251
|
Slepnev VI, De Camilli P. Accessory factors in clathrin-dependent synaptic vesicle endocytosis. Nat Rev Neurosci 2000; 1:161-72. [PMID: 11257904 DOI: 10.1038/35044540] [Citation(s) in RCA: 399] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Clathrin-mediated endocytosis is a special form of vesicle budding important for the internalization of receptors and extracellular ligands, for the recycling of plasma membrane components, and for the retrieval of surface proteins destined for degradation. In nerve terminals, clathrin-mediated endocytosis is crucial for synaptic vesicle recycling. Recent structural studies have provided molecular details of coat assembly. In addition, biochemical and genetic studies have identified numerous accessory proteins that assist the clathrin coat in its function at synapses and in other systems. This review summarizes these advances with a special focus on accessory factors and highlights new aspects of clathrin-mediated endocytosis revealed by the study of these factors.
Collapse
Affiliation(s)
- V I Slepnev
- Howard Hughes Medical Institute and Department of Cell Biology, Yale University School of Medicine, 295 Congress Avenue, New Haven, Connecticut 06510, USA.
| | | |
Collapse
|
252
|
Abstract
The targeting of mRNAs to specific subcellular locations is believed to facilitate the rapid and selective incorporation of their protein products into complexes that may include membrane organelles. In oligodendrocytes, mRNAs that encode myelin basic protein (MBP) and select myelin-associated oligodendrocytic basic proteins (MOBPs) locate in myelin sheath assembly sites (MSAS). To identify additional mRNAs located in MSAS, we used a combination of subcellular fractionation and suppression subtractive hybridization. More than 50% of the 1,080 cDNAs that were analyzed were derived from MBP or MOBP mRNAs, confirming that the method selected mRNAs enriched in MSAS. Of 90 other cDNAs identified, most represent one or more mRNAs enriched in rat brain myelin. Five cDNAs, which encode known proteins, were characterized for mRNA size(s), enrichment in myelin, and tissue and developmental expression patterns. Two of these, peptidylarginine deiminase and ferritin heavy chain, have recognized roles in myelination. The corresponding mRNAs were of different sizes than the previously identified mRNA, and they had tissue and development expression patterns that were indistinguishable from those of MBP mRNA. Three other cDNAs recognize mRNAs whose proteins (SH3p13, KIF1A, and dynein light intermediate chain) are involved in membrane biogenesis. Although enriched in myelin, the tissue and developmental distribution patterns of these mRNAs differed from those of MBP mRNA. Six other cDNAs, which did not share significant sequence homology to known mRNAs, were also examined. The corresponding mRNAs were highly enriched in myelin, and four had tissue and developmental distribution patterns indistinguishable from those of MBP mRNA. These studies demonstrate that MSAS contain a diverse population of mRNAs, whose locally synthesized proteins are placed to contribute to myelin sheath assembly and maintenance. Characterization of these mRNAs and proteins will help provide a comprehensive picture of myelin sheath assembly.
Collapse
Affiliation(s)
- R M Gould
- Department of Pharmacology, NYS Institute for Basic Research in Developmental Disabilities, Staten Island, New York 10314, USA.
| | | | | | | |
Collapse
|
253
|
Stephens DJ, Banting G. The use of yeast two-hybrid screens in studies of protein:protein interactions involved in trafficking. Traffic 2000; 1:763-8. [PMID: 11208066 DOI: 10.1034/j.1600-0854.2000.011003.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The yeast two-hybrid system has provided a convenient means to both screen for proteins that interact with a protein of interest and to characterise the known interaction between two proteins. Several groups with an interest in the molecular mechanisms that underlie discrete steps along trafficking pathways have exploited the yeast two-hybrid system. Here, we provide a brief background to the technology, attempt to point out some of the pitfalls and benefits of the different systems that can be employed, and mention some of the areas (within the trafficking field) where yeast two-hybrid interaction assays have been particularly informative.
Collapse
Affiliation(s)
- D J Stephens
- Department of Cell Biology and Cell Biophysics, EMBL-Heidelberg, Germany
| | | |
Collapse
|
254
|
Galas MC, Chasserot-Golaz S, Dirrig-Grosch S, Bader MF. Presence of dynamin--syntaxin complexes associated with secretory granules in adrenal chromaffin cells. J Neurochem 2000; 75:1511-9. [PMID: 10987831 DOI: 10.1046/j.1471-4159.2000.0751511.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Dynamin proteins have been implicated in many aspects of endocytosis, including clathrin-mediated endocytosis, internalization of caveolae, synaptic vesicle recycling, and, more recently, vesicular trafficking to and from the Golgi complex. To provide further insight into the function(s) of dynamin in neuroendocrine cells, we have examined its intracellular distribution in cultured chromaffin cells by subcellular fractionation, immunoreplica analysis, and confocal immunofluorescence. We found that dynamin, presumably the dynamin-2 isoform, is associated specifically with the membrane of purified secretory chromaffin granules. Oligomerization state analysis by sucrose density velocity gradients indicated that the granule-associated dynamin is in a monomeric form. Immunoprecipitation experiments coupled to double-labeling immunofluorescence cytochemistry revealed that the granular dynamin is associated with a syntaxin component that is not involved in the granule-bound SNARE complex. The possibility that dynamin participates in the coupling of the exocytotic and endocytotic reaction through the building of a granular membrane subset of proteins is discussed.
Collapse
Affiliation(s)
- M C Galas
- Institut National de la Santé et de la Recherche Médicale, U-338 Biologie de la Communication Cellulaire, Strasbourg, France
| | | | | | | |
Collapse
|
255
|
Huttner WB, Schmidt A. Lipids, lipid modification and lipid-protein interaction in membrane budding and fission--insights from the roles of endophilin A1 and synaptophysin in synaptic vesicle endocytosis. Curr Opin Neurobiol 2000; 10:543-51. [PMID: 11084315 DOI: 10.1016/s0959-4388(00)00126-4] [Citation(s) in RCA: 93] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Studies on the endocytosis of synaptic vesicles have provided two novel insights into the mechanism of vesicle formation from donor membranes, both of which concern lipids. One is the essential role of endophilin, a cytosolic protein converting lysophosphatidic acid by addition of the fatty acid arachidonate into phosphatidic acid. The other is the essential role of membrane cholesterol, which specifically interacts with synaptophysin, the major transmembrane protein of synaptic vesicles. These findings reveal novel modes of membrane lipid modification and lipid-protein interaction in vesicle biogenesis.
Collapse
Affiliation(s)
- W B Huttner
- Department of Neurobiology, Interdisciplinary Center of Neuroscience, University of Heidelberg, Im Neuenheimer Feld 364, D-69120 Heidelberg, Germany.
| | | |
Collapse
|
256
|
Onofri F, Giovedi S, Kao HT, Valtorta F, Bongiorno Borbone L, De Camilli P, Greengard P, Benfenati F. Specificity of the binding of synapsin I to Src homology 3 domains. J Biol Chem 2000; 275:29857-67. [PMID: 10899172 DOI: 10.1074/jbc.m006018200] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Synapsins are synaptic vesicle-associated phosphoproteins involved in synapse formation and regulation of neurotransmitter release. Recently, synapsin I has been found to bind the Src homology 3 (SH3) domains of Grb2 and c-Src. In this work we have analyzed the interactions between synapsins and an array of SH3 domains belonging to proteins involved in signal transduction, cytoskeleton assembly, or endocytosis. The binding of synapsin I was specific for a subset of SH3 domains. The highest binding was observed with SH3 domains of c-Src, phospholipase C-gamma, p85 subunit of phosphatidylinositol 3-kinase, full-length and NH(2)-terminal Grb2, whereas binding was moderate with the SH3 domains of amphiphysins I/II, Crk, alpha-spectrin, and NADPH oxidase factor p47(phox) and negligible with the SH3 domains of p21(ras) GTPase-activating protein and COOH-terminal Grb2. Distinct sites in the proline-rich COOH-terminal region of synapsin I were found to be involved in binding to the various SH3 domains. Synapsin II also interacted with SH3 domains with a partly distinct binding pattern. Phosphorylation of synapsin I in the COOH-terminal region by Ca(2+)/calmodulin-dependent protein kinase II or mitogen-activated protein kinase modulated the binding to the SH3 domains of amphiphysins I/II, Crk, and alpha-spectrin without affecting the high affinity interactions. The SH3-mediated interaction of synapsin I with amphiphysins affected the ability of synapsin I to interact with actin and synaptic vesicles, and pools of synapsin I and amphiphysin I were shown to associate in isolated nerve terminals. The ability to bind multiple SH3 domains further implicates the synapsins in signal transduction and protein-protein interactions at the nerve terminal level.
