
|
Gutierrez-Aguilar R, Grayson BE, Kim DH, Yalamanchili S, Calcagno ML, Woods SC, Seeley RJ. CNS GNPDA2 Does Not Control Appetite, but Regulates Glucose Homeostasis. Front Nutr 2021; 8:787470. [PMID: 34912841 PMCID: PMC8666973 DOI: 10.3389/fnut.2021.787470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 11/08/2021] [Indexed: 11/13/2022] Open
Abstract
GNPDA2 has been associated with human obesity and type-2 diabetes by using a GWAS approach. GNPDA2 is an enzyme involved in the hexosamine biosynthesis pathway, which is known to be important for nutrient sensing in various organism. Its counter enzyme, GFAT, has previously been shown to be important to the development of insulin resistance in diabetes. The implication of GNPDA2 and GFAT in metabolism is scarce and the effect of both enzymes over appetite and glucose homeostasis is unknown. Aim: Identify the role of GNPDA2 and GFAT in nutrient sensing circuits of the CNS that are important for the regulation of both appetite and glucose homeostasis. Methods: Using Long Evans rats, we administered either a GNPDA2 or GFAT antagonist or vehicle in i3vt. Key Findings: GNPDA2 is highly expressed in hypothalamus and adipose tissue, followed by muscle and liver. GNPDA2 is expressed in different hypothalamic nuclei (ARC, DMH, LHA, PVN). GNPDA2 is downregulated in hypothalamus under diet-induced obesity (as previously described), but GFAT expression does not change. Moreover, i3vt infusion of GNPDA2 or GFAT inhibitor resulted in increased c-Fos in areas related to appetite and glucose homeostasis control as PVN and DMH and to a lesser extent in the LHA and ARC. Central inhibition of GNPDA2 does not alter either acute food intake or body weight; however, GFAT inhibition diminished appetite and body weight due to visceral illness. In addition, central administration of the GNPDA2 antagonist, prior to an intraperitoneal glucose tolerance test, resulted in glucose intolerance in comparison to vehicle without altering insulin levels. Significance: These results suggest that central GNPDA2 does not control appetite, but regulates glucose homeostasis.
Collapse
Affiliation(s)
- Ruth Gutierrez-Aguilar
- División de Investigación, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
- Laboratorio de Enfermedades Metabólicas: Obesidad y Diabetes, Hospital Infantil de México “Federico Gómez”, Mexico City, Mexico
| | - Bernadette E. Grayson
- Department of Neurobiology and Anatomical Science, University of Mississippi Medical Center, Jackson, MS, United States
| | - Dong-Hoon Kim
- Department of Pharmacology, Korea University College of Medicine, Seoul, South Korea
| | - Suma Yalamanchili
- College of Medicine, University of Cincinnati, Cincinnati, OH, United States
| | - Mario L. Calcagno
- Laboratorio de Fisicoquímica e Ingeniería de Proteínas, Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
| | - Stephen C. Woods
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, OH, United States
| | - Randy J. Seeley
- North Campus Research Complex, Department of Surgery, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
253
|
Toumba M, Fanis P, Vlachakis D, Neocleous V, Phylactou LA, Skordis N, Mantzoros CS, Pantelidou M. Molecular modelling of novel ADCY3 variant predicts a molecular target for tackling obesity. Int J Mol Med 2021; 49:10. [PMID: 34821371 PMCID: PMC8651229 DOI: 10.3892/ijmm.2021.5065] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 10/26/2021] [Indexed: 12/27/2022] Open
Abstract
Severe early-onset obesity is mainly attributed to single gene variations of the hypothalamic leptin-melanocortin system, which is critical for controlling the balance between appetite and energy expenditure. Adenylate cyclase 3 (ADCY3), a transmembrane enzyme localized in primary neuronal cilia, is a key genetic candidate, which appears to have an essential role in regulating body weight. The present study aimed to identify ADCY3 genetic variants in severely obese young patients of Greek-Cypriot origin by genomic sequencing. Apart from previously reported variants, the novel and probably pathogenic variant c.349T>A, causing a p.Leu117Met substitution within one of the two pseudo-symmetric halves of the transmembrane part of the protein, was reported. Molecular modelling analysis used to delineate bonding interactions within the mutated protein structure strongly suggested a change in interactive forces and energy levels affecting the pseudo-twofold symmetry of the transmembrane domain of the protein and probably its catalytic function. These results support the involvement of ADCY3 in the pathology of the disease and point towards the requirement of defining protein function and evaluating the clinical significance of the detected variants.
Collapse
Affiliation(s)
- Meropi Toumba
- Pediatric Endocrinology Clinic, Department of Paediatrics, Aretaeio Hospital, 2024 Nicosia, Cyprus
| | - Pavlos Fanis
- Department of Molecular Genetics, Function and Therapy, The Cyprus Institute of Neurology and Genetics, 1683 Nicosia, Cyprus
| | - Dimitrios Vlachakis
- Laboratory of Genetics, Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, 11855 Athens, Greece
| | - Vassos Neocleous
- Department of Molecular Genetics, Function and Therapy, The Cyprus Institute of Neurology and Genetics, 1683 Nicosia, Cyprus
| | - Leonidas A Phylactou
- Department of Molecular Genetics, Function and Therapy, The Cyprus Institute of Neurology and Genetics, 1683 Nicosia, Cyprus
| | - Nicos Skordis
- Department of Molecular Genetics, Function and Therapy, The Cyprus Institute of Neurology and Genetics, 1683 Nicosia, Cyprus
| | - Christos S Mantzoros
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Maria Pantelidou
- Department of Pharmacy, School of Health Sciences, Frederick University Cyprus, 1036 Nicosia, Cyprus
| |
Collapse
|
254
|
Liu T, Ji RL, Tao YX. Naturally occurring mutations in G protein-coupled receptors associated with obesity and type 2 diabetes mellitus. Pharmacol Ther 2021; 234:108044. [PMID: 34822948 DOI: 10.1016/j.pharmthera.2021.108044] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 11/15/2021] [Accepted: 11/15/2021] [Indexed: 12/12/2022]
Abstract
G protein-coupled receptors (GPCRs) are the largest family of membrane receptors involved in the regulation of almost all known physiological processes. Dysfunctions of GPCR-mediated signaling have been shown to cause various diseases. The prevalence of obesity and type 2 diabetes mellitus (T2DM), two strongly associated disorders, is increasing worldwide, with tremendous economical and health burden. New safer and more efficacious drugs are required for successful weight reduction and T2DM treatment. Multiple GPCRs are involved in the regulation of energy and glucose homeostasis. Mutations in these GPCRs contribute to the development and progression of obesity and T2DM. Therefore, these receptors can be therapeutic targets for obesity and T2DM. Indeed some of these receptors, such as melanocortin-4 receptor and glucagon-like peptide 1 receptor, have provided important new drugs for treating obesity and T2DM. This review will focus on the naturally occurring mutations of several GPCRs associated with obesity and T2DM, especially incorporating recent large genomic data and insights from structure-function studies, providing leads for future investigations.
Collapse
Affiliation(s)
- Ting Liu
- Department of Anatomy, Physiology and Pharmacology, Auburn University College of Veterinary Medicine, Auburn, AL 36849, United States
| | - Ren-Lei Ji
- Department of Anatomy, Physiology and Pharmacology, Auburn University College of Veterinary Medicine, Auburn, AL 36849, United States
| | - Ya-Xiong Tao
- Department of Anatomy, Physiology and Pharmacology, Auburn University College of Veterinary Medicine, Auburn, AL 36849, United States.
| |
Collapse
|
255
|
Lee GY, Han SN. Direct-to-Consumer Genetic Testing in Korea: Current Status and Significance in Clinical Nutrition. Clin Nutr Res 2021; 10:279-291. [PMID: 34796133 PMCID: PMC8575646 DOI: 10.7762/cnr.2021.10.4.279] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 10/14/2021] [Accepted: 10/14/2021] [Indexed: 12/26/2022] Open
Abstract
Direct-to-consumer genetic testing (DTC-GT) provides a means for consumers to gain insights into their genetic background and how it relates to their health without the involvement of medical institutions. In Korea, DTC-GT was introduced in 2016 in accordance with the legislation on Paragraph (3) 2 of Article 50 of the Bioethics and Safety Act. Only 12 genetic test items involving 46 genes were approved at first, but the approved items were expanded to 70 in November 2020. However, the genetic test items of DTC-GT services in Korea are still restricted to the wellness area, and access to disease risk related information is only permitted to medical institutions. Further, studies revealing the relationship between genotype differences and responses to nutrients, food components, or nutritional status are increasing, and this association appears to be robust for some genes. This strong association between genetic variations and nutrition suggests that DTC-GT can be used as an important tool by clinical nutritionists to gain insights into an individual's genetic susceptibilities and provide guidance on nutritional counseling and meal planning based on the patient's genetic information. This review summarized the history and current status of DTC-GT and investigated the relationship between genetic variations with associated phenotypic traits to clarify further the importance of DTC-GT in the field of clinical nutrition.
Collapse
Affiliation(s)
- Ga Young Lee
- Department of Food and Nutrition, College of Human Ecology, Seoul National University, Seoul 08826, Korea
| | - Sung Nim Han
- Department of Food and Nutrition, College of Human Ecology, Seoul National University, Seoul 08826, Korea.,Research Institute of Human Ecology, Seoul National University, Seoul 08826, Korea
| |
Collapse
|
256
|
Nadkarni GN, Fei K, Galarneau G, Gao Y, Wilson JG, Cooper R, Madden EB, Denny JC, Richardson LD, Pollak M, Loos RJF, Horowitz CR. APOL1 renal risk variants are associated with obesity and body composition in African ancestry adults: An observational genotype-phenotype association study. Medicine (Baltimore) 2021; 100:e27785. [PMID: 34766590 PMCID: PMC8589256 DOI: 10.1097/md.0000000000027785] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 10/19/2020] [Accepted: 10/23/2020] [Indexed: 01/02/2023] Open
Abstract
ABSTRACT While increased obesity prevalence among persons of African ancestry (AAs) compared to persons of European ancestry (EAs) is linked to social, environmental and behavioral factors, there are no gene variants that are common and significantly associated with obesity in AA populations. We sought to explore the association between ancestry specific renal risk variants in the apolipoprotein L1 (APOL1) gene with obesity related traits in AAs.We conducted a genotype-phenotype association study from 3 electronic medical record linked cohorts (BioMe Biobank, BioVU, nuGENE); randomized controlled trials (genetic testing to understand and address renal disease disparities) and prospective cohort study (Jackson Heart Study). We analyzed association of APOL1 renal risk variants with cross-sectional measures of obesity (average body mass index (BMI), and proportion of overweight and obesity) and with measures of body composition (in Jackson Heart Study).We had data on 11,930 self-reported AA adults. Across cohorts, mean age was from 42 to 49 years and percentage female from 58% to 75.3%. Individuals who have 2 APOL1 risk alleles (14% of AAs) have 30% higher obesity odds compared to others (recessive model adjusted odds ratio 1.30; 95% confidence interval 1.16-1.41; P = 2.75 × 10-6). An additive model better fit the association, in which each allele (47% of AAs) increases obesity odds by 1.13-fold (adjusted odds ratio 1.13; 95% confidence interval 1.07-1.19; P = 3.07 × 10-6) and increases BMI by 0.36 kg/m2 (∼1 kg, for 1.7 m height; P = 2 × 10-4). APOL1 alleles are not associated with refined body composition traits overall but are significantly associated with fat free mass index in women [0.30 kg/m2 increment per allele; P = .03].Thus, renal risk variants in the APOL1 gene, found in nearly half of AAs, are associated with BMI and obesity in an additive manner. These variants could, either on their own or interacting with environmental factors, explain a proportion of ethnic disparities in obesity.
Collapse
Affiliation(s)
- Girish N. Nadkarni
- Department of Medicine, The Charles Bronfman Institute for Personalized Medicine
| | - Kezhen Fei
- Department of Population Health Science and Policy, The Institute for Health Equity Research
| | - Genevieve Galarneau
- Department of Genetics and Genomic Sciences, Institute of Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Yan Gao
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS
| | - James G. Wilson
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS
| | - Richard Cooper
- Department of Public Health Sciences, Loyola University, Chicago, IL
| | - Ebony B. Madden
- Division of Genomic Medicine, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD
| | - Joshua C. Denny
- Departments of Biomedical Informatics and Medicine, Vanderbilt University School of Medicine, Nashville, TN
| | - Lynne D. Richardson
- Department of Emergency Medicine, Department of Population Health Science and Policy, The Institute for Health Equity Research, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Martin Pollak
- Department of Medicine, Division of Nephrology, Beth Israel Deaconess School of Medicine, Boston, MA
| | - Ruth J. F. Loos
- Department of Environmental Medicine & Public Health, The Charles Bronfman Institute for Personalized Medicine
| | - Carol R. Horowitz
- Department of Population Health Science and Policy, Department of Medicine, The Institute for Health Equity Research, Icahn School of Medicine at Mount Sinai, New York, NY
| |
Collapse
|
257
|
Kizilkaya HS, Sørensen KV, Kibsgaard CJ, Gasbjerg LS, Hauser AS, Sparre-Ulrich AH, Grarup N, Rosenkilde MM. Loss of Function Glucose-Dependent Insulinotropic Polypeptide Receptor Variants Are Associated With Alterations in BMI, Bone Strength and Cardiovascular Outcomes. Front Cell Dev Biol 2021; 9:749607. [PMID: 34760890 PMCID: PMC8573201 DOI: 10.3389/fcell.2021.749607] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 09/16/2021] [Indexed: 12/25/2022] Open
Abstract
Glucose-dependent insulinotropic polypeptide (GIP) and its receptor (GIPR) are involved in multiple physiological systems related to glucose metabolism, bone homeostasis and fat deposition. Recent research has surprisingly indicated that both agonists and antagonists of GIPR may be useful in the treatment of obesity and type 2 diabetes, as both result in weight loss when combined with GLP-1 receptor activation. To understand the receptor signaling related with weight loss, we examined the pharmacological properties of two rare missense GIPR variants, R190Q (rs139215588) and E288G (rs143430880) linked to lower body mass index (BMI) in carriers. At the molecular and cellular level, both variants displayed reduced G protein coupling, impaired arrestin recruitment and internalization, despite maintained high GIP affinity. The physiological phenotyping revealed an overall impaired bone strength, increased systolic blood pressure, altered lipid profile, altered fat distribution combined with increased body impedance in human carriers, thereby substantiating the role of GIP in these physiological processes.
Collapse
Affiliation(s)
- Hüsün Sheyma Kizilkaya
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Kimmie Vestergaard Sørensen
- Faculty of Health and Medical Sciences, Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Camilla J Kibsgaard
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Laerke Smidt Gasbjerg
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Alexander S Hauser
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Alexander Hovard Sparre-Ulrich
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Antag Therapeutics ApS, Copenhagen, Denmark
| | - Niels Grarup
- Faculty of Health and Medical Sciences, Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Mette M Rosenkilde
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
258
|
Tan JS, Liu NN, Guo TT, Hu S, Hua L. Genetically predicted obesity and risk of deep vein thrombosis. Thromb Res 2021; 207:16-24. [PMID: 34507265 DOI: 10.1016/j.thromres.2021.08.026] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 08/25/2021] [Accepted: 08/30/2021] [Indexed: 10/20/2022]
Abstract
AIMS/HYPOTHESIS An association between obesity and deep vein thrombosis (DVT) has been revealed by observational studies, but it is not clear if the observed associations are causal, caused by confounding bias or reverse causation. METHODS We performed a two-sample Mendelian Randomization (MR) study by obtaining exposure and outcome data from separate published studies. We utilized data from Genetic Investigation of Anthropometric Traits (GIANT, 339,224 participants) consortium and FinnGen project (FinnGen, 1785 DVT case and 84,462 control participants) to determine the causal effect of BMI on DVT. RESULTS All three MR methods provided a positive association between BMI and DVT. Using IVW, we found evidence of causal relationships between BMI and DVT. BMI is positively associated with DVT (IVW odds ratio [OR] per SD increase in BMI = 1.67 [95% CI, 1.16-2.40]; P = 0.006). MR Egger and weighted median regression also showed directionally similar estimates (MR-Egger OR per SD increase in BMI, 2.50 [95% CI, 1.07-5.84], P = 0.034; weighted median OR per SD increase in BMI, 2.02 [95% CI, 1.10-3.71], P = 0.023). Both funnel plots and MR-Egger intercepts suggest no directional pleiotropic effects observed between BMI and DVT. CONCLUSIONS/INTERPRETATION Our findings provide evidence of significant causal association between BMI and DVT in agreement with observational studies. Taking measures to reduce the proportion of obesity may help reduce the incidence of DVT.
