251
|
Abstract
The normal milieu of the kidney includes hypoxia, large osmotic fluxes, and an enormous amount of fluid/solute reabsorption. Renal adaptation to these conditions requires a host of molecular chaperones that stabilize protein conformation, target nascent proteins to their final intracellular destination, and prevent protein aggregation. Under physiologic or pharmacologic stress, inducible molecular chaperones provide additional mechanisms for repairing or degrading non-native proteins and for inhibiting stress-induced apoptosis. In contrast to intracellular chaperones, chaperones present on the cell surface regulate the immune system and have cytokine-like effects. A diverse range of chaperones and chaperone functions provide the renal cell with an armamentarium of responses to improve the chances of survival.
Collapse
Affiliation(s)
- Steven C Borkan
- Evans Biomedical Research Center, Boston Medical Center, Renal Section, 650 Albany Street, Boston, Massachusetts 02118-2518, USA.
| | | |
Collapse
|
252
|
Abstract
OBJECTIVES This paper reviews results of our studies examining the regulation of endoplasmic reticulum (ER) stress proteins by valproate (VPA). and discusses the possible implications in bipolar disorder. METHODS Our previous studies in the field are reviewed along with relevant literature. RESULTS Using differential display PCR, we identified GRP78 as a VPA-regulated gene in rat cerebral cortex. We also showed that other members of the ER stress proteins family, GRP94 and calreticulin, are also upregulated by VPA. Immunohistochemistry identified that ER stress proteins are increased in frontal and parietal cortex, as well as regions of the hippocampus in rat brain following chronic treatment with VPA. CONCLUSIONS Regulation of ER stress proteins by VPA may prove to be important to the mechanism of action of the drug. The neuroprotective role of these proteins may also prove to be involved in the pathophysiology of bipolar disorder.
Collapse
Affiliation(s)
- Christopher D Bown
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, Ontario, Canada
| | | | | | | |
Collapse
|
253
|
Rao RV, Peel A, Logvinova A, del Rio G, Hermel E, Yokota T, Goldsmith PC, Ellerby LM, Ellerby HM, Bredesen DE. Coupling endoplasmic reticulum stress to the cell death program: role of the ER chaperone GRP78. FEBS Lett 2002; 514:122-8. [PMID: 11943137 PMCID: PMC3971841 DOI: 10.1016/s0014-5793(02)02289-5] [Citation(s) in RCA: 475] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Alterations in Ca(2+) homeostasis and accumulation of unfolded proteins in the endoplasmic reticulum (ER) lead to an ER stress response. Prolonged ER stress may lead to cell death. Glucose-regulated protein (GRP) 78 (Bip) is an ER lumen protein whose expression is induced during ER stress. GRP78 is involved in polypeptide translocation across the ER membrane, and also acts as an apoptotic regulator by protecting the host cell against ER stress-induced cell death, although the mechanism by which GRP78 exerts its cytoprotective effect is not understood. The present study was carried out to determine whether one of the mechanisms of cell death inhibition by GRP78 involves inhibition of caspase activation. Our studies indicate that treatment of cells with ER stress inducers causes GRP78 to redistribute from the ER lumen with subpopulations existing in the cytosol and as an ER transmembrane protein. GRP78 inhibits cytochrome c-mediated caspase activation in a cell-free system, and expression of GRP78 blocks both caspase activation and caspase-mediated cell death. GRP78 forms a complex with caspase-7 and -12 and prevents release of caspase-12 from the ER. Addition of (d)ATP dissociates this complex and may facilitate movement of caspase-12 into the cytoplasm to set in motion the cytosolic component of the ER stress-induced apoptotic cascade. These results define a novel protective role for GRP78 in preventing ER stress-induced cell death.
Collapse
Affiliation(s)
- Rammohan V. Rao
- Buck Institute for Age Research, 8001 Redwood Boulevard, Novato, CA 94945-1400, USA
| | - Alyson Peel
- Buck Institute for Age Research, 8001 Redwood Boulevard, Novato, CA 94945-1400, USA
| | - Anna Logvinova
- Buck Institute for Age Research, 8001 Redwood Boulevard, Novato, CA 94945-1400, USA
| | - Gabriel del Rio
- Buck Institute for Age Research, 8001 Redwood Boulevard, Novato, CA 94945-1400, USA
| | - Evan Hermel
- Touro University College of Osteopathic Medicine, Vallejo, CA 94592, USA
| | - Takanori Yokota
- Buck Institute for Age Research, 8001 Redwood Boulevard, Novato, CA 94945-1400, USA
| | - Paul C. Goldsmith
- Buck Institute for Age Research, 8001 Redwood Boulevard, Novato, CA 94945-1400, USA
| | - Lisa M. Ellerby
- Buck Institute for Age Research, 8001 Redwood Boulevard, Novato, CA 94945-1400, USA
| | - H. Michael Ellerby
- Buck Institute for Age Research, 8001 Redwood Boulevard, Novato, CA 94945-1400, USA
| | - Dale E. Bredesen
- Buck Institute for Age Research, 8001 Redwood Boulevard, Novato, CA 94945-1400, USA
- Corresponding author. Fax: (1)-415-209 2230. (H.M. Ellerby), (D.E. Bredesen)
| |
Collapse
|
254
|
Moise AR, Grant JR, Vitalis TZ, Jefferies WA. Adenovirus E3-6.7K maintains calcium homeostasis and prevents apoptosis and arachidonic acid release. J Virol 2002; 76:1578-87. [PMID: 11799152 PMCID: PMC135875 DOI: 10.1128/jvi.76.4.1578-1587.2002] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
E3-6.7K is a small and hydrophobic membrane glycoprotein encoded by the E3 region of subgroup C adenovirus. Recently, E3-6.7K has been shown to be required for the downregulation of tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) receptors by the adenovirus E3/10.4K and E3/14.5K complex of proteins. We demonstrate here that E3-6.7K has additional protective roles, independent of other virus proteins. In transfected Jurkat T-cell lymphoma cells, E3-6.7K was found to maintain endoplasmic reticulum-Ca(2+) homeostasis and inhibit the induction of apoptosis by thapsigargin. The presence of E3-6.7K also lead to a reduction in the TNF-induced release of arachidonic acid from transfected U937 human histiocytic lymphoma cells. In addition, E3-6.7K protected cells against apoptosis induced through Fas, TNF receptor, and TRAIL receptors. Therefore, E3-6.7K confers a wide range of protective effects against both Ca(2+) flux-induced and death receptor-mediated apoptosis.
Collapse
Affiliation(s)
- Alexander R Moise
- Biotechnology Laboratory, Biomedical Research Centre, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | | | | | | |
Collapse
|
255
|
Suzuki T, Spitz DR, Gandhi P, Lin HY, Crawford DR. Mammalian resistance to oxidative stress: a comparative analysis. Gene Expr 2002; 10:179-91. [PMID: 12173744 PMCID: PMC5977517 DOI: 10.3727/000000002783992442] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/31/2001] [Indexed: 11/24/2022]
Abstract
Changes in gene expression represent a major protective mechanism, and enforced overexpression of individual genes has been shown to protect cells. However, no large-scale comparison of genes involved in mammalian oxidative stress protection has yet been described. Using filter microarray and restriction fragment differential display technology, hydrogen peroxide (H2O2)-resistant variants of hamster HA-1 fibroblasts and human HL-60 promyelocytes were found to possess a surprising lack of commonality in specific modulated genes with the single exception of catalase, supporting the hypothesis that catalase overexpression is critical for resistance to H2O2. Comparison of two cell lines from the same species (hamster) selected with an exogenous oxidative stressing agent (H2O2) and an endogenous metabolic oxidative stressing agent (95% O2) also revealed little commonality in modulation of specific mRNAs with the exception of glutathione S-transferase enzymes and catalase. Acute oxidative stress in HL-60 led to the modulation of a limited subset of the genes associated with chronic oxidative stress resistance. Overall, these results suggest that mammalian resistance to oxidative and perhaps other stress does not require a significant number of common genes but rather only a limited number of key genes (e.g., catalase in our model systems) in combination with others that are cell type and stress agent specific.
Collapse
Affiliation(s)
- Toshihide Suzuki
- *Laboratory of Forensic Chemistry, Faculty of Pharmaceutical Sciences, Teikyo University, 1091-1 Sagamiko-machi, Tsukui-gun, Kanagawa 199-01Japan
| | - Douglas R. Spitz
- †Free Radical and Radiation Biology Program, Department of Radiation Oncology, The University of Iowa, Iowa City, IA 52242
| | - Purvee Gandhi
- ‡Center for Immunology and Microbial Disease, The Albany Medical College, Albany, NY 12208
| | - H. Y. Lin
- §Center for Cell Biology and Cancer Research, The Albany Medical College, Albany, NY 12208
| | - Dana R. Crawford
- ‡Center for Immunology and Microbial Disease, The Albany Medical College, Albany, NY 12208
- Address correspondence to Dana R. Crawford, Ph.D., Center for Immunology and Microbial Disease MC-151, The Albany Medical College, Albany, NY 12208. Tel: (518) 262-6652; Fax: (518) 262-6161; E-mail:
| |
Collapse
|
256
|
Siman R, Flood DG, Thinakaran G, Neumar RW. Endoplasmic reticulum stress-induced cysteine protease activation in cortical neurons: effect of an Alzheimer's disease-linked presenilin-1 knock-in mutation. J Biol Chem 2001; 276:44736-43. [PMID: 11574534 DOI: 10.1074/jbc.m104092200] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Endoplasmic reticulum (ER) stress elicits protective responses of chaperone induction and translational suppression and, when unimpeded, leads to caspase-mediated apoptosis. Alzheimer's disease-linked mutations in presenilin-1 (PS-1) reportedly impair ER stress-mediated protective responses and enhance vulnerability to degeneration. We used cleavage site-specific antibodies to characterize the cysteine protease activation responses of primary mouse cortical neurons to ER stress and evaluate the influence of a PS-1 knock-in mutation on these and other stress responses. Two different ER stressors lead to processing of the ER-resident protease procaspase-12, activation of calpain, caspase-3, and caspase-6, and degradation of ER and non-ER protein substrates. Immunocytochemical localization of activated caspase-3 and a cleaved substrate of caspase-6 confirms that caspase activation extends into the cytosol and nucleus. ER stress-induced proteolysis is unchanged in cortical neurons derived from the PS-1 P264L knock-in mouse. Furthermore, the PS-1 genotype does not influence stress-induced increases in chaperones Grp78/BiP and Grp94 or apoptotic neurodegeneration. A similar lack of effect of the PS-1 P264L mutation on the activation of caspases and induction of chaperones is observed in fibroblasts. Finally, the PS-1 knock-in mutation does not alter activation of the protein kinase PKR-like ER kinase (PERK), a trigger for stress-induced translational suppression. These data demonstrate that ER stress in cortical neurons leads to activation of several cysteine proteases within diverse neuronal compartments and indicate that Alzheimer's disease-linked PS-1 mutations do not invariably alter the proteolytic, chaperone induction, translational suppression, and apoptotic responses to ER stress.
