251
|
Stallone G, Infante B, Schena A, Battaglia M, Ditonno P, Loverre A, Gesualdo L, Schena FP, Grandaliano G. Rapamycin for treatment of chronic allograft nephropathy in renal transplant patients. J Am Soc Nephrol 2005; 16:3755-62. [PMID: 16236802 DOI: 10.1681/asn.2005060635] [Citation(s) in RCA: 102] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Chronic allograft nephropathy (CAN) represents the main cause of renal allograft loss after 1 yr of transplantation. Calcineurin inhibitor (CNI) use is associated with increased graft expression of profibrotic cytokines, whereas rapamycin inhibits fibroblast proliferation. The aim of this randomized, prospective, open-label, single-center study was to evaluate the histologic and clinical effect of rapamycin on biopsy-proven CAN. Eighty-four consecutive patients who had biopsy-proven CAN and received a transplant were randomized to receive either a 40% CNI reduction plus mycophenolate mofetil (group 1; 50 patients) or immediate CNI withdrawal and rapamycin introduction with a loading dose of 0.1 mg/kg per d and a maintaining dose aiming at through levels of 6 to 10 ng/ml (group 2; 34 patients). The follow-up period was 24 mo. At the end of follow-up, 25 patients (group 1, 10 patients; group 2, 15 patients) underwent a second biopsy. CAN lesions were graded according to Banff criteria. alpha-Smooth muscle actin (alpha-SMA) protein expression was evaluated in all biopsies as a marker of fibroblast activation. Graft function and Banff grading were superimposable at randomization. Graft survival was significantly better in group 2 (P = 0.0376, chi2 = 4.323). CAN grading worsened significantly in group 1, whereas it remained stable in group 2. After 24 mo, all group 1 biopsies showed an increase of alpha-SMA expression at the interstitial and vascular levels (P < 0.001); on the contrary, alpha-SMA expression was dramatically reduced in group 2 biopsies (P = 0.005). This study demonstrates that rapamycin introduction/CNI withdrawal improves graft survival and reduces interstitial and vascular alpha-SMA expression, slowing down the progression of allograft injury in patients with CAN.
Collapse
Affiliation(s)
- Giovanni Stallone
- Department of Biomedical Sciences, Division of Nephrology, University of Foggia, Foggia, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
252
|
Lee MS, Kim TY, Kim YB, Lee SY, Ko SG, Jong HS, Kim TY, Bang YJ, Lee JW. The signaling network of transforming growth factor beta1, protein kinase Cdelta, and integrin underlies the spreading and invasiveness of gastric carcinoma cells. Mol Cell Biol 2005; 25:6921-36. [PMID: 16055706 PMCID: PMC1190263 DOI: 10.1128/mcb.25.16.6921-6936.2005] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Integrin-mediated cell adhesion and spreading enables cells to respond to extracellular stimuli for cellular functions. Using a gastric carcinoma cell line that is usually round in adhesion, we explored the mechanisms underlying the cell spreading process, separate from adhesion, and the biological consequences of the process. The cells exhibited spreading behavior through the collaboration of integrin-extracellular matrix interaction with a Smad-mediated transforming growth factor beta1 (TGFbeta1) pathway that is mediated by protein kinase Cdelta (PKCdelta). TGFbeta1 treatment of the cells replated on extracellular matrix caused the expression and phosphorylation of PKCdelta, which is required for expression and activation of integrins. Increased expression of integrins alpha2 and alpha3 correlated with the spreading, functioning in activation of focal adhesion molecules. Smad3, but not Smad2, overexpression enhanced the TGFbeta1 effects. Furthermore, TGFbeta1 treatment and PKCdelta activity were required for increased motility on fibronectin and invasion through matrigel, indicating their correlation with the spreading behavior. Altogether, this study clearly evidenced that the signaling network, involving the Smad-dependent TGFbeta pathway, PKCdelta expression and phosphorylation, and integrin expression and activation, regulates cell spreading, motility, and invasion of the SNU16mAd gastric carcinoma cell variant.
Collapse
Affiliation(s)
- Mi-Sook Lee
- Cancer Research Institute, College of Medicine, Seoul National University, Republic of Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
253
|
Groth S, Schulze M, Kalthoff H, Fändrich F, Ungefroren H. Adhesion and Rac1-dependent Regulation of Biglycan Gene Expression by Transforming Growth Factor-β. J Biol Chem 2005; 280:33190-9. [PMID: 16051607 DOI: 10.1074/jbc.m504249200] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Both transforming growth factor-beta (TGF-beta)-induced expression of biglycan (BGN) and activation of p38 MAPK have been implicated in cellular adhesion and migration. Here, we analyzed the role of adhesive events and the small GTPase Rac1 in TGF-beta regulation of BGN. TGF-beta1 induction of BGN expression and activation of p38 was abolished or strongly reduced when cells were kept in suspension or exposed to either the actin cytoskeleton-disrupting agent cytochalasin D or a specific chemical Rac1 inhibitor. Ectopic expression of a dominant negative mutant (T17N) of Rac1 abrogated both TGF-beta-induced p38 MAPK activation and BGN up-regulation but did not affect TGF-beta-induced phosphorylation of Smad3 or transcriptional induction of Growth Arrest DNA Damage 45beta, previously shown to be crucial for TGF-beta regulation of BGN. Overexpression of wild type Rac1 greatly enhanced the TGF-beta effect on BGN in adherent cells, whereas ectopic expression of constitutively active Rac1 (Q61L) activated p38 and in the presence of exogenous TGF-beta was able to rescue BGN expression in nonadherent cells. Endogenous Rac1 was activated by TGF-beta treatment in PANC-1 cells in an adhesion-dependent fashion. Like Rac1-T17N, the NADPH oxidase inhibitor diphenylene iodonium and the tyrosine kinase inhibitor herbimycin A blocked TGF-beta-induced p38 activation and BGN expression, suggesting that Rac1 exerts its effect on BGN and p38 through increasing NADPH oxidase activity and subsequent production of reactive oxygen species. These results show that the TGF-beta effect on BGN is dependent on cell adhesion and that activated Rac1, presumably acting through NADPH oxidase(s), is necessary but not sufficient for TGF-beta-induced BGN expression.
