251
|
O'Neill HC, Rancourt RC, White CW. Lipoic acid suppression of neutrophil respiratory burst: effect of NADPH. Antioxid Redox Signal 2008; 10:277-85. [PMID: 18158760 DOI: 10.1089/ars.2007.1890] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Lipoic acid (LA) and its reduced product dihydrolipoic acid (DHLA) are potent antioxidants with capacity to scavenge reactive oxygen species (ROS) and recycle endogenous antioxidants. LA may increase cellular glutathione (GSH), an antioxidant lacking in the lung's epithelial lining fluid in lung disorders such as idiopathic pulmonary fibrosis (IPF). Neutrophils (PMN) are key innate responders and are pivotal in clearing bacterial infection, therefore it is crucial to understand the impact LA may have on their function. Circulating neutrophils were isolated from healthy volunteers and pretreated with LA or diluent. Cells were subsequently activated with phorbol 12-myristate 13-acetate (PMA, 100 ng/ml) to induce ROS production. SOD-inhibitable reduction of acetylated cytochrome c demonstrated the PMA-dependent respiratory burst was suppressed by LA. Oxygen consumption also was diminished when PMA-stimulated cells were pretreated with LA. PMN respiratory burst was partially restored by addition of NADPH but not other pyridine nucleotides. LA did not inhibit glucose-6-phosphate dehydrogenase activity of PMN. These data together suggest that the reduction of LA to DHLA using cellular NADPH may limit the capacity of the PMN NADPH oxidase to produce superoxide. Further studies will be required to determine if LA can diminish excessive superoxide produced by PMN and/or alveolar macrophages in IPF or relevant disease models in vivo.
Collapse
Affiliation(s)
- Heidi C O'Neill
- Department of Pharmaceutical Sciences, Program in Toxicology, School of Pharmacy, University of Colorado Health Sciences Center, Denver, Colorado, USA
| | | | | |
Collapse
|
252
|
Opiela J, Katska-Ksiazkiewicz L, Lipiński D, Słomski R, Bzowska M, Ryńska B. Interactions among activity of glucose-6-phosphate dehydrogenase in immature oocytes, expression of apoptosis-related genes Bcl-2 and Bax, and developmental competence following IVP in cattle. Theriogenology 2008; 69:546-55. [PMID: 18242680 DOI: 10.1016/j.theriogenology.2007.11.001] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2007] [Revised: 10/01/2007] [Accepted: 11/05/2007] [Indexed: 11/29/2022]
Abstract
This study was conducted to understand whether the level of G6PDH activity assessed in immature bovine oocytes by means of BCB test was correlated with the level of expression of apoptosis-related genes such as Bcl-2 and Bax in immature and mature oocytes. This information should support previous findings suggesting that G6PDH activity is a useful marker for determining oocyte quality, thereby increasing the validity of BCB test in oocyte selection. Up to now, there are no data estimating the relation between G6PDH activity and the expression of apoptosis-related genes in oocytes. The expression of Bcl-2 and Bax genes was estimated on the mRNA and protein levels, respectively using real-time PCR and Western-blotting. To evaluate developmental competence of these oocytes, cumulus-oocyte complexes classified as BCB+ (low activity of G6PDH), BCB- (high activity of G6PDH) and Control were used for in vitro embryo production. In immature oocytes, the Bax transcript level in BCB- oocytes was significantly higher (P<0.001) in comparison to Control. In mature oocytes, the Bcl-2 transcript level was significantly lower in BCB+ oocytes (P<0.01) and in BCB- oocytes (P<0.05) in comparison to Control. However, no relation was found between the activity of G6PDH and the expression of the Bcl-2 or Bax proteins, both in immature and mature oocytes. Our results on the transcript level seem to indicate that oocytes subjected to BCB staining show tendency towards apoptosis. However, results obtained at the protein level did not confirm this conclusion. The usefulness of the BCB test as the indirect marker of apoptosis seems to be questionable. The lack of significant differences in the blastocyst rates developed from BCB+ and Control oocytes decreases the validity of BCB test in IVP technology.
Collapse
Affiliation(s)
- J Opiela
- National Research Institute of Animal Production, Department of Biotechnology of Animal Reproduction, Krakowska 1 st, Balice/Kraków, 32-083 Balice, Poland.
| | | | | | | | | | | |
Collapse
|
253
|
Storey KB, Storey JM. Tribute to P. L. Lutz: putting life on 'pause'--molecular regulation of hypometabolism. ACTA ACUST UNITED AC 2008; 210:1700-14. [PMID: 17488933 DOI: 10.1242/jeb.02716] [Citation(s) in RCA: 169] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Entry into a hypometabolic state is an important survival strategy for many organisms when challenged by environmental stress, including low oxygen, cold temperatures and lack of food or water. The molecular mechanisms that regulate transitions to and from hypometabolic states, and stabilize long-term viability during dormancy, are proving to be highly conserved across phylogenic lines. A number of these mechanisms were identified and explored using anoxia-tolerant turtles as the model system, particularly from the research contributions made by Dr Peter L. Lutz in his explorations of the mechanisms of neuronal suppression in anoxic brain. Here we review some recent advances in understanding the biochemical mechanisms of metabolic arrest with a focus on ideas such as the strategies used to reorganize metabolic priorities for ATP expenditure, molecular controls that suppress cell functions (e.g. ion pumping, transcription, translation, cell cycle arrest), changes in gene expression that support hypometabolism, and enhancement of defense mechanisms (e.g. antioxidants, chaperone proteins, protease inhibitors) that stabilize macromolecules and promote long-term viability in the hypometabolic state.
Collapse
Affiliation(s)
- Kenneth B Storey
- Institute of Biochemistry, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario, K1S 5B6, Canada.
| | | |
Collapse
|
254
|
Ho HY, Cheng ML, Chiu DTY. Glucose-6-phosphate dehydrogenase--from oxidative stress to cellular functions and degenerative diseases. Redox Rep 2007; 12:109-18. [PMID: 17623517 DOI: 10.1179/135100007x200209] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Glucose-6-phosphate dehydrogenase (G6PD), the first and rate-limiting enzyme of the pentose phosphate pathway, is indispensable to maintenance of the cytosolic pool of NADPH and thus the cellular redox balance. The role of G6PD as an antioxidant enzyme has been recognized in erythrocytes for a long time, as its deficiency is associated with neonatal jaundice, drug- or infection-mediated hemolytic crisis, favism and, less commonly, chronic non-spherocytic hemolytic anemia. To a large extent, advances in the field were made on the pathophysiology of G6PD-deficient erythrocytes, and the molecular characterization of different G6PD variants. Not until recently did numerous studies cast light on the importance of G6PD in other aspects of the physiology of both cells and organisms. Deficiency in G6PD activity, and hence a disturbance in redox homeostasis, can lead to dysregulation of cell growth and signaling, anomalous embryonic development, altered susceptibility to viral infection as well as increased susceptibility to degenerative diseases. The present review covers recent developments in this field. Additionally, molecular characterization of G6PD variants, especially those frequently found in Taiwan and Southern China, is also addressed.
Collapse
Affiliation(s)
- Hung-yao Ho
- Graduate Institute of Medical Biotechnology and Department of Medical Biotechnology and Laboratory Science, Chang Gung University, Kwei-san, Tao-yuan, Taiwan
| | | | | |
Collapse
|
255
|
Katska-Ksiazkiewicz L, Opiela J, Ryńska B. Effects of oocyte quality, semen donor and embryo co-culture system on the efficiency of blastocyst production in goats. Theriogenology 2007; 68:736-44. [PMID: 17651793 DOI: 10.1016/j.theriogenology.2007.06.016] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2007] [Revised: 06/25/2007] [Accepted: 06/06/2007] [Indexed: 11/21/2022]
Abstract
The aim of the study was to determine whether the selection of immature oocytes by a combination of cumulus-oocyte-complexes (COCs) morphology and staining with brilliant cresyl blue (BCB) would be helpful in selecting developmentally competent oocytes, and thereby increase the efficiency of blastocyst production from ovarian oocytes of FSH-primed, adult goats. In a second experiment the interaction between oocyte quality and semen donor was assessed. In a third experiment the usefulness of Vero cells for co-culture with goat embryos was investigated. In the pool of morphologically normal COCs recovered from ovaries following slicing (21.9+/-11.0), the mean rate of COCs classified as BCB+ was 85.6%, and the BCB- was approximately 11%. Oocytes classified as grade 1 and BCB+ exhibited the highest developmental competence (P<0.001) after in vitro maturation and fertilization compared with oocytes of grade 1 BCB- and grade 2 BCB+ or BCB-. There were no significant differences in developmental competence in grade 2 oocytes, regardless of BCB coloration. No significant differences in embryo cleavage and blastocyst formation rates among three bucks were observed when morphologically normal, BCB+ oocytes were used. For all tested bucks, differences in embryo production efficiency were related only to the oocyte quality. Similar blastocyst rates were developed from embryos co-cultured with goat oviduct epithelial cells (34.3%) and with Vero cells (33.3%). These results show that the most important criterion for selection of COCs before maturation is the visual assessment of morphological features. Staining with BCB of COCs recovered from adult goats does not enhance efficiency of selection of developmentally competent oocytes for IVF.
Collapse
Affiliation(s)
- L Katska-Ksiazkiewicz
- Department of Biotechnology of Animal Reproduction, National Research Institute of Animal Production, 32-083, Balice, Poland.
| | | | | |
Collapse
|
256
|
Inzhevatkin EV, Fomenko EY, Slepov EV, Savchenko AA. Metabolic changes of lymphocytes and neoplastic cells in mice with Ehrlich ascites carcinoma during tumor growth. BIOL BULL+ 2007. [DOI: 10.1134/s1062359007030168] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
257
|
Zheng X, Dai X, Zhao Y, Chen Q, Lu F, Yao D, Yu Q, Liu X, Zhang C, Gu X, Luo M. Restructuring of the dinucleotide-binding fold in an NADP(H) sensor protein. Proc Natl Acad Sci U S A 2007; 104:8809-14. [PMID: 17496144 PMCID: PMC1885584 DOI: 10.1073/pnas.0700480104] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
NAD(P) has long been known as an essential energy-carrying molecule in cells. Recent data, however, indicate that NAD(P) also plays critical signaling roles in regulating cellular functions. The crystal structure of a human protein, HSCARG, with functions previously unknown, has been determined to 2.4-A resolution. The structure reveals that HSCARG can form an asymmetrical dimer with one subunit occupied by one NADP molecule and the other empty. Restructuring of its NAD(P)-binding Rossmann fold upon NADP binding changes an extended loop to an alpha-helix to restore the integrity of the Rossmann fold. The previously unobserved restructuring suggests that HSCARG may assume a resting state when the level of NADP(H) is normal within the cell. When the NADP(H) level passes a threshold, an extensive restructuring of HSCARG would result in the activation of its regulatory functions. Immunofluorescent imaging shows that HSCARG redistributes from being associated with intermediate filaments in the resting state to being dispersed in the nucleus and the cytoplasm. The structural change of HSCARG upon NADP(H) binding could be a new regulatory mechanism that responds only to a significant change of NADP(H) levels. One of the functions regulated by HSCARG may be argininosuccinate synthetase that is involved in NO synthesis.