Collapse
Affiliation(s)
- R Siman
- University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, USA.
| | | | | | | |
Collapse
|
257
|
Núñez MT, Osorio A, Tapia V, Vergara A, Mura CV. Iron-induced oxidative stress up-regulates calreticulin levels in intestinal epithelial (Caco-2) cells. J Cell Biochem 2001; 82:660-5. [PMID: 11500943 DOI: 10.1002/jcb.1194] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Calreticulin, a molecular chaperone involved in the folding of endoplasmic reticulum synthesized proteins, is also a shock protein induced by heat, food deprivation, and chemical stress. Mobilferrin, a cytosolic isoform of calreticulin, has been proposed to be an iron carrier for iron recently incoming into intestinal cells. To test the hypothesis that iron could affect calreticulin expression, we investigated the possible associations of calreticulin with iron metabolism. To that end, using Caco-2 cells as a model of intestinal epithelium, the mass and mRNA levels of calreticulin were evaluated as a function of the iron concentration in the culture media. Increasing the iron content in the culture from 1 to 20 microM produced an increase in calreticulin mRNA and a two-fold increase in calreticulin. Increasing iron also induced oxidative damage to proteins, as assessed by the formation of 4-hydroxy-2-nonenal adducts. Co-culture of cells with the antioxidants quercetin, dimethyltiourea and N-acetyl cysteine abolished both the iron-induced oxidative damage and the iron-induced increase in calreticulin. We postulate that the iron-induced expression of calreticulin is part of the cellular response to oxidative stress generated by iron.
Collapse
Affiliation(s)
- M T Núñez
- Department of Biology, Faculty of Sciences, University of Chile, Santiago, Chile.
| | | | | | | | | |
Collapse
|
258
|
Zhang C, Cai Y, Adachi MT, Oshiro S, Aso T, Kaufman RJ, Kitajima S. Homocysteine induces programmed cell death in human vascular endothelial cells through activation of the unfolded protein response. J Biol Chem 2001; 276:35867-74. [PMID: 11447214 DOI: 10.1074/jbc.m100747200] [Citation(s) in RCA: 215] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Severe hyperhomocysteinemia is associated with endothelial cell injury that may contribute to an increased incidence of thromboembolic disease. In this study, homocysteine induced programmed cell death in human umbilical vein endothelial cells as measured by TdT-mediated dUTP nick end labeling assay, DNA ladder formation, induction of caspase 3-like activity, and cleavage of procaspase 3. Homocysteine-induced cell death was specific to homocysteine, was not mediated by oxidative stress, and was mimicked by inducers of the unfolded protein response (UPR), a signal transduction pathway activated by the accumulation of unfolded proteins in the lumen of the endoplasmic reticulum. Dominant negative forms of the endoplasmic reticulum-resident protein kinases IRE1alpha and -beta, which function as signal transducers of the UPR, prevented the activation of glucose-regulated protein 78/immunoglobulin chain-binding protein and C/EBP homologous protein/growth arrest and DNA damage-inducible protein 153 in response to homocysteine. Furthermore, overexpression of the point mutants of IRE1 with defective RNase more effectively suppressed the cell death than the kinase-defective mutant. These results indicate that homocysteine induces apoptosis in human umbilical vein endothelial cells by activation of the UPR and is signaled through IRE1. The studies implicate that the UPR may cause endothelial cell injury associated with severe hyperhomocysteinemia.
Collapse
Affiliation(s)
- C Zhang
- Department of Biochemical Genetics, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| | | | | | | | | | | | | |
Collapse
|
259
|
Rao RV, Hermel E, Castro-Obregon S, del Rio G, Ellerby LM, Ellerby HM, Bredesen DE. Coupling endoplasmic reticulum stress to the cell death program. Mechanism of caspase activation. J Biol Chem 2001; 276:33869-74. [PMID: 11448953 DOI: 10.1074/jbc.m102225200] [Citation(s) in RCA: 447] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The endoplasmic reticulum (ER) is the site of assembly of polypeptide chains destined for secretion or routing into various subcellular compartments. It also regulates cellular responses to stress and intracellular Ca(2+) levels. A variety of toxic insults can result in ER stress that ultimately leads to apoptosis. Apoptosis is initiated by the activation of members of the caspase family and serves as a central mechanism in the cell death process. The present study was carried out to determine the role of caspases in triggering ER stress-induced cell death. Treatment of cells with ER stress inducers such as brefeldin-A or thapsigargin induces the expression of caspase-12 protein and also leads to translocation of cytosolic caspase-7 to the ER surface. Caspase-12, like most other members of the caspase family, requires cleavage of the prodomain to activate its proapoptotic form. Caspase-7 associates with caspase-12 and cleaves the prodomain to generate active caspase-12, resulting in increased cell death. We propose that any cellular insult that causes prolonged ER stress may induce apoptosis through caspase-7-mediated caspase-12 activation. The data underscore the involvement of ER and caspases associated with it in the ER stress-induced apoptotic process.
Collapse
Affiliation(s)
- R V Rao
- Buck Institute for Age Research, 8001 Redwood Blvd, Novato, California 94945, USA
| | | | | | | | | | | | | |
Collapse
|
260
|
Ren H, Musch MW, Kojima K, Boone D, Ma A, Chang EB. Short-chain fatty acids induce intestinal epithelial heat shock protein 25 expression in rats and IEC 18 cells. Gastroenterology 2001; 121:631-9. [PMID: 11522747 DOI: 10.1053/gast.2001.27028] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
BACKGROUND & AIMS Because short-chain fatty acids (SCFAs) and heat shock proteins (hsps) confer protection to intestinal epithelia cells (IECs), we studied whether SCFAs modulate IEC hsp expression. METHODS Hsp 25, hsp72, and hsc73 protein expression in rat intestinal tissues and IEC-18 cells were determined by Western blot and immunohistochemistry. Cell survival under conditions of oxidant stress (monochloramine) was determined using (51)Cr release in hsp25 cDNA anti-sense and sense-transfected cells expressing minimal and increased hsp25, respectively. RESULTS Butyrate induces a time- and concentration-dependent increase in hsp25, but not hsp72 or hsc73, protein expression in rat IEC-18 cells but not 3T3 fibroblasts. Other SCFAs, including the poorly metabolized isobutyate, also induced selective expression of hsp25. Butyrate treatment significantly improved the ability of IEC-18 cells to withstand oxidant (monochloramine) injury. This effect could be blocked in cells in which hsp25 induction by butyrate was blocked by stable hsp25 antisense transfection. Additionally, hsp25-transfected overexpressing IEC-18 cells showed increased resistance to monochloramine. In vivo, increasing dietary fiber increased colonic, but not proximal, ileal hsp25 while having no effect on hsp72 or hsc73 expression. CONCLUSIONS SCFAs, the predominant anions of colonic fluid derived from bacterial flora metabolism of luminal carbohydrates, protect IECs against oxidant injury, an effect mediated in part by cell-specific hsp25 induction.
Collapse
Affiliation(s)
- H Ren
- The Martin Boyer Research Laboratories, The University of Chicago, Chicago, Illinois 60637, USA
| | | | | | | | | | | |
Collapse
|
261
|
Abstract
A protective mechanism used by cells to adapt to stress of the endoplasmic reticulum (ER) is the induction of members of the glucose-regulated protein (Grp) family. The induction of mammalian Grp proteins in response to ER stress involves a complex network of regulators and novel mechanisms. The elucidation of Grp function and regulation opens up new therapeutic approaches to diseases associated with ER stress and cancer.
Collapse
Affiliation(s)
- A S Lee
- University of Southern California/Norris Comprehensive Cancer Center, Dept of Biochemistry and Molecular Biology, University of Southern California Keck School of Medicine, 1441 Eastlake Avenue, Los Angeles, CA 90089-9176, USA.
| |
Collapse
|
262
|
Alvim FC, Carolino SM, Cascardo JC, Nunes CC, Martinez CA, Otoni WC, Fontes EP. Enhanced accumulation of BiP in transgenic plants confers tolerance to water stress. PLANT PHYSIOLOGY 2001; 126:1042-54. [PMID: 11457955 PMCID: PMC116461 DOI: 10.1104/pp.126.3.1042] [Citation(s) in RCA: 140] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2000] [Revised: 02/19/2001] [Accepted: 03/31/2001] [Indexed: 05/17/2023]
Abstract
The binding protein (BiP) is an important component of endoplasmic reticulum stress response of cells. Despite extensive studies in cultured cells, a protective function of BiP against stress has not yet been demonstrated in whole multicellular organisms. Here, we have obtained transgenic tobacco (Nicotiana tabacum L. cv Havana) plants constitutively expressing elevated levels of BiP or its antisense cDNA to analyze the protective role of this endoplasmic reticulum lumenal stress protein at the whole plant level. Elevated levels of BiP in transgenic sense lines conferred tolerance to the glycosylation inhibitor tunicamycin during germination and tolerance to water deficit during plant growth. Under progressive drought, the leaf BiP levels correlated with the maintenance of the shoot turgidity and water content. The protective effect of BiP overexpression against water stress was disrupted by expression of an antisense BiP cDNA construct. Although overexpression of BiP prevented cellular dehydration, the stomatal conductance and transpiration rate in droughted sense leaves were higher than in control and antisense leaves. The rate of photosynthesis under water deficit might have caused a degree of greater osmotic adjustment in sense leaves because it remained unaffected during water deprivation, which was in marked contrast with the severe drought-induced decrease in the CO(2) assimilation in control and antisense leaves. In antisense plants, the water stress stimulation of the antioxidative defenses was higher than in control plants, whereas in droughted sense leaves an induction of superoxide dismutase activity was not observed. These results suggest that overexpression of BiP in plants may prevent endogenous oxidative stress.
Collapse
Affiliation(s)
- F C Alvim
- Departamento de Biologia Vegetal, BIOAGRO-Universidade Federal de Viçosa, 36571.000 Viçosa, Minas Gerais, Brazil
| | | | | | | | | | | | | |
Collapse
|
263
|
Ding Q, Keller JN. Proteasome inhibition in oxidative stress neurotoxicity: implications for heat shock proteins. J Neurochem 2001; 77:1010-7. [PMID: 11359866 DOI: 10.1046/j.1471-4159.2001.00302.x] [Citation(s) in RCA: 130] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Recent studies have demonstrated that inhibition of the proteasome, an enzyme responsible for the majority of intracellular proteolysis, may contribute to the toxicity associated with oxidative stress. In the present study we demonstrate that exposure to oxidative injury (paraquat, H(2)O(2), FeSO(4)) induces a rapid increase in reactive oxygen species (ROS), loss of mitochondrial membrane potential, inhibition of proteasome activity, and induction of cell death in neural SH-SY5Y cells. Application of proteasome inhibitors (MG115, epoxomycin) mimicked the effects of oxidative stressors on mitochondrial membrane potential and cell viability, and increased vulnerability to oxidative injury. Neural SH-SY5Y cells stably transfected with human HDJ-1, a member of the heat shock protein family, were more resistant to the cytotoxicity associated with oxidative stressors. Cells expressing increased levels of HDJ-1 displayed similar degrees of ROS formation following oxidative stressors, but demonstrated a greater preservation of mitochondrial function and proteasomal activity following oxidative injury. Cells transfected with HDJ-1 were also more resistant to the toxicity associated with proteasome inhibitor application. These data support a possible role for proteasome inhibition in the toxicity of oxidative stress, and suggest heat shock proteins may confer resistance to oxidative stress, by preserving proteasome function and attenuating the toxicity of proteasome inhibition.