Collapse
Affiliation(s)
- Jiang-Shan Tan
- Key Laboratory of Pulmonary Vascular Medicine, National Clinical Research Center of Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
| | - Ning-Ning Liu
- Peking University Sixth Hospital/Institute of Mental Health, Beijing 100191, China; NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing 100191, China
| | - Ting-Ting Guo
- Key Laboratory of Pulmonary Vascular Medicine, National Clinical Research Center of Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
| | - Song Hu
- Key Laboratory of Pulmonary Vascular Medicine, National Clinical Research Center of Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
| | - Lu Hua
- Key Laboratory of Pulmonary Vascular Medicine, National Clinical Research Center of Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China.
| |
Collapse
|
259
|
Demerdash HM. Weight regain after bariatric surgery: Promoters and potential predictors. World J Meta-Anal 2021; 9:438-454. [DOI: 10.13105/wjma.v9.i5.438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 06/07/2021] [Accepted: 09/17/2021] [Indexed: 02/06/2023] Open
|
260
|
Aoun C, Hajj A, Hajj F, Papazian T, Rabbaa Khabbaz L. The interaction between genetic polymorphisms in FTO, MC4R and MTHFR genes and adherence to the Mediterranean Diet in relation to obesity. Gene 2021; 809:146037. [PMID: 34688820 DOI: 10.1016/j.gene.2021.146037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 10/04/2021] [Accepted: 10/19/2021] [Indexed: 02/05/2023]
Abstract
AIMS To investigate the potential interaction between genetic background and adherence to the Mediterranean Diet, macronutrient intake and physical activity with regard to obesity in a sample of healthy adults. DESIGN Cross-sectional epidemiological study including 392 adults living in the Mediterranean basin. Data including FFQ, IPAQ and sociodemographic questionnaires were collected via face-to-face interviews. Anthropometric measures were performed and saliva swab for DNA extraction. Two MD scores were calculated to assess the adherence of the population to this pattern. Three single nucleotid polymorphisms (SNPs) related to obesity were studied: FTO, MC4R, MTHFR. FINDINGS FTO rs9939609 is significantly associated with WHR, and MC4R with all phenotypic traits linked to obesity (BMI, WC and WHR). However, MTHFR polymorphism didn't show any significant correlation with anthropometric parameters. Adherence to the MD and high level of physical activity do not seem to protect against the occurrence of overweight and obesity in genetically predisposed subjects. CONCLUSION Classic lifestyle interventions are insufficient in addressing the challenging obesity pandemic. Identifying more genetic variants and understanding their interaction with lifestyle will improve the clinical outcome of these variants for risk prediction and personalized nutrition and medical therapy. Also, the MD should undergo a redefinition adapted to each country on the Mediterranean basin in order to organize public health measures for its comeback.
Collapse
Affiliation(s)
- Carla Aoun
- Department of Nutrition, Faculty of Pharmacy, Saint-Joseph University of Beirut, Beirut, Lebanon; Laboratoire de Pharmacologie, Pharmacie Clinique et Contrôle de Qualité des Médicaments, Pôle Technologie- Santé (PTS), Faculty of Pharmacy, Saint-Joseph University, Beirut, Lebanon.
| | - Aline Hajj
- Laboratoire de Pharmacologie, Pharmacie Clinique et Contrôle de Qualité des Médicaments, Pôle Technologie- Santé (PTS), Faculty of Pharmacy, Saint-Joseph University, Beirut, Lebanon
| | - Fabienne Hajj
- Laboratoire de Pharmacologie, Pharmacie Clinique et Contrôle de Qualité des Médicaments, Pôle Technologie- Santé (PTS), Faculty of Pharmacy, Saint-Joseph University, Beirut, Lebanon
| | - Tatiana Papazian
- Department of Nutrition, Faculty of Pharmacy, Saint-Joseph University of Beirut, Beirut, Lebanon; Laboratoire de Pharmacologie, Pharmacie Clinique et Contrôle de Qualité des Médicaments, Pôle Technologie- Santé (PTS), Faculty of Pharmacy, Saint-Joseph University, Beirut, Lebanon
| | - Lydia Rabbaa Khabbaz
- Laboratoire de Pharmacologie, Pharmacie Clinique et Contrôle de Qualité des Médicaments, Pôle Technologie- Santé (PTS), Faculty of Pharmacy, Saint-Joseph University, Beirut, Lebanon
| |
Collapse
|
261
|
Polymorphisms on rs9939609 FTO and rs17782313 MC4R genes in children and adolescent obesity: A systematic review. Nutrition 2021; 91-92:111474. [PMID: 34628278 DOI: 10.1016/j.nut.2021.111474] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 07/18/2021] [Accepted: 08/24/2021] [Indexed: 11/23/2022]
Abstract
The aim of this review was to assess whether the presence of rs9939609 and rs17782313 polymorphisms increase the risk for obesity among children and adolescents. This systematic review followed the Preferred Reporting Items for Systematic Reviews and Meta-Analyses checklist and it was registered in PROSPERO. The search was performed in the PubMed/Medline, The Cochrane Library, and Web of Science databases. The risk of bias of the studies was accessed using the Newcastle-Ottawa scale and JBI Critical Appraisal Checklist for Analytical. The search of the databases retrieved 859 references. Twelve studies were eligible to be included in this systematic review. Five studies founded a positive association between overweight and obesity in children and adolescents with the presence of the rs17783213 and four studies with rs9939609. Three studies did not find an association between overweight and obesity in children and adolescents with the presence of rs17782313 or rs9939609. One found a protective effect for obesity in individuals with risk A allele referring to rs9939609, one found a synergistic effect in relation to the presence of polymorphisms rs17782313 and rs9939609 for obese phenotype, and one observed that the presence together of the rs9939609, rs17782313, and rs12970134 MC4R were significant for the presence of obesity in children and adolescents. The results suggest that depending on the population evaluated and ethnicity, the polymorphisms rs17782313 and rs9939609 could be associated with overweight and obesity in children and adolescents.
Collapse
|
262
|
Zhang J, Yu Y, Pan L, Yu T, Luo G. C Deletion at the re74650330 Locus of the SLC39A8 Gene (rs74650330) Increases the Risk of Coronary Artery Disease in Individuals with Low-Density Lipoprotein Cholesterol Levels. Genet Test Mol Biomarkers 2021; 25:660-667. [PMID: 34672770 DOI: 10.1089/gtmb.2021.0083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Background: Genetic variants of the SLC39A8 gene are associated with several cardiovascular disease risk factors, including body mass index, systolic blood pressure (SBP), diastolic blood pressure (DBP), N-terminal pro-B-type natriuretic peptide (NT-proBNP) and high-density lipoprotein cholesterol (HDL-C) levels. The present study aimed to investigate the association between the SLC39A8 SNPs rs13107325 and rs74650330 and CAD in the Han population in Jiangsu (China). Methods: Genotyping of these SNPs was performed in 258 patients with CAD and 170 healthy controls using the base-quenched probe technique. The association between the alleles of the rs74650330 locus and blood lipid and glucose profiles was investigated. Receiver operating characteristic (ROC) curve analysis was used to quantify the optimal thresholds for lipid and FBG levels and the risk factors for CAD were estimated by logistic regression analysis. Results: The rs13107325 polymorphism was not found in the 428 Chinese individuals enrolled in the current study. For rs74650330, individuals harboring the C allele had significantly higher HDL levels than those without this allele in the control group (p = 0.039), while the opposite was true for low-density lipoprotein cholesterol (LDL-C) levels (p = 0.046). Further analysis indicated that when LDL-C levels were lower than 2.365 mmol/L, subjects with C/del and del/del had a 7.293-fold increased risk of CAD compared with that of controls without the mutation (odds ratio: 7.293; 95% confidence interval: 0.953-55.79). Conclusions: The susceptibility of SLC39A8 polymorphisms to CAD were studied and revealed a possible role for the deletion variant of rs74650330 in increasing the risk of CAD among the Chinese Han population.
Collapse
Affiliation(s)
- Jun Zhang
- Clinical Medical Research Center, Changzhou Key Laboratory of Individualized Diagnosis and Treatment Associated with High Technology Research, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Yang Yu
- Clinical Medical Research Center, Changzhou Key Laboratory of Individualized Diagnosis and Treatment Associated with High Technology Research, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Lili Pan
- Clinical Medical Research Center, Changzhou Key Laboratory of Individualized Diagnosis and Treatment Associated with High Technology Research, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Tianhong Yu
- Department of Cardiology, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Guanghua Luo
- Clinical Medical Research Center, Changzhou Key Laboratory of Individualized Diagnosis and Treatment Associated with High Technology Research, The Third Affiliated Hospital of Soochow University, Changzhou, China
| |
Collapse
|
263
|
Gawlik A, Salonen A, Jian C, Yanover C, Antosz A, Shmoish M, Wasniewska M, Bereket A, Wudy SA, Hartmann MF, Thivel D, Matusik P, Weghuber D, Hochberg Z. Personalized approach to childhood obesity: Lessons from gut microbiota and omics studies. Narrative review and insights from the 29th European childhood obesity congress. Pediatr Obes 2021; 16:e12835. [PMID: 34296826 DOI: 10.1111/ijpo.12835] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 06/20/2021] [Accepted: 07/05/2021] [Indexed: 12/19/2022]
Abstract
The traditional approach to childhood obesity prevention and treatment should fit most patients, but misdiagnosis and treatment failure could be observed in some cases that lie away from average as part of individual variation or misclassification. Here, we reflect on the contributions that high-throughput technologies such as next-generation sequencing, mass spectrometry-based metabolomics and microbiome analysis make towards a personalized medicine approach to childhood obesity. We hypothesize that diagnosing a child as someone with obesity captures only part of the phenotype; and that metabolomics, genomics, transcriptomics and analyses of the gut microbiome, could add precision to the term "obese," providing novel corresponding biomarkers. Identifying a cluster -omic signature in a given child can thus facilitate the development of personalized prognostic, diagnostic, and therapeutic approaches. It can also be applied to the monitoring of symptoms/signs evolution, treatment choices and efficacy, predisposition to drug-related side effects and potential relapse. This article is a narrative review of the literature and summary of the main observations, conclusions and perspectives raised during the annual meeting of the European Childhood Obesity Group. Authors discuss some recent advances and future perspectives on utilizing a systems approach to understanding and managing childhood obesity in the context of the existing omics data.
Collapse
Affiliation(s)
- Aneta Gawlik
- Department of Paediatrics and Paediatric Endocrinology, Faculty of Medical Sciences, Medical University of Silesia, Katowice, Poland
| | - Anne Salonen
- Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Ching Jian
- Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Chen Yanover
- Healthcare Informatics, IBM Research-Haifa, Haifa, Israel
| | - Aleksandra Antosz
- Department of Paediatrics and Paediatric Endocrinology, Faculty of Medical Sciences, Medical University of Silesia, Katowice, Poland
| | - Michael Shmoish
- Bioinformatics Knowledge Unit, The Lokey Centre, Technion - Israel Institute of Technology, Haifa, Israel
| | - Malgorzata Wasniewska
- Department of Human Pathology in Adulthood and Childhood, University of Messina, Messina, Italy
| | - Abdullah Bereket
- School of Medicine, Department of Paediatric Endocrinology, Marmara University, Istanbul, Turkey
| | - Stefan A Wudy
- Steroid Research & Mass Spectrometry Unit, Laboratory for Translational Hormone Analytics, Division of Paediatric Endocrinology & Diabetology, Center of Child and Adolescent Medicine, Justus-Liebig-University, Giessen, Germany
| | - Michaela F Hartmann
- Steroid Research & Mass Spectrometry Unit, Laboratory for Translational Hormone Analytics, Division of Paediatric Endocrinology & Diabetology, Center of Child and Adolescent Medicine, Justus-Liebig-University, Giessen, Germany
| | - David Thivel
- University Clermont Auvergne, UFR Medicine, Clermont-Ferrand, France
| | - Pawel Matusik
- Department of Paediatrics and Paediatric Endocrinology, Faculty of Medical Sciences, Medical University of Silesia, Katowice, Poland
| | - Daniel Weghuber
- Department of Paediatrics, Paracelsus Medical University, Salzburg, Austria
| | - Ze'ev Hochberg
- Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
264
|
Lo YH, Cheng HC, Hsiung CN, Yang SL, Wang HY, Peng CW, Chen CY, Lin KP, Kang ML, Chen CH, Chu HW, Lin CF, Lee MH, Liu Q, Satta Y, Lin CJ, Lin M, Chaw SM, Loo JH, Shen CY, Ko WY. Detecting Genetic Ancestry and Adaptation in the Taiwanese Han People. Mol Biol Evol 2021; 38:4149-4165. [PMID: 33170928 PMCID: PMC8476137 DOI: 10.1093/molbev/msaa276] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The Taiwanese people are composed of diverse indigenous populations and the Taiwanese Han. About 95% of the Taiwanese identify themselves as Taiwanese Han, but this may not be a homogeneous population because they migrated to the island from various regions of continental East Asia over a period of 400 years. Little is known about the underlying patterns of genetic ancestry, population admixture, and evolutionary adaptation in the Taiwanese Han people. Here, we analyzed the whole-genome single-nucleotide polymorphism genotyping data from 14,401 individuals of Taiwanese Han collected by the Taiwan Biobank and the whole-genome sequencing data for a subset of 772 people. We detected four major genetic ancestries with distinct geographic distributions (i.e., Northern, Southeastern, Japonic, and Island Southeast Asian ancestries) and signatures of population mixture contributing to the genomes of Taiwanese Han. We further scanned for signatures of positive natural selection that caused unusually long-range haplotypes and elevations of hitchhiked variants. As a result, we identified 16 candidate loci in which selection signals can be unambiguously localized at five single genes: CTNNA2, LRP1B, CSNK1G3, ASTN2, and NEO1. Statistical associations were examined in 16 metabolic-related traits to further elucidate the functional effects of each candidate gene. All five genes appear to have pleiotropic connections to various types of disease susceptibility and significant associations with at least one metabolic-related trait. Together, our results provide critical insights for understanding the evolutionary history and adaption of the Taiwanese Han population.
Collapse
Affiliation(s)
- Yun-Hua Lo
- Faculty of Life Sciences and Institute of Genome Sciences, National Yang-Ming University, Taipei, Taiwan
| | - Hsueh-Chien Cheng
- Faculty of Life Sciences and Institute of Genome Sciences, National Yang-Ming University, Taipei, Taiwan
| | - Chia-Ni Hsiung
- Institute of Biomedical Sciences, Academia Sinica, Taipei City, Taiwan
| | - Show-Ling Yang
- Institute of Biomedical Sciences, Academia Sinica, Taipei City, Taiwan
| | - Han-Yu Wang
- Faculty of Life Sciences and Institute of Genome Sciences, National Yang-Ming University, Taipei, Taiwan
| | - Chia-Wei Peng
- Faculty of Life Sciences and Institute of Genome Sciences, National Yang-Ming University, Taipei, Taiwan
| | - Chun-Yu Chen
- Faculty of Life Sciences and Institute of Genome Sciences, National Yang-Ming University, Taipei, Taiwan
| | - Kung-Ping Lin
- Faculty of Life Sciences and Institute of Genome Sciences, National Yang-Ming University, Taipei, Taiwan
| | - Mei-Ling Kang
- Faculty of Life Sciences and Institute of Genome Sciences, National Yang-Ming University, Taipei, Taiwan
| | - Chien-Hsiun Chen
- Institute of Biomedical Sciences, Academia Sinica, Taipei City, Taiwan
| | - Hou-Wei Chu
- Institute of Biomedical Sciences, Academia Sinica, Taipei City, Taiwan
| | | | - Mei-Hsuan Lee
- Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Quintin Liu
- Department of Evolutionary Studies of Biosystems, SOKENDAI (The Graduate University for Advanced Studies), Hayama, Japan
| | - Yoko Satta
- Department of Evolutionary Studies of Biosystems, SOKENDAI (The Graduate University for Advanced Studies), Hayama, Japan
| | - Cheng-Jui Lin
- Molecular Anthropology and Transfusion Medicine Research Laboratory, Mackay Memorial Hospital, Taipei, Taiwan
| | - Marie Lin
- Molecular Anthropology and Transfusion Medicine Research Laboratory, Mackay Memorial Hospital, Taipei, Taiwan
| | - Shu-Miaw Chaw
- Biodiversity Research Center, Academia Sinica, Taipei City, Taiwan
| | - Jun-Hun Loo
- Molecular Anthropology and Transfusion Medicine Research Laboratory, Mackay Memorial Hospital, Taipei, Taiwan
| | - Chen-Yang Shen
- Institute of Biomedical Sciences, Academia Sinica, Taipei City, Taiwan
| | - Wen-Ya Ko
- Faculty of Life Sciences and Institute of Genome Sciences, National Yang-Ming University, Taipei, Taiwan
| |
Collapse
|
265
|
CYP1A2 polymorphisms modify the association of habitual coffee consumption with appetite, macronutrient intake, and body mass index: results from an observational cohort and a cross-over randomized study. Int J Obes (Lond) 2021; 46:162-168. [PMID: 34564706 DOI: 10.1038/s41366-021-00972-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 09/07/2021] [Accepted: 09/15/2021] [Indexed: 01/14/2023]
Abstract
BACKGROUND/OBJECTIVES Evidence regarding the influence of coffee on appetite and weight control is equivocal and the influence of covariates, such as genetic variation in caffeine metabolism, remains unknown. Herein, we addressed the novel hypothesis that genetic variation in CYP1A2, a gene responsible for more than 95% of caffeine metabolism, differentially impacts the association of coffee consumption with appetite and BMI among individuals with different genetic predispositions to obesity. SUBJECTS/METHODS A cross-over randomized intervention study involving 18 volunteers assessed the effects of coffee consumption on dietary intake, appetite, and levels of the appetite-controlling hormones asprosin and leptin. Data on habitual coffee intake, BMI, and perceived appetite were obtained from an observational cohort of 284 volunteers using validated questionnaires. Participants were stratified according to a validated genetic risk score (GRS) for obesity and to the -163C > A (rs762551) polymorphism of CYP1A2 as rapid (AA), intermediate (AC), or slow (CC) caffeine metabolizers. RESULTS Coffee consumption led to lower energy and dietary fat intake and circulating asprosin levels (P for interaction of rs762551 genotype*coffee consumption=0.056, 0.039, and 0.043, respectively) as compared to slow/intermediate metabolizers. High coffee consumption was more prevalent in rapid compared to slow metabolizers (P = 0.008 after adjustment for age, sex, and BMI) and was associated with lower appetite perception and lower BMI only in rapid metabolizers (P for interaction of rs762551 genotype*coffee consumption = 0.002 and 0.048, respectively). This differential association of rs762551 genotype and coffee consumption with BMI was more evident in individuals at higher genetic risk of obesity (mean adjusted difference in BMI = -5.82 kg/m2 for rapid versus slow/intermediate metabolizers who consumed more than 14 cups of coffee per week). CONCLUSIONS CYP1A2 rs762551 polymorphism modifies the association of habitual coffee consumption with BMI, in part by influencing appetite, energy intake and circulating levels of the orexigenic hormone asprosin. This association is more evident in subjects with high genetic predisposition to obesity. ClinicalTrials.gov: registered Clinical Trial NCT04514588.