Collapse
Affiliation(s)
- Stephanie Groth
- Department of General Surgery and Thoracic Surgery, University Hospital Schleswig-Holstein, Campus Kiel, Arnold-Heller-Strasse 7, Kiel 24105, Germany
| | | | | | | | | |
Collapse
|
254
|
Abstract
Remarkable phenotype plasticity of epithelial cells underlies morphogenesis, epithelial repair and tumor invasiveness. Detailed understanding of the contextual cues and molecular mediators that control epithelial plasticity will be required in order to develop viable therapeutic approaches targeting epithelial-to-mesenchymal transition (EMT), an advanced manifestation of epithelial plasticity. Members of the transforming growth factor (TGF-beta) family of growth factors can initiate and maintain EMT in a variety of biological systems and pathophysiological context by activating major signaling pathways and transcriptional regulators integrated in extensive signaling networks. Here we will review the distinct physiological contexts of EMT and the underlying molecular signaling networks controlled by TGF-beta.
Collapse
Affiliation(s)
- Jiri Zavadil
- Department of Pathology, NYU Cancer Institute, New York University School of Medicine, New York, NY 10016, USA
| | | |
Collapse
|
255
|
Sokol JP, Neil JR, Schiemann BJ, Schiemann WP. The use of cystatin C to inhibit epithelial-mesenchymal transition and morphological transformation stimulated by transforming growth factor-beta. Breast Cancer Res 2005; 7:R844-53. [PMID: 16168131 PMCID: PMC1242164 DOI: 10.1186/bcr1312] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2004] [Revised: 06/11/2005] [Accepted: 07/26/2005] [Indexed: 02/08/2023] Open
Abstract
Introduction Transforming growth factor-β (TGF-β) is a potent suppressor of mammary epithelial cell (MEC) proliferation and is thus an inhibitor of mammary tumor formation. Malignant MECs typically evolve resistance to TGF-β-mediated growth arrest, enhancing their proliferation, invasion, and metastasis when stimulated by TGF-β. Recent findings suggest that therapeutics designed to antagonize TGF-β signaling may alleviate breast cancer progression, thereby improving the prognosis and treatment of breast cancer patients. We identified the cysteine protease inhibitor cystatin C (CystC) as a novel TGF-β type II receptor antagonist that inhibits TGF-β binding and signaling in normal and cancer cells. We hypothesized that the oncogenic activities of TGF-β, particularly its stimulation of mammary epithelial–mesenchymal transition (EMT), can be prevented by CystC. Method Retroviral infection was used to constitutively express CystC or a CystC mutant impaired in its ability to inhibit cathepsin protease activity (namely Δ14CystC) in murine NMuMG MECs and in normal rat kidney (NRK) fibroblasts. The effect of recombinant CystC administration or CystC expression on TGF-β stimulation of NMuMG cell EMT in vitro was determined with immunofluorescence to monitor rearrangements of actin cytoskeletal architecture and E-cadherin expression. Soft-agar growth assays were performed to determine the effectiveness of CystC in preventing TGF-β stimulation of morphological transformation and anchorage-independent growth in NRK fibroblasts. Matrigel invasion assays were performed to determine the ability of CystC to inhibit NMuMG and NRK motility stimulated by TGF-β. Results CystC and Δ14CystC both inhibited NMuMG cell EMT and invasion stimulated by TGF-β by preventing actin cytoskeletal rearrangements and E-cadherin downregulation. Moreover, both CystC molecules completely antagonized TGF-β-mediated morphological transformation and anchorage-independent growth of NRK cells, and inhibited their invasion through synthetic basement membranes. Both CystC and Δ14CystC also inhibited TGF-β signaling in two tumorigenic human breast cancer cell lines. Conclusion Our findings show that TGF-β stimulation of initiating metastatic events, including decreased cell polarization, reduced cell–cell contact, and elevated cell invasion and migration, are prevented by CystC treatment. Our findings also suggest that the future development of CystC or its peptide mimetics hold the potential to improve the therapeutic response of human breast cancers regulated by TGF-β.
Collapse
Affiliation(s)
- Jonathan P Sokol
- Program in Cell Biology, Department of Pediatrics, National Jewish Medical and Research Center, Denver, CO, USA
| | - Jason R Neil
- Program in Cell Biology, Department of Pediatrics, National Jewish Medical and Research Center, Denver, CO, USA
| | - Barbara J Schiemann
- Program in Cell Biology, Department of Pediatrics, National Jewish Medical and Research Center, Denver, CO, USA
| | - William P Schiemann
- Program in Cell Biology, Department of Pediatrics, National Jewish Medical and Research Center, Denver, CO, USA
| |
Collapse
|
256
|
Davies M, Robinson M, Smith E, Huntley S, Prime S, Paterson I. Induction of an epithelial to mesenchymal transition in human immortal and malignant keratinocytes by TGF-beta1 involves MAPK, Smad and AP-1 signalling pathways. J Cell Biochem 2005; 95:918-31. [PMID: 15861394 DOI: 10.1002/jcb.20458] [Citation(s) in RCA: 189] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Recent data indicate that transforming growth factor-beta1 (TGF-beta1) can act to promote tumour progression in the late stages of carcinogenesis. The mechanism by which this occurs is unknown although a ligand-induced epithelial-mesenchymal transition (EMT) is thought to be important. In this study, we demonstrate that active Ras is required for TGF-beta1-induced EMT in human keratinocytes and that epidermal growth factor (EGF) can substitute for mutant Ras. EMT was reversed by the removal of TGF-beta1. Under conditions of TGF-beta1-induced EMT, cells were growth inhibited by the ligand resulting in G1 arrest. In cells containing normal Ras, TGF-beta1-activated ERK and p38 mitogen-activated protein kinases (MAPKs), and levels of activation were further increased by co-treatment with EGF. Inhibition of MAPK pathways and Smad2/3 signalling blocked the induction of EMT by TGF-beta1. Further, inhibition of the AP-1 transcriptional complex by [6]-Gingerol, or by the ectopic expression of JDP2, blocked TGF-beta1-induced EMT and conversely, stimulation of AP-1 by 12-O-tetradecanoylphorbol 13-acetate (TPA) substituted for EGF in the induction of EMT by TGF-beta1 in cells containing normal Ras. The presence of oncogenic Ras, the treatment of cells with EGF, or the treatment of cells with TPA to activate AP-1, potentiated TGF-beta1-induced Smad-dependent transcription, an effect that was attenuated by the inhibition of MAPKs and AP-1. The results demonstrate that active Ras and TGF-beta1 co-operate to reversibly induce EMT in human keratinocytes by mechanisms that involve MAPKs, Smad2/3 and AP-1. Further we demonstrate that MAPK/AP-1 signalling enhances Smad transcriptional activity under conditions associated with TGF-beta1-induced EMT.
