251
|
Amro Z, Yool AJ, Collins-Praino LE. The potential role of glial cells in driving the prion-like transcellular propagation of tau in tauopathies. Brain Behav Immun Health 2021; 14:100242. [PMID: 34589757 PMCID: PMC8474563 DOI: 10.1016/j.bbih.2021.100242] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 03/11/2021] [Indexed: 02/08/2023] Open
Abstract
Dementia is one of the leading causes of death worldwide, with tauopathies, a class of diseases defined by pathology associated with the microtubule-enriched protein, tau, as the major contributor. Although tauopathies, such as Alzheimer's disease and Frontotemporal dementia, are common amongst the ageing population, current effective treatment options are scarce, primarily due to the incomplete understanding of disease pathogenesis. The mechanisms via which aggregated forms of tau are able to propagate from one anatomical area to another to cause disease spread and progression is yet unknown. The prion-like hypothesis of tau propagation proposes that tau can propagate along neighbouring anatomical areas in a similar manner to prion proteins in prion diseases, such as Creutzfeldt-Jacob disease. This hypothesis has been supported by a plethora of studies that note the ability of tau to be actively secreted by neurons, propagated and internalised by neighbouring neuronal cells, causing disease spread. Surfacing research suggests a role of reactive astrocytes and microglia in early pre-clinical stages of tauopathy through their inflammatory actions. Furthermore, both glial types are able to internalise and secrete tau from the extracellular space, suggesting a potential role in tau propagation; although understanding the physiological mechanisms by which this can occur remains poorly understood. This review will discuss the current literature around the prion-like propagation of tau, with particular emphasis on glial-mediated neuroinflammation and the contribution it may play in this propagation process.
Collapse
Affiliation(s)
- Zein Amro
- Adelaide Medical School, University of Adelaide, Adelaide, SA, 5005, Australia
| | - Andrea J Yool
- Adelaide Medical School, University of Adelaide, Adelaide, SA, 5005, Australia
| | | |
Collapse
|
252
|
Stamelou M, Respondek G, Giagkou N, Whitwell JL, Kovacs GG, Höglinger GU. Evolving concepts in progressive supranuclear palsy and other 4-repeat tauopathies. Nat Rev Neurol 2021; 17:601-620. [PMID: 34426686 DOI: 10.1038/s41582-021-00541-5] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/07/2021] [Indexed: 02/07/2023]
Abstract
Tauopathies are classified according to whether tau deposits predominantly contain tau isoforms with three or four repeats of the microtubule-binding domain. Those in which four-repeat (4R) tau predominates are known as 4R-tauopathies, and include progressive supranuclear palsy, corticobasal degeneration, argyrophilic grain disease, globular glial tauopathies and conditions associated with specific MAPT mutations. In these diseases, 4R-tau deposits are found in various cell types and anatomical regions of the brain and the conditions share pathological, pathophysiological and clinical characteristics. Despite being considered 'prototype' tauopathies and, therefore, ideal for studying neuroprotective agents, 4R-tauopathies are still severe and untreatable diseases for which no validated biomarkers exist. However, advances in research have addressed the issues of phenotypic overlap, early clinical diagnosis, pathophysiology and identification of biomarkers, setting a road map towards development of treatments. New clinical criteria have been developed and large cohorts with early disease are being followed up in prospective studies. New clinical trial readouts are emerging and biomarker research is focused on molecular pathways that have been identified. Lessons learned from failed trials of neuroprotective drugs are being used to design new trials. In this Review, we present an overview of the latest research in 4R-tauopathies, with a focus on progressive supranuclear palsy, and discuss how current evidence dictates ongoing and future research goals.
Collapse
Affiliation(s)
- Maria Stamelou
- Parkinson's Disease and Movement Disorders Dept, HYGEIA Hospital, Athens, Greece. .,European University of Cyprus, Nicosia, Cyprus. .,Philipps University, Marburg, Germany.
| | - Gesine Respondek
- Department of Neurology, Hanover Medical School, Hanover, Germany
| | - Nikolaos Giagkou
- Parkinson's Disease and Movement Disorders Dept, HYGEIA Hospital, Athens, Greece
| | | | - Gabor G Kovacs
- Department of Laboratory Medicine and Pathobiology and Tanz Centre for Research in Neurodegenerative Disease (CRND), University of Toronto, Toronto, Ontario, Canada.,Laboratory Medicine Program and Krembil Brain Institute, University Health Network, Toronto, Ontario, Canada
| | - Günter U Höglinger
- Department of Neurology, Hanover Medical School, Hanover, Germany.,German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| |
Collapse
|
253
|
Brookhouser N, Raman S, Frisch C, Srinivasan G, Brafman DA. APOE2 mitigates disease-related phenotypes in an isogenic hiPSC-based model of Alzheimer's disease. Mol Psychiatry 2021; 26:5715-5732. [PMID: 33837271 PMCID: PMC8501163 DOI: 10.1038/s41380-021-01076-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 02/26/2021] [Accepted: 03/23/2021] [Indexed: 02/02/2023]
Abstract
Genome-wide association studies (GWAS) have identified polymorphism in the Apolipoprotein E gene (APOE) to be the most prominent risk factor for Alzheimer's disease (AD). Compared to individuals homozygous for the APOE3 variant, individuals with the APOE4 variant have a significantly elevated risk of AD. On the other hand, longitudinal studies have shown that the presence of the APOE2 variant reduces the lifetime risk of developing AD by 40 percent. While there has been significant research that has identified the risk-inducing effects of APOE4, the underlying mechanisms by which APOE2 influences AD onset and progression have not been extensively explored. In this study, we utilize an isogenic human induced pluripotent stem cell (hiPSC)-based system to demonstrate that conversion of APOE3 to APOE2 greatly reduced the production of amyloid-beta (Aβ) peptides in hiPSC-derived neural cultures. Mechanistically, analysis of pure populations of neurons and astrocytes derived from these neural cultures revealed that mitigating effects of APOE2 are mediated by cell autonomous and non-autonomous effects. In particular, we demonstrated the reduction in Aβ is potentially driven by a mechanism related to non-amyloidogenic processing of amyloid precursor protein (APP), suggesting a gain of the protective function of the APOE2 variant. Together, this study provides insights into the risk-modifying effects associated with the APOE2 allele and establishes a platform to probe the mechanisms by which APOE2 enhances neuroprotection against AD.
Collapse
Affiliation(s)
- Nicholas Brookhouser
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ, USA
- Graduate Program in Clinical Translational Sciences, University of Arizona College of Medicine-Phoenix, Phoenix, AZ, USA
| | - Sreedevi Raman
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ, USA
| | - Carlye Frisch
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ, USA
| | - Gayathri Srinivasan
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ, USA
| | - David A Brafman
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ, USA.
| |
Collapse
|
254
|
Ismael S, Sindi G, Colvin RA, Lee D. Activity-dependent release of phosphorylated human tau from Drosophila neurons in primary culture. J Biol Chem 2021; 297:101108. [PMID: 34473990 PMCID: PMC8455371 DOI: 10.1016/j.jbc.2021.101108] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Revised: 08/11/2021] [Accepted: 08/19/2021] [Indexed: 11/23/2022] Open
Abstract
Neuronal activity can enhance tau release and thus accelerate tauopathies. This activity-dependent tau release can be used to study the progression of tau pathology in Alzheimer's disease (AD), as hyperphosphorylated tau is implicated in AD pathogenesis and related tauopathies. However, our understanding of the mechanisms that regulate activity-dependent tau release from neurons and the role that tau phosphorylation plays in modulating activity-dependent tau release is still rudimentary. In this study, Drosophila neurons in primary culture expressing human tau (hTau) were used to study activity-dependent tau release. We found that hTau release was markedly increased by 50 mM KCl treatment for 1 h. A similar level of release was observed using optogenetic techniques, where genetically targeted neurons were stimulated for 30 min using blue light (470 nm). Our results showed that activity-dependent release of phosphoresistant hTauS11A was reduced when compared with wildtype hTau. In contrast, release of phosphomimetic hTauE14 was increased upon activation. We found that released hTau was phosphorylated in its proline-rich and C-terminal domains using phosphorylation site-specific tau antibodies (e.g., AT8). Fold changes in detectable levels of total or phosphorylated hTau in cell lysates or following immunopurification from conditioned media were consistent with preferential release of phosphorylated hTau after light stimulation. This study establishes an excellent model to investigate the mechanism of activity-dependent hTau release and to better understand the role of phosphorylated tau release in the pathogenesis of AD since it relates to alterations in the early stage of neurodegeneration associated with increased neuronal activity.
Collapse
Affiliation(s)
- Sazan Ismael
- Neuroscience Program, Department of Biological Sciences, and Molecular and Cellular Biology Interdisciplinary Graduate Program, Ohio University, Athens, Ohio, USA
| | - Ghadir Sindi
- Neuroscience Program, Department of Biological Sciences, and Molecular and Cellular Biology Interdisciplinary Graduate Program, Ohio University, Athens, Ohio, USA
| | - Robert A Colvin
- Neuroscience Program, Department of Biological Sciences, and Molecular and Cellular Biology Interdisciplinary Graduate Program, Ohio University, Athens, Ohio, USA
| | - Daewoo Lee
- Neuroscience Program, Department of Biological Sciences, and Molecular and Cellular Biology Interdisciplinary Graduate Program, Ohio University, Athens, Ohio, USA.
| |
Collapse
|
255
|
Ganaie SS, Schwarz MM, McMillen CM, Price DA, Feng AX, Albe JR, Wang W, Miersch S, Orvedahl A, Cole AR, Sentmanat MF, Mishra N, Boyles DA, Koenig ZT, Kujawa MR, Demers MA, Hoehl RM, Moyle AB, Wagner ND, Stubbs SH, Cardarelli L, Teyra J, McElroy A, Gross ML, Whelan SPJ, Doench J, Cui X, Brett TJ, Sidhu SS, Virgin HW, Egawa T, Leung DW, Amarasinghe GK, Hartman AL. Lrp1 is a host entry factor for Rift Valley fever virus. Cell 2021; 184:5163-5178.e24. [PMID: 34559985 DOI: 10.1016/j.cell.2021.09.001] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 04/29/2021] [Accepted: 09/01/2021] [Indexed: 12/26/2022]
Abstract
Rift Valley fever virus (RVFV) is a zoonotic pathogen with pandemic potential. RVFV entry is mediated by the viral glycoprotein (Gn), but host entry factors remain poorly defined. Our genome-wide CRISPR screen identified low-density lipoprotein receptor-related protein 1 (mouse Lrp1/human LRP1), heat shock protein (Grp94), and receptor-associated protein (RAP) as critical host factors for RVFV infection. RVFV Gn directly binds to specific Lrp1 clusters and is glycosylation independent. Exogenous addition of murine RAP domain 3 (mRAPD3) and anti-Lrp1 antibodies neutralizes RVFV infection in taxonomically diverse cell lines. Mice treated with mRAPD3 and infected with pathogenic RVFV are protected from disease and death. A mutant mRAPD3 that binds Lrp1 weakly failed to protect from RVFV infection. Together, these data support Lrp1 as a host entry factor for RVFV infection and define a new target to limit RVFV infections.
Collapse
Affiliation(s)
- Safder S Ganaie
- Department of Pathology and Immunology, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Madeline M Schwarz
- Center for Vaccine Research, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA; Department of Infectious Diseases and Microbiology, School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Cynthia M McMillen
- Center for Vaccine Research, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA; Department of Infectious Diseases and Microbiology, School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - David A Price
- Department of Pathology and Immunology, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Annie X Feng
- Department of Pathology and Immunology, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Joseph R Albe
- Center for Vaccine Research, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Wenjie Wang
- Department of Pathology and Immunology, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Shane Miersch
- The Donnelly Centre, University of Toronto, Toronto, ON, Canada
| | - Anthony Orvedahl
- Department of Pediatrics, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Aidan R Cole
- Department of Pathology and Immunology, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Monica F Sentmanat
- Genome Engineering and iPSC Center (GEiC), Department of Genetics, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Nawneet Mishra
- Department of Pathology and Immunology, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Devin A Boyles
- Center for Vaccine Research, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Zachary T Koenig
- Center for Vaccine Research, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA; Department of Infectious Diseases and Microbiology, School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Michael R Kujawa
- Center for Vaccine Research, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA; Department of Infectious Diseases and Microbiology, School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Matthew A Demers
- Center for Vaccine Research, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Ryan M Hoehl
- Center for Vaccine Research, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Austin B Moyle
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO, USA
| | - Nicole D Wagner
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO, USA
| | - Sarah H Stubbs
- Department of Microbiology, Harvard Medical School, Boston, MA, USA
| | - Lia Cardarelli
- The Donnelly Centre, University of Toronto, Toronto, ON, Canada
| | - Joan Teyra
- The Donnelly Centre, University of Toronto, Toronto, ON, Canada
| | - Anita McElroy
- Center for Vaccine Research, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA; Department of Pediatrics, Division of Pediatric Infectious Disease, University of Pittsburgh, Pittsburgh, PA, USA
| | - Michael L Gross
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO, USA
| | - Sean P J Whelan
- Department of Molecular Microbiology, Washington University in St. Louis, St. Louis, MO, USA
| | - John Doench
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Xiaoxia Cui
- Genome Engineering and iPSC Center (GEiC), Department of Genetics, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Tom J Brett
- Department of Medicine, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Sachdev S Sidhu
- The Donnelly Centre, University of Toronto, Toronto, ON, Canada
| | - Herbert W Virgin
- Department of Pathology and Immunology, Washington University School of Medicine in St. Louis, St. Louis, MO, USA; Current address: Vir Biotechnology, San Francisco, CA, USA
| | - Takeshi Egawa
- Department of Pathology and Immunology, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Daisy W Leung
- Department of Pathology and Immunology, Washington University School of Medicine in St. Louis, St. Louis, MO, USA; Department of Medicine, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Gaya K Amarasinghe
- Department of Pathology and Immunology, Washington University School of Medicine in St. Louis, St. Louis, MO, USA.
| | - Amy L Hartman
- Center for Vaccine Research, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA; Department of Infectious Diseases and Microbiology, School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
256
|
Sexton C, Snyder H, Beher D, Boxer AL, Brannelly P, Brion JP, Buée L, Cacace AM, Chételat G, Citron M, DeVos SL, Diaz K, Feldman HH, Frost B, Goate AM, Gold M, Hyman B, Johnson K, Karch CM, Kerwin DR, Koroshetz WJ, Litvan I, Morris HR, Mummery CJ, Mutamba J, Patterson MC, Quiroz YT, Rabinovici GD, Rommel A, Shulman MB, Toledo-Sherman LM, Weninger S, Wildsmith KR, Worley SL, Carrillo MC. Current directions in tau research: Highlights from Tau 2020. Alzheimers Dement 2021; 18:988-1007. [PMID: 34581500 DOI: 10.1002/alz.12452] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 07/07/2021] [Accepted: 07/22/2021] [Indexed: 11/07/2022]
Abstract
Studies supporting a strong association between tau deposition and neuronal loss, neurodegeneration, and cognitive decline have heightened the allure of tau and tau-related mechanisms as therapeutic targets. In February 2020, leading tau experts from around the world convened for the first-ever Tau2020 Global Conference in Washington, DC, co-organized and cosponsored by the Rainwater Charitable Foundation, the Alzheimer's Association, and CurePSP. Representing academia, industry, government, and the philanthropic sector, presenters and attendees discussed recent advances and current directions in tau research. The meeting provided a unique opportunity to move tau research forward by fostering global partnerships among academia, industry, and other stakeholders and by providing support for new drug discovery programs, groundbreaking research, and emerging tau researchers. The meeting also provided an opportunity for experts to present critical research-advancing tools and insights that are now rapidly accelerating the pace of tau research.