Collapse
Affiliation(s)
- Xiaofeng Zheng
- *National Laboratory of Protein Engineering and Plant Genetic Engineering
- Departments of Biochemistry and Molecular Biology and
- To whom correspondence may be addressed. E-mail: or
| | - Xueyu Dai
- *National Laboratory of Protein Engineering and Plant Genetic Engineering
- Departments of Biochemistry and Molecular Biology and
| | - Yanmei Zhao
- *National Laboratory of Protein Engineering and Plant Genetic Engineering
- Departments of Biochemistry and Molecular Biology and
| | - Qiang Chen
- *National Laboratory of Protein Engineering and Plant Genetic Engineering
- Departments of Biochemistry and Molecular Biology and
| | - Fei Lu
- Cell Biology and Genetics, College of Life Sciences, Peking University, Beijing 100871, China
| | - Deqiang Yao
- Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
| | - Quan Yu
- *National Laboratory of Protein Engineering and Plant Genetic Engineering
- Departments of Biochemistry and Molecular Biology and
| | - Xinping Liu
- *National Laboratory of Protein Engineering and Plant Genetic Engineering
- Departments of Biochemistry and Molecular Biology and
| | - Chuanmao Zhang
- Cell Biology and Genetics, College of Life Sciences, Peking University, Beijing 100871, China
| | - Xiaocheng Gu
- *National Laboratory of Protein Engineering and Plant Genetic Engineering
| | - Ming Luo
- Department of Microbiology, University of Alabama, Birmingham, AL 35294; and
- To whom correspondence may be addressed. E-mail: or
| |
Collapse
|
258
|
Zhang HS, Wang SQ. Nrf2 is involved in the effect of tanshinone IIA on intracellular redox status in human aortic smooth muscle cells. Biochem Pharmacol 2007; 73:1358-66. [PMID: 17303087 DOI: 10.1016/j.bcp.2007.01.004] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2006] [Revised: 12/25/2006] [Accepted: 01/03/2007] [Indexed: 10/23/2022]
Abstract
Tanshinone IIA is the major antioxidant component in the traditional Chinese medicine Salvia miltiorrhiza. Transcription factor nuclear-factor-E2-related factor (Nrf2) regulates a battery of antioxidant response element (ARE)-regulated genes. The aim of this study was to determine the effect of tanshinone IIA on Nrf2 activation and intracellular redox status in human aortic smooth muscle cells. Tanshinone IIA potentiated tumor necrosis factor alpha (TNF-alpha)-mediated nuclear accumulation of Nrf2 and expression of ARE-related genes, while it reversed TNF-alpha-induced down-regulation of intracellular glutathione (GSH), NADPH and glucose 6-phosphate dehydrogenase (G6PDH) levels. Specific silence of Nrf2 by siRNA down-regulated tanshinone IIA-induced Nrf2 activation and increased of intracellular GSH, NADPH and G6PDH levels. Tanshinone IIA-induced Nrf2 activation was association with activation of ERK and PKB, which was prevented by treatment with PD098059 or wortmannin. Tanshinone IIA attenuated TNF-alpha, angiotensin II, H(2)O(2)-mediated reactive oxygen species (ROS) production. These results demonstrated that tanshinone IIA-induced Nrf2 activation is the major regulatory pathway of cytoprotective gene expression against oxidative stress via ERK and PKB signaling pathways.
Collapse
Affiliation(s)
- Hong-Sheng Zhang
- Department of Biotechnology, Beijing Institute of Radiation Medicine, Taiping Road 27#, Haidian District, Beijing 100850, China
| | | |
Collapse
|
259
|
Koh WS, Choi WH, Lee SJ, Park C, Park CH. Enhancement of plasmacytoma cell growth by ascorbic acid is mediated via glucose 6-phosphate dehydrogenase. Cancer Res Treat 2007; 39:22-9. [PMID: 19746226 DOI: 10.4143/crt.2007.39.1.22] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2007] [Accepted: 01/25/2007] [Indexed: 11/21/2022] Open
Abstract
PURPOSE We investigated the mechanism by which some types of cancer cells grow faster in the presence of ascorbic acid supplementation. MATERIALS AND METHODS Adj.PC-5, a mouse plasmacytoma cell, is known to show ascorbic acid-dependent growth and was chosen as a test system. The growth of cancer cells was measured by the colony number on soft agar or the cellular proliferation in suspension culture. The ascorbate level was measured by a high performance liquid chromatography system with an electrochemical detector. Glucose 6-phosphate dehydrogenase was analyzed both on the specific enzyme activity level and on the transcription level by performing Northern blot analysis. RESULTS Ascorbyl 2-phosphate among the ascorbate derivatives was the most efficient in stimulating cell growth. The intracellular and extracellular ascorbate concentrations following treatment with either ascorbate or ascorbyl 2-phosphate suggest that the superiority of ascorbyl 2-phosphate for stimulating cell growth may be due to its slow conversion to ascorbate in the culture medium. The steady transformation to ascorbate ensures sustained levels of ascorbate in the culture medium and thereby maximizes the growth stimulatory effect of ascorbate. Ascorbyl 2-phosphate markedly enhanced, in a concentration-and time-dependent manner, mRNA synthesis as well as the enzymatic activity of glucose 6-phosphate dehydrogenase, which is known to be a rate-limiting enzyme in cell growth. On the other hand, simultaneous addition of dehydroisoandrosterone, a well- known inhibitor of glucose 6-phosphate dehydrogenase, to the culture medium abrogated the growth stimulation by ascorbyl 2-phosphate, and it also reduced the glucose 6-phosphate dehydrogenase activity proportionately. CONCLUSIONS The results from this study suggest that enhanced glucose 6-phosphate dehydrogenase activity may at least in part explain the stimulation of cell growth by ascorbate or ascorbyl 2-phosphate.
Collapse
Affiliation(s)
- Woo Suk Koh
- Korea Institute of Toxicology, Daejeon, Korea.
| | | | | | | | | |
Collapse
|
260
|
Funes JM, Quintero M, Henderson S, Martinez D, Qureshi U, Westwood C, Clements MO, Bourboulia D, Pedley RB, Moncada S, Boshoff C. Transformation of human mesenchymal stem cells increases their dependency on oxidative phosphorylation for energy production. Proc Natl Acad Sci U S A 2007; 104:6223-8. [PMID: 17384149 PMCID: PMC1851087 DOI: 10.1073/pnas.0700690104] [Citation(s) in RCA: 196] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
An increased dependency on glycolysis for ATP production is considered to be a hallmark of tumor cells. Whether this increase in glycolytic activity is due mainly to inherent metabolic alterations or to the hypoxic microenvironment remains controversial. Here we have transformed human adult mesenchymal stem cells (MSC) using genetic alterations as described for differentiated cells. Our data suggest that MSC require disruption of the same pathways as have been shown for differentiated cells to confer a fully transformed phenotype. Furthermore, we found that MSC are more glycolytic than primary human fibroblasts and, in contrast to differentiated cells, do not depend on increased aerobic glycolysis for ATP production during transformation. These data indicate that aerobic glycolysis (the Warburg effect) is not an intrinsic component of the transformation of adult stem cells, and that oncogenic adaptation to bioenergetic requirements, in some circumstances, may also rely on increases in oxidative phosphorylation. We did find, however, a reversible increase in the transcription of glycolytic enzymes in tumors generated by transformed MSC, indicating this is a secondary phenomenon resulting from adaptation of the tumor to its microenvironment.
Collapse
Affiliation(s)
- Juan M. Funes
- Cancer Research U.K. Viral Oncology Group and
- Wolfson Institute for Biomedical Research, Cruciform Building, Gower Street, University College London, London WC 1E 6BT, United Kingdom; and
| | - Marisol Quintero
- Wolfson Institute for Biomedical Research, Cruciform Building, Gower Street, University College London, London WC 1E 6BT, United Kingdom; and
| | - Stephen Henderson
- Cancer Research U.K. Viral Oncology Group and
- Wolfson Institute for Biomedical Research, Cruciform Building, Gower Street, University College London, London WC 1E 6BT, United Kingdom; and
| | - Dolores Martinez
- Cancer Research U.K. Viral Oncology Group and
- Wolfson Institute for Biomedical Research, Cruciform Building, Gower Street, University College London, London WC 1E 6BT, United Kingdom; and
| | - Uzma Qureshi
- Department of Oncology, Royal Free and University College Medical School, Rowland Hill Street, London NW3 2PF, United Kingdom
| | - Claire Westwood
- Cancer Research U.K. Viral Oncology Group and
- Wolfson Institute for Biomedical Research, Cruciform Building, Gower Street, University College London, London WC 1E 6BT, United Kingdom; and
| | - Mark O. Clements
- Cancer Research U.K. Viral Oncology Group and
- Wolfson Institute for Biomedical Research, Cruciform Building, Gower Street, University College London, London WC 1E 6BT, United Kingdom; and
| | - Dimitra Bourboulia
- Cancer Research U.K. Viral Oncology Group and
- Wolfson Institute for Biomedical Research, Cruciform Building, Gower Street, University College London, London WC 1E 6BT, United Kingdom; and
| | - R. Barbara Pedley
- Department of Oncology, Royal Free and University College Medical School, Rowland Hill Street, London NW3 2PF, United Kingdom
| | - Salvador Moncada
- Wolfson Institute for Biomedical Research, Cruciform Building, Gower Street, University College London, London WC 1E 6BT, United Kingdom; and
- To whom correspondence may be addressed. E-mail: or
| | - Chris Boshoff
- Cancer Research U.K. Viral Oncology Group and
- Wolfson Institute for Biomedical Research, Cruciform Building, Gower Street, University College London, London WC 1E 6BT, United Kingdom; and
- To whom correspondence may be addressed. E-mail: or
| |
Collapse
|
261
|
Liu Y, Wu R, Wan Q, Xie G, Bi Y. Glucose-6-phosphate dehydrogenase plays a pivotal role in nitric oxide-involved defense against oxidative stress under salt stress in red kidney bean roots. PLANT & CELL PHYSIOLOGY 2007; 48:511-22. [PMID: 17289795 DOI: 10.1093/pcp/pcm020] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The pivotal role of glucose-6-phosphate dehydrogenase (G-6-PDH)-mediated nitric oxide (NO) production in the tolerance to oxidative stress induced by 100 mM NaCl in red kidney bean (Phaseolus vulgaris) roots was investigated. The results show that the G-6-PDH activity was enhanced rapidly in the presence of NaCl and reached a maximum at 100 mM. Western blot analysis indicated that the increase of G-6-PDH activity in the red kidney bean roots under 100 mM NaCl was mainly due to the increased content of the G-6-PDH protein. NO production and nitrate reductase (NR) activity were also induced by 100 mM NaCl. The NO production was reduced by NaN(3) (an NR inhibitor), but not affected by N(omega)-nitro-L-arginine (L-NNA) (an NOS inhibitor). Application of 2.5 mM Na(3)PO(4), an inhibitor of G-6-PDH, blocked the increase of G-6-PDH and NR activity, as well as NO production in red kidney bean roots under 100 mM NaCl. The activities of antioxidant enzymes in red kidney bean roots increased in the presence of 100 mM NaCl or sodium nitroprusside (SNP), an NO donor. The increased activities of all antioxidant enzymes tested at 100 mM NaCl were completely inhibited by 2.5 mM Na(3)PO(4). Based on these results, we conclude that G-6-PDH plays a pivotal role in NR-dependent NO production, and in establishing tolerance of red kidney bean roots to salt stress.