Collapse
Affiliation(s)
- Maria Davies
- Department of Oral and Dental Science, University of Bristol, Bristol BS1 2LY, United Kingdom.
| | | | | | | | | | | |
Collapse
|
257
|
Saika S, Yamanaka O, Ikeda K, Kim-Mitsuyama S, Flanders KC, Yoo J, Roberts AB, Nishikawa-Ishida I, Ohnishi Y, Muragaki Y, Ooshima A. Inhibition of p38MAP kinase suppresses fibrotic reaction of retinal pigment epithelial cells. J Transl Med 2005; 85:838-50. [PMID: 15924151 DOI: 10.1038/labinvest.3700294] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Proliferative vitreoretinopathy (PVR) is one of the major causes of the failure of retinal detachment surgery. Its pathogenesis includes a fibrotic reaction by the retinal pigment epithelium and other retina-derived non-neural cells, leading to fixation of the detached retina. We examined the role of p38 mitogen-activated protein kinase (MAPK) in transforming growth factor (TGF)-beta2-dependent enhancement of the fibrogenic reaction in a human retinal pigment epithelial cell line, ARPE-19, and also evaluated the therapeutic efficacy of inhibiting p38MAPK by adenoviral gene transfer of dominant-negative (DN) p38MAPK in a mouse model of PVR. Exogenous TGF-beta2 activates p38MAPK in ARPE-19 cells. It also suppresses cell proliferation, but this was unaffected by addition of the p38MAPK inhibitor, SB202190. SB202190 interfered with TGF-beta2-dependent cell migration and production of collagen type I and fibronectin, but had no effect on basal levels of these activities. While SB202190 did not affect phosphorylation of the C-terminus of Smads2/3, it did suppress the transcriptional activity of Smads3/4 as indicated by a reporter gene, CAGA12-Luc. Gene transfer of DN-p38MAPK attenuated the post-retinal detachment fibrotic reaction of the retinal pigment epithelium in vivo in mice, supporting its effectiveness in preventing/treating PVR.
Collapse
Affiliation(s)
- Shizuya Saika
- Department of Ophthalmology, Wakayama Medical University, Kimiidera, Wakayama 641-0012, Japan.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
258
|
Borczuk AC, Kim HK, Yegen HA, Friedman RA, Powell CA. Lung adenocarcinoma global profiling identifies type II transforming growth factor-beta receptor as a repressor of invasiveness. Am J Respir Crit Care Med 2005; 172:729-37. [PMID: 15976377 PMCID: PMC2718552 DOI: 10.1164/rccm.200504-615oc] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
RATIONALE Lung adenocarcinoma histology and clinical outcome are heterogeneous and associated with tumor invasiveness. OBJECTIVES We hypothesized that invasiveness is associated with a distinct molecular signature and that genes differentially expressed in tumor or adjacent stroma will identify cell surface signal transduction and matrix remodeling pathways associated with the acquisition of invasiveness in lung adenocarcinoma. MAIN RESULTS Microarray analysis of microdissected noninvasive bronchioloalveolar carcinoma (BAC) and invasive adenocarcinoma and adenocarcinoma-mixed type with BAC features identified transcriptional profiles of lung adenocarcinoma invasiveness. Among the signature set that was lower in adenocarcinoma-mixed compared with BAC was the type II transforming growth factor beta (TGF-beta) receptor, suggesting downregulation of TGFbetaRII is an early event in lung adenocarcinoma metastasis. Immunostaining in independently acquired specimens demonstrated a correlation between TbetaRII expression and length of tumor invasion. Repression of TGFbetaRII in lung cancer cells increased tumor cell invasiveness and activated p38 mitogen-activated protein kinases. Microarray analysis of invasive cells identified potential downstream mediators of TGFbetaRII with differential expression in lung adenocarcinomas. CONCLUSIONS The repression of type II TGF-beta receptor may act as a significant determinant of lung adenocarcinoma invasiveness, an early step in tumor progression toward metastasis.
Collapse
Affiliation(s)
- Alain C Borczuk
- Department of Pathology, Herbert Irving Comprehensive Cancer Center, Columbia University College of Physicians and Surgeons, New York, New York, USA
| | | | | | | | | |
Collapse
|
259
|
Han G, Lu SL, Li AG, He W, Corless CL, Kulesz-Martin M, Wang XJ. Distinct mechanisms of TGF-beta1-mediated epithelial-to-mesenchymal transition and metastasis during skin carcinogenesis. J Clin Invest 2005; 115:1714-23. [PMID: 15937546 PMCID: PMC1142114 DOI: 10.1172/jci24399] [Citation(s) in RCA: 193] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2005] [Accepted: 04/19/2005] [Indexed: 12/18/2022] Open
Abstract
In the present study, we demonstrated that human skin cancers frequently overexpress TGF-beta1 but exhibit decreased expression of the TGF-beta type II receptor (TGF-(beta)RII). To understand how this combination affects cancer prognosis, we generated a transgenic mouse model that allowed inducible expression of TGF-beta(1) in keratinocytes expressing a dominant negative TGF-(beta)RII (Delta(beta)RII) in the epidermis. Without Delta(beta)RII expression, TGF-beta1 transgene induction in late-stage, chemically induced papillomas failed to inhibit tumor growth but increased metastasis and epithelial-to-mesenchymal transition (EMT), i.e., formation of spindle cell carcinomas. Interestingly, Delta(beta)RII expression abrogated TGF-beta1-mediated EMT and was accompanied by restoration of membrane-associated E-cadherin/catenin complex in TGF-beta1/Delta(beta)RII compound tumors. Furthermore, expression of molecules thought to mediate TGF-beta1-induced EMT was attenuated in TGF-beta1/Delta(beta)RII-transgenic tumors. However, TGF-beta1/Delta(beta)RII-transgenic tumors progressed to metastasis without losing expression of the membrane-associated E-cadherin/catenin complex and at a rate higher than those observed in nontransgenic, TGF-beta1-transgenic, or Delta(beta)RII-transgenic mice. Abrogation of Smad activation by Delta(beta)RII correlated with the blockade of EMT. However, Delta(beta)RII did not alter TGF-beta1-mediated expression of RhoA/Rac and MAPK, which contributed to increased metastasis. Our study provides evidence that TGF-beta1 induces EMT and invasion via distinct mechanisms. TGF-beta1-mediated EMT requires functional TGF-(beta)RII, whereas TGF-beta1-mediated tumor invasion cooperates with reduced TGF-(beta)RII signaling in tumor epithelia.