Collapse
Affiliation(s)
| | | | | | - Adam L Boxer
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, San Francisco, California, USA
| | - Pat Brannelly
- Alzheimer's Disease Data Initiative, Kirkland, WI, USA
| | - Jean-Pierre Brion
- Laboratory of Histology, Neuroanatomy and Neuropathology, Faculty of Medicine, Université Libre de Bruxelles, Brussels, Belgium
| | - Luc Buée
- Univ Lille, Inserm, CHU-Lille, Lille Neuroscience and Cognition, Place de Verdun, Lille, France
| | | | - Gaël Chételat
- Normandie Univ, UNICAEN, INSERM, U1237, PhIND "Physiopathology and Imaging of Neurological Disorders", Institut Blood and Brain @ Caen-Normandie, Cyceron, Caen, France
| | - Martin Citron
- Neuroscience TA, Braine l'Alleud, UCB Biopharma, Brussels, Belgium
| | - Sarah L DeVos
- Translational Sciences, Denali Therapeutics, San Francisco, California, USA
| | | | - Howard H Feldman
- Alzheimer's Disease Cooperative Study, Department of Neurosciences, University of California, San Diego, La Jolla, California, USA
| | - Bess Frost
- Sam & Ann Barshop Institute for Longevity and Aging Studies, Glenn Biggs Institute for Alzheimer's & Neurodegenerative Disorders, Department of Cell Systems & Anatomy, University of Texas Health San Antonio, San Antonio, Texas, USA
| | - Alison M Goate
- Ronald M. Loeb Center for Alzheimer's Disease, Department of Neuroscience, Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Michael Gold
- AbbVie, Neurosciences Development, North Chicago, Illinois, USA
| | - Bradley Hyman
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Keith Johnson
- Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Celeste M Karch
- Department of Psychiatry, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Diana R Kerwin
- Kerwin Medical Center, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Walter J Koroshetz
- National Institute of Neurological Disorders and Stroke, Bethesda, Maryland, USA
| | - Irene Litvan
- Parkinson and Other Movement Disorders Center, Department of Neurosciences, University of California San Diego, San Diego, California, USA
| | - Huw R Morris
- Department of Clinical and Movement Neuroscience, UCL Queen Square Institute of Neurology, London, UK
| | - Catherine J Mummery
- Dementia Research Centre, National Hospital for Neurology and Neurosurgery, University College London, London, UK
| | | | - Marc C Patterson
- Departments of Neurology, Pediatrics and Medical Genetics, Mayo Clinic, Rochester, Minnesota, USA
| | - Yakeel T Quiroz
- Departments of Neurology and Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Gil D Rabinovici
- Memory & Aging Center, Departments of Neurology, Radiology & Biomedical Imaging, University of California San Francisco, San Francisco, California, USA
| | - Amy Rommel
- Tau Consortium, Rainwater Charitable Foundation, Fort Worth, Texas, USA
| | - Melanie B Shulman
- Neurodegeneration Development Unit, Biogen, Boston, Massachusetts, USA
| | | | | | - Kristin R Wildsmith
- Department of Biomarker Development, Genentech, South San Francisco, California, USA
| | - Susan L Worley
- Independent science writer, Bryn Mawr, Pennsylvania, USA
| | | |
Collapse
|
257
|
Deaton CA, Johnson GVW. Presenilin 1 Regulates Membrane Homeostatic Pathways that are Dysregulated in Alzheimer's Disease. J Alzheimers Dis 2021; 77:961-977. [PMID: 32804090 DOI: 10.3233/jad-200598] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Mutations in the PSEN1 gene, encoding presenilin 1 (PS1), are the most common cause of familial Alzheimer's disease (fAD). Since the first mutations in the PSEN1 gene were discovered more than 25 years ago, many postulated functions of PS1 have been investigated. The majority of earlier studies focused on its role as the catalytic component of the γ-secretase complex, which in concert with β site amyloid precursor protein cleaving enzyme 1 (BACE1), mediates the formation of Aβ from amyloid-β protein precursor (AβPP). Though mutant PS1 was originally considered to cause AD by promoting Aβ pathology through its protease function, it is now becoming clear that PS1 is a multifunctional protein involved in regulating membrane dynamics and protein trafficking. Therefore, through loss of these abilities, mutant PS1 has the potential to impair numerous cellular functions such as calcium flux, organization of proteins in different compartments, and protein turnover via vacuolar metabolism. Impaired calcium signaling, vacuolar dysfunction, mitochondrial dysfunction, and increased ER stress, among other related membrane-dependent disturbances, have been considered critical to the development and progression of AD. Given that PS1 plays a key regulatory role in all these processes, this review will describe the role of PS1 in different cellular compartments and provide an integrated view of how PS1 dysregulation (due to mutations or other causes) could result in impairment of various cellular processes and result in a "multi-hit", integrated pathological outcome that could contribute to the etiology of AD.
Collapse
Affiliation(s)
- Carol A Deaton
- Cell Biology of Disease Program and the Department of Anesthesiology and Perioperative Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Gail V W Johnson
- Cell Biology of Disease Program and the Department of Anesthesiology and Perioperative Medicine, University of Rochester Medical Center, Rochester, NY, USA
| |
Collapse
|
258
|
Wang P, Ye Y. Astrocytes in Neurodegenerative Diseases: A Perspective from Tauopathy and α-Synucleinopathy. Life (Basel) 2021; 11:life11090938. [PMID: 34575087 PMCID: PMC8471224 DOI: 10.3390/life11090938] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 09/06/2021] [Accepted: 09/06/2021] [Indexed: 12/16/2022] Open
Abstract
Neurodegenerative diseases are aging-associated chronic pathological conditions affecting primarily neurons in humans. Inclusion bodies containing misfolded proteins have emerged as a common pathologic feature for these diseases. In many cases, misfolded proteins produced by a neuron can be transmitted to another neuron or a non-neuronal cell, leading to the propagation of disease-associated pathology. While undergoing intercellular transmission, misfolded proteins released from donor cells can often change the physiological state of recipient cells. Accumulating evidence suggests that astrocytes are highly sensitive to neuron-originated proteotoxic insults, which convert them into an active inflammatory state. Conversely, activated astrocytes can release a plethora of factors to impact neuronal functions. This review summarizes our current understanding of the complex molecular interplays between astrocyte and neuron, emphasizing on Tau and α-synuclein (α-syn), the disease-driving proteins for Alzheimer's and Parkinson's diseases, respectively.
Collapse
Affiliation(s)
| | - Yihong Ye
- Correspondence: ; Tel.: +1-301-594-0845; Fax: +1-301-496-0201
| |
Collapse
|
259
|
Robbins M, Clayton E, Kaminski Schierle GS. Synaptic tau: A pathological or physiological phenomenon? Acta Neuropathol Commun 2021; 9:149. [PMID: 34503576 PMCID: PMC8428049 DOI: 10.1186/s40478-021-01246-y] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 08/12/2021] [Indexed: 12/17/2022] Open
Abstract
In this review, we discuss the synaptic aspects of Tau pathology occurring during Alzheimer's disease (AD) and how this may relate to memory impairment, a major hallmark of AD. Whilst the clinical diagnosis of AD patients is a loss of working memory and long-term declarative memory, the histological diagnosis is the presence of neurofibrillary tangles of hyperphosphorylated Tau and Amyloid-beta plaques. Tau pathology spreads through synaptically connected neurons to impair synaptic function preceding the formation of neurofibrillary tangles, synaptic loss, axonal retraction and cell death. Alongside synaptic pathology, recent data suggest that Tau has physiological roles in the pre- or post- synaptic compartments. Thus, we have seen a shift in the research focus from Tau as a microtubule-stabilising protein in axons, to Tau as a synaptic protein with roles in accelerating spine formation, dendritic elongation, and in synaptic plasticity coordinating memory pathways. We collate here the myriad of emerging interactions and physiological roles of synaptic Tau, and discuss the current evidence that synaptic Tau contributes to pathology in AD.
Collapse
|
260
|
Kang SG, Han ZZ, Daude N, McNamara E, Wohlgemuth S, Molina-Porcel L, Safar JG, Mok SA, Westaway D. Pathologic tau conformer ensembles induce dynamic, liquid-liquid phase separation events at the nuclear envelope. BMC Biol 2021; 19:199. [PMID: 34503506 PMCID: PMC8428099 DOI: 10.1186/s12915-021-01132-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Accepted: 08/26/2021] [Indexed: 02/07/2023] Open
Abstract
Background The microtubule-associated protein tau forms aggregates in different neurodegenerative diseases called tauopathies. Prior work has shown that a single P301L mutation in tau gene, MAPT, can promote alternative tau folding pathways that correlate with divergent clinical diagnoses. Using progressive chemical denaturation, some tau preparations from the brain featured complex transitions starting at low concentrations of guanidine hydrochloride (GdnHCl) denaturant, indicating an ensemble of differently folded tau species called conformers. On the other hand, brain samples with abundant, tangle-like pathology had simple GdnHCl unfolding profile resembling the profile of fibrillized recombinant tau and suggesting a unitary conformer composition. In studies here we sought to understand tau conformer progression and potential relationships with condensed liquid states, as well as associated perturbations in cell biological processes. Results As starting material, we used brain samples from P301L transgenic mice containing tau conformer ensembles that unfolded at low GdnHCl concentrations and with signatures resembling brain material from P301L subjects presenting with language or memory problems. We seeded reporter cells expressing a soluble form of 4 microtubule-binding repeat tau fused to GFP or YFP reporter moieties, resulting in redistribution of dispersed fluorescence signals into focal assemblies that could fuse together and move within processes between adjacent cells. Nuclear envelope fluorescent tau signals and small fluorescent inclusions behaved as a demixed liquid phase, indicative of liquid-liquid phase separation (LLPS); these droplets exhibited spherical morphology, fusion events and could recover from photobleaching. Moreover, juxtanuclear tau assemblies were associated with disrupted nuclear transport and reduced cell viability in a stable cell line. Staining for thioflavin S (ThS) became more prevalent as tau-derived inclusions attained cross-sectional area greater than 3 μm2, indicating (i) a bipartite composition, (ii) in vivo progression of tau conformers, and (iii) that a mass threshold applying to demixed condensates may drive liquid-solid transitions. Conclusions Tau conformer ensembles characterized by denaturation at low GdnHCl concentration templated the production of condensed droplets in living cells. These species exhibit dynamic changes and develop in vivo, and the larger ThS-positive assemblies may represent a waystation to arrive at intracellular fibrillar tau inclusions seen in end-stage genetic tauopathies. Supplementary Information The online version contains supplementary material available at 10.1186/s12915-021-01132-y.
Collapse
Affiliation(s)
- Sang-Gyun Kang
- Centre for Prions and Protein Folding Diseases, University of Alberta, 204 Brain and Aging Research Building, Edmonton, AB, T6G 2 M8, Canada
| | - Zhuang Zhuang Han
- Centre for Prions and Protein Folding Diseases, University of Alberta, 204 Brain and Aging Research Building, Edmonton, AB, T6G 2 M8, Canada.,Department of Biochemistry, University of Alberta, Edmonton, AB, Canada
| | - Nathalie Daude
- Centre for Prions and Protein Folding Diseases, University of Alberta, 204 Brain and Aging Research Building, Edmonton, AB, T6G 2 M8, Canada
| | - Emily McNamara
- Centre for Prions and Protein Folding Diseases, University of Alberta, 204 Brain and Aging Research Building, Edmonton, AB, T6G 2 M8, Canada.,Department of Biochemistry, University of Alberta, Edmonton, AB, Canada
| | - Serene Wohlgemuth
- Centre for Prions and Protein Folding Diseases, University of Alberta, 204 Brain and Aging Research Building, Edmonton, AB, T6G 2 M8, Canada
| | | | - Jiri G Safar
- Department of Neurology and Pathology, Case Western Reserve University, Cleveland, OH, USA
| | - Sue-Ann Mok
- Centre for Prions and Protein Folding Diseases, University of Alberta, 204 Brain and Aging Research Building, Edmonton, AB, T6G 2 M8, Canada.,Department of Biochemistry, University of Alberta, Edmonton, AB, Canada
| | - David Westaway
- Centre for Prions and Protein Folding Diseases, University of Alberta, 204 Brain and Aging Research Building, Edmonton, AB, T6G 2 M8, Canada. .,Department of Biochemistry, University of Alberta, Edmonton, AB, Canada. .,Division of Neurology, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
261
|
Vogels T, Vargová G, Brezováková V, Quint WH, Hromádka T. Viral Delivery of Non-Mutated Human Truncated Tau to Neurons Recapitulates Key Features of Human Tauopathy in Wild-Type Mice. J Alzheimers Dis 2021; 77:551-568. [PMID: 32675411 DOI: 10.3233/jad-200047] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
BACKGROUND Neuronal accumulation of hyperphosphorylated and truncated tau aggregates is one of the major defining factors and key drivers of neurodegeneration in Alzheimer's disease and other tauopathies. OBJECTIVE We developed an AAV-induced model of tauopathy mediated by human truncated tau protein without familial frontotemporal dementia-related mutations to study tau propagation and the functional consequences of tau pathology. METHODS We performed targeted transductions of the hippocampus or entorhinal cortex in adult mice followed by histological analysis to study the progression of hippocampal tau pathology and tau spreading. We performed behavioral analysis of mice with AAV-induced hippocampal tau pathology. RESULTS AAV-induced hippocampal tau pathology was characterized by tau hyperphosphorylation (AT8 positivity), sarkosyl insolubility, and the presence of neurofibrillary tangles. AAV-induced tau pathology was associated with microgliosis and hypertrophic astrocytes in the absence of cognitive deficits. Additionally, the co-expression of mCherry fluorescent protein and human truncated tau enabled us to detect both local spreading of human tau and spreading from the entorhinal cortex to the synaptically connected dentate gyrus. CONCLUSION Targeted delivery of AAV with truncated tau protein into subcortical and cortical structures of mammalian brains represents an efficient approach for creating temporally and spatially well-defined tau pathology suitable for in vivo studies of tau propagation and neuronal circuit deficits in Alzheimer's disease.
Collapse
Affiliation(s)
- Thomas Vogels
- Axon Neuroscience R & D Services SE, Bratislava, Slovakia
| | - Gréta Vargová
- Institute of Neuroimmunology, Slovak Academy of Sciences, Bratislava, Slovakia
| | | | | | - Tomáš Hromádka
- Axon Neuroscience R & D Services SE, Bratislava, Slovakia.,Institute of Neuroimmunology, Slovak Academy of Sciences, Bratislava, Slovakia
| |
Collapse
|
262
|
Zhou R, Chen LL, Yang H, Li L, Liu J, Chen L, Hong WJ, Wang CG, Ma JJ, Huang J, Zhou XF, Liu D, Zhou HD. Effect of High Cholesterol Regulation of LRP1 and RAGE on Aβ Transport Across the Blood-Brain Barrier in Alzheimer's Disease. Curr Alzheimer Res 2021; 18:428-442. [PMID: 34488598 DOI: 10.2174/1567205018666210906092940] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 04/01/2021] [Accepted: 06/09/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND High cholesterol aggravates the risk development of Alzheimer's disease (AD). AD is closely related to the transport impairment of Amyloid-β (Aβ) in the blood-brain barrier. It is unclear whether high cholesterol affects the risk of cognitive impairment in AD by affecting Aβ transport. The purpose of the study is to investigate whether high cholesterol regulates Aβ transport through low-density Lipoprotein Receptor-Related Protein 1 (LRP1) and Receptor for Advanced Glycation End products (RAGE) in the risk development of AD. METHODS We established high cholesterol AD mice model. The learning and memory functions were evaluated by Morris Water Maze (MWM). Cerebral microvascular endothelial cells were isolated, cultured, and observed. The expression levels of LRP1 and RAGE of endothelial cells and their effect on Aβ transport in vivo were observed. The expression level of LRP1 and RAGE was detected in cultured microvessels after using Wnt inhibitor DKK-1 and β-catenin inhibitor XAV-939. RESULTS Hypercholesterolemia exacerbated spatial learning and memory impairment. Hypercholesterolemia increased serum Aβ40 level, while serum Aβ42 level did not change significantly. Hypercholesterolemia decreased LRP1 expression and increased RAGE expression in cerebral microvascular endothelial cells. Hypercholesterolemia increased brain apoptosis in AD mice. In in vitro experiment, high cholesterol decreased LRP1 expression and increased RAGE expression, increased Aβ40 expression in cerebral microvascular endothelial cells. High cholesterol regulated the expressions of LRP1 and RAGE and transcriptional activity of LRP1 and RAGE promoters by the Wnt/β-catenin signaling pathway. CONCLUSION High cholesterol decreased LRP1 expression and increased RAGE expression in cerebral microvascular endothelial cells, which led to Aβ transport disorder in the blood-brain barrier. Increased Aβ deposition in the brain aggravated apoptosis in the brain, resulting to cognitive impairment of AD mice.
