251
|
Maldonado-Avilés JG, Curley AA, Hashimoto T, Morrow AL, Ramsey AJ, O'Donnell P, Volk DW, Lewis DA. Altered markers of tonic inhibition in the dorsolateral prefrontal cortex of subjects with schizophrenia. Am J Psychiatry 2009; 166:450-9. [PMID: 19289452 PMCID: PMC2887737 DOI: 10.1176/appi.ajp.2008.08101484] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
OBJECTIVE Cognitive impairments in schizophrenia are associated with lower expression of markers of gamma-aminobutyric acid (GABA) synthesis in the prefrontal cortex. The effects of GABA are mediated by GABA(A) receptors that mediate either phasic or tonic inhibition. The authors assessed the expression of GABA(A) receptor alpha4 and delta subunits, which coassemble to form receptors mediating tonic inhibition, in schizophrenia. METHOD The authors used in situ hybridization to quantify expression patterns of GABA(A) receptor alpha4 and delta subunits in prefrontal cortex from 23 matched pairs of schizophrenia and comparison subjects. RESULTS Levels of delta mRNA were significantly lower in schizophrenia subjects regardless of medication use, whereas alpha4 mRNA levels were lower only in subjects with schizophrenia receiving certain medications at the time of death. To understand the nature of this unexpected dissociation between alpha4 and delta subunit expression in schizophrenia, the authors used similar methods to quantify alpha4 and delta mRNA levels in multiple animal models. During postnatal development of monkey prefrontal cortex, levels of alpha4 mRNA decreased, whereas delta mRNA levels increased. In addition, delta mRNA levels, but not alpha4 mRNA levels, were lower in the medial frontal cortex of mice with a genetic deletion of the GABA(A) receptor alpha1 subunit, and neither delta nor alpha4 mRNA levels were altered in rodent models of altered excitatory neurotransmission. CONCLUSIONS Since GABA(A) receptor alpha1 subunits also have lower mRNA levels in schizophrenia, show increased expression with age in monkey prefrontal cortex, and can coassemble with delta subunits to form functional GABA(A) receptors, lower delta mRNA levels in schizophrenia might reflect a reduced number of alpha(1)beta(x)delta GABA(A) receptors that could contribute to deficient tonic inhibition and prefrontal cortical dysfunction in schizophrenia.
Collapse
Affiliation(s)
- Jaime G Maldonado-Avilés
- Department of Psychiatry, University of Pittsburgh, 3811 O'Hara St., W1651 BST, Pittsburgh, PA 15213, USA
| | | | | | | | | | | | | | | |
Collapse
|
252
|
Dorph-Petersen KA, Caric D, Saghafi R, Zhang W, Sampson AR, Lewis DA. Volume and neuron number of the lateral geniculate nucleus in schizophrenia and mood disorders. Acta Neuropathol 2009; 117:369-84. [PMID: 18642008 DOI: 10.1007/s00401-008-0410-2] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2008] [Revised: 06/16/2008] [Accepted: 06/17/2008] [Indexed: 11/30/2022]
Abstract
Subjects with schizophrenia show deficits in visual perception that suggest changes predominantly in the magnocellular pathway and/or the dorsal visual stream important for visiospatial perception. We previously found a substantial 25% reduction in neuron number of the primary visual cortex (Brodmann's area 17, BA17) in postmortem tissue from subjects with schizophrenia. Also, many studies have found reduced volume and neuron number of the pulvinar--the large thalamic association nucleus involved in higher-order visual processing. Here, we investigate if the lateral geniculate nucleus (LGN), the visual relay nucleus of the thalamus, has structural changes in schizophrenia. We used stereological methods based on unbiased principles of sampling (Cavalieri's principle and the optical fractionator) to estimate the total volume and neuron number of the magno- and parovocellular parts of the left LGN in postmortem brains from nine subjects with schizophrenia, seven matched normal comparison subjects and 13 subjects with mood disorders. No significant schizophrenia-related structural differences in volume or neuron number of the left LGN or its major subregions were found, but we did observe a significantly increased total volume of the LGN, and of the parvocellular lamina and interlaminar regions, in the mood group. These findings do not support the hypothesis that subjects with schizophrenia have structural changes in the LGN. Therefore, our previous observation of a schizophrenia-related reduction of the primary visual cortex is probably not secondary to a reduction in the LGN.
Collapse
|
253
|
Progressive brain structural changes mapped as psychosis develops in 'at risk' individuals. Schizophr Res 2009; 108:85-92. [PMID: 19138834 PMCID: PMC2670732 DOI: 10.1016/j.schres.2008.11.026] [Citation(s) in RCA: 224] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2008] [Revised: 11/20/2008] [Accepted: 11/21/2008] [Indexed: 12/21/2022]
Abstract
BACKGROUND Schizophrenia and related psychoses are associated with brain structural abnormalities. Recent findings in 'at risk' populations have identified progressive changes in various brain regions preceding illness onset, while changes especially in prefrontal and superior temporal regions have been demonstrated in first-episode schizophrenia patients. However, the timing of the cortical changes and their regional extent, relative to the emergence of psychosis, has not been clarified. We followed individuals at high-risk for psychosis to determine whether structural changes in the cerebral cortex occur with the onset of psychosis. We hypothesized that progressive volume loss occurs in prefrontal regions during the transition to psychosis. METHODS 35 individuals at ultra-high risk (UHR) for developing psychosis, of whom 12 experienced psychotic onset by 1-year follow-up ('converters'), participated in a longitudinal structural MRI study. Baseline and follow-up T1-weighted MR images were acquired and longitudinal brain surface contractions were assessed using Cortical Pattern Matching. RESULTS Significantly greater brain contraction was found in the right prefrontal region in the 'converters' compared with UHR cases who did not develop psychosis ('non-converters'). CONCLUSIONS These findings show cortical volume loss is associated with the onset of psychosis, indicating ongoing pathological processes during the transition stage to illness. The prefrontal volume loss is in line with structural and functional abnormalities in schizophrenia, suggesting a critical role for this change in the development of psychosis.
Collapse
|
254
|
Kanaan R, Barker G, Brammer M, Giampietro V, Shergill S, Woolley J, Picchioni M, Toulopoulou T, McGuire P. White matter microstructure in schizophrenia: effects of disorder, duration and medication. Br J Psychiatry 2009; 194:236-42. [PMID: 19252154 PMCID: PMC2802507 DOI: 10.1192/bjp.bp.108.054320] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
BACKGROUND Diffusion tensor magnetic resonance imaging studies in schizophrenia to date have been largely inconsistent. This may reflect variation in methodology, and the use of small samples with differing illness duration and medication exposure. AIMS To determine the extent and location of white matter microstructural changes in schizophrenia, using optimised diffusion tensor imaging in a large patient sample, and to consider the effects of illness duration and medication exposure. METHOD Scans from 76 patients with schizophrenia and 76 matched controls were used to compare fractional anisotropy, a measure of white matter microstructural integrity, between the groups. RESULTS We found widespread clusters of reduced fractional anisotropy in patients, affecting most major white matter tracts. These reductions did not correlate with illness duration, and there was no difference between age-matched chronically and briefly medicated patients. CONCLUSIONS The finding of widespread fractional anisotropy reductions in our larger sample of patients with schizophrenia may explain some of the inconsistent findings of previous, smaller studies.