Collapse
Affiliation(s)
- Q Ding
- Department of Anatomy and Neurobiology, University of Kentucky, Lexington, Kentucky, USA
| | | |
Collapse
|
264
|
Nozaki S, Sledge GW, Nakshatri H. Repression of GADD153/CHOP by NF-kappaB: a possible cellular defense against endoplasmic reticulum stress-induced cell death. Oncogene 2001; 20:2178-85. [PMID: 11360202 DOI: 10.1038/sj.onc.1204292] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2000] [Revised: 01/19/2001] [Accepted: 01/23/2001] [Indexed: 01/12/2023]
Abstract
Exposure of mammalian cells to ultraviolet light, nutrient deprived culture media, hypoxia, environmental toxicants such as methyl mercury, methyl methanesulfonate, crocodilite asbestos or the agents that disrupt the function of endoplasmic reticulum (ER) leads to activation of the pro-apoptotic transcription factor GADD153/CHOP. Paradoxically, several of these agents also induce the anti-apoptotic transcription factor NF-kappaB. In this report, we demonstrate that NF-kappaB inhibits GADD153 activation in breast cancer cells exposed to nutrient deprived media, tunicamycin (which blocks protein folding in ER) or calcium ionopore (which depletes calcium stores in ER). Basal and calcium ionopore-induced GADD153 expression was more pronounced in fibroblasts obtained from mouse embryos lacking in p65 subunit of NF-kappaB compared to fibroblasts from wild type littermate embryos. Moreover, p65-/- fibroblasts were killed more efficiently by calcium ionopore and tunicamycin but not hydrogen peroxide compared to wild type fibroblasts. We also show that parthenolide, a NF-kappaB inhibitor, sensitizes breast cancer cells to tunicamycin. Transient transfection assay revealed that the p65 subunit but not the p50 subunit of NF-kappaB represses GADD153 promoter activity. These results establish a correlation between repression of pro-apoptotic genes by NF-kappaB and increased cell survival during ER stress as well as identify a distinct NF-kappaB regulated cell survival pathway.
Collapse
Affiliation(s)
- S Nozaki
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | | | | |
Collapse
|
265
|
King LS, Berg M, Chevalier M, Carey A, Elguindi EC, Blond SY. Isolation, expression, and characterization of fully functional nontoxic BiP/GRP78 mutants. Protein Expr Purif 2001; 22:148-58. [PMID: 11388813 DOI: 10.1006/prep.2001.1424] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Mammalian BiP/GRP78 and Escherichia coli DnaK belong to the highly conserved hsp70 family and function as molecular chaperones in the endoplasmic reticulum or the cytosol, respectively. Induction of murine BiP/GRP78 expression in E. coli leads to growth arrest and cell death, independent of the bacterial strain and vector used. Analysis of various BiP constructs and mutants shows that the dominant-lethal phenotype is induced specifically by the expression of the 13.7-kDa C-terminal domain and abolished by a single substitution in that region. Deletion of that region also results in nontoxic gene products that can be overexpressed and purified to homogeneity. The nontoxic mutants are highly expressed in E. coli, representing up to 20% of the soluble fraction. They are catalytically active, depolymerize upon binding ATP or synthetic peptide, and interact with the J-domain of the DnaJ-like accessory protein, MTJ1, with near wild-type affinity. Our data indicate that the cytotoxic effect encountered during overexpression of recombinant proteins can be caused by a single domain and can be alleviated by a specific mutation or deletion in that region without altering the catalytic properties of the enzyme.
Collapse
Affiliation(s)
- L S King
- Center for Pharmaceutical Biotechnology, Department of Medicinal Chemistry and Pharmacognosy, University of Illinois at Chicago, College of Pharmacy, Molecular Biology Research Building, 900 South Ashland Avenue, Chicago, IL 60607, USA
| | | | | | | | | | | |
Collapse
|
266
|
McCullough KD, Martindale JL, Klotz LO, Aw TY, Holbrook NJ. Gadd153 sensitizes cells to endoplasmic reticulum stress by down-regulating Bcl2 and perturbing the cellular redox state. Mol Cell Biol 2001; 21:1249-59. [PMID: 11158311 PMCID: PMC99578 DOI: 10.1128/mcb.21.4.1249-1259.2001] [Citation(s) in RCA: 1529] [Impact Index Per Article: 63.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
gadd153, also known as chop, is a highly stress-inducible gene that is robustly expressed following disruption of homeostasis in the endoplasmic reticulum (ER) (so-called ER stress). Although all reported types of ER stress induce expression of Gadd153, its role in the stress response has remained largely undefined. Several studies have correlated Gadd153 expression with cell death, but a mechanistic link between Gadd153 and apoptosis has never been demonstrated. To address this issue we employed a cell model system in which Gadd153 is constitutively overexpressed, as well as two cell lines in which Gadd153 expression is conditional. In all cell lines, overexpression of Gadd153 sensitized cells to ER stress. Investigation of the mechanisms contributing to this effect revealed that elevated Gadd153 expression results in the down-regulation of Bcl2 expression, depletion of cellular glutathione, and exaggerated production of reactive oxygen species. Restoration of Bcl2 expression in Gadd153-overexpressing cells led to replenishment of glutathione and a reduction in levels of reactive oxygen species, and it protected cells from ER stress-induced cell death. We conclude that Gadd153 sensitizes cells to ER stress through mechanisms that involve down-regulation of Bcl2 and enhanced oxidant injury.
Collapse
Affiliation(s)
- K D McCullough
- Cell Stress and Aging Section, Laboratory of Biological Chemistry, National Institute on Aging, National Institutes of Health, Baltimore, Maryland 21224-6825, USA
| | | | | | | | | |
Collapse
|
267
|
Paschen W. Dependence of vital cell function on endoplasmic reticulum calcium levels: implications for the mechanisms underlying neuronal cell injury in different pathological states. Cell Calcium 2001; 29:1-11. [PMID: 11133351 DOI: 10.1054/ceca.2000.0162] [Citation(s) in RCA: 123] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The endoplasmic reticulum (ER) is a subcellular compartment playing a pivotal role in the control of vital calcium-related cell functions, including calcium storage and signalling. In addition, newly synthesized membrane and secretory proteins are folded and processed in the ER, reactions which are strictly calcium dependent. The ER calcium activity is therefore high, being several orders of magnitude above that of the cytoplasm. Depletion of ER calcium stores causes an accumulation of unfolded proteins in the ER lumen, a pathological situation which induces the activation of two highly conserved stress responses, the ER overload response (EOR) and the unfolded protein response (UPR). EOR triggers activation of the transcription factor NF kappa B, which, in turn, activates the expression of target genes. UPR triggers two downstream processes: it activates the expression of genes coding for ER-resident stress proteins, and it causes a suppression of the initiation of protein synthesis. A similar stress response is activated in pathological states of the brain including cerebral ischaemia, implying common underlying mechanisms. Depending on the extent and duration of the disturbance, an isolated impairment of ER function is sufficient to induce cell injury. In this review, evidence is presented that ER function is indeed disturbed in various diseases of the brain, including acute pathological states (e.g. cerebral ischaemia) and degenerative diseases (e.g. Alzheimer's disease). A body of evidence suggests that disturbances of ER function could be a global pathomechanism underlying neuronal cell injury in various acute and chronic disorders of the central nervous system. If that is true, restoration of ER function or attenuation of secondary disturbances induced by ER dysfunction could present a highly promising new avenue for pharmacological intervention to minimize neuronal cell injury in different pathological states of the brain.
Collapse
Affiliation(s)
- W Paschen
- Department of Experimental Neurology, Max-Planck-Institute for Neurological Research, Cologne, Germany.
| |
Collapse
|
268
|
Abstract
Sleep and waking differ significantly in terms of behavior, metabolism, and neuronal activity. Recent evidence indicates that sleep and waking also differ with respect to the expression of certain genes. To systematically investigate such changes, we used mRNA differential display and cDNA microarrays to screen approximately 10000 transcripts expressed in the cerebral cortex of rats after 8 h of sleep, spontaneous waking, or sleep deprivation. We found that 44 genes had higher mRNA levels after waking and/or sleep deprivation relative to sleep, while 10 were upregulated after sleep. Known genes that were upregulated in waking and sleep deprivation can be grouped into the following categories: immediate early genes/transcription factors (Arc, CHOP, IER5, NGFI-A, NGFI-B, N-Ras, Stat3), genes related to energy metabolism (glucose type I transporter Glut1, Vgf), growth factors/adhesion molecules (BDNF, TrkB, F3 adhesion molecule), chaperones/heat shock proteins (BiP, ERP72, GRP75, HSP60, HSP70), vesicle- and synapse-related genes (chromogranin C, synaptotagmin IV), neurotransmitter/hormone receptors (adrenergic receptor alpha(1A) and beta(2), GABA(A) receptor beta(3), glutamate NMDA receptor 2A, glutamate AMPA receptor GluR2 and GluR3, nicotinic acetylcholine receptor beta(2), thyroid hormone receptor TRbeta), neurotransmitter transporters (glutamate/aspartate transporter GLAST, Na(+)/Cl(-) transporter NTT4/Rxt1), enzymes (aryl sulfotransferase, c-jun N-terminal kinase 1, serum/glucocorticoid-induced serine/threonine kinase), and a miscellaneous group (calmodulin, cyclin D2, LMO-4, metallothionein 3). Several other genes that were upregulated in waking and all the genes upregulated in sleep, with the exception of the one coding for membrane protein E25, did not match any known sequence. Thus, significant changes in gene expression occur across behavioral states, which are likely to affect basic cellular functions such as RNA and protein synthesis, neural plasticity, neurotransmission, and metabolism.