Collapse
Affiliation(s)
- Rui Zhou
- Department of Orthopedics, The Orthopedic Surgery Center of Chinese PLA, Southwest Hospital, Army Medical University, Chongqing 400042, China
| | - Li-Li Chen
- Department of Neurology, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Hai Yang
- Department of Neurology, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Ling Li
- Department of Neurology, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Juan Liu
- Department of Neurology, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Le Chen
- Postgraduate School, Bengbu Medical College, Anhui 233004, China
| | - Wen-Juan Hong
- Postgraduate School, Bengbu Medical College, Anhui 233004, China
| | - Cong-Guo Wang
- Postgraduate School, Bengbu Medical College, Anhui 233004, China
| | - Jing-Jing Ma
- Postgraduate School, Bengbu Medical College, Anhui 233004, China
| | - Jie Huang
- Postgraduate School, Bengbu Medical College, Anhui 233004, China
| | - Xin-Fu Zhou
- School of Pharmacy and Medical Sciences and Sansom Institute, University of South Australia, Adelaide, SA, Australia
| | - Dong Liu
- Laboratory of Field Surgery Institute, Army Medical University, Chongqing 400042, China
| | - Hua-Dong Zhou
- Department of Neurology, Daping Hospital, Army Medical University, Chongqing 400042, China
| |
Collapse
|
263
|
Li S, DeLisi LE, McDonough SI. Rare germline variants in individuals diagnosed with schizophrenia within multiplex families. Psychiatry Res 2021; 303:114038. [PMID: 34174581 DOI: 10.1016/j.psychres.2021.114038] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 05/27/2021] [Indexed: 12/30/2022]
Abstract
An extensive catalog of common and rare genetic variants contributes to overall risk for schizophrenia and related disorders. As a complement to population genetics efforts, here we present whole genome sequences of multiple affected probands within individual families to search for possible high penetrance driver variants. From a total of 15 families diagnostically evaluated by a single research psychiatrist, we performed whole genome sequencing of a total of 61 affected individuals, called SNPs, indels, and copy number variants, and compared to reference genomes. In fourteen out of fifteen families, the schizophrenia polygenic risk score for each proband was within the control range defined by the Thousand Genomes cohort. In six families, each affected member carried a very rare or private, predicted-damaging, variant in at least one gene. Among these genes, variants in LRP1 and TENM2 suggest these are candidate disease-related genes when taken into context with existing population genetic studies and biological information. Results add to the number of pedigree sequences reported, suggest pathways for the investigation of biological mechanisms, and are consistent with the overall accumulating evidence that very rare damaging variants contribute to the heritability of schizophrenia.
Collapse
Affiliation(s)
| | - Lynn E DeLisi
- Cambridge Health Alliance, Cambridge, MA, United States; Harvard Medical School, Boston, MA, United States
| | | |
Collapse
|
264
|
Yu M, Sporns O, Saykin AJ. The human connectome in Alzheimer disease - relationship to biomarkers and genetics. Nat Rev Neurol 2021; 17:545-563. [PMID: 34285392 PMCID: PMC8403643 DOI: 10.1038/s41582-021-00529-1] [Citation(s) in RCA: 114] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/10/2021] [Indexed: 02/06/2023]
Abstract
The pathology of Alzheimer disease (AD) damages structural and functional brain networks, resulting in cognitive impairment. The results of recent connectomics studies have now linked changes in structural and functional network organization in AD to the patterns of amyloid-β and tau accumulation and spread, providing insights into the neurobiological mechanisms of the disease. In addition, the detection of gene-related connectome changes might aid in the early diagnosis of AD and facilitate the development of personalized therapeutic strategies that are effective at earlier stages of the disease spectrum. In this article, we review studies of the associations between connectome changes and amyloid-β and tau pathologies as well as molecular genetics in different subtypes and stages of AD. We also highlight the utility of connectome-derived computational models for replicating empirical findings and for tracking and predicting the progression of biomarker-indicated AD pathophysiology.
Collapse
Affiliation(s)
- Meichen Yu
- Indiana Alzheimer's Disease Research Center, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA
- Indiana University Network Science Institute, Bloomington, IN, USA
| | - Olaf Sporns
- Indiana Alzheimer's Disease Research Center, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA
- Indiana University Network Science Institute, Bloomington, IN, USA
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA
| | - Andrew J Saykin
- Indiana Alzheimer's Disease Research Center, Indiana University School of Medicine, Indianapolis, IN, USA.
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA.
- Indiana University Network Science Institute, Bloomington, IN, USA.
| |
Collapse
|
265
|
Koutsodendris N, Nelson MR, Rao A, Huang Y. Apolipoprotein E and Alzheimer's Disease: Findings, Hypotheses, and Potential Mechanisms. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2021; 17:73-99. [PMID: 34460318 DOI: 10.1146/annurev-pathmechdis-030421-112756] [Citation(s) in RCA: 108] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Alzheimer's disease (AD) is a multifactorial neurodegenerative disorder that involves dysregulation of many cellular and molecular processes. It is notoriously difficult to develop therapeutics for AD due to its complex nature. Nevertheless, recent advancements in imaging technology and the development of innovative experimental techniques have allowed researchers to perform in-depth analyses to uncover the pathogenic mechanisms of AD. An important consideration when studying late-onset AD is its major genetic risk factor, apolipoprotein E4 (apoE4). Although the exact mechanisms underlying apoE4 effects on AD initiation and progression are not fully understood, recent studies have revealed critical insights into the apoE4-induced deficits that occur in AD. In this review, we highlight notable studies that detail apoE4 effects on prominent AD pathologies, including amyloid-β, tau pathology, neuroinflammation, and neural network dysfunction. We also discuss evidence that defines the physiological functions of apoE and outlines how these functions are disrupted in apoE4-related AD. Expected final online publication date for the Annual Review of Pathology: Mechanisms of Disease, Volume 17 is January 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Nicole Koutsodendris
- Developmental and Stem Cell Biology Graduate Program, University of California, San Francisco, California 94131, USA; , .,Gladstone Institutes of Neurological Disease, San Francisco, California 94158, USA
| | - Maxine R Nelson
- Gladstone Institutes of Neurological Disease, San Francisco, California 94158, USA.,Biomedical Sciences Graduate Program, University of California, San Francisco, California 94143, USA
| | - Antara Rao
- Developmental and Stem Cell Biology Graduate Program, University of California, San Francisco, California 94131, USA; , .,Gladstone Institutes of Neurological Disease, San Francisco, California 94158, USA
| | - Yadong Huang
- Developmental and Stem Cell Biology Graduate Program, University of California, San Francisco, California 94131, USA; , .,Gladstone Institutes of Neurological Disease, San Francisco, California 94158, USA.,Biomedical Sciences Graduate Program, University of California, San Francisco, California 94143, USA.,Department of Neurology, University of California, San Francisco, California 94158, USA
| |
Collapse
|
266
|
Balczon R, Lin MT, Lee JY, Abbasi A, Renema P, Voth SB, Zhou C, Koloteva A, Michael Francis C, Sodha NR, Pittet JF, Wagener BM, Bell J, Choi CS, Ventetuolo CE, Stevens T. Pneumonia initiates a tauopathy. FASEB J 2021; 35:e21807. [PMID: 34384141 PMCID: PMC8443149 DOI: 10.1096/fj.202100718r] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 06/30/2021] [Accepted: 07/06/2021] [Indexed: 12/11/2022]
Abstract
Pneumonia causes short‐ and long‐term cognitive dysfunction in a high proportion of patients, although the mechanism(s) responsible for this effect are unknown. Here, we tested the hypothesis that pneumonia‐elicited cytotoxic amyloid and tau variants: (1) are present in the circulation during infection; (2) lead to impairment of long‐term potentiation; and, (3) inhibit long‐term potentiation dependent upon tau. Cytotoxic amyloid and tau species were recovered from the blood and the hippocampus following pneumonia, and they were present in the extracorporeal membrane oxygenation oxygenators of patients with pneumonia, especially in those who died. Introduction of immunopurified blood‐borne amyloid and tau into either the airways or the blood of uninfected animals acutely and chronically impaired hippocampal information processing. In contrast, the infection did not impair long‐term potentiation in tau knockout mice and the amyloid‐ and tau‐dependent disruption in hippocampal signaling was less severe in tau knockout mice. Moreover, the infection did not elicit cytotoxic amyloid and tau variants in tau knockout mice. Therefore, pneumonia initiates a tauopathy that contributes to cognitive dysfunction.
Collapse
Affiliation(s)
- Ron Balczon
- Department of Biochemistry and Molecular Biology, University of South Alabama, Mobile, AL, USA.,Center for Lung Biology, University of South Alabama, Mobile, AL, USA
| | - Mike T Lin
- Center for Lung Biology, University of South Alabama, Mobile, AL, USA.,Department of Physiology and Cell Biology, College of Medicine, Center for Lung Biology, University of South Alabama, Mobile, AL, USA
| | - Ji Young Lee
- Center for Lung Biology, University of South Alabama, Mobile, AL, USA.,Department of Physiology and Cell Biology, College of Medicine, Center for Lung Biology, University of South Alabama, Mobile, AL, USA.,Internal Medicine, University of South Alabama, Mobile, AL, USA
| | - Adeel Abbasi
- Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Alpert Medical School of Brown University, Providence, RI, USA
| | - Phoibe Renema
- Center for Lung Biology, University of South Alabama, Mobile, AL, USA.,Department of Physiology and Cell Biology, College of Medicine, Center for Lung Biology, University of South Alabama, Mobile, AL, USA
| | - Sarah B Voth
- Center for Lung Biology, University of South Alabama, Mobile, AL, USA.,Department of Physiology and Cell Biology, College of Medicine, Center for Lung Biology, University of South Alabama, Mobile, AL, USA
| | - Chun Zhou
- Center for Lung Biology, University of South Alabama, Mobile, AL, USA.,Department of Physiology and Cell Biology, College of Medicine, Center for Lung Biology, University of South Alabama, Mobile, AL, USA
| | - Anna Koloteva
- Center for Lung Biology, University of South Alabama, Mobile, AL, USA.,Department of Physiology and Cell Biology, College of Medicine, Center for Lung Biology, University of South Alabama, Mobile, AL, USA
| | - C Michael Francis
- Center for Lung Biology, University of South Alabama, Mobile, AL, USA.,Department of Physiology and Cell Biology, College of Medicine, Center for Lung Biology, University of South Alabama, Mobile, AL, USA
| | - Neel R Sodha
- Department of Surgery, Brown University, Providence, RI, USA
| | - Jean-Francois Pittet
- Department of Anesthesiology and Perioperative Medicine, School of Medicine, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Brant M Wagener
- Department of Anesthesiology and Perioperative Medicine, School of Medicine, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Jessica Bell
- Center for Lung Biology, University of South Alabama, Mobile, AL, USA.,Department of Physiology and Cell Biology, College of Medicine, Center for Lung Biology, University of South Alabama, Mobile, AL, USA
| | - Chung-Sik Choi
- Center for Lung Biology, University of South Alabama, Mobile, AL, USA.,Department of Physiology and Cell Biology, College of Medicine, Center for Lung Biology, University of South Alabama, Mobile, AL, USA
| | - Corey E Ventetuolo
- Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Alpert Medical School of Brown University, Providence, RI, USA.,Health Services, Policy and Practice, Brown University School of Public Health, Providence, RI, USA
| | - Troy Stevens
- Center for Lung Biology, University of South Alabama, Mobile, AL, USA.,Department of Physiology and Cell Biology, College of Medicine, Center for Lung Biology, University of South Alabama, Mobile, AL, USA.,Internal Medicine, University of South Alabama, Mobile, AL, USA
| |
Collapse
|
267
|
Shi Y, Andhey PS, Ising C, Wang K, Snipes LL, Boyer K, Lawson S, Yamada K, Qin W, Manis M, Serrano JR, Benitez BA, Schmidt RE, Artyomov M, Ulrich JD, Holtzman DM. Overexpressing low-density lipoprotein receptor reduces tau-associated neurodegeneration in relation to apoE-linked mechanisms. Neuron 2021; 109:2413-2426.e7. [PMID: 34157306 PMCID: PMC8349883 DOI: 10.1016/j.neuron.2021.05.034] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 05/03/2021] [Accepted: 05/27/2021] [Indexed: 01/01/2023]
Abstract
APOE is the strongest genetic risk factor for late-onset Alzheimer's disease. ApoE exacerbates tau-associated neurodegeneration by driving microglial activation. However, how apoE regulates microglial activation and whether targeting apoE is therapeutically beneficial in tauopathy is unclear. Here, we show that overexpressing an apoE metabolic receptor, LDLR (low-density lipoprotein receptor), in P301S tauopathy mice markedly reduces brain apoE and ameliorates tau pathology and neurodegeneration. LDLR overexpression (OX) in microglia cell-autonomously downregulates microglial Apoe expression and is associated with suppressed microglial activation as in apoE-deficient microglia. ApoE deficiency and LDLR OX strongly drive microglial immunometabolism toward enhanced catabolism over anabolism, whereas LDLR-overexpressing microglia also uniquely upregulate specific ion channels and neurotransmitter receptors upon activation. ApoE-deficient and LDLR-overexpressing mice harbor enlarged pools of oligodendrocyte progenitor cells (OPCs) and show greater preservation of myelin integrity under neurodegenerative conditions. They also show less reactive astrocyte activation in the setting of tauopathy.
Collapse
Affiliation(s)
- Yang Shi
- Department of Neurology, Washington University, St. Louis, MO 63110, USA
| | | | - Christina Ising
- Department of Neurodegenerative Diseases and Geriatric Psychiatry, University Hospital of Bonn and German Center for Neurodegenerative Diseases (DZNE), Bonn 53127, Germany
| | - Kairuo Wang
- Department of Neurology, Washington University, St. Louis, MO 63110, USA
| | - Lisa L Snipes
- Department of Pathology and Immunology, Washington University, St. Louis, MO 63110, USA
| | - Kevin Boyer
- Department of Pathology and Immunology, Washington University, St. Louis, MO 63110, USA
| | - Stephanie Lawson
- Department of Pathology and Immunology, Washington University, St. Louis, MO 63110, USA
| | - Kaoru Yamada
- Department of Neuropathology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Wei Qin
- Department of Psychiatry, Washington University, St. Louis, MO 63110, USA
| | - Melissa Manis
- Department of Neurology, Washington University, St. Louis, MO 63110, USA
| | | | - Bruno A Benitez
- Department of Psychiatry, Washington University, St. Louis, MO 63110, USA
| | - Robert E Schmidt
- Department of Pathology and Immunology, Washington University, St. Louis, MO 63110, USA
| | - Maxim Artyomov
- Department of Neurodegenerative Diseases and Geriatric Psychiatry, University Hospital of Bonn and German Center for Neurodegenerative Diseases (DZNE), Bonn 53127, Germany
| | - Jason D Ulrich
- Department of Neurology, Washington University, St. Louis, MO 63110, USA.
| | - David M Holtzman
- Department of Neurology, Washington University, St. Louis, MO 63110, USA.
| |
Collapse
|
268
|
Gaikwad S, Puangmalai N, Bittar A, Montalbano M, Garcia S, McAllen S, Bhatt N, Sonawane M, Sengupta U, Kayed R. Tau oligomer induced HMGB1 release contributes to cellular senescence and neuropathology linked to Alzheimer's disease and frontotemporal dementia. Cell Rep 2021; 36:109419. [PMID: 34289368 PMCID: PMC8341760 DOI: 10.1016/j.celrep.2021.109419] [Citation(s) in RCA: 113] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 05/03/2021] [Accepted: 06/28/2021] [Indexed: 02/08/2023] Open
Abstract
Aging, pathological tau oligomers (TauO), and chronic inflammation in the brain play a central role in tauopathies, including Alzheimer's disease (AD) and frontotemporal dementia (FTD). However, the underlying mechanism of TauO-induced aging-related neuroinflammation remains unclear. Here, we show that TauO-associated astrocytes display a senescence-like phenotype in the brains of patients with AD and FTD. TauO exposure triggers astrocyte senescence through high mobility group box 1 (HMGB1) release and inflammatory senescence-associated secretory phenotype (SASP), which mediates paracrine senescence in adjacent cells. HMGB1 release inhibition using ethyl pyruvate (EP) and glycyrrhizic acid (GA) prevents TauO-induced senescence through inhibition of p38-mitogen-activated protein kinase (MAPK) and nuclear factor κB (NF-κB)-the essential signaling pathways for SASP development. Despite the developed tauopathy in 12-month-old hTau mice, EP+GA treatment significantly decreases TauO and senescent cell loads in the brain, reduces neuroinflammation, and thus ameliorates cognitive functions. Collectively, TauO-induced HMGB1 release promotes cellular senescence and neuropathology, which could represent an important common pathomechanism in tauopathies including AD and FTD.