Collapse
Affiliation(s)
- Richard Kanaan
- Institute of Psychiatry, Department of Psychological Medicine, King's College London, PO 62, Denmark Hill, London SE5 9RJ, UK.
| | | | | | | | | | | | | | | | | |
Collapse
|
255
|
Wood SJ, Pantelis C, Yung AR, Velakoulis D, McGorry PD. Brain changes during the onset of schizophrenia: implications for neurodevelopmental theories. Med J Aust 2009; 190:S10-3. [DOI: 10.5694/j.1326-5377.2009.tb02367.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2008] [Accepted: 09/30/2008] [Indexed: 11/17/2022]
Affiliation(s)
- Stephen J Wood
- Melbourne Neuropsychiatry Centre, University of Melbourne and Melbourne Health, Melbourne, VIC
| | - Christos Pantelis
- Melbourne Neuropsychiatry Centre, University of Melbourne and Melbourne Health, Melbourne, VIC
| | - Alison R Yung
- ORYGEN Research Centre, University of Melbourne, Melbourne, VIC
| | - Dennis Velakoulis
- Melbourne Neuropsychiatry Centre, University of Melbourne and Melbourne Health, Melbourne, VIC
| | - Patrick D McGorry
- ORYGEN Research Centre, University of Melbourne, Melbourne, VIC
- University of Melbourne, Melbourne, VIC
- ORYGEN Youth Health, Melbourne, VIC
| |
Collapse
|
256
|
Translational Medicine—A Paradigm Shift in Modern Drug Discovery and Development: The Role of Biomarkers. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2009; 655:1-12. [DOI: 10.1007/978-1-4419-1132-2_1] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2023]
|
257
|
Crespo-Facorro B, Roiz-Santiáñez R, Pérez-Iglesias R, Pelayo-Terán JM, Rodríguez-Sánchez JM, Tordesillas-Gutiérrez D, Ramírez M, Martínez O, Gutiérrez A, de Lucas EM, Vázquez-Barquero JL. Effect of antipsychotic drugs on brain morphometry. A randomized controlled one-year follow-up study of haloperidol, risperidone and olanzapine. Prog Neuropsychopharmacol Biol Psychiatry 2008; 32:1936-43. [PMID: 18930104 DOI: 10.1016/j.pnpbp.2008.09.020] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2008] [Revised: 09/10/2008] [Accepted: 09/16/2008] [Indexed: 10/21/2022]
Abstract
BACKGROUND The effect of antipsychotic drugs on brain morphology is under debate. Here we investigate the effects of risperidone, olanzapine and low doses of haloperidol on cortical and subcortical morphometry in first episode drug naïve patients with non-affective psychosis. METHODS Morphological variables were measured in three treatment groups (haloperidol=18; risperidone=16; olanzapine=18) and in healthy subjects (N=38) at baseline and after one year. The relationship between brain morphometric changes and changes in clinical scores was also assessed. RESULTS At one year, the three antipsychotics had had an equal effect on the gray matter cortical structure, overall and lobes (all p's>0.121.). A significant time-by-group interaction was found in lateral ventricle volume (F2,47=5.65; p=0.006). Post-hoc comparisons revealed a significant increase in lateral ventricles in patients treated with risperidone (p=0.009). Patients exposed to atypicals (olanzapine and risperidone) exhibited a decrease in caudate nucleus volume (p=0.001). In general, brain changes did not account in any significant manner for clinical changes over time in any treatment group. CONCLUSIONS We conclude that low doses of haloperidol, risperidone and olanzapine seem to have an equal effect on the gray matter cortical structure after 1 year of treatment. In contrast to typical antipsychotics, atypicals have differential effects on lateral ventricle and caudate nucleus volumes.
Collapse
Affiliation(s)
- Benedicto Crespo-Facorro
- University Hospital Marqués de Valdecilla, Department of Psychiatry, School of Medicine, University of Cantabria, Santander, Spain.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
258
|
McLaren DG, Kosmatka KJ, Oakes TR, Kroenke CD, Kohama SG, Matochik JA, Ingram DK, Johnson SC. A population-average MRI-based atlas collection of the rhesus macaque. Neuroimage 2008; 45:52-9. [PMID: 19059346 DOI: 10.1016/j.neuroimage.2008.10.058] [Citation(s) in RCA: 187] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2008] [Accepted: 10/31/2008] [Indexed: 10/21/2022] Open
Abstract
Magnetic resonance imaging (MRI) studies of non-human primates are becoming increasingly common; however, the well-developed voxel-based methodologies used in human studies are not readily applied to non-human primates. In the present study, we create a population-average MRI-based atlas collection for the rhesus macaque (Macaca mulatta) that can be used with common brain mapping packages such as SPM or FSL. In addition to creating a publicly available T1-weighted atlas (http://www.brainmap.wisc.edu/monkey.html), probabilistic tissue classification maps and T2-weighted atlases were also created. Theses atlases are aligned to the MRI volume from the Saleem, K.S. and Logothetis, N.K. (2006) atlas providing an explicit link to histological sections. Additionally, we have created a transform to integrate these atlases with the F99 surface-based atlas in CARET. It is anticipated that these tools will help facilitate voxel-based imaging methodologies in non-human primate species, which in turn may increase our understanding of brain function, development, and evolution.
Collapse
Affiliation(s)
- Donald G McLaren
- Geriatric Research Education and Clinical Center, Wm. S. Middleton Memorial Veterans Hospital, Madison, WI 53705, USA
| | | | | | | | | | | | | | | |
Collapse
|
259
|
Paz RD, Tardito S, Atzori M, Tseng KY. Glutamatergic dysfunction in schizophrenia: from basic neuroscience to clinical psychopharmacology. Eur Neuropsychopharmacol 2008; 18:773-86. [PMID: 18650071 PMCID: PMC2831778 DOI: 10.1016/j.euroneuro.2008.06.005] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2008] [Revised: 05/27/2008] [Accepted: 06/17/2008] [Indexed: 01/02/2023]
Abstract
The underlying cellular mechanisms leading to frontal cortical hypofunction (i.e., hypofrontality) in schizophrenia remain unclear. Both hypoactive and hyperreactive prefrontal cortical (PFC) states have been reported in schizophrenia patients. Recent proton magnetic resonance spectroscopy studies revealed that antipsychotic-naïve patients with first psychotic episode exhibit a hyperactive PFC. Conversely, PFC activity seems to be diminished in patients chronically exposed to conventional antipsychotic treatments, an effect that could reflect the therapeutic action as well as some of the impairing side effects induced by long-term blockade of dopamine transmission. In this review, we will provide an evolving picture of the pathophysiology of schizophrenia moving from dopamine to a more glutamatergic-centered hypothesis. We will discuss how alternative antipsychotic strategies may emerge by using drugs that reduce excessive glutamatergic response without altering the balance of synaptic and extrasynaptic normal glutamatergic neurotransmission. Preclinical studies indicate that acamprosate, a FDA approved drug for relapse prevention in detoxified alcoholic patients, reduces the glutamatergic hyperactivity triggered by ethanol withdrawal without depressing normal glutamatergic transmission. Whether this effect is mediated by a direct modulation of NMDA receptors or by antagonism of metabotropic glutamate receptor remains to be determined. We hypothesize that drugs with similar pharmacological actions to acamprosate may provide a better and safer approach to reverse psychotic symptoms and cognitive deficits without altering the balance of excitation and inhibition of the corticolimbic dopamine-PFC system. It is predicted that schizophrenia patients treated with acamprosate-like compounds will not exhibit progressive cortical atrophy associated with the anti-dopaminergic effect of classical antipsychotic exposure.
Collapse
Affiliation(s)
- Rodrigo D. Paz
- Departamento de Psiquiatría y Neurociencias, Universidad Diego Portales, Santiago, Chile
- Instituto Psiquiátrico José Horwitz Barak, Santiago, Chile
| | - Sonia Tardito
- Instituto Psiquiátrico José Horwitz Barak, Santiago, Chile
| | - Marco Atzori
- University of Texas at Dallas, School for Behavioral and Brain Sciences, Richardson, Texas, USA
| | - Kuei Y. Tseng
- Department of Cellular & Molecular Pharmacology, RFUMS/The Chicago Medical School, North Chicago, Illinois, USA
| |
Collapse
|
260
|
Thompson PM, Bartzokis G, Hayashi KM, Klunder AD, Lu PH, Edwards N, Hong MS, Yu M, Geaga JA, Toga AW, Charles C, Perkins DO, McEvoy J, Hamer RM, Tohen M, Tollefson GD, Lieberman JA. Time-lapse mapping of cortical changes in schizophrenia with different treatments. Cereb Cortex 2008; 19:1107-23. [PMID: 18842668 DOI: 10.1093/cercor/bhn152] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Using time-lapse maps, we visualized the dynamics of schizophrenia progression, revealing spreading cortical changes that depend on the type of antipsychotic treatment. Dynamic, 4-dimensional models of disease progression were created from 4 repeated high-resolution brain magnetic resonance imaging scans of 36 first-episode schizophrenia patients (30 men/6 women; mean age: 24.2 +/- 5.1 SD years) randomized to haloperidol (HAL) (n = 15) or olanzapine (OLZ) treatment (n = 21), imaged at baseline, 3, 6, and 12 months (144 scans). Based on surface-based cortical models and point-by-point measures of gray matter volume, we generated time-lapse maps for each treatment. Disease trajectories differed for atypical versus typical neuroleptic drugs. A rapidly advancing parietal-to-frontal deficit trajectory, in HAL-treated patients, mirrored normal cortical maturation but greatly intensified. The disease trajectory advanced even after symptom normalization, involving the frontal cortex within 12 months with typical drug treatment. Areas with fastest tissue loss shifted anteriorly in the first year of psychosis. This trajectory was not seen with OLZ. Whether this association reflects either reduced neurotoxicity or neuroprotection cannot be addressed with neuroimaging; changes may relate to glial rather than neural components. These maps revise current models of schizophrenia progression; due to power limitations, the findings require confirmation in a sample large enough to model group x time interactions.