Collapse
Affiliation(s)
- C Cirelli
- The Neurosciences Institute, 10640 John J. Hopkins Drive, San Diego, CA 92121, USA
| | | |
Collapse
|
269
|
Abstract
It is widely believed that calcium plays a primary role in the development of neuronal cell injury in different pathological states of the brain. Disturbances of calcium homeostasis may be induced in three different subcellular compartments, the cytoplasm, mitochondria or the endoplasmic reticulum (ER). The traditional calcium hypothesis holds that neuronal cell injury is induced by a marked increase in cytoplasmic calcium activity during stress (e.g., cerebral ischemia). Recently, this hypothesis has been modified, taking into account that under different experimental conditions the extent of cell injury does not correlate closely with calcium load or total calcium influx into the cell, and that neuronal cell injury has been found to be associated with both increases and decreases of cytoplasmic calcium activity. The mitochondrial calcium hypothesis is based on the observation that after a severe form of stress there is a massive influx of calcium ions into mitochondria, which may lead to production of free radicals, opening of the mitochondrial permeability transition (MPT) pore and disturbances of energy metabolism. However, it has still to be established whether drugs such as cyclosporin A are neuroprotective through their effect on MPT or through the blocking of processes upstream of MPT. The ER calcium hypothesis arose from the observation that ER calcium stores are depleted after severe forms of stress, and that the response of cells to disturbances of ER calcium homeostasis (activation of the expression of genes coding for ER resident stress proteins and suppression of the initiation of protein synthesis) resembles their response to a severe form of stress (e.g., transient ischemia) implying common underlying mechanisms. Elucidating the exact mechanisms of calcium toxicity and identifying the subcellular compartment playing the most important role in this pathological process will help to evaluate strategies for specific therapeutic intervention.
Collapse
Affiliation(s)
- W Paschen
- Department of Experimental Neurology, Max-Planck-Institute for Neurological Research, Köln, Germany.
| |
Collapse
|
270
|
Satoh T, Furuta K, Tomokiyo K, Nakatsuka D, Tanikawa M, Nakanishi M, Miura M, Tanaka S, Koike T, Hatanaka H, Ikuta K, Suzuki M, Watanabe Y. Facilitatory roles of novel compounds designed from cyclopentenone prostaglandins on neurite outgrowth-promoting activities of nerve growth factor. J Neurochem 2000; 75:1092-102. [PMID: 10936191 DOI: 10.1046/j.1471-4159.2000.0751092.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Cyclopentenone prostaglandins (PGs) are known to arrest the cell cycle at the G(1) phase in vitro and to suppress tumor growth in vivo. However, their effects on neurons are unclear. Here, we report that some cyclopentenone PGs function as neurite outgrowth-promoting factors. They promoted neurite outgrowth from PC12 cells and from dorsal root ganglion explants but only in the presence of nerve growth factor (NGF). We refer to these PGs as neurite outgrowth-promoting PGs (NEPPs). Through study of the structure-function relationship of NEPP1-10 and related compounds, we found that the cross-conjugated dienone moiety of NEPPs was essential for promoting neurite outgrowth, and NEPP10 was concluded to be the best candidate for drug development. We also investigated the intracellular mechanism of the promotion by NEPPs and obtained evidence that immunoglobulin heavy chain binding protein/glucose-regulated protein 78 (BiP/GRP78) plays a role in the promotion, based on the following observations: Antisense nucleotides for BiP/GRP78 gene blocked the promotion of neurite outgrowth; BiP/GRP78 protein level increased in response to NEPPs; and overexpression of BiP/GRP78 protein by adenoviral gene transfer promoted the neurite outgrowth by NGF.
Collapse
Affiliation(s)
- T Satoh
- Department of Neuroscience, Osaka Bioscience Institute, Osaka, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
271
|
Yamazaki Y, Tsuruga M, Zhou D, Fujita Y, Shang X, Dang Y, Kawasaki K, Oka S. Cytoskeletal disruption accelerates caspase-3 activation and alters the intracellular membrane reorganization in DNA damage-induced apoptosis. Exp Cell Res 2000; 259:64-78. [PMID: 10942579 DOI: 10.1006/excr.2000.4970] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
In actinomycin D (AD)-induced apoptosis, caspase-3 activation and DNA cleavage in human megakaryoblastic leukemia CMK-7 cells were greatly accelerated by tubulin and actin polymerization inhibitors [e.g., colcemid (CL) and cytochalasin D (CD), respectively], but the acceleration was not found with Taxol or phalloidin. A decrease in mitochondrial transmembrane potential, release of cytochrome c into the cytosol, and cleavage of procaspase-9 to its active form preceded the activation of caspase-3 and, moreover, all of these events began earlier and/or proceeded faster in cells treated with AD plus CL or CD than in cells treated with AD only. These results suggest that cytoskeletal disruption in the apoptotic cells promotes damage of the mitochondrial membrane, resulting in the enhanced release of cytochrome c necessary for the activation of caspase-9 that initiates the caspase cascade. On the other hand, apoptotic bodies were rapidly formed from cells treated with AD and CL, but were suppressed when treated with AD and CD. Intracellular membranes and the actin system were reorganized to surround the nuclear fragments in the AD- and CL-treated cells, but such a membrane system was not formed in the presence of CD, implying that the apoptotic bodies are formed via reorganization of intracellular membranes under regulation by actin polymerization. Thus, the cytoskeletal change in CMK-7 cells has a strong effect on the early biochemical process as well as on the later morphologic process in AD-induced apoptosis.
Collapse
Affiliation(s)
- Y Yamazaki
- National Institute of Bioscience and Human Technology, Agency of Industrial Science and Technology, 1-1 Higashi, Tsukuba, Ibaraki, 305-8566, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
272
|
Bown CD, Wang JF, Young LT. Increased expression of endoplasmic reticulum stress proteins following chronic valproate treatment of rat C6 glioma cells. Neuropharmacology 2000; 39:2162-9. [PMID: 10963759 DOI: 10.1016/s0028-3908(00)00029-0] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The anticonvulsant sodium valproate has been shown to be an effective treatment for bipolar disorder, however, its precise mechanism of action has yet to be determined. It has been suggested that adaptational changes in gene expression are critical for valproate's prophylactic effects. Previous studies in our lab have shown that one gene that may be regulated by valproate is the 78-kilodalton glucose-regulated protein (GRP78). We report that treatment of rat C6 glioma cells with valproate can also increase the expression of additional endoplasmic reticulum stress proteins, GRP94 and calreticulin. All three proteins showed similar concentration-dependent increases in messenger RNA abundance. Chronic (seven days) treatment significantly increased GRP78 and GRP94 messenger RNA expression, whereas calreticulin expression increased after both acute and chronic treatment. Increases in mRNA expression corresponded to a similar increase in protein expression. The roles of GRP78, GRP94 and calreticulin as molecular chaperones and calcium binding proteins, suggest that these results might have functional relevance to the therapeutic action of valproate.
Collapse
Affiliation(s)
- C D Bown
- Mood Disorders Program, Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, Ontario, Canada L8N 3Z5
| | | | | |
Collapse
|
273
|
Moor AC. Signaling pathways in cell death and survival after photodynamic therapy. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2000; 57:1-13. [PMID: 11100832 DOI: 10.1016/s1011-1344(00)00065-8] [Citation(s) in RCA: 240] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Photodynamic therapy (PDT) is a cytotoxic treatment, which can induce cells to initiate a rescue response, or to undergo cell death, either apoptosis or necrosis. The many signaling pathways involved in these processes are the topic of this review. The subcellular localization of the photosensitizer has been shown to be a key factor in the outcome of PDT. Mitochondrial localized photosensitizers are able to induce apoptosis very rapidly. Lysosomal localized photosensitizers can elicit either a necrotic or an apoptotic response. In the plasma membrane, a target for various photosensitizers, rescue responses, apoptosis and necrosis is initiated. Several protein phosphorylation cascades are involved in the regulation of the response to PDT. Finally, a number of stress-induced proteins play a role in the rescue response after PDT. Notably, the induction of apoptosis by PDT might not be crucial for an optimal outcome. Recent studies indicate that abrogation of the apoptotic pathway does alter the clonogenic survival of the cells after PDT. Further studies, both in vitro and especially in vivo could lead to more efficient combination therapies in which signaling pathways, involved in cell death or rescue, are either up- or downregulated before PDT.
Collapse
Affiliation(s)
- A C Moor
- Department of Dermatology, Massachusetts General Hospital, Harvard Medical School, Boston 02114, USA.
| |
Collapse
|
274
|
Beck FX, Neuhofer W, Müller E. Molecular chaperones in the kidney: distribution, putative roles, and regulation. Am J Physiol Renal Physiol 2000; 279:F203-15. [PMID: 10919839 DOI: 10.1152/ajprenal.2000.279.2.f203] [Citation(s) in RCA: 109] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Molecular chaperones are intracellular proteins that prevent inappropriate intra- and intermolecular interactions of polypetide chains. A specific group of highly conserved molecular chaperones are the heat shock proteins (HSPs), many of which are constitutively expressed but most of which are inducible by diverse (in some cases specific) stress factors. HSPs, either alone or in cooperation with "partner" chaperones, are involved in cellular processes as disparate as correct folding and assembly of proteins, transport of proteins to specific intracellular locations, protein degradation, and preservation and restructuring of the cytoskeleton. The characteristic distribution of individual HSPs in the kidney, and their response to different challenges, suggests that a number of HSPs may fulfill specific, kidney-related functions. HSP72 and the osmotic stress protein 94 (Osp94) appear to participate in the adaptation of medullary cells to high extracellular salt and urea concentrations; the small HSPs (HSP25/27 and crystallins) may be involved in the function of mesangial cells and podocytes and contribute to the volume-regulatory remodeling of the cytoskeleton in medullary cells during changes in extracellular tonicity. HSP90 contributes critically to the maturation of steroid hormone receptors and may thus be a critical determinant of the aldosterone sensitivity of specific renal epithelial cells. Certain HSPs are also induced in various pathological states of the kidney. The observation that the expression of individual HSPs in specific kidney diseases often displays characteristic time courses and intrarenal distribution patterns supports the idea that HSPs are involved in the recovery but possibly also in the initiation and/or maintenance phases of these disturbances.
Collapse
Affiliation(s)
- F X Beck
- Physiologisches Institut der Universität München, Munich, Germany.
| | | | | |
Collapse
|
275
|
Leahy KP, Crawford DR. adapt78 protects cells against stress damage and suppresses cell growth. Arch Biochem Biophys 2000; 379:221-8. [PMID: 10898938 DOI: 10.1006/abbi.2000.1897] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
We have previously identified several genes whose RNA products are induced in HA-1 hamster cells under conditions where a cytoprotective adaptive response is observed. One of these genes, designated adapt78, was found to have a human homolog with some homology to glucose-regulated protein 78 (Grp78). We subsequently determined that adapt78 and grp78 mRNAs are induced by the same stress agents and conclude that adapt78 is a stress-response gene and putative new member of the grp stress gene family. Here we extend these studies to assess the effect of overexpressing adapt78 on stress protection and growth arrest. HA-1 cells stably transfected with adapt78 cDNA were found to exhibit significantly reduced calcium- and hydrogen peroxide-mediated cytotoxicity as compared with control transfectants. In addition, adapt78 stable overexpressors exhibited significantly reduced cell growth. Both cytoprotection and growth arrest accompanied only modest overexpression of adapt78. Flow cytometry revealed that the growth arrest occurred in G(1)-phase. Immunoflourescent analysis revealed that Adapt78 protein exhibits significant perinuclear staining suggestive of endoplasmic reticulum localization in addition to cytoplasmic localization. These data indicate that adapt78 is both cytoprotective and growth suppressive and that these effects may be mediated by Adapt78 protein at the endoplasmic reticulum.