Collapse
Affiliation(s)
- Sagar Gaikwad
- Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, Galveston, TX 77555, USA; Departments of Neurology, Neuroscience, and Cell Biology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Nicha Puangmalai
- Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, Galveston, TX 77555, USA; Departments of Neurology, Neuroscience, and Cell Biology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Alice Bittar
- Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, Galveston, TX 77555, USA; Departments of Neurology, Neuroscience, and Cell Biology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Mauro Montalbano
- Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, Galveston, TX 77555, USA; Departments of Neurology, Neuroscience, and Cell Biology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Stephanie Garcia
- Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, Galveston, TX 77555, USA; Departments of Neurology, Neuroscience, and Cell Biology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Salome McAllen
- Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, Galveston, TX 77555, USA; Departments of Neurology, Neuroscience, and Cell Biology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Nemil Bhatt
- Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, Galveston, TX 77555, USA; Departments of Neurology, Neuroscience, and Cell Biology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Minal Sonawane
- Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, Galveston, TX 77555, USA; Departments of Neurology, Neuroscience, and Cell Biology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Urmi Sengupta
- Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, Galveston, TX 77555, USA; Departments of Neurology, Neuroscience, and Cell Biology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Rakez Kayed
- Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, Galveston, TX 77555, USA; Departments of Neurology, Neuroscience, and Cell Biology, University of Texas Medical Branch, Galveston, TX 77555, USA.
| |
Collapse
|
269
|
Policarpo R, Sierksma A, De Strooper B, d'Ydewalle C. From Junk to Function: LncRNAs in CNS Health and Disease. Front Mol Neurosci 2021; 14:714768. [PMID: 34349622 PMCID: PMC8327212 DOI: 10.3389/fnmol.2021.714768] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 06/25/2021] [Indexed: 12/26/2022] Open
Abstract
Recent advances in RNA sequencing technologies helped to uncover the existence of tens of thousands of long non-coding RNAs (lncRNAs) that arise from the dark matter of the genome. These lncRNAs were originally thought to be transcriptional noise but an increasing number of studies demonstrate that these transcripts can modulate protein-coding gene expression by a wide variety of transcriptional and post-transcriptional mechanisms. The spatiotemporal regulation of lncRNA expression is particularly evident in the central nervous system, suggesting that they may directly contribute to specific brain processes, including neurogenesis and cellular homeostasis. Not surprisingly, lncRNAs are therefore gaining attention as putative novel therapeutic targets for disorders of the brain. In this review, we summarize the recent insights into the functions of lncRNAs in the brain, their role in neuronal maintenance, and their potential contribution to disease. We conclude this review by postulating how these RNA molecules can be targeted for the treatment of yet incurable neurological disorders.
Collapse
Affiliation(s)
- Rafaela Policarpo
- VIB-KU Leuven Center For Brain & Disease Research, Leuven, Belgium.,Laboratory for the Research of Neurodegenerative Diseases, Department of Neurosciences, Leuven Brain Institute (LBI), KU Leuven, Leuven, Belgium.,Neuroscience Discovery, Janssen Research & Development, Janssen Pharmaceutica N.V., Beerse, Belgium
| | - Annerieke Sierksma
- VIB-KU Leuven Center For Brain & Disease Research, Leuven, Belgium.,Laboratory for the Research of Neurodegenerative Diseases, Department of Neurosciences, Leuven Brain Institute (LBI), KU Leuven, Leuven, Belgium
| | - Bart De Strooper
- VIB-KU Leuven Center For Brain & Disease Research, Leuven, Belgium.,Laboratory for the Research of Neurodegenerative Diseases, Department of Neurosciences, Leuven Brain Institute (LBI), KU Leuven, Leuven, Belgium.,UK Dementia Research Institute, University College London, London, United Kingdom
| | - Constantin d'Ydewalle
- Neuroscience Discovery, Janssen Research & Development, Janssen Pharmaceutica N.V., Beerse, Belgium
| |
Collapse
|
270
|
Identification of cis-acting determinants mediating the unconventional secretion of tau. Sci Rep 2021; 11:12946. [PMID: 34155306 PMCID: PMC8217235 DOI: 10.1038/s41598-021-92433-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 05/31/2021] [Indexed: 12/23/2022] Open
Abstract
The deposition of tau aggregates throughout the brain is a pathological characteristic within a group of neurodegenerative diseases collectively termed tauopathies, which includes Alzheimer’s disease. While recent findings suggest the involvement of unconventional secretory pathways driving tau into the extracellular space and mediating the propagation of the disease-associated pathology, many of the mechanistic details governing this process remain elusive. In the current study, we provide an in-depth characterization of the unconventional secretory pathway of tau and identify novel molecular determinants that are required for this process. Here, using Drosophila models of tauopathy, we correlate the hyperphosphorylation and aggregation state of tau with the disease-related neurotoxicity. These newly established systems recapitulate all the previously identified hallmarks of tau secretion, including the contribution of tau hyperphosphorylation as well as the requirement for PI(4,5)P2 triggering the direct translocation of tau. Using a series of cellular assays, we demonstrate that both the sulfated proteoglycans on the cell surface and the correct orientation of the protein at the inner plasma membrane leaflet are critical determinants of this process. Finally, we identify two cysteine residues within the microtubule binding repeat domain as novel cis-elements that are important for both unconventional secretion and trans-cellular propagation of tau.
Collapse
|
271
|
Bandyopadhyay S. Role of Neuron and Glia in Alzheimer's Disease and Associated Vascular Dysfunction. Front Aging Neurosci 2021; 13:653334. [PMID: 34211387 PMCID: PMC8239194 DOI: 10.3389/fnagi.2021.653334] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 05/05/2021] [Indexed: 12/14/2022] Open
Abstract
Amyloidogenicity and vascular dysfunction are the key players in the pathogenesis of Alzheimer’s disease (AD), involving dysregulated cellular interactions. An intricate balance between neurons, astrocytes, microglia, oligodendrocytes and vascular cells sustains the normal neuronal circuits. Conversely, cerebrovascular diseases overlap neuropathologically with AD, and glial dyshomeostasis promotes AD-associated neurodegenerative cascade. While pathological hallmarks of AD primarily include amyloid-β (Aβ) plaques and neurofibrillary tangles, microvascular disorders, altered cerebral blood flow (CBF), and blood-brain barrier (BBB) permeability induce neuronal loss and synaptic atrophy. Accordingly, microglia-mediated inflammation and astrogliosis disrupt the homeostasis of the neuro-vascular unit and stimulate infiltration of circulating leukocytes into the brain. Large-scale genetic and epidemiological studies demonstrate a critical role of cellular crosstalk for altered immune response, metabolism, and vasculature in AD. The glia associated genetic risk factors include APOE, TREM2, CD33, PGRN, CR1, and NLRP3, which correlate with the deposition and altered phagocytosis of Aβ. Moreover, aging-dependent downregulation of astrocyte and microglial Aβ-degrading enzymes limits the neurotrophic and neurogenic role of glial cells and inhibits lysosomal degradation and clearance of Aβ. Microglial cells secrete IGF-1, and neurons show a reduced responsiveness to the neurotrophic IGF-1R/IRS-2/PI3K signaling pathway, generating amyloidogenic and vascular dyshomeostasis in AD. Glial signals connect to neural stem cells, and a shift in glial phenotype over the AD trajectory even affects adult neurogenesis and the neurovascular niche. Overall, the current review informs about the interaction of neuronal and glial cell types in AD pathogenesis and its critical association with cerebrovascular dysfunction.
Collapse
Affiliation(s)
- Sanghamitra Bandyopadhyay
- Developmental Toxicology Laboratory, Systems Toxicology & Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Lucknow, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
272
|
Kara E, Crimi A, Wiedmer A, Emmenegger M, Manzoni C, Bandres-Ciga S, D'Sa K, Reynolds RH, Botía JA, Losa M, Lysenko V, Carta M, Heinzer D, Avar M, Chincisan A, Blauwendraat C, García-Ruiz S, Pease D, Mottier L, Carrella A, Beck-Schneider D, Magalhães AD, Aemisegger C, Theocharides APA, Fan Z, Marks JD, Hopp SC, Abramov AY, Lewis PA, Ryten M, Hardy J, Hyman BT, Aguzzi A. An integrated genomic approach to dissect the genetic landscape regulating the cell-to-cell transfer of α-synuclein. Cell Rep 2021; 35:109189. [PMID: 34107263 PMCID: PMC8207177 DOI: 10.1016/j.celrep.2021.109189] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 02/08/2021] [Accepted: 05/07/2021] [Indexed: 12/13/2022] Open
Abstract
Neuropathological and experimental evidence suggests that the cell-to-cell transfer of α-synuclein has an important role in the pathogenesis of Parkinson's disease (PD). However, the mechanism underlying this phenomenon is not fully understood. We undertook a small interfering RNA (siRNA), genome-wide screen to identify genes regulating the cell-to-cell transfer of α-synuclein. A genetically encoded reporter, GFP-2A-αSynuclein-RFP, suitable for separating donor and recipient cells, was transiently transfected into HEK cells stably overexpressing α-synuclein. We find that 38 genes regulate the transfer of α-synuclein-RFP, one of which is ITGA8, a candidate gene identified through a recent PD genome-wide association study (GWAS). Weighted gene co-expression network analysis (WGCNA) and weighted protein-protein network interaction analysis (WPPNIA) show that those hits cluster in networks that include known PD genes more frequently than expected by random chance. The findings expand our understanding of the mechanism of α-synuclein spread.
Collapse
Affiliation(s)
- Eleanna Kara
- Institute of Neuropathology, University of Zurich and University Hospital Zurich, Zurich 8091, Switzerland; Department of Neurodegenerative disease, University College London, London WC1N 3BG, UK
| | - Alessandro Crimi
- Institute of Neuropathology, University of Zurich and University Hospital Zurich, Zurich 8091, Switzerland
| | - Anne Wiedmer
- Institute of Neuropathology, University of Zurich and University Hospital Zurich, Zurich 8091, Switzerland
| | - Marc Emmenegger
- Institute of Neuropathology, University of Zurich and University Hospital Zurich, Zurich 8091, Switzerland
| | - Claudia Manzoni
- Department of Pharmacology, University College London School of Pharmacy, London WC1N 1AX, UK; School of Pharmacy, University of Reading, Reading RG6 6AP, UK
| | - Sara Bandres-Ciga
- Laboratory of Neurogenetics, National Institutes of Health, Bethesda, MD 20814, USA
| | - Karishma D'Sa
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK; Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK; Department of Genetics and Genomic Medicine, Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Regina H Reynolds
- Department of Genetics and Genomic Medicine, Great Ormond Street Institute of Child Health, University College London, London, UK; NIHR Great Ormond Street Hospital Biomedical Research Centre, University College London, London, UK
| | - Juan A Botía
- Department of Neurodegenerative disease, University College London, London WC1N 3BG, UK; Departamento de Ingeniería de la Información y las Comunicaciones, Universidad de Murcia, Murcia 30100, Spain
| | - Marco Losa
- Institute of Neuropathology, University of Zurich and University Hospital Zurich, Zurich 8091, Switzerland
| | - Veronika Lysenko
- Department of Medical Oncology and Hematology, University Hospital Zurich and University of Zurich, Zurich 8091, Switzerland
| | - Manfredi Carta
- Institute of Neuropathology, University of Zurich and University Hospital Zurich, Zurich 8091, Switzerland
| | - Daniel Heinzer
- Institute of Neuropathology, University of Zurich and University Hospital Zurich, Zurich 8091, Switzerland
| | - Merve Avar
- Institute of Neuropathology, University of Zurich and University Hospital Zurich, Zurich 8091, Switzerland
| | - Andra Chincisan
- Institute of Neuropathology, University of Zurich and University Hospital Zurich, Zurich 8091, Switzerland
| | | | - Sonia García-Ruiz
- Department of Genetics and Genomic Medicine, Great Ormond Street Institute of Child Health, University College London, London, UK; NIHR Great Ormond Street Hospital Biomedical Research Centre, University College London, London, UK
| | - Daniel Pease
- Institute of Neuropathology, University of Zurich and University Hospital Zurich, Zurich 8091, Switzerland
| | - Lorene Mottier
- Institute of Neuropathology, University of Zurich and University Hospital Zurich, Zurich 8091, Switzerland
| | - Alessandra Carrella
- Institute of Neuropathology, University of Zurich and University Hospital Zurich, Zurich 8091, Switzerland
| | - Dezirae Beck-Schneider
- Institute of Neuropathology, University of Zurich and University Hospital Zurich, Zurich 8091, Switzerland
| | - Andreia D Magalhães
- Institute of Neuropathology, University of Zurich and University Hospital Zurich, Zurich 8091, Switzerland
| | - Caroline Aemisegger
- Center for Microscopy and Image Analysis, University of Zurich, Zurich 8057, Switzerland
| | - Alexandre P A Theocharides
- Department of Medical Oncology and Hematology, University Hospital Zurich and University of Zurich, Zurich 8091, Switzerland
| | - Zhanyun Fan
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02129, USA
| | - Jordan D Marks
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02129, USA; Mayo Clinic Alix School of Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Sarah C Hopp
- Department of Pharmacology, UT Health San Antonio, San Antonio, TX 78229, USA; Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases, UT Health San Antonio, San Antonio, TX 78229, USA
| | - Andrey Y Abramov
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
| | - Patrick A Lewis
- Department of Neurodegenerative disease, University College London, London WC1N 3BG, UK; School of Pharmacy, University of Reading, Reading RG6 6AP, UK; Department of Comparative Biomedical Sciences, Royal Veterinary College, London NW1 0TU, UK
| | - Mina Ryten
- Department of Genetics and Genomic Medicine, Great Ormond Street Institute of Child Health, University College London, London, UK; NIHR Great Ormond Street Hospital Biomedical Research Centre, University College London, London, UK
| | - John Hardy
- Department of Neurodegenerative disease, University College London, London WC1N 3BG, UK; UK Dementia Research Institute, University College London, London WC1N 3BG, UK; Reta Lila Weston Institute, UCL Queen Square Institute of Neurology, 1 Wakefield Street, London WC1N 1PJ, UK; Institute for Advanced Study, the Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Bradley T Hyman
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02129, USA
| | - Adriano Aguzzi
- Institute of Neuropathology, University of Zurich and University Hospital Zurich, Zurich 8091, Switzerland.
| |
Collapse
|
273
|
Robert A, Schöll M, Vogels T. Tau Seeding Mouse Models with Patient Brain-Derived Aggregates. Int J Mol Sci 2021; 22:6132. [PMID: 34200180 PMCID: PMC8201271 DOI: 10.3390/ijms22116132] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 05/31/2021] [Accepted: 06/01/2021] [Indexed: 12/23/2022] Open
Abstract
Tauopathies are a heterogeneous class of neurodegenerative diseases characterized by intracellular inclusions of aggregated tau proteins. Tau aggregates in different tauopathies have distinct structural features and can be found in different cell types. Transgenic animal models overexpressing human tau have been used for over two decades in the research of tau pathology. However, these models poorly recapitulate the heterogeneity of tauopathies found in human brains. Recent findings demonstrate that injection of purified tau aggregates from the brains of human tauopathy patients recapitulates both the structural features and cell-type specificity of the tau pathology of the donor tauopathy. These models may therefore have unique translational value in the study of functional consequences of tau pathology, tau-based diagnostics, and tau targeting therapeutics. This review provides an update of the literature relating to seeding-based tauopathy and their potential applications.
Collapse
Affiliation(s)
- Aiko Robert
- Department of Neurodegenerative Disease, UCL Queen Square, Institute of Neurology, University College London, London WC1N 3BG, UK; (A.R.); (M.S.)
| | - Michael Schöll
- Department of Neurodegenerative Disease, UCL Queen Square, Institute of Neurology, University College London, London WC1N 3BG, UK; (A.R.); (M.S.)
- Wallenberg Centre for Molecular and Translational Medicine and the Department of Psychiatry and Neurochemistry, University of Gothenburg, 413 45 Gothenburg, Sweden
- Department of Psychiatry and Neurochemistry, University of Gothenburg, 413 45 Gothenburg, Sweden
| | - Thomas Vogels
- Department of Neurodegenerative Disease, UCL Queen Square, Institute of Neurology, University College London, London WC1N 3BG, UK; (A.R.); (M.S.)
- Department of Psychiatry and Neurochemistry, University of Gothenburg, 413 45 Gothenburg, Sweden
- Sylics (Synaptologics B.V.), 3721 MA Bilthoven, The Netherlands
| |
Collapse
|
274
|
Olfactory Bulb Proteomics Reveals Widespread Proteostatic Disturbances in Mixed Dementia and Guides for Potential Serum Biomarkers to Discriminate Alzheimer Disease and Mixed Dementia Phenotypes. J Pers Med 2021; 11:jpm11060503. [PMID: 34204996 PMCID: PMC8227984 DOI: 10.3390/jpm11060503] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 05/26/2021] [Accepted: 05/30/2021] [Indexed: 12/29/2022] Open
Abstract
The most common form of mixed dementia (MixD) is constituted by abnormal protein deposits associated with Alzheimer's disease (AD) that coexist with vascular disease. Although olfactory dysfunction is considered a clinical sign of AD-related dementias, little is known about the impact of this sensorial impairment in MixD at the molecular level. To address this gap in knowledge, we assessed olfactory bulb (OB) proteome-wide expression in MixD subjects (n = 6) respect to neurologically intact controls (n = 7). Around 9% of the quantified proteins were differentially expressed, pinpointing aberrant proteostasis involved in synaptic transmission, nucleoside monophosphate and carbohydrate metabolism, and neuron projection regeneration. In addition, network-driven proteomics revealed a modulation in cell-survival related pathways such as ERK, AKT, and the PDK1-PKC axis. Part of the differential OB protein set was not specific of MixD, also being deregulated across different tauopathies, synucleinopathies, and tardopathies. However, the comparative functional analysis of OB proteome data between MixD and pure AD pathologies deciphered commonalities and differences between both related phenotypes. Finally, olfactory proteomics allowed to propose serum Prolow-density lipoprotein receptor-related protein 1 (LRP1) as a candidate marker to differentiate AD from MixD phenotypes.