Collapse
Affiliation(s)
- Paul M Thompson
- Laboratory of Neuro Imaging, Department of Neurology, University of California-Los Anges, School of Medicine, Los Angeles, CA 90095-7332, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
261
|
Eggan SM, Hashimoto T, Lewis DA. Reduced cortical cannabinoid 1 receptor messenger RNA and protein expression in schizophrenia. ACTA ACUST UNITED AC 2008; 65:772-84. [PMID: 18606950 DOI: 10.1001/archpsyc.65.7.772] [Citation(s) in RCA: 174] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
CONTEXT Cannabis use is associated with both impaired cognitive functions, including working memory, and an increased risk of schizophrenia. Schizophrenia is characterized by impairments in working memory that are associated with reduced gamma-aminobutyric acid (GABA) neurotransmission in the dorsolateral prefrontal cortex. The cannabinoid 1 receptor (CB1R) is highly expressed in the dorsolateral prefrontal cortex, is contained in the axon terminals of a subpopulation of perisomatic-targeting GABA neurons, and, when activated, suppresses the release of GABA. OBJECTIVE To determine the potential relationship between CB1R signaling and altered GABA neurotransmission in schizophrenia by evaluating CB1R messenger RNA (mRNA) and protein expression in the dorsolateral prefrontal cortex. DESIGN In situ hybridization and immunocytochemistry techniques were used to examine the cortical levels of CB1R mRNA and protein, respectively. SETTING Brain specimens were obtained from autopsies conducted at the Allegheny County Medical Examiner's Office, Pittsburgh, Pennsylvania. PARTICIPANTS Postmortem brain specimens from 23 pairs of subjects with schizophrenia and age-, sex-, and postmortem interval-matched comparison subjects, as well as brain specimens from 18 macaque monkeys with long-term exposure to haloperidol, olanzapine, or placebo. MAIN OUTCOME MEASURES Optical density measures of CB1R mRNA expression and protein levels and correlations with previously reported glutamic acid decarboxylase 67 and cholecystokinin mRNA measures. RESULTS Levels of CB1R mRNA were significantly lower by 14.8% in the subjects with schizophrenia. Similarly, CB1R protein levels, assessed by radioimmunocytochemistry and standard immunocytochemistry, were significantly decreased by 11.6% and 13.9%, respectively. Group differences in CB1R mRNA levels were significantly correlated with those in glutamic acid decarboxylase 67 and cholecystokinin mRNA levels. Expression of CB1R mRNA was not changed in antipsychotic-exposed monkeys, and neither CB1R mRNA levels nor protein levels were affected by potential confounding factors in the subjects with schizophrenia. CONCLUSIONS This combination of findings suggests the testable hypothesis that reduced CB1R mRNA and protein levels in schizophrenia represent a compensatory mechanism to increase GABA transmission from perisomatic-targeting cholecystokinin interneurons with impaired GABA synthesis.
Collapse
Affiliation(s)
- Stephen M Eggan
- Department of Psychiatry, University of Pittsburgh, 3811 O'Hara St, W1651 BST, Pittsburgh, PA 15213, USA
| | | | | |
Collapse
|
262
|
Walterfang M, Wood AG, Reutens DC, Wood SJ, Chen J, Velakoulis D, McGorry PD, Pantelis C. Morphology of the corpus callosum at different stages of schizophrenia: cross-sectional study in first-episode and chronic illness. Br J Psychiatry 2008; 192:429-34. [PMID: 18515892 DOI: 10.1192/bjp.bp.107.041251] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
BACKGROUND The shape of the corpus callosum may differ in schizophrenia, although no study has compared first-episode with established illness. AIMS To investigate the size and shape of the corpus callosum in a large sample of people with first-episode and established schizophrenia. METHOD Callosal size and shape were determined using high-resolution magnetic resonance imaging on 76 patients with first-episode schizophrenia-spectrum disorders, 86 patients with established schizophrenia and 55 healthy participants. RESULTS There were no significant differences in total area across groups. Reductions in callosal width were seen in the region of the anterior genu in first-episode disorder (P<0.005). Similar reductions were seen in the chronic schizophrenia group in the anterior genu, but also in the posterior genu and isthmus (P=0.0005). CONCLUSIONS Reductions in anterior callosal regions connecting frontal cortex are present at the onset of schizophrenia, and in established illness are accompanied by changes in other regions of the callosum connecting cingulate, temporal and parietal cortices.
Collapse
Affiliation(s)
- Mark Walterfang
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, University of Melbourne; North Western Mental Health Program, Sunshine Hospital, Royal Melbourne Hospital, Melbourne [corrected]
| | | | | | | | | | | | | | | |
Collapse
|
263
|
Konopaske GT, Dorph-Petersen KA, Sweet RA, Pierri JN, Zhang W, Sampson AR, Lewis DA. Effect of chronic antipsychotic exposure on astrocyte and oligodendrocyte numbers in macaque monkeys. Biol Psychiatry 2008; 63:759-65. [PMID: 17945195 PMCID: PMC2386415 DOI: 10.1016/j.biopsych.2007.08.018] [Citation(s) in RCA: 193] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2007] [Revised: 08/03/2007] [Accepted: 08/28/2007] [Indexed: 11/30/2022]
Abstract
BACKGROUND Both in vivo and postmortem studies suggest that oligodendrocyte and myelination alterations are present in individuals with schizophrenia. However, it is unclear whether prolonged treatment with antipsychotic medications contributes to these disturbances. We recently reported that chronic exposure of macaque monkeys to haloperidol or olanzapine was associated with a 10%-18% lower glial cell number in the parietal grey matter. Consequently, in this study we sought to determine whether the lower glial cell number was due to fewer oligodendrocytes as opposed to lower numbers of astrocytes. METHODS With fluorescent immunocytochemical techniques, we optimized the visualization of each cell type throughout the entire thickness of tissue sections, while minimizing final tissue shrinkage. As a result, we were able to obtain robust stereological estimates of total oligodendrocyte and astrocyte numbers in the parietal grey matter with the optical fractionator method. RESULTS We found a significant 20.5% lower astrocyte number with a non-significant 12.9% lower oligodendrocyte number in the antipsychotic-exposed monkeys. Similar effects were seen in both the haloperidol and olanzapine groups. CONCLUSIONS These findings suggest that studies investigating glial cell alterations in schizophrenia must take into account the effect of antipsychotic treatment.
Collapse
Affiliation(s)
- Glenn T. Konopaske
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA,McLean Hospital, Belmont, MA, USA,Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Karl-Anton Dorph-Petersen
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA,Center for Psychiatric Research, Aarhus University Hospital, Risskov, Denmark
| | - Robert A. Sweet
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Joseph N. Pierri
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Wei Zhang
- Department of Statistics, University of Pittsburgh, Pittsburgh, PA, USA
| | - Allan R. Sampson
- Department of Statistics, University of Pittsburgh, Pittsburgh, PA, USA
| | - David A. Lewis
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA,Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA, USA,Corresponding Author: David A. Lewis, M.D. W1650 BST Department of Psychiatry University of Pittsburgh 3811 O'Hara Street Pittsburgh, PA 15213 +1 412−624−3934
| |
Collapse
|
264
|
DeLisi LE. The concept of progressive brain change in schizophrenia: implications for understanding schizophrenia. Schizophr Bull 2008; 34:312-21. [PMID: 18263882 PMCID: PMC2632405 DOI: 10.1093/schbul/sbm164] [Citation(s) in RCA: 145] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Kraepelin originally defined dementia praecox as a progressive brain disease, although this concept has received various degrees of acceptance and rejection over the years since his famous published textbooks appeared. This article places an historical perspective on the current renewal of Kraepelin's concept in brain imaging literature that supports progressive brain change in schizophrenia from its earliest stages through its chronic course. It is concluded that a great deal of future research is needed focusing on the longitudinal course of change, the extent to the regions of change within each individual and the underlying mechanism and implications of brain change through functional and neurochemical imaging, combined with structural studies in the same individuals.