Collapse
Affiliation(s)
- Yinggao Liu
- Key Laboratory of Arid and Grassland Agroecology, School of Life Sciences, Lanzhou University, Lanzhou 730000, PR China
| | | | | | | | | |
Collapse
|
262
|
Mallick C, Chatterjee K, Guhabiswas M, Ghosh D. Antihyperglycemic effects of separate and composite extract of root of Musa paradisiaca and leaf of Coccinia indica in streptozotocin-induced diabetic male albino rat. AFRICAN JOURNAL OF TRADITIONAL, COMPLEMENTARY, AND ALTERNATIVE MEDICINES : AJTCAM 2007; 4:362-71. [PMID: 20161901 PMCID: PMC2816485 DOI: 10.4314/ajtcam.v4i3.31230] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
We evaluated the antihyperglycaemic properties of aqueous-methanolic (40:60) extract of root of Musa paradisiaca and leaf of Coccinia indica in separate as well as in composite manner by conducting experiment on streptozotocin-induced diabetic rats. We measured food and water intake ability, the fasting blood glucose level, glucose tolerance, activities of important carbohydrate metabolic enzymes like glucose-6-phosphatase, glucose-6-phosphate dehydrogenase, hexokinase in liver along with quantification of glycogen in liver and in skeletal muscle and serum insulin level. We noted that after treatment of aqueous methanolic extract of above plant parts in separate as well as in composite manner at a concentration of 80 mg/100 g body weight/day to streptozotocin-induced diabetic rat resulted in a significant remedial effect on blood glucose level as well as carbohydrate metabolic enzymes and the quantity of liver and skeletal muscle glycogen. Serum insulin level that was diminished in streptozotocin-induced diabetic rat recovered significantly after the co-administration of extract of above plant parts. All the above parameters showed a more potent remedial effect after composite extract treatment with respect to separate treatment and none of the extract has any general metabolic toxicity induction.
Collapse
Affiliation(s)
- Chhanda Mallick
- Reproductive Endocrinology and Family Welfare Research Unit, Department of Human Physiology with Community Health, Vidyasagar University, Midnapore-721 102 West Bengal, India
| | | | | | | |
Collapse
|
263
|
Ramos-Montoya A, Lee WNP, Bassilian S, Lim S, Trebukhina RV, Kazhyna MV, Ciudad CJ, Noé V, Centelles JJ, Cascante M. Pentose phosphate cycle oxidative and nonoxidative balance: A new vulnerable target for overcoming drug resistance in cancer. Int J Cancer 2006; 119:2733-41. [PMID: 17019714 DOI: 10.1002/ijc.22227] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The metabolic network of cancer cells confers adaptive mechanisms against many chemotherapeutic agents, but also presents critical constraints that make the cells vulnerable to perturbation of the network due to drug therapy. To identify these fragilities, combination therapies based on targeting the nucleic acid synthesis metabolic network at multiple points were tested. Results showed that cancer cells overcome single hit strategies through different metabolic network adaptations, demonstrating the robustness of cancer cell metabolism. Analysis of these adaptations also identified the maintenance of pentose phosphate cycle oxidative and nonoxidative balance to be critical for cancer cell survival and vulnerable to chemotherapeutic intervention. The vulnerability of cancer cells to the imbalance on pentose phosphate cycle was demonstrated by phenotypic phase plane analysis.
Collapse
Affiliation(s)
- Antonio Ramos-Montoya
- Department of Biochemistry and Molecular Biology, Faculty of Biology, CeRQT-Parc Cientific de Barcelona, University of Barcelona, Barcelona, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
264
|
Dumollard R, Ward Z, Carroll J, Duchen MR. Regulation of redox metabolism in the mouse oocyte and embryo. Development 2006; 134:455-65. [PMID: 17185319 DOI: 10.1242/dev.02744] [Citation(s) in RCA: 177] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Energy homeostasis of the oocyte is a crucial determinant of fertility. Following ovulation, the oocyte is exposed to the unique environment of the Fallopian tube, and this is reflected in a highly specialised biochemistry. The minute amounts of tissue available have made the physiological analysis of oocyte intermediary metabolism almost impossible. We have therefore used confocal imaging of mitochondrial and cytosolic redox state under a range of conditions to explore the oxidative metabolism of intermediary substrates. It has been known for some time that the early mouse embryo metabolises external pyruvate and lactate but not glucose to produce ATP. We now show at the level of single oocytes, that supplied glucose has no effect on the redox potential of the oocyte. Pyruvate is a cytosolic oxidant but a mitochondrial reductant, while lactate is a strong cytosolic reductant via the activity of lactate dehydrogenase. Unexpectedly, lactate-derived pyruvate appears to be diverted from mitochondrial oxidation. Our approach also reveals that the level of reduced glutathione (GSH) in the oocyte is maintained by glutathione reductase, which oxidises intracellular NADPH to reduce oxidised glutathione. Surprisingly, NADPH does not seem to be supplied by the pentose phosphate pathway in the unfertilised oocyte but rather by cytosolic NADP-dependent isocitrate dehydrogenase. Remarkably, we also found that the oxidant action of pyruvate impairs development, demonstrating the fundamental importance of redox state on early development.
Collapse
Affiliation(s)
- Rémi Dumollard
- Laboratoire de Biologie du Développement UMR 7009 CNRS/Paris VI, Observatoire, Station Zoologique, Villefranche sur Mer, France.
| | | | | | | |
Collapse
|
265
|
Özyurt B, Güleç M, Özyurt H, Ekici F, Atış Ö, Akbaş A. THE EFFECT OF ANTIOXIDANT CAFFEIC ACID PHENETHYL ESTER (CAPE) ON SOME ENZYME ACTIVITIES IN CISPLATIN-INDUCED NEUROTOXICITY IN RATS. ELECTRONIC JOURNAL OF GENERAL MEDICINE 2006. [DOI: 10.29333/ejgm/82401] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
266
|
Asensio C, Levoin N, Guillaume C, Guerquin MJ, Rouguieg K, Chrétien F, Chapleur Y, Netter P, Minn A, Lapicque F. Irreversible inhibition of glucose-6-phosphate dehydrogenase by the coenzyme A conjugate of ketoprofen: a key to oxidative stress induced by non-steroidal anti-inflammatory drugs? Biochem Pharmacol 2006; 73:405-16. [PMID: 17094951 DOI: 10.1016/j.bcp.2006.09.026] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2006] [Revised: 09/19/2006] [Accepted: 09/26/2006] [Indexed: 11/23/2022]
Abstract
Oxidative damage by non-steroidal anti-inflammatory drugs (NSAIDs) has been considered relevant to the occurrence of gastro-intestinal side-effects. In the case of chiral arylpropionate derivatives like ketoprofen (KPF), this mechanism has been evidenced for the R-enantiomer, especially when chiral inversion was observed, and lets us suppose the involvement of CoA conjugates. Glucose-6-phosphate dehydrogenase (G6PD) is the crucial enzyme to regenerate the GSH pool and maintain the intracellular redox potential. This enzyme is known to be down-regulated by palmitoyl-CoA thioester. We hypothesised then that G6PD is the target of carboxylic NSAIDs, via their CoA metabolites. We used molecular docking to localise a putative site in the human G6PD then we chose the Yeast orthologue, as the most suitable species to study experimentally the precise molecular interaction. KPF-CoA was effectively shown to bind covalently to the unique cysteine residue of the yeast enzyme. Binding was found to occur in the same site as palmitoyl-CoA. It was decreased in the presence of an allosteric inhibitor of G6PD, phospho(enol)pyruvate, and was not detected with G6PD of Leuconostoc mesenteroides, which does not possess the allosteric site. This site is distinct from the catalytic site, and probably allosteric, explaining the observed non-competitive inhibition of its activity by KPF-CoA. KPF-CoA was shown to induce the production of reactive oxygen species in Caco-2 cells, where its inhibition of G6PD activity was observed.
Collapse
Affiliation(s)
- Carine Asensio
- UMR 7561 CNRS-UHP, Physiopathologie et Pharmacologie Articulaires, Faculté de Médecine, BP 184, F-54505 Vandoeuvre les Nancy, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
267
|
Deane EE, Woo NYS. Upregulation of the somatotropic axis is correlated with increased G6PDH expression in Black Sea bream adapted to iso-osmotic salinity. Ann N Y Acad Sci 2006; 1040:293-6. [PMID: 15891045 DOI: 10.1196/annals.1327.045] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Black sea bream (Mylio macrocephalus) were adapted to salinities of 0 ppt (freshwater), 6 ppt (hypo-osmotic), 12 ppt (iso-osmotic), 33 ppt (seawater), and 50 ppt (hypersaline) for 1 month. Using RT-PCR assays, the expression of pituitary growth hormone (GH) and hepatic insulin-like growth factor 1 (IGF-1) genes were studied. It was found that the transcripts for both of these genes were highest in fish maintained at iso-osmotic salinity. To correlate the expression of GH and IGF-1 with an index of growth, we also measured the transcript levels of glucose-6-phosphate dehydrogenase (G6PDH) in liver. It was found that this transcript was also elevated in iso-osmotically adapted black sea bream.
Collapse
Affiliation(s)
- Eddie E Deane
- Department of Biology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | | |
Collapse
|
268
|
Sledzinski T, Nogalska A, Hebanowska A, Klimek J, Swierczynski J. Gender- and age-related changes in 6-phosphogluconate dehydrogenase gene expression in white adipose tissue of rats (Rattus norvegicus) are not related to serum testosterone concentration. Comp Biochem Physiol B Biochem Mol Biol 2006; 144:70-6. [PMID: 16492403 DOI: 10.1016/j.cbpb.2006.01.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2005] [Revised: 01/16/2006] [Accepted: 01/18/2006] [Indexed: 11/28/2022]
Abstract
Previously, we have shown that the age-related changes in 6-phosphogluconate dehydrogenase (6PGDH) activity depend on sex, and that oestradiol is playing a crucial role in the regulation of 6PGDH gene expression in rat liver, but not in other tissues [Pankiewicz, A., Sledzinski, T., Nogalska, A., Swierczynski, J., 2003. Tissue specific, sex and age-related differences in the 6-phosphogluconate dehydrogenase gene expression. Int. J. Biochem. Cell Biol. 35, 235-245.]. To complete the knowledge on the influence of sex hormones on 6PGDH activity, experiments have been performed on the effect of testosterone on 6PGDH gene expression in rat white adipose tissue and liver. The results presented here disclosed that in young male rats high serum testosterone concentration was associated with high white adipose tissue 6PGDH activity. After orchidectomy, a decrease in serum testosterone concentration (both in young and old rats) was observed. In contrast, no changes in white adipose tissue and liver 6PGDH activity were found. In female rats, both young and old, serum testosterone concentration was below the limit of detection, whereas 6PGDH activity was much higher in young than in old animals. Moreover, the testosterone administration to 9-month old male rats (which displayed much lower serum testosterone concentration that young animals) resulted in no effect on 6PGDH activity either in WAT or in the liver. In conclusion, the results presented in this paper indicate that testosterone does not play any role in the age- and gender-related differences in 6PGDH gene expression in white adipose tissue.
Collapse
Affiliation(s)
- Tomasz Sledzinski
- Department of Pharmaceutical Biochemistry, Medical University of Gdansk, Debinki 1, 80-211 Gdansk, Poland
| | | | | | | | | |
Collapse
|
269
|
McAnuff-Harding MA, Omoruyi FO, Asemota HN. Intestinal disaccharidases and some renal enzymes in streptozotocin-induced diabetic rats fed sapogenin extract from bitter yam (Dioscorea polygonoides). Life Sci 2006; 78:2595-600. [PMID: 16497337 DOI: 10.1016/j.lfs.2005.10.046] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2005] [Accepted: 10/11/2005] [Indexed: 11/25/2022]
Abstract
In this study, the effects of bitter yam sapogenin extract or commercial diosgenin on intestinal disaccharidases and some renal enzymes in diabetic rats were investigated. Diabetic male Wistar rats were fed diets supplemented with 1% sapogenin extract or commercial diosgenin for 3 weeks. Plasma glucose, intestinal disaccharidases and the activities of transaminases, acid phosphatase, glucose-6-phosphatase, ATP citrate lyase, glucose-6-phosphate dehydrogenase and pyruvate kinase were assessed for the level of metabolic changes in the kidney of diabetic rats. Sapogenin extract or commercial diosgenin supplementation resulted in a significant decrease in lactase and maltase activities in all three regions of the intestine compared to the diabetic control group. However, the test diets significantly reduced intestinal sucrase activity in the proximal and mid regions. Test diets supplementation resulted in a significant decrease in the activities of the transaminases compared to the normal and diabetic control groups. The activity of glucose-6-phosphatase was significantly increased while the activities of ATP citrate lyase, pyruvate kinase and glucose-6-phosphate dehydrogenase were significantly reduced in the kidney of the diabetic control rats compared to the normal group. Test diets supplementation did not significantly alter glucose-6-phosphatase, ATP citrate lyase and pyruvate kinase activities compared to the diabetic control. However, there was a significant increase in glucose-6-phosphate dehydrogenase activity toward the normal group. In conclusion, the consumption of bitter yam sapogenin extract or commercial diosgenin demonstrated hypoglycemic properties, which are beneficial in diabetes by reducing intestinal disaccharidases activities; however, bitter yam sapogenin extract may adversely affect the integrity of kidney membrane.