Collapse
|
275
|
Novak P, Kovacech B, Katina S, Schmidt R, Scheltens P, Kontsekova E, Ropele S, Fialova L, Kramberger M, Paulenka-Ivanovova N, Smisek M, Hanes J, Stevens E, Kovac A, Sutovsky S, Parrak V, Koson P, Prcina M, Galba J, Cente M, Hromadka T, Filipcik P, Piestansky J, Samcova M, Prenn-Gologranc C, Sivak R, Froelich L, Fresser M, Rakusa M, Harrison J, Hort J, Otto M, Tosun D, Ondrus M, Winblad B, Novak M, Zilka N. ADAMANT: a placebo-controlled randomized phase 2 study of AADvac1, an active immunotherapy against pathological tau in Alzheimer's disease. NATURE AGING 2021; 1:521-534. [PMID: 37117834 DOI: 10.1038/s43587-021-00070-2] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 04/28/2021] [Indexed: 04/30/2023]
Abstract
Alzheimer's disease (AD) pathology is partly characterized by accumulation of aberrant forms of tau protein. Here we report the results of ADAMANT, a 24-month double-blinded, parallel-arm, randomized phase 2 multicenter placebo-controlled trial of AADvac1, an active peptide vaccine designed to target pathological tau in AD (EudraCT 2015-000630-30). Eleven doses of AADvac1 were administered to patients with mild AD dementia at 40 μg per dose over the course of the trial. The primary objective was to evaluate the safety and tolerability of long-term AADvac1 treatment. The secondary objectives were to evaluate immunogenicity and efficacy of AADvac1 treatment in slowing cognitive and functional decline. A total of 196 patients were randomized 3:2 between AADvac1 and placebo. AADvac1 was safe and well tolerated (AADvac1 n = 117, placebo n = 79; serious adverse events observed in 17.1% of AADvac1-treated individuals and 24.1% of placebo-treated individuals; adverse events observed in 84.6% of AADvac1-treated individuals and 81.0% of placebo-treated individuals). The vaccine induced high levels of IgG antibodies. No significant effects were found in cognitive and functional tests on the whole study sample (Clinical Dementia Rating-Sum of the Boxes scale adjusted mean point difference -0.360 (95% CI -1.306, 0.589)), custom cognitive battery adjusted mean z-score difference of 0.0008 (95% CI -0.169, 0.172). We also present results from exploratory and post hoc analyses looking at relevant biomarkers and clinical outcomes in specific subgroups. Our results show that AADvac1 is safe and immunogenic, but larger stratified studies are needed to better evaluate its potential clinical efficacy and impact on disease biomarkers.
Collapse
Affiliation(s)
- Petr Novak
- AXON Neuroscience CRM Services SE, Bratislava, Slovakia.
| | | | | | - Reinhold Schmidt
- Clinical Division of Neurogeriatrics, Department of Neurology, Medical University Graz, Graz, Austria
| | - Philip Scheltens
- Alzheimer Center, Amsterdam University Medical Centers, Amsterdam, the Netherlands
| | | | - Stefan Ropele
- Clinical Division of General Neurology, Department of Neurology, Medical University Graz, Graz, Austria
| | | | - Milica Kramberger
- Department of Neurology, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | | | | | - Jozef Hanes
- AXON Neuroscience R&D Services SE, Bratislava, Slovakia
| | - Eva Stevens
- AXON Neuroscience R&D Services SE, Bratislava, Slovakia
| | - Andrej Kovac
- AXON Neuroscience R&D Services SE, Bratislava, Slovakia
| | - Stanislav Sutovsky
- 1st Department of Neurology, Faculty of Medicine, Comenius University and University Hospital, Bratislava, Slovakia
| | | | - Peter Koson
- AXON Neuroscience CRM Services SE, Bratislava, Slovakia
| | - Michal Prcina
- AXON Neuroscience R&D Services SE, Bratislava, Slovakia
| | | | - Martin Cente
- AXON Neuroscience R&D Services SE, Bratislava, Slovakia
| | - Tomas Hromadka
- Institute of Neuroimmunology, Slovak Academy of Sciences, Bratislava, Slovakia
| | | | | | - Maria Samcova
- AXON Neuroscience CRM Services SE, Bratislava, Slovakia
| | | | - Roman Sivak
- AXON Neuroscience CRM Services SE, Bratislava, Slovakia
| | - Lutz Froelich
- Department of Geriatric Psychiatry, Zentralinstitut für Seelische Gesundheit, Medical Faculty Mannheim University of Heidelberg, Heidelberg, Germany
| | | | - Martin Rakusa
- Department of Neurological Diseases, University Medical Centre Maribor, Maribor, Slovenia
| | - John Harrison
- Alzheimer Center, Amsterdam University Medical Centers, Amsterdam, the Netherlands
| | - Jakub Hort
- Memory Clinic, Department of Neurology, Charles University, 2nd Faculty of Medicine and Motol University Hospital, Prague, Czech Republic
| | - Markus Otto
- Department of Neurology, Ulm University Hospital, Ulm, Germany
| | - Duygu Tosun
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, USA
| | - Matej Ondrus
- AXON Neuroscience CRM Services SE, Bratislava, Slovakia
| | - Bengt Winblad
- Division of Neurogeriatrics, Center for Alzheimer Research, Karolinska Institutet, Solna, Sweden
- Theme Inflammation and Aging, Karolinska University Hospital, Huddinge, Sweden
| | | | - Norbert Zilka
- AXON Neuroscience R&D Services SE, Bratislava, Slovakia
| |
Collapse
|
276
|
Cornblath EJ, Li HL, Changolkar L, Zhang B, Brown HJ, Gathagan RJ, Olufemi MF, Trojanowski JQ, Bassett DS, Lee VMY, Henderson MX. Computational modeling of tau pathology spread reveals patterns of regional vulnerability and the impact of a genetic risk factor. SCIENCE ADVANCES 2021; 7:eabg6677. [PMID: 34108219 PMCID: PMC8189700 DOI: 10.1126/sciadv.abg6677] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 04/21/2021] [Indexed: 05/09/2023]
Abstract
Neuropathological staging studies have suggested that tau pathology spreads through the brain in Alzheimer's disease (AD) and other tauopathies, but it is unclear how neuroanatomical connections, spatial proximity, and regional vulnerability contribute. In this study, we seed tau pathology in the brains of nontransgenic mice with AD tau and quantify pathology development over 9 months in 134 brain regions. Network modeling of pathology progression shows that diffusion through the connectome is the best predictor of tau pathology patterns. Further, deviations from pure neuroanatomical spread are used to estimate regional vulnerability to tau pathology and identify related gene expression patterns. Last, we show that pathology spread is altered in mice harboring a mutation in leucine-rich repeat kinase 2. While tau pathology spread is still constrained by anatomical connectivity in these mice, it spreads preferentially in a retrograde direction. This study provides a framework for understanding neuropathological progression in tauopathies.
Collapse
Affiliation(s)
- Eli J Cornblath
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Howard L Li
- Institute on Aging and Center for Neurodegenerative Disease Research, Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Lakshmi Changolkar
- Institute on Aging and Center for Neurodegenerative Disease Research, Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Bin Zhang
- Institute on Aging and Center for Neurodegenerative Disease Research, Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Hannah J Brown
- Institute on Aging and Center for Neurodegenerative Disease Research, Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ronald J Gathagan
- Institute on Aging and Center for Neurodegenerative Disease Research, Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Modupe F Olufemi
- Institute on Aging and Center for Neurodegenerative Disease Research, Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - John Q Trojanowski
- Institute on Aging and Center for Neurodegenerative Disease Research, Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Danielle S Bassett
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Electrical and Systems Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Physics and Astronomy, College of Arts and Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Santa Fe Institute, Santa Fe, NM 87501, USA
| | - Virginia M Y Lee
- Institute on Aging and Center for Neurodegenerative Disease Research, Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Michael X Henderson
- Department of Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI 49503, USA.
| |
Collapse
|
277
|
Park HK, Ilango SD, Litvan I. Environmental Risk Factors for Progressive Supranuclear Palsy. J Mov Disord 2021; 14:103-113. [PMID: 34062646 PMCID: PMC8175813 DOI: 10.14802/jmd.20173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 03/17/2021] [Indexed: 11/24/2022] Open
Abstract
Typically, progressive supranuclear palsy (PSP) is clinically characterized by slow vertical saccades or supranuclear gaze palsy, levodopa-resistant parkinsonism with predominant axial symptoms, and cognitive executive impairment. Over the past decades, various PSP phenotypes, including PSP with predominant parkinsonism, PSP with corticobasal syndrome, PSP with progressive gait freezing, and PSP with predominant frontal dysfunction, have been identified from pathologically confirmed cases. Expanding knowledge led to new diagnostic criteria for PSP that with increased disease awareness led to increased PSP prevalence estimates. The identification of environmental and modifiable risk factors creates an opportunity to intervene and delay the onset of PSP or slow disease progression. To date, despite the increasing number of publications assessing risk factors for PSP, few articles have focused on environmental and lifestyle risk factors for this disorder. In this article, we reviewed the literature investigating the relationship between PSP and several environmental and other modifiable lifestyle risk factors. In our review, we found that exposures to toxins related to diet, metals, well water, and hypertension were associated with increased PSP risk. In contrast, higher education and statins may be protective. Further case-control studies are encouraged to determine the exact role of these factors in the etiopathogenesis of PSP, which in turn would inform strategies to prevent and reduce the burden of PSP.
Collapse
Affiliation(s)
- Hee Kyung Park
- Department of Neurology, Ewha Womans Mokdong Hospital, Ewha Womans University, Seoul, Korea.,Division of Psychiatry, Department of Mental Health Care of Older People, University College London, London, UK
| | - Sindana D Ilango
- Department of Family Medicine and Public Health, University of California San Diego, La Jolla, CA, USA.,School of Public Health, San Diego State University, San Diego, CA, USA
| | - Irene Litvan
- Parkinson and Other Movement Disorders Center, Department of Neurosciences, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
278
|
Zhu L, Xu L, Wu X, Deng F, Ma R, Liu Y, Huang F, Shi L. Tau-Targeted Multifunctional Nanoinhibitor for Alzheimer's Disease. ACS APPLIED MATERIALS & INTERFACES 2021; 13:23328-23338. [PMID: 33999598 DOI: 10.1021/acsami.1c00257] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
With the failure of various amyloid-β-targeted drugs for Alzheimer's disease (AD) in clinical trials, tau protein has gained growing attention as an alternative therapeutic target in recent years. The aggregation of tau exerts neurotoxicity, and its spreading in the brain is associated with increasing severity of clinical symptoms for AD patients; thus tau-targeting therapies hold great potential against AD. Here, a tau-targeted multifunctional nanoinhibitor based on self-assembled polymeric micelles decorated with tau-binding peptide is devised for AD treatment. Through the multivalent binding effect with the aggregating protein, this nanoinhibitor is capable of efficiently inhibiting tau protein aggregation, recognizing tau aggregates, and blocking their seeding in neural cells, thus remarkably mitigating tau-mediated cytotoxicity. Moreover, the formed nanoinhibitor-tau complex after binding is more easily degraded than mature tau aggregates, which will be conducive to enhance the therapeutic effect. We believe that this multifunctional nanoinhibitor will promote the development of new antitau strategies for AD treatment.
Collapse
Affiliation(s)
- Lin Zhu
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials of Ministry of Education, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Linlin Xu
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials of Ministry of Education, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Xiaohui Wu
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials of Ministry of Education, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Fei Deng
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials of Ministry of Education, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Rujiang Ma
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials of Ministry of Education, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Yang Liu
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials of Ministry of Education, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Fan Huang
- Key Laboratory of Radiopharmacokinetics for Innovative Drugs, Chinese Academy of Medical Sciences, and Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, P. R. China
| | - Linqi Shi
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials of Ministry of Education, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| |
Collapse
|
279
|
Mah D, Zhao J, Liu X, Zhang F, Liu J, Wang L, Linhardt R, Wang C. The Sulfation Code of Tauopathies: Heparan Sulfate Proteoglycans in the Prion Like Spread of Tau Pathology. Front Mol Biosci 2021; 8:671458. [PMID: 34095227 PMCID: PMC8173255 DOI: 10.3389/fmolb.2021.671458] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 04/12/2021] [Indexed: 12/12/2022] Open
Abstract
Tauopathies are a heterogenous family of progressive neurodegenerative diseases defined by the appearance of proteinaceous lesions within the brain composed of abnormally folded species of Microtubule Associated Protein Tau (tau). Alzheimer's Disease (AD), the most common tauopathy, is the leading cause of cognitive decline among the elderly and is responsible for more than half of all cases of senile dementia worldwide. The characteristic pathology of many tauopathies-AD included-presents as Neurofibrillary Tangles (NFTs), insoluble inclusions found within the neurons of the central nervous system composed primarily of tau protein arranged into Paired Helical Fibrils (PHFs). The spatial extent of this pathology evolves in a remarkably consistent pattern over the course of disease progression. Among the leading hypotheses which seek to explain the stereotypical progression of tauopathies is the prion model, which proposes that the spread of tau pathology is mediated by the transmission of self-propagating tau conformers between cells in a fashion analogous to the mechanism of communicable prion diseases. Protein-glycan interactions between tau and Heparan Sulfate Proteoglycans (HSPGs) have been implicated as a key facilitator in each stage of the prion-like propagation of tau pathology, from the initial secretion of intracellular tau protein into the extracellular matrix, to the uptake of pathogenic tau seeds by cells, and the self-assembly of tau into higher order aggregates. In this review we outline the biochemical basis of the tau-HS interaction and discuss our current understanding of the mechanisms by which these interactions contribute to the propagation of tau pathology in tauopathies, with a particular focus on AD.
Collapse
Affiliation(s)
- Dylan Mah
- Department of Biological Sciences, Department of Chemistry and Chemical Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, United States
| | - Jing Zhao
- Department of Biological Sciences, Department of Chemistry and Chemical Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, United States
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Xinyue Liu
- Department of Biological Sciences, Department of Chemistry and Chemical Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, United States
- Harvard Medical School, Harvard University, Boston, MA, United States
| | - Fuming Zhang
- Department of Biological Sciences, Department of Chemistry and Chemical Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, United States
| | - Jian Liu
- Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Lianchun Wang
- Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| | - Robert Linhardt
- Department of Biological Sciences, Department of Chemistry and Chemical Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, United States
| | - Chunyu Wang
- Department of Biological Sciences, Department of Chemistry and Chemical Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, United States
| |
Collapse
|
280
|
Knopman DS, Amieva H, Petersen RC, Chételat G, Holtzman DM, Hyman BT, Nixon RA, Jones DT. Alzheimer disease. Nat Rev Dis Primers 2021; 7:33. [PMID: 33986301 PMCID: PMC8574196 DOI: 10.1038/s41572-021-00269-y] [Citation(s) in RCA: 1011] [Impact Index Per Article: 252.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/09/2021] [Indexed: 12/21/2022]
Abstract
Alzheimer disease (AD) is biologically defined by the presence of β-amyloid-containing plaques and tau-containing neurofibrillary tangles. AD is a genetic and sporadic neurodegenerative disease that causes an amnestic cognitive impairment in its prototypical presentation and non-amnestic cognitive impairment in its less common variants. AD is a common cause of cognitive impairment acquired in midlife and late-life but its clinical impact is modified by other neurodegenerative and cerebrovascular conditions. This Primer conceives of AD biology as the brain disorder that results from a complex interplay of loss of synaptic homeostasis and dysfunction in the highly interrelated endosomal/lysosomal clearance pathways in which the precursors, aggregated species and post-translationally modified products of Aβ and tau play important roles. Therapeutic endeavours are still struggling to find targets within this framework that substantially change the clinical course in persons with AD.