Collapse
Affiliation(s)
- K P Leahy
- Center for Immunology and Microbial Disease, The Albany Medical College, Albany, New York 12208, USA
| | | |
Collapse
|
276
|
Bando Y, Ogawa S, Yamauchi A, Kuwabara K, Ozawa K, Hori O, Yanagi H, Tamatani M, Tohyama M. 150-kDa oxygen-regulated protein (ORP150) functions as a novel molecular chaperone in MDCK cells. Am J Physiol Cell Physiol 2000; 278:C1172-82. [PMID: 10837345 DOI: 10.1152/ajpcell.2000.278.6.c1172] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
To assess the participation of the 150-kDa oxygen-regulated protein (ORP150) in protein transport, its function in Madin-Darby canine kidney (MDCK) cells was studied. Exposure of MDCK cells to hypoxia resulted in an increase of ORP150 antigen and increased binding of ORP150 to GP80/clusterin (80-kDa glycoprotein), a natural secretory protein in this cell line. In ORP150 antisense transformant MDCK cells, GP80 was retained within the endoplasmic reticulum after exposure to hypoxia. Metabolic labeling showed the delay of GP80 maturation in antisense transformants in hypoxia, whereas its matured form was detected in wild-type cells, indicating a role of ORP150 in protein transport, especially in hypoxia. The affinity chromatographic analysis of ORP150 suggested its ability to bind to ATP-agarose. Furthermore, the ATP hydrolysis analysis showed that ORP150 can release GP80 at a lower ATP concentration. These data indicate that ORP150 may function as a unique molecular chaperone in renal epithelial cells by facilitating protein transport/maturation in an environment where less ATP is accessible.
Collapse
Affiliation(s)
- Y Bando
- Department of Anatomy and Neuroscience, Osaka University Graduate School of Medicine, Suita City, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
277
|
Rauch F, Prud'homme J, Arabian A, Dedhar S, St-Arnaud R. Heart, brain, and body wall defects in mice lacking calreticulin. Exp Cell Res 2000; 256:105-11. [PMID: 10739657 DOI: 10.1006/excr.2000.4818] [Citation(s) in RCA: 101] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Calreticulin is a ubiquitously expressed protein, which has been implicated in a large number of cellular functions, including calcium storage and signaling, protein folding, and cell attachment. To examine the role of calreticulin during in vivo development, mice deficient in calreticulin were generated by targeted inactivation of the calreticulin gene. Calreticulin-deficient mutants die in utero, mostly in late gestation. Half of these embryos had decreased cardiac cell mass, associated with increased apoptosis of cardiac myocytes. In vitro differentiation cultures of calreticulin-deficient embryonic stem cells resulted in fewer embryoid bodies with contractile activity than cultures derived from calreticulin +/- stem cells (P < 0.001). Sixteen percent of the mutants exhibited exencephaly secondary to a defect in neural tube closure. Embryos surviving until Embryonic Day 16.5 had omphalocele. Lack of calreticulin did not influence survival of embryonic fibroblasts under various endoplasmic reticulum stress conditions. However, calreticulin did influence cell migration in a calcium- and substrate-dependent manner. We conclude that calreticulin is not essential during the early stages of embryonic development, but is important for the development of heart and brain and for ventral body wall closure. The observed abnormalities are compatible with a role of calreticulin in the modulation of cellular calcium signaling.
Collapse
MESH Headings
- Abnormalities, Multiple/embryology
- Abnormalities, Multiple/genetics
- Abnormalities, Multiple/pathology
- Animals
- Brain/abnormalities
- Brain/embryology
- Brain/pathology
- Calcium-Binding Proteins/deficiency
- Calcium-Binding Proteins/genetics
- Calcium-Binding Proteins/physiology
- Calreticulin
- Embryo, Mammalian/pathology
- Fetal Death
- Heart Defects, Congenital/embryology
- Heart Defects, Congenital/genetics
- Heart Defects, Congenital/pathology
- Hernia, Umbilical/genetics
- Hernia, Umbilical/pathology
- Mice
- Mice, Knockout
- Molecular Chaperones/genetics
- Molecular Chaperones/physiology
- Ribonucleoproteins/deficiency
- Ribonucleoproteins/genetics
- Ribonucleoproteins/physiology
Collapse
Affiliation(s)
- F Rauch
- Genetics Unit, Shriners Hospital for Children, Montreal, Quebec, H3G 1A6, Canada
| | | | | | | | | |
Collapse
|
278
|
Stevens JL, Liu H, Halleck M, Bowes RC, Chen QM, van de Water B. Linking gene expression to mechanisms of toxicity. Toxicol Lett 2000; 112-113:479-86. [PMID: 10720769 DOI: 10.1016/s0378-4274(99)00200-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Activation of gene expression is one of the earliest cellular responses to toxicity. However, our understanding of the biological and biochemical signals that activate these toxicant-responsive genes as well as the consequences of gene activation to survival of the organism remains sketchy. In this article, strategies that can be used to link changes in gene expression to biochemical mechanisms of toxicity are addressed using the hsp70 and grp78 genes as examples. The data indicate that activation of hsp70 is linked to changes in thiol-disulfide redox perturbations while grp78 activation may be caused by loss of calcium from the endoplasmic reticulum. Each gene is part of a discrete feedback regulated signaling pathway designed to protect cells against the toxic signals that activate gene expression.
Collapse
Affiliation(s)
- J L Stevens
- Department of Pathology, College of Medicine, University of Vermont, Burlington, VT, USA.
| | | | | | | | | | | |
Collapse
|
279
|
Qian Y, Harris ED, Zheng Y, Tiffany-Castiglioni E. Lead targets GRP78, a molecular chaperone, in C6 rat glioma cells. Toxicol Appl Pharmacol 2000; 163:260-6. [PMID: 10702365 DOI: 10.1006/taap.1999.8878] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Exposure to potentially neurotoxic levels of lead (Pb) occurs in about 9% of American children under 6 years of age. Astroglia in the brain serve as a Pb depot, sequestering Pb and preventing its contact with the more sensitive neurons. Astroglia have the capacity to adapt to Pb exposure, and as such are able to tolerate relatively high intracellular Pb accumulation. This tolerance mechanism has yet to be defined in biochemical terms. In the present study, we present evidence that glucose-regulated protein (GRP78), a molecular chaperone in the ER, participates directly or indirectly in the tolerance mechanism. Exposure of cultured C6 rat glioma cells, an astroglia-like cell line, to 1 microM Pb acetate for 1 week raised the intracellular levels of two proteins, one of which was identified by sequence analysis as GRP78. GRP78 accumulation started within 1 day and progressed with time of exposure. Studies in vitro showed that GRP78 bound tightly to affinity columns with Pb(2+) as the affinity ligand and bound weakly when either Zn(2+) or Ni(2+) replaced the Pb(2+). The reduced form of GSH and BSA did not compete with GRP78 to chelate Pb(2+). However, the heavy metal binding domain (HMB) of Menkes protein competed with GRP78 for chelating Pb(2+). The data provide evidence that GRP78 may be a component of the Pb tolerance mechanism through its direct interaction with Pb(2+). Its increased synthesis could be part of the adaptive response to Pb exposure.
Collapse
Affiliation(s)
- Y Qian
- Department of Veterinary Anatomy, Texas A&M University, College Station, Texas, 77843, USA
| | | | | | | |
Collapse
|
280
|
Chen KD, Lai MT, Cho JH, Chen LY, Lai YK. Activation of p38 mitogen-activated protein kinase and mitochondrial Ca2+-mediated oxidative stress are essential for the enhanced expression ofgrp78 induced by the protein phosphatase inhibitors okadaic acid and calyculin A. J Cell Biochem 2000. [DOI: 10.1002/(sici)1097-4644(20000315)76:4<585::aid-jcb7>3.0.co;2-u] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
281
|
Crowley CL, Payne CM, Bernstein H, Bernstein C, Roe D. The NAD+ precursors, nicotinic acid and nicotinamide protect cells against apoptosis induced by a multiple stress inducer, deoxycholate. Cell Death Differ 2000; 7:314-26. [PMID: 10745276 DOI: 10.1038/sj.cdd.4400658] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The bile salt, sodium deoxycholate (NaDOC), is a natural detergent that promotes digestion of fats. At high physiologic levels, NaDOC activates many stress-response pathways and induces apoptosis in various cell types. NaDOC induces DNA damage and activates poly(ADP-ribose) polymerase (PARP), an enzyme that utilizes NAD+ as a substrate to repair DNA. NaDOC also induces oxidative stress, endoplasmic reticulum (ER) stress and contributes to protein malfolding. The NAD+ precursors, nicotinic acid (NA) and nicotinamide (NAM) were found to protect cells against NaDOC-induced apoptosis. NA and NAM also decreased constitutive levels of both activated NF-kappaB and GRP78, two proteins that respond to oxidative stress. However, the mechanism by which NA and NAM protects cells against apoptosis does not involve a reduction in constitutive levels of oxidative stress. NA or NAM treatment increased the protein levels of glyceraldehyde-3-phosphate dehydrogense (GAPDH), a multi-functional enzyme, in the nucleus and cytoplasm, respectively. NAM did not activate the promoter/response elements of 13 stress response genes nor reduce intracellular non-protein thiols, suggesting that it is non-toxic to cells. NAM thus has promise as a dietary supplement to help prevent disorders involving excessive apoptosis.
Collapse
Affiliation(s)
- C L Crowley
- Department of Microbiology and Immunology, College of Medicine, University of Arizona, Tucson, AZ 85724, USA
| | | | | | | | | |
Collapse
|
282
|
Gorza L, Vitadello M. Reduced amount of the glucose-regulated protein GRP94 in skeletal myoblasts results in loss of fusion competence. FASEB J 2000; 14:461-75. [PMID: 10698961 DOI: 10.1096/fasebj.14.3.461] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
We previously showed that skeletal myocytes of the adult rabbit do not accumulate the endoplasmic reticulum glucose-regulated protein GRP94, neither constitutively nor inducibly, at variance with skeletal myocytes during perinatal development (5). Here we show that C2C12 cells up-regulate GRP94 during differentiation and, similarly to primary cultures of murine skeletal myocytes, specifically display GRP94 immunoreactivity on the cell surface. Stable transfection of C2C12 cells with grp94 antisense cDNA shows lack of myotube formation in clones displaying >40% reduction in GRP94 amount. The same result is obtained after in vivo injection of grp94-antisense myoblasts. Conversely, GRP94 overexpression is accompanied by accelerated myotube formation. Analyses of BrdU incorporation, p21 nuclear translocation, and muscle-gene expression show that muscle differentiation is not apparently affected in grp94-antisense clones. In contrast, cell-surface GRP94 is greatly reduced in grp94-antisense clones, as shown by immunocytochemistry and precipitation of cell-surface biotinylated proteins. Thus, cell-surface expression of GRP94 is necessary for maintenance of fusion competence. Furthermore, differentiating C2C12 cells grown in the presence of anti-GRP94 antibody show decreased myotube number suggesting that cell-surface GRP94 is directly involved in myoblast fusion process.