Collapse
|
266
|
Koller-Schlaud K, Querbach J, Behr J, Ströhle A, Rentzsch J. Test-Retest Reliability of Frontal and Parietal Alpha Asymmetry during Presentation of Emotional Face Stimuli in Healthy Subjects. Neuropsychobiology 2021; 79:428-436. [PMID: 32182618 DOI: 10.1159/000505783] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Accepted: 01/05/2020] [Indexed: 11/19/2022]
Abstract
Resting-state and event-related frontal alpha asymmetry have been suggested as potential neurobiological biomarkers for depression and other psychiatric conditions. To be used as such, sufficient test-retest reliability needs to be demonstrated. However, test-retest reliability is underinvestigated for event-related alpha asymmetry. The objective of this study was to examine both short-term within-session and long-term between-session reliability of stimulus-related medial and lateral frontal as well as parietal alpha EEG asymmetry in healthy subjects during a simple emotional face processing task. Twenty-three healthy adults participated in two sessions with a test-retest interval of about 1 week. Reliability was estimated with Pearson's correlation coefficient and paired t test. Results revealed moderate to high within-session reliability of stimulus-related alpha asymmetry for all electrode sites and both conditions. Alpha asymmetry mean values did not change significantly within sessions. Between-session reliability was fair for frontomedial and moderate for frontolateral stimulus-related asymmetry. Exploratory exclusion of subjects with unstable between-session self-rating scores of emotional state and empathy toward stimuli resulted in some higher reliability values. Our results indicate that stimulus-related alpha asymmetry may serve as a useful electrophysiological tool given its adequate within-session reliability. However, long-term stability of stimulus-related frontal alpha asymmetry over 1 week was comparatively low and varied depending on electrode position. Influencing state factors during EEG recording, such as current mood or stimulus engagement, should be considered in future study designs and analyses. Further, we recommend to analyze alpha asymmetry from both frontomedial and frontolateral sites.
Collapse
Affiliation(s)
- Kristin Koller-Schlaud
- Department of Psychiatry and Psychotherapy Campus Mitte, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Department of Psychiatry, Psychotherapy, and Psychosomatics, Brandenburg Medical School Theodor Fontane, Neuruppin, Germany
| | - Julia Querbach
- Department of Psychiatry and Psychotherapy Campus Mitte, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Joachim Behr
- Department of Psychiatry and Psychotherapy Campus Mitte, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Department of Psychiatry, Psychotherapy, and Psychosomatics, Brandenburg Medical School Theodor Fontane, Neuruppin, Germany.,Faculty of Health Science Brandenburg, Joint Faculty of the University of Potsdam, Brandenburg University of Technology Cottbus-Senftenberg and Brandenburg Medical School Theodor Fontane, Potsdam, Germany
| | - Andreas Ströhle
- Department of Psychiatry and Psychotherapy Campus Mitte, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Johannes Rentzsch
- Department of Psychiatry and Psychotherapy Campus Mitte, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany, .,Department of Psychiatry, Psychotherapy, and Psychosomatics, Brandenburg Medical School Theodor Fontane, Neuruppin, Germany,
| |
Collapse
|
267
|
Goulet D, O'Loughlin J, Sylvestre MP. Association of Genetic Variants With Body-Mass Index and Blood Pressure in Adolescents: A Replication Study. Front Genet 2021; 12:690335. [PMID: 34539733 PMCID: PMC8440872 DOI: 10.3389/fgene.2021.690335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 08/05/2021] [Indexed: 11/13/2022] Open
Abstract
The strong correlation between adiposity and blood pressure (BP) might be explained in part by shared genetic risk factors. A recent study identified three nucleotide variants [rs16933812 (PAX5), rs7638110 (MRPS22), and rs9930333 (FTO)] associated with both body mass index (BMI) and systolic blood pressure (SBP) in adolescents age 12-18years. We attempted to replicate these findings in a sample of adolescents of similar age. A total of 713 adolescents were genotyped and had anthropometric indicators and blood pressure measured at age 13, 15, 17, and 24years. Using linear mixed models, we assessed associations of these variants with BMI and SBP. In our data, rs9930333 (FTO) was associated with body mass index, but not systolic blood pressure. Neither rs16933812 (PAX5) nor rs7638110 (MRPS22) were associated with body mass index or systolic blood pressure. Although, differences in phenotypic definitions and in genetic architecture across populations may explain some of the discrepancy across studies, nucleotide variant selection in the initial study may have led to false-positive results that could not be replicated.
Collapse
Affiliation(s)
- Danick Goulet
- École de santé publique, Université de Montréal, Montréal, QC, Canada
| | - Jennifer O'Loughlin
- École de santé publique, Université de Montréal, Montréal, QC, Canada.,Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada
| | - Marie-Pierre Sylvestre
- École de santé publique, Université de Montréal, Montréal, QC, Canada.,Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada
| |
Collapse
|
268
|
McFadden MJ, Sacco MT, Murphy KA, Park M, Gokhale NS, Somfleth KY, Horner SM. FTO Suppresses STAT3 Activation and Modulates Proinflammatory Interferon-Stimulated Gene Expression. J Mol Biol 2021; 434:167247. [PMID: 34537236 PMCID: PMC8924017 DOI: 10.1016/j.jmb.2021.167247] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 09/10/2021] [Accepted: 09/11/2021] [Indexed: 12/14/2022]
Abstract
Signaling initiated by type I interferon (IFN) results in the induction of hundreds of IFN-stimulated genes (ISGs). The type I IFN response is important for antiviral restriction, but aberrant activation of this response can lead to inflammation and autoimmunity. Regulation of this response is incompletely understood. We previously reported that the mRNA modification m6A and its deposition enzymes, METTL3 and METTL14 (METTL3/14), promote the type I IFN response by directly modifying the mRNA of a subset of ISGs to enhance their translation. Here, we determined the role of the RNA demethylase fat mass and obesity-associated protein (FTO) in the type I IFN response. FTO, which can remove either m6A or cap-adjacent m6Am RNA modifications, has previously been associated with obesity and body mass index, type 2 diabetes, cardiovascular disease, and inflammation. We found that FTO suppresses the transcription of a distinct set of ISGs, including many known pro-inflammatory genes, and that this regulation requires its catalytic activity but is not through the actions of FTO on m6Am. Interestingly, depletion of FTO led to activation of the transcription factor STAT3, whose role in the type I IFN response is not well understood. This activation of STAT3 increased the expression of a subset of ISGs. Importantly, this increased ISG induction resulting from FTO depletion was partially ablated by depletion of STAT3. Together, these results reveal that FTO negatively regulates STAT3-mediated signaling that induces proinflammatory ISGs during the IFN response, highlighting an important role for FTO in suppression of inflammatory genes.
Collapse
Affiliation(s)
- Michael J McFadden
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA.
| | - Matthew T Sacco
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA.
| | - Kristen A Murphy
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA.
| | - Moonhee Park
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA.
| | - Nandan S Gokhale
- Department of Immunology, University of Washington, Seattle, WA 98109, USA.
| | - Kim Y Somfleth
- Department of Immunology, University of Washington, Seattle, WA 98109, USA.
| | - Stacy M Horner
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA; Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA.
| |
Collapse
|
269
|
Santanasto AJ, Wojczynski MK, Cvejkus RK, Lin S, Wang L, Thyagarajan B, Christensen K, Schupf N, Feitosa MF, An P, Zmuda JM. Identification of a Novel Locus for Gait Speed Decline With Aging: The Long Life Family Study. J Gerontol A Biol Sci Med Sci 2021; 76:e307-e313. [PMID: 34156441 PMCID: PMC8436996 DOI: 10.1093/gerona/glab177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Gait speed is a powerful indicator of health with aging. Potential genetic contributions to gait speed and its decline with aging are not well defined. We determined the heritability of and potential genetic regions underlying change in gait speed using longitudinal data from 2379 individuals belonging to 509 families in the Long Life Family Study (mean age 64 ± 12, range 30-110 years; 45% men). METHODS Gait speed was measured over 4 m at baseline and follow-up (7 ± 1 years). Quantitative trait linkage analyses were completed using pedigree-based maximum likelihood methods with logarithm of the odds (LOD) scores greater than 3.0, indicating genome-wide significance. We also performed linkage analysis in the top 10% of families contributing to LOD scores to allow for heterogeneity among families (HLOD). Data were adjusted for age, sex, height, and field center. RESULTS At baseline, 26.9% of individuals had "slow" gait speed less than 1.0 m/s (mean: 1.1 ± 0.2 m/s) and gait speed declined at a rate of -0.02 ± 0.03 m/s per year (p < .0001). Baseline and change in gait speed were significantly heritable (h2 = 0.24-0.32, p < .05). We did not find significant evidence for linkage for baseline gait speed; however, we identified a significant locus for change in gait speed on chromosome 16p (LOD = 4.2). A subset of 21 families contributed to this linkage peak (HLOD = 6.83). Association analyses on chromosome 16 showed that the strongest variant resides within the ADCY9 gene. CONCLUSION Further analysis of the chromosome 16 region, and ADCY9 gene, may yield new insight on the biology of mobility decline with aging.
Collapse
Affiliation(s)
- Adam J Santanasto
- Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh, Pennsylvania, USA
| | - Mary K Wojczynski
- Department of Genetics, Division of Statistical Genomics, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Ryan K Cvejkus
- Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh, Pennsylvania, USA
| | - Shiow Lin
- Department of Genetics, Division of Statistical Genomics, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Lihua Wang
- Department of Genetics, Division of Statistical Genomics, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Bharat Thyagarajan
- Department of Laboratory Medicine and Pathology, School of Medicine, University of Minnesota, Minneapolis, USA
| | - Kaare Christensen
- The Danish Aging Research Center, Epidemiology Unit, Institute of Public Health, University of Southern Denmark, Odense, Denmark
| | - Nicole Schupf
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, USA
| | - Mary F Feitosa
- Department of Genetics, Division of Statistical Genomics, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Ping An
- Department of Genetics, Division of Statistical Genomics, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Joseph M Zmuda
- Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh, Pennsylvania, USA
| |
Collapse
|
270
|
Kaare M, Mikheim K, Lilleväli K, Kilk K, Jagomäe T, Leidmaa E, Piirsalu M, Porosk R, Singh K, Reimets R, Taalberg E, Schäfer MKE, Plaas M, Vasar E, Philips MA. High-Fat Diet Induces Pre-Diabetes and Distinct Sex-Specific Metabolic Alterations in Negr1-Deficient Mice. Biomedicines 2021; 9:1148. [PMID: 34572334 PMCID: PMC8466019 DOI: 10.3390/biomedicines9091148] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/27/2021] [Accepted: 08/28/2021] [Indexed: 11/16/2022] Open
Abstract
In the large GWAS studies, NEGR1 gene has been one of the most significant gene loci for body mass phenotype. The purpose of the current study was to clarify the role of NEGR1 in the maintenance of systemic metabolism, including glucose homeostasis, by using both male and female Negr1-/- mice receiving a standard or high fat diet (HFD). We found that 6 weeks of HFD leads to higher levels of blood glucose in Negr1-/- mice. In the glucose tolerance test, HFD induced phenotype difference only in male mice; Negr1-/- male mice displayed altered glucose tolerance, accompanied with upregulation of circulatory branched-chain amino acids (BCAA). The general metabolomic profile indicates that Negr1-/- mice are biased towards glyconeogenesis, fatty acid synthesis, and higher protein catabolism, all of which are amplified by HFD. Negr1 deficiency appears to induce alterations in the efficiency of energy storage; reduced food intake could be an attempt to compensate for the metabolic challenge present in the Negr1-/- males, particularly during the HFD exposure. Our results suggest that the presence of functional Negr1 allows male mice to consume more HFD and prevents the development of glucose intolerance, liver steatosis, and excessive weight gain.
Collapse
Affiliation(s)
- Maria Kaare
- Institute of Biomedicine and Translational Medicine, Department of Physiology, University of Tartu, 19 Ravila Street, 50411 Tartu, Estonia; (K.M.); (K.L.); (T.J.); (M.P.); (K.S.); (E.V.); (M.-A.P.)
- Center of Excellence in Genomics and Translational Medicine, University of Tartu, 50411 Tartu, Estonia; (K.K.); (R.P.); (E.T.)
| | - Kaie Mikheim
- Institute of Biomedicine and Translational Medicine, Department of Physiology, University of Tartu, 19 Ravila Street, 50411 Tartu, Estonia; (K.M.); (K.L.); (T.J.); (M.P.); (K.S.); (E.V.); (M.-A.P.)
- Center of Excellence in Genomics and Translational Medicine, University of Tartu, 50411 Tartu, Estonia; (K.K.); (R.P.); (E.T.)
| | - Kersti Lilleväli
- Institute of Biomedicine and Translational Medicine, Department of Physiology, University of Tartu, 19 Ravila Street, 50411 Tartu, Estonia; (K.M.); (K.L.); (T.J.); (M.P.); (K.S.); (E.V.); (M.-A.P.)
- Center of Excellence in Genomics and Translational Medicine, University of Tartu, 50411 Tartu, Estonia; (K.K.); (R.P.); (E.T.)
| | - Kalle Kilk
- Center of Excellence in Genomics and Translational Medicine, University of Tartu, 50411 Tartu, Estonia; (K.K.); (R.P.); (E.T.)
- Institute of Biomedicine and Translational Medicine, Department of Biochemistry, University of Tartu, 19 Ravila Street, 50411 Tartu, Estonia
| | - Toomas Jagomäe
- Institute of Biomedicine and Translational Medicine, Department of Physiology, University of Tartu, 19 Ravila Street, 50411 Tartu, Estonia; (K.M.); (K.L.); (T.J.); (M.P.); (K.S.); (E.V.); (M.-A.P.)
- Center of Excellence in Genomics and Translational Medicine, University of Tartu, 50411 Tartu, Estonia; (K.K.); (R.P.); (E.T.)
- Institute of Biomedicine and Translational Medicine, Laboratory Animal Center, University of Tartu, 14B Ravila Street, 50411 Tartu, Estonia; (R.R.); (M.P.)
| | - Este Leidmaa
- Institute of Molecular Psychiatry, Medical Faculty, University of Bonn, 53129 Bonn, Germany;
| | - Maria Piirsalu
- Institute of Biomedicine and Translational Medicine, Department of Physiology, University of Tartu, 19 Ravila Street, 50411 Tartu, Estonia; (K.M.); (K.L.); (T.J.); (M.P.); (K.S.); (E.V.); (M.-A.P.)
- Center of Excellence in Genomics and Translational Medicine, University of Tartu, 50411 Tartu, Estonia; (K.K.); (R.P.); (E.T.)
| | - Rando Porosk
- Center of Excellence in Genomics and Translational Medicine, University of Tartu, 50411 Tartu, Estonia; (K.K.); (R.P.); (E.T.)
- Institute of Biomedicine and Translational Medicine, Department of Biochemistry, University of Tartu, 19 Ravila Street, 50411 Tartu, Estonia
| | - Katyayani Singh
- Institute of Biomedicine and Translational Medicine, Department of Physiology, University of Tartu, 19 Ravila Street, 50411 Tartu, Estonia; (K.M.); (K.L.); (T.J.); (M.P.); (K.S.); (E.V.); (M.-A.P.)