Collapse
Affiliation(s)
| | - Helene Amieva
- Inserm U1219 Bordeaux Population Health Center, University of Bordeaux, Bordeaux, France
| | | | - Gäel Chételat
- Normandie Univ, UNICAEN, INSERM, U1237, PhIND "Physiopathology and Imaging of Neurological Disorders", Institut Blood and Brain @ Caen-Normandie, Cyceron, Caen, France
| | - David M Holtzman
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
| | - Bradley T Hyman
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
| | - Ralph A Nixon
- Departments of Psychiatry and Cell Biology, New York University Langone Medical Center, New York University, New York, NY, USA
- NYU Neuroscience Institute, New York University Langone Medical Center, New York University, New York, NY, USA
| | - David T Jones
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
281
|
Olsen I. Possible effects of Porphyromonas gingivalis on the blood-brain barrier in Alzheimer's disease. Expert Rev Anti Infect Ther 2021; 19:1367-1371. [PMID: 33938372 DOI: 10.1080/14787210.2021.1925540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Ingar Olsen
- Department of Oral Biology, Faculty of Dentistry, University of Oslo, Oslo, Norway,
| |
Collapse
|
282
|
Dong Y, Liang F, Huang L, Fang F, Yang G, Tanzi RE, Zhang Y, Quan Q, Xie Z. The anesthetic sevoflurane induces tau trafficking from neurons to microglia. Commun Biol 2021; 4:560. [PMID: 33980987 PMCID: PMC8115254 DOI: 10.1038/s42003-021-02047-8] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 03/29/2021] [Indexed: 01/08/2023] Open
Abstract
Accumulation and spread of tau in Alzheimer's disease and other tauopathies occur in a prion-like manner. However, the mechanisms and downstream consequences of tau trafficking remain largely unknown. We hypothesized that tau traffics from neurons to microglia via extracellular vesicles (EVs), leading to IL-6 generation and cognitive impairment. We assessed mice and neurons treated with anesthetics sevoflurane and desflurane, and applied nanobeam-sensor technology, an ultrasensitive method, to measure tau/p-tau amounts. Sevoflurane, but not desflurane, increased tau or p-tau amounts in blood, neuron culture medium, or EVs. Sevoflurane increased p-tau amounts in brain interstitial fluid. Microglia from tau knockout mice took up tau and p-tau when treated with sevoflurane-conditioned neuron culture medium, leading to IL-6 generation. Tau phosphorylation inhibitor lithium and EVs generation inhibitor GW4869 attenuated tau trafficking. GW4869 mitigated sevoflurane-induced cognitive impairment in mice. Thus, tau trafficking could occur from neurons to microglia to generate IL-6, leading to cognitive impairment.
Collapse
Affiliation(s)
- Yuanlin Dong
- Geriatric Anesthesia Research Unit, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Feng Liang
- Geriatric Anesthesia Research Unit, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Lining Huang
- Geriatric Anesthesia Research Unit, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
- Department of Anesthesiology, the Second Hospital of Hebei Medical University, Shijiazhuang, P.R. China
| | - Fang Fang
- Geriatric Anesthesia Research Unit, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
- Department of Anesthesia, Zhongshan Hospital, Fudan University, Shanghai, P. R. China
| | - Guang Yang
- Department of Anesthesiology, Columbia University Medical Center, New York, NY, USA
| | - Rudolph E Tanzi
- Genetics and Aging Research Unit, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Yiying Zhang
- Geriatric Anesthesia Research Unit, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Qimin Quan
- Rowland Institute at Harvard University, Cambridge, MA, USA
- NanoMosaic, Woburn, MA, USA
| | - Zhongcong Xie
- Geriatric Anesthesia Research Unit, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA.
| |
Collapse
|
283
|
He Z, Wang G, Wu J, Tang Z, Luo M. The molecular mechanism of LRP1 in physiological vascular homeostasis and signal transduction pathways. Biomed Pharmacother 2021; 139:111667. [PMID: 34243608 DOI: 10.1016/j.biopha.2021.111667] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 04/07/2021] [Accepted: 04/23/2021] [Indexed: 01/10/2023] Open
Abstract
Interactions between vascular smooth muscle cells (VSMCs), endothelial cells (ECs), pericytes (PCs) and macrophages (MФ), the major components of blood vessels, play a crucial role in maintaining vascular structural and functional homeostasis. Low-density lipoprotein (LDL) receptor-related protein-1 (LRP1), a transmembrane receptor protein belonging to the LDL receptor family, plays multifunctional roles in maintaining endocytosis, homeostasis, and signal transduction. Accumulating evidence suggests that LRP1 modulates vascular homeostasis mainly by regulating vasoactive substances and specific intracellular signaling pathways, including the plasminogen activator inhibitor 1 (PAI-1) signaling pathway, platelet-derived growth factor (PDGF) signaling pathway, transforming growth factor-β (TGF-β) signaling pathway and vascular endothelial growth factor (VEGF) signaling pathway. The aim of the present review is to focus on recent advances in the discovery and mechanism of vascular homeostasis regulated by LRP1-dependent signaling pathways. These recent discoveries expand our understanding of the mechanisms controlling LRP1 as a target for studies on vascular complications.
Collapse
Affiliation(s)
- Zhaohui He
- Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease of Sichuan Province, Drug Discovery Reseach Center, Southwest Medical University, 319 Zhongshan Road, Luzhou, Sichuan 646000, China; Department of Clinical Medicine, the Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Gang Wang
- Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease of Sichuan Province, Drug Discovery Reseach Center, Southwest Medical University, 319 Zhongshan Road, Luzhou, Sichuan 646000, China; Laboratory for Cardiovascular Pharmacology of Department of Pharmacology, the School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| | - Jianbo Wu
- Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease of Sichuan Province, Drug Discovery Reseach Center, Southwest Medical University, 319 Zhongshan Road, Luzhou, Sichuan 646000, China; Laboratory for Cardiovascular Pharmacology of Department of Pharmacology, the School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China; Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO, United States
| | - Zonghao Tang
- Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease of Sichuan Province, Drug Discovery Reseach Center, Southwest Medical University, 319 Zhongshan Road, Luzhou, Sichuan 646000, China; Laboratory for Cardiovascular Pharmacology of Department of Pharmacology, the School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China.
| | - Mao Luo
- Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease of Sichuan Province, Drug Discovery Reseach Center, Southwest Medical University, 319 Zhongshan Road, Luzhou, Sichuan 646000, China; Laboratory for Cardiovascular Pharmacology of Department of Pharmacology, the School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China.
| |
Collapse
|
284
|
Tau internalization: A complex step in tau propagation. Ageing Res Rev 2021; 67:101272. [PMID: 33571704 DOI: 10.1016/j.arr.2021.101272] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 12/04/2020] [Accepted: 02/04/2021] [Indexed: 12/16/2022]
Abstract
Aggregation of microtubule-associated protein Tau (MAPT) may underlie abnormalities of the intracellular matrix and neuronal death in tauopathies. Tau proteins can be secreted to the extracellular space and internalized into adjacent cells. The internalization of Tau is a complex but critical step in Tau propagation. This review summarizes the internalization pathways of Tau, including macropinocytosis, Clathrin-mediated endocytosis (CME), lipid raft dependent endocytosis, Tunneling nanotubes dependent endocytosis (TNTs) and phagocytosis. The conformation of Tau fibrils and the types of recipient cell determine the internalization pathway. However, the HSPGs-dependent endocytosis seems to be the predominant pathway of Tau internalization. After internalization, Tau fibrils undergo clearance and seeding. Imbalance among Tau secretion, internalization and clearance may result in the propagation of misfolded Tau in the brain, thereby inducing Tauopathies. A better understanding of the internalization of Tau proteins may facilitate the discovery of novel therapeutic strategies to block the propagation of Tau pathology.
Collapse
|
285
|
Kobro-Flatmoen A, Lagartos-Donate MJ, Aman Y, Edison P, Witter MP, Fang EF. Re-emphasizing early Alzheimer's disease pathology starting in select entorhinal neurons, with a special focus on mitophagy. Ageing Res Rev 2021; 67:101307. [PMID: 33621703 DOI: 10.1016/j.arr.2021.101307] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 02/04/2021] [Accepted: 02/18/2021] [Indexed: 12/31/2022]
Abstract
The entorhinal-hippocampal system contains distinct networks subserving declarative memory. This system is selectively vulnerable to changes of ageing and pathological processes. The entorhinal cortex (EC) is a pivotal component of this memory system since it serves as the interface between the neocortex and the hippocampus. EC is heavily affected by the proteinopathies of Alzheimer's disease (AD). These appear in a stereotypical spatiotemporal manner and include increased levels of intracellular amyloid-beta Aβ (iAβ), parenchymal deposition of Aβ plaques, and neurofibrillary tangles (NFTs) containing abnormally processed Tau. Increased levels of iAβ and the formation of NFTs are seen very early on in a population of neurons belonging to EC layer II (EC LII), and recent evidence leads us to believe that this population is made up of highly energy-demanding reelin-positive (RE+) projection neurons. Mitochondria are fundamental to the energy supply, metabolism, and plasticity of neurons. Evidence from AD postmortem brain tissues supports the notion that mitochondrial dysfunction is one of the initial pathological events in AD, and this is likely to take place in the vulnerable RE + EC LII neurons. Here we review and discuss these notions, anchored to the anatomy of AD, and formulate a hypothesis attempting to explain the vulnerability of RE + EC LII neurons to the formation of NFTs. We attempt to link impaired mitochondrial clearance to iAβ and signaling involving both apolipoprotein 4 and reelin, and argue for their relevance to the formation of NFTs specifically in RE + EC LII neurons during the prodromal stages of AD. We believe future studies on these interactions holds promise to advance our understanding of AD etiology and provide new ideas for drug development.
Collapse
|
286
|
Bok E, Leem E, Lee BR, Lee JM, Yoo CJ, Lee EM, Kim J. Role of the Lipid Membrane and Membrane Proteins in Tau Pathology. Front Cell Dev Biol 2021; 9:653815. [PMID: 33996814 PMCID: PMC8119898 DOI: 10.3389/fcell.2021.653815] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 04/09/2021] [Indexed: 12/12/2022] Open
Abstract
Abnormal accumulation of misfolded tau aggregates is a pathological hallmark of various tauopathies including Alzheimer’s disease (AD). Although tau is a cytosolic microtubule-associated protein enriched in neurons, it is also found in extracellular milieu, such as interstitial fluid, cerebrospinal fluid, and blood. Accumulating evidence showed that pathological tau spreads along anatomically connected areas in the brain through intercellular transmission and templated misfolding, thereby inducing neurodegeneration and cognitive dysfunction. In line with this, the spatiotemporal spreading of tau pathology is closely correlated with cognitive decline in AD patients. Although the secretion and uptake of tau involve multiple different pathways depending on tau species and cell types, a growing body of evidence suggested that tau is largely secreted in a vesicle-free forms. In this regard, the interaction of vesicle-free tau with membrane is gaining growing attention due to its importance for both of tau secretion and uptake as well as aggregation. Here, we review the recent literature on the mechanisms of the tau-membrane interaction and highlights the roles of lipids and proteins at the membrane in the tau-membrane interaction as well as tau aggregation.
Collapse
Affiliation(s)
- Eugene Bok
- Dementia Research Group, Korea Brain Research Institute, Daegu, South Korea
| | - Eunju Leem
- Dementia Research Group, Korea Brain Research Institute, Daegu, South Korea
| | - Bo-Ram Lee
- Dementia Research Group, Korea Brain Research Institute, Daegu, South Korea
| | - Ji Min Lee
- Dementia Research Group, Korea Brain Research Institute, Daegu, South Korea.,School of Life Sciences, Kyungpook National University, Daegu, South Korea
| | - Chang Jae Yoo
- Dementia Research Group, Korea Brain Research Institute, Daegu, South Korea.,Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology, Daegu, South Korea
| | - Eun Mi Lee
- Dementia Research Group, Korea Brain Research Institute, Daegu, South Korea.,Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology, Daegu, South Korea
| | - Jaekwang Kim
- Dementia Research Group, Korea Brain Research Institute, Daegu, South Korea
| |
Collapse
|
287
|
Cooper JM, Lathuiliere A, Migliorini M, Arai AL, Wani MM, Dujardin S, Muratoglu SC, Hyman BT, Strickland DK. Regulation of tau internalization, degradation, and seeding by LRP1 reveals multiple pathways for tau catabolism. J Biol Chem 2021; 296:100715. [PMID: 33930462 PMCID: PMC8164048 DOI: 10.1016/j.jbc.2021.100715] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 04/21/2021] [Accepted: 04/26/2021] [Indexed: 12/16/2022] Open
Abstract
In Alzheimer's disease (AD), pathological forms of tau are transferred from cell to cell and “seed” aggregation of cytoplasmic tau. Phosphorylation of tau plays a key role in neurodegenerative tauopathies. In addition, apolipoprotein E (apoE), a major component of lipoproteins in the brain, is a genetic risk determinant for AD. The identification of the apoE receptor, low-density lipoprotein receptor–related protein 1 (LRP1), as an endocytic receptor for tau raises several questions about the role of LRP1 in tauopathies: is internalized tau, like other LRP1 ligands, delivered to lysosomes for degradation, and does LRP1 internalize pathological tau leading to cytosolic seeding? We found that LRP1 rapidly internalizes 125I-labeled tau, which is then efficiently degraded in lysosomal compartments. Surface plasmon resonance experiments confirm high affinity binding of tau and the tau microtubule-binding domain to LRP1. Interestingly, phosphorylated forms of recombinant tau bind weakly to LRP1 and are less efficiently internalized by LRP1. LRP1-mediated uptake of tau is inhibited by apoE, with the apoE4 isoform being the most potent inhibitor, likely because of its higher affinity for LRP1. Employing post-translationally–modified tau derived from brain lysates of human AD brain tissue, we found that LRP1-expressing cells, but not LRP1-deficient cells, promote cytosolic tau seeding in a process enhanced by apoE. These studies identify LRP1 as an endocytic receptor that binds and processes monomeric forms of tau leading to its degradation and promotes seeding by pathological forms of tau. The balance of these processes may be fundamental to the spread of neuropathology across the brain in AD.
Collapse
Affiliation(s)
- Joanna M Cooper
- The Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Aurelien Lathuiliere
- Alzheimer Research Unit, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts, USA
| | - Mary Migliorini
- The Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Allison L Arai
- The Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Mashhood M Wani
- The Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Simon Dujardin
- Alzheimer Research Unit, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts, USA
| | - Selen C Muratoglu
- The Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, Maryland, USA; Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Bradley T Hyman
- Alzheimer Research Unit, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts, USA.
| | - Dudley K Strickland
- The Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, Maryland, USA; Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland, USA; Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland, USA.
| |
Collapse
|
288
|
Continuous Monitoring of Tau-Induced Neurotoxicity in Patient-Derived iPSC-Neurons. J Neurosci 2021; 41:4335-4348. [PMID: 33893219 PMCID: PMC8143197 DOI: 10.1523/jneurosci.2590-20.2021] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 02/12/2021] [Accepted: 02/19/2021] [Indexed: 11/28/2022] Open
Abstract
Tau aggregation within neurons is a critical feature of Alzheimer's disease (AD) and related tauopathies. It is believed that soluble pathologic tau species seed the formation of tau aggregates in a prion-like manner and propagate through connected neurons during the progression of disease. Both soluble and aggregated forms of tau are thought to have neurotoxic properties. In addition, different strains of misfolded tau may cause differential neurotoxicity. In this work, we present an accelerated human neuronal model of tau-induced neurotoxicity that incorporates both soluble tau species and tau aggregation. Using patient-derived induced pluripotent stem cell (iPSC) neurons expressing a tau aggregation biosensor, we develop a cell culture system that allows continuous assessment of both induced tau aggregation and neuronal viability at single-cell resolution for periods of >1 week. We show that exogenous tau “seed” uptake, as measured by tau repeat domain (TauRD) reporter aggregation, increases the risk for subsequent neuronal death in vitro. These results are the first to directly visualize neuronal TauRD aggregation and subsequent cell death in single human iPSC neurons. Specific morphologic strains or patterns of TauRD aggregation are then identified and associated with differing neurotoxicity. Furthermore, we demonstrate that familial AD iPSC neurons expressing the PSEN1 L435F mutation exhibit accelerated TauRD aggregation kinetics and a tau strain propagation bias when compared with control iPSC neurons. SIGNIFICANCE STATEMENT Neuronal intracellular aggregation of the microtubule binding protein tau occurs in Alzheimer's disease and related neurodegenerative tauopathies. Tau aggregates are believed to spread from neuron to neuron via prion-like misfolded tau seeds. Our work develops a human neuronal live-imaging system to visualize seeded tau aggregation and tau-induced neurotoxicity within single neurons. Using an aggregation-sensing tau reporter, we find that neuronal uptake and propagation of tau seeds reduces subsequent survival. In addition, human induced pluripotent stem cell (iPSC) neurons carrying an Alzheimer's disease-causing mutation in presenilin-1 undergo tau seeding more rapidly than control iPSC neurons. However, they do not show subsequent differences in neuronal survival. Finally, specific morphologies of tau aggregates are associated with increased neurotoxicity.