Collapse
Affiliation(s)
- L Gorza
- CNR-Unit for Muscle Biology, Department of Biomedical Sciences, University of Padova, Padova, Italy
| | | |
Collapse
|
283
|
Su CY, Chong KY, Edelstein K, Lille S, Khardori R, Lai CC. Constitutive hsp70 attenuates hydrogen peroxide-induced membrane lipid peroxidation. Biochem Biophys Res Commun 1999; 265:279-84. [PMID: 10558857 DOI: 10.1006/bbrc.1999.1649] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Thermal pretreatment improves cardiac recovery from subsequent ischemia/reperfusion. Induction of heat shock proteins (hsps) may contribute to this protection. We have demonstrated that augmentation of the constitutive hsp70 (hsc70) in H9c2 heart myoblasts promotes oxidative resistance. We employed a model oxidant to explore potential target(s) of protection by hsc70. Upon exposure to 54 microM of hydrogen peroxide (H(2)O(2)), hsc70-overexpressing cells exhibited a lower lipid peroxidation than the sham-transfected control. Constitutive hsc70 overexpression, however, did not protect against H(2)O(2)-induced depletion of ATP and glutathione (GSH). Lipid protection also occurred in cells preconditioned at 39 degrees C (selectively induces hsc70) during H(2)O(2) exposure. Interestingly, the protection conferred by hsc70 was comparable in magnitude to that provided by alpha-tocopherol, and was followed with a reduced release of lactate dehydrogenase and a unaltered calcium uptake during H(2)O(2) challenge. Collectively, our observations suggest that hsc70 may preserve membrane function via attenuation of lipid peroxidation during oxidative insult.
Collapse
Affiliation(s)
- C Y Su
- Department of Medicine, Southern Illinois University School of Medicine, Springfield, Illinois, 62794, USA
| | | | | | | | | | | |
Collapse
|
284
|
Reddy RK, Lu J, Lee AS. The Endoplasmic Reticulum Chaperone Glycoprotein GRP94 with Ca2+-binding and Antiapoptotic Properties Is a Novel Proteolytic Target of Calpain during Etoposide-induced Apoptosis. J Biol Chem 1999; 274:28476-83. [PMID: 10497210 DOI: 10.1074/jbc.274.40.28476] [Citation(s) in RCA: 113] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
GRP94 is a 94-kDa chaperone glycoprotein with Ca(2+)-binding properties. We report here that during apoptosis induced by the topoisomerase II inhibitor etoposide, a fraction of GRP94 associated with the endoplasmic reticulum membrane undergoes specific proteolytic cleavage, coinciding with the activation of the caspase CPP32 and initiation of DNA fragmentation. In vivo, inhibitors of caspases able to block etoposide-induced apoptosis can only partially protect GRP94 from proteolytic cleavage, whereas complete inhibition is observed with calpain inhibitor I but not with the proteasome inhibitor. In vitro, GRP94 is not a substrate for CPP32; rather, it can be completely cleaved by calpain, a Ca(2+)-regulated protease. The cleavage of GRP94 by calpain is Ca(2+)-dependent and generates a discrete polypeptide of 80 kDa. In contrast, calpain has no effect on other stress proteins such as GRP78 or HSP70. Further, immunohistochemical staining reveals specific co-localization of GRP94 with calpain in the perinuclear region following etoposide treatment. We further showed that reduction of GRP94 by antisense decreased cell viability in etoposide-treated Jurkat cells. Our studies provide new evidence that the cytoprotective GRP94, as in the case of the antiapoptotic protein Bcl-2, can be targets of proteolytic cleavage themselves during the apoptotic process.
Collapse
Affiliation(s)
- R K Reddy
- Department of Biochemistry, USC/Norris Comprehensive Cancer Center, University of Southern California School of Medicine, Los Angeles, California 90033, USA
| | | | | |
Collapse
|
285
|
King L, Chevalier M, Blond SY. Specificity of peptide-induced depolymerization of the recombinant carboxy-terminal fragment of BiP/GRP78. Biochem Biophys Res Commun 1999; 263:181-6. [PMID: 10486274 DOI: 10.1006/bbrc.1999.1321] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
In the present study, we have used a non-denaturing gel electrophoresis assay to characterize the specificity of the peptide-induced depolymerization process of the isolated recombinant C-terminal domain (C30) of the molecular chaperone BiP, in the presence of specific synthetic peptides and with the neuropeptide Substance P. In the absence of peptidic ligand, C30 self-associates readily into multiple oligomeric species. Upon peptide addition, C30 oligomers convert into dimers, then into monomers. Our data indicate that the algorithm we previously developed to predict putative BiP binding sites in any protein sequence is also a good indicator as to whether a peptide can efficiently induce depolymerization of the C-terminal peptide binding domain and stimulate the ATPase activity of the full-length protein.
Collapse
Affiliation(s)
- L King
- Center for Pharmaceutical Biotechnology, College of Pharmacy, Chicago, Illinois 60607-7173, USA
| | | | | |
Collapse
|
286
|
Leahy KP, Davies KJ, Dull M, Kort JJ, Lawrence KW, Crawford DR. adapt78, a stress-inducible mRNA, is related to the glucose-regulated protein family of genes. Arch Biochem Biophys 1999; 368:67-74. [PMID: 10415113 DOI: 10.1006/abbi.1998.1059] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have recently reported a new oxidant- and calcium-inducible mRNA, adapt78, from hamster HA-1 cells. The adapt78 mRNA is induced in HA-1 cells under conditions where a protective adaptive response is observed and contains a translatable open reading frame whose protein product shows strong homology to a human sequence. Computer analysis of the predicted Adapt78 protein sequence also revealed a stretch of amino acids homologous to a portion of the glucose-regulated protein78 (Grp78). Based on this homology, we tested the hypothesis that adapt78 may be a new member of the grp gene family. Toward this, we assessed the modulation of adapt78 mRNA by stress agents known to induce grp78. In HA-1 cells, adapt78 mRNA was induced by the calcium ionophore A23187, 2-deoxyglucose, brefeldin A, tunicamycin, thapsigargin, and cyclopiazonic acid, with thapsigargin being the most potent inducer (7.3-fold). As expected, grp78 mRNA was also induced by these agents in our model system. In contrast, heat shock treatment produced little if any modulation of either grp78 or adapt78. Differences were also observed, as adapt78 mRNA but not grp78 mRNA was induced by 160 microM hydrogen peroxide, and adapt78 demonstrated earlier induction kinetics for certain agents compared with grp78. adapt78 mRNA was also found to be induced in several different human cell lines. A23187 had the strongest effect on adapt78 mRNA levels in human cells, inducing greater than 20-fold in all human cell cultures tested. Furthermore, in vitro transcription translation of human adapt78 cDNA produced an Adapt78 protein product. We conclude that adapt78 may be a new member of the grp family of genes and may represent an early response grp that complements the actions of grp78 and grp94.
Collapse
Affiliation(s)
- K P Leahy
- Department of Biochemistry & Molecular Biology, The Albany Medical College, Albany, New York, 12208, USA
| | | | | | | | | | | |
Collapse
|
287
|
Lee J, Bruce-Keller AJ, Kruman Y, Chan SL, Mattson MP. 2-Deoxy-D-glucose protects hippocampal neurons against excitotoxic and oxidative injury: evidence for the involvement of stress proteins. J Neurosci Res 1999; 57:48-61. [PMID: 10397635 DOI: 10.1002/(sici)1097-4547(19990701)57:1<48::aid-jnr6>3.0.co;2-l] [Citation(s) in RCA: 127] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Food restriction can extend life span in rodents and was recently reported to increase the resistance of neurons in the brain to excitotoxic and metabolic insults. In principle, administration to ad libitum fed rodents of an agent that reduces glucose availability to cells should mimick certain aspects of food restriction. We now report that administration of 2-deoxy-D-glucose (2DG), a non-metabolizable analog of glucose, to adult rats results in a highly significant reduction in seizure-induced spatial memory deficits and hippocampal neuron loss. Pretreatment of rat hippocampal cell cultures with 2DG decreases the vulnerability of neurons to excitotoxic (glutamate) and oxidative (Fe2+) insults. The protective action of 2DG is associated with decreased levels of cellular oxidative stress and enhanced calcium homeostasis. 2DG treatment increased levels of the stress-responsive proteins GRP78 and HSP70 in hippocampal neurons, without affecting levels of Bcl-2 or GRP75, suggesting that mild reductions in glucose availability can increase neuronal resistance to oxidative and metabolic insults by a mechanism involving induction of stress proteins. Our findings establish cell culture and in vivo models of "chemical food restriction" which may prove useful in elucidating mechanisms of neuroprotection and in developing preventive approaches for neurodegenerative disorders that involve oxidative stress and excitotoxicity.
Collapse
Affiliation(s)
- J Lee
- Sanders-Brown Research Center on Aging and Department of Anatomy and Neurobiology, University of Kentucky, Lexington 40536-0230, USA
| | | | | | | | | |
Collapse
|
288
|
Abstract
The endoplasmic reticulum (ER) serves several important functions. Cholesterol, an essential component of cellular membranes, is synthesized on the ER surface. Inside the organelle, proteins destined for secretion or transport to the cell surface are folded and become glycosylated. Because these processes are essential for cell viability, a disturbance in ER function presents significant stress to the cell. In response to ER stress, three distinct signal transduction pathways can be activated. Two of these, the unfolded protein response and the ER-overload response, respond to disturbances in protein processing. The third, the sterol regulatory cascade, is activated by depletion of cholesterol. This review summarizes the recent advances in our understanding of these ER-nuclear signal transduction pathways. In addition, it points to novel regulatory mechanisms discovered in these pathways, which may be widely used in other systems.