Collapse
Affiliation(s)
- F Onofri
- Department of Experimental Medicine, Section of Physiology, University of Genova, Via Benedetto XV 3, I-16132 Genova, Italy
| | | | | | | | | | | | | | | |
Collapse
|
257
|
Oda K, Shiratsuchi T, Nishimori H, Inazawa J, Yoshikawa H, Taketani Y, Nakamura Y, Tokino T. Identification of BAIAP2 (BAI-associated protein 2), a novel human homologue of hamster IRSp53, whose SH3 domain interacts with the cytoplasmic domain of BAI1. CYTOGENETICS AND CELL GENETICS 2000; 84:75-82. [PMID: 10343108 DOI: 10.1159/000015219] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
BAI1 (brain-specific angiogenesis inhibitor 1) was originally isolated as a p53-target gene specifically expressed in brain. To clarify its function, we have been searching for cellular proteins that associate with the cytoplasmic domain of BAI1. Using its intracellular carboxyl terminus as "bait" in a yeast two-hybrid system, we isolated a cDNA clone named BAIAP2 whose nucleotide sequence would encode a 521-amino acid protein showing significant homology to a 58/53-kDa substrate of insulin-receptor kinase in the hamster. As the expression profile of BAIAP2 examined by Northern blot analysis was almost identical to that of BAI1, BAIAP2 appears to be active mainly in neurons. In vitro binding assays confirmed that a proline-rich cytoplasmic fragment of BAI1 interacted with the Src homology 3 (SH3) domain of BAIAP2. Double-color immunofluorescent analysis revealed that BAIAP2 was localized at the cytoplasmic membrane when it was coexpressed with BAI1 in COS-7 cells; BAIAP2 not associated with BAI1 was diffused in the cytoplasm. Predominant localization of BAI1 protein in a sub-cellular fraction enriched in growth cones indicated a possible role of BAI1 as a cell adhesion molecule inducing growth cone guidance. As a protein partner of BAI1, BAIAP2 may represent an important link between membrane and cytoskeleton in the process of neuronal growth.
Collapse
Affiliation(s)
- K Oda
- Laboratory of Molecular Medicine, Human Genome Center, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | | | | | | | | | | | | | | |
Collapse
|
258
|
Gad H, Ringstad N, Löw P, Kjaerulff O, Gustafsson J, Wenk M, Di Paolo G, Nemoto Y, Crun J, Ellisman MH, De Camilli P, Shupliakov O, Brodin L. Fission and uncoating of synaptic clathrin-coated vesicles are perturbed by disruption of interactions with the SH3 domain of endophilin. Neuron 2000; 27:301-12. [PMID: 10985350 DOI: 10.1016/s0896-6273(00)00038-6] [Citation(s) in RCA: 235] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Coordination between sequential steps in synaptic vesicle endocytosis, including clathrin coat formation, fission, and uncoating, appears to involve proteinprotein interactions. Here, we show that compounds that disrupt interactions of the SH3 domain of endophilin with dynamin and synaptojanin impair synaptic vesicle endocytosis in a living synapse. Two distinct endocytic intermediates accumulated. Free clathrin-coated vesicles were induced by a peptide-blocking endophilin's SH3 domain and by antibodies to the proline-rich domain (PRD) of synaptojanin. Invaginated clathrin-coated pits were induced by the same peptide and by the SH3 domain of endophilin. We suggest that the SH3 domain of endophilin participates in both fission and uncoating and that it may be a key component of a molecular switch that couples the fission reaction to uncoating.
Collapse
Affiliation(s)
- H Gad
- The Nobel Institute for Neurophysiology, Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
259
|
Ochoa GC, Slepnev VI, Neff L, Ringstad N, Takei K, Daniell L, Kim W, Cao H, McNiven M, Baron R, De Camilli P. A functional link between dynamin and the actin cytoskeleton at podosomes. J Cell Biol 2000; 150:377-89. [PMID: 10908579 PMCID: PMC2180219 DOI: 10.1083/jcb.150.2.377] [Citation(s) in RCA: 285] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/1999] [Accepted: 06/14/2000] [Indexed: 01/07/2023] Open
Abstract
Cell transformation by Rous sarcoma virus results in a dramatic change of adhesion structures with the substratum. Adhesion plaques are replaced by dot-like attachment sites called podosomes. Podosomes are also found constitutively in motile nontransformed cells such as leukocytes, macrophages, and osteoclasts. They are represented by columnar arrays of actin which are perpendicular to the substratum and contain tubular invaginations of the plasma membrane. Given the similarity of these tubules to those generated by dynamin around a variety of membrane templates, we investigated whether dynamin is present at podosomes. Immunoreactivities for dynamin 2 and for the dynamin 2-binding protein endophilin 2 (SH3P8) were detected at podosomes of transformed cells and osteoclasts. Furthermore, GFP wild-type dynamin 2aa was targeted to podosomes. As shown by fluorescence recovery after photobleaching, GFP-dynamin 2aa and GFP-actin had a very rapid and similar turnover at podosomes. Expression of the GFP-dynamin 2aa(G273D) abolished podosomes while GFP-dynamin(K44A) was targeted to podosomes but delayed actin turnover. These data demonstrate a functional link between a member of the dynamin family and actin at attachment sites between cells and the substratum.
Collapse
Affiliation(s)
- Gian-Carlo Ochoa
- Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, Connecticut 06510
- Department of Cell Biology, Yale University School of Medicine, New Haven, Connecticut 06510
| | - Vladimir I. Slepnev
- Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, Connecticut 06510
- Department of Cell Biology, Yale University School of Medicine, New Haven, Connecticut 06510
| | - Lynn Neff
- Department of Cell Biology, Yale University School of Medicine, New Haven, Connecticut 06510
- Department of Orthopaedic Surgery, Yale University School of Medicine, New Haven, Connecticut 06510
| | - Niels Ringstad
- Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, Connecticut 06510
- Department of Cell Biology, Yale University School of Medicine, New Haven, Connecticut 06510
| | - Kohji Takei
- Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, Connecticut 06510
- Department of Cell Biology, Yale University School of Medicine, New Haven, Connecticut 06510
| | - Laurie Daniell
- Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, Connecticut 06510
- Department of Cell Biology, Yale University School of Medicine, New Haven, Connecticut 06510
| | - Warren Kim
- Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, Connecticut 06510
- Department of Cell Biology, Yale University School of Medicine, New Haven, Connecticut 06510
| | - Hong Cao
- Mayo Clinic, Rochester, Minnesota 55905
| | | | - Roland Baron
- Department of Cell Biology, Yale University School of Medicine, New Haven, Connecticut 06510
- Department of Orthopaedic Surgery, Yale University School of Medicine, New Haven, Connecticut 06510
| | - Pietro De Camilli
- Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, Connecticut 06510
- Department of Cell Biology, Yale University School of Medicine, New Haven, Connecticut 06510
| |
Collapse
|
260
|
So CW, Sham MH, Chew SL, Cheung N, So CK, Chung SK, Caldas C, Wiedemann LM, Chan LC. Expression and protein-binding studies of the EEN gene family, new interacting partners for dynamin, synaptojanin and huntingtin proteins. Biochem J 2000; 348 Pt 2:447-58. [PMID: 10816441 PMCID: PMC1221085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
EEN, identified initially as a fusion partner to the mixed-lineage leukaemia gene in human leukaemia, and its related members, EEN-B1 and EEN-B2, have recently been shown to interact with two endocytic molecules, dynamin and synaptojanin, as well as with the huntingtin protein. In the present study, we show that the expression of the EEN gene-family members is differentially regulated. Multiple-spliced variants were identified for EEN-B2. In the brain, EEN-B1 and EEN-B2 mRNA are preferentially expressed in the cerebellar Purkinje and granule cells, dentate gyrus cells, hippocampal pyramidal neurons and cerebral granule cells. The expression patterns of EEN-B1 and EEN-B2 mRNA in the brain overlap with those of dynamin-I/III, synaptojanin-I and huntingtin, whereas the ubiquitous expression of EEN is consistent with that of dynamin-II. In testes, members of the EEN family are co-expressed with testis-type dynamin and huntingtin in Sertoli cells and germ cells respectively. Our results on the overlapping expression patterns are consistent with the proposed interaction of EEN family members with dynamin, synaptojanin and huntingtin protein in vivo. Although all three EEN family members bind to dynamin and synaptojanin, EEN-B1 has the highest affinity for binding, followed by EEN and EEN-B2. We also demonstrate that amphiphysin, a major synaptojanin-binding protein in brain, can compete with the EEN family for binding to synaptojanin and dynamin. We propose that recruitment of the EEN family by dynamin/synaptojanin to clathrin-coated pits can be regulated by amphiphysin.
Collapse
Affiliation(s)
- C W So
- Department of Pathology, The University of Hong Kong, Hong Kong, Peoples' Republic of China.
| | | | | | | | | | | | | | | | | |
Collapse
|
261
|
Grabs D, Bergmann M, Rager G. Developmental expression of amphiphysin in the retinotectal system of the chick: from mRNA to protein. Eur J Neurosci 2000; 12:1545-53. [PMID: 10792432 DOI: 10.1046/j.1460-9568.2000.00043.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The role of amphiphysin in clathrin-mediated endocytosis of synaptic vesicles is well established. However, it is still uncertain if the protein is also involved in developmental mechanisms, e.g. axon outgrowth and synapse formation. To investigate the developmental changes in the expression of amphiphysin we used the retinotectal system of the chick, a highly ordered and easily accessible primary neuronal pathway. Reverse transcription polymerase chain reaction (RT-PCR) of total RNA from chick retina and tectum revealed first transcripts for amphiphysin, dynamin and synaptotagmin at embryonic day 5 (E5) for both regions. Surprisingly, Western blots of the retina revealed an increase of protein expression for amphiphysin only after E11 in the retina and the tectum. Immunofluorescence for amphiphysin was not detectable before E10 in the developing chick retina, while other presynaptic proteins like synaptotagmin showed already intense signals in the inner and outer plexiform layers. Subsequently, amphiphysin immunoreactivity follows the expression of synaptotagmin and synaptic vesicle protein 2 (SV2) as seen in the retina and the tectum, and exhibits the same staining as the other proteins in the mature chick brain. Ultrastructural data revealed for the first time that amphiphysin is not only limited to conventional synapses but is also abundant in retinal ribbon terminals. Taken together our data reveal that: (i) there is a developmental delay between mRNA transcription and protein expression for key proteins involved in endocytosis; (ii) amphiphysin gets upregulated after synapse formation; and (iii) amphiphysin is present in the synaptic vesicle cycle in retinal ribbon synapses.