Collapse
|
289
|
Fukui N, Yamamoto H, Miyabe M, Aoyama Y, Hongo K, Mizobata T, Kawahata I, Yabuki Y, Shinoda Y, Fukunaga K, Kawata Y. An α-synuclein decoy peptide prevents cytotoxic α-synuclein aggregation caused by fatty acid binding protein 3. J Biol Chem 2021; 296:100663. [PMID: 33862084 PMCID: PMC8131325 DOI: 10.1016/j.jbc.2021.100663] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 04/07/2021] [Accepted: 04/12/2021] [Indexed: 12/23/2022] Open
Abstract
α-synuclein (αSyn) is a protein known to form intracellular aggregates during the manifestation of Parkinson’s disease. Previously, it was shown that αSyn aggregation was strongly suppressed in the midbrain region of mice that did not possess the gene encoding the lipid transport protein fatty acid binding protein 3 (FABP3). An interaction between these two proteins was detected in vitro, suggesting that FABP3 may play a role in the aggregation and deposition of αSyn in neurons. To characterize the molecular mechanisms that underlie the interactions between FABP3 and αSyn that modulate the cellular accumulation of the latter, in this report, we used in vitro fluorescence assays combined with fluorescence microscopy, transmission electron microscopy, and quartz crystal microbalance assays to characterize in detail the process and consequences of FABP3–αSyn interaction. We demonstrated that binding of FABP3 to αSyn results in changes in the aggregation mechanism of the latter; specifically, a suppression of fibrillar forms of αSyn and also the production of aggregates with an enhanced cytotoxicity toward mice neuro2A cells. Because this interaction involved the C-terminal sequence region of αSyn, we tested a peptide derived from this region of αSyn (αSynP130-140) as a decoy to prevent the FABP3–αSyn interaction. We observed that the peptide competitively inhibited binding of αSyn to FABP3 in vitro and in cultured cells. We propose that administration of αSynP130-140 might be used to prevent the accumulation of toxic FABP3-αSyn oligomers in cells, thereby preventing the progression of Parkinson’s disease.
Collapse
Affiliation(s)
- Naoya Fukui
- Department of Chemistry and Biotechnology, Faculty of Engineering/Graduate School of Engineering, Tottori University, Tottori, Japan
| | - Hanae Yamamoto
- Department of Chemistry and Biotechnology, Faculty of Engineering/Graduate School of Engineering, Tottori University, Tottori, Japan
| | - Moe Miyabe
- Department of Chemistry and Biotechnology, Faculty of Engineering/Graduate School of Engineering, Tottori University, Tottori, Japan
| | - Yuki Aoyama
- Department of Chemistry and Biotechnology, Faculty of Engineering/Graduate School of Engineering, Tottori University, Tottori, Japan
| | - Kunihiro Hongo
- Department of Chemistry and Biotechnology, Faculty of Engineering/Graduate School of Engineering, Tottori University, Tottori, Japan; Department of Biomedical Science, Institute of Regenerative Medicine and Biofunction, Graduate School of Medical Science, Tottori University, Tottori, Japan; Center for Research on Green Sustainable Chemistry, Tottori University, Tottori, Japan
| | - Tomohiro Mizobata
- Department of Chemistry and Biotechnology, Faculty of Engineering/Graduate School of Engineering, Tottori University, Tottori, Japan; Department of Biomedical Science, Institute of Regenerative Medicine and Biofunction, Graduate School of Medical Science, Tottori University, Tottori, Japan; Center for Research on Green Sustainable Chemistry, Tottori University, Tottori, Japan
| | - Ichiro Kawahata
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Yasushi Yabuki
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Yasuharu Shinoda
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Kohji Fukunaga
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Yasushi Kawata
- Department of Chemistry and Biotechnology, Faculty of Engineering/Graduate School of Engineering, Tottori University, Tottori, Japan; Department of Biomedical Science, Institute of Regenerative Medicine and Biofunction, Graduate School of Medical Science, Tottori University, Tottori, Japan; Center for Research on Green Sustainable Chemistry, Tottori University, Tottori, Japan.
| |
Collapse
|
290
|
Soares AC, Ferreira A, Mariën J, Delay C, Lee E, Trojanowski JQ, Moechars D, Annaert W, De Muynck L. PIKfyve activity is required for lysosomal trafficking of tau aggregates and tau seeding. J Biol Chem 2021; 296:100636. [PMID: 33831417 PMCID: PMC8134070 DOI: 10.1016/j.jbc.2021.100636] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 03/01/2021] [Accepted: 04/02/2021] [Indexed: 02/06/2023] Open
Abstract
Tauopathies, such as Alzheimer's disease (AD), are neurodegenerative disorders characterized by the deposition of hyperphosphorylated tau aggregates. Proteopathic tau seeds spread through the brain in a temporospatial pattern, indicative of transsynaptic propagation. It is hypothesized that reducing the uptake of tau seeds and subsequent induction of tau aggregation could be a potential approach for abrogating disease progression in AD. Here, we studied to what extent different endosomal routes play a role in the neuronal uptake of preformed tau seeds. Using pharmacological and genetic tools, we identified dynamin-1, actin, and Rac1 as key players. Furthermore, inhibition of PIKfyve, a protein downstream of Rac1, reduced both the trafficking of tau seeds into lysosomes and the induction of tau aggregation. Our work shows that tau aggregates are internalized by a specific endocytic mechanism and that their fate once internalized can be pharmacologically modulated to reduce tau seeding in neurons.
Collapse
Affiliation(s)
- Alberto Carpinteiro Soares
- Neuroscience Department, Janssen Research and Development, a Division of Janssen Pharmaceutica NV, Beerse, Belgium; VIB Center for Brain & Disease Research, Leuven, Belgium; Department of Neurosciences, KU Leuven, Leuven, Belgium
| | - Andreia Ferreira
- Neuroscience Department, Janssen Research and Development, a Division of Janssen Pharmaceutica NV, Beerse, Belgium; VIB Center for Medical Biotechnology, Ghent, Belgium; Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
| | - Jonas Mariën
- Neuroscience Department, Janssen Research and Development, a Division of Janssen Pharmaceutica NV, Beerse, Belgium
| | - Charlotte Delay
- Neuroscience Department, Janssen Research and Development, a Division of Janssen Pharmaceutica NV, Beerse, Belgium
| | - Edward Lee
- Department of Pathology and Laboratory Medicine, Institute on Aging and Center for Neurodegenerative Disease Research, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - John Q Trojanowski
- Department of Pathology and Laboratory Medicine, Institute on Aging and Center for Neurodegenerative Disease Research, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Dieder Moechars
- Neuroscience Department, Janssen Research and Development, a Division of Janssen Pharmaceutica NV, Beerse, Belgium
| | - Wim Annaert
- VIB Center for Brain & Disease Research, Leuven, Belgium; Department of Neurosciences, KU Leuven, Leuven, Belgium.
| | - Louis De Muynck
- Neuroscience Department, Janssen Research and Development, a Division of Janssen Pharmaceutica NV, Beerse, Belgium.
| |
Collapse
|
291
|
Fleeman RM, Proctor EA. Astrocytic Propagation of Tau in the Context of Alzheimer's Disease. Front Cell Neurosci 2021; 15:645233. [PMID: 33815065 PMCID: PMC8010320 DOI: 10.3389/fncel.2021.645233] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 02/19/2021] [Indexed: 01/14/2023] Open
Abstract
More than 6 million Americans are currently living with Alzheimer's disease (AD), and the incidence is growing rapidly with our aging population. Numerous therapeutics have failed to make it to the clinic, potentially due to a focus on presumptive pathogenic proteins instead of cell-type-specific signaling mechanisms. The tau propagation hypothesis that inter-neuronal tau transfer drives AD pathology has recently garnered attention, as accumulation of pathological tau in the brain has high clinical significance in correlating with progression of cognitive AD symptoms. However, studies on tau pathology in AD are classically neuron-centric and have greatly overlooked cell-type specific effects of tau internalization, degradation, and propagation. While the contribution of microglia to tau processing and propagation is beginning to be recognized and understood, astrocytes, glial cells in the brain important for maintaining neuronal metabolic, synaptic, trophic, and immune function which can produce, internalize, degrade, and propagate tau are understudied in their ability to affect AD progression through tau pathology. Here, we showcase evidence for whether tau uptake by astrocytes may be beneficial or detrimental to neuronal health and how astrocytes and their immunometabolic functions may be key targets for future successful AD therapies.
Collapse
Affiliation(s)
- Rebecca M Fleeman
- Department of Neurosurgery, Department of Pharmacology, College of Medicine, Pennsylvania State University (PSU), Hershey, PA, United States.,Center for Neural Engineering, Pennsylvania State University (PSU), University Park, PA, United States
| | - Elizabeth A Proctor
- Department of Neurosurgery, Department of Pharmacology, College of Medicine, Pennsylvania State University (PSU), Hershey, PA, United States.,Department of Biomedical Engineering, Department of Engineering Science and Mechanics, Center for Neural Engineering, Pennsylvania State University (PSU), University Park, PA, United States
| |
Collapse
|
292
|
Carlomagno Y, Manne S, DeTure M, Prudencio M, Zhang YJ, Hanna Al-Shaikh R, Dunmore JA, Daughrity LM, Song Y, Castanedes-Casey M, Lewis-Tuffin LJ, Nicholson KA, Wszolek ZK, Dickson DW, Fitzpatrick AWP, Petrucelli L, Cook CN. The AD tau core spontaneously self-assembles and recruits full-length tau to filaments. Cell Rep 2021; 34:108843. [PMID: 33730588 PMCID: PMC8094113 DOI: 10.1016/j.celrep.2021.108843] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 12/18/2020] [Accepted: 02/17/2021] [Indexed: 02/05/2023] Open
Abstract
Tau accumulation is a major pathological hallmark of Alzheimer's disease (AD) and other tauopathies, but the mechanism(s) of tau aggregation remains unclear. Taking advantage of the identification of tau filament cores by cryoelectron microscopy, we demonstrate that the AD tau core possesses the intrinsic ability to spontaneously aggregate in the absence of an inducer, with antibodies generated against AD tau core filaments detecting AD tau pathology. The AD tau core also drives aggregation of full-length wild-type tau, increases seeding potential, and templates abnormal forms of tau present in brain homogenates and antemortem cerebrospinal fluid (CSF) from patients with AD in an ultrasensitive real-time quaking-induced conversion (QuIC) assay. Finally, we show that the filament cores in corticobasal degeneration (CBD) and Pick's disease (PiD) similarly assemble into filaments under physiological conditions. These results document an approach to modeling tau aggregation and have significant implications for in vivo investigation of tau transmission and biomarker development.
Collapse
Affiliation(s)
- Yari Carlomagno
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | - Sireesha Manne
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | - Michael DeTure
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | - Mercedes Prudencio
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA; Neuroscience Graduate Program, Mayo Clinic Graduate School of Biomedical Sciences, Jacksonville, FL, USA
| | - Yong-Jie Zhang
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA; Neuroscience Graduate Program, Mayo Clinic Graduate School of Biomedical Sciences, Jacksonville, FL, USA
| | | | | | | | - Yuping Song
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | | | | | - Katharine A Nicholson
- Sean M. Healey and AMG Center for ALS, Massachusetts General Hospital (MGH), Boston, MA, USA
| | | | - Dennis W Dickson
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA; Neuroscience Graduate Program, Mayo Clinic Graduate School of Biomedical Sciences, Jacksonville, FL, USA
| | - Anthony W P Fitzpatrick
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA; Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA; Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, New York, NY, USA
| | - Leonard Petrucelli
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA; Neuroscience Graduate Program, Mayo Clinic Graduate School of Biomedical Sciences, Jacksonville, FL, USA.
| | - Casey N Cook
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA; Neuroscience Graduate Program, Mayo Clinic Graduate School of Biomedical Sciences, Jacksonville, FL, USA.
| |
Collapse
|
293
|
Gonzalez-Garcia M, Fusco G, De Simone A. Membrane Interactions and Toxicity by Misfolded Protein Oligomers. Front Cell Dev Biol 2021; 9:642623. [PMID: 33791300 PMCID: PMC8006268 DOI: 10.3389/fcell.2021.642623] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 02/08/2021] [Indexed: 01/13/2023] Open
Abstract
The conversion of otherwise soluble proteins into insoluble amyloid aggregates is associated with a range of neurodegenerative disorders, including Alzheimer’s and Parkinson’s diseases, as well as non-neuropathic conditions such as type II diabetes and systemic amyloidoses. It is increasingly evident that the most pernicious species among those forming during protein aggregation are small prefibrillar oligomers. In this review, we describe the recent progress in the characterization of the cellular and molecular interactions by toxic misfolded protein oligomers. A fundamental interaction by these aggregates involves biological membranes, resulting in two major model mechanisms at the onset of the cellular toxicity. These include the membrane disruption model, resulting in calcium imbalance, mitochondrial dysfunction and intracellular reactive oxygen species, and the direct interaction with membrane proteins, leading to the alteration of their native function. A key challenge remains in the characterization of transient interactions involving heterogeneous protein aggregates. Solving this task is crucial in the quest of identifying suitable therapeutic approaches to suppress the cellular toxicity in protein misfolding diseases.
Collapse
Affiliation(s)
- Mario Gonzalez-Garcia
- Department of Life Sciences, Imperial College London, South Kensington, United Kingdom
| | - Giuliana Fusco
- Department of Chemistry, Centre for Misfolding Diseases, University of Cambridge, Cambridge, United Kingdom
| | - Alfonso De Simone
- Department of Life Sciences, Imperial College London, South Kensington, United Kingdom.,Department of Pharmacy, University of Naples Federico II, Naples, Italy
| |
Collapse
|
294
|
Chang CW, Shao E, Mucke L. Tau: Enabler of diverse brain disorders and target of rapidly evolving therapeutic strategies. Science 2021; 371:371/6532/eabb8255. [PMID: 33632820 DOI: 10.1126/science.abb8255] [Citation(s) in RCA: 119] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Several lines of evidence implicate the protein tau in the pathogenesis of multiple brain disorders, including Alzheimer's disease, other neurodegenerative conditions, autism, and epilepsy. Tau is abundant in neurons and interacts with microtubules, but its main functions in the brain remain to be defined. These functions may involve the regulation of signaling pathways relevant to diverse biological processes. Informative disease models have revealed a plethora of abnormal tau species and mechanisms that might contribute to neuronal dysfunction and loss, but the relative importance of their respective contributions is uncertain. This knowledge gap poses major obstacles to the development of truly impactful therapeutic strategies. The current expansion and intensification of efforts to translate mechanistic insights into tau-related therapeutics should address this issue and could deliver better treatments for a host of devastating conditions.
Collapse
Affiliation(s)
- Che-Wei Chang
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA 94158, USA
| | - Eric Shao
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA 94158, USA
| | - Lennart Mucke
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA 94158, USA. .,Department of Neurology and Weill Institute for Neurosciences, University of California, San Francisco, CA 94158, USA
| |
Collapse
|
295
|
Ash PEA, Lei S, Shattuck J, Boudeau S, Carlomagno Y, Medalla M, Mashimo BL, Socorro G, Al-Mohanna LFA, Jiang L, Öztürk MM, Knobel M, Ivanov P, Petrucelli L, Wegmann S, Kanaan NM, Wolozin B. TIA1 potentiates tau phase separation and promotes generation of toxic oligomeric tau. Proc Natl Acad Sci U S A 2021; 118:e2014188118. [PMID: 33619090 PMCID: PMC7936275 DOI: 10.1073/pnas.2014188118] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Tau protein plays an important role in the biology of stress granules and in the stress response of neurons, but the nature of these biochemical interactions is not known. Here we show that the interaction of tau with RNA and the RNA binding protein TIA1 is sufficient to drive phase separation of tau at physiological concentrations, without the requirement for artificial crowding agents such as polyethylene glycol (PEG). We further show that phase separation of tau in the presence of RNA and TIA1 generates abundant tau oligomers. Prior studies indicate that recombinant tau readily forms oligomers and fibrils in vitro in the presence of polyanionic agents, including RNA, but the resulting tau aggregates are not particularly toxic. We discover that tau oligomers generated during copartitioning with TIA1 are significantly more toxic than tau aggregates generated by incubation with RNA alone or phase-separated tau complexes generated by incubation with artificial crowding agents. This pathway identifies a potentially important source for generation of toxic tau oligomers in tau-related neurodegenerative diseases. Our results also reveal a general principle that phase-separated RBP droplets provide a vehicle for coassortment of selected proteins. Tau selectively copartitions with TIA1 under physiological conditions, emphasizing the importance of TIA1 for tau biology. Other RBPs, such as G3BP1, are able to copartition with tau, but this happens only in the presence of crowding agents. This type of selective mixing might provide a basis through which membraneless organelles bring together functionally relevant proteins to promote particular biological activities.