Collapse
Affiliation(s)
- Marie A McAnuff-Harding
- Department of Basic Medical Sciences, Biochemistry Section, University of the West Indies, Mona, Kingston 7, Jamaica
| | | | | |
Collapse
|
270
|
Cherkashina DV, Petrenko AY. Hepatoprotective effect of fetal tissue cytosol and its thermostable fraction in rats with carbon tetrachloride-induced hepatitis. Bull Exp Biol Med 2006; 141:544-7. [PMID: 17152388 DOI: 10.1007/s10517-006-0216-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Pretreatment of rats with cytosol of fetal tissue or its thermostable fraction prevented death of animals from CCl4 intoxication, decreased serum transaminase activities and level of TBA-reactive products, and normalized the prooxidant/antioxidant balance in the liver. The effect of cytosol was more pronounced than that of its thermostable fraction.
Collapse
Affiliation(s)
- D V Cherkashina
- Institute of Cryobiology and Cryomedicine Problems, National Academy of Sciences of Ukraine, Kharkov.
| | | |
Collapse
|
271
|
El Shourbagy SH, Spikings EC, Freitas M, St John JC. Mitochondria directly influence fertilisation outcome in the pig. Reproduction 2006; 131:233-45. [PMID: 16452717 DOI: 10.1530/rep.1.00551] [Citation(s) in RCA: 237] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The mitochondrion is explicitly involved in cytoplasmic regulation and is the cell’s major generator of ATP. Our aim was to determine whether mitochondria alone could influence fertilisation outcome.In vitro, oocyte competence can be assessed through the presence of glucose-6-phosphate dehydrogenase (G6PD) as indicated by the dye, brilliant cresyl blue (BCB). Using porcinein vitrofertilisation (IVF), we have assessed oocyte maturation, cytoplasmic volume, fertilisation outcome, mitochondrial number as determined by mtDNA copy number, and whether mitochondria are uniformly distributed between blastomeres of each embryo. After staining with BCB, we observed a significant difference in cytoplasmic volume between BCB positive (BCB+) and BCB negative (BCB−) oocytes. There was also a significant difference in mtDNA copy number between fertilised and unfertilised oocytes and unequal mitochondrial segregation between blastomeres during early cleavage stages. Furthermore, we have supplemented BCB−oocytes with mitochondria from maternal relatives and observed a significant difference in fertilisation outcomes following both IVF and intracytoplasmic sperm injection (ICSI) between supplemented, sham-injected and non-treated BCB−oocytes. We have therefore demonstrated a relationship between oocyte maturity, cytoplasmic volume, and fertilisation outcome and mitochondrial content. These data suggest that mitochondrial number is important for fertilisation outcome and embryonic development. Furthermore, a mitochondrial pre-fertilisation threshold may ensure that, as mitochondria are diluted out during post-fertilisation cleavage, there are sufficient copies of mtDNA per blastomere to allow transmission of mtDNA to each cell of the post-implantation embryo after the initiation of mtDNA replication during the early postimplantation stages.
Collapse
Affiliation(s)
- Shahinaz H El Shourbagy
- The Mitochondrial and Reproductive Genetics Group, The Medical School, The University of Birmingham, Birmingham B15 2TT, UK
| | | | | | | |
Collapse
|
272
|
Ulusu NN, Tandogan B. Purification and kinetics of sheep kidney cortex glucose-6-phosphate dehydrogenase. Comp Biochem Physiol B Biochem Mol Biol 2006; 143:249-55. [PMID: 16406826 DOI: 10.1016/j.cbpb.2005.11.018] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2005] [Revised: 11/24/2005] [Accepted: 11/24/2005] [Indexed: 10/25/2022]
Abstract
Glucose-6-phosphate dehydrogenase (G-6-PD) is one of the important enzymes, which is responsible for the production of NADPH and ribose-5-phosphate. NADPH is used for the biosynthetic reactions and protection of the cells from free radicals. We have investigated some properties and kinetic mechanism of the sheep kidney cortex G-6-PD. This enzyme has been purified 1,384-fold with a yield of 16.96% and had a specific activity of 27.69 U/mg protein. The purification procedure consists of 2', 5'-ADP-Sepharose 4B affinity chromatography after ultracentrifugation. The sheep kidney cortex G-6-PD was found to operate according to a Ping Pong Bi Bi mechanism. The kinetic parameters from sheep K(m) values for G-6-P and NADP(+) and V(m) were determined to be 0.041+/-0.0043 mM, 0.0147+/-0.001 mM and 28.23+/-0.86 microMol min(-1) mg protein(-1), respectively. The pH optimum was 7.4 and the optimum temperature was 45 degrees C. In our previous study we have found that lamb kidney cortex G-6-PD enzyme obeys 'Ordered Bi Bi' mechanism. We suggest that kinetic mechanism altered due to the aging since sheep G-6-PD uses a 'ping pong' mechanism.
Collapse
Affiliation(s)
- Nuray N Ulusu
- Hacettepe University, Faculty of Medicine, Department of Biochemistry, 06100 Ankara, Turkey.
| | | |
Collapse
|
273
|
Doughty CA, Bleiman BF, Wagner DJ, Dufort FJ, Mataraza JM, Roberts MF, Chiles TC. Antigen receptor-mediated changes in glucose metabolism in B lymphocytes: role of phosphatidylinositol 3-kinase signaling in the glycolytic control of growth. Blood 2006; 107:4458-65. [PMID: 16449529 PMCID: PMC1895797 DOI: 10.1182/blood-2005-12-4788] [Citation(s) in RCA: 280] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The bioenergetic response of B lymphocytes is subject to rapid changes following antigen encounter in order to provide ATP and anabolic precursors necessary to support growth. However, the pathways involved in glucose acquisition and metabolism are unknown. We find that B lymphocytes rapidly increase glucose uptake and glycolysis following B-cell antigen receptor (BCR) crosslinking. Inhibition of glycolysis blocks BCR-mediated growth. Prior to S-phase entry, glucose metabolism shifts from primarily glycolytic to include the pentose phosphate pathway. BCR-induced glucose utilization is dependent upon phosphatidylinositol 3-kinase (PI-3K) activity as evidenced by inhibition of glucose uptake and glycolysis with LY294002 treatment of normal B cells and impaired glucose utilization in B cells deficient in the PI-3K regulatory subunit p85alpha. Activation of Akt is sufficient to increase glucose utilization in B cells. We find that glucose utilization is inhibited by coengagement of the BCR and FcgammaRIIB, suggesting that limiting glucose metabolism may represent an important mechanism underlying FcgammaRIIB-mediated growth arrest. Taken together, these findings demonstrate that both growth-promoting BCR signaling and growth-inhibitory FcgammaRIIB signaling modulate glucose energy metabolism. Manipulation of these pathways may prove to be useful in the treatment of lymphoproliferative disorders, wherein clonal expansion of B lymphocytes plays a role.
Collapse
Affiliation(s)
- Cheryl A Doughty
- Department of Biology, Boston College, Chestnut Hill, MA 02467, USA
| | | | | | | | | | | | | |
Collapse
|
274
|
Spaulding HL, Saijo F, Turnage RH, Alexander JS, Aw TY, Kalogeris TJ. Apolipoprotein A-IV attenuates oxidant-induced apoptosis in mitotic competent, undifferentiated cells by modulating intracellular glutathione redox balance. Am J Physiol Cell Physiol 2006; 290:C95-C103. [PMID: 16120654 DOI: 10.1152/ajpcell.00388.2005] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Oxidant-mediated modulation of the intracellular redox state affects the apoptotic cascade by altering the balance between cellular signals for survival and suicide. Apolipoprotein A-IV (Apo A-IV) is known to possess antioxidant-like activity. In the present study, we tested 1) whether Apo A-IV could influence redox-dependent apoptosis and, if so, 2) whether such an effect could be mediated by modulation of intracellular redox balance. Mitotic competent, undifferentiated PC-12 cells were incubated with either tert-butyl hydroperoxide (TBH) or diamide with or without preincubation with human Apo A-IV. Apo A-IV significantly decreased apoptosis produced by both TBH and diamide, and washout of A-IV before incubation with TBH and diamide did not eliminate its protective effect. Apo A-I had no such protective effect. The Apo A-IV effect was not blocked by d,l-buthionine-[ S, R]-sulfoximine, but it was reversed by both dehydroisoandrosterone and transfection with an antisense oligodeoxynucleotide to glucose-6-phosphate dehydrogenase (G6PD). Apo A-IV abolished the transient, oxidant-induced rise in glutathione disulfide (GSSG) and cellular redox imbalance previously shown to initiate the apoptotic cascade. Apo A-IV had no effect on GSSG reductase activity, but it stimulated G6PD activity 10-fold. These results suggest a novel role for Apo A-IV in the regulation of intracellular glutathione redox balance and the modulation of redox-dependent apoptosis via stimulation of G6PD activity.
Collapse
Affiliation(s)
- Heather L Spaulding
- Dept. of Surgery, Louisiana State Univ. Health Sciences Center, 1501 Kings Highway, Shreveport, LA 71130, USA
| | | | | | | | | | | |
Collapse
|
275
|
Díaz-Flores M, Ibáñez-Hernández MA, Galván RE, Gutiérrez M, Durán-Reyes G, Medina-Navarro R, Pascoe-Lira D, Ortega-Camarillo C, Vilar-Rojas C, Cruz M, Baiza-Gutman LA. Glucose-6-phosphate dehydrogenase activity and NADPH/NADP+ ratio in liver and pancreas are dependent on the severity of hyperglycemia in rat. Life Sci 2005; 78:2601-7. [PMID: 16325866 DOI: 10.1016/j.lfs.2005.10.022] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2005] [Accepted: 10/11/2005] [Indexed: 12/16/2022]
Abstract
Hyperglycemia is associated with metabolic disturbances affecting cell redox potential, particularly the NADPH/NADP+ ratio and reduced glutathione levels. Under oxidative stress, the NADPH supply for reduced glutathione regeneration is dependent on glucose-6-phosphate dehydrogenase. We assessed the effect of different hyperglycemic conditions on enzymatic activities involved in glutathione regeneration (glucose-6-phosphate dehydrogenase and glutathione reductase), NADP(H) and reduced glutathione concentrations in order to analyze the relative role of these enzymes in the control of glutathione restoration. Male Sprague-Dawley rats with mild, moderate and severe hyperglycemia were obtained using different regimens of streptozotocin and nicotinamide. Fifteen days after treatment, rats were killed and enzymatic activities, NADP(H) and reduced glutathione were measured in liver and pancreas. Severe hyperglycemia was associated with decreased body weight, plasma insulin, glucose-6-phosphate dehydrogenase activity, NADPH/NADP+ ratio and glutathione levels in the liver and pancreas, and enhanced NADP+ and glutathione reductase activity in the liver. Moderate hyperglycemia caused similar changes, although body weight and liver NADP+ concentration were not affected and pancreatic glutathione reductase activity decreased. Mild hyperglycemia was associated with a reduction in pancreatic glucose-6-phosphate dehydrogenase activity. Glucose-6-phosphate dehydrogenase, NADPH/NADP+ ratio and glutathione level, vary inversely in relation to blood glucose concentrations, whereas liver glutathione reductase was enhanced during severe hyperglycemia. We conclude that glucose-6-phosphate dehydrogenase and NADPH/NADP+ were highly sensitive to low levels of hyperglycemia. NADPH/NADP+ is regulated by glucose-6-phosphate dehydrogenase in the liver and pancreas, whereas levels of reduced glutathione are mainly dependent on the NADPH supply.