- Center of Excellence in Genomics and Translational Medicine, University of Tartu, 50411 Tartu, Estonia; (K.K.); (R.P.); (E.T.)
| | - Riin Reimets
- Institute of Biomedicine and Translational Medicine, Laboratory Animal Center, University of Tartu, 14B Ravila Street, 50411 Tartu, Estonia; (R.R.); (M.P.)
| | - Egon Taalberg
- Center of Excellence in Genomics and Translational Medicine, University of Tartu, 50411 Tartu, Estonia; (K.K.); (R.P.); (E.T.)
- Institute of Biomedicine and Translational Medicine, Department of Biochemistry, University of Tartu, 19 Ravila Street, 50411 Tartu, Estonia
| | - Michael K. E. Schäfer
- Department of Anesthesiology, Focus Program Translational Neurosciences, Research Center for Immunotherapy, University Medical Center of the Johannes Gutenberg-University Mainz, 55131 Mainz, Germany;
| | - Mario Plaas
- Institute of Biomedicine and Translational Medicine, Laboratory Animal Center, University of Tartu, 14B Ravila Street, 50411 Tartu, Estonia; (R.R.); (M.P.)
| | - Eero Vasar
- Institute of Biomedicine and Translational Medicine, Department of Physiology, University of Tartu, 19 Ravila Street, 50411 Tartu, Estonia; (K.M.); (K.L.); (T.J.); (M.P.); (K.S.); (E.V.); (M.-A.P.)
- Center of Excellence in Genomics and Translational Medicine, University of Tartu, 50411 Tartu, Estonia; (K.K.); (R.P.); (E.T.)
| | - Mari-Anne Philips
- Institute of Biomedicine and Translational Medicine, Department of Physiology, University of Tartu, 19 Ravila Street, 50411 Tartu, Estonia; (K.M.); (K.L.); (T.J.); (M.P.); (K.S.); (E.V.); (M.-A.P.)
- Center of Excellence in Genomics and Translational Medicine, University of Tartu, 50411 Tartu, Estonia; (K.K.); (R.P.); (E.T.)
| |
Collapse
|
271
|
Escribe C, Lu T, Keller-Baruch J, Forgetta V, Xiao B, Richards JB, Bhatnagar S, Oualkacha K, Greenwood CMT. Block coordinate descent algorithm improves variable selection and estimation in error-in-variables regression. Genet Epidemiol 2021; 45:874-890. [PMID: 34468045 PMCID: PMC9292988 DOI: 10.1002/gepi.22430] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 07/19/2021] [Accepted: 08/12/2021] [Indexed: 11/13/2022]
Abstract
Medical research increasingly includes high‐dimensional regression modeling with a need for error‐in‐variables methods. The Convex Conditioned Lasso (CoCoLasso) utilizes a reformulated Lasso objective function and an error‐corrected cross‐validation to enable error‐in‐variables regression, but requires heavy computations. Here, we develop a Block coordinate Descent Convex Conditioned Lasso (BDCoCoLasso) algorithm for modeling high‐dimensional data that are only partially corrupted by measurement error. This algorithm separately optimizes the estimation of the uncorrupted and corrupted features in an iterative manner to reduce computational cost, with a specially calibrated formulation of cross‐validation error. Through simulations, we show that the BDCoCoLasso algorithm successfully copes with much larger feature sets than CoCoLasso, and as expected, outperforms the naïve Lasso with enhanced estimation accuracy and consistency, as the intensity and complexity of measurement errors increase. Also, a new smoothly clipped absolute deviation penalization option is added that may be appropriate for some data sets. We apply the BDCoCoLasso algorithm to data selected from the UK Biobank. We develop and showcase the utility of covariate‐adjusted genetic risk scores for body mass index, bone mineral density, and lifespan. We demonstrate that by leveraging more information than the naïve Lasso in partially corrupted data, the BDCoCoLasso may achieve higher prediction accuracy. These innovations, together with an R package, BDCoCoLasso, make error‐in‐variables adjustments more accessible for high‐dimensional data sets. We posit the BDCoCoLasso algorithm has the potential to be widely applied in various fields, including genomics‐facilitated personalized medicine research.
Collapse
Affiliation(s)
- Célia Escribe
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Québec, Canada.,Operations Research Center, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Tianyuan Lu
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Québec, Canada.,Quantitative Life Sciences Program, McGill University, Montreal, Québec, Canada
| | - Julyan Keller-Baruch
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Québec, Canada.,Department of Human Genetics, McGill University, Montreal, Québec, Canada
| | - Vincenzo Forgetta
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Québec, Canada
| | - Bowei Xiao
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Québec, Canada.,Quantitative Life Sciences Program, McGill University, Montreal, Québec, Canada
| | - J Brent Richards
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Québec, Canada.,Department of Human Genetics, McGill University, Montreal, Québec, Canada.,Department of Epidemiology, Biostatistics and Occupational Health, McGill University, Montreal, Québec, Canada.,Department of Twin Research and Genetic Epidemiology, King's College London, London, United Kingdom
| | - Sahir Bhatnagar
- Department of Epidemiology, Biostatistics and Occupational Health, McGill University, Montreal, Québec, Canada.,Department of Diagnostic Radiology, McGill University, Montreal, Québec, Canada
| | - Karim Oualkacha
- Département de Mathématiques, Université du Québec à Montréal, Montreal, Québec, Canada
| | - Celia M T Greenwood
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Québec, Canada.,Department of Human Genetics, McGill University, Montreal, Québec, Canada.,Department of Epidemiology, Biostatistics and Occupational Health, McGill University, Montreal, Québec, Canada.,Gerald Bronfman Department of Oncology, McGill University, Montreal, Québec, Canada
| |
Collapse
|
272
|
Abstract
Glucose-dependent insulinotropic polypeptide (GIP) (also known as gastric inhibitory polypeptide) is a hormone produced in the upper gut and secreted to the circulation in response to the ingestion of foods, especially fatty foods. Growing evidence supports the physiological and pharmacological relevance of GIP in obesity. In an obesity setting, inhibition of endogenous GIP or its receptor leads to decreased energy intake, increased energy expenditure, or both, eventually causing weight loss. Further, supraphysiological dosing of exogenous long-lasting GIP agonists alters energy balance and has a marked antiobesity effect. This remarkable yet paradoxical antiobesity effect is suggested to occur primarily via the brain. The brain is capable of regulating both energy intake and expenditure and plays a critical role in human obesity. In addition, the GIP receptor is widely distributed throughout the brain, including areas responsible for energy homeostasis. Recent studies have uncovered previously underappreciated roles of the GIP receptor in the brain in the context of obesity. This article highlights how the GIP receptor expressed by the brain impacts obesity-related pathogenesis.
Collapse
Affiliation(s)
- Makoto Fukuda
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX
| |
Collapse
|
273
|
Corre T, Ponte B, Pivin E, Pruijm M, Ackermann D, Ehret G, Spanaus K, Bochud M, Wenger RH. Heritability and association with distinct genetic loci of erythropoietin levels in the general population. Haematologica 2021; 106:2499-2501. [PMID: 33832210 PMCID: PMC8409065 DOI: 10.3324/haematol.2021.278389] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Accepted: 02/26/2021] [Indexed: 01/24/2023] Open
Affiliation(s)
- Tanguy Corre
- Center for Primary Care and Public Health (Unisanté), University of Lausanne, Lausanne, Switzerland; National Centre of Competence in Research "Kidney.CH", Switzerland; Department of Computational Biology, University of Lausanne, Lausanne
| | - Belen Ponte
- Nephrology Service, Department Medicine, Geneva University Hospital, Geneva
| | - Edward Pivin
- Center for Primary Care and Public Health (Unisanté), University of Lausanne, Lausanne
| | - Menno Pruijm
- Nephrology Service, University Hospital of Lausanne and University of Lausanne, Lausanne
| | - Daniel Ackermann
- Department of Nephrology and Hypertension, Inselspital, Bern University Hospital, University of Bern, Bern
| | - Georg Ehret
- Cardiology, Department of Medicine, Geneva University Hospital, Geneva
| | - Katharina Spanaus
- Institute of Clinical Chemistry, University Hospital of Zurich, Zurich
| | - Murielle Bochud
- Center for Primary Care and Public Health (Unisanté), University of Lausanne, Lausanne, Switzerland; National Centre of Competence in Research "Kidney.CH"
| | - Roland H Wenger
- National Centre of Competence in Research "Kidney.CH", Switzerland; Institute of Physiology, University of Zurich, Zurich.
| |
Collapse
|
274
|
|
275
|
De Rosa MC, Glover HJ, Stratigopoulos G, LeDuc CA, Su Q, Shen Y, Sleeman MW, Chung WK, Leibel RL, Altarejos JY, Doege CA. Gene expression atlas of energy balance brain regions. JCI Insight 2021; 6:e149137. [PMID: 34283813 PMCID: PMC8409984 DOI: 10.1172/jci.insight.149137] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Energy balance is controlled by interconnected brain regions in the hypothalamus, brainstem, cortex, and limbic system. Gene expression signatures of these regions can help elucidate the pathophysiology underlying obesity. RNA sequencing was conducted on P56 C57BL/6NTac male mice and E14.5 C57BL/6NTac embryo punch biopsies in 16 obesity-relevant brain regions. The expression of 190 known obesity-associated genes (monogenic, rare, and low-frequency coding variants; GWAS; syndromic) was analyzed in each anatomical region. Genes associated with these genetic categories of obesity had localized expression patterns across brain regions. Known monogenic obesity causal genes were highly enriched in the arcuate nucleus of the hypothalamus and developing hypothalamus. The obesity-associated genes clustered into distinct “modules” of similar expression profile, and these were distinct from expression modules formed by similar analysis with genes known to be associated with other disease phenotypes (type 1 and type 2 diabetes, autism, breast cancer) in the same energy balance–relevant brain regions.
Collapse
Affiliation(s)
- Maria Caterina De Rosa
- Department of Pediatrics and Molecular Genetics.,Naomi Berrie Diabetes Center, College of Physicians and Surgeons.,Columbia Stem Cell Initiative, and
| | - Hannah J Glover
- Department of Pediatrics and Molecular Genetics.,Naomi Berrie Diabetes Center, College of Physicians and Surgeons.,Columbia Stem Cell Initiative, and
| | - George Stratigopoulos
- Department of Pediatrics and Molecular Genetics.,Naomi Berrie Diabetes Center, College of Physicians and Surgeons
| | - Charles A LeDuc
- Department of Pediatrics and Molecular Genetics.,Naomi Berrie Diabetes Center, College of Physicians and Surgeons.,New York Obesity Nutrition Research Center, Department of Medicine, Columbia University Irving Medical Center, New York, New York, USA
| | - Qi Su
- Regeneron Pharmaceuticals Inc., Tarrytown, New York, USA
| | - Yufeng Shen
- Department of Systems Biology.,Department of Biomedical Informatics
| | - Mark W Sleeman
- Regeneron Pharmaceuticals Inc., Tarrytown, New York, USA
| | - Wendy K Chung
- Department of Pediatrics and Molecular Genetics.,Naomi Berrie Diabetes Center, College of Physicians and Surgeons.,Department of Medicine.,Herbert Irving Comprehensive Cancer Center.,Institute of Human Nutrition
| | - Rudolph L Leibel
- Department of Pediatrics and Molecular Genetics.,Naomi Berrie Diabetes Center, College of Physicians and Surgeons.,New York Obesity Nutrition Research Center, Department of Medicine, Columbia University Irving Medical Center, New York, New York, USA.,Institute of Human Nutrition
| | | | - Claudia A Doege
- Naomi Berrie Diabetes Center, College of Physicians and Surgeons.,Columbia Stem Cell Initiative, and.,New York Obesity Nutrition Research Center, Department of Medicine, Columbia University Irving Medical Center, New York, New York, USA.,Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, New York, USA
| |
Collapse
|
276
|
Baratali L, Mean M, Marques-Vidal P. Impact of dietary and obesity genetic risk scores on weight gain. Am J Clin Nutr 2021; 114:741-751. [PMID: 33831948 DOI: 10.1093/ajcn/nqab069] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 02/23/2021] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Whether genetic background and/or dietary behaviors influence weight gain in middle-aged subjects is debated. OBJECTIVE To assess whether genetic background and/or dietary behaviors are associated with changes in obesity markers (BMI, weight, and waist and hip circumferences) in a Swiss population-based cohort. METHODS Cross-sectional and prospective (follow-up of 5.3 y) study. Two obesity genetic risk scores (GRS) based on 31 or 68 single nucleotide polymorphisms were used. Dietary intake was assessed using a semiquantitative FFQ. Three dietary patterns "Meat & fries" (unhealthy), "Fruits & vegetables" (healthy), and "Fatty & sugary" (unhealthy), and 3 dietary scores (2 Mediterranean and the Alternative Healthy Eating Index [AHEI]) were computed. RESULTS On cross-sectional analysis (N = 3033, 53.2% females, 58.4 ± 10.6 y), obesity markers were positively associated with unhealthy dietary patterns and GRS, and negatively associated with healthy dietary scores and patterns. On prospective analysis (N = 2542, 54.7% females, age at baseline 58.0 ± 10.4 y), the AHEI and the "Fruits & vegetables" pattern were negatively associated with waist circumference gain: multivariate-adjusted average ± SE 0.96 ± 0.25 compared with 0.11 ± 0.26 cm (P for trend 0.044), and 1.14 ± 0.26 compared with -0.05 ± 0.26 cm (P for trend 0.042) for the first and fourth quartiles of the AHEI and the "Fruits & vegetables" pattern, respectively. Similar inverse associations were obtained for changes in waist >5 cm: multivariate-adjusted OR (95% CI): 0.65 (0.50, 0.85) and 0.67 (0.51, 0.89) for the fourth versus the first quartile of the AHEI and the "Fruits & vegetables" dietary pattern, respectively. No associations were found between GRS and changes in obesity markers, and no significant gene-diet interactions were found. CONCLUSION Dietary intake, not GRS, are associated with waist circumference in middle-aged subjects living in Lausanne, Switzerland.
Collapse
Affiliation(s)
- Laïla Baratali
- Department of Medicine, Internal Medicine, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Marie Mean
- Department of Medicine, Internal Medicine, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Pedro Marques-Vidal
- Department of Medicine, Internal Medicine, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
277
|
Beach SRH, Ong ML, Lei MK, Klopack E, Carter SE, Simons RL, Gibbons FX, Lavner JA, Philibert RA, Ye K. Childhood adversity is linked to adult health among African Americans via adolescent weight gain and effects are genetically moderated. Dev Psychopathol 2021; 33:803-820. [PMID: 32372728 PMCID: PMC7644595 DOI: 10.1017/s0954579420000061] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Identifying the mechanisms linking early experiences, genetic risk factors, and their interaction with later health consequences is central to the development of preventive interventions and identifying potential boundary conditions for their efficacy. In the current investigation of 412 African American adolescents followed across a 20-year period, we examined change in body mass index (BMI) across adolescence as one possible mechanism linking childhood adversity and adult health. We found associations of childhood adversity with objective indicators of young adult health, including a cardiometabolic risk index, a methylomic aging index, and a count of chronic health conditions. Childhood adversities were associated with objective indicators indirectly through their association with gains in BMI across adolescence and early adulthood. We also found evidence of an association of genetic risk with weight gain across adolescence and young adult health, as well as genetic moderation of childhood adversity's effect on gains in BMI, resulting in moderated mediation. These patterns indicated that genetic risk moderated the indirect pathways from childhood adversity to young adult health outcomes and childhood adversity moderated the indirect pathways from genetic risk to young adult health outcomes through effects on weight gain during adolescence and early adulthood.
Collapse
Affiliation(s)
- Steven R. H. Beach
- Department of Psychology, University of Georgia
- Center for Family Research, University of Georgia
| | - Mei Ling Ong
- Center for Family Research, University of Georgia
| | - Man-Kit Lei
- Department of Sociology, University of Georgia
| | | | | | | | | | - Justin A. Lavner
- Department of Psychology, University of Georgia
- Center for Family Research, University of Georgia
| | - Robert A. Philibert
- Department of Psychiatry, University of Iowa
- Behavioral Diagnostics, Coralville, Iowa
| | - Kaixiong Ye
- Department of Genetics and Institute of Bioinformatics, University of Georgia
| |
Collapse
|
278
|
Hirtz R, Zheng Y, Rajcsanyi LS, Libuda L, Antel J, Peters T, Hebebrand J, Hinney A. [Genetic Analyses of Complex Phenotypes Through the Example of Anorexia Nervosa and Bodyweight Regulation]. ZEITSCHRIFT FUR KINDER-UND JUGENDPSYCHIATRIE UND PSYCHOTHERAPIE 2021; 50:175-185. [PMID: 34328348 DOI: 10.1024/1422-4917/a000829] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Genetic Analyses of Complex Phenotypes Through the Example of Anorexia Nervosa and Bodyweight Regulation Abstract. Genetics variants are important for the regulation of bodyweight and also contribute to the genetic architecture of eating disorders. For many decades, family studies, a subentity of so-called formal genetic studies, were employed to determine the genetic share of bodyweight and eating disorders and found heritability rates exceeding 50 % with both phenotypes. Because of this significant contribution of genetics, the search for those genes and their variants related to the variance in bodyweight and the etiology of eating disorders - or both - was commenced by the early 1990s. Initially, candidate genes studies were conducted targeting those genes most plausibly related to either phenotype, especially based on pathophysiological considerations. This approach, however, implicated only a few genes in the regulation of bodyweight and did not provide significant insights into the genetics of eating disorders. Driven by considerable methodological advances in genetic research, especially related to the introduction of so-called genome-wide association studies by the beginning of the 21st century, today more than 1,000 variants/loci have been detected that affect the regulation of bodyweight. Eight such loci have been identified regarding anorexia nervosa (AN). These results as well as those from cross-disorder analyses provide insights into the complex regulation of bodyweight and demonstrated unforeseen pathomechanisms for AN.