Collapse
Affiliation(s)
- Lynn E DeLisi
- New York University School of Medicine, 650 First Avenue, New York, NY 1006, USA.
| |
Collapse
|
265
|
Hashimoto T, Arion D, Unger T, Maldonado-Avilés JG, Morris HM, Volk DW, Mirnics K, Lewis DA. Alterations in GABA-related transcriptome in the dorsolateral prefrontal cortex of subjects with schizophrenia. Mol Psychiatry 2008; 13:147-61. [PMID: 17471287 PMCID: PMC2882638 DOI: 10.1038/sj.mp.4002011] [Citation(s) in RCA: 395] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2006] [Revised: 03/07/2007] [Accepted: 03/19/2007] [Indexed: 12/23/2022]
Abstract
In subjects with schizophrenia, impairments in working memory are associated with dysfunction of the dorsolateral prefrontal cortex (DLPFC). This dysfunction appears to be due, at least in part, to abnormalities in gamma-aminobutyric acid (GABA)-mediated inhibitory circuitry. To test the hypothesis that altered GABA-mediated circuitry in the DLPFC of subjects with schizophrenia reflects expression changes of genes that encode selective presynaptic and postsynaptic components of GABA neurotransmission, we conducted a systematic expression analysis of GABA-related transcripts in the DLPFC of 14 pairs of schizophrenia and age-, sex- and post-mortem interval-matched control subjects using a customized DNA microarray with enhanced sensitivity and specificity. Subjects with schizophrenia exhibited expression deficits in GABA-related transcripts encoding (1) presynaptic regulators of GABA neurotransmission (67 kDa isoform of glutamic acid decarboxylase (GAD(67)) and GABA transporter 1), (2) neuropeptides (somatostatin (SST), neuropeptide Y (NPY) and cholecystokinin (CCK)) and (3) GABA(A) receptor subunits (alpha1, alpha4, beta3, gamma2 and delta). Real-time qPCR and/or in situ hybridization confirmed the deficits for six representative transcripts tested in the same pairs and in an extended cohort, respectively. In contrast, GAD(67), SST and alpha1 subunit mRNA levels, as assessed by in situ hybridization, were not altered in the DLPFC of monkeys chronically exposed to antipsychotic medications. These findings suggest that schizophrenia is associated with alterations in inhibitory inputs from SST/NPY-containing and CCK-containing subpopulations of GABA neurons and in the signaling via certain GABA(A) receptors that mediate synaptic (phasic) or extrasynaptic (tonic) inhibition. In concert with previous findings, these data suggest that working memory dysfunction in schizophrenia is mediated by altered GABA neurotransmission in certain DLPFC microcircuits.
Collapse
Affiliation(s)
- T Hashimoto
- Department of Psychiatry, Western Psychiatric Institute and Clinic, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | | | | | | | | | | | | | | |
Collapse
|
266
|
Nesvåg R, Lawyer G, Varnäs K, Fjell AM, Walhovd KB, Frigessi A, Jönsson EG, Agartz I. Regional thinning of the cerebral cortex in schizophrenia: effects of diagnosis, age and antipsychotic medication. Schizophr Res 2008; 98:16-28. [PMID: 17933495 DOI: 10.1016/j.schres.2007.09.015] [Citation(s) in RCA: 161] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2007] [Revised: 09/03/2007] [Accepted: 09/12/2007] [Indexed: 11/18/2022]
Abstract
Morphological abnormalities of the cerebral cortex have been reported in a number of MRI-studies in schizophrenia. Uncertainty remains regarding cause, mechanism and progression of the alterations. It has been suggested that antipsychotic medication reduces total gray matter volumes, but results are inconsistent. In the present study differences in regional cortical thickness between 96 patients with a DSM-IV diagnosis of schizophrenia (n=81) or schizoaffective disorder (n=15) and 107 healthy subjects (mean age 42 years, range 17-57 years) were investigated using MRI and computer image analysis. Cortical thickness was estimated as the shortest distance between the gray/white matter border and the pial surface at numerous points across the entire cortical mantle. The influence of age and antipsychotic medication on variation in global and regional cortical thickness was explored. Thinner cortex among patients than controls was found in prefrontal and temporal regions of both hemispheres, while parietal and occipital regions were relatively spared. Some hemispheric specificity was noted, as regions of the prefrontal cortex were more affected in the right hemisphere, and regions of the temporal cortex in the left hemisphere. No significant interaction effect of age and diagnostic group on variation in cortical thickness was demonstrated. Among patients, dose or type of antipsychotic medication did not affect variation in cortical thickness. The results from this hitherto largest study on the topic show that prefrontal and temporal cortical thinning in patients with schizophrenia compared to controls is as pronounced in older as in younger subjects. The lack of significant influence from antipsychotic medication supports that regional cortical thinning is an inherent feature of the neurobiological disease process in schizophrenia.
Collapse
Affiliation(s)
- Ragnar Nesvåg
- Department of Psychiatric Research, Diakonhjemmet Hospital, and Institute of Psychiatry, University of Oslo, Norway.
| | | | | | | | | | | | | | | |
Collapse
|
267
|
Ho BC, Andreasen NC, Dawson JD, Wassink TH. Association between brain-derived neurotrophic factor Val66Met gene polymorphism and progressive brain volume changes in schizophrenia. Am J Psychiatry 2007; 164:1890-9. [PMID: 18056245 PMCID: PMC3062255 DOI: 10.1176/appi.ajp.2007.05111903] [Citation(s) in RCA: 130] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
OBJECTIVE Factors underlying progressive brain volume changes in schizophrenia remain poorly understood. The authors investigated whether a gene polymorphism influencing neuroplasticity may contribute to longitudinal brain volume alterations. METHOD High-resolution magnetic resonance (MR) images of the whole brain were obtained for 119 patients with recent-onset schizophrenia spectrum disorders. Changes in brain volumes over an average of 3 years were compared between brain-derived neurotrophic factor (BDNF) val66met genotype groupings. Exploratory analyses were conducted to examine relationships between antipsychotic treatment and brain volume changes as well as the effects of BDNF genotype on changes in cognition and symptoms. RESULTS Significant genotype effects were observed on within-subject changes in volumes of frontal lobe gray matter, lateral ventricles, and sulcal CSF. Met allele carriers had significantly greater reductions in frontal gray matter volume, with reciprocal volume increases in the lateral ventricles and sulcal (especially frontal and temporal) CSF than Val homozygous patients. Independent of BDNF genotype, more antipsychotic exposure between MRI scans correlated with greater volume reductions in frontal gray matter, particularly among patients who were initially treatment naive. There were no statistically significant genotype effects on within-subject changes in cognition or symptoms. CONCLUSIONS BDNF(Met) variant may be one of several factors affecting progressive brain volume changes in schizophrenia.
Collapse
Affiliation(s)
- Beng-Choon Ho
- Department of Psychiatry, University of Iowa College of Medicine, 200 Hawkins Drive, Iowa City, IA 52242, USA.
| | - Nancy C. Andreasen
- Department of Psychiatry, University of Iowa College of Medicine Iowa City, Iowa, USA
| | - Jeffrey D. Dawson
- Department of Biostatistics, University of Iowa College of Public Health Iowa City, Iowa, USA
| | - Thomas H. Wassink
- Department of Psychiatry, University of Iowa College of Medicine Iowa City, Iowa, USA
| |
Collapse
|
268
|
Nakamura M, Salisbury DF, Hirayasu Y, Bouix S, Pohl KM, Yoshida T, Koo MS, Shenton ME, McCarley RW. Neocortical gray matter volume in first-episode schizophrenia and first-episode affective psychosis: a cross-sectional and longitudinal MRI study. Biol Psychiatry 2007; 62:773-83. [PMID: 17586477 PMCID: PMC2782514 DOI: 10.1016/j.biopsych.2007.03.030] [Citation(s) in RCA: 128] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2006] [Revised: 02/21/2007] [Accepted: 03/19/2007] [Indexed: 11/21/2022]
Abstract
BACKGROUND Overall neocortical gray matter (NCGM) volume has not been studied in first-episode schizophrenia (FESZ) at first hospitalization or longitudinally to evaluate progression, nor has it been compared with first-episode affective psychosis (FEAFF). METHODS Expectation-maximization/atlas-based magnetic resonance imaging (MRI) tissue segmentation into gray matter, white matter (WM), or cerebrospinal fluid (CSF) at first hospitalization of 29 FESZ and 34 FEAFF, plus 36 matched healthy control subjects (HC), and, longitudinally approximately 1.5 years later, of 17 FESZ, 21 FEAFF, and 26 HC was done. Manual editing separated NCGM and its lobar parcellation, cerebral WM (CWM), lateral ventricles (LV), and sulcal CSF (SCSF). RESULTS At first hospitalization, FESZ and FEAFF showed smaller NCGM volumes and larger SCSF and LV than HC. Longitudinally, FESZ showed NCGM volume reduction (-1.7%), localized to frontal (-2.4%) and temporal (-2.6%) regions, and enlargement of SCSF (7.2%) and LV (10.4%). Poorer outcome was associated with these LV and NCGM changes. FEAFF showed longitudinal NCGM volume increases (3.6%) associated with lithium or valproate administration but without clinical correlations and regional localization. CONCLUSIONS Longitudinal NCGM volume reduction and CSF component enlargement in FESZ are compatible with post-onset progression. Longitudinal NCGM volume increase in FEAFF may reflect neurotrophic effects of mood stabilizers.