Collapse
Affiliation(s)
- Margarita Díaz-Flores
- Unidad de Investigación Médica en Bioquímica, Hospital de Especialidades, Centro Médico Nacional Siglo XXI, IMSS-México, México.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
276
|
Kwekel JC, Burgoon LD, Burt JW, Harkema JR, Zacharewski TR. A cross-species analysis of the rodent uterotrophic program: elucidation of conserved responses and targets of estrogen signaling. Physiol Genomics 2005; 23:327-42. [PMID: 16174780 DOI: 10.1152/physiolgenomics.00175.2005] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Physiological, morphological, and transcriptional alterations elicited by ethynyl estradiol in the uteri of Sprague-Dawley rats and C57BL/6 mice were assessed using comparable study designs, microarray platforms, and analysis methods to identify conserved estrogen signaling networks. Comparative analysis identified 153 orthologous gene pairs that were positively correlated, suggesting conserved transcriptional targets important in uterine proliferation. Functional annotation for these responses were associated with angiogenesis, water and solute transport, cell cycle control, redox control, DNA replication, protein synthesis and transport, xenobiotic metabolism, cell-cell communication, energetics, and cholesterol and fatty acid regulation. The identification of conserved temporal expression patterns of these orthologs provides experimental support for the transfer of functional annotation from mouse orthologs to 44 previously unannotated rat expressed sequence tags based on their homology and co-expression patterns. The identification of comparable temporal phenotypic responses linked to related gene expression profiles demonstrates the ability of systematic comparative genomic assessments to elucidate important conserved mechanisms in rodent estrogen signaling during uterine proliferation.
Collapse
Affiliation(s)
- Joshua C Kwekel
- Department of Biochemistry, Michigan State University, East Lansing, Michigan 48824, USA
| | | | | | | | | |
Collapse
|
277
|
Ramnanan CJ, Storey KB. Glucose-6-phosphate dehydrogenase regulation during hypometabolism. Biochem Biophys Res Commun 2005; 339:7-16. [PMID: 16256936 DOI: 10.1016/j.bbrc.2005.10.036] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2005] [Accepted: 10/08/2005] [Indexed: 11/27/2022]
Abstract
Glucose-6-phosphate dehydrogenase (G6PDH) from hepatopancreas of the land snail, Otala lactea, shows distinct changes in properties between active and estivating (dormant) states, providing the first evidence of pentose phosphate cycle regulation during hypometabolism. Compared with active snails, G6PDH Vmax increased by 50%, Km for glucose-6-phosphate decreased by 50%, Ka Mg x citrate decreased by 35%, and activation energy (from Arrhenius plots) decreased by 35% during estivation. DEAE-Sephadex chromatography separated two peaks of activity and in vitro incubations stimulating protein kinases or phosphatases showed that peak I (low phosphate) G6PDH was higher in active snails (57% of activity) whereas peak II (high phosphate) G6PDH dominated during estivation (71% of total). Kinetic properties of peaks I and II forms mirrored the enzyme from active and estivated states, respectively. Peak II G6PDH also showed reduced sensitivity to urea inhibition of activity and greater stability to thermolysin protease treatment. The interconversion of G6PDH between active and estivating forms was linked to protein kinase G and protein phosphatase 1. Estivation-induced phosphorylation of G6PDH may enhance relative carbon flow through the pentose phosphate cycle, compared with glycolysis, to help maintain NADPH production for use in antioxidant defense.
Collapse
Affiliation(s)
- Christopher J Ramnanan
- Institute of Biochemistry and Department of Biology, College of Natural Sciences, Carleton University, 1125 Colonel By Drive, Ottawa, Ont., Canada K1S 5B6
| | | |
Collapse
|
278
|
Matthews GM, Butler RN. Cellular mucosal defense during Helicobacter pylori infection: a review of the role of glutathione and the oxidative pentose pathway. Helicobacter 2005; 10:298-306. [PMID: 16104945 DOI: 10.1111/j.1523-5378.2005.00327.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Helicobacter pylori is the primary cause of gastritis and peptic ulcer disease and is known to infect greater than 50% of the world's population. It is also known to lead to the onset of gastric cancer and unless treated, lasts throughout life in most individuals. Mouse models of H. pylori infection have improved our ability to study this organism and can be used to investigate the host mucosal response to the infection, particularly the early events postinoculation. Previous studies have shown that H. pylori infection leads to an increased production of reactive oxygen species within the gastric mucosa which are thought to play a major role in the mediation of associated disease. Recent studies have shown differences in the availability of an important antioxidant, glutathione, during chronic H. pylori infection. The availability of glutathione is primarily controlled by the activity of the oxidative pentose pathway. This review proposes that the severity of inflammation and damage associated with H. pylori infection is dependent on the ability of mucosal cells to counteract the increased load of reactive oxygen species. It is hypothesized that the oxidative pentose pathway and glutathione availability are important factors modulating this response. It is suggested that the therapeutic regulation of glutathione availability could provide a novel method for preventing or reducing the damage caused during H. pylori infection.
Collapse
Affiliation(s)
- Geoffrey M Matthews
- Centre for Paediatric and Adolescent Gastroenterology Women's and Children's Hospital, 72 King William Rd., North Adelaide 5006 South Australia.
| | | |
Collapse
|
279
|
Urner F, Sakkas D. Involvement of the pentose phosphate pathway and redox regulation in fertilization in the mouse. Mol Reprod Dev 2005; 70:494-503. [PMID: 15685628 DOI: 10.1002/mrd.20222] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Glucose metabolism is necessary for successful fertilization in the mouse. Both spermatozoa and oocytes metabolize glucose through the pentose phosphate pathway (PPP), and NADPH appears required for gamete fusion. The aims of this study were to further characterize the utilization of glucose by the fertilizing spermatozoon and the fertilized oocyte, to demonstrate the importance of the PPP in different steps of fertilization, and to examine whether the beneficial effect of glucose could be mediated by a NADPH-dependent enzyme involved in redox regulation. By using a fluorescent analog of 2-deoxyglucose, glucose uptake was evidenced in both the head and flagellum of motile spermatozoa. After sperm-oocyte fusion, an increase in glucose uptake by the fertilized oocyte was observed but not before the formation of the male and female pronuclei. By using a microphotometric technique, activity of glucose 6-phosphate dehydrogenase (G6PDH), the key enzyme of the PPP, was localized to the sperm head and midpiece. When epididymal spermatozoa were released into a glucose-containing medium, the NADPH/NADP ratio increased with capacitation. Sperm-oocyte fusion and meiosis reinitiation of the fertilized oocyte was inhibited by the PPP inhibitor 6-aminonicotinamide (6-AN); inhibition of sperm-oocyte fusion was relieved by NADPH. Sperm-oocyte fusion and meiosis reinitiation were also inhibited by diphenylamine iodonium, which is a flavoenzyme inhibitor reported to prevent reactive oxygen species (ROS) generation in mouse spermatozoa and embryos. These findings indicate that the PPP is involved in different steps of fertilization. Subsequent regulation of a NADPH-dependent flavoenzyme responsible of ROS production is envisaged.
Collapse
Affiliation(s)
- Françoise Urner
- Andrology and Reproductive Biology Laboratory, Department of Obstetrics and Gynecology, Clinic of Sterility, University Hospital of Geneva, Geneva, Switzerland.
| | | |
Collapse
|
280
|
Park J, Rho HK, Kim KH, Choe SS, Lee YS, Kim JB. Overexpression of glucose-6-phosphate dehydrogenase is associated with lipid dysregulation and insulin resistance in obesity. Mol Cell Biol 2005; 25:5146-57. [PMID: 15923630 PMCID: PMC1140588 DOI: 10.1128/mcb.25.12.5146-5157.2005] [Citation(s) in RCA: 158] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Glucose-6-phosphate dehydrogenase (G6PD) produces cellular NADPH, which is required for the biosynthesis of fatty acids and cholesterol. Although G6PD is required for lipogenesis, it is poorly understood whether G6PD in adipocytes is involved in energy homeostasis, such as lipid and glucose metabolism. We report here that G6PD plays a role in adipogenesis and that its increase is tightly associated with the dysregulation of lipid metabolism and insulin resistance in obesity. We observed that the enzymatic activity and expression levels of G6PD were significantly elevated in white adipose tissues of obese models, including db/db, ob/ob, and diet-induced obesity mice. In 3T3-L1 cells, G6PD overexpression stimulated the expression of most adipocyte marker genes and elevated the levels of cellular free fatty acids, triglyceride, and FFA release. Consistently, G6PD knockdown via small interfering RNA attenuated adipocyte differentiation with less lipid droplet accumulation. Surprisingly, the expression of certain adipocytokines such as tumor necrosis factor alpha and resistin was increased, whereas that of adiponectin was decreased in G6PD overexpressed adipocytes. In accordance with these results, overexpression of G6PD impaired insulin signaling and suppressed insulin-dependent glucose uptake in adipocytes. Taken together, these data strongly suggest that aberrant increase of G6PD in obese and/or diabetic subjects would alter lipid metabolism and adipocytokine expression, thereby resulting in failure of lipid homeostasis and insulin resistance in adipocytes.
Collapse
Affiliation(s)
- Jiyoung Park
- School of Biological Sciences, Seoul National University, San 56-1, Sillim-Dong, Kwanak-Gu, Seoul 151-742, South Korea
| | | | | | | | | | | |
Collapse
|
281
|
Rho HK, Park J, Suh JH, Kim JB. Transcriptional regulation of mouse 6-phosphogluconate dehydrogenase by ADD1/SREBP1c. Biochem Biophys Res Commun 2005; 332:288-96. [PMID: 15896329 DOI: 10.1016/j.bbrc.2005.04.120] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2005] [Accepted: 04/23/2005] [Indexed: 11/21/2022]
Abstract
6-Phosphogluconate dehydrogenase (6PGDH) constitutes the pentose phosphate pathway and produces NADPH. 6PGDH is also considered as a lipogenic gene since NADPH is a pivotal cofactor for lipogenesis. Thus, it is important to elucidate how 6PGDH is regulated by various signals related to energy homeostasis. Here, we provide several evidences that ADD1/SREBP1c regulates the expression of mouse 6PGDH gene. DNase I footprinting assay and point mutation studies revealed that the E-box (CANNTG) motif in the promoter of mouse 6PGDH is an important cis-regulatory element for ADD1/SREBP1c. 6PGDH mRNA is highly expressed in white adipose tissue and tightly modulated by nutritional status. Furthermore, we found that ADD1/SREBP1c mediates insulin-dependent 6PGDH expression and that PI3-kinase is an important linker for its regulation. Taken together, these data suggest that ADD1/SREBP1c is a key transcription factor for 6PGDH gene expression and would coordinate glucose metabolism and lipogenesis for energy homeostasis.