Collapse
Affiliation(s)
- Raphael Hirtz
- Klinik für Psychiatrie, Psychosomatik und Psychotherapie des Kindes- und Jugendalters, LVR-Klinikum Essen, Kliniken und Institut der Universität Duisburg-Essen, Universitätsklinikum Essen.,Abteilung für Pädiatrische Endokrinologie und Diabetologie, Kinderklinik II, Universitätsklinikum Essen
| | - Yiran Zheng
- Klinik für Psychiatrie, Psychosomatik und Psychotherapie des Kindes- und Jugendalters, LVR-Klinikum Essen, Kliniken und Institut der Universität Duisburg-Essen, Universitätsklinikum Essen
| | - Luisa S Rajcsanyi
- Klinik für Psychiatrie, Psychosomatik und Psychotherapie des Kindes- und Jugendalters, LVR-Klinikum Essen, Kliniken und Institut der Universität Duisburg-Essen, Universitätsklinikum Essen
| | - Lars Libuda
- Klinik für Psychiatrie, Psychosomatik und Psychotherapie des Kindes- und Jugendalters, LVR-Klinikum Essen, Kliniken und Institut der Universität Duisburg-Essen, Universitätsklinikum Essen.,Institut für Ernährung, Konsum und Gesundheit, Fakultät für Naturwissenschaften, Universität Paderborn
| | - Jochen Antel
- Klinik für Psychiatrie, Psychosomatik und Psychotherapie des Kindes- und Jugendalters, LVR-Klinikum Essen, Kliniken und Institut der Universität Duisburg-Essen, Universitätsklinikum Essen
| | - Triinu Peters
- Klinik für Psychiatrie, Psychosomatik und Psychotherapie des Kindes- und Jugendalters, LVR-Klinikum Essen, Kliniken und Institut der Universität Duisburg-Essen, Universitätsklinikum Essen
| | - Johannes Hebebrand
- Klinik für Psychiatrie, Psychosomatik und Psychotherapie des Kindes- und Jugendalters, LVR-Klinikum Essen, Kliniken und Institut der Universität Duisburg-Essen, Universitätsklinikum Essen
| | - Anke Hinney
- Klinik für Psychiatrie, Psychosomatik und Psychotherapie des Kindes- und Jugendalters, LVR-Klinikum Essen, Kliniken und Institut der Universität Duisburg-Essen, Universitätsklinikum Essen
| |
Collapse
|
279
|
Xiao R, Ali S, Caligiuri MA, Cao L. Enhancing Effects of Environmental Enrichment on the Functions of Natural Killer Cells in Mice. Front Immunol 2021; 12:695859. [PMID: 34394087 PMCID: PMC8355812 DOI: 10.3389/fimmu.2021.695859] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 07/14/2021] [Indexed: 01/02/2023] Open
Abstract
The environment of an organism can convey a powerful influence over its biology. Environmental enrichment (EE), as a eustress model, has been used extensively in neuroscience to study neurogenesis and brain plasticity. EE has also been used as an intervention for the treatment and prevention of neurological and psychiatric disorders with limited clinical application. By contrast, the effects of EE on the immune system are relatively less investigated. Recently, accumulating evidence has demonstrated that EE can robustly impact immune function. In this review, we summarize the major components of EE, the impact of EE on natural killer (NK) cells, EE's immunoprotective roles in cancer, and the underlying mechanisms of EE-induced NK cell regulation. Moreover, we discuss opportunities for translational application based on insights from animal research of EE-induced NK cell regulation.
Collapse
Affiliation(s)
- Run Xiao
- Department of Cancer Biology and Genetics, College of Medicine, The Ohio State University, Columbus, OH, United States
- The Ohio State University Comprehensive Cancer Center, The James Cancer Hospital and Solove Research Institute, Columbus, OH, United States
| | - Seemaab Ali
- Department of Cancer Biology and Genetics, College of Medicine, The Ohio State University, Columbus, OH, United States
- The Ohio State University Comprehensive Cancer Center, The James Cancer Hospital and Solove Research Institute, Columbus, OH, United States
- Medical Scientist Training Program, The Ohio State University, Columbus, OH, United States
| | - Michael A. Caligiuri
- Department of Hematology & Hematopoietic Cell Transplantation, City of Hope National Medical Center and the Beckman Research Institute, Los Angeles, CA, United States
| | - Lei Cao
- Department of Cancer Biology and Genetics, College of Medicine, The Ohio State University, Columbus, OH, United States
- The Ohio State University Comprehensive Cancer Center, The James Cancer Hospital and Solove Research Institute, Columbus, OH, United States
| |
Collapse
|
280
|
Mi J, Liu Z. Obesity, Type 2 Diabetes, and the Risk of Carpal Tunnel Syndrome: A Two-Sample Mendelian Randomization Study. Front Genet 2021; 12:688849. [PMID: 34367246 PMCID: PMC8339995 DOI: 10.3389/fgene.2021.688849] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 06/03/2021] [Indexed: 12/31/2022] Open
Abstract
Some previous observational studies have reported an increased risk of carpal tunnel syndrome (CTS) in patients with obesity or type 2 diabetes (T2D), which was however, not observed in some other studies. In this study we performed a two-sample Mendelian randomization to assess the causal effect of obesity, T2D on the risk of CTS. Single nucleotide polymorphisms associated with the body mass index (BMI) and T2D were extracted from genome-wide association studies. Summary-level results of CTS were available through FinnGen repository. Univariable Mendelian randomization (MR) with inverse-variance-weighted method indicated a positive correlation of BMI with CTS risk [odds ratio (OR) 1.66, 95% confidence interval (CI), 1.39–1.97]. Genetically proxied T2D also significantly increased the risk of CTS [OR 1.17, 95% CI (1.07–1.29)]. The causal effect of BMI and T2D on CTS remained consistent after adjusting for each other with multivariable MR. Our mediation analysis indicated that 34.4% of BMI’s effect of CTS was mediated by T2D. We also assessed the effects of several BMI and glycemic related traits on CTS. Waist circumference and arm fat-free mass were also causally associated with CTS. However, the associations disappeared after adjusting for the effect of BMI. Our findings indicate that obesity and T2D are independent risk factors of CTS.
Collapse
Affiliation(s)
- Jiarui Mi
- Master's Programme in Biomedicine, Karolinska Institutet, Stockholm, Sweden
| | - Zhengye Liu
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
281
|
Koj N, Grochowalski Ł, Jarczak J, Wójtowicz W, Sobalska-Kwapis M, Słomka M, Marciniak B, Strapagiel D. The association between polymorphisms near TMEM18 and the risk of obesity: a meta-analysis. BMC Med Genomics 2021; 14:179. [PMID: 34229657 PMCID: PMC8259011 DOI: 10.1186/s12920-021-01025-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Accepted: 06/28/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Many studies have proposed that the pathogenesis of obesity has a genetic basis, with an important risk factor being the presence of polymorphisms in the region of the TMEM18 gene, which plays a significant role in feeding behaviour; however, subsequent studies among different ethnic populations and age groups have shown inconsistent results. Therefore, this present meta-analysis examines the relationship between TMEM18 polymorphisms with the risk of obesity with regard to age group and ethnic population. METHODS A literature database search was conducted for available relevant studies investigating the association between obesity risk and the presence of rs6548238, rs4854344, rs11127485, rs2867125 and rs7561317 polymorphisms in TMEM18. Pooled odds ratio (OR) and 95% confidence intervals (95% CI) were calculated by either a fixed-effects model or random effect model based on a heterogeneity test. The meta-analysis of rs6548238 and its surrogates examined the relationships between 53 395 obesity cases and 123 972 healthy controls from 27 studies and published data from the POPULOUS collection (Poland). RESULTS A significant association is observed between rs6548238 (and surrogate) and obesity risk, with OR = 1.25 (95% CI: 1.08-1.45). Regarding population type, a significant association was revealed among groups of Europeans with OR = 1.32 (1.10-1.59) and Mexicans with OR = 1.39 (1.13-1.73). However, a lack of statistical significance was noticed in groups in Asia with OR = 1.11 (95% CI: 0.86-1.42). Regarding age, a significant association was observed among children with OR = 1.28 (95% CI: 1.18-1.39) but not in adults OR = 1.21 (95% CI: 0.92-1.58). CONCLUSIONS The polymorphisms near TMEM18 appear to play a role in the development of obesity. Our findings indicate that differences exist between ethnic populations and age groups, supporting those of a previous study showing the various effects of genetic factors on age and ethnic groups.
Collapse
Affiliation(s)
- Natalia Koj
- Biobank Lab, Department of Molecular Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| | - Łukasz Grochowalski
- Biobank Lab, Department of Molecular Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| | - Justyna Jarczak
- Biobank Lab, Department of Molecular Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
- BBMRI.Pl Consortium, Wroclaw, Poland
| | - Weronika Wójtowicz
- Biobank Lab, Department of Molecular Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| | - Marta Sobalska-Kwapis
- Biobank Lab, Department of Molecular Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
- BBMRI.Pl Consortium, Wroclaw, Poland
| | - Marcin Słomka
- Biobank Lab, Department of Molecular Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
- BBMRI.Pl Consortium, Wroclaw, Poland
| | - Błażej Marciniak
- Biobank Lab, Department of Molecular Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
- BBMRI.Pl Consortium, Wroclaw, Poland
| | - Dominik Strapagiel
- Biobank Lab, Department of Molecular Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland.
- BBMRI.Pl Consortium, Wroclaw, Poland.
| |
Collapse
|
282
|
Ancheta AJ, Caceres BA, Jackman KB, Kreuze E, Hughes TL. Sexual Identity Differences in Health Behaviors and Weight Status among Urban High School Students. Behav Med 2021; 47:259-271. [PMID: 34719340 PMCID: PMC8560978 DOI: 10.1080/08964289.2020.1763903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Revised: 04/16/2020] [Accepted: 04/24/2020] [Indexed: 10/24/2022]
Abstract
Although racial/ethnic disparities in childhood obesity are well documented in the United States (U.S.), fewer studies have investigated elevated body mass index (BMI) and related health behaviors among sexual minority youth (SMY; gay/lesbian, bisexual, not sure). We examined pooled data from the 2009-2017 Youth Risk Behavior Surveys, which included high school students from 12 urban U.S. school districts. We used sex-stratified logistic regression models to estimate the association of sexual identity with health behaviors and elevated BMI (reference = heterosexual participants). A total of 133,615 participants were included. Sexual minority boys were more likely to report physical inactivity than heterosexual boys. Gay and not sure boys were also less likely to consume the recommended daily intake of fruit. Bisexual girls were more likely than heterosexual girls to report watching television ≥ 3 hours on a school day and to consume sugar-sweetened beverages (AOR 1.30, 95% CI= 1.18-1.43). All SMY reported higher rates of current tobacco use than their heterosexual peers. Sexual minority girls and bisexual boys had significantly higher rates of obesity than their heterosexual counterparts. These findings can inform tailored health promotion initiatives to reduce obesity risk in SMY.
Collapse
Affiliation(s)
- April J Ancheta
- Columbia University School of Nursing, New York, New York, USA
| | - Billy A Caceres
- Columbia University School of Nursing, New York, New York, USA
| | - Kasey B Jackman
- Columbia University School of Nursing, New York, New York, USA
| | | | - Tonda L Hughes
- Henrik H. Bendixen Professor of International Nursing (in Psychiatry), Columbia University School of Nursing, New York, New York, USA
| |
Collapse
|
283
|
Cawley J, Biener A, Meyerhoefer C, Ding Y, Zvenyach T, Smolarz BG, Ramasamy A. Job Absenteeism Costs of Obesity in the United States: National and State-Level Estimates. J Occup Environ Med 2021; 63:565-573. [PMID: 33769330 DOI: 10.1097/jom.0000000000002198] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
OBJECTIVE To estimate the causal effect of obesity on job absenteeism and the associated lost productivity in the United States, both nationwide and by state. METHODS We conducted a retrospective pooled cross-sectional analysis using the 2001 to 2016 Medical Expenditure Panel Survey and estimated two-part models of instrumental variables. RESULTS Obesity, relative to normal weight, raises job absenteeism due to injury or illness by 3.0 days per year (128%). Annual productivity loss due to obesity ranges from $271 to $542 (lower/upper bound) per employee with obesity, with national productivity losses ranging from $13.4 to $26.8 billion in 2016. Trends in state-level estimates mirror those at the national level, varying across states. CONCLUSIONS Obesity significantly raises job absenteeism. Reductions in job absenteeism should be included when calculating the cost-effectiveness of interventions to prevent or reduce obesity among employed adults.
Collapse
Affiliation(s)
- John Cawley
- Department of Policy Analysis and Management and Department of Economics, Cornell University, Ithaca, New York (Dr Cawley); Department of Economics, Lafayette College, Easton, Pennsylvania (Dr Biener); College of Business, Lehigh University, Bethlehem, Pennsylvania (Dr Meyerhoefer); Bluebird Bio, Inc., Cambridge, Massachusetts (Dr Ding); Nurse Disrupted, LLC, Madison, Wisconsin (Dr Zvenyach); Novo Nordisk Inc., Plainsboro, NJ (Dr Smolarz and Ms Ramasamy)
| | | | | | | | | | | | | |
Collapse
|
284
|
Nono Nankam PA, Blüher M. Retinol-binding protein 4 in obesity and metabolic dysfunctions. Mol Cell Endocrinol 2021; 531:111312. [PMID: 33957191 DOI: 10.1016/j.mce.2021.111312] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 04/28/2021] [Accepted: 04/29/2021] [Indexed: 12/11/2022]
Abstract
Excessive increased adipose tissue mass in obesity is associated with numerous co-morbid disorders including increased risk of type 2 diabetes, fatty liver disease, hypertension, dyslipidemia, cardiovascular diseases, dementia, airway disease and some cancers. The causal mechanisms explaining these associations are not fully understood. Adipose tissue is an active endocrine organ that secretes many adipokines, cytokines and releases metabolites. These biomolecules referred to as adipocytokines play a significant role in the regulation of whole-body energy homeostasis and metabolism by influencing and altering target tissues function. Understanding the mechanisms of adipocytokine actions represents a hot topic in obesity research. Among several secreted bioactive signalling molecules from adipose tissue and liver, retinol-binding protein 4 (RBP4) has been associated with systemic insulin resistance, dyslipidemia, type 2 diabetes and other metabolic diseases. Here, we aim to review and discuss the current knowledge on RBP4 with a focus on its role in the pathogenesis of obesity comorbid diseases.
Collapse
Affiliation(s)
- Pamela A Nono Nankam
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Zentrum München at the University of Leipzig and University Hospital Leipzig, Germany.
| | - Matthias Blüher
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Zentrum München at the University of Leipzig and University Hospital Leipzig, Germany; Medical Department III - Endocrinology, Nephrology, Rheumatology, University of Leipzig Medical Center, Germany
| |
Collapse
|
285
|
Rana S, Sultana A, Bhatti AA. Effect of interaction between obesity-promoting genetic variants and behavioral factors on the risk of obese phenotypes. Mol Genet Genomics 2021; 296:919-938. [PMID: 33966103 DOI: 10.1007/s00438-021-01793-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 04/22/2021] [Indexed: 01/28/2023]
Abstract
The studies investigating gene-gene and gene-environment (or gene-behavior) interactions provide valuable insight into the pathomechanisms underlying obese phenotypes. The Pakistani population due to its unique characteristics offers numerous advantages for conducting such studies. In this view, the current study was undertaken to examine the effects of gene-gene and gene-environment/behavior interactions on the risk of obesity in a sample of Pakistani population. A total of 578 adult participants including 290 overweight/obese cases and 288 normal-weight controls were involved. The five key obesity-associated genetic variants namely MC4R rs17782313, BDNF rs6265, FTO rs1421085, TMEM18 rs7561317, and NEGR1 rs2815752 were genotyped using the TaqMan allelic discrimination assays. The data related to behavioral factors, such as eating pattern, diet consciousness, the tendency toward fat-dense food (TFDF), sleep duration, sleep-wake cycle (SWC), shift work (SW), and physical activity levels were collected via a questionnaire. Gene-gene and gene-behavior interactions were analyzed by multifactor dimensionality reduction and linear regression, respectively. In our study, only TMEM18 rs7561317 was found to be significantly associated with anthropometric traits with no significant effect of gene-gene interactions were observed on obesity-related phenotypes. However, the genetic variants were found to interact with the behavioral factors to significantly influence various obesity-related anthropometric traits including BMI, waist circumference, hip circumference, waist-to-hip ratio, waist-to-height ratio, and percentage of body fat. In conclusion, the interaction between genetic architecture and behavior/environment determines the outcome of obesity-related anthropometric phenotypes. Thus, gene-environment/behavior interaction studies should be promoted to explore the risk of complex and multifactorial disorders, such as obesity.