Collapse
Affiliation(s)
- D Grabs
- Institute of Anatomy and Special Embryology, University Fribourg, Switzerland
| | | | | |
Collapse
|
262
|
Haffner C, Di Paolo G, Rosenthal JA, de Camilli P. Direct interaction of the 170 kDa isoform of synaptojanin 1 with clathrin and with the clathrin adaptor AP-2. Curr Biol 2000; 10:471-4. [PMID: 10801423 DOI: 10.1016/s0960-9822(00)00446-2] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Synaptojanin 1, a polyphosphoinositide phosphatase, is expressed as two major alternatively spliced isoforms of 145 kDa (SJ145) and 170 kDa (SJ170) [1] [2], which are thought to have pleiotropic roles in endocytosis, signaling and actin function [3] [4] [5]. SJ145 is highly enriched in nerve terminals where it participates in clathrin-dependent synaptic vesicle recycling [1] [5]. SJ170, which differs from SJ145 by the presence of a carboxy-terminal extension, is the predominant isoform in developing neurons and is expressed in a variety of tissues [2]. The carboxy-terminal domain unique to SJ170 was previously shown to bind Eps15 [6], a protein involved in receptor-mediated endocytosis. Here, we show that the same domain also binds clathrin and the clathrin adaptor AP-2. These interactions occur both in vitro and in vivo and are direct. Binding of AP-2 is mediated by the ear domain of its alpha-adaptin subunit and binding of clathrin by the amino-terminal domain of its heavy chain. Overexpression in chinese hamster ovary (CHO) cells of full-length SJ170 or its unique carboxy-terminal region caused mislocalization of Eps15, AP-2 and clathrin, as well as inhibition of clathrin-dependent transferrin uptake. These findings suggest a close association of SJ170 with the clathrin coat and provide new evidence for its physiological role in the regulation of clathrin coat dynamics.
Collapse
Affiliation(s)
- C Haffner
- Department of Cell Biology, Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT 06510, USA
| | | | | | | |
Collapse
|
263
|
So CW, So CK, Cheung N, Chew SL, Sham MH, Chan LC. The interaction between EEN and Abi-1, two MLL fusion partners, and synaptojanin and dynamin: implications for leukaemogenesis. Leukemia 2000; 14:594-601. [PMID: 10764144 DOI: 10.1038/sj.leu.2401692] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The mixed lineage leukaemia gene, MLL (also called HRX, ALL-1) in acute leukaemia is fused to at least 16 identified partner genes that display diverse structural and biochemical properties. Using GST pull down and the yeast two hybrid system, we show that two different MLL fusion partners with SH3 domains, EEN and Abi-1, interact with dynamin and synaptojanin, both of which are involved in endocytosis. Synaptojanin, a member of the inositol phosphatase family that has recently been shown to regulate cell proliferation and survival, is also known to bind to Eps15, the mouse homologue of AF1p, another fusion partner of MLL. Expression studies show that synaptojanin is strongly expressed in bone marrow and immature leukaemic cell lines, very weakly in peripheral blood leukocytes and absent in Raji, a mature B cell line. We found that the SH3 domains of EEN and Abi-1 interact with different proline-rich domains of synaptojanin while the EH domains of Eps15 interact with the NPF motifs of synaptojanin. In vitro competitive binding assays demonstrate that EEN displays stronger binding affinity than Abi-1 and may compete with it for synaptojanin. These findings suggest a potential link between MLL fusion-mediated leukaemogenesis and the inositol-signalling pathway.
Collapse
Affiliation(s)
- C W So
- Department of Pathology, The University of Hong Kong, Queen Mary Hospital, Pokfulam, China
| | | | | | | | | | | |
Collapse
|
264
|
Tong XK, Hussain NK, de Heuvel E, Kurakin A, Abi-Jaoude E, Quinn CC, Olson MF, Marais R, Baranes D, Kay BK, McPherson PS. The endocytic protein intersectin is a major binding partner for the Ras exchange factor mSos1 in rat brain. EMBO J 2000; 19:1263-71. [PMID: 10716926 PMCID: PMC305667 DOI: 10.1093/emboj/19.6.1263] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
We recently identified intersectin, a protein containing two EH and five SH3 domains, as a component of the endocytic machinery. The N-terminal SH3 domain (SH3A), unlike other SH3 domains from intersectin or various endocytic proteins, specifically inhibits intermediate events leading to the formation of clathrin-coated pits. We have now identified a brain-enriched, 170 kDa protein (p170) that interacts specifically with SH3A. Screening of combinatorial peptides reveals the optimal ligand for SH3A as Pp(V/I)PPR, and the 170 kDa mammalian son-of-sevenless (mSos1) protein, a guanine-nucleotide exchange factor for Ras, con- tains two copies of the matching sequence, PPVPPR. Immunodepletion studies confirm that p170 is mSos1. Intersectin and mSos1 are co-enriched in nerve terminals and are co-immunoprecipitated from brain extracts. SH3A competes with the SH3 domains of Grb2 in binding to mSos1, and the intersectin-mSos1 complex can be separated from Grb2 by sucrose gradient centrifugation. Overexpression of the SH3 domains of intersectin blocks epidermal growth factor-mediated Ras activation. These results suggest that intersectin functions in cell signaling in addition to its role in endocytosis and may link these cellular processes.
Collapse
Affiliation(s)
- X K Tong
- Department of Neurology, Montreal Neurological Institute, Montreal, QC H3A 2B4, Canada
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
265
|
Qualmann B, Kelly RB. Syndapin isoforms participate in receptor-mediated endocytosis and actin organization. J Cell Biol 2000; 148:1047-62. [PMID: 10704453 PMCID: PMC2174535 DOI: 10.1083/jcb.148.5.1047] [Citation(s) in RCA: 256] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/1999] [Accepted: 01/19/2000] [Indexed: 11/22/2022] Open
Abstract
Syndapin I (SdpI) interacts with proteins involved in endocytosis and actin dynamics and was therefore proposed to be a molecular link between the machineries for synaptic vesicle recycling and cytoskeletal organization. We here report the identification and characterization of SdpII, a ubiquitously expressed isoform of the brain-specific SdpI. Certain splice variants of rat SdpII in other species were named FAP52 and PACSIN 2. SdpII binds dynamin I, synaptojanin, synapsin I, and the neural Wiskott-Aldrich syndrome protein (N-WASP), a stimulator of Arp2/3 induced actin filament nucleation. In neuroendocrine cells, SdpII colocalizes with dynamin, consistent with a role for syndapin in dynamin-mediated endocytic processes. The src homology 3 (SH3) domain of SdpI and -II inhibited receptor-mediated internalization of transferrin, demonstrating syndapin involvement in endocytosis in vivo. Overexpression of full-length syndapins, but not the NH(2)-terminal part or the SH3 domains alone, had a strong effect on cortical actin organization and induced filopodia. This syndapin overexpression phenotype appears to be mediated by the Arp2/3 complex at the cell periphery because it was completely suppressed by coexpression of a cytosolic COOH-terminal fragment of N-WASP. Consistent with a role in actin dynamics, syndapins localized to sites of high actin turnover, such as filopodia tips and lamellipodia. Our results strongly suggest that syndapins link endocytosis and actin dynamics.
Collapse
Affiliation(s)
- Britta Qualmann
- Department of Biochemistry and Biophysics and the Hormone Research Institute, University of California, San Francisco, California 94143-0534
| | - Regis B. Kelly
- Department of Biochemistry and Biophysics and the Hormone Research Institute, University of California, San Francisco, California 94143-0534
| |
Collapse
|
266
|
McNiven MA, Cao H, Pitts KR, Yoon Y. The dynamin family of mechanoenzymes: pinching in new places. Trends Biochem Sci 2000; 25:115-20. [PMID: 10694881 DOI: 10.1016/s0968-0004(99)01538-8] [Citation(s) in RCA: 284] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The large GTPase dynamin is a mechanoenzyme that mediates the liberation of nascent clathrin-coated pits from the plasma membrane during endocytosis. Recently, this enzyme has been demonstrated to comprise an extensive family of related proteins that have been implicated in a large variety of vesicle trafficking events during endocytosis, secretion and even maintenance of mitochondrial form. The potential contributions by the dynamin family to these diverse but related functions are discussed.
Collapse
Affiliation(s)
- M A McNiven
- Dept of Biochemistry and Molecular Biology, The Center for Basic Research in Digestive Diseases, Mayo Foundation, Rochester, MN 55905, USA.
| | | | | | | |
Collapse
|
267
|
Abstract
Dynamin, a 100-kDa GTPase, is an essential component of vesicle formation in receptor-mediated endocytosis, synaptic vesicle recycling, caveolae internalization, and possibly vesicle trafficking in and out of the Golgi. In addition to the GTPase domain, dynamin also contains a pleckstrin homology domain (PH) implicated in membrane binding, a GTPase effector domain (GED) shown to be essential for self-assembly and stimulated GTPase activity, and a C-terminal proline-rich domain (PRD), which contains several SH3-binding sites. Dynamin partners bind to the PRD and may either stimulate dynamin's GTPase activity or target dynamin to the plasma membrane. Purified dynamin readily self-assembles into rings or spirals. This striking structural property supports the hypothesis that dynamin wraps around the necks of budding vesicles where it plays a key role in membrane fission. The focus of this review is on the relationship between the GTPase and self-assembly properties of dynamin and its cellular function.