Collapse
Affiliation(s)
- Gangwen Han
- Department of Otolaryngology, Oregon Health & Science University, Portland, OR, USA
| | | | | | | | | | | | | |
Collapse
|
260
|
Kim HP, Kim TY, Lee MS, Jong HS, Kim TY, Lee JW, Bang YJ. TGF-beta1-mediated activations of c-Src and Rac1 modulate levels of cyclins and p27(Kip1) CDK inhibitor in hepatoma cells replated on fibronectin. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2005; 1743:151-61. [PMID: 15777850 DOI: 10.1016/j.bbamcr.2004.09.014] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2004] [Revised: 07/30/2004] [Accepted: 09/16/2004] [Indexed: 01/03/2023]
Abstract
Integrin-mediated cell adhesion transduces signals to regulate actin cytoskeleton and cell proliferation. While understanding how integrin signals cross-talk with the TGF-beta1 pathways, we observed lamellipodia formation and cyclin regulation in Hep3B cells, following TGF-beta1 treatment. To answer if integrin signaling via actin organization might regulate cell cycle progression after TGF-beta1 treatment, we analyzed cross-talk between the two receptor-mediated pathways in hepatoma cells on specific ECMs. We found that basal and TGF-beta1-mediated activation of c-Src and Rac1, expression of cyclins E and A, and suppression of p27Kip1 were significant in cells replated on fibronectin, but not in cells on collagen I, indicating a different integrin-mediated cellular response to TGF-beta1 treatment. Levels of tyrosine phosphorylation and actin-enriched lamellipodia on fibronectin were also more prominent than in cells on collagen I. Studies using pharmacological inhibitors or transient transfections revealed that the preferential TGF-beta1 effects in cells on fibronectin required c-Src family kinase activity. These observations suggest that a specific cross-talk between TGF-beta1 and fibronectin-binding integrin signal pathways leads to the activation of c-Src/Rac1/actin-organization, leading to changes in cell cycle regulator levels in hepatoma cells. Therefore, this study represents another mechanism to regulate cell cycle regulators when integrin signaling is collaborative with TGF-beta1 pathways.
Collapse
Affiliation(s)
- Hwang-Phill Kim
- National Research Laboratory for Cancer Epigenetics, Cancer Research Institute, Department of Tumor Biology, College of Medicine, Seoul National University, Seoul 110-799, South Korea
| | | | | | | | | | | | | |
Collapse
|
261
|
Prunier C, Howe PH. Disabled-2 (Dab2) is required for transforming growth factor beta-induced epithelial to mesenchymal transition (EMT). J Biol Chem 2005; 280:17540-8. [PMID: 15734730 DOI: 10.1074/jbc.m500974200] [Citation(s) in RCA: 109] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Transforming growth factor beta (TGFbeta) induces an epithelial to mesenchymal transition (EMT) during both physiological and pathological processes; however, the mechanism underlying this transition is not fully elucidated. Here, we have demonstrated that TGFbeta induces the expression of the adaptor molecule disabled-2 (Dab2) concomitant with the promotion of EMT. We show that TGFbeta induces a transient accumulation of Dab2 to the membrane and increases Dab2 binding to beta1 integrin. Furthermore, small interfering RNA (siRNA)-mediated silencing of Dab2 expression in mouse mammary gland epithelial cells results in inhibition of integrin activation, shown by a decrease of both TGFbeta-induced focal adhesion kinase phosphorylation and cellular adherence, leading to apoptosis and inhibition of EMT. Forced re-expression of human Dab2, not targeted by the mouse siRNA sequence, rescues cells from apoptosis and restores TGFbeta-mediated integrin activation and EMT. These results are confirmed in the F9 teratocarcinoma cell line, a model for retinoic acid-induced visceral endoderm differentiation in which we demonstrate that ablation of retinoic acid-induced Dab2 expression levels, by stable siRNA silencing of Dab2, blocks visceral endoderm differentiation. Our findings indicate that Dab2 plays an important regulatory role during cellular differentiation and that induction of differentiation in the absence of Dab2 expression commits the cell to apoptosis.