Collapse
Affiliation(s)
- Sobia Rana
- Molecular Biology and Human Genetics Laboratory, Dr. Panjwani Center for Molecular Medicine and Drug Research (PCMD), International Center for Chemical and Biological Sciences (ICCBS), University of Karachi, Karachi, 75270, Pakistan.
| | - Ayesha Sultana
- Molecular Biology and Human Genetics Laboratory, Dr. Panjwani Center for Molecular Medicine and Drug Research (PCMD), International Center for Chemical and Biological Sciences (ICCBS), University of Karachi, Karachi, 75270, Pakistan
| | - Adil Anwar Bhatti
- Molecular Biology and Human Genetics Laboratory, Dr. Panjwani Center for Molecular Medicine and Drug Research (PCMD), International Center for Chemical and Biological Sciences (ICCBS), University of Karachi, Karachi, 75270, Pakistan
| |
Collapse
|
286
|
Kang JH, Kim H, Kim J, Seo JH, Cha S, Oh H, Kim K, Park SJ, Kim E, Kong S, Lee JH, Bae JS, Won HH, Joung JG, Yang YJ, Kim J, Park WY. Interaction of genetic and environmental factors for body fat mass control: observational study for lifestyle modification and genotyping. Sci Rep 2021; 11:13180. [PMID: 34162918 PMCID: PMC8222320 DOI: 10.1038/s41598-021-92229-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 06/01/2021] [Indexed: 01/22/2023] Open
Abstract
Previous studies suggested that genetic, environmental factors and their interactions could affect body fat mass (BFM). However, studies describing these effects were performed at a single time point in a population. In this study, we investigated the interaction between genetic and environmental factors in affecting BFM and implicate the healthcare utilization of lifestyle modifications from a personalized and genomic perspective. We examined how nutritional intake or physical activity changes in the individuals affect BFM concerning the genetic composition. We conducted an observational study including 259 adult participants with single nucleotide polymorphism (SNP) genotyping and longitudinal lifestyle monitoring, including food consumption and physical activities, by following lifestyle modification guidance. The participants’ lifelog data on exercise and diet were collected through a wearable device for 3 months. Moreover, we measured anthropometric and serologic markers to monitor their potential changes through lifestyle modification. We examined the influence of genetic composition on body fat reduction induced by lifestyle changes using genetic risk scores (GRSs) of three phenotypes: GRS-carbohydrate (GRS-C), GRS-fat (GRS-F), and GRS-exercise (GRS-E). Our results showed that lifestyle modifications affected BFM more significantly in the high GRS class compared to the low GRS class, indicating the role of genetic factors affecting the efficiency of the lifestyle modification-induced BFM changes. Interestingly, the influence of exercise modification in the low GRS class with active lifestyle change was lower than that in the high GRS class with inactive lifestyle change (P = 0.022), suggesting the implication of genetic factors for efficient body fat control.
Collapse
Affiliation(s)
- Joon Ho Kang
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do, 16419, South Korea.,Samsung Genome Institute, Samsung Medical Center, Sungkyunkwan University, Ilwon-ro 81, Gangnam-gu, Seoul, 06351, South Korea
| | - Heewon Kim
- Samsung Genome Institute, Samsung Medical Center, Sungkyunkwan University, Ilwon-ro 81, Gangnam-gu, Seoul, 06351, South Korea
| | - Jinki Kim
- AI&SW Center, SAIT, SEC, 130, Samsung-ro, Yeongtong-gu, Suwon, Gyeonggi, 16678, South Korea
| | - Jong-Hwa Seo
- AI&SW Center, SAIT, SEC, 130, Samsung-ro, Yeongtong-gu, Suwon, Gyeonggi, 16678, South Korea
| | - Soyeon Cha
- Samsung Genome Institute, Samsung Medical Center, Sungkyunkwan University, Ilwon-ro 81, Gangnam-gu, Seoul, 06351, South Korea
| | - Hyunjung Oh
- Samsung Genome Institute, Samsung Medical Center, Sungkyunkwan University, Ilwon-ro 81, Gangnam-gu, Seoul, 06351, South Korea
| | - Kyunga Kim
- Samsung Medical Center, Gangnam-gu, Seoul, 06351, South Korea
| | - Seong-Jin Park
- AI&SW Center, SAIT, SEC, 130, Samsung-ro, Yeongtong-gu, Suwon, Gyeonggi, 16678, South Korea
| | - Eunbin Kim
- Department of Clinical Nutrition, School of Public Health, Dongduk Women's University, Seoul, 02748, Korea
| | - Sunga Kong
- Department of Clinical Research Design and Evaluation, SAIHST, Sungkyunkwan University, Seoul, South Korea
| | - Jae-Hak Lee
- Samsung Genome Institute, Samsung Medical Center, Sungkyunkwan University, Ilwon-ro 81, Gangnam-gu, Seoul, 06351, South Korea
| | - Joon Seol Bae
- Samsung Genome Institute, Samsung Medical Center, Sungkyunkwan University, Ilwon-ro 81, Gangnam-gu, Seoul, 06351, South Korea
| | - Hong-Hee Won
- Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University of Medicine, Seoul, 06351, South Korea
| | - Je-Gun Joung
- Samsung Medical Center, Gangnam-gu, Seoul, 06351, South Korea
| | - Yoon Jung Yang
- Department of Foods and Nutrition, College of Natural Sciences, Dongduk Women's University, 60, Hwarang-ro 13-gil, Seongbuk-gu, Seoul, 02748, Korea.
| | - Jinho Kim
- Samsung Genome Institute, Samsung Medical Center, Sungkyunkwan University, Ilwon-ro 81, Gangnam-gu, Seoul, 06351, South Korea.
| | - Woong-Yang Park
- Samsung Genome Institute, Samsung Medical Center, Sungkyunkwan University, Ilwon-ro 81, Gangnam-gu, Seoul, 06351, South Korea.
| |
Collapse
|
287
|
Geelhoed B, Börschel CS, Niiranen T, Palosaari T, Havulinna AS, Fouodo CJK, Scheinhardt MO, Blankenberg S, Jousilahti P, Kuulasmaa K, Zeller T, Salomaa V, Schnabel RB. Assessment of causality of natriuretic peptides and atrial fibrillation and heart failure: a Mendelian randomization study in the FINRISK cohort. Europace 2021; 22:1463-1469. [PMID: 32830215 PMCID: PMC7544535 DOI: 10.1093/europace/euaa158] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 06/08/2020] [Indexed: 12/11/2022] Open
Abstract
AIMS Natriuretic peptides are extensively studied biomarkers for atrial fibrillation (AF) and heart failure (HF). Their role in the pathogenesis of both diseases is not entirely understood and previous studies several single-nucleotide polymorphisms (SNPs) at the NPPA-NPPB locus associated with natriuretic peptides have been identified. We investigated the causal relationship between natriuretic peptides and AF as well as HF using a Mendelian randomization approach. METHODS AND RESULTS N-terminal pro B-type natriuretic peptide (NT-proBNP) (N = 6669), B-type natriuretic peptide (BNP) (N = 6674), and mid-regional pro atrial natriuretic peptide (MR-proANP) (N = 6813) were measured in the FINRISK 1997 cohort. N = 30 common SNPs related to NT-proBNP, BNP, and MR-proANP were selected from studies. We performed six Mendelian randomizations for all three natriuretic peptide biomarkers and for both outcomes, AF and HF, separately. Polygenic risk scores (PRSs) based on multiple SNPs were used as genetic instrumental variable in Mendelian randomizations. Polygenic risk scores were significantly associated with the three natriuretic peptides. Polygenic risk scores were not significantly associated with incident AF nor HF. Most cardiovascular risk factors showed significant confounding percentages, but no association with PRS. A causal relation except for small causal betas is unlikely. CONCLUSION In our Mendelian randomization approach, we confirmed an association between common genetic variation at the NPPA-NPPB locus and natriuretic peptides. A strong causal relationship between natriuretic peptides and incidence of AF as well as HF at the community-level was ruled out. Therapeutic approaches targeting natriuretic peptides will therefore very likely work through indirect mechanisms.
Collapse
Affiliation(s)
- Bastiaan Geelhoed
- Department of General and Interventional Cardiology, University Heart Centre Hamburg, Martinistr. 52, 20246 Hamburg, Germany.,German Centre for Cardiovascular Research (DZHK), Partner Site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Christin S Börschel
- Department of General and Interventional Cardiology, University Heart Centre Hamburg, Martinistr. 52, 20246 Hamburg, Germany.,German Centre for Cardiovascular Research (DZHK), Partner Site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Teemu Niiranen
- Finnish Institute for Health and Welfare, THL, Helsinki, Finland
| | - Tarja Palosaari
- Finnish Institute for Health and Welfare, THL, Helsinki, Finland
| | - Aki S Havulinna
- Finnish Institute for Health and Welfare, THL, Helsinki, Finland.,Institute for Molecular Medicine Finland (FIMM), Helsinki, Finland
| | - Césaire J K Fouodo
- Institute of Medical Biometry and Statistics, University of Lübeck, University Medical Centre Schleswig-Holstein, Campus Lübeck, Lübeck, Germany
| | - Markus O Scheinhardt
- Institute of Medical Biometry and Statistics, University of Lübeck, University Medical Centre Schleswig-Holstein, Campus Lübeck, Lübeck, Germany
| | - Stefan Blankenberg
- Department of General and Interventional Cardiology, University Heart Centre Hamburg, Martinistr. 52, 20246 Hamburg, Germany.,German Centre for Cardiovascular Research (DZHK), Partner Site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Pekka Jousilahti
- Finnish Institute for Health and Welfare, THL, Helsinki, Finland
| | - Kari Kuulasmaa
- Finnish Institute for Health and Welfare, THL, Helsinki, Finland
| | - Tanja Zeller
- Department of General and Interventional Cardiology, University Heart Centre Hamburg, Martinistr. 52, 20246 Hamburg, Germany.,German Centre for Cardiovascular Research (DZHK), Partner Site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Veikko Salomaa
- Finnish Institute for Health and Welfare, THL, Helsinki, Finland
| | - Renate B Schnabel
- Department of General and Interventional Cardiology, University Heart Centre Hamburg, Martinistr. 52, 20246 Hamburg, Germany.,German Centre for Cardiovascular Research (DZHK), Partner Site Hamburg/Kiel/Lübeck, Hamburg, Germany
| |
Collapse
|
288
|
Fu L, Wang Y, Li T, Hu YQ. A Novel Approach Integrating Hierarchical Clustering and Weighted Combination for Association Study of Multiple Phenotypes and a Genetic Variant. Front Genet 2021; 12:654804. [PMID: 34220938 PMCID: PMC8249926 DOI: 10.3389/fgene.2021.654804] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 04/20/2021] [Indexed: 11/26/2022] Open
Abstract
As a pivotal research tool, genome-wide association study has successfully identified numerous genetic variants underlying distinct diseases. However, these identified genetic variants only explain a small proportion of the phenotypic variation for certain diseases, suggesting that there are still more genetic signals to be detected. One of the reasons may be that one-phenotype one-variant association study is not so efficient in detecting variants of weak effects. Nowadays, it is increasingly worth noting that joint analysis of multiple phenotypes may boost the statistical power to detect pathogenic variants with weak genetic effects on complex diseases, providing more clues for their underlying biology mechanisms. So a Weighted Combination of multiple phenotypes following Hierarchical Clustering method (WCHC) is proposed for simultaneously analyzing multiple phenotypes in association studies. A series of simulations are conducted, and the results show that WCHC is either the most powerful method or comparable with the most powerful competitor in most of the simulation scenarios. Additionally, we evaluated the performance of WCHC in its application to the obesity-related phenotypes from Atherosclerosis Risk in Communities, and several associated variants are reported.
Collapse
Affiliation(s)
- Liwan Fu
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, Institute of Biostatistics, School of Life Sciences, Fudan University, Shanghai, China
- Center for Non-communicable Disease Management, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, China
| | - Yuquan Wang
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, Institute of Biostatistics, School of Life Sciences, Fudan University, Shanghai, China
| | - Tingting Li
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, Institute of Biostatistics, School of Life Sciences, Fudan University, Shanghai, China
| | - Yue-Qing Hu
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, Institute of Biostatistics, School of Life Sciences, Fudan University, Shanghai, China
- Shanghai Center for Mathematical Sciences, Fudan University, Shanghai, China
| |
Collapse
|
289
|
Wade KH, Clifford L, Simpkin AJ, Beynon R, Birch L, Northstone K, Matthews S, Davey Smith G, Hamilton-Shield J, Timpson NJ. Piloting the objective measurement of eating weight and speed at a population scale: a nested study within the Avon Longitudinal Study of Parents and Children. Wellcome Open Res 2021; 5:185. [PMID: 34195383 PMCID: PMC8215563 DOI: 10.12688/wellcomeopenres.16091.3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/09/2021] [Indexed: 11/24/2022] Open
Abstract
Background: Effective measurement and adaption of eating behaviours (e.g., eating speed) may improve weight loss and weight over time. We assessed whether the Mandometer, a portable weighing scale connected to a computer that generates a graph of food removal rate from the plate to which it is connected, together with photo-imaging of food, might prove a less intensive and more economical approach to measuring eating behaviours at large scale. Methods: We deployed the Mandometer in the home environment to measure main meals over three days of 95 21-year-old participants of the Avon Longitudinal Study of Parents and Children. We used multi-level models to describe food weight and eating speed and, as exemplar analyses, examined the relationship of eating behaviours with body mass index (BMI), dietary composition (fat content) and genotypic variation (the FTO rs9939609 variant). Using this pilot data, we calculated the sample size required to detect differences in food weight and eating speed between groups of an exposure variable. Results: All participants were able to use the Mandometer effectively after brief training. In exemplar analyses, evidence suggested that obese participants consumed more food than those of "normal" weight (i.e., BMI 19 to <25 kg/m 2) and that A/A FTO homozygotes (an indicator of higher weight) ate at a faster rate compared to T/T homozygotes. There was also some evidence that those with a high-fat diet consumed less food than those with a low-fat diet, but little evidence that individuals with medium- or high-fat diets ate faster. Conclusions: We demonstrated the potential for assessing eating weight and speed in a short-term home setting and combining this with information in a research setting. This study may offer the opportunity to design interventions tailored for at-risk eating behaviours, offering advantages over the "one size fits all" approach of current failing obesity interventions.