Collapse
Affiliation(s)
- Ho Kyung Rho
- Department of Biological Sciences, Seoul National University, Seoul 151-742, Republic of Korea
| | | | | | | |
Collapse
|
282
|
Cuesta E, Boada J, Perales JC, Roig T, Bermudez J. Aspirin inhibits NF-κB activation in a glycolysis-depleted lung epithelial cell line. Eur J Pharmacol 2005; 517:158-64. [PMID: 15987633 DOI: 10.1016/j.ejphar.2005.05.024] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2005] [Accepted: 05/24/2005] [Indexed: 01/19/2023]
Abstract
Inhibition of glycolysis at the phosphofructo-1-kinase step slows cell growth. For this reason, overexpression of fructose-2,6-bisphosphatase is a potential target for antineoplasic treatments. However, therapeutic objectives may be compromised by side effects of glycolysis restriction, including enhanced resistance to oxidants and tumor necrosis factor-alpha (TNF-alpha), as well as increased activity of the nuclear factor kappa B (NF-kappaB). In this study we evaluated aspirin as an adjuvant drug for glycolysis restriction by overexpression of fructose-2,6-bisphosphatase. The effect of aspirin on antioxidant defences and NF-kappaB activity were evaluated both in control cells and in fructose-2,6-bisphosphatase-overexpressing cells. Interestingly, aspirin-induced inhibition of NF-kappaB activity was greater in transfectants with restricted glycolysis than in control cells. Our results indicate that aspirin is a suitable complement to therapy based on glycolysis restriction to overcome resistance associated with increased NF-kappaB activity and oxidative stress.
Collapse
Affiliation(s)
- Eduardo Cuesta
- Departament de Ciències Fisiològiques II, IDIBELL-Universitat de Barcelona, Feixa Llarga s/n, E-08907 L'Hospitalet de Llobregat, Spain
| | | | | | | | | |
Collapse
|
283
|
Kondoh H, Lleonart ME, Gil J, Beach D, Peters G. Glycolysis and cellular immortalization. ACTA ACUST UNITED AC 2005. [DOI: 10.1016/j.ddmec.2005.05.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
284
|
Ulusu NN, Tandogan B, Tezcan FE. Kinetic properties of glucose-6-phosphate dehydrogenase from lamb kidney cortex. Biochimie 2005; 87:187-90. [PMID: 15760711 DOI: 10.1016/j.biochi.2004.11.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2004] [Accepted: 11/05/2004] [Indexed: 11/24/2022]
Abstract
Glucose-6-phosphate dehydrogenase is the key regulatory enzyme of the pentose phosphate pathway and one of the products of this enzyme; NADPH has a critical role in the defence system against the free radicals. In this study, glucose-6-phosphate dehydrogenase from lamb kidney cortex kinetic properties is examined. The purification procedure is composed of two steps after ultracentrifugation for rapid and easy purification: 2', 5'-ADP Sepharose 4B affinity and DEAE Sepharose Fast Flow anion exchange chromatography. Previously, we used this procedure for the purification of glucose-6-phosphate dehydrogenase from bovine lens. The double reciprocal plots and product inhibition studies showed that the enzyme obeys 'Ordered Bi Bi' mechanism: K(m NADP+)K(m G-6-P) and K(i G-6-P) (dissociation constant of the enzyme--G-6-P complex) were found to be 0.018 +/- 0.002, 0.039 +/- 0.006 and 0.029 +/- 0.005 mM, respectively, by using nonlinear regression analysis. The enzyme was stable at 4 degrees C for a week.
Collapse
Affiliation(s)
- Nuray N Ulusu
- Faculty of Medicine, Department of Biochemistry, Hacettepe University, 06100 Ankara, Turkey.
| | | | | |
Collapse
|
285
|
Flores S, de Anda-Herrera R, Gosset G, Bolívar FG. Growth-rate recovery of Escherichia coli cultures carrying a multicopy plasmid, by engineering of the pentose-phosphate pathway. Biotechnol Bioeng 2005; 87:485-94. [PMID: 15286986 DOI: 10.1002/bit.20137] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Expression of plasmid-encoded genes in bacteria is the most common strategy for the production of specific proteins in biotechnological processes. However, the synthesis of plasmid-encoded proteins and plasmid-DNA replication often places a metabolic load (metabolic burden) into the cell's biochemical capacities that usually reduces the growth rate of the producing culture (Glick BR. Biotechnol Adv 1995;13:247-261). This metabolic burden may be related to a limited capacity of the cell to supply the extra demand of building blocks and energy required to replicate plasmid DNA and express foreign multicopy genes. Some of these required blocks are intermediaries of the pentose phosphate (PP) pathway, e.g., ribose-5-phosphate, erythrose-4-phosphate. Due to the important impact of metabolic burden on biotechnological processes, several groups have worked on developing strategies to overcome this problem, like reduction of plasmid copy number (Seo JH, Bailey JE. Biotechnol Bioeng 1985;27:1668-1674; Jones KL, Kim S, Keasling JD. Metab Eng 2000;3:328-338), chromosomal insertion of the gene which product is desired, or changing the plasmid-coded antibiotic resistance gene (Hong Y, Pasternak JJ, Glick BR. Can J Microbiol 1995;41:624-628). However, few efforts have been attempted to overcome the reduction of growth rate due to protein over-expression, by modifying central metabolic pathways (Chou C-H, Bennett GN, San KY. Biotechnol Bioeng 1994;44:952-960). We constructed a high-copy number plasmid carrying the gene for glucose-6-phosphate dehydrogenase, zwf, under the control of an inducible trc promoter (pTRzwf04 plasmid). By transforming a wild-type strain and inducing with IPTG, it was possible to recover growth-rate from 0.46 h(-1) (uninduced) to 0.64 h(-1) (induced). The same transformation in an Escherichia coli zwf(-), allows a growth-rate recovery from 0.43 h(-1) (uninduced) to 0.62 h(-1) (induced). We also studied this effect as part of a laboratory-scale biotechnology process: production of a recombinant insulin peptide by co-transforming E. coli JM101 strain with pTRzwf07, a low-copy-number plasmid that carries the same inducible construction as pTRzwf04, and with the pTEXP-MMRPI vector that carries a TrpLE-proinsulin hybrid gene. In this system, production of TrpLE-proinsulin strongly reduces growth rate; however, overexpression of zwf gene recovers with a growth rate from 0.1 h(-1) in the TrpLE-proinsulin induced strain, to 0.37 h(-1) when both zwf and TrpLE-proinsulin genes were induced. In this paper, we show that the engineering of the pentose phosphate pathway by modulation of the zwf gene expression level partially overcomes the possible bottleneck for the supply of building blocks and reducing power synthesized through the PP pathway, that are required for plasmid replication and plasmid-encoded protein expression.
Collapse
Affiliation(s)
- Salvador Flores
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Col. Chamilpa, C.P. 62250, Cuernavaca, Mexico
| | | | | | | |
Collapse
|
286
|
Perl A, Gergely P, Banki K. Mitochondrial dysfunction in T cells of patients with systemic lupus erythematosus. Int Rev Immunol 2005; 23:293-313. [PMID: 15204090 DOI: 10.1080/08830180490452576] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Activation, proliferation, or programmed cell death of T lymphocytes are dependent on controlled reactive oxygen intermediates (ROI) production and ATP synthesis in mitochondria. The mitochondrial transmembrane potential (Delta Psi(m)) also plays a decisive role in cell survival by controlling activity of redox-sensitive caspases. T lymphocytes of patients with systemic lupus erythematosus (SLE) exhibit mitochondrial hyperpolarization, increased ROI production, diminished intracellular glutathione levels, cytoplasmic alkalinization, and ATP depletion that mediate enhanced spontaneous and diminished activation-induced apoptosis and sensitize lupus T cells to necrosis. These redox and metabolic checkpoints represent novel targets for pharmacological intervention in SLE.
Collapse
Affiliation(s)
- Andras Perl
- Department of Medicine, State University of New York, Upstate Medical University, College of Medicine, Syracuse, New York 13210, USA.
| | | | | |
Collapse
|
287
|
Kim EJ, Park YG, Baik EJ, Jung SJ, Won R, Nahm TS, Lee BH. Dehydroascorbic acid prevents oxidative cell death through a glutathione pathway in primary astrocytes. J Neurosci Res 2005; 79:670-9. [PMID: 15668957 DOI: 10.1002/jnr.20384] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Ascorbic acid (AA) is a well-known antioxidant. It also has pro-oxidant effects, however, in the presence of free transition metals. Because of the pro-oxidant effects of AA, dehydroascorbic acid (DHA), an oxidized form of AA, has been used as a substitute for AA. DHA has been shown recently to have a protective effect in an experimental stroke model. This study was carried out to determine if DHA has different effects from AA on hydrogen peroxide (H2O2)-induced oxidative cell death in primary astrocytes. DHA was found to prevent cell death and reverse mitochondrial dysfunction after exposure to H2O2. DHA significantly increased the glutathione peroxidase (GPx) and glutathione reductase (GR) activities 1 hr after H2O2 exposure. Moreover, DHA not only reversed the decrease in the glutathione (GSH) levels, but also significantly enhanced it by stimulating the pentose phosphate pathway (PPP) 15 hr after H2O2 exposure. DHA also reduced production of reactive oxygen species (ROS) after H2O2 exposure. In contrast, AA accelerated H2O2-induced cell death. To determine if the pro-oxidant effect of AA is related to iron, the effect of AA on cell death was examined using an iron chelator, desferrioxamine. Even though co-pretreatment with AA and desferrioxamine could abrogate the aggravating effects of AA on H2O2-induced cell death at early stages, it could not prevent H2O2-induced cell death over a 24-hr period. These results suggest that DHA has distinct effects from AA and prevent H2O2-induced cell death by increasing the GSH levels mediated by the GPx and GR activities and PPP.
Collapse
Affiliation(s)
- Eun Joo Kim
- Medical Research Center, Yonsei University College of Medicine, Seoul, Korea
| | | | | | | | | | | | | |
Collapse
|
288
|
Varet J, Vincent L, Akwa Y, Mirshahi P, Lahary A, Legrand E, Opolon P, Mishal Z, Baulieu EE, Soria J, Soria C, Li H. Dose-dependent effect of dehydroepiandrosterone, but not of its sulphate ester, on angiogenesis. Eur J Pharmacol 2004; 502:21-30. [PMID: 15464086 DOI: 10.1016/j.ejphar.2004.08.038] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2004] [Revised: 08/12/2004] [Accepted: 08/20/2004] [Indexed: 10/26/2022]
Abstract
Although dehydroepiandrosterone (DHEA) is widely used in the elderly to prevent some adverse effects of ageing, possible deleterious side effects have not been fully assessed. We evaluated the direct actions of DHEA and DHEA sulphate on angiogenesis, a critical event in pathologies that are common in the elderly (cancer, atherosclerosis, inflammation... etc.). At physiological concentrations found in human plasma following DHEA therapy (1-50 nM), DHEA had no action on angiogenesis in vitro. In contrast, higher concentrations of DHEA (10-100 microM), which can be found in tissues after local administration or storage, inhibited in vitro endothelial cell proliferation (blockage in G2/M), migration and capillary tube formation and in vivo angiogenesis in the Matrigel plug assay. This inhibition might be due to a decreased glucose-6-phosphate dehydrogenase activity and to a modification of the tubulin network involved in cell proliferation and migration. The sulphate ester form of DHEA had no effect on angiogenesis.