Collapse
Affiliation(s)
- Motoaki Nakamura
- Clinical Neuroscience Division, Laboratory of Neuroscience, Veterans Affairs Boston Healthcare System, Brockton Division, Boston, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
269
|
Buckley PF, Mahadik S, Pillai A, Terry A. Neurotrophins and schizophrenia. Schizophr Res 2007; 94:1-11. [PMID: 17524622 DOI: 10.1016/j.schres.2007.01.025] [Citation(s) in RCA: 119] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2006] [Revised: 01/12/2007] [Accepted: 01/19/2007] [Indexed: 12/30/2022]
Abstract
Neurotrophins have established roles in neuronal development, synaptogenesis, and response to stress/anxious stimuli. Moreover, these agents are neuromodulators of monoaminergic, GABAergic, and cholinergic systems. Amidst a growing appreciation of the developmental neurobiology of schizophrenia--as well as the propensity for progressive brain changes--there is emergent information on abnormalities in the expression of neurotrophins in schizophrenia. This article reviews the literature on neurotrophins and schizophrenia. A schema for understanding the neurobiology of relapse in schizophrenia is offered.
Collapse
Affiliation(s)
- Peter F Buckley
- Department of Psychiatry and Health Behavior, Medical College of Georgia, 1515 Pope Avenue, Augusta, Georgia 30912, United States.
| | | | | | | |
Collapse
|
270
|
Konopaske GT, Dorph-Petersen KA, Pierri JN, Wu Q, Sampson AR, Lewis DA. Effect of chronic exposure to antipsychotic medication on cell numbers in the parietal cortex of macaque monkeys. Neuropsychopharmacology 2007; 32:1216-23. [PMID: 17063154 DOI: 10.1038/sj.npp.1301233] [Citation(s) in RCA: 129] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Both in vivo and post-mortem investigations have demonstrated smaller volumes of the whole brain and of certain brain regions in individuals with schizophrenia. It is unclear to what degree such smaller volumes are due to the illness or to the effects of antipsychotic medication treatment. Indeed, we recently reported that chronic exposure of macaque monkeys to haloperidol or olanzapine, at doses producing plasma levels in the therapeutic range in schizophrenia subjects, was associated with significantly smaller total brain weight and volume, including an 11.8-15.2% smaller gray matter volume in the left parietal lobe. Consequently, in this study we sought to determine whether these smaller volumes were associated with lower numbers of the gray matter's constituent cellular elements. The use of point counting and Cavalieri's principle on Nissl-stained sections confirmed a 14.6% smaller gray matter volume in the left parietal lobe from antipsychotic-exposed monkeys. Use of the optical fractionator method to estimate the number of each cell type in the gray matter revealed a significant 14.2% lower glial cell number with a concomitant 10.2% higher neuron density. The numbers of neurons and endothelial cells did not differ between groups. Together, the findings of smaller gray matter volume, lower glial cell number, and higher neuron density without a difference in total neuron number in antipsychotic-exposed monkeys parallel the results of post-mortem schizophrenia studies, and raise the possibility that such observations in schizophrenia subjects might be due, at least in part, to antipsychotic medication effects.
Collapse
Affiliation(s)
- Glenn T Konopaske
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | | | | | | | | | | |
Collapse
|
271
|
Goldstein JM, Seidman LJ, Makris N, Ahern T, O'Brien LM, Caviness VS, Kennedy DN, Faraone SV, Tsuang MT. Hypothalamic abnormalities in schizophrenia: sex effects and genetic vulnerability. Biol Psychiatry 2007; 61:935-45. [PMID: 17046727 DOI: 10.1016/j.biopsych.2006.06.027] [Citation(s) in RCA: 384] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2005] [Revised: 04/11/2006] [Accepted: 06/08/2006] [Indexed: 12/21/2022]
Abstract
BACKGROUND This is a unique hypothalamic magnetic resonance imaging (MRI) study in schizophrenia, an important region in the limbic system. We hypothesized abnormal volumetric increases, with greater severity in multiplex families (more than one ill member) compared with simplex families (one ill). We tested the hypothesis that normal hypothalamic sexual dimorphism is disrupted in schizophrenia. METHODS Eighty-eight DSM-III-R schizophrenia cases (40 simplex and 48 multiplex), 43 first-degree nonpsychotic relatives, and 48 normal comparisons systematically were compared. A 1.5-Tesla General Electric scanner was used to acquire structural MRI scans, and contiguous 3.1-mm slices were used to segment anterior and posterior hypothalamus. General linear model for correlated data and generalized estimating equations were used to compare cases, relatives, and controls on right and left hypothalamus, controlled for age, sex, and total cerebral volume. Spearman's correlations of hypothalamic volumes with anxiety were calculated to begin to examine arousal correlates with structural abnormalities. RESULTS Findings demonstrated significantly increased hypothalamic volume in cases and nonpsychotic relatives, particularly in regions of paraventricular and mammillary body nuclei, respectively. This increase was linear from simplex to multiplex cases, was positively correlated with anxiety, and had a greater propensity in women. CONCLUSIONS Findings suggest important implications for understanding genetic vulnerability of schizophrenia and the high rate of endocrine abnormalities.
Collapse
Affiliation(s)
- Jill M Goldstein
- Department of Psychiatry, Harvard Medical School, Boston, Massachusetts, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
272
|
Dong H, Martin MV, Colvin J, Ali Z, Wang L, Lu L, Williams RW, Rosen GD, Csernansky JG, Cheverud JM. Quantitative trait loci linked to thalamus and cortex gray matter volumes in BXD recombinant inbred mice. Heredity (Edinb) 2007; 99:62-9. [PMID: 17406662 PMCID: PMC4465230 DOI: 10.1038/sj.hdy.6800965] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
To investigate whether there are separate or shared genetic influences on the development of the thalamus and cerebral cortex, we identified quantitative trait loci (QTLs) for relevant structural volumes in BXD recombinant inbred (RI) strains of mice. In 34 BXD RI strains and two parental strains (C57BL/6J and DBA/2J), we measured the volumes of the entire thalamus and cortex gray matter using point counting and Cavalieri's rule. Heritability was calculated using analysis of variance (ANOVA), and QTL analysis was carried out using WebQTL (http://www.genenetwork.org). The heritability of thalamus volume was 36%, and three suggestive QTLs for thalamus volume were identified on chromosomes 10, 11 and 16. The heritability of cortical gray matter was 43%, and four suggestive QTLs for cortex gray matter volume were identified on chromosomes 2, 8, 16 and 19. The genetic correlation between thalamus and cortex gray matter volumes was 0.64. Also, a single QTL on chromosome 16 (D16Mit100) was identified for thalamus volume, cortex gray matter volume and Morris water maze search-time preference (r=0.71). These results suggest that there are separate and shared genetic influences on the development of the thalamus and cerebral cortex.
Collapse
Affiliation(s)
- H Dong
- Department of Psychiatry, Washington University School of Medicine, St Louis, MO 63110, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
273
|
Abstract
The neurodevelopmental hypothesis of schizophrenia posits an interaction between multiple susceptibility genes and one or more environmental insults in early life, resulting in altered brain development and the emergence of psychosis in early adulthood. Based on this framework, it has been argued that most neuropathological deficits observed in post mortem and neuroimaging studies of schizophrenia represent one or more lesions that originated in early life and remained static thereafter. However, recent longitudinal neuroimaging studies demonstrate a progressive component to the neuropathology of new-onset schizophrenia. This opens the possibility that the functional decline seen in many patients following the onset of illness may be halted or slowed. This review provides an update on developments in research on the neuropathology of schizophrenia and discusses recent advances in antipsychotic treatment and the potential impact on long-term outcomes.