Collapse
Affiliation(s)
- J E Hinshaw
- Laboratory of Cell Biochemistry and Biology, National Institutes of Health, Bethesda, Maryland 20892, USA.
| |
Collapse
|
268
|
Fenster SD, Chung WJ, Zhai R, Cases-Langhoff C, Voss B, Garner AM, Kaempf U, Kindler S, Gundelfinger ED, Garner CC. Piccolo, a presynaptic zinc finger protein structurally related to bassoon. Neuron 2000; 25:203-14. [PMID: 10707984 DOI: 10.1016/s0896-6273(00)80883-1] [Citation(s) in RCA: 236] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Piccolo is a novel component of the presynaptic cytoskeletal matrix (PCM) assembled at the active zone of neurotransmitter release. Analysis of its primary structure reveals that Piccolo is a multidomain zinc finger protein structurally related to Bassoon, another PCM protein. Both proteins were found to be shared components of glutamatergic and GABAergic CNS synapses but not of the cholinergic neuromuscular junction. The Piccolo zinc fingers were found to interact with the dual prenylated rab3A and VAMP2/Synaptobrevin II receptor PRA1. We show that PRA1 is a synaptic vesicle-associated protein that is colocalized with Piccolo in nerve terminals of hippocampal primary neurons. These data suggest that Piccolo plays a role in the trafficking of synaptic vesicles (SVs) at the active zone.
Collapse
Affiliation(s)
- S D Fenster
- Department of Neurobiology, University of Alabama at Birmingham, 35294, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
269
|
Valentijn K, Valentijn JA, Jamieson JD. Role of actin in regulated exocytosis and compensatory membrane retrieval: insights from an old acquaintance. Biochem Biophys Res Commun 1999; 266:652-61. [PMID: 10603303 DOI: 10.1006/bbrc.1999.1883] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
This review summarizes new insights into the role of the actin cytoskeleton in exocytosis and compensatory membrane retrieval from mammalian regulated secretory cells. Data from our lab and others now indicate that the actin cytoskeleton is involved in exocytosis both as a negative regulator of membrane fusion under resting conditions and as a facilitator of movement of secretory granules to their site of fusion with the apical plasmalemma. Coating of docked secretory granules with actin filaments correlates with the dissociation of secretory-granule-associated rab3D, pointing out a novel role for rab proteins in modulating the actin cytoskeleton during regulated exocytosis. Compensatory membrane retrieval following regulated exocytosis is also critically dependent on the actin cytoskeleton both in initiating the formation of clathrin-coated retrieval vesicles and subsequent trafficking back into the cell. We propose that insertion of secretory granule membrane into the plasmalemma initiates a trigger for membrane retrieval, possibly by exposing sites where proteins involved in compensatory membrane retrieval are assembled. The results summarized in this review were derived primarily from investigations on the pancreatic acinar cell, an old friend who is providing modern wisdom not attainable in other simpler systems.
Collapse
Affiliation(s)
- K Valentijn
- Department of Cell Biology, Yale University School of Medicine, New Haven, Connecticut, 60520, USA
| | | | | |
Collapse
|
270
|
Abstract
Synaptic vesicles, which have been a paradigm for the fusion of a vesicle with its target membrane, also serve as a model for understanding the formation of a vesicle from its donor membrane. Synaptic vesicles, which are formed and recycled at the periphery of the neuron, contain a highly restricted set of neuronal proteins. Insight into the trafficking of synaptic vesicle proteins has come from studying not only neurons but also neuroendocrine cells, which form synaptic-like microvesicles (SLMVs). Formation and recycling of synaptic vesicles/SLMVs takes place from the early endosome and the plasma membrane. The cytoplasmic machinery of synaptic vesicle/SLMV formation and recycling has been studied by a variety of experimental approaches, in particular using cell-free systems. This has revealed distinct machineries for membrane budding and fission. Budding is mediated by clathrin and clathrin adaptors, whereas fission is mediated by dynamin and its interacting protein SH3p4, a lysophosphatidic acid acyl transferase.
Collapse
Affiliation(s)
- M J Hannah
- MRC Laboratory for Molecular Cell Biology, University College London, UK
| | | | | |
Collapse
|
271
|
Rosenthal JA, Chen H, Slepnev VI, Pellegrini L, Salcini AE, Di Fiore PP, De Camilli P. The epsins define a family of proteins that interact with components of the clathrin coat and contain a new protein module. J Biol Chem 1999; 274:33959-65. [PMID: 10567358 DOI: 10.1074/jbc.274.48.33959] [Citation(s) in RCA: 145] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Epsin (epsin 1) is an interacting partner for the EH domain-containing region of Eps15 and has been implicated in conjunction with Eps15 in clathrin-mediated endocytosis. We report here the characterization of a similar protein (epsin 2), which we have cloned from human and rat brain libraries. Epsin 1 and 2 are most similar in their NH(2)-terminal region, which represents a module (epsin NH(2) terminal homology domain, ENTH domain) found in a variety of other proteins of the data base. The multiple DPW motifs, typical of the central region of epsin 1, are only partially conserved in epsin 2. Both proteins, however, interact through this central region with the clathrin adaptor AP-2. In addition, we show here that both epsin 1 and 2 interact with clathrin. The three NPF motifs of the COOH-terminal region of epsin 1 are conserved in the corresponding region of epsin 2, consistent with the binding of both proteins to Eps15. Epsin 2, like epsin 1, is enriched in brain, is present in a brain-derived clathrin-coated vesicle fraction, is concentrated in the peri-Golgi region and at the cell periphery of transfected cells, and partially colocalizes with clathrin. High overexpression of green fluorescent protein-epsin 2 mislocalizes components of the clathrin coat and inhibits clathrin-mediated endocytosis. The epsins define a new protein family implicated in membrane dynamics at the cell surface.
Collapse
Affiliation(s)
- J A Rosenthal
- Howard Hughes Medical Institute and Department of Cell Biology, Yale University School of Medicine, New Haven, Connecticut 06510, USA
| | | | | | | | | | | | | |
Collapse
|
272
|
Abstract
The EH domain is an evolutionary conserved protein-protein interaction domain present in a growing number of proteins from yeast to mammals. Even though the domain was discovered just 5 years ago, a great deal has been learned regarding its three-dimensional structure and binding specificities. Moreover, a number of cellular ligands of the domain have been identified and demonstrated to define a complex network of protein-protein interactions in the eukaryotic cell. Interestingly, many of the EH-containing and EH-binding proteins display characteristics of endocytic "accessory" proteins, suggesting that the principal function of the EH network is to regulate various steps in endocytosis. In addition, recent evidence suggests that the EH network might work as an "integrator" of signals controlling cellular pathways as diverse as endocytosis, nucleocytosolic export, and ultimately cell proliferation.
Collapse
Affiliation(s)
- E Santolini
- Department of Experimental Oncology, European Institute of Oncology, Milan, Italy
| | | | | | | | | |
Collapse
|
273
|
Weigert R, Silletta MG, Spanò S, Turacchio G, Cericola C, Colanzi A, Senatore S, Mancini R, Polishchuk EV, Salmona M, Facchiano F, Burger KN, Mironov A, Luini A, Corda D. CtBP/BARS induces fission of Golgi membranes by acylating lysophosphatidic acid. Nature 1999; 402:429-33. [PMID: 10586885 DOI: 10.1038/46587] [Citation(s) in RCA: 246] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Membrane fission is essential in intracellular transport. Acyl-coenzyme As (acyl-CoAs) are important in lipid remodelling and are required for fission of COPI-coated vesicles. Here we show that CtBP/BARS, a protein that functions in the dynamics of Golgi tubules, is an essential component of the fission machinery operating at Golgi tubular networks, including Golgi compartments involved in protein transport and sorting. CtBP/BARS-induced fission was preceded by the formation of constricted sites in Golgi tubules, whose extreme curvature is likely to involve local changes in the membrane lipid composition. We find that CtBP/BARS uses acyl-CoA to selectively catalyse the acylation of lysophosphatidic acid to phosphatidic acid both in pure lipidic systems and in Golgi membranes, and that this reaction is essential for fission. Our results indicate a key role for lipid metabolic pathways in membrane fission.
Collapse
Affiliation(s)
- R Weigert
- Department of Cell Biology and Oncology, Istituto di Ricerche Farmacologiche Mario Negri, Santa Maria Imbaro (Chieti), Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
274
|
Piros ET, Shen L, Huang XY. Purification of an EH domain-binding protein from rat brain that modulates the gating of the rat ether-à-go-go channel. J Biol Chem 1999; 274:33677-83. [PMID: 10559257 DOI: 10.1074/jbc.274.47.33677] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mutations in the gene encoding ether-à-go-go (EAG) potassium channel impair the function of several classes of potassium currents, synaptic transmission, and learning in Drosophila. Absence of EAG abolishes the modulation of a broad group of potassium currents. EAG has been proposed to be a regulatory subunit of different potassium channels. To further explore this regulatory role we searched for signaling molecules that associate with EAG protein. We have purified a approximately 95-kDa protein from rat brain membranes that binds to EAG. When co-expressed in mammalian cells this protein coimmunoprecipites with EAG and alters the gating of EAG channels. Expression of this protein is regulated during neuronal differentiation. The protein is identical to the recently reported rat protein epsin, which is an EH domain-binding protein similar to the Xenopus mitotic phosphoprotein MP90. These results show that proteins of the epsin family are modulators of channel activity that may link signaling pathways, or the cell cycle, to EAG and thus to various potassium channel functions.