Collapse
Affiliation(s)
- Céline Prunier
- Department of Cell Biology, The Lerner Research Institute, Cleveland Clinic Lerner College of Medicine, Cleveland Clinic Foundation, Cleveland, Ohio 44195, USA
| | | |
Collapse
|
262
|
Nakagawa T, Lan HY, Glushakova O, Zhu HJ, Kang DH, Schreiner GF, Böttinger EP, Johnson RJ, Sautin YY. Role of ERK1/2 and p38 mitogen-activated protein kinases in the regulation of thrombospondin-1 by TGF-beta1 in rat proximal tubular cells and mouse fibroblasts. J Am Soc Nephrol 2005; 16:899-904. [PMID: 15716330 DOI: 10.1681/asn.2004080689] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Thrombospondin-1 (TSP-1) inhibits angiogenesis and activates latent TGF-beta1, both of which are strongly associated with progression of renal disease. Recently, it was reported that Smad2 but not Smad3 regulates TSP-1 expression in response to TGF-beta1 in rat tubular epithelial cells as well as in mouse fibroblasts. This study investigated the role of ERK1/2 and p38 mitogen-activated protein kinases (MAPK). TGF-beta1 activated both ERK1/2 and p38 in the rat proximal tubular cell line NRK52E. Blocking ERK1/2 and p38 inhibited TGF-beta1-induced TSP-1 mRNA and protein expression. Next, the cross-talk between Smad2 and ERK1/2 or p38 was examined. Whereas blocking of ERK1/2 or p38 failed to inhibit TGF-beta1-induced Smad2 activation, inhibition of Smad2 by Smad7 overexpression inhibited the phosphorylation of ERK1/2 but not p38 in response to TGF-beta1. Similar results were observed using mouse fibroblasts from Smad2 knockout embryos, in that TGF-beta1 was able to activate p38 but not ERK1/2 in this cell line. In conclusion, TSP-1 expression is regulated by both ERK1/2 and p38 MAPK in rat proximal tubular cells and mouse fibroblasts in response to TGF-beta1. The ERK1/2 activation is dependent on Smad2 activation, whereas the p38 activation occurs independent of Smad2. Because TSP-1 is a major antiangiogenic molecule and an activator of TGF-beta1, this provides an important insight to the mechanism by which TGF-beta1 may mediate interstitial fibrosis and progressive renal disease.
Collapse
Affiliation(s)
- Takahiko Nakagawa
- Division of Nephrology, Hypertension and Transplantation, University of Florida, P.O. Box 100224, Gainesville, FL 32610-0224, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
263
|
Valcourt U, Kowanetz M, Niimi H, Heldin CH, Moustakas A. TGF-beta and the Smad signaling pathway support transcriptomic reprogramming during epithelial-mesenchymal cell transition. Mol Biol Cell 2005; 16:1987-2002. [PMID: 15689496 PMCID: PMC1073677 DOI: 10.1091/mbc.e04-08-0658] [Citation(s) in RCA: 447] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Epithelial-mesenchymal transition (EMT) contributes to normal tissue patterning and carcinoma invasiveness. We show that transforming growth factor (TGF)-beta/activin members, but not bone morphogenetic protein (BMP) members, can induce EMT in normal human and mouse epithelial cells. EMT correlates with the ability of these ligands to induce growth arrest. Ectopic expression of all type I receptors of the TGF-beta superfamily establishes that TGF-beta but not BMP pathways can elicit EMT. Ectopic Smad2 or Smad3 together with Smad4 enhanced, whereas dominant-negative forms of Smad2, Smad3, or Smad4, and wild-type inhibitory Smad7, blocked TGF-beta-induced EMT. Transcriptomic analysis of EMT kinetics identified novel TGF-beta target genes with ligand-specific responses. Using a TGF-beta type I receptor that cannot activate Smads nor induce EMT, we found that Smad signaling is critical for regulation of all tested gene targets during EMT. One such gene, Id2, whose expression is repressed by TGF-beta1 but induced by BMP-7 is critical for regulation of at least one important myoepithelial marker, alpha-smooth muscle actin, during EMT. Thus, based on ligand-specific responsiveness and evolutionary conservation of the gene expression patterns, we begin deciphering a genetic network downstream of TGF-beta and predict functional links to the control of cell proliferation and EMT.
Collapse
|
264
|
Jeong HW, Kim IS. TGF-beta1 enhances betaig-h3-mediated keratinocyte cell migration through the alpha3beta1 integrin and PI3K. J Cell Biochem 2005; 92:770-80. [PMID: 15211574 DOI: 10.1002/jcb.20110] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
betaig-h3 is an extracellular matrix (ECM) protein whose expression is highly induced by transforming growth factor beta1 (TGF-beta1). We previously demonstrated that betaig-h3 has two alpha3beta1 integrin-interacting motifs, which promote adhesion, migration, and proliferation of human keratinocytes. Both betaig-h3 and TGF-beta1 have been suggested to play important roles in the healing of skin wounds. In this study, we demonstrate that TGF-beta1 enhances keratinocyte adhesion and migration toward betaig-h3 through the alpha3beta1 integrin. TGF-beta1 did not increase the amount of the alpha3beta1 integrin on the cell surface, but rather increased its affinity for betaig-h3. LY294002, an inhibitor of PI3K, blocked the basal and TGF-beta1-enhanced cell migration but not adhesion to betaig-h3. A constitutively active mutant of PI3K stimulated cell migration but not adhesion to betaig-h3. The PI3K pathway is also not associated with the affinity of the alpha3beta1 integrin to betaig-h3. TGF-beta1 induced phosphorylation of AKT and FAK. Taken together, these data suggest that TGF-beta1 increases affinity of the alpha3beta1 integrin to betaig-h3, resulting in enhanced adhesion and migration of keratinocytes toward betaig-h3. TGF-beta1 also enhances migration through PI3K, but PI3K is not associated with either the binding affinity of the alpha3beta1 integrin or its adhesion to betaig-h3.