Collapse
Affiliation(s)
- L Fredrik Jarskog
- Department of Psychiatry, Schizophrenia Research Center, University of North Carolina-Chapel Hill, Chapel Hill, North Carolina 27599, USA.
| | | | | |
Collapse
|
274
|
Dorph-Petersen KA, Pierri JN, Wu Q, Sampson AR, Lewis DA. Primary visual cortex volume and total neuron number are reduced in schizophrenia. J Comp Neurol 2007; 501:290-301. [PMID: 17226750 DOI: 10.1002/cne.21243] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
A number of studies that assessed the visual system in subjects with schizophrenia found impairments in early visual processing. Furthermore, functional imaging studies suggested changes in primary visual cortex activity in subjects with schizophrenia. Interestingly, postmortem studies of subjects with schizophrenia reported an increased density of neurons in the primary visual cortex (Brodmann's area 17, BA17). The observed changes in visual processing may thus be reflected in structural changes in the circuitry of BA17. To characterize the structural changes further we used stereological methods based on unbiased principles of sampling (Cavalieri's principle and the optical fractionator) to estimate the total volume and neuron number of BA17 in postmortem brains from 10 subjects with schizophrenia and 10 matched normal comparison subjects. In addition, we assessed cortical thickness. We found a marked and significant reduction in total neuron number (25%) and volume (22%) of BA17 in the schizophrenia group relative to the normal comparison subjects. In contrast, we found no changes in neuronal density or cortical thickness between the two groups. Subjects with schizophrenia therefore have a smaller cortical area allocated to primary visual perception. This finding suggests the existence of a schizophrenia-related change in cortical parcellation.
Collapse
|
275
|
Nakamura M, Nestor PG, McCarley RW, Levitt JJ, Hsu L, Kawashima T, Niznikiewicz M, Shenton ME. Altered orbitofrontal sulcogyral pattern in schizophrenia. Brain 2007; 130:693-707. [PMID: 17347256 PMCID: PMC2768130 DOI: 10.1093/brain/awm007] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Orbitofrontal alteration in schizophrenia has not been well characterized, likely due to marked anatomical variability. To investigate the presence of such alterations, we evaluated the sulcogyral pattern of this 'H-shaped' sulcus. Fifty patients with schizophrenia (100 hemispheres) and 50 age- and gender-matched control subjects (100 hemispheres) were evaluated using 3D high-spatial resolution MRI. Based on a previous study by Chiavaras and Petrides (2000), the sulcogyral pattern of the 'H-shaped' sulcus, which forms the boundaries of major orbitofrontal gyri, was classified into three types (Type I, II and III, in order of frequency) within each hemisphere. Chi-square analysis was performed to compare the sulcogyral pattern, and categorical regression was applied to investigate clinical/cognitive associations. The control data replicated the orbitofrontal sulcogyral pattern reported by Chiavaras and Petrides (P = 0.90-0.95), where the distribution was significantly different between the left and right hemisphere (Type I: right > left, Type II, III: left > right, chi2 = 6.41, P = 0.041). For schizophrenics, the distribution differed significantly from controls (chi2 = 11.90, P = 0.003), especially in the right hemisphere (chi2 = 13.67, P = 0.001). Moreover, the asymmetry observed in controls was not present in schizophrenia (chi2 = 0.13, P = 0.94). Specifically, the most frequent Type I expression was decreased and the rarest Type III expression was increased in schizophrenia, relative to controls. Furthermore, patients with Type III expression in any hemisphere evinced poorer socioeconomic status, poorer cognitive function, more severe symptoms and impulsivity, compared to patients without Type III expression. In contrast, patients with Type I in any hemisphere showed better cognitive function and milder symptoms compared to patients without Type I. Structurally, patients with Type III had significantly smaller intra-cranial contents (ICC) volumes than did patients without Type III (t(40) = 2.29, P = 0.027). The present study provides evidence of altered distribution of orbitofrontal sulcogyral pattern in schizophrenia, possibly reflecting a neurodevelopmental aberration in schizophrenia. Such altered sulcogyral pattern is unlikely to be due to secondary effects of the illness such as medication. Moreover, the structural association between Type III and small ICC volume, observed in the patient group, may suggest that Type III expression could be part of a systematic neurodevelopmental alteration, given that the small ICC volume could reflect early reduction of cranial growth driven by brain growth. The observed contrasting association of Type III expression with poorer outcome, and that of Type I expression with better outcome, further suggests clinical heterogeneity, and possible differences in treatment responsiveness in schizophrenia.
Collapse
Affiliation(s)
- Motoaki Nakamura
- Clinical Neuroscience Division, Laboratory of Neuroscience, Department of Psychiatry, Veterans Affairs Boston Healthcare System, Brockton Division, Brockton and Harvard Medical School
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School
| | - Paul G. Nestor
- Clinical Neuroscience Division, Laboratory of Neuroscience, Department of Psychiatry, Veterans Affairs Boston Healthcare System, Brockton Division, Brockton and Harvard Medical School
- Department of Psychology, University of Massachusetts, Boston, MA, USA
| | - Robert W. McCarley
- Clinical Neuroscience Division, Laboratory of Neuroscience, Department of Psychiatry, Veterans Affairs Boston Healthcare System, Brockton Division, Brockton and Harvard Medical School
| | - James J. Levitt
- Clinical Neuroscience Division, Laboratory of Neuroscience, Department of Psychiatry, Veterans Affairs Boston Healthcare System, Brockton Division, Brockton and Harvard Medical School
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School
| | - Lillian Hsu
- Clinical Neuroscience Division, Laboratory of Neuroscience, Department of Psychiatry, Veterans Affairs Boston Healthcare System, Brockton Division, Brockton and Harvard Medical School
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School
| | - Toshiro Kawashima
- Clinical Neuroscience Division, Laboratory of Neuroscience, Department of Psychiatry, Veterans Affairs Boston Healthcare System, Brockton Division, Brockton and Harvard Medical School
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School
| | - Margaret Niznikiewicz
- Clinical Neuroscience Division, Laboratory of Neuroscience, Department of Psychiatry, Veterans Affairs Boston Healthcare System, Brockton Division, Brockton and Harvard Medical School
| | - Martha E. Shenton
- Clinical Neuroscience Division, Laboratory of Neuroscience, Department of Psychiatry, Veterans Affairs Boston Healthcare System, Brockton Division, Brockton and Harvard Medical School
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School
| |
Collapse
|
276
|
Kuroki N, Shenton ME, Salisbury DF, Hirayasu Y, Onitsuka T, Ersner-Hershfield H, Yurgelun-Todd D, Kikinis R, Jolesz FA, McCarley RW. Middle and inferior temporal gyrus gray matter volume abnormalities in first-episode schizophrenia: an MRI study. Am J Psychiatry 2007. [PMID: 17151161 DOI: 10.1176/appi.ajp.163.12.2103] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
OBJECTIVE Magnetic resonance imaging (MRI) studies of schizophrenia reveal temporal lobe structural brain abnormalities in the superior temporal gyrus and the amygdala-hippocampal complex. However, the middle and inferior temporal gyri have received little investigation, especially in first-episode schizophrenia. METHOD High-spatial-resolution MRI was used to measure gray matter volume in the inferior, middle, and superior temporal gyri in 20 patients with first-episode schizophrenia, 20 patients with first-episode affective psychosis, and 23 healthy comparison subjects. RESULTS Gray matter volume in the middle temporal gyrus was smaller bilaterally in patients with first-episode schizophrenia than in comparison subjects and in patients with first-episode affective psychosis. Posterior gray matter volume in the inferior temporal gyrus was smaller bilaterally in both patient groups than in comparison subjects. Among the superior, middle, and inferior temporal gyri, the left posterior superior temporal gyrus gray matter in the schizophrenia group had the smallest volume, the greatest percentage difference, and the largest effect size in comparisons with healthy comparison subjects and with affective psychosis patients. CONCLUSIONS Smaller gray matter volumes in the left and right middle temporal gyri and left posterior superior temporal gyrus were present in schizophrenia but not in affective psychosis at first hospitalization. In contrast, smaller bilateral posterior inferior temporal gyrus gray matter volume is present in both schizophrenia and affective psychosis at first hospitalization. These findings suggest that smaller gray matter volumes in the dorsal temporal lobe (superior and middle temporal gyri) may be specific to schizophrenia, whereas smaller posterior inferior temporal gyrus gray matter volumes may be related to pathology common to both schizophrenia and affective psychosis.