Collapse
Affiliation(s)
- E T Piros
- Department of Physiology, Cornell University Medical College, New York, New York 10021, USA
| | | | | |
Collapse
|
275
|
Cestra G, Castagnoli L, Dente L, Minenkova O, Petrelli A, Migone N, Hoffmüller U, Schneider-Mergener J, Cesareni G. The SH3 domains of endophilin and amphiphysin bind to the proline-rich region of synaptojanin 1 at distinct sites that display an unconventional binding specificity. J Biol Chem 1999; 274:32001-7. [PMID: 10542231 DOI: 10.1074/jbc.274.45.32001] [Citation(s) in RCA: 109] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The proline-rich domain of synaptojanin 1, a synaptic protein with phosphatidylinositol phosphatase activity, binds to amphiphysin and to a family of recently discovered proteins known as the SH3p4/8/13, the SH3-GL, or the endophilin family. These interactions are mediated by SH3 domains and are believed to play a regulatory role in synaptic vesicle recycling. We have precisely mapped the target peptides on human synaptojanin that are recognized by the SH3 domains of endophilins and amphiphysin and proven that they are distinct. By a combination of different approaches, selection of phage displayed peptide libraries, substitution analyses of peptides synthesized on cellulose membranes, and a peptide scan spanning a 252-residue long synaptojanin fragment, we have concluded that amphiphysin binds to two sites, PIRPSR and PTIPPR, whereas endophilin has a distinct preferred binding site, PKRPPPPR. The comparison of the results obtained by phage display and substitution analysis permitted the identification of proline and arginine at positions 4 and 6 in the PIRPSR and PTIPPR target sequence as the major determinants of the recognition specificity mediated by the SH3 domain of amphiphysin 1. More complex is the structural rationalization of the preferred endophilin ligands where SH3 binding cannot be easily interpreted in the framework of the "classical" type I or type II SH3 binding models. Our results suggest that the binding repertoire of SH3 domains may be more complex than originally predicted.
Collapse
Affiliation(s)
- G Cestra
- Dipartimento di Biologia, Università di Roma Tor Vergata, Rome 00133, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
276
|
Howard L, Nelson KK, Maciewicz RA, Blobel CP. Interaction of the metalloprotease disintegrins MDC9 and MDC15 with two SH3 domain-containing proteins, endophilin I and SH3PX1. J Biol Chem 1999; 274:31693-9. [PMID: 10531379 DOI: 10.1074/jbc.274.44.31693] [Citation(s) in RCA: 143] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Metalloprotease disintegrins (a disintegrin and metalloprotease (ADAM) and metalloprotease, disintegrin, cysteine-rich proteins (MDC)) are a family of membrane-anchored glycoproteins that function in diverse biological processes, including fertilization, neurogenesis, myogenesis, and ectodomain processing of cytokines and other proteins. The cytoplasmic domains of ADAMs often include putative signaling motifs, such as proline-rich SH3 ligand domains, suggesting that interactions with cytoplasmic proteins may affect metalloprotease disintegrin function. Here we report that two SH3 domain-containing proteins, endophilin I (SH3GL2, SH3p4) and a novel SH3 domain- and phox homology (PX) domain-containing protein, termed SH3PX1, can interact with the cytoplasmic domains of the metalloprotease disintegrins MDC9 and MDC15. These interactions were initially identified in a yeast two-hybrid screen and then confirmed using bacterial fusion proteins and co-immunoprecipitations from eukaryotic cells expressing both binding partners. SH3PX1 and endophilin I both preferentially bind the precursor but not the processed form of MDC9 and MDC15 in COS-7 cells. Since rat endophilin I is thought to play a role in synaptic vesicle endocytosis and SH3PX1 has sequence similarity to sorting nexins in yeast, we propose that endophilin I and SH3PX1 may have a role in regulating the function of MDC9 and MDC15 by influencing their intracellular processing, transport, or final subcellular localization.
Collapse
Affiliation(s)
- L Howard
- Cellular Biochemistry Program, Sloan-Kettering Institute, Memorial Sloan-Kettering Cancer Center, New York, New York 10021, USA
| | | | | | | |
Collapse
|
277
|
Tang Y, Hu LA, Miller WE, Ringstad N, Hall RA, Pitcher JA, DeCamilli P, Lefkowitz RJ. Identification of the endophilins (SH3p4/p8/p13) as novel binding partners for the beta1-adrenergic receptor. Proc Natl Acad Sci U S A 1999; 96:12559-64. [PMID: 10535961 PMCID: PMC22990 DOI: 10.1073/pnas.96.22.12559] [Citation(s) in RCA: 113] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Several G-protein coupled receptors, such as the beta1-adrenergic receptor (beta1-AR), contain polyproline motifs within their intracellular domains. Such motifs in other proteins are known to mediate protein-protein interactions such as with Src homology (SH)3 domains. Accordingly, we used the proline-rich third intracellular loop of the beta1-AR either as a glutathione S-transferase fusion protein in biochemical "pull-down" assays or as bait in the yeast two-hybrid system to search for interacting proteins. Both approaches identified SH3p4/p8/p13 (also referred to as endophilin 1/2/3), a SH3 domain-containing protein family, as binding partners for the beta1-AR. In vitro and in human embryonic kidney (HEK) 293 cells, SH3p4 specifically binds to the third intracellular loop of the beta1-AR but not to that of the beta2-AR. Moreover, this interaction is mediated by the C-terminal SH3 domain of SH3p4. Functionally, overexpression of SH3p4 promotes agonist-induced internalization and modestly decreases the Gs coupling efficacy of beta1-ARs in HEK293 cells while having no effect on beta2-ARs. Thus, our studies demonstrate a role of the SH3p4/p8/p13 protein family in beta1-AR signaling and suggest that interaction between proline-rich motifs and SH3-containing proteins may represent a previously underappreciated aspect of G-protein coupled receptor signaling.
Collapse
Affiliation(s)
- Y Tang
- Howard Hughes Medical Institute, Duke University Medical Center, Durham, NC 27710, USA
| | | | | | | | | | | | | | | |
Collapse
|
278
|
Cremona O, Di Paolo G, Wenk MR, Lüthi A, Kim WT, Takei K, Daniell L, Nemoto Y, Shears SB, Flavell RA, McCormick DA, De Camilli P. Essential role of phosphoinositide metabolism in synaptic vesicle recycling. Cell 1999; 99:179-88. [PMID: 10535736 DOI: 10.1016/s0092-8674(00)81649-9] [Citation(s) in RCA: 680] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Growing evidence suggests that phosphoinositides play an important role in membrane traffic. A polyphosphoinositide phosphatase, synaptojanin 1, was identified as a major presynaptic protein associated with endocytic coated intermediates. We report here that synaptojanin 1-deficient mice exhibit neurological defects and die shortly after birth. In neurons of mutant animals, PI(4,5)P2 levels are increased, and clathrin-coated vesicles accumulate in the cytomatrix-rich area that surrounds the synaptic vesicle cluster in nerve endings. In cell-free assays, reduced phosphoinositide phosphatase activity correlated with increased association of clathrin coats with liposomes. Intracellular recording in hippocampal slices revealed enhanced synaptic depression during prolonged high-frequency stimulation followed by delayed recovery. These results provide genetic evidence for a crucial role of phosphoinositide metabolism in synaptic vesicle recycling.
Collapse
Affiliation(s)
- O Cremona
- Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, Connecticut 06510, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
279
|
|
280
|
Schmidt A, Wolde M, Thiele C, Fest W, Kratzin H, Podtelejnikov AV, Witke W, Huttner WB, Söling HD. Endophilin I mediates synaptic vesicle formation by transfer of arachidonate to lysophosphatidic acid. Nature 1999; 401:133-41. [PMID: 10490020 DOI: 10.1038/43613] [Citation(s) in RCA: 436] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Endophilin I is a presynaptic protein of unknown function that binds to dynamin, a GTPase that is implicated in endocytosis and recycling of synaptic vesicles. Here we show that endophilin I is essential for the formation of synaptic-like microvesicles (SLMVs) from the plasma membrane. Endophilin I exhibits lysophosphatidic acid acyl transferase (LPAAT) activity, and endophilin-I-mediated SLMV formation requires the transfer of the unsaturated fatty acid arachidonate to lysophosphatidic acid, converting it to phosphatidic acid. A deletion mutant lacking the SH3 domain through which endophilin I interacts with dynamin still exhibits LPAAT activity but no longer mediates SLMV formation. These results indicate that endophilin I may induce negative membrane curvature by converting an inverted-cone-shaped lipid to a cone-shaped lipid in the cytoplasmic leaflet of the bilayer. We propose that, through this action, endophilin I works with dynamin to mediate synaptic vesicle invagination from the plasma membrane and fission.
Collapse
Affiliation(s)
- A Schmidt
- Max-Planck-Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
281
|
Ringstad N, Gad H, Löw P, Di Paolo G, Brodin L, Shupliakov O, De Camilli P. Endophilin/SH3p4 is required for the transition from early to late stages in clathrin-mediated synaptic vesicle endocytosis. Neuron 1999; 24:143-54. [PMID: 10677033 DOI: 10.1016/s0896-6273(00)80828-4] [Citation(s) in RCA: 270] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Endophilin/SH3p4 is a protein highly enriched in nerve terminals that binds the GTPase dynamin and the polyphosphoinositide phosphatase synaptojanin, two proteins implicated in synaptic vesicle endocytosis. We show here that antibody-mediated disruption of endophilin function in a tonically stimulated synapse leads to a block in the invagination of clathrin-coated pits adjacent to the active zone and therefore to a block of synaptic vesicle recycling. We also show that in a cell-free system, endophilin is not associated with clathrin coats and is a functional partner of dynamin. Our findings suggest that endophilin is part of a biochemical machinery that acts in trans to the clathrin coat from early stages to vesicle fission.