Collapse
Affiliation(s)
- H L Pahl
- Department of Experimental Anesthesiology, University Hospital Freiburg, Freiburg, Germany
| |
Collapse
|
289
|
Xue LY, Qiu Y, He J, Kung HJ, Oleinick NL. Etk/Bmx, a PH-domain containing tyrosine kinase, protects prostate cancer cells from apoptosis induced by photodynamic therapy or thapsigargin. Oncogene 1999; 18:3391-8. [PMID: 10362360 DOI: 10.1038/sj.onc.1202687] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Prostate carcinoma (PCA) is the most frequently diagnosed malignancy in American men. PCA at advanced stages can both proliferate abnormally and resist apoptosis. Among the many known signal transduction pathways, phosphatidylinositide-3'OH kinase (PI3-kinase) has been shown to play an important role in cell survival and resistance to apoptosis. In this study, we investigate the involvement of Etk/Bmx, a newly discovered tyrosine kinase that is a substrate of PI3-kinase, in protection of prostate cancer cells from apoptosis. Parental LNCaP cells and two derivative cell lines, one overexpressing wild type Etk (Etkwt) and the other expressing a dominant negative Etk (EtkDN), were used to study the function of Etk. The cells were treated with photodynamic therapy (PDT), a newly approved cancer treatment which employs a photosensitizer and visible light to produce an oxidative stress in cells, often leading to apoptosis. Our results indicate that PDT induces apoptosis in LNCaP cells, as measured by DNA fragmentation and by cleavage of poly(ADP-ribose) polymerase (PARP), and moreover, the extent of apoptosis was much reduced in Etkwt cells as compared to LNCaP or EtkDN cells. Assay of overall cell viability confirmed that Etkwt cells were considerably less sensitive to PDT than were the parental LNCaP or EtkDN cells. Similar results were found in response to thapsigargin (TG). A specific inhibitor of PI3-kinase, LY294002, abolished Etk activity and markedly increased TG-induced PARP cleavage. The results suggest that Etk/Bmx is an efficient effector of PI3-kinase and that the newly described PI3-kinase/Etk pathway is involved in the protection of prostate carcinoma cells from apoptosis in response to PDT or TG.
Collapse
Affiliation(s)
- L Y Xue
- Department of Radiation Oncology, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106, USA
| | | | | | | | | |
Collapse
|
290
|
Prasad SC, Soldatenkov VA, Kuettel MR, Thraves PJ, Zou X, Dritschilo A. Protein changes associated with ionizing radiation-induced apoptosis in human prostate epithelial tumor cells. Electrophoresis 1999; 20:1065-74. [PMID: 10344286 DOI: 10.1002/(sici)1522-2683(19990101)20:4/5<1065::aid-elps1065>3.0.co;2-m] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Ionizing radiation (IR) is an important component in the therapy of localized prostate cancer. Identification of protein alterations during IR-induced apoptosis prostate cancer cells is an important step toward understanding the new metabolic status of the dying cell. In the present study, we report changes in protein profile that define the execution phase of the apoptotic response in the in vitro model of tumorigenic radiation-transformed SV40-immortalized human prostate epithelial cells (267B1-XR), induced to undergo programmed cell death by IR. We employed an approach that involves use of analytical two-dimensional polyacrylamide gel electrophoresis (2-D PAGE) coupled with Western blotting with specific antisera. Our results point out that apoptotic cells experience significant reduction in the levels of the intermediate filament proteins, keratins-18, 19, vimentin and the associated 14-3-3 adapter proteins. At the same time, molecular chaperones such as glucose-regulated protein 94, calreticulin, calnexin, and protein disulfide isomerase exhibit marked accumulation in these dying cells. The present data indicate that apoptosis-associated processes in prostate epithelial cells include solubilization of the rigid intermediate filament network by specific proteolysis as well as increased levels of endoplasmic reticulum (ER) proteins with chaperone functions.
Collapse
Affiliation(s)
- S C Prasad
- Department of Radiation Medicine, Vincent T. Lombardi Cancer Center, Georgetown University Medical Center, Washington, DC 20007-2197, USA.
| | | | | | | | | | | |
Collapse
|
291
|
Gazit G, Lu J, Lee AS. De-regulation of GRP stress protein expression in human breast cancer cell lines. Breast Cancer Res Treat 1999; 54:135-46. [PMID: 10424404 DOI: 10.1023/a:1006102411439] [Citation(s) in RCA: 122] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The stress-inducible glucose regulated proteins (GRPs), a class of calcium-binding molecular chaperones localized in the endoplasmic reticulum, have been implicated in the development of tumorigenicity, drug resistance, and cytotoxic immunology. This study investigates the expression pattern of GRP94 and GRP78 in a panel of breast carcinoma cell lines, as compared to two independently derived normal human breast epithelial cell lines. Here we report that a 3- to 5-fold increase in the basal level of the GRP94 protein was observed in all five breast carcinoma cell lines examined. The increase was independent of either the p53 or estrogen receptor status of the breast carcinomas. In carcinoma cells deprived of glucose, mimicking the conditions in poorly vascularized solid tumors, up to 9-fold induction of GRP94 was observed relative to the basal level expressed in a normal breast epithelial cell line. Interestingly, while the majority of the breast cancer cell lines can respond to tunicamycin- and thapsigargin-induced stress by increasing the steady state levels of grp94 and grp78 transcripts, the induction at the GRP protein level is variable and does not always correspond with the transcript level. Further, we discovered that one of the human breast carcinoma cell lines, MCF-7, has specifically lost its ability to respond to tunicamycin stress.
Collapse
Affiliation(s)
- G Gazit
- Department of Biochemistry and Molecular Biology, USC/Norris Comprehensive Cancer Center, University of Southern California School of Medicine, Los Angeles, USA
| | | | | |
Collapse
|
292
|
Yu Z, Luo H, Fu W, Mattson MP. The endoplasmic reticulum stress-responsive protein GRP78 protects neurons against excitotoxicity and apoptosis: suppression of oxidative stress and stabilization of calcium homeostasis. Exp Neurol 1999; 155:302-14. [PMID: 10072306 DOI: 10.1006/exnr.1998.7002] [Citation(s) in RCA: 352] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The 78-kDa glucose-regulated protein (GRP78) is localized in the endoplasmic reticulum (ER), and its expression is increased by environmental stressors in many types of nonneuronal cells. We report that levels of GRP78 are increased in cultured rat hippocampal neurons exposed to glutamate and oxidative insults (Fe2+ and amyloid beta-peptide) and that treatment of cultures with a GRP78 antisense oligodeoxynucleotide increases neuronal death following exposure to each insult. GRP78 antisense treatment enhanced apoptosis of differentiated PC12 cells following NGF withdrawal or exposure to staurosporine. Pretreatment of hippocampal cells with 2-deoxy-d-glucose, a potent inducer of GRP78 expression, protected neurons against excitotoxic and oxidative injury. GRP78 expression may function to suppress oxidative stress and stabilize calcium homeostasis because treatment with GRP78 antisense resulted in increased levels of reactive oxygen species and intracellular calcium following exposure to glutamate and oxidative insults in hippocampal neurons. Dantrolene (a blocker of ER calcium release), uric acid (an antioxidant), and zVAD-fmk (a caspase inhibitor) each protected neurons against the death-enhancing action of GRP78 antisense. The data suggest that ER stress plays a role in neuronal cell death induced by an array of insults and that GRP78 serves a neuroprotective function.
Collapse
Affiliation(s)
- Z Yu
- Department of Anatomy & Neurobiology, University of Kentucky, Lexington, Kentucky, 40536, USA
| | | | | | | |
Collapse
|
293
|
Paschen W, Doutheil J. Disturbances of the functioning of endoplasmic reticulum: a key mechanism underlying neuronal cell injury? J Cereb Blood Flow Metab 1999; 19:1-18. [PMID: 9886350 DOI: 10.1097/00004647-199901000-00001] [Citation(s) in RCA: 175] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Cerebral ischemia leads to a massive increase in cytoplasmic calcium activity resulting from an influx of calcium ions into cells and a release of calcium from mitochondria and endoplasmic reticulum (ER). It is widely believed that this increase in cytoplasmic calcium activity plays a major role in ischemic cell injury in neurons. Recently, this concept was modified, taking into account that disturbances occurring during ischemia are potentially reversible: it then was proposed that after reversible ischemia, calcium ions are taken up by mitochondria, leading to disturbances of oxidative phosphorylation, formation of free radicals, and deterioration of mitochondrial functions. The current review focuses on the possible role of disturbances of ER calcium homeostasis in the pathologic process culminating in ischemic cell injury. The ER is a subcellular compartment that fulfills important functions such as the folding and processing of proteins, all of which are strictly calcium dependent. ER calcium activity is therefore relatively high, lying in the lower millimolar range (i.e., close to that of the extracellular space). Depletion of ER calcium stores is a severe form of stress to which cells react with a highly conserved stress response, the most important changes being a suppression of global protein synthesis and activation of stress gene expression. The response of cells to disturbances of ER calcium homeostasis is almost identical to their response to transient ischemia, implying common underlying mechanisms. Many observations from experimental studies indicate that disturbances of ER calcium homeostasis are involved in the pathologic process leading to ischemic cell injury. Evidence also has been presented that depletion of ER calcium stores alone is sufficient to activate the process of programmed cell death. Furthermore, it has been shown that activation of the ER-resident stress response system by a sublethal form of stress affords tolerance to other, potentially lethal insults. Also, disturbances of ER function have been implicated in the development of degenerative disorders such as prion disease and Alzheimer's disease. Thus, disturbances of the functioning of the ER may be a common denominator of neuronal cell injury in a wide variety of acute and chronic pathologic states of the brain. Finally, there is evidence that ER calcium homeostasis plays a key role in maintaining cells in their physiologic state, since depletion of ER calcium stores causes growth arrest and cell death, whereas cells in which the regulatory link between ER calcium homeostasis and protein synthesis has been blocked enter a state of uncontrolled proliferation.
Collapse
Affiliation(s)
- W Paschen
- Department of Experimental Neurology, Max-Planck-Institute for Neurological Research, Cologne, Germany
| | | |
Collapse
|
294
|
Csermely P, Schnaider T, Soti C, Prohászka Z, Nardai G. The 90-kDa molecular chaperone family: structure, function, and clinical applications. A comprehensive review. Pharmacol Ther 1998; 79:129-68. [PMID: 9749880 DOI: 10.1016/s0163-7258(98)00013-8] [Citation(s) in RCA: 755] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The 90-kDa molecular chaperone family (which comprises, among other proteins, the 90-kDa heat-shock protein, hsp90 and the 94-kDa glucose-regulated protein, grp94, major molecular chaperones of the cytosol and of the endoplasmic reticulum, respectively) has become an increasingly active subject of research in the past couple of years. These ubiquitous, well-conserved proteins account for 1-2% of all cellular proteins in most cells. However, their precise function is still far from being elucidated. Their involvement in the aetiology of several autoimmune diseases, in various infections, in recognition of malignant cells, and in antigen-presentation already demonstrates the essential role they likely will play in clinical practice of the next decade. The present review summarizes our current knowledge about the cellular functions, expression, and clinical implications of the 90-kDa molecular chaperone family and some approaches for future research.