Collapse
Affiliation(s)
- Noriomi Kuroki
- Department of Psychiatry, Harvard Medical School, Boston, MA 02301, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
277
|
O’Connor J, Muly E, Arnold S, Hemby S. AMPA receptor subunit and splice variant expression in the DLPFC of schizophrenic subjects and rhesus monkeys chronically administered antipsychotic drugs. Schizophr Res 2007; 90:28-40. [PMID: 17141476 PMCID: PMC1868481 DOI: 10.1016/j.schres.2006.10.004] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2006] [Revised: 09/28/2006] [Accepted: 10/02/2006] [Indexed: 10/23/2022]
Abstract
Disturbances in glutamate neurotransmission are thought to be one of the major contributing factors to the pathophysiology of schizophrenia. In the dorsolateral prefrontal cortex (DLPFC), glutamate neurotransmission is largely mediated by AMPA receptors. Data regarding alterations of subunit expression in the brains of patients with schizophrenia remain equivocal. This may be due to differences in technique sensitivity, endogenous control selection for normalization of data, or effect of antipsychotic drug treatment in different cohorts of schizophrenia. This study attempted to address these issues by examining the expression of AMPA receptor subunits and splice variants in the DLPFC of two schizophrenia cohorts using quantitative PCR (qPCR) with normalization to the geometric mean of multiple endogenous controls. In addition, a non-human primate model of chronic antipsychotic drug administration was used to determine the extent to which the transcript expression may be altered by antipsychotic drug treatment in the primate DLPFC. AMPA receptor subunits and flip and/or flop splice variants were not significantly different in the DLPFC of schizophrenia subjects versus controls in either of the two cohorts. However, in rhesus monkeys chronically treated with antipsychotic drugs, clozapine treatment significantly decreased GRIA1 and increased GRIA3 mRNA expression, while both clozapine and haloperidol increased the expression of GRIA2 subunit mRNA. Expression of AMPA receptor splice variants was not significantly altered by antipsychotic drug administration. This is the first study to show that AMPA receptor subunit mRNAs in the primate DLPFC are altered by antipsychotic drug administration. Antipsychotic drug-induced alterations may help explain differences in human post-mortem studies regarding AMPA receptor subunit expression and provide some insight into the mechanism of action of antipsychotic drugs.
Collapse
Affiliation(s)
- J.A. O’Connor
- Molecular and Systems Pharmacology Program, Emory University School of Medicine, Atlanta, GA, 30322
- Department of Physiology and Pharmacology Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - E.C. Muly
- Yerkes National Primate Research Center, Neuroscience Division Atlanta, GA, USA
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA
| | - S.E. Arnold
- Department of Psychiatry University of Pennsylvania School of Medicine Philadelphia, PA, USA
| | - S.E. Hemby
- Department of Physiology and Pharmacology Wake Forest University School of Medicine, Winston-Salem, NC, USA
| |
Collapse
|
278
|
Critchlow HM, Maycox PR, Skepper JN, Krylova O. Clozapine and haloperidol differentially regulate dendritic spine formation and synaptogenesis in rat hippocampal neurons. Mol Cell Neurosci 2006; 32:356-65. [PMID: 16844384 DOI: 10.1016/j.mcn.2006.05.007] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2006] [Revised: 05/22/2006] [Accepted: 05/25/2006] [Indexed: 10/24/2022] Open
Abstract
Antipsychotic drugs are the primary therapeutic treatment for schizophrenia. In addition to their dopaminergic/serotonergic function, atypical antipsychotics differ from conventional antipsychotics in the way they affect glutamatergic receptor function. A cellular correlate of this may be the modulation of dendritic spines (DS). Here, we demonstrate that in rat dissociated hippocampal neurons 1.0 microM clozapine administration increased DS-enriched protein spinophilin by 70%, increased post-synaptic protein shank1a puncta density by 26% and increased overall primary dendrite DS density by 59%. Filopodia and mushroom DS were particularly affected by clozapine. Conversely, 0.1 microM haloperidol decreased spinophilin protein by 40%, caused a 25% decrease in shank1a puncta and reduced the numbers of filopodia. In contrast, neither haloperidol nor clozapine induced any change in the levels of the pre-synaptic protein synapsin. This indicates that clozapine and haloperidol differentially regulate DS and post-synaptic plasticity. These findings may provide a molecular and cellular correlate to the superior therapeutic profile of clozapine when compared with haloperidol.
Collapse
Affiliation(s)
- H M Critchlow
- Department of Physiology, Development and Neuroscience, University of Cambridge, UK.
| | | | | | | |
Collapse
|
279
|
Hill JJ, Hashimoto T, Lewis DA. Molecular mechanisms contributing to dendritic spine alterations in the prefrontal cortex of subjects with schizophrenia. Mol Psychiatry 2006; 11:557-66. [PMID: 16402129 DOI: 10.1038/sj.mp.4001792] [Citation(s) in RCA: 189] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Postmortem studies have revealed reduced densities of dendritic spines in the dorsal lateral prefrontal cortex (DLPFC) of subjects with schizophrenia. However, the molecular mechanisms that might contribute to these alterations are unknown. Recent studies of the intracellular signals that regulate spine dynamics have identified members of the RhoGTPase family (e.g., Cdc42, Rac1, RhoA) as critical regulators of spine structure. In addition, Duo and drebrin are spine-specific proteins that are critical for spine maintenance and spine formation, respectively. In order to determine whether the mRNA expression levels of Cdc42, Rac1, RhoA, Duo or drebrin are altered in schizophrenia, tissue sections containing DLPFC area 9 from 15 matched pairs of subjects with schizophrenia and control subjects were processed for in situ hybridization. Expression levels of these mRNAs were also correlated with DLPFC spine density in a subset of the same subjects. In order to assess the potential influence of antipsychotic medications on the expression of these mRNAs, similar studies were conducted in monkeys chronically exposed to haloperidol or olanzapine. The expression of each of these mRNAs was lower in the gray matter of the subjects with schizophrenia compared to the control subjects, although only the reductions in Cdc42 and Duo remained significant after corrections for multiple comparisons. In addition, spine density was strongly correlated with the expression levels of both Duo (r=0.73, P=0.007) and Cdc42 (r=0.71, P=0.009) mRNAs. In contrast, the expression levels of Cdc42 and Duo mRNAs were not altered in monkeys chronically exposed to antipsychotic medications. In conclusion, reduced expression of Cdc42 and Duo mRNAs may represent molecular mechanisms that contribute to the decreased density of dendritic spines in the DLPFC of subjects with schizophrenia.
Collapse
Affiliation(s)
- J J Hill
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | | | | |
Collapse
|
280
|
Baddeley A, Dorph-Petersen KA, Vedel Jensen EB. A note on the stereological implications of irregular spacing of sections. J Microsc 2006; 222:177-81. [PMID: 16872416 DOI: 10.1111/j.1365-2818.2006.01585.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Stereological methods for serial sections traditionally assume that the sections are exactly equally spaced. In reality, the spacing and thickness of sections can be quite irregular. This may affect the validity and accuracy of stereological techniques, especially the Cavalieri estimator of volume. We present a new formula for the accuracy of the Cavalieri estimator that includes the effect of random variability in section spacing. A modest amount of variability in section spacing can cause a substantial increase in estimator variance.
Collapse
Affiliation(s)
- A Baddeley
- School of Mathematics & Statistics, University of Western Australia, Nedlands WA, Australia.
| | | | | |
Collapse
|
281
|
Abstract
Recent important advancements in genomic research have opened the way to new strategies for public health management. One of these questions pertains to how individual genetic variation may be associated with individual variability in response to drug treatment. The field of pharmacogenetics may have a profound impact on treatment of complex psychiatric disorders like schizophrenia. However, pharmacogenetic studies in schizophrenia have produced conflicting results. The first studies examined potential associations between clinical response and drug receptor genes. Subsequent studies have tried to use more objective phenotypes still in association with drug receptor genes. More recently, other studies have sought the association between putative causative or modifier genes and intermediate phenotypes. Thus, conflicting results may be at least in part explained by variability and choice of the phenotype, by choice of candidate genes, or by the relatively little knowledge about the neurobiology of this disorder. We propose that choosing intermediate phenotypes that allow in vivo measurement of specific neuronal functions may be of great help in reducing several of the potential confounds intrinsic to clinical measurements. Functional neuroimaging is ideally suited to address several of these potential confounds, and it may represent a powerful strategy to investigate the relationship between behavior, brain function, genes, and individual variability in the response to treatment with antipsychotic drugs in schizophrenia. Preliminary evidence with potential susceptilibity genes such as COMT, DISC1, and GRM3 support these assumptions.