Collapse
Affiliation(s)
- Ha-Won Jeong
- Cell and Matrix Biology National Research Laboratory, Department of Biochemistry, Kyungpook National University School of Medicine, Daegu 700-422, Korea
| | | |
Collapse
|
265
|
Rhyu DY, Yang Y, Ha H, Lee GT, Song JS, Uh ST, Lee HB. Role of Reactive Oxygen Species in TGF-β1-Induced Mitogen-Activated Protein Kinase Activation and Epithelial-Mesenchymal Transition in Renal Tubular Epithelial Cells. J Am Soc Nephrol 2005; 16:667-75. [PMID: 15677311 DOI: 10.1681/asn.2004050425] [Citation(s) in RCA: 422] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Epithelial-mesenchymal transition (EMT) plays an important role in renal tubulointerstitial fibrosis and TGF-beta1 is the key inducer of EMT. Phosphorylation of Smad proteins and/or mitogen-activated protein kinases (MAPK) is required for TGF-beta1-induced EMT. Because reactive oxygen species (ROS) are involved in TGF-beta1 signaling and are upstream signaling molecules to MAPK, this study examined the role of ROS in TGF-beta1-induced MAPK activation and EMT in rat proximal tubular epithelial cells. Growth-arrested and synchronized NRK-52E cells were stimulated with TGF-beta1 (0.2 to 20 ng/ml) or H(2)O(2) (1 to 500 microM) in the presence or absence of antioxidants (N-acetylcysteine or catalase), inhibitors of NADPH oxidase (diphenyleneiodonium and apocynin), mitochondrial electron transfer chain subunit I (rotenone), and MAPK (PD 98059, an MEK [MAP kinase/ERK kinase] inhibitor, or p38 MAPK inhibitor) for up to 96 h. TGF-beta1 increased dichlorofluorescein-sensitive cellular ROS, phosphorylated Smad 2, p38 MAPK, extracellular signal-regulated kinases (ERK)1/2, alpha-smooth muscle actin (alpha-SMA) expression, and fibronectin secretion and decreased E-cadherin expression. Antioxidants effectively inhibited TGF-beta1-induced cellular ROS, phosphorylation of Smad 2, p38 MAPK, and ERK, and EMT. H(2)O(2) reproduced all of the effects of TGF-beta1 with the exception of Smad 2 phosphorylation. Chemical inhibition of ERK but not p38 MAPK inhibited TGF-beta1-induced Smad 2 phosphorylation, and both MAPK inhibitors inhibited TGF-beta1- and H(2)O(2)-induced EMT. Diphenyleneiodonium, apocynin, and rotenone also significantly inhibited TGF-beta1-induced ROS. Thus, this data suggest that ROS play an important role in TGF-beta1-induced EMT primarily through activation of MAPK and subsequently through ERK-directed activation of Smad pathway in proximal tubular epithelial cells.
Collapse
Affiliation(s)
- Dong Young Rhyu
- Ewha Womans University College of Pharmacy, 11-1 Daehyun-dong, Sedaimun-gu, Seoul 120-750, Korea
| | | | | | | | | | | | | |
Collapse
|
266
|
Zhang H, Aronow MS, Gronowicz GA. Transforming growth factor-beta 1 (TGF-β1) prevents the age-dependent decrease in bone formation in human osteoblast/implant cultures. J Biomed Mater Res A 2005; 75:98-105. [PMID: 16044414 DOI: 10.1002/jbm.a.30400] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Titanium implants have been extensively used in orthopedic surgery and dentistry. Most of the patients who receive such implants are elderly with a compromised ability to heal and form new bone. By using an in vitro osteoblast/implant culture system, the potency of TGF-beta1 in enhancing mineralization of human osteoblast cultures from elderly subjects was investigated in this study. Primary human osteoblast (HOB) cells obtained from different age group human subjects [Young (Y), Middle (M), and Old (O)] were cultured on Ti alloy (Ti-6Al-4V) disks with or without continuous administration of 0.2 ng/mL TGF-beta1 in the medium for 2 or 4 weeks. TGF-beta1 significantly (p < 0.05) increased calcium content and the size of calcified nodules on implant disks in the O group, but had no effect on the Y or M groups. The number of calcified nodules was not different with or without TGF-beta1 in all age groups. As measured by Northern blot analysis and RT-PCR, TGF-beta1 significantly increased the expression of bone-specific extracellular matrix proteins, including alkaline phosphatase, Type I collagen, bone sialoprotein and osteocalcin, after both 2 and 4 weeks in the O group but not in the Y group. In conclusion, TGF-beta1 enhances mineralization on implant materials of osteoblast cultures from elderly human subjects.
Collapse
Affiliation(s)
- Hai Zhang
- Department of Restorative Dentistry, University of Washington, Seattle, WA 98195, USA.
| | | | | |
Collapse
|
267
|
Compton LA, Potash DA, Mundell NA, Barnett JV. Transforming growth factor-β induces loss of epithelial character and smooth muscle cell differentiation in epicardial cells. Dev Dyn 2005; 235:82-93. [PMID: 16258965 DOI: 10.1002/dvdy.20629] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
During embryogenesis, epicardial cells undergo epithelial-mesenchymal transformation (EMT), invade the myocardium, and differentiate into components of the coronary vasculature, including smooth muscle cells. We tested the hypothesis that transforming growth factor-beta (TGFbeta) stimulates EMT and smooth muscle differentiation of epicardial cells. In epicardial explants, TGFbeta1 and TGFbeta2 induce loss of epithelial morphology, cytokeratin, and membrane-associated Zonula Occludens-1 and increase the smooth muscle markers calponin and caldesmon. Inhibition of activin receptor-like kinase (ALK) 5 blocks these effects, whereas constitutively active (ca) ALK5 increases cell invasion by 42%. Overexpression of Smad 3 did not mimic the effects of caALK5. Inhibition of p160 rho kinase or p38 MAP kinase prevented the loss of epithelial morphology in response to TGFbeta, whereas only inhibition of p160 rho kinase blocked TGFbeta-stimulated caldesmon expression. These data demonstrate that TGFbeta stimulates loss of epithelial character and smooth muscle differentiation in epicardial cells by means of a mechanism that requires ALK5 and p160 rho kinase.