Collapse
Affiliation(s)
- P Csermely
- Department of Medical Chemistry, Semmelweis University, Budapest, Hungary
| | | | | | | | | |
Collapse
|
295
|
Liu H, Miller E, van de Water B, Stevens JL. Endoplasmic reticulum stress proteins block oxidant-induced Ca2+ increases and cell death. J Biol Chem 1998; 273:12858-62. [PMID: 9582315 DOI: 10.1074/jbc.273.21.12858] [Citation(s) in RCA: 155] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Oxidants are important human toxicants. Increased intracellular free Ca2+ may be critical for oxidant toxicity, but this mechanism remains controversial. Furthermore, oxidants damage the endoplasmic reticulum (ER) and release ER Ca2+, but the role of the ER in oxidant toxicity and Ca2+ regulation during toxicity is also unclear. tert-Butylhydroperoxide (TBHP), a prototypical organic oxidant, causes oxidative stress and an increase in intracellular free Ca2+. Therefore, we addressed the mechanism of oxidant-induced cell death and investigated the role of ER stress proteins in Ca2+ regulation and cytoprotection after treating renal epithelial cells with TBHP. Prior ER stress induces expression of the ER stress proteins Grp78, Grp94, and calreticulin and rendered cells resistant to cell death caused by a subsequent TBHP challenge. Expressing antisense RNA targeted to grp78 prevents grp78 induction sensitized cells to TBHP and disrupted their ability to develop cellular tolerance. In addition, overexpressing calreticulin, another ER chaperone and Ca2+-binding protein, also protected cells against TBHP. Interestingly, neither prior ER stress nor calreticulin expression prevented lipid peroxidation, but both blocked the rise in intracellular free Ca2+ after TBHP treatment. Loading cells with EGTA, even after peroxidation had already occurred, also prevented TBHP-induced cell death, indicating that buffering intracellular Ca2+ prevents cell killing. Thus, Ca2+ plays an important role in TBHP-induced cell death in these cells, and the ER is an important regulator of cellular Ca2+ homeostasis during oxidative stress. Given the importance of oxidants in human disease, it would appear that the role of ER stress proteins in protection from oxidant damage warrants further consideration.
Collapse
Affiliation(s)
- H Liu
- Adirondack Biomedical Research Institute, Lake Placid, New York 12946, USA
| | | | | | | |
Collapse
|
296
|
Outinen PA, Sood SK, Liaw PC, Sarge KD, Maeda N, Hirsh J, Ribau J, Podor TJ, Weitz JI, Austin RC. Characterization of the stress-inducing effects of homocysteine. Biochem J 1998; 332 ( Pt 1):213-21. [PMID: 9576870 PMCID: PMC1219470 DOI: 10.1042/bj3320213] [Citation(s) in RCA: 183] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The mechanism by which homocysteine causes endothelial cell (EC) injury and/or dysfunction is not fully understood. To examine the stress-inducing effects of homocysteine on ECs, mRNA differential display and cDNA microarrays were used to evaluate changes in gene expression in cultured human umbilical-vein endothelial cells (HUVEC) exposed to homocysteine. Here we show that homocysteine increases the expression of GRP78 and GADD153, stress-response genes induced by agents or conditions that adversely affect the function of the endoplasmic reticulum (ER). Induction of GRP78 was specific for homocysteine because other thiol-containing amino acids, heat shock or H2O2 did not appreciably increase GRP78 mRNA levels. Homocysteine failed to elicit an oxidative stress response in HUVEC because it had no effect on the expression of heat shock proteins (HSPs) including HSP70, nor did it activate heat shock transcription factor 1. Furthermore homocysteine blocked the H2O2-induced expression of HSP70. In support of our findings in vitro, steady-state mRNA levels of GRP78, but not HSP70, were elevated in the livers of cystathionine beta-synthase-deficient mice with hyperhomocysteinaemia. These studies indicate that the activation of stress response genes by homocysteine involves reductive stress leading to altered ER function and is in contrast with that of most other EC perturbants. The observation that homocysteine also decreases the expression of the antioxidant enzymes glutathione peroxidase and natural killer-enhancing factor B suggests that homocysteine could potentially enhance the cytotoxic effect of agents or conditions known to cause oxidative stress.
Collapse
Affiliation(s)
- P A Outinen
- Departments of Pathology and Medicine, McMaster University and the Hamilton Civic Hospitals Research Centre, Hamilton, Ontario, Canada L8V 1C3
| | | | | | | | | | | | | | | | | | | |
Collapse
|
297
|
Zinszner H, Kuroda M, Wang X, Batchvarova N, Lightfoot RT, Remotti H, Stevens JL, Ron D. CHOP is implicated in programmed cell death in response to impaired function of the endoplasmic reticulum. Genes Dev 1998; 12:982-95. [PMID: 9531536 PMCID: PMC316680 DOI: 10.1101/gad.12.7.982] [Citation(s) in RCA: 1648] [Impact Index Per Article: 61.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/1997] [Accepted: 02/05/1998] [Indexed: 02/07/2023]
Abstract
Cellular stress, particularly in response to toxic and metabolic insults that perturb function of the endoplasmic reticulum (ER stress), is a powerful inducer of the transcription factor CHOP. The role of CHOP in the response of cells to injury associated with ER stress was examined in a murine deficiency model obtained by homologous recombination at the chop gene. Compared with the wild type, mouse embryonic fibroblasts (MEFs) derived from chop -/- animals exhibited significantly less programmed cell death when challenged with agents that perturb ER function. A similar deficit in programmed cells death in response to ER stress was also observed in MEFs that lack CHOP's major dimerization partner, C/EBPbeta, implicating the CHOP-C/EBP pathway in programmed cell death. An animal model for studying the effects of chop on the response to ER stress was developed. It entailed exposing mice with defined chop genotypes to a single sublethal intraperitoneal injection of tunicamycin and resulted in a severe illness characterized by transient renal insufficiency. In chop +/+ and chop +/- mice this was associated with the early expression of CHOP in the proximal tubules followed by the development of a histological picture similar to the human condition known as acute tubular necrosis, a process that resolved by cellular regeneration. In the chop -/- animals, in spite of the severe impairment in renal function, evidence of cellular death in the kidney was reduced compared with the wild type. The proximal tubule epithelium of chop -/- animals exhibited fourfold lower levels of TUNEL-positive cells (a marker for programmed cell death), and significantly less evidence for subsequent regeneration. CHOP therefore has a role in the induction of cell death under conditions associated with malfunction of the ER and may also have a role in cellular regeneration under such circumstances.
Collapse
Affiliation(s)
- H Zinszner
- Skirball Institute of Biomolecular Medicine, the Departments of Medicine, Cell Biology, and the Kaplan Cancer Center, New York University (NYU) Medical Center, New York, New York 10016 USA
| | | | | | | | | | | | | | | |
Collapse
|
298
|
Zhou Y, Lee AS. Mechanism for the suppression of the mammalian stress response by genistein, an anticancer phytoestrogen from soy. J Natl Cancer Inst 1998; 90:381-8. [PMID: 9498488 DOI: 10.1093/jnci/90.5.381] [Citation(s) in RCA: 97] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Soy products contain high levels of genistein, a phytoestrogen that is a potent inhibitor of cell proliferation and angiogenesis. Genistein has been found to inhibit the growth of carcinogen-induced cancers in rats and human leukemia cells transplanted into mice. The induction of stress proteins (e.g., glucose-related proteins and heat shock proteins) in tumor cells has been shown to protect them against programmed cell death; this stress response is inhibited by genistein. The mechanism(s) by which genistein affects certain stress response genes was explored in this study. METHODS Mammalian cell cultures were treated with azetidine, a proline analog, which elicits a stress response that includes the induction of the expression of glucose-regulated protein GRP78 and heat shock protein HSP70. The effects of azetidine and/or genistein treatment on cellular levels of grp78 and hsp70 messenger RNAs and proteins were measured by northern blot hybridization and western blot analyses, respectively, and the binding of nuclear factors to sequence motifs in the upstream (promoter) regions of these two genes were examined by electrophoretic mobility shift assays. RESULTS Genistein antagonized the binding of a specific transcription factor, nuclear factor-Y/CCAAT binding factor (NF-Y/CBF), to the CCAAT sequence element most proximal to the transcription start sites in the hsp70 and grp78 promoters; this CCAAT element was previously shown to be necessary for full-stress inducibility of both genes. Treatment of cells with genistein converted NF-Y/CBF into a nonbinding, transcriptionally inactive form. IMPLICATION The anticancer effects of genistein may be related to its ability to reduce the expression of stress response-related genes.
Collapse
Affiliation(s)
- Y Zhou
- Department of Biochemistry and Molecular Biology, USC/Norris Comprehensive Cancer Center, University of Southern California School of Medicine, Los Angeles 90033, USA
| | | |
Collapse
|
299
|
Morgan J, Whitaker JE, Oseroff AR. GRP78 Induction by Calcium lonophore Potentiates Photodynamic Therapy Using the Mitochondrial Targeting Dye Victoria Blue BO. Photochem Photobiol 1998. [DOI: 10.1111/j.1751-1097.1998.tb05179.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
300
|
Halleck MM, Liu H, North J, Stevens JL. Reduction of trans-4,5-dihydroxy-1,2-dithiane by cellular oxidoreductases activates gadd153/chop and grp78 transcription and induces cellular tolerance in kidney epithelial cells. J Biol Chem 1997; 272:21760-6. [PMID: 9268305 DOI: 10.1074/jbc.272.35.21760] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
trans-4,5-Dihydroxy-1,2-dithiane, the intramolecular disulfide form of dithiothreitol (DTTox) transcriptionally activates the stress-responsive genes gadd153(chop) and grp78. Herein, we used a renal epithelial cell line, LLC-PK1, to investigate the mechanism(s) whereby DTTox activates a molecular stress response. DTTox activated both grp78 and gadd153 transcriptionally, but gadd153 mRNA stability also increased suggesting that both transcriptional and posttranscriptional mechanisms are involved. DTTox did not activate hsp70 transcription indicating that a heat shock response was not induced. Structure-activity studies showed that DTTox analogues lacking the intramolecular disulfide were inactive. Furthermore, the ring-open intermolecular disulfide form of DTTox, 2-hydroxyethyl disulfide, was only a weak inducer of grp78 and gadd153 but was a strong inducer of hsp70 mRNA and a potent oxidant that lowered the NADPH/NADP+ ratio and depleted reduced glutathione (GSH). DTTox had little effect on the overall GSH and NADPH levels; thus cells were not undergoing oxidative stress; however, the NADPH/NADP+ ratio decreased slightly indicating that reducing equivalents were consumed. LLC-PK1 cells reduced DTTox to DTT, and the kinetics as well as the concentration dependence for reduction correlated with induction of both grp78 and gadd153 mRNA. Prior treatment with DTTox rendered cells tolerant to the potent nephrotoxicant S-(1,1,2, 2-tetrafluoroethyl)-L-cysteine. Bacitracin, an inhibitor of plasma membrane oxidoreductases, blocked DTTox reduction and gene activation as well as DTTox-induced tolerance. Thus, activation of stress genes and induction of cellular tolerance by DTTox is mediated by a novel mechanism involving cellular oxidoreductases.
Collapse
Affiliation(s)
- M M Halleck
- W. Alton Jones Cell Science Center, Lake Placid, New York 12946, USA
| | | | | | | |
Collapse
|