Collapse
Affiliation(s)
- Giuseppe Blasi
- />Psychiatric Neuroscience Group, Department of Neurological and Psychiatric Sciences, University of Bari, 70125 Bari, Italy
- />Clinical Brain Disorders Branch, Gene, Cognition and Psychosis Program, National Institute of Mental Health, National Institutes of Health, 20892 Bethesda, MD
| | - Alessandro Bertolino
- />Psychiatric Neuroscience Group, Department of Neurological and Psychiatric Sciences, University of Bari, 70125 Bari, Italy
- />Clinical Brain Disorders Branch, Gene, Cognition and Psychosis Program, National Institute of Mental Health, National Institutes of Health, 20892 Bethesda, MD
- />Department of Neuroradiology, IRCCSS “Casa Sollievo della Sofferenza,”, 71013 San Giovanni Rotondo, Italy
| |
Collapse
|
282
|
Abstract
PURPOSE OF REVIEW A role for apoptosis in schizophrenia has long been hypothesized, but only recently have studies begun to examine this issue. This paper will review studies of apoptotic regulatory proteins, DNA fragmentation, and gene microarrays to highlight the potential role of apoptosis in the pathophysiology and treatment of schizophrenia. RECENT FINDINGS Although several studies indicate a possible increase in apoptotic susceptibility, accumulating evidence suggests that apoptotic activity may actually be downregulated in chronic schizophrenia. Furthermore, antipsychotics produce complex effects on apoptotic regulation in the central nervous system, activating both proapoptotic and antiapoptotic signaling pathways. SUMMARY Somewhat paradoxically, apoptosis appears to be downregulated in cortex of patients with chronic schizophrenia. This could reflect either a pathophysiological failure to mount an effective response to an apoptotic insult or an appropriate compensatory response to an earlier insult. The former could account for evidence indicating reduced neuronal viability without large-scale neuronal death in schizophrenia. The latter could reflect an earlier period of increased apoptotic activity in response to one or more proapoptotic insults. Antipsychotic treatment can modify the apoptotic response. This suggests implications for treatment, especially if future studies indicate that gray matter loss occurs via apoptotic mechanisms.
Collapse
Affiliation(s)
- L Fredrik Jarskog
- Department of Psychiatry, Schizophrenia Research Center, University of North Carolina, Chapel Hill 27599-7160, USA.
| |
Collapse
|
283
|
Pillai A, Terry AV, Mahadik SP. Differential effects of long-term treatment with typical and atypical antipsychotics on NGF and BDNF levels in rat striatum and hippocampus. Schizophr Res 2006; 82:95-106. [PMID: 16442781 DOI: 10.1016/j.schres.2005.11.021] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2005] [Revised: 11/22/2005] [Accepted: 11/30/2005] [Indexed: 12/14/2022]
Abstract
The results of mostly short-term treatment studies in human patients and animals suggest that second-generation antipsychotics (SGAs) such as risperidone (RISP) and olanzapine (OLZ) compared to first-generation antipsychotics (FGAs) such as haloperidol (HAL) and chlorpromazine (CPZ) have neuroprotective effects. The animal studies indicate that these effects are probably mediated through increased expression of neurotrophic factors such as nerve growth factor (NGF) and brain derived neurotrophic factor (BDNF). However, since antipsychotics are commonly used for very long-term treatment periods, particularly in schizophrenic patients, it is important to measure the effects of chronic administration of antipsychotic drugs on the aforementioned growth factors. This study determined the effects of 90- and 180-day treatments with two FGAs, HAL and CPZ, and two SGAs, RISP and OLZ, on the levels of NGF and BDNF protein in hippocampus and striatum of rat. Furthermore, since a preliminary study showed that 90-day treatment of HAL caused significant reductions in the expression of both NGF and BDNF the HAL-treated animals were then switched to SGAs for the next 90 days to assess the potential for restoration of trophic factor levels. After the 90-day treatment, NGF levels in the hippocampus were reduced by 60-70% with HAL or CPZ, and by only 25-30% with RISP or OLZ compared to levels with vehicle only. After the 180-day treatment, NGF levels were further reduced with HAL, RISP, and OLZ, but not with CPZ. The magnitude of the NGF decreases in the striatum was larger (70-90%) with all the antipsychotics compared to the hippocampus. However, the pattern of BDNF changes in the hippocampus differed significantly from the striatum after 90- or 180-day treatment with the antipsychotics. In hippocampus, compared to controls, BDNF levels remained unchanged with OLZ both after 90 and 180 days of treatment. Whereas, larger decreases in BDNF levels were observed with HAL or CPZ and intermediate decreases were observed with RISP after 90 days of treatment that continued to decline up to 180 days. Furthermore, switching HAL animals after 90 days of treatment to either RISP or OLZ for the next 90 days significantly restored levels of both NGF and BDNF in both the brain regions. These data indicate that SGAs compared to FGAs induce less deleterious effects on neurotrophic factor levels in the brain and may also offer ability to reverse the more pronounced negative effects of FGAs as well. These data may have significant clinical implications for long-term antipsychotic selection as well as the common practice of antipsychotic switchover.
Collapse
Affiliation(s)
- Anilkumar Pillai
- Psychiatry and Health Behavior, Medical College of Georgia, Augusta, GA, USA.
| | | | | |
Collapse
|
284
|
Ohnishi T, Hashimoto R, Mori T, Nemoto K, Moriguchi Y, Iida H, Noguchi H, Nakabayashi T, Hori H, Ohmori M, Tsukue R, Anami K, Hirabayashi N, Harada S, Arima K, Saitoh O, Kunugi H. The association between the Val158Met polymorphism of the catechol-O-methyl transferase gene and morphological abnormalities of the brain in chronic schizophrenia. Brain 2005; 129:399-410. [PMID: 16330500 DOI: 10.1093/brain/awh702] [Citation(s) in RCA: 133] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The catechol-O-methyl transferase (COMT) gene is considered to be a promising schizophrenia susceptibility gene. A common functional polymorphism (Val158Met) in the COMT gene affects dopamine regulation in the prefrontal cortex (PFC). Recent studies suggest that this polymorphism contributes to poor prefrontal functions, particularly working memory, in both normal individuals and patients with schizophrenia. However, possible morphological changes underlying such functional impairments remain to be clarified. The aim of this study was to examine whether the Val158Met polymorphism of the COMT gene has an impact on brain morphology in normal individuals and patients with schizophrenia. The Val158Met COMT genotype was obtained for 76 healthy controls and 47 schizophrenics. The diagnostic effects, the effects of COMT genotype and the genotype-diagnosis interaction on brain morphology were evaluated by using a voxel-by-voxel statistical analysis for high-resolution MRI, a tensor-based morphometry. Patients with schizophrenia demonstrated a significant reduction of volumes in the limbic and paralimbic systems, neocortical areas and the subcortical regions. Individuals homozygous for the Val-COMT allele demonstrated significant reduction of volumes in the left anterior cingulate cortex (ACC) and the right middle temporal gyrus (MTG) compared to Met-COMT carriers. Significant genotype-diagnosis interaction effects on brain morphology were noted in the left ACC, the left parahippocampal gyrus and the left amygdala-uncus. No significant genotype effects or genotype-diagnosis interaction effects on morphology in the dorsolateral PFC (DLPFC) were found. In the control group, no significant genotype effects on brain morphology were found. Schizophrenics homozygous for the Val-COMT showed a significant reduction of volumes in the bilateral ACC, left amygdala-uncus, right MTG and left thalamus compared to Met-COMT schizophrenics. Our findings suggest that the Val158Met polymorphism of the COMT gene might contribute to morphological abnormalities in schizophrenia.
Collapse
Affiliation(s)
- Takashi Ohnishi
- Department of Radiology, National Center Hospital of Mental, Nervous and Muscular Disorders, National Center of Neurology and Psychiatry, Kodaira City, Tokyo, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|