Collapse
Affiliation(s)
- Julia Varet
- Laboratoire MERCI (Micro Environnement et Régulation Cellulaire Intégrée), Faculté de Médecine et Pharmacie, 76 Rouen, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
289
|
Morales AE, Pérez-Jiménez A, Hidalgo MC, Abellán E, Cardenete G. Oxidative stress and antioxidant defenses after prolonged starvation in Dentex dentex liver. Comp Biochem Physiol C Toxicol Pharmacol 2004; 139:153-61. [PMID: 15556078 DOI: 10.1016/j.cca.2004.10.008] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2004] [Revised: 10/08/2004] [Accepted: 10/12/2004] [Indexed: 11/30/2022]
Abstract
The aim of this work was to evaluate the effects of prolonged starvation and refeeding on antioxidant status and some metabolic-related parameters in common dentex (Dentex dentex) liver. Fish deprived of food for 5 weeks showed a significant increase in lipid peroxidation, measured as malondialdehyde (MDA) levels. The activity of the antioxidative enzymes superoxide dismutase (SOD), catalase, and glutathione peroxidase (GPX) in starved fish significantly increased (by 42%, 22%, and 52%, respectively), whereas glutathione reductase (GR) activity was significantly depressed by 53% compared to controls. No qualitative changes in the SOD isoenzymatic pattern were detected by nondenaturing PAGE analysis, but the isoforms corresponding to CuZn-SOD I and II were enhanced in starved fish. The activity of the enzymes indicative of oxidative metabolism, beta-hydroxyacyl CoA dehydrogenase (HOAD) and citrate synthase (CS), significantly increased (by 123% and 28%, respectively), and that of glucose-6-phosphate dehydrogenase (G6PDH) was inhibited by 56%. Oxidative damage under these circumstances is reversible since all biomarkers assayed returned to control values after refeeding. Our results show that prolonged starvation leads to a pro-oxidant situation and oxidative stress despite activation of antioxidant defense mechanisms, and that inhibition of G6PDH activity might be responsible for this failure in cellular antioxidant defenses.
Collapse
Affiliation(s)
- Amalia E Morales
- Departamento de Biología Animal y Ecología, Facultad de Ciencias, Universidad de Granada, Avenida Fuentenueva s/n, 18071 Granada, Spain.
| | | | | | | | | |
Collapse
|
290
|
Hossain MA, Yamato O, Yamasaki M, Maede Y. Inhibitory effect of pyrimidine and purine nucleotides on the multiplication of Babesia gibsoni: possible cause of low parasitemia and simultaneous reticulocytosis in canine babesiosis. J Vet Med Sci 2004; 66:389-95. [PMID: 15133268 DOI: 10.1292/jvms.66.389] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The present study was conducted to determine the cause of low parasitemia and simultaneous reticulocytosis in canine babesiosis. The parasitemia was significantly decreased in in vitro cultures of Babesia gibsoni by the pretreatment of host canine erythrocytes with lead acetate, which is a specific inhibitor of pyrimidine 5'-nucleotidase subclass I (P5N-I). The serum from dogs chronically infected with B. gibsoni did not decrease the activities of hexokinase, glucose-6-phosphate dehydrogenase or 6-phosphogluconate dehydrogenase in canine reticulocytes, although it was previously reported that this serum had inhibitory effects on both the maturation of reticulocytes and the canine P5N-I and purine-specific 5'-nucleotidase activities. Furthermore, the in vitro multiplication of B. gibsoni was significantly inhibited by pyrimidine nucleotides such as cytidine 5'-monophosphate (5'-CMP), which is preferentially catalyzed by P5N-I and also inhibits the morphological maturation of canine reticulocytes. Purine nucleotides such as inosine 5'-monophosphate (5'-IMP) also had an inhibitory effect on the multiplication of this parasite. These results suggest that nucleotides such as 5'-CMP and 5'-IMP might accumulate in young erythrocytes and/or serum in dogs infected with B. gibsoni as a result of the decreased activity of erythrocyte 5'-nucleotidase, and the accumulation of these nucleotides might inhibit the multiplication of this parasite and simultaneously retard the maturation of reticulocytes. The results obtained from the in vitro examinations in the present study may partially clarify the relationship between low parasitemia and simultaneous reticulocytosis in vivo in canine babesiosis.
Collapse
Affiliation(s)
- Mohammad Alamgir Hossain
- Laboratory of Internal Medicine, Department of Veterinary Clinical Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | | | | | | |
Collapse
|
291
|
Boada J, Cuesta E, Perales JC, Roig T, Bermudez J. Glutathione content and adaptation to endogenously induced energy depletion in Mv1Lu cells. Free Radic Biol Med 2004; 36:1555-65. [PMID: 15182857 DOI: 10.1016/j.freeradbiomed.2004.04.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2003] [Revised: 03/19/2004] [Accepted: 04/02/2004] [Indexed: 11/26/2022]
Abstract
Transfection of genes that code for enzymes of energy metabolism provides alternative models to study the adaptive response to energy restriction induced by endogenous changes instead of by unfavorable environmental conditions. Overexpression of the glycolytic enzyme fructose-2,6-bisphosphatase reduced the content of fructose 2,6-bisphosphate, inducing energy limitation in the mink lung epithelial cell line Mv1Lu. This metabolic stress reduced the ATP available in transfected cells by 20%, which downregulated active ion transport and protein turnover. Ion homeostasis and cell function require concomitant reductions in cell membrane ion permeability and protein damage. Our results indicate that glutathione content linked these features of the adaptive response to the endogenously induced metabolic downregulation.
Collapse
Affiliation(s)
- Jordi Boada
- Departament de Ciències Fisiològiques II, Universitat de Barcelona, E-08907 Barcelona, Spain
| | | | | | | | | |
Collapse
|
292
|
Kavazis AN, Kivipelto J, Choe HS, Colahan PT, Ott EA. Effects of ribose supplementation on selected metabolic measurements and performance in maximally exercising Thoroughbreds. J Anim Sci 2004; 82:619-25. [PMID: 14974563 DOI: 10.2527/2004.822619x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The objective of this study was to investigate the effects of ribose supplementation on blood ammonia-N, plasma lactic acid, plasma glucose, volume of oxygen consumption (VO2), heart rate, and performance in Thoroughbred geldings performing a maximal treadmill standardized exercise test (SET). The hypothesis tested was that ribose supplementation would decrease ammonia-N and lactic acid accumulation during exercise, and improve performance. Eight Thoroughbred geldings were assigned randomly to one of two groups: glucose or ribose. The glucose group received 0.15 g glucose/kg of BW, and the ribose group received 0.15 g of ribose/kg BW top-dressed on the feed twice daily. After 2 wk of glucose or ribose supplementation, a SET was performed. Blood was analyzed for blood ammonia-N, plasma lactic acid, and plasma glucose before exercise (0 min), every minute during SET, and at 15 and 30 min after exercise. Heart rate and VO2 were recorded for the duration of SET. After a 10-d washout period, geldings switched groups. Following another 2 wk of supplementation, a second SET was performed, and same data recorded. Blood ammonia-N and plasma lactic acid increased as duration of SET increased and reached a peak at 15 min after exercise. Peak plasma glucose was observed at 15 min after exercise, and peak heart rate and VO2 were recorded at highest speed during SET. Geldings supplemented with ribose had blood ammonia-N, plasma lactic acid, plasma glucose, VO2, heart rate, and performance similar to those of geldings supplemented with glucose. Results from this study show that supplementation with 0.15 g ribose/kg BW twice daily in the diet of conditioned Thoroughbred geldings for 2 wk does not influence blood ammonia-N, plasma lactic acid, plasma glucose, VO2, heart rate, or performance during SET or the first 30 min of recovery.
Collapse
Affiliation(s)
- A N Kavazis
- Department of Animal Sciences, University of Florida, Gainesville 32611, USA.
| | | | | | | | | |
Collapse
|
293
|
Leopold JA, Walker J, Scribner AW, Voetsch B, Zhang YY, Loscalzo AJ, Stanton RC, Loscalzo J. Glucose-6-phosphate dehydrogenase modulates vascular endothelial growth factor-mediated angiogenesis. J Biol Chem 2003; 278:32100-6. [PMID: 12777375 DOI: 10.1074/jbc.m301293200] [Citation(s) in RCA: 111] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Glucose-6-phosphate dehydrogenase (G6PD), the first enzyme of the pentose phosphate pathway, is the principal intracellular source of NADPH. NADPH is utilized as a cofactor by vascular endothelial cell nitric-oxide synthase (eNOS) to generate nitric oxide (NO*). To determine whether G6PD modulates NO*-mediated angiogenesis, we decreased G6PD expression in bovine aortic endothelial cells using an antisense oligodeoxynucleotide to G6PD or increased G6PD expression by adenoviral gene transfer, and we examined vascular endothelial growth factor (VEGF)-stimulated endothelial cell proliferation, migration, and capillary-like tube formation. Deficient G6PD activity was associated with a significant decrease in endothelial cell proliferation, migration, and tube formation, whereas increased G6PD activity promoted these processes. VEGF-stimulated eNOS activity and NO* production were decreased significantly in endothelial cells with deficient G6PD activity and enhanced in G6PD-overexpressing cells. In addition, G6PD-deficient cells demonstrated decreased tyrosine phosphorylation of the VEGF receptor Flk-1/KDR, Akt, and eNOS compared with cells with normal G6PD activity, whereas overexpression of G6PD enhanced phosphorylation of Flk-1/KDR, Akt, and eNOS. In the Pretsch mouse, a murine model of G6PD deficiency, vessel outgrowth from thoracic aorta segments was impaired compared with C3H wild-type mice. In an in vivo Matrigel angiogenesis assay, cell migration into the plugs was inhibited significantly in G6PD-deficient mice compared with wild-type mice, and gene transfer of G6PD restored the wild-type phenotype in G6PD-deficient mice. These findings demonstrate that G6PD modulates angiogenesis and may represent a novel angiogenic regulator.
Collapse
Affiliation(s)
- Jane A Leopold
- Whitaker Cardiovascular Institute and Evans Department of Medicine, Boston University School of Medicine, Boston, Massachusetts 02118, USA.
| | | | | | | | | | | | | | | |
Collapse
|
294
|
Zhang HS, Cao EH, Qin JF. Intracellular redox status modulates monocyte chemoattractant protein-1 expression stimulated by homocysteine in endothelial cells. J Cardiovasc Pharmacol 2003; 42:258-65. [PMID: 12883331 DOI: 10.1097/00005344-200308000-00016] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Homocystinemia has been identified as an independent risk factor for atherosclerosis. Monocyte chemoattractant protein-l (MCP-l) is a potent chemokine that stimulates the migration of monocytes into the intima of the arterial wall. The authors investigated the role of intracellular redox status in the expression of MCP-l stimulated by homocysteine in endothelial cells. Homocysteine stimulated MCP-1 mRNA expression and protein production in a time-dependent and dose-dependent manner in endothelial cells, decreased intracellular glutathione (GSH) and protein thiol levels, as well as G6PDH activity and NADPH levels. Thiol reduced reagents, GSH, and dithiothreitol levels, and reversed the MCP-l mRNA expression and protein production in endothelial cells; in addition, thiol oxidized reagent, diamide, and BSO levels, and markedly potentiated homocysteine-mediated up-regulation of MCP-l mRNA expression and protein production in endothelial cells. These results demonstrate that homocysteine can trigger overexpression of the MCP-1 gene by altering the intracellular redox status, suggesting that the homocysteine-induced changes in the intracellular redox status play an important role in modulating the expression of MCP-l in endothelial cells.