Collapse
Affiliation(s)
- Peter E A Ash
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA 02118
| | - Shuwen Lei
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA 02118
| | - Jenifer Shattuck
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA 02118
| | - Samantha Boudeau
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA 02118
| | - Yari Carlomagno
- Department of Neuroscience, Mayo Clinic Florida, Jacksonville, FL 32224
| | - Maria Medalla
- Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, MA 02118
- Department of Neurology, Boston University School of Medicine, Boston, MA 02118
| | - Bryce L Mashimo
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA 02118
| | - Guillermo Socorro
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA 02118
| | - Louloua F A Al-Mohanna
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA 02118
| | - Lulu Jiang
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA 02118
| | - Muhammet M Öztürk
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA 02118
| | - Mark Knobel
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA 02118
| | - Pavel Ivanov
- Division of Rheumatology, Immunology, and Allergy, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115
| | | | - Susanne Wegmann
- German Center for Neurodegenerative Diseases, DZNE, Berlin, 10117, Germany
| | - Nicholas M Kanaan
- Department of Translational Neuroscience, Grand Rapids Research Center, Michigan State University, Grand Rapids, MI 49503
| | - Benjamin Wolozin
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA 02118;
- Department of Neurology, Boston University School of Medicine, Boston, MA 02118
- Center for Systems Neuroscience, Boston University School of Medicine, Boston, MA 02118
- Neurophotonics Center, Boston University School of Medicine, Boston, MA 02118
| |
Collapse
|
296
|
Ash PEA, Lei S, Shattuck J, Boudeau S, Carlomagno Y, Medalla M, Mashimo BL, Socorro G, Al-Mohanna LFA, Jiang L, Öztürk MM, Knobel M, Ivanov P, Petrucelli L, Wegmann S, Kanaan NM, Wolozin B. TIA1 potentiates tau phase separation and promotes generation of toxic oligomeric tau. Proc Natl Acad Sci U S A 2021; 118:2014188118. [PMID: 33619090 DOI: 10.1073/pnas.2014188118/suppl_file/pnas.2014188118.sapp.pdf] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/23/2023] Open
Abstract
Tau protein plays an important role in the biology of stress granules and in the stress response of neurons, but the nature of these biochemical interactions is not known. Here we show that the interaction of tau with RNA and the RNA binding protein TIA1 is sufficient to drive phase separation of tau at physiological concentrations, without the requirement for artificial crowding agents such as polyethylene glycol (PEG). We further show that phase separation of tau in the presence of RNA and TIA1 generates abundant tau oligomers. Prior studies indicate that recombinant tau readily forms oligomers and fibrils in vitro in the presence of polyanionic agents, including RNA, but the resulting tau aggregates are not particularly toxic. We discover that tau oligomers generated during copartitioning with TIA1 are significantly more toxic than tau aggregates generated by incubation with RNA alone or phase-separated tau complexes generated by incubation with artificial crowding agents. This pathway identifies a potentially important source for generation of toxic tau oligomers in tau-related neurodegenerative diseases. Our results also reveal a general principle that phase-separated RBP droplets provide a vehicle for coassortment of selected proteins. Tau selectively copartitions with TIA1 under physiological conditions, emphasizing the importance of TIA1 for tau biology. Other RBPs, such as G3BP1, are able to copartition with tau, but this happens only in the presence of crowding agents. This type of selective mixing might provide a basis through which membraneless organelles bring together functionally relevant proteins to promote particular biological activities.
Collapse
Affiliation(s)
- Peter E A Ash
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA 02118
| | - Shuwen Lei
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA 02118
| | - Jenifer Shattuck
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA 02118
| | - Samantha Boudeau
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA 02118
| | - Yari Carlomagno
- Department of Neuroscience, Mayo Clinic Florida, Jacksonville, FL 32224
| | - Maria Medalla
- Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, MA 02118
- Department of Neurology, Boston University School of Medicine, Boston, MA 02118
| | - Bryce L Mashimo
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA 02118
| | - Guillermo Socorro
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA 02118
| | - Louloua F A Al-Mohanna
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA 02118
| | - Lulu Jiang
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA 02118
| | - Muhammet M Öztürk
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA 02118
| | - Mark Knobel
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA 02118
| | - Pavel Ivanov
- Division of Rheumatology, Immunology, and Allergy, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115
| | | | - Susanne Wegmann
- German Center for Neurodegenerative Diseases, DZNE, Berlin, 10117, Germany
| | - Nicholas M Kanaan
- Department of Translational Neuroscience, Grand Rapids Research Center, Michigan State University, Grand Rapids, MI 49503
| | - Benjamin Wolozin
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA 02118;
- Department of Neurology, Boston University School of Medicine, Boston, MA 02118
- Center for Systems Neuroscience, Boston University School of Medicine, Boston, MA 02118
- Neurophotonics Center, Boston University School of Medicine, Boston, MA 02118
| |
Collapse
|
297
|
Daily JW, Kang S, Park S. Protection against Alzheimer's disease by luteolin: Role of brain glucose regulation, anti-inflammatory activity, and the gut microbiota-liver-brain axis. Biofactors 2021; 47:218-231. [PMID: 33347668 DOI: 10.1002/biof.1703] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 12/03/2020] [Indexed: 12/26/2022]
Abstract
Luteolin is a widely distributed flavone herbs and vegetables. It has anti-oxidant and anti-inflammatory activities and improves glucose metabolism by potentiating insulin sensitivity and improving β-cell function and mass. Alzheimer's disease (AD) is induced by the deposition of amyloid-beta (Aβ) in the hippocampus and the formation of neurotoxic Aβ plaques. The Aβ deposition is associated with increased formation of Aβ from amyloid precursor protein by up-regulation of β-secretase and β-site amyloid precursor protein-cleaving enzyme 1 (BACE1). Furthermore, Aβ accumulation is increased by brain insulin resistance. The impairment of insulin/IGF-1 signaling mainly in the hippocampus and brain insulin resistance is connected to signals originating in the liver and gut microbiota, known as the gut microbiota-liver-brain axis. This indicates that the changes in the production of short-chain fatty acids by the gut microbiota and pro-inflammatory cytokines can alter insulin resistance in the liver and brain. Luteolin is detected in the brain tissues after passing through the blood-brain barrier, where it can directly influence neuroinflammation and brain insulin resistance and modulate Aβ deposition. Luteolin (10-70 mg/kg bw for rodents) can modulate the systemic and brain insulin resistance, and it suppresses AD development directly, and it influences Aβ deposition by activation of the gut microbiota-liver-brain axis. In this review, we evaluate the potential of luteolin to mitigate two potential causes of AD, neuroinflammatory processes, and disruption of glucose metabolism in the brain. This review suggests that luteolin intake can enhance brain insulin resistance and neuroinflammation, directly and indirectly, to protect against the development of Alzheimer's-like disease, and the gut microbiota-liver-brain axis is mainly involved in the indirect pathway. However, most studies have been conducted in animal studies, and human clinical trials are needed.
Collapse
Affiliation(s)
- James W Daily
- Department of R&D, Daily Manufacturing Inc, Rockwell, North Carolina, USA
| | - Suna Kang
- Department of Food and Nutrition, Obesity/Diabetes Research Center, Hoseo University, Asan, South Korea
| | - Sunmin Park
- Department of Food and Nutrition, Obesity/Diabetes Research Center, Hoseo University, Asan, South Korea
| |
Collapse
|
298
|
Retromer dysfunction at the nexus of tauopathies. Cell Death Differ 2021; 28:884-899. [PMID: 33473181 PMCID: PMC7937680 DOI: 10.1038/s41418-020-00727-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 12/13/2020] [Accepted: 12/27/2020] [Indexed: 01/30/2023] Open
Abstract
Tauopathies define a broad range of neurodegenerative diseases that encompass pathological aggregation of the microtubule-associated protein tau. Although tau aggregation is a central feature of these diseases, their underlying pathobiology is remarkably heterogeneous at the molecular level. In this review, we summarize critical differences that account for this heterogeneity and contrast the physiological and pathological functions of tau. We focus on the recent understanding of its prion-like behavior that accounts for its spread in the brain. Moreover, we acknowledge the limited appreciation about how upstream cellular changes influence tauopathy. Dysfunction of the highly conserved endosomal trafficking complex retromer is found in numerous tauopathies such as Alzheimer's disease, Pick's disease, and progressive supranuclear palsy, and we discuss how this has emerged as a major contributor to various aspects of neurodegenerative diseases. In particular, we highlight recent investigations that have elucidated the contribution of retromer dysfunction to distinct measures of tauopathy such as tau hyperphosphorylation, aggregation, and impaired cognition and behavior. Finally, we discuss the potential benefit of targeting retromer for modifying disease burden and identify important considerations with such an approach moving toward clinical translation.
Collapse
|
299
|
Nguyen PH, Ramamoorthy A, Sahoo BR, Zheng J, Faller P, Straub JE, Dominguez L, Shea JE, Dokholyan NV, De Simone A, Ma B, Nussinov R, Najafi S, Ngo ST, Loquet A, Chiricotto M, Ganguly P, McCarty J, Li MS, Hall C, Wang Y, Miller Y, Melchionna S, Habenstein B, Timr S, Chen J, Hnath B, Strodel B, Kayed R, Lesné S, Wei G, Sterpone F, Doig AJ, Derreumaux P. Amyloid Oligomers: A Joint Experimental/Computational Perspective on Alzheimer's Disease, Parkinson's Disease, Type II Diabetes, and Amyotrophic Lateral Sclerosis. Chem Rev 2021; 121:2545-2647. [PMID: 33543942 PMCID: PMC8836097 DOI: 10.1021/acs.chemrev.0c01122] [Citation(s) in RCA: 431] [Impact Index Per Article: 107.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Protein misfolding and aggregation is observed in many amyloidogenic diseases affecting either the central nervous system or a variety of peripheral tissues. Structural and dynamic characterization of all species along the pathways from monomers to fibrils is challenging by experimental and computational means because they involve intrinsically disordered proteins in most diseases. Yet understanding how amyloid species become toxic is the challenge in developing a treatment for these diseases. Here we review what computer, in vitro, in vivo, and pharmacological experiments tell us about the accumulation and deposition of the oligomers of the (Aβ, tau), α-synuclein, IAPP, and superoxide dismutase 1 proteins, which have been the mainstream concept underlying Alzheimer's disease (AD), Parkinson's disease (PD), type II diabetes (T2D), and amyotrophic lateral sclerosis (ALS) research, respectively, for many years.
Collapse
Affiliation(s)
- Phuong H Nguyen
- CNRS, UPR9080, Université de Paris, Laboratory of Theoretical Biochemistry, IBPC, Fondation Edmond de Rothschild, PSL Research University, Paris 75005, France
| | - Ayyalusamy Ramamoorthy
- Biophysics and Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| | - Bikash R Sahoo
- Biophysics and Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| | - Jie Zheng
- Department of Chemical & Biomolecular Engineering, The University of Akron, Akron, Ohio 44325, United States
| | - Peter Faller
- Institut de Chimie, UMR 7177, CNRS-Université de Strasbourg, 4 rue Blaise Pascal, 67000 Strasbourg, France
| | - John E Straub
- Department of Chemistry, Boston University, 590 Commonwealth Avenue, Boston, Massachusetts 02215, United States
| | - Laura Dominguez
- Facultad de Química, Departamento de Fisicoquímica, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - Joan-Emma Shea
- Department of Chemistry and Biochemistry, and Department of Physics, University of California, Santa Barbara, California 93106, United States
| | - Nikolay V Dokholyan
- Department of Pharmacology and Biochemistry & Molecular Biology, Penn State University College of Medicine, Hershey, Pennsylvania 17033, United States
- Department of Chemistry, and Biomedical Engineering, Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Alfonso De Simone
- Department of Life Sciences, Imperial College London, London SW7 2AZ, U.K
- Molecular Biology, University of Naples Federico II, Naples 80138, Italy
| | - Buyong Ma
- Basic Science Program, Leidos Biomedical Research, Inc., Cancer and Inflammation Program, National Cancer Institute, Frederick, Maryland 21702, United States
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Ruth Nussinov
- Basic Science Program, Leidos Biomedical Research, Inc., Cancer and Inflammation Program, National Cancer Institute, Frederick, Maryland 21702, United States
- Sackler Institute of Molecular Medicine, Department of Human Genetics and Molecular Medicine Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Saeed Najafi
- Department of Chemistry and Biochemistry, and Department of Physics, University of California, Santa Barbara, California 93106, United States
| | - Son Tung Ngo
- Laboratory of Theoretical and Computational Biophysics & Faculty of Applied Sciences, Ton Duc Thang University, 33000 Ho Chi Minh City, Vietnam
| | - Antoine Loquet
- Institute of Chemistry & Biology of Membranes & Nanoobjects, (UMR5248 CBMN), CNRS, Université Bordeaux, Institut Européen de Chimie et Biologie, 33600 Pessac, France
| | - Mara Chiricotto
- Department of Chemical Engineering and Analytical Science, University of Manchester, Manchester M13 9PL, U.K
| | - Pritam Ganguly
- Department of Chemistry and Biochemistry, and Department of Physics, University of California, Santa Barbara, California 93106, United States
| | - James McCarty
- Chemistry Department, Western Washington University, Bellingham, Washington 98225, United States
| | - Mai Suan Li
- Institute for Computational Science and Technology, SBI Building, Quang Trung Software City, Tan Chanh Hiep Ward, District 12, Ho Chi Minh City 700000, Vietnam
- Institute of Physics, Polish Academy of Sciences, Al. Lotnikow 32/46, 02-668 Warsaw, Poland
| | - Carol Hall
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695-7905, United States
| | - Yiming Wang
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695-7905, United States
| | - Yifat Miller
- Department of Chemistry and The Ilse Katz Institute for Nanoscale Science & Technology, Ben-Gurion University of the Negev, Be'er Sheva 84105, Israel
| | | | - Birgit Habenstein
- Institute of Chemistry & Biology of Membranes & Nanoobjects, (UMR5248 CBMN), CNRS, Université Bordeaux, Institut Européen de Chimie et Biologie, 33600 Pessac, France
| | - Stepan Timr
- CNRS, UPR9080, Université de Paris, Laboratory of Theoretical Biochemistry, IBPC, Fondation Edmond de Rothschild, PSL Research University, Paris 75005, France
| | - Jiaxing Chen
- Department of Pharmacology and Biochemistry & Molecular Biology, Penn State University College of Medicine, Hershey, Pennsylvania 17033, United States
| | - Brianna Hnath
- Department of Pharmacology and Biochemistry & Molecular Biology, Penn State University College of Medicine, Hershey, Pennsylvania 17033, United States
| | - Birgit Strodel
- Institute of Complex Systems: Structural Biochemistry (ICS-6), Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Rakez Kayed
- Mitchell Center for Neurodegenerative Diseases, and Departments of Neurology, Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, Texas 77555, United States
| | - Sylvain Lesné
- Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Guanghong Wei
- Department of Physics, State Key Laboratory of Surface Physics, and Key Laboratory for Computational Physical Science, Multiscale Research Institute of Complex Systems, Fudan University, Shanghai 200438, China
| | - Fabio Sterpone
- CNRS, UPR9080, Université de Paris, Laboratory of Theoretical Biochemistry, IBPC, Fondation Edmond de Rothschild, PSL Research University, Paris 75005, France
| | - Andrew J Doig
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, U.K
| | - Philippe Derreumaux
- CNRS, UPR9080, Université de Paris, Laboratory of Theoretical Biochemistry, IBPC, Fondation Edmond de Rothschild, PSL Research University, Paris 75005, France
- Laboratory of Theoretical Chemistry, Ton Duc Thang University, 33000 Ho Chi Minh City, Vietnam
- Faculty of Pharmacy, Ton Duc Thang University, 33000 Ho Chi Minh City, Vietnam
| |
Collapse
|
300
|
Song L, Wells EA, Robinson AS. Critical Molecular and Cellular Contributors to Tau Pathology. Biomedicines 2021; 9:190. [PMID: 33672982 PMCID: PMC7918468 DOI: 10.3390/biomedicines9020190] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 02/07/2021] [Accepted: 02/11/2021] [Indexed: 12/11/2022] Open
Abstract
Tauopathies represent a group of neurodegenerative diseases including Alzheimer's disease (AD) that are characterized by the deposition of filamentous tau aggregates in the brain. The pathogenesis of tauopathies starts from the formation of toxic 'tau seeds' from hyperphosphorylated tau monomers. The presence of specific phosphorylation sites and heat shock protein 90 facilitates soluble tau protein aggregation. Transcellular propagation of pathogenic tau into synaptically connected neuronal cells or adjacent glial cells via receptor-mediated endocytosis facilitate disease spread through the brain. While neuroprotective effects of glial cells-including phagocytotic microglial and astroglial phenotypes-have been observed at the early stage of neurodegeneration, dysfunctional neuronal-glial cellular communication results in a series of further pathological consequences as the disease progresses, including abnormal axonal transport, synaptic degeneration, and neuronal loss, accompanied by a pro-inflammatory microenvironment. Additionally, the discovery of microtubule-associated protein tau (MAPT) gene mutations and the strongest genetic risk factor of tauopathies-an increase in the presence of the ε2 allele of apolipoprotein E (ApoE)-provide important clues to understanding tau pathology progression. In this review, we describe the crucial signaling pathways and diverse cellular contributors to the progression of tauopathies. A systematic understanding of disease pathogenesis provides novel insights into therapeutic targets within altered signaling pathways and is of great significance for discovering effective treatments for tauopathies.
Collapse
Affiliation(s)
| | | | - Anne Skaja Robinson
- Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA; (L.S.); (E.A.W.)
| |
Collapse
|