Collapse
Affiliation(s)
- N Ringstad
- Department of Cell Biology, Yale University School of Medicine, New Haven, Connecticut 06510, USA
| | | | | | | | | | | | | |
Collapse
|
282
|
Noakes P, Chin D, Kim S, Liang S, Phillips W. Expression and localisation of dynamin and syntaxin during neural development and neuromuscular synapse formation. J Comp Neurol 1999. [DOI: 10.1002/(sici)1096-9861(19990809)410:4<531::aid-cne2>3.0.co;2-c] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
283
|
Abstract
Endocytosis is crucial for an array of cellular functions and can occur through several distinct mechanisms with the capacity to internalize anything from small molecules to entire cells. The clathrin-mediated endocytic pathway has recently received considerable attention because of (i) the identification of an array of molecules that orchestrate the assembly of clathrin-coated vesicles and the selection of the vesicle cargo and (ii) the resolution of structures for a number of these proteins. Together, these data provide an initial three-dimensional framework for understanding the clathrin endocytic machinery.
Collapse
Affiliation(s)
- M Marsh
- Medical Research Council Laboratory for Molecular Cell Biology and Department of Biochemistry, University College London, Gower Street, London WC1E 6BT, UK.
| | | |
Collapse
|
284
|
Okamoto M, Schoch S, Südhof TC. EHSH1/intersectin, a protein that contains EH and SH3 domains and binds to dynamin and SNAP-25. A protein connection between exocytosis and endocytosis? J Biol Chem 1999; 274:18446-54. [PMID: 10373452 DOI: 10.1074/jbc.274.26.18446] [Citation(s) in RCA: 131] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In yeast two-hybrid screens for proteins that bind to SNAP-25 and may be involved in exocytosis, we isolated a protein called EHSH1 (for EH domain/SH3 domain-containing protein). Cloning of full-length cDNAs revealed that EHSH1 is composed of an N-terminal region with two EH domains, a central region that is enriched in lysine, leucine, glutamate, arginine, and glutamine (KLERQ domain), and a C-terminal region comprised of five SH3 domains. The third SH3 domain is alternatively spliced. Data bank searches demonstrated that EHSH1 is very similar to Xenopus and human intersectins and to human SH3P17. In addition, we identified expressed sequence tags that encode a second isoform of EHSH1, called EHSH2. EHSH1 is abundantly expressed in brain and at lower levels in all other tissues tested. In binding studies, we found that the central KLERQ domain of EHSH1 binds to recombinant or native brain SNAP-25 and SNAP-23. The C-terminal SH3 domains, by contrast, quantitatively interact with dynamin, a protein involved in endocytosis. Dynamin strongly binds to the alternatively spliced central SH3 domain (SH3C) and the two C-terminal SH3 domains (SH3D and SH3E) but not to the N-terminal SH3 domains (SH3A and SH3B). Immunoprecipitations confirmed that both dynamin and SNAP-25 are complexed to EHSH1 in brain. Our data suggest that EHSH1/intersectin may be a novel adaptor protein that couples endocytic membrane traffic to exocytosis. The ability of multiple SH3 domains in EHSH1 to bind to dynamin suggests that EHSH1 can cluster several dynamin molecules in a manner that is regulated by alternative splicing.
Collapse
Affiliation(s)
- M Okamoto
- Center for Basic Neuroscience, Howard Hughes Medical Institute, and the Department of Molecular Genetics, The University of Texas Southwestern Medical School, Dallas Texas 75235, USA
| | | | | |
Collapse
|
285
|
Simpson F, Hussain NK, Qualmann B, Kelly RB, Kay BK, McPherson PS, Schmid SL. SH3-domain-containing proteins function at distinct steps in clathrin-coated vesicle formation. Nat Cell Biol 1999; 1:119-24. [PMID: 10559884 DOI: 10.1038/10091] [Citation(s) in RCA: 224] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Several SH3-domain-containing proteins have been implicated in endocytosis by virtue of their interactions with dynamin; however, their functions remain undefined. Here we report the efficient reconstitution of ATP-, GTP-, cytosol- and dynamin-dependent formation of clathrin-coated vesicles in permeabilized 3T3-L1 cells. The SH3 domains of intersectin, endophilin I, syndapin I and amphiphysin II inhibit coated-vesicle formation in vitro through interactions with membrane-associated proteins. Most of the SH3 domains tested selectively inhibit late events involving membrane fission, but the SH3A domain of intersectin uniquely inhibits intermediate events leading to the formation of constricted coated pits. These results suggest that interactions between SH3 domains and their partners function sequentially in endocytic coated-vesicle formation.
Collapse
Affiliation(s)
- F Simpson
- Department of Cell Biology, Scripps Research Institute, La Jolla, California 92037, USA
| | | | | | | | | | | | | |
Collapse
|
286
|
Nemoto Y, De Camilli P. Recruitment of an alternatively spliced form of synaptojanin 2 to mitochondria by the interaction with the PDZ domain of a mitochondrial outer membrane protein. EMBO J 1999; 18:2991-3006. [PMID: 10357812 PMCID: PMC1171381 DOI: 10.1093/emboj/18.11.2991] [Citation(s) in RCA: 135] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Synaptojanin 1 is an inositol 5'-phosphatase highly enriched in nerve terminals with a putative role in recycling of synaptic vesicles. We have previously described synaptojanin 2, which is more broadly expressed as multiple alternatively spliced forms. Here we have identified and characterized a novel mitochondrial outer membrane protein, OMP25, with a single PDZ domain that specifically binds to a unique motif in the C-terminus of synaptojanin 2A. This motif is encoded by the exon sequence specific to synaptojanin 2A. OMP25 mRNA is widely expressed in rat tissues. OMP25 is localized to the mitochondrial outer membrane via the C-terminal transmembrane region, with the PDZ domain facing the cytoplasm. Overexpression of OMP25 results in perinuclear clustering of mitochondria in transfected cells. This effect is mimicked by enforced expression of synaptojanin 2A on the mitochondrial outer membrane, but not by the synaptojanin 2A mutants lacking the inositol 5'-phosphatase domain. Our findings provide evidence that OMP25 mediates recruitment of synaptojanin 2A to mitochondria and that modulation of inositol phospholipids by synaptojanin 2A may play a role in maintenance of the intracellular distribution of mitochondria.
Collapse
Affiliation(s)
- Y Nemoto
- Department of Cell Biology and Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT 06510, USA
| | | |
Collapse
|
287
|
Okamoto PM, Tripet B, Litowski J, Hodges RS, Vallee RB. Multiple distinct coiled-coils are involved in dynamin self-assembly. J Biol Chem 1999; 274:10277-86. [PMID: 10187814 DOI: 10.1074/jbc.274.15.10277] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Dynamin, a 100-kDa GTPase, has been implicated to be involved in synaptic vesicle recycling, receptor-mediated endocytosis, and other membrane sorting processes. Dynamin self-assembles into helical collars around the necks of coated pits and other membrane invaginations and mediates membrane scission. In vitro, dynamin has been reported to exist as dimers, tetramers, ring-shaped oligomers, and helical polymers. In this study we sought to define self-assembly regions in dynamin. Deletion of two closely spaced sequences near the dynamin-1 C terminus abolished self-association as assayed by co-immunoprecipitation and the yeast interaction trap, and reduced the sedimentation coefficient from 7.5 to 4.5 S. Circular dichroism spectroscopy and equilibrium ultracentrifugation of synthetic peptides revealed coiled-coil formation within the C-terminal assembly domain and at a third, centrally located site. Two of the peptides formed tetramers, supporting a role for each in the monomer-tetramer transition and providing novel insight into the organization of the tetramer. Partial deletions of the C-terminal assembly domain reversed the dominant inhibition of endocytosis by dynamin-1 GTPase mutants. Self-association was also observed between different dynamin isoforms. Taken altogether, our results reveal two distinct coiled-coil-containing assembly domains that can recognize other dynamin isoforms and mediate endocytic inhibition. In addition, our data strongly suggests a parallel model for dynamin subunit self-association.
Collapse
Affiliation(s)
- P M Okamoto
- Department of Cell Biology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
| | | | | | | | | |
Collapse
|
288
|
Sengar AS, Wang W, Bishay J, Cohen S, Egan SE. The EH and SH3 domain Ese proteins regulate endocytosis by linking to dynamin and Eps15. EMBO J 1999; 18:1159-71. [PMID: 10064583 PMCID: PMC1171207 DOI: 10.1093/emboj/18.5.1159] [Citation(s) in RCA: 189] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Clathrin-mediated endocytosis is a multistep process which requires interaction between a number of conserved proteins. We have cloned two mammalian genes which code for a number of endocytic adaptor proteins. Two of these proteins, termed Ese1 and Ese2, contain two N-terminal EH domains, a central coiled-coil domain and five C-terminal SH3 domains. Ese1 is constitutively associated with Eps15 proteins to form a complex with at least 14 protein-protein interaction surfaces. Yeast two-hybrid assays have revealed that Ese1 EH and SH3 domains bind epsin family proteins and dynamin, respectively. Overexpression of Ese1 is sufficient to block clathrin-mediated endocytosis in cultured cells, presumably through disruption of higher order protein complexes, which are assembled on the endogenous Ese1-Eps15 scaffold. The Ese1-Eps15 scaffold therefore links dynamin, epsin and other endocytic pathway components.