Collapse
Affiliation(s)
- Kaitlin H. Wade
- Medical Research Council (MRC) Integrative Epidemiology Unit, University of Bristol, Bristol, BS8 2BN, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, BS8 2BN, UK
| | - Laura Clifford
- Department of Paediatric Respiratory Medicine, Bristol Royal Hospital for Children, Bristol, BS2 8BJ, UK
| | - Andrew J. Simpkin
- Medical Research Council (MRC) Integrative Epidemiology Unit, University of Bristol, Bristol, BS8 2BN, UK
- School of Mathematics, Statistics and Applied Mathematics, National University of Ireland, Galway, H91 H3CY, Ireland
| | - Rhona Beynon
- Medical Research Council (MRC) Integrative Epidemiology Unit, University of Bristol, Bristol, BS8 2BN, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, BS8 2BN, UK
| | - Laura Birch
- NIHR Bristol Biomedical Research Centre Nutrition Theme, University of Bristol, University Hospitals Bristol Education & Research Centre, Bristol, BS1 3NU, UK
| | - Kate Northstone
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, BS8 2BN, UK
| | - Sarah Matthews
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, BS8 2BN, UK
| | - George Davey Smith
- Medical Research Council (MRC) Integrative Epidemiology Unit, University of Bristol, Bristol, BS8 2BN, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, BS8 2BN, UK
| | - Julian Hamilton-Shield
- NIHR Bristol Biomedical Research Centre Nutrition Theme, University of Bristol, University Hospitals Bristol Education & Research Centre, Bristol, BS1 3NU, UK
| | - Nicholas J. Timpson
- Medical Research Council (MRC) Integrative Epidemiology Unit, University of Bristol, Bristol, BS8 2BN, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, BS8 2BN, UK
| |
Collapse
|
290
|
Dashti HS, Ordovás JM. Genetics of Sleep and Insights into Its Relationship with Obesity. Annu Rev Nutr 2021; 41:223-252. [PMID: 34102077 DOI: 10.1146/annurev-nutr-082018-124258] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Considerable recent advancements in elucidating the genetic architecture of sleep traits and sleep disorders may provide insight into the relationship between sleep and obesity. Despite the considerable involvement of the circadian clock in sleep and metabolism, few shared genes, including FTO, were implicated in genome-wide association studies (GWASs) of sleep and obesity. Polygenic scores composed of signals from GWASs of sleep traits show largely null associations with obesity, suggesting lead variants are unique to sleep. Modest genome-wide genetic correlations are observed between many sleep traits and obesity and are largest for snoring.Notably, U-shaped positive genetic correlations with body mass index (BMI) exist for both short and long sleep durations. Findings from Mendelian randomization suggest robust causal effects of insomnia on higher BMI and, conversely, of higher BMI on snoring and daytime sleepiness. Bidirectional effects between sleep duration and daytime napping with obesity may also exist. Limited gene-sleep interaction studies suggest that achieving favorable sleep, as part of a healthy lifestyle, may attenuate genetic predisposition to obesity, but whether these improvements produce clinically meaningful reductions in obesity risk remains unclear. Investigations of the genetic link between sleep and obesity for sleep disorders other than insomnia and in populations of non-European ancestry are currently limited. Expected final online publication date for the Annual Review of Nutrition, Volume 41 is September 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Hassan S Dashti
- Center for Genomic Medicine and Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114, USA; .,Broad Institute, Cambridge, Massachusetts 02142, USA
| | - José M Ordovás
- Nutrition and Genomics Laboratory, JM-USDA Human Nutrition Research Center on Aging at Tufts University, Boston, Massachusetts 02111, USA.,Precision Nutrition and Obesity Program, IMDEA Alimentación, 28049 Madrid, Spain
| |
Collapse
|
291
|
Byambasukh O, Vinke P, Kromhout D, Navis G, Corpeleijn E. Physical activity and 4-year changes in body weight in 52,498 non-obese people: the Lifelines cohort. Int J Behav Nutr Phys Act 2021; 18:75. [PMID: 34098972 PMCID: PMC8186174 DOI: 10.1186/s12966-021-01141-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 05/20/2021] [Indexed: 11/30/2022] Open
Abstract
OBJECTIVES We investigated associations between leisure-time physical activity (LTPA) at different intensities (moderate and vigorous or moderate-to-vigorous) and prospective weight gain in non-obese people. We also examined whether these associations were independent of other lifestyle factors and changes in muscle mass and whether they were age-dependent and changed over a person's life course. METHODS The data were extracted from the Lifelines cohort study (N = 52,498; 43.5% men) and excluded obese individuals (BMI > 30 kg/m2). We used the validated SQUASH questionnaire to estimate moderate-to-vigorous (MVPA; MET≥4), moderate (MPA; MET between 4 and 6.5) and vigorous PA (VPA; MET≥6.5). Body weight was objectively measured, and changes were standardized to a 4-year period. Separate analyses, adjusted for age, educational level, diet, smoking, alcohol consumption and changes in creatinine excretion (a marker of muscle mass), were performed for men and women. RESULTS The average weight gain was + 0.45 ± 0.03 kg in women. Relative to each reference groups (No-MVPA, No-MPA and No-VPA), MVPA (Beta (95%CI): - 0.34 kg (- 0.56;-0.13)), MPA (- 0.32 kg (- 0.54;-0.10)) and VPA (- 0.30 kg (- 0.43;-0.18)) were associated with less gain in body weight in women after adjusting for potential confounders, described above. These associations were dose-dependent when physically active individuals were divided in tertiles. Beta-coefficients (95%CI) for the lowest, middle, and highest MVPA tertiles relative to the 'No-MVPA' were, respectively, - 0.24 (- 0.47;-0.02), - 0.31 (- 0.53;-0.08), and - 0.38 (- 0.61;-0.16) kg. The average weight gain in men was + 0.13 ± 0.03 kg, and only VPA, not MPA was associated with less body weight gain. Beta-coefficients (95%CI) for the VPA tertiles relative to the 'No-VPA' group were, respectively, - 0.25 (- 0.42;-0.09), - 0.19 (- 0.38;-0.01) and - 0.20 (- 0.38;-0.02) kg. However, after adjusting for potential confounders, the association was no longer significant in men. The potential benefits of leisure-time PA were age-stratified and mainly observed in younger adults (men < 35 years) or stronger with younger age (women < 55 years). CONCLUSION Higher leisure-time MVPA, MPA, and VPA were associated with less weight gain in women < 55 years. In younger men (< 35 years), only VPA was associated with less weight gain.
Collapse
Affiliation(s)
- Oyuntugs Byambasukh
- Department of Epidemiology (FA40), Unit of Lifestyle Medicine in Obesity and Diabetes, University Medical Center Groningen, University of Groningen, P.O. Box 30 001, 9700, RB, Groningen, the Netherlands.
- Department of Endocrinology, Mongolian National University of Medical Sciences, Ulaanbaatar, Mongolia.
| | - Petra Vinke
- Department of Epidemiology (FA40), Unit of Lifestyle Medicine in Obesity and Diabetes, University Medical Center Groningen, University of Groningen, P.O. Box 30 001, 9700, RB, Groningen, the Netherlands
| | - Daan Kromhout
- Department of Epidemiology (FA40), Unit of Lifestyle Medicine in Obesity and Diabetes, University Medical Center Groningen, University of Groningen, P.O. Box 30 001, 9700, RB, Groningen, the Netherlands
| | - Gerjan Navis
- Department of Internal Medicine, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Eva Corpeleijn
- Department of Epidemiology (FA40), Unit of Lifestyle Medicine in Obesity and Diabetes, University Medical Center Groningen, University of Groningen, P.O. Box 30 001, 9700, RB, Groningen, the Netherlands
| |
Collapse
|
292
|
De Cahsan B, Westbury MV, Paraskevopoulou S, Drews H, Ott M, Gollmann G, Tiedemann R. Genomic consequences of human-mediated translocations in margin populations of an endangered amphibian. Evol Appl 2021; 14:1623-1634. [PMID: 34178108 PMCID: PMC8210794 DOI: 10.1111/eva.13229] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 02/17/2021] [Accepted: 03/12/2021] [Indexed: 01/08/2023] Open
Abstract
Due to their isolated and often fragmented nature, range margin populations are especially vulnerable to rapid environmental change. To maintain genetic diversity and adaptive potential, gene flow from disjunct populations might therefore be crucial to their survival. Translocations are often proposed as a mitigation strategy to increase genetic diversity in threatened populations. However, this also includes the risk of losing locally adapted alleles through genetic swamping. Human-mediated translocations of southern lineage specimens into northern German populations of the endangered European fire-bellied toad (Bombina bombina) provide an unexpected experimental set-up to test the genetic consequences of an intraspecific introgression from central population individuals into populations at the species range margin. Here, we utilize complete mitochondrial genomes and transcriptome nuclear data to reveal the full genetic extent of this translocation and the consequences it may have for these populations. We uncover signs of introgression in four out of the five northern populations investigated, including a number of introgressed alleles ubiquitous in all recipient populations, suggesting a possible adaptive advantage. Introgressed alleles dominate at the MTCH2 locus, associated with obesity/fat tissue in humans, and the DSP locus, essential for the proper development of epidermal skin in amphibians. Furthermore, we found loci where local alleles were retained in the introgressed populations, suggesting their relevance for local adaptation. Finally, comparisons of genetic diversity between introgressed and nonintrogressed northern German populations revealed an increase in genetic diversity in all German individuals belonging to introgressed populations, supporting the idea of a beneficial transfer of genetic variation from Austria into North Germany.
Collapse
Affiliation(s)
- Binia De Cahsan
- Unit of Evolutionary Biology/Systematic ZoologyInstitute for Biochemistry and BiologyUniversity of PotsdamPotsdamGermany
- GLOBE InstituteUniversity of CopenhagenCopenhagenDenmark
| | | | - Sofia Paraskevopoulou
- Unit of Evolutionary Biology/Systematic ZoologyInstitute for Biochemistry and BiologyUniversity of PotsdamPotsdamGermany
- Unit of ZoologyTel Aviv UniversityTel AvivIsrael
| | - Hauke Drews
- Stiftung Naturschutz Schleswig‐HolsteinMolfseeGermany
| | - Moritz Ott
- Stiftung Naturschutz Schleswig‐HolsteinMolfseeGermany
| | - Günter Gollmann
- Department of Evolutionary BiologyUniversity of ViennaViennaAustria
| | - Ralph Tiedemann
- Unit of Evolutionary Biology/Systematic ZoologyInstitute for Biochemistry and BiologyUniversity of PotsdamPotsdamGermany
| |
Collapse
|
293
|
Stanislawski MA, Litkowski E, Fore R, Rifas-Shiman SL, Oken E, Hivert MF, Lange EM, Lange LA, Dabelea D, Raghavan S. Genetic Interactions with Intrauterine Diabetes Exposure in Relation to Obesity: The EPOCH and Project Viva Studies. Pediatr Rep 2021; 13:279-288. [PMID: 34205853 PMCID: PMC8293453 DOI: 10.3390/pediatric13020036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 05/18/2021] [Accepted: 05/21/2021] [Indexed: 11/16/2022] Open
Abstract
To examine whether BMI-associated genetic risk variants modify the association of intrauterine diabetes exposure with childhood BMI z-scores, we assessed the interaction between 95 BMI-associated genetic variants and in utero exposure to maternal diabetes among 459 children in the Exploring Perinatal Outcomes among Children historical prospective cohort study (n = 86 exposed; 373 unexposed) in relation to age- and sex-standardized childhood BMI z-scores (mean age = 10.3 years, standard deviation = 1.5 years). For the genetic variants showing a nominally significant interaction, we assessed the relationship in an additional 621 children in Project Viva, which is an independent longitudinal cohort study, and used meta-analysis to combine the results for the two studies. Seven of the ninety-five genetic variants tested exhibited a nominally significant interaction with in utero exposure to maternal diabetes in relation to the offspring BMI z-score in EPOCH. Five of the seven variants exhibited a consistent direction of interaction effect across both EPOCH and Project Viva. While none achieved statistical significance in the meta-analysis after accounting for multiple testing, three variants exhibited a nominally significant interaction with in utero exposure to maternal diabetes in relation to offspring BMI z-score: rs10733682 near LMX1B (interaction β = 0.39; standard error (SE) = 0.17), rs17001654 near SCARB2 (β = 0.53; SE = 0.22), and rs16951275 near MAP2K5 (β = 0.37; SE = 0.17). BMI-associated genetic variants may enhance the association between exposure to in utero diabetes and higher childhood BMI, but larger studies of in utero exposures are necessary to confirm the observed nominally significant relationships.
Collapse
Affiliation(s)
- Maggie A. Stanislawski
- Division of Biomedical Informatics and Personalized Medicine, Department of Medicine, University of Colorado School of Medicine, Aurora, CO 80045, USA; (E.L.); (E.M.L.); (L.A.L.); (S.R.)
- Correspondence:
| | - Elizabeth Litkowski
- Division of Biomedical Informatics and Personalized Medicine, Department of Medicine, University of Colorado School of Medicine, Aurora, CO 80045, USA; (E.L.); (E.M.L.); (L.A.L.); (S.R.)
- Department of Epidemiology, University of Colorado School of Public Health, Aurora, CO 80045, USA;
| | - Ruby Fore
- Department of Population Medicine, Harvard Medical School, Harvard Pilgrim Health Care Institute, Boston, MA 02215, USA; (R.F.); (S.L.R.-S.); (E.O.); (M.-F.H.)
| | - Sheryl L. Rifas-Shiman
- Department of Population Medicine, Harvard Medical School, Harvard Pilgrim Health Care Institute, Boston, MA 02215, USA; (R.F.); (S.L.R.-S.); (E.O.); (M.-F.H.)
| | - Emily Oken
- Department of Population Medicine, Harvard Medical School, Harvard Pilgrim Health Care Institute, Boston, MA 02215, USA; (R.F.); (S.L.R.-S.); (E.O.); (M.-F.H.)
| | - Marie-France Hivert
- Department of Population Medicine, Harvard Medical School, Harvard Pilgrim Health Care Institute, Boston, MA 02215, USA; (R.F.); (S.L.R.-S.); (E.O.); (M.-F.H.)
- Diabetes Unit, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Ethan M. Lange
- Division of Biomedical Informatics and Personalized Medicine, Department of Medicine, University of Colorado School of Medicine, Aurora, CO 80045, USA; (E.L.); (E.M.L.); (L.A.L.); (S.R.)
- Department of Biostatistics and Informatics, University of Colorado School of Public Health, Aurora, CO 80045, USA
| | - Leslie A. Lange
- Division of Biomedical Informatics and Personalized Medicine, Department of Medicine, University of Colorado School of Medicine, Aurora, CO 80045, USA; (E.L.); (E.M.L.); (L.A.L.); (S.R.)
- Department of Epidemiology, University of Colorado School of Public Health, Aurora, CO 80045, USA;
| | - Dana Dabelea
- Department of Epidemiology, University of Colorado School of Public Health, Aurora, CO 80045, USA;
- Lifecourse Epidemiology of Adiposity and Diabetes (LEAD) Center, Aurora, CO 80045, USA
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Sridharan Raghavan
- Division of Biomedical Informatics and Personalized Medicine, Department of Medicine, University of Colorado School of Medicine, Aurora, CO 80045, USA; (E.L.); (E.M.L.); (L.A.L.); (S.R.)
- Veterans Affairs Eastern Colorado Healthcare System, Aurora, CO 80045, USA
| |
Collapse
|
294
|
Karampela I, Sakelliou A, Vallianou N, Christodoulatos GS, Magkos F, Dalamaga M. Vitamin D and Obesity: Current Evidence and Controversies. Curr Obes Rep 2021; 10:162-180. [PMID: 33792853 DOI: 10.1007/s13679-021-00433-1] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/11/2021] [Indexed: 12/12/2022]
Abstract
PURPOSE OF REVIEW Evidence from observational studies suggests that obesity is associated with low vitamin D. As both obesity and hypovitaminosis D present an alarmingly increased prevalence worldwide, there is an intense research interest to clarify all aspects of this association. This review summarizes current evidence from meta-analyses investigating vitamin D status in obesity, including the effects of weight loss and bariatric surgery on vitamin D status and the outcomes of vitamin D supplementation on body weight. We also discuss potential pathophysiologic mechanisms and important controversies. RECENT FINDINGS Data from meta-analyses consistently support an inverse association of vitamin D levels with body weight. However, the impact of weight loss on improving vitamin D status is small, while studies on the supplementation with vitamin D after bariatric surgery have shown conflicting results regarding vitamin D status. Moreover, interventional studies do not support a beneficial effect of vitamin D supplementation on body weight. These findings warrant a cautious interpretation due to important methodological limitations and confounding factors, such as high heterogeneity of studies, variable methods of determination of vitamin D and definition of deficiency/insufficiency, use of various adiposity measures and definitions of obesity, and inadequate adjustment for confounding variables influencing vitamin D levels. The underlying pathogenetic mechanisms associating low vitamin D in obesity include volumetric dilution, sequestration into adipose tissue, limited sunlight exposure, and decreased vitamin D synthesis in the adipose tissue and liver. Experimental studies have demonstrated that low vitamin D may be implicated in adipose tissue differentiation and growth leading to obesity either by regulation of gene expression or through modulation of parathyroid hormone, calcium, and leptin. Obesity is associated with low vitamin D status but weight loss has little effect on improving this; vitamin D supplementation is also not associated with weight loss. Evidence regarding vitamin D status after bariatric surgery is contradicting. The link between vitamin D and obesity remains controversial due to important limitations and confounding of studies. More research is needed to clarify the complex interplay between vitamin D and adiposity.
Collapse
Affiliation(s)
- Irene Karampela
- Second Department of Critical Care, Medical School, Attikon General University Hospital, National and Kapodistrian University of Athens, 1 Rimini St, Haidari, 12462, Athens, Greece.