Collapse
Affiliation(s)
- Leigh A Compton
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, Tennessee 37232-6600, USA
| | | | | | | |
Collapse
|
268
|
Zhang H, Ozaki I, Mizuta T, Yoshimura T, Matsuhashi S, Eguchi Y, Yasutake T, Hisatomi A, Sakai T, Yamamoto K. Transforming growth factor-beta 1-induced apoptosis is blocked by beta 1-integrin-mediated mitogen-activated protein kinase activation in human hepatoma cells. Cancer Sci 2004; 95:878-86. [PMID: 15546505 PMCID: PMC11158769 DOI: 10.1111/j.1349-7006.2004.tb02197.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2004] [Revised: 08/05/2004] [Accepted: 09/02/2004] [Indexed: 12/22/2022] Open
Abstract
Growth factors and extracellular matrices cooperatively regulate cellular behavior. However, the interactions between transforming growth factor-beta 1 (TGF-beta 1) and integrins in hepatic cells are not fully understood. We investigated the effects of beta 1-integrin on TGF-beta 1-regulated growth of hepatoma cells. Human hepatoma cell lines HepG2, Huh7, and Hep3B were stably transfected with beta 1-integrin, and the parental, and mock- and beta 1-integrin-transfected hepatoma cells were treated with TGF-beta 1. Modulation of apoptosis and pathways involved in the process were investigated. TGF-beta 1 suppressed the growth of hepatoma cells, and apoptosis was observed in Hep3B and Huh7. Hepatoma cells transfected with beta 1-integrin were protected from TGF-beta 1-induced apoptosis. Mitogen-activated protein (MAP) kinase inhibitors, PD98059, SB203580, and SP600125, abolished this protective effect of beta 1-integrin, but herbimycin A and wortmannin were ineffective. Hepatoma cells overexpressing beta 1-integrin showed increased activities of MAP kinases, and TGF-beta 1 induced sustained activation of MAP kinases in these cells, but only transient activation in mock-transfected cells. These data suggest that MAP kinases activated by beta 1-integrin provide a strong anti-apoptotic signal during TGF-beta 1-induced apoptosis in human hepatoma cells. Therefore beta 1-integrin-mediated signals may contribute to the development and progression of hepatocellular carcinoma.
Collapse
Affiliation(s)
- Hao Zhang
- Division of Hepatology and Metabolism, Department of Internal Medicine, Saga Medical School, Saga University, Saga 849-8501
| | | | | | | | | | | | | | | | | | | |
Collapse
|
269
|
Abstract
This article reviews recent progress in research on the role of Smad signaling in corneal wound healing. Smad2 and Smad3 are key signaling molecules downstream of the cell surface receptor of transforming growth factor-beta (TGF-beta) or activin. On ligand binding to the receptor, Smads2/3 undergo phosphorylation, form complexes with Smad4, and thence convey signaling. TGF-beta isoforms have been detected in corneal epithelium and are also deposited in wounded stroma, suggesting their participation in the wound-healing process in corneal tissue. Human or mouse uninjured healthy corneal epithelium shows nuclear accumulation of Smads3/4, indicating active Smad signaling in this tissue. Migrating corneal epithelium lacks nuclear Smad accumulation with up-regulation of Smad7, but p38MAPK is activated. Organ-culture experiments show that p38MAPK activation depends on endogenous TGF-beta and that activation of p38MAPK results in cell proliferation cessation with a reduction of Erk activation and acceleration of cell migration in healing corneal epithelium. These findings indicate that during healing of corneal epithelial defects, endogenous TGF-beta activates p38MAPK for cell migration and suppression of cell proliferation and up-regulates Smad7 for inhibition of Smad2 and Smad3 signaling, resulting in rapid initial resurfacing of the epithelium. Such involvement of p38MAPK in cell migration has been reported in many cell types and observed in keratocyte culture. Possible benefits of preserving non-Smad cascades in treating problems in corneal wound healing by manipulating TGF-beta signals have been suggested.
Collapse
Affiliation(s)
- Shizuya Saika
- Department of Ophthalmology, Wakayama Medical University, 811-1 Kimiidera, Wakayama, 641-0012, Japan.
| |
Collapse
|
270
|
Saika S, Ikeda K, Yamanaka O, Sato M, Muragaki Y, Ohnishi Y, Ooshima A, Nakajima Y, Namikawa K, Kiyama H, Flanders KC, Roberts AB. Transient adenoviral gene transfer of Smad7 prevents injury-induced epithelial-mesenchymal transition of lens epithelium in mice. J Transl Med 2004; 84:1259-70. [PMID: 15258599 DOI: 10.1038/labinvest.3700151] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
We examined the effect of adenovirus-mediated transient expression of Smad7, an inhibitory Smad in TGFbeta/activin signaling, on injury-induced epithelial-mesenchymal transition (EMT) of lens epithelium in mice. A volume of 3 microl of adenoviral solution was injected into the right lens of adult male C57BL/6 mice (n=56) at the time of capsular injury made using a hypodermic needle under general anesthesia. A mixture of recombinant adenovirus carrying CAG promoter-driven Cre (Cre adv) and mouse Smad7 complementary DNA (Smad7 adv) was administered to induce Smad7 expression, while control lenses were treated with Cre adv alone. After healing intervals of 2, 3, 5, and 10 days, animals were killed 2 h after labeling with bromodeoxyuridine (BrdU) and eyes were processed for histology. During healing, marked expression of Smad7 was observed in lens epithelial cells in the Smad7 adv group with loss of nuclear translocation of Smads2/3, while little Smad7 and abundant nuclear Smads2/3 were seen in cells in the Cre adv group. Lens epithelial cells in the Cre adv control group exhibited a fibroblastic appearance at days 5 and 10 and the capsular break was sealed with fibrous tissue, while Smad7 adv-treated cells around the capsular break retained their epithelial morphology and the break was not sealed. Expression of snail mRNA, and alpha-smooth muscle actin, lumican, and collagen VI proteins, markers of EMT, was observed in control-treated eyes, but not in cells of the Smad7 adv group at day 5 with minimal expression at day 10. Additionally, cell proliferation increased in epithelium infected with Smad7 adv consistent with suppression of injury-induced upregulation of TGFbeta1 in epithelium. We conclude that gene transfer of Smad7 in mice prevents injury-induced EMT of lens epithelial cells and sealing of the capsular break with fibrous tissue.