Collapse
Affiliation(s)
- A S Sengar
- Programs of Cancer and Blood Research, and Developmental Biology, The Hospital for Sick Children, 555 University Avenue, Toronto, Ontario, M5G 1X8, Canada.
| | | | | | | | | |
Collapse
|
289
|
Kudo M, Saito S, Sakagami H, Suzaki H, Kondo H. Localization of mRNAs for synaptojanin isoforms in the brain of developing and mature rats. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 1999; 64:179-85. [PMID: 9931483 DOI: 10.1016/s0169-328x(98)00322-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The localization of mRNAs for synaptojanin 1 and 2, inositol 5-phosphatases, in the brain was examined by in situ hybridization histochemistry. Synaptojanin 1 mRNA was detected in almost all neurons of the central nervous system throughout developing and mature stages, although its splicing variant (synaptojanin 1-p145-I) mRNA was expressed dominantly in forebrain and cerebellar cortex. Synaptojanin 2 mRNA was first detected in neurons of the olfactory bulb, the cerebral cortex, the hippocampus, and the cerebellar cortex on early postnatal days. As the postnatal development proceeded, the expression signal was evident in the white matters, presumptive oligodendrocytes, with the clear expression remaining in neurons of the olfactory tubercle, hippocampal pyramidal cells and cerebellar Purkinje cells.
Collapse
Affiliation(s)
- M Kudo
- Division of Histology, Department of Cell Biology, Graduate School of Medical Science, Tohoku University, 2-1, Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan
| | | | | | | | | |
Collapse
|
290
|
Chen H, Slepnev VI, Di Fiore PP, De Camilli P. The interaction of epsin and Eps15 with the clathrin adaptor AP-2 is inhibited by mitotic phosphorylation and enhanced by stimulation-dependent dephosphorylation in nerve terminals. J Biol Chem 1999; 274:3257-60. [PMID: 9920862 DOI: 10.1074/jbc.274.6.3257] [Citation(s) in RCA: 102] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Clathrin-mediated endocytosis was shown to be arrested in mitosis due to a block in the invagination of clathrin-coated pits. A Xenopus mitotic phosphoprotein, MP90, is very similar to an abundant mammalian nerve terminal protein, epsin, which binds the Eps15 homology (EH) domain of Eps15 and the alpha-adaptin subunit of the clathrin adaptor AP-2. We show here that both rat epsin and Eps15 are mitotic phosphoproteins and that their mitotic phosphorylation inhibits binding to the appendage domain of alpha-adaptin. Both epsin and Eps15, like other cytosolic components of the synaptic vesicle endocytic machinery, undergo constitutive phosphorylation and depolarization-dependent dephosphorylation in nerve terminals. Furthermore, their binding to AP-2 in brain extracts is enhanced by dephosphorylation. Epsin together with Eps15 was proposed to assist the clathrin coat in its dynamic rearrangements during the invagination/fission reactions. Their mitotic phosphorylation may be one of the mechanisms by which the invagination of clathrin-coated pits is blocked in mitosis and their stimulation-dependent dephosphorylation at synapses may contribute to the compensatory burst of endocytosis after a secretory stimulus.
Collapse
Affiliation(s)
- H Chen
- Howard Hughes Medical Institute and Department of Cell Biology, Yale University School of Medicine, New Haven Connecticut 06510, USA
| | | | | | | |
Collapse
|
291
|
Qualmann B, Roos J, DiGregorio PJ, Kelly RB. Syndapin I, a synaptic dynamin-binding protein that associates with the neural Wiskott-Aldrich syndrome protein. Mol Biol Cell 1999; 10:501-13. [PMID: 9950691 PMCID: PMC25183 DOI: 10.1091/mbc.10.2.501] [Citation(s) in RCA: 241] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/1998] [Accepted: 11/16/1998] [Indexed: 11/11/2022] Open
Abstract
The GTPase dynamin has been clearly implicated in clathrin-mediated endocytosis of synaptic vesicle membranes at the presynaptic nerve terminal. Here we describe a novel 52-kDa protein in rat brain that binds the proline-rich C terminus of dynamin. Syndapin I (synaptic, dynamin-associated protein I) is highly enriched in brain where it exists in a high molecular weight complex. Syndapin I can be involved in multiple protein-protein interactions via a src homology 3 (SH3) domain at the C terminus and two predicted coiled-coil stretches. Coprecipitation studies and blot overlay analyses revealed that syndapin I binds the brain-specific proteins dynamin I, synaptojanin, and synapsin I via an SH3 domain-specific interaction. Coimmunoprecipitation of dynamin I with antibodies recognizing syndapin I and colocalization of syndapin I with dynamin I at vesicular structures in primary neurons indicate that syndapin I associates with dynamin I in vivo and may play a role in synaptic vesicle endocytosis. Furthermore, syndapin I associates with the neural Wiskott-Aldrich syndrome protein, an actin-depolymerizing protein that regulates cytoskeletal rearrangement. These characteristics of syndapin I suggest a molecular link between cytoskeletal dynamics and synaptic vesicle recycling in the nerve terminal.
Collapse
Affiliation(s)
- B Qualmann
- Department of Biochemistry and Biophysics and the Hormone Research Institute, University of California, San Francisco, California 94143-0534, USA
| | | | | | | |
Collapse
|
292
|
Zechner U, Scheel S, Hemberger M, Hopp M, Haaf T, Fundele R, Wanker EE, Lehrach H, Wedemeyer N, Himmelbauer H. Characterization of the mouse Src homology 3 domain gene Sh3d2c on Chr 7 demonstrates coexpression with huntingtin in the brain and identifies the processed pseudogene Sh3d2c-ps1 on Chr 2. Genomics 1998; 54:505-10. [PMID: 9878254 DOI: 10.1006/geno.1998.5584] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Formation of intracellular protein complexes is often mediated by Src homology 3 domain-containing proteins interacting with proline-rich target sequences on other proteins. The Sh3d2c gene or its rat/human orthologs have been implicated in synaptic vesicle recycling due to interaction with dynamin I and synaptojanin in nerve terminals. In a yeast two-hybrid system, association with a huntingtin fragment containing an elongated stretch of polyglutamines was observed recently. By genetic mapping and fluorescence in situ hybridization we demonstrate the localization of Sh3d2c on mouse chromosome 7. A processed pseudogene of Sh3d2c, Sh3d2c-ps1, was identified and mapped to mouse chromosome 2. Using RNA in situ hybridization, we show that Sh3d2c is transcribed in various regions of the brain. The striatum, hippocampus, cortex, basal hypothalamus, brain stem, and cerebellum are the most prominent sites of expression. Because huntingtin and Sh3d2c are coexpressed in most regions of the brain, it can be speculated that there is a link between the association of huntingtin/Sh3d2c and the pathogenesis of Huntington disease.
Collapse
Affiliation(s)
- U Zechner
- Max-Planck-Institute for Molecular Genetics, Ihnestrasse 73, Berlin-Dahlem, D14195, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
293
|
Yamabhai M, Hoffman NG, Hardison NL, McPherson PS, Castagnoli L, Cesareni G, Kay BK. Intersectin, a novel adaptor protein with two Eps15 homology and five Src homology 3 domains. J Biol Chem 1998; 273:31401-7. [PMID: 9813051 DOI: 10.1074/jbc.273.47.31401] [Citation(s) in RCA: 224] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We screened a Xenopus laevis oocyte cDNA expression library with a Src homology 3 (SH3) class II peptide ligand and identified a 1270-amino acid-long protein containing two Eps15 homology (EH) domains, a central coiled-coil region, and five SH3 domains. We named this protein Intersectin, because it potentially brings together EH and SH3 domain-binding proteins into a macromolecular complex. The ligand preference of the EH domains were deduced to be asparajine-proline-phenylalanine (NPF) or cyclized NPF (CX1-2NPFXXC), depending on the type of phage-displayed combinatorial peptide library used. Screens of a mouse embryo cDNA library with the EH domains of Intersectin yielded clones for the Rev-associated binding/Rev-interacting protein (RAB/Rip) and two novel proteins, which we named Intersectin-binding proteins (Ibps) 1 and 2. All three proteins contain internal and C-terminal NPF peptide sequences, and Ibp1 and Ibp2 also contain putative clathrin-binding sites. Deletion of the C-terminal sequence, NPFL-COOH, from RAB/Rip eliminated EH domain binding, whereas fusion of the same peptide sequence to glutathione S-transferase generated strong binding to the EH domains of Intersectin. Several experiments support the conclusion that the free carboxylate group contributes to binding of the NPFL motif at the C terminus of RAB/Rip to the EH domains of Intersectin. Finally, affinity selection experiments with the SH3 domains of Intersectin identified two endocytic proteins, dynamin and synaptojanin, as potential interacting proteins. We propose that Intersectin is a component of the endocytic machinery.