Collapse
Affiliation(s)
- Hong-Sheng Zhang
- Institute of Biophysics, Academia Sinica, 15 Datun Road, Chaoyang District, Beijing 100101, P.R. China
| | | | | |
Collapse
|
295
|
Ramos KL, Colquhoun A. Protective role of glucose-6-phosphate dehydrogenase activity in the metabolic response of C6 rat glioma cells to polyunsaturated fatty acid exposure. Glia 2003; 43:149-66. [PMID: 12838507 DOI: 10.1002/glia.10246] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Polyunsaturated fatty acids (PUFAs) can influence tumor growth and migration, both in vitro and in vivo. The PUFA gamma-linolenic acid (GLA) has been reported to improve the poor prognosis associated with human gliomas, although its effects at sublethal concentrations on residual cells postsurgery are poorly understood. The study investigated the effects sublethal PUFA doses (90 or 150 microM) may have on rat C6 glioma cell energy metabolism, since an adequate energy supply is essential for cell proliferation, migration, and apoptosis. Of note was the identification of mitochondrial heterogeneity in relation to the mitochondrial membrane potential (MMP), which has been suggested but unproven in previous studies. GLA and eicosapentaenoic acid (EPA) caused significant changes in cellular fatty acid composition and increased the percentage of cells with a low MMP after a 96-h exposure period. The presence of PUFAs inhibited C6 cell proliferation and migration, although apoptosis was not induced. The protein expression and activity of glucose-6-phosphate dehydrogenase was increased after 96-h incubation with 90 microM GLA and EPA and would allow redox regulation through increased NADPH production, permitting the maintenance of adequate intracellular reduced glutathione concentrations and limiting rates of lipid peroxidation and reactive oxygen species generation. Neither NADP(+)-isocitrate dehydrogenase nor NADP(+)-malate dehydrogenase activity responded to PUFAs, suggesting it is glucose-6-phosphate dehydrogenase that is the principal source of NADPH in C6 cells. These data compliment studies showing that higher concentrations of GLA induced glioma cell death and tumor regression and suggest that GLA treatment could be useful for the inhibition of residual cell proliferation and migration after surgical removal of the tumor mass.
Collapse
Affiliation(s)
- Karina Lawrence Ramos
- Departamento de Histologia e Embriologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | | |
Collapse
|
296
|
Jain M, Brenner DA, Cui L, Lim CC, Wang B, Pimentel DR, Koh S, Sawyer DB, Leopold JA, Handy DE, Loscalzo J, Apstein CS, Liao R. Glucose-6-phosphate dehydrogenase modulates cytosolic redox status and contractile phenotype in adult cardiomyocytes. Circ Res 2003; 93:e9-16. [PMID: 12829617 DOI: 10.1161/01.res.0000083489.83704.76] [Citation(s) in RCA: 144] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Reactive oxygen species (ROS)-mediated cell injury contributes to the pathophysiology of cardiovascular disease and myocardial dysfunction. Protection against ROS requires maintenance of endogenous thiol pools, most importantly, reduced glutathione (GSH), by NADPH. In cardiomyocytes, GSH resides in two separate cellular compartments: the mitochondria and cytosol. Although mitochondrial GSH is maintained largely by transhydrogenase and isocitrate dehydrogenase, the mechanisms responsible for sustaining cytosolic GSH remain unclear. Glucose-6-phosphate dehydrogenase (G6PD) functions as the first and rate-limiting enzyme in the pentose phosphate pathway, responsible for the generation of NADPH in a reaction coupled to the de novo production of cellular ribose. We hypothesized that G6PD is required to maintain cytosolic GSH levels and protect against ROS injury in cardiomyocytes. We found that in adult cardiomyocytes, G6PD activity is rapidly increased in response to cellular oxidative stress, with translocation of G6PD to the cell membrane. Furthermore, inhibition of G6PD depletes cytosolic GSH levels and subsequently results in cardiomyocyte contractile dysfunction through dysregulation of calcium homeostasis. Cardiomyocyte dysfunction was reversed through treatment with either a thiol-repleting agent (L-2-oxothiazolidine-4-carboxylic acid) or antioxidant treatment (Eukarion-134), but not with exogenous ribose. Finally, in a murine model of G6PD deficiency, we demonstrate the development of in vivo adverse structural remodeling and impaired contractile function over time. We, therefore, conclude that G6PD is a critical cytosolic antioxidant enzyme, essential for maintenance of cytosolic redox status in adult cardiomyocytes. Deficiency of G6PD may contribute to cardiac dysfunction through increased susceptibility to free radical injury and impairment of intracellular calcium transport. The full text of this article is available online at http://www.circresaha.org.
Collapse
Affiliation(s)
- Mohit Jain
- Cardiac Muscle Research Laboratory, Whitaker Cardiovascular Institute and Evans Department of Medicine, Boston University School of Medicine, Boston, Mass, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
297
|
Comizzoli P, Urner F, Sakkas D, Renard JP. Up-regulation of glucose metabolism during male pronucleus formation determines the early onset of the s phase in bovine zygotes. Biol Reprod 2003; 68:1934-40. [PMID: 12606355 DOI: 10.1095/biolreprod.102.011452] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
After in vitro fertilization with spermatozoa from bulls with high in vitro fertility, a beneficial paternal effect is manifested during the G1 phase of the first cell cycle. This benefit determines an earlier onset of the first S phase, and then a successful morula-blastocyst transition 7 days later. We hypothesized that the origin of the paternal effect could be a shift of the metabolism of the fertilized oocyte, because in mice, sperm decondensation is responsible for a dramatic increase in glucose metabolism. In this study we investigated the interaction between both pronuclei and compared glycolysis and pentose phosphate pathway (PPP) activities in bovine oocytes fertilized with spermatozoa from bulls of high or low fertility. Here we demonstrate that male pronucleus formation is necessary for the onset of the S phase in the female pronucleus, and that the component promoting an early S phase in both pronuclei is metabolic and linked to an up-regulation of the PPP during the male pronucleus formation. This long-lasting paternal effect is more evidence of the important role of epigenetic control during early embryo development.
Collapse
Affiliation(s)
- P Comizzoli
- Institut National de la Recherche Agronomique, Biologie du Développement et Biotechnologie, 78352 Jouy-en-Josas, France
| | | | | | | |
Collapse
|
298
|
Biagiotti E, Malatesta M, Capellacci S, Fattoretti P, Gazzanelli G, Ninfali P. Quantification of G6PD in small and large intestine of rat during aging. Acta Histochem 2003; 104:225-34. [PMID: 12389736 DOI: 10.1078/0065-1281-00667] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Numerous studies have demonstrated a decrease in glucose-6-phosphate dehydrogenase (G6PD) activity during aging in many cell types, including red blood cells, fibroblasts and lens cells. Moreover, the intracellular activity of G6PD has been shown to be regulated by binding to cell organelles. To investigate whether binding of G6PD to cell organelles is related with the decrease in its activity during aging, distribution patterns of G6PD activity and protein were assessed in small (SI) and large (LI) intestine of 3-month-old and 28-month-old rats. Enzyme activity, as measured spectrophotometrically, did not show any significant change with aging in SI or LI. Enzyme histochemistry, performed by subtracting activity staining of 6-phosphogluconate dehydrogenase (6PGD) from that of G6PD, showed a lower net G6PD activity in SI and LI epithelium of old rats in comparison with young rats. G6PD activity did not change significantly with aging in the muscularis externa of SI and LI. Immunoelectron microscopic analysis of G6PD protein allowed us to measure the density of G6PD molecules in cellular compartments, and the fraction of enzyme bound to cell organelles. In SI and LI epithelia, density of G6PD molecules was higher in old rats than in young rats; however, the fraction of enzyme bound to cell organelles also increased with aging. These data suggest that G6PD activity in epithelium of SI and LI decreases with aging due to the accumulation of significant amounts of enzyme bound to cell organelles, a condition which makes it less active than the soluble enzyme.
Collapse
Affiliation(s)
- Enrica Biagiotti
- Institute of Biochemistry G. Fornaini, University of Urbino, Italy
| | | | | | | | | | | |
Collapse
|
299
|
Leopold JA, Zhang YY, Scribner AW, Stanton RC, Loscalzo J. Glucose-6-phosphate dehydrogenase overexpression decreases endothelial cell oxidant stress and increases bioavailable nitric oxide. Arterioscler Thromb Vasc Biol 2003; 23:411-7. [PMID: 12615686 DOI: 10.1161/01.atv.0000056744.26901.ba] [Citation(s) in RCA: 152] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Glucose-6-phosphate dehydrogenase (G6PD), the principal source of NADPH, serves as an antioxidant enzyme to modulate the redox milieu and nitric oxide synthase activity. Deficient G6PD activity is associated with increased endothelial cell oxidant stress and diminished bioavailable nitric oxide (NO.). Therefore, we examined whether overexpression of G6PD would decrease reactive oxygen species accumulation and increase bioavailable NO. in endothelial cells. METHODS AND RESULTS Adenoviral-mediated gene transfer of G6PD increased G6PD expression, activity, and NADPH levels in bovine aortic endothelial cells (BAECs). BAECs overexpressing G6PD demonstrated a significant reduction in reactive oxygen species accumulation when exposed to hydrogen peroxide, xanthine-xanthine oxidase, or tumor necrosis factor-alpha compared with BAECs with basal levels of G6PD. BAECs overexpressing G6PD maintained intracellular glutathione stores when exposed to oxidants because of increased activity of glutathione reductase, an effect that was not observed in endothelial cells with normal G6PD activity. Overexpression of G6PD was also associated with enhanced nitric oxide synthase activity, resulting in elevated levels of cGMP, nitrate, and nitrite, and this response was increased after stimulation with bradykinin. CONCLUSIONS Overexpression of G6PD in vascular endothelial cells decreases reactive oxygen species accumulation in response to exogenous and endogenous oxidant stress and improves levels of bioavailable NO.
Collapse
Affiliation(s)
- Jane A Leopold
- Whitaker Cardiovascular Institute and Evans Department of Medicine, Boston University School of Medicine, 700 Albany St CABR W-507, Boston, MA 02118, USA.
| | | | | | | | | |
Collapse
|
300
|
Kim KB, Seo KW, Kim YJ, Park M, Park CW, Kim PY, Kim JI, Lee SH. Estrogenic effects of phenolic compounds on glucose-6-phosphate dehydrogenase in MCF-7 cells and uterine glutathione peroxidase in rats. CHEMOSPHERE 2003; 50:1167-1173. [PMID: 12547330 DOI: 10.1016/s0045-6535(02)00628-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
In this study, we tested phenolic compounds such as bisphenol A (BPA), 4-nonylphenol (NP), 4-octylphenol (OP) and 4-propylphenol (PP) by using glucose-6-phosphate dehydrogenase (G6PD) in estrogen sensitive human breast cancer cells (MCF-7 cells) and glutathione peroxidase (GPx) in female immature Sprague-Dawley (SD) rats. This study was designed to investigate whether phenolic compounds have estrogenic effects in these useful screening methods for endocrine disruptors. We chose 6 h as the incubation period for the G6PD assay through a preliminary experiment using 17beta-estradiol (E2). Above the concentration of 1 x 10(-8) M, BPA significantly increased the G6PD activity in a concentration-dependent manner, relative to the control. NP (over the concentration of 1 x 10(-9) M) also enhanced the G6PD activity by about 1.8 times that of the control. OP produced weaker effects on G6PD than NP, and showed a tendency to increase the G6PD activity. PP did not affect the G6PD activity. These results show that BPA and NP have the effect of enhancing G6PD activities in MCF-7 cells. In the in vivo GPx assay, both BPA and E2 significantly increased the uterus wet weights and dramatically enhanced uterine GPx activities in immature female rats in a dose-dependent manner. Treatment with NP (500 mg/kg/day) increased significantly both the uterine GPx activity and the uterus wet weights in immature female rats. OP (500 mg/kg/day) also caused a significant increase in uterine GPx activity, but had no effect on the uterus wet weights. This finding indicates that the change in uterine GPx activities could be a more sensitive parameter than that of uterus wet weights in immature rats. This study implies that phenolic compounds have a weak estrogenic effects.
Collapse
Affiliation(s)
- Kyu Bong Kim
- Pharmacology Department, National Institute of Toxicological Research, Korea Food and Drug Administration, 5-Nokbun-dong, Eunpyung-gu, Seoul 122-704, South Korea
| | | | | | | | | | | | | | | |
Collapse
|