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, Mikras Asias 75, Goudi, 11527, Athens, Greece.
| | - Alexandra Sakelliou
- Second Department of Critical Care, Medical School, Attikon General University Hospital, National and Kapodistrian University of Athens, 1 Rimini St, Haidari, 12462, Athens, Greece
| | - Natalia Vallianou
- First Department of Internal Medicine, Evangelismos General Hospital, 45-47 Ypsilantou St, 10676, Athens, Greece
| | - Gerasimos-Socrates Christodoulatos
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, Mikras Asias 75, Goudi, 11527, Athens, Greece
| | - Faidon Magkos
- Department of Nutrition, Exercise, and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Maria Dalamaga
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, Mikras Asias 75, Goudi, 11527, Athens, Greece
| |
Collapse
|
295
|
Yeo GSH, Chao DHM, Siegert AM, Koerperich ZM, Ericson MD, Simonds SE, Larson CM, Luquet S, Clarke I, Sharma S, Clément K, Cowley MA, Haskell-Luevano C, Van Der Ploeg L, Adan RAH. The melanocortin pathway and energy homeostasis: From discovery to obesity therapy. Mol Metab 2021; 48:101206. [PMID: 33684608 PMCID: PMC8050006 DOI: 10.1016/j.molmet.2021.101206] [Citation(s) in RCA: 130] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 02/28/2021] [Accepted: 03/03/2021] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Over the past 20 years, insights from human and mouse genetics have illuminated the central role of the brain leptin-melanocortin pathway in controlling mammalian food intake, with genetic disruption resulting in extreme obesity, and more subtle polymorphic variations influencing the population distribution of body weight. At the end of 2020, the U.S. Food and Drug Administration (FDA) approved setmelanotide, a melanocortin 4 receptor agonist, for use in individuals with severe obesity due to either pro-opiomelanocortin (POMC), proprotein convertase subtilisin/kexin type 1 (PCSK1), or leptin receptor (LEPR) deficiency. SCOPE OF REVIEW Herein, we chart the melanocortin pathway's history, explore its pharmacology, genetics, and physiology, and describe how a neuropeptidergic circuit became an important druggable obesity target. MAJOR CONCLUSIONS Unravelling the genetics of the subset of severe obesity has revealed the importance of the melanocortin pathway in appetitive control; coupling this with studying the molecular pharmacology of compounds that bind melanocortin receptors has brought a new obesity drug to the market. This process provides a drug discovery template for complex disorders, which for setmelanotide took 25 years to transform from a single gene into an approved drug.
Collapse
Affiliation(s)
- Giles S H Yeo
- MRC Metabolic Diseases Unit, University of Cambridge Metabolic Research Laboratories, Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge, UK.
| | | | - Anna-Maria Siegert
- MRC Metabolic Diseases Unit, University of Cambridge Metabolic Research Laboratories, Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge, UK.
| | - Zoe M Koerperich
- Department of Medicinal Chemistry and Institute for Translational Neuroscience, University of Minnesota, Minneapolis, MN, USA 55455.
| | - Mark D Ericson
- Department of Medicinal Chemistry and Institute for Translational Neuroscience, University of Minnesota, Minneapolis, MN, USA 55455.
| | - Stephanie E Simonds
- Metabolism, Diabetes, and Obesity Programme, Monash Biomedicine Discovery Institute, and Department of Physiology, Monash University, Clayton, Victoria, Australia.
| | - Courtney M Larson
- Department of Medicinal Chemistry and Institute for Translational Neuroscience, University of Minnesota, Minneapolis, MN, USA 55455.
| | - Serge Luquet
- Université de Paris, BFA, UMR 8251, CNRS, Paris, France.
| | - Iain Clarke
- Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, VIC 3010, Australia.
| | | | - Karine Clément
- Assistance Publique Hôpitaux de Paris, Nutrition Department, Pitié-Salpêtrière Hospital, Paris, France, Sorbonne Université, INSERM, Nutrition and Obesity: Systemic Approaches (NutriOmics) Research Unit, Paris, France.
| | - Michael A Cowley
- Metabolism, Diabetes, and Obesity Programme, Monash Biomedicine Discovery Institute, and Department of Physiology, Monash University, Clayton, Victoria, Australia.
| | - Carrie Haskell-Luevano
- Department of Medicinal Chemistry and Institute for Translational Neuroscience, University of Minnesota, Minneapolis, MN, USA 55455.
| | | | - Roger A H Adan
- Department of Translational Neuroscience, UMCU Brain Centre, University Medical Centre Utrecht, Utrecht University, the Netherlands; Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Sweden.
| |
Collapse
|
296
|
Podvin S, Jones A, Liu Q, Aulston B, Mosier C, Ames J, Winston C, Lietz CB, Jiang Z, O’Donoghue AJ, Ikezu T, Rissman RA, Yuan SH, Hook V. Mutant Presenilin 1 Dysregulates Exosomal Proteome Cargo Produced by Human-Induced Pluripotent Stem Cell Neurons. ACS OMEGA 2021; 6:13033-13056. [PMID: 34056454 PMCID: PMC8158845 DOI: 10.1021/acsomega.1c00660] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 04/16/2021] [Indexed: 05/28/2023]
Abstract
The accumulation and propagation of hyperphosphorylated tau (p-Tau) is a neuropathological hallmark occurring with neurodegeneration of Alzheimer's disease (AD). Extracellular vesicles, exosomes, have been shown to initiate tau propagation in the brain. Notably, exosomes from human-induced pluripotent stem cell (iPSC) neurons expressing the AD familial A246E mutant form of presenilin 1 (mPS1) are capable of inducing tau deposits in the mouse brain after in vivo injection. To gain insights into the exosome proteome cargo that participates in propagating tau pathology, this study conducted proteomic analysis of exosomes produced by human iPSC neurons expressing A246E mPS1. Significantly, mPS1 altered the profile of exosome cargo proteins to result in (1) proteins present only in mPS1 exosomes and not in controls, (2) the absence of proteins in the mPS1 exosomes which were present only in controls, and (3) shared proteins which were upregulated or downregulated in the mPS1 exosomes compared to controls. These results show that mPS1 dysregulates the proteome cargo of exosomes to result in the acquisition of proteins involved in the extracellular matrix and protease functions, deletion of proteins involved in RNA and protein translation systems along with proteasome and related functions, combined with the upregulation and downregulation of shared proteins, including the upregulation of amyloid precursor protein. Notably, mPS1 neuron-derived exosomes displayed altered profiles of protein phosphatases and kinases involved in regulating the status of p-tau. The dysregulation of exosome cargo proteins by mPS1 may be associated with the ability of mPS1 neuron-derived exosomes to propagate tau pathology.
Collapse
Affiliation(s)
- Sonia Podvin
- Skaggs
School of Pharmacy and Pharmaceutical Sciences, University of California San Diego,
La Jolla, San Diego 92093, California, United States
| | - Alexander Jones
- Biomedical
Sciences Graduate Program, University of
California, San Diego, La Jolla, San Diego 92093, California, United States
| | - Qing Liu
- Department
of Neurosciences, School of Medicine, University
of California, San Diego, La Jolla, San Diego 92093, California, United States
| | - Brent Aulston
- Department
of Neurosciences, School of Medicine, University
of California, San Diego, La Jolla, San Diego 92093, California, United States
| | - Charles Mosier
- Skaggs
School of Pharmacy and Pharmaceutical Sciences, University of California San Diego,
La Jolla, San Diego 92093, California, United States
| | - Janneca Ames
- Skaggs
School of Pharmacy and Pharmaceutical Sciences, University of California San Diego,
La Jolla, San Diego 92093, California, United States
| | - Charisse Winston
- Department
of Neurosciences, School of Medicine, University
of California, San Diego, La Jolla, San Diego 92093, California, United States
| | - Christopher B. Lietz
- Skaggs
School of Pharmacy and Pharmaceutical Sciences, University of California San Diego,
La Jolla, San Diego 92093, California, United States
| | - Zhenze Jiang
- Skaggs
School of Pharmacy and Pharmaceutical Sciences, University of California San Diego,
La Jolla, San Diego 92093, California, United States
| | - Anthony J. O’Donoghue
- Skaggs
School of Pharmacy and Pharmaceutical Sciences, University of California San Diego,
La Jolla, San Diego 92093, California, United States
| | - Tsuneya Ikezu
- Department
of Pharmacology and Experimental Therapeutics, Department of Neurology,
Alzheimer’s Disease Research Center, Boston University, School of Medicine, Boston 02118, Massachusetts, United States
| | - Robert A. Rissman
- Department
of Neurosciences, School of Medicine, University
of California, San Diego, La Jolla, San Diego 92093, California, United States
- Veterans
Affairs San Diego Healthcare System,
La Jolla, San Diego 92161, California, United States
| | - Shauna H. Yuan
- Department
of Neurosciences, School of Medicine, University
of California, San Diego, La Jolla, San Diego 92093, California, United States
| | - Vivian Hook
- Skaggs
School of Pharmacy and Pharmaceutical Sciences, University of California San Diego,
La Jolla, San Diego 92093, California, United States
- Biomedical
Sciences Graduate Program, University of
California, San Diego, La Jolla, San Diego 92093, California, United States
- Department
of Neurosciences, School of Medicine, University
of California, San Diego, La Jolla, San Diego 92093, California, United States
| |
Collapse
|
297
|
Ren S, Bian Y, Hou Y, Wang Z, Zuo Z, Liu Z, Teng Y, Fu J, Wang H, Xu Y, Zhang Q, Chen Y, Pi J. The roles of NFE2L1 in adipocytes: Structural and mechanistic insight from cell and mouse models. Redox Biol 2021; 44:102015. [PMID: 34058615 PMCID: PMC8170497 DOI: 10.1016/j.redox.2021.102015] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 05/07/2021] [Accepted: 05/16/2021] [Indexed: 12/12/2022] Open
Abstract
Adipocytes play pivotal roles in maintaining energy homeostasis by storing lipids in adipose tissue (AT), regulating the flux of lipids between AT and the circulation in response to the body's energy requirements and secreting a variety of hormones, cytokines and other factors. Proper AT development and function ensure overall metabolic health. Nuclear factor erythroid 2-related factor 1 (NFE2L1, also known as NRF1) belongs to the CNC-bZIP family and plays critical roles in regulating a wide range of essential cellular functions and varies stress responses in many cells and tissues. Human and rodent Nfe2l1 genes can be transcribed into multiple splice variants resulting in various protein isoforms, which may be further modified by a variety of post-translational mechanisms. While the long isoforms of NFE2L1 have been established as master regulators of cellular adaptive antioxidant response and proteasome homeostasis, the exact tissue distribution and physiological function of NFE2L1 isoforms, the short isoforms in particular, are still under intense investigation. With regard to key roles of NFE2L1 in adipocytes, emerging data indicates that deficiency of Nfe2l1 results in aberrant adipogenesis and impaired AT functioning. Intriguingly, a single nucleotide polymorphism (SNP) of the human NFE2L1 gene is associated with obesity. In this review, we summarize the most significant findings regarding the specific roles of the multiple isoforms of NFE2L1 in AT formation and function. We highlight that NFE2L1 plays a fundamental regulatory role in the expression of multiple genes that are crucial to AT metabolism and function and thus could be an important target to improve disease states involving aberrant adipose plasticity and lipid homeostasis.
Collapse
Affiliation(s)
- Suping Ren
- Program of Environmental Toxicology, School of Public Health, China Medical University. No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, China
| | - Yiying Bian
- Program of Environmental Toxicology, School of Public Health, China Medical University. No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, China
| | - Yongyong Hou
- Program of Environmental Toxicology, School of Public Health, China Medical University. No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, China
| | - Zhendi Wang
- Program of Environmental Toxicology, School of Public Health, China Medical University. No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, China
| | - Zhuo Zuo
- Program of Environmental Toxicology, School of Public Health, China Medical University. No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, China
| | - Zhiyuan Liu
- Program of Environmental Toxicology, School of Public Health, China Medical University. No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, China
| | - Yue Teng
- Department of Hepatopancreatobiliary Surgery, The Forth Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Jingqi Fu
- Program of Environmental Toxicology, School of Public Health, China Medical University. No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, China
| | - Huihui Wang
- Group of Chronic Disease and Environmental Genomics, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, China
| | - Yuanyuan Xu
- Group of Chronic Disease and Environmental Genomics, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, China
| | - Qiang Zhang
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, GA, 30322, USA
| | - Yanyan Chen
- The First Affiliated Hospital, China Medical University, No. 155 Nanjing North Road, Heping Area, Shenyang, Liaoning, 110001, China.
| | - Jingbo Pi
- Program of Environmental Toxicology, School of Public Health, China Medical University. No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, China.
| |
Collapse
|
298
|
SAINI SIMMI, WALIA GAGANDEEPKAUR, SACHDEVA MOHINDERPAL, GUPTA VIPIN. Genomics of body fat distribution. J Genet 2021. [DOI: 10.1007/s12041-021-01281-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
299
|
Andersson B, Tan EP, McGreal SR, Apte U, Hanover JA, Slawson C, Lagerlöf O. O-GlcNAc cycling mediates energy balance by regulating caloric memory. Appetite 2021; 165:105320. [PMID: 34029673 DOI: 10.1016/j.appet.2021.105320] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 05/12/2021] [Accepted: 05/13/2021] [Indexed: 12/26/2022]
Abstract
Caloric need has long been thought a major driver of appetite. However, it is unclear whether caloric need regulates appetite in environments offered by many societies today where there is no shortage of food. Here we observed that wildtype mice with free access to food did not match calorie intake to calorie expenditure. While the size of a meal affected subsequent intake, there was no compensation for earlier under- or over-consumption. To test how spontaneous eating is subject to caloric control, we manipulated O-linked β-N-acetylglucosamine (O-GlcNAc), an energy signal inside cells dependent on nutrient access and metabolic hormones. Genetic and pharmacological manipulation in mice increasing or decreasing O-GlcNAcylation regulated daily intake by controlling meal size. Meal size was affected at least in part due to faster eating speed. Without affecting meal frequency, O-GlcNAc disrupted the effect of caloric consumption on future intake. Across days, energy balance was improved upon increased O-GlcNAc levels and impaired upon removal of O-GlcNAcylation. Rather than affecting a perceived need for calories, O-GlcNAc regulates how a meal affects future intake, suggesting that O-GlcNAc mediates a caloric memory and subsequently energy balance.
Collapse
Affiliation(s)
- Björn Andersson
- Department of Pediatric Surgery, Uppsala University Hospital, 75185, Uppsala, Sweden
| | - Ee Phie Tan
- Sanford Burnham Prebys Medical Discovery Institute, 92037, CA, USA
| | - Steven R McGreal
- Department of Pharmacology, Toxicology and Therapeutics, Kansas University, 66160, KS, USA
| | - Udayan Apte
- Department of Pharmacology, Toxicology and Therapeutics, Kansas University, 66160, KS, USA
| | - John A Hanover
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institute of Health, 20892, MD, USA
| | - Chad Slawson
- Department of Biochemistry and Molecular Biology, Kansas University, 66160, KS, USA
| | - Olof Lagerlöf
- Department of Clinical Sciences, Umeå University, 901 87, Umeå, Sweden; Department of Integrative Medical Biology, Umeå University, 901 87, Umeå, Sweden; Wallenberg Centre for Molecular Medicine, Umeå University, 901 87, Umeå, Sweden.
| |
Collapse
|
300
|
Shalimova A, Babasieva V, Chubarev VN, Tarasov VV, Schiöth HB, Mwinyi J. Therapy response prediction in major depressive disorder: current and novel genomic markers influencing pharmacokinetics and pharmacodynamics. Pharmacogenomics 2021; 22:485-503. [PMID: 34018822 DOI: 10.2217/pgs-2020-0157] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Major depressive disorder is connected with high rates of functional disability and mortality. About a third of the patients are at risk of therapy failure. Several pharmacogenetic markers especially located in CYP450 genes such as CYP2D6 or CYP2C19 are of relevance for therapy outcome prediction in major depressive disorder but a further optimization of predictive tools is warranted. The article summarizes the current knowledge on pharmacogenetic variants, therapy effects and side effects of important antidepressive therapeutics, and sheds light on new methodological approaches for therapy response estimation based on genetic markers with relevance for pharmacokinetics, pharmacodynamics and disease pathology identified in genome-wide association study analyses, highlighting polygenic risk score analysis as a tool for further optimization of individualized therapy outcome prediction.
Collapse
Affiliation(s)
- Alena Shalimova
- Department of Neuroscience, Functional Pharmacology, University of Uppsala, Uppsala, 751 24, Sweden.,Department of Pharmacology, Institute of Pharmacy, I. M. Sechenov First Moscow State Medical University, Moscow, 119991, Russia
| | - Viktoria Babasieva
- Department of Neuroscience, Functional Pharmacology, University of Uppsala, Uppsala, 751 24, Sweden.,Department of Pharmacology, Institute of Pharmacy, I. M. Sechenov First Moscow State Medical University, Moscow, 119991, Russia
| | - Vladimir N Chubarev
- Department of Pharmacology, Institute of Pharmacy, I. M. Sechenov First Moscow State Medical University, Moscow, 119991, Russia
| | - Vadim V Tarasov
- Department of Pharmacology, Institute of Pharmacy, I. M. Sechenov First Moscow State Medical University, Moscow, 119991, Russia.,Institute of Translational Medicine & Biotechnology, I. M. Sechenov First Moscow State Medical University, Moscow, 119991, Russia
| | - Helgi B Schiöth
- Department of Neuroscience, Functional Pharmacology, University of Uppsala, Uppsala, 751 24, Sweden.,Institute of Translational Medicine & Biotechnology, I. M. Sechenov First Moscow State Medical University, Moscow, 119991, Russia
| | - Jessica Mwinyi
- Department of Neuroscience, Functional Pharmacology, University of Uppsala, Uppsala, 751 24, Sweden
| |
Collapse
|