Collapse
Affiliation(s)
- M Yamabhai
- Department of Pharmacology, University of Wisconsin, Madison, Wisconsin 53706-1532, USA
| | | | | | | | | | | | | |
Collapse
|
294
|
Singer-Krüger B, Nemoto Y, Daniell L, Ferro-Novick S, De Camilli P. Synaptojanin family members are implicated in endocytic membrane traffic in yeast. J Cell Sci 1998; 111 ( Pt 22):3347-56. [PMID: 9788876 DOI: 10.1242/jcs.111.22.3347] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The synaptojanins represent a subfamily of inositol 5′-phosphatases that contain an NH2-terminal Sac1p homology domain. A nerve terminal-enriched synaptojanin, synaptojanin 1, was previously proposed to participate in the endocytosis of synaptic vesicles and actin function. The genome of Saccharomyces cerevisiae contains three synaptojanin-like genes (SJL1, SJL2 and SJL3), none of which is essential for growth. We report here that a yeast mutant lacking SJL1 and SJL2 (Deltasjl1 Deltasjl2) exhibits a severe defect in receptor-mediated and fluid-phase endocytosis. A less severe endocytic defect is present in a Deltasjl2 Deltasjl3 mutant, while endocytosis is normal in a Deltasjl1 Deltasjl3 mutant. None of the mutants are impaired in invertase secretion. The severity of the endocytic impairment of the sjl double mutants correlates with the severity of actin and polarity defects. Furthermore, the deletion of SJL1 suppresses the temperature-sensitive growth defect of sac6, a mutant in yeast fimbrin, supporting a role for synaptojanin family members in actin function. These findings provide a first direct evidence for a role of synaptojanin family members in endocytosis and provide further evidence for a close link between endocytosis and actin function.
Collapse
Affiliation(s)
- B Singer-Krüger
- Howard Hughes Medical Institute and Department of Cell Biology, Yale University School of Medicine, New Haven CT, USA
| | | | | | | | | |
Collapse
|
295
|
Abstract
We have established a system that reconstitutes the biogenesis of synaptic-like microvesicles (SLMVs) in perforated cells of the rat neuroendocrine cell line PC12. The system is based on the biotinylation of synaptophysin, a marker of synaptic vesicles and SLMVs. Biotinylation is performed at 18 degrees C, a temperature at which formation of SLMVs is blocked and biotinylated synaptophysin accumulates in the SLMV donor compartment. The biotinylated PC12 cells are then perforated by scraping and incubated at 37 degrees C in the presence of ATP and cytosolic proteins, conditions required for SLMV biogenesis. After the perforated-cell reaction, the newly formed SLMVs are isolated by differential centrifugation followed by either glycerol gradient centrifugation or a simple single-glycerol-step centrifugation. The latter allows the analysis of many perforated-cell reactions in parallel and, hence, the dissection of the molecular machinery mediating SLMV biogenesis. Using this system, we have found that clathrin, dynamin, phosphatidylinositol transfer protein, and SH3P4 are involved in SLMV biogenesis.
Collapse
Affiliation(s)
- A Schmidt
- Department of Neurobiology, University of Heidelberg, Im Neuenheimer Feld 364, Heidelberg, D-69120, Germany
| | | |
Collapse
|
296
|
Sittler A, Wälter S, Wedemeyer N, Hasenbank R, Scherzinger E, Eickhoff H, Bates GP, Lehrach H, Wanker EE. SH3GL3 associates with the Huntingtin exon 1 protein and promotes the formation of polygln-containing protein aggregates. Mol Cell 1998; 2:427-36. [PMID: 9809064 DOI: 10.1016/s1097-2765(00)80142-2] [Citation(s) in RCA: 156] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The mechanism by which aggregated polygins cause the selective neurodegeneration in Huntington's disease (HD) is unknown. Here, we show that the SH3GL3 protein, which is preferentially expressed in brain and testis, selectively interacts with the HD exon 1 protein (HDex1p) containing a glutamine repeat in the pathological range and promotes the formation of insoluble polyglutamine-containing aggregates in vivo. The C-terminal SH3 domain in SH3GL3 and the proline-rich region in HDex1p are essential for the interaction. Coimmunoprecipitations and immunofluorescence studies revealed that SH3GL3 and HDex1p colocalize in transfected COS cells. Additionally, an anti-SH3GL3 antibody was also able to coimmunoprecipitate the full-length huntingtin from an HD human brain extract. The characteristics of the interaction between SH3GL3 and huntingtin and the colocalization of the two proteins suggest that SH3GL3 could be involved in the selective neuronal cell death in HD.
Collapse
Affiliation(s)
- A Sittler
- Max-Planck-Institut für Molekulare Genetik, Berlin, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
297
|
Owen DJ, Wigge P, Vallis Y, Moore JD, Evans PR, McMahon HT. Crystal structure of the amphiphysin-2 SH3 domain and its role in the prevention of dynamin ring formation. EMBO J 1998; 17:5273-85. [PMID: 9736607 PMCID: PMC1170855 DOI: 10.1093/emboj/17.18.5273] [Citation(s) in RCA: 141] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The amphiphysins are brain-enriched proteins, implicated in clathrin-mediated endocytosis, that interact with dynamin through their SH3 domains. To elucidate the nature of this interaction, we have solved the crystal structure of the amphiphysin-2 (Amph2) SH3 domain to 2.2 A. The structure possesses several notable features, including an extensive patch of negative electrostatic potential covering a large portion of its dynamin binding site. This patch accounts for the specific requirement of amphiphysin for two arginines in the proline-rich binding motif to which it binds on dynamin. We demonstrate that the interaction of dynamin with amphiphysin SH3 domains, unlike that with SH3 domains of Grb2 or spectrin, prevents dynamin self-assembly into rings. Deletion of a unique insert in the n-Src loop of Amph2 SH3, a loop adjacent to the dynamin binding site, significantly reduces this effect. Conversely, replacing the n-Src loop of the N-terminal SH3 domain of Grb2 with that of Amph2 causes it to favour dynamin ring disassembly. Transferrin uptake assays show that shortening the n-Src loop of Amph2 SH3 reduces the ability of this domain to inhibit endocytosis in vivo. Our data suggest that amphiphysin SH3 domains are important regulators of the multimerization cycle of dynamin in endocytosis.
Collapse
Affiliation(s)
- D J Owen
- MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 2QH, UK
| | | | | | | | | | | |
Collapse
|
298
|
Chen H, Fre S, Slepnev VI, Capua MR, Takei K, Butler MH, Di Fiore PP, De Camilli P. Epsin is an EH-domain-binding protein implicated in clathrin-mediated endocytosis. Nature 1998; 394:793-7. [PMID: 9723620 DOI: 10.1038/29555] [Citation(s) in RCA: 371] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
During endocytosis, clathrin and the clathrin adaptor protein AP-2, assisted by a variety of accessory factors, help to generate an invaginated bud at the cell membrane. One of these factors is Eps15, a clathrin-coat-associated protein that binds the alpha-adaptin subunit of AP-2. Here we investigate the function of Eps15 by characterizing an important binding partner for its region containing EH domains; this protein, epsin, is closely related to the Xenopus mitotic phosphoprotein MP90 and has a ubiquitous tissue distribution. It is concentrated together with Eps15 in presynaptic nerve terminals, which are sites specialized for the clathrin-mediated endocytosis of synaptic vesicles. The central region of epsin binds AP-2 and its carboxy-terminal region binds Eps15. Epsin is associated with clathrin coats in situ, can be co-precipitated with AP-2 and Eps15 from brain extracts, but does not co-purify with clathrin coat components in a clathrin-coated vesicle fraction. When epsin function is disrupted, clathrin-mediated endocytosis is blocked. We propose that epsin may participate, together with Eps15, in the molecular rearrangement of the clathrin coats that are required for coated-pit invagination and vesicle fission.
Collapse
Affiliation(s)
- H Chen
- Howard Hughes Medical Institute and Department of Cell Biology, Yale University School of Medicine, New Haven, Connecticut 06510, USA
| | | | | | | | | | | | | | | |
Collapse
|
299
|
Slepnev VI, Ochoa GC, Butler MH, Grabs D, De Camilli P. Role of phosphorylation in regulation of the assembly of endocytic coat complexes. Science 1998; 281:821-4. [PMID: 9694653 DOI: 10.1126/science.281.5378.821] [Citation(s) in RCA: 261] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Clathrin-mediated endocytosis involves cycles of assembly and disassembly of clathrin coat components and their accessory proteins. Dephosphorylation of rat brain extract was shown to promote the assembly of dynamin 1, synaptojanin 1, and amphiphysin into complexes that also included clathrin and AP-2. Phosphorylation of dynamin 1 and synaptojanin 1 inhibited their binding to amphiphysin, whereas phosphorylation of amphiphysin inhibited its binding to AP-2 and clathrin. Thus, phosphorylation regulates the association and dissociation cycle of the clathrin-based endocytic machinery, and calcium-dependent dephosphorylation of endocytic proteins could prepare nerve terminals for a burst of endocytosis.
Collapse
Affiliation(s)
- V I Slepnev
- Howard Hughes Medical Institute and Department of Cell Biology, Yale University School of Medicine, 295 Congress Avenue, New Haven, CT 06510, USA
| | | | | | | | | |
Collapse
|
300
|
Abstract
Dynamin's role in clathrin-mediated endocytosis is now well established. Here we review new evidence from the past two years for the function of dynamin and related GTPases in other Intracellular trafficking events. We then summarize current information on the domain structure and function of this multidomain GTPase. Finally, we describe dynamin partners and their function in the context of clathrin-mediated endocytosis.
Collapse
Affiliation(s)
- S L Schmid
- Department of Cell Biology, Scripps Research Institute, La Jolla, CA 92037, USA
| | | | | |
Collapse
|