Collapse
Affiliation(s)
- Shizuya Saika
- Department Ophthalmology, Wakayama Medical University, Kimiidera, Wakayama, Japan.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
271
|
Kim HP, Lee MS, Yu J, Park JA, Jong HS, Kim TY, Lee JW, Bang YJ. TGF-beta1 (transforming growth factor-beta1)-mediated adhesion of gastric carcinoma cells involves a decrease in Ras/ERKs (extracellular-signal-regulated kinases) cascade activity dependent on c-Src activity. Biochem J 2004; 379:141-50. [PMID: 14720123 PMCID: PMC1224061 DOI: 10.1042/bj20031408] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2003] [Revised: 12/11/2003] [Accepted: 01/14/2004] [Indexed: 01/02/2023]
Abstract
Signalling by integrin-mediated cell anchorage to extracellular matrix proteins is co-operative with other receptor-mediated signalling pathways to regulate cell adhesion, spreading, proliferation, survival, migration, differentiation and gene expression. It was observed that an anchorage-independent gastric carcinoma cell line (SNU16) became adherent on TGF-beta1 (transforming growth factor beta1) treatment. To understand how a signal cross-talk between integrin and TGF-beta1 pathways forms the basis for TGF-beta1 effects, cell adhesion and signalling activities were studied using an adherent subline (SNU16Ad, an adherent variant cell line derived from SNU16) derived from the SNU16 cells. SNU16 and SNU16Ad cells, but not integrin alpha5-expressing SNU16 cells, showed an increase in adhesion on extracellular matrix proteins after TGF-beta1 treatment. This increase was shown to be mediated by an integrin alpha3 subunit, which was up-regulated in adherent SNU16Ad cells and in TGF-beta1-treated SNU16 cells, compared with the parental SNU16 cells. After TGF-beta1 treatment of SNU16Ad cells on fibronectin, Tyr-416 phosphorylation of c-Src was increased, but Ras-GTP loading and ERK1/ERK2 (extracellular-signal-regulated kinases 1 and 2) activity were decreased, which showed a dependence on c-Src family kinase activity. Studies on adhesion and signalling activities using pharmacological inhibitors or by transient-transfection approaches showed that inhibition of ERK1/ERK2 activity increased TGF-beta1-mediated cell adhesion slightly, but not the basal cell adhesion significantly, and that c-Src family kinase activity and decrease in Ras/ERKs cascade activity were required for the TGF-beta1 effects. Altogether, the present study indicates that TGF-beta1 treatment causes anchorage-independent gastric carcinoma cells to adhere by an increase in integrin alpha3 level and a c-Src family kinase activity-dependent decrease in Ras/ERKs cascade activity.
Collapse
Affiliation(s)
- Hwang-Phill Kim
- Cancer Research Institute, Department of Tumor Biology, College of Medicine, Seoul National University, 28, Yongon-Dong, Chongno-Gu, Seoul 110-799, South Korea
| | | | | | | | | | | | | | | |
Collapse
|
272
|
Munshi HG, Wu YI, Mukhopadhyay S, Ottaviano AJ, Sassano A, Koblinski JE, Platanias LC, Stack MS. Differential regulation of membrane type 1-matrix metalloproteinase activity by ERK 1/2- and p38 MAPK-modulated tissue inhibitor of metalloproteinases 2 expression controls transforming growth factor-beta1-induced pericellular collagenolysis. J Biol Chem 2004; 279:39042-50. [PMID: 15247230 DOI: 10.1074/jbc.m404958200] [Citation(s) in RCA: 116] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Acquisition of matrix metalloproteinase-2 (MMP-2) activity is temporally associated with increased migration and invasiveness of cancer cells. ProMMP-2 activation requires multimolecular complex assembly involving proMMP-2, membrane type 1-MMP (MT1-MMP, MMP-14), and tissue inhibitor of metalloproteinases-2 (TIMP-2). Because transforming growth factor-beta1 (TGF-beta1) promotes tumor invasion in advanced squamous cell carcinomas, the role of TGF-beta1 in the regulation of MMP activity in a cellular model of invasive oral squamous cell carcinoma was examined. Treatment of oral squamous cell carcinoma cells with TGF-beta1 promoted MMP-dependent cell scattering and collagen invasion, increased expression of MMP-2 and MT1-MMP, and enhanced MMP-2 activation. TGF-beta1 induced concomitant activation of ERK1/2 and p38 MAPK, and kinase inhibition studies revealed a negative regulatory role for ERK1/2 in modulating acquisition of MMP-2 activity. Thus, a reciprocal effect on proMMP-2 activation was observed whereupon blocking ERK1/2 phosphorylation promoted proMMP-2 activation and MT1-MMP activity, whereas inhibiting p38 MAPK activity decreased proteolytic potential. The cellular mechanism for the control of MT1-MMP catalytic activity involved concurrent reciprocal modulation of TIMP-2 expression by ERK1/2 and p38 MAPKs, such that inhibition of ERK1/2 phosphorylation decreased TIMP-2 production, and down-regulation of p38 MAPK activity enhanced TIMP-2 synthesis. Further, p38 MAPK inhibition promoted ERK1/2 phosphorylation, providing additional evidence for cross-talk between MAPK pathways. These observations demonstrate the complex reciprocal effects of ERK1/2 and p38 MAPK in the regulation of MMP activity, which could complicate the use of MAPK-specific inhibitors as therapeutic agents to down-regulate the biologic effects of TGF-beta1 on pericellular collagen degradation and tumor invasion.
Collapse
Affiliation(s)
- Hidayatullah G Munshi
- Division of Hematology/Oncology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, USA
| | | | | | | | | | | | | | | |
Collapse
|
273
|
Scaffidi AK, Petrovic N, Moodley YP, Fogel-Petrovic M, Kroeger KM, Seeber RM, Eidne KA, Thompson PJ, Knight DA. alpha(v)beta(3) Integrin interacts with the transforming growth factor beta (TGFbeta) type II receptor to potentiate the proliferative effects of TGFbeta1 in living human lung fibroblasts. J Biol Chem 2004; 279:37726-33. [PMID: 15187087 DOI: 10.1074/jbc.m403010200] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The alpha(v)beta(3) integrin is known to cooperate with receptor tyrosine kinases to enhance cellular responses. To determine whether alpha(v)beta(3) regulates transforming growth factor beta (TGFbeta) 1-induced responses, we investigated the interaction between alpha(v)beta(3) and TGFbeta type II receptor (TGFbetaIIR) in primary human lung fibroblasts. We report that TGFbeta1 up-regulates cell surface and mRNA expression of alpha(v)beta(3) in a time- and dose-dependent manner. Co-immunoprecipitation and confocal microscopy showed that TGFbetaRII associates and clusters with alpha(v)beta(3), following TGFbeta1 exposure. This association was not observed with alpha(v)beta(5) or alpha(5)beta(1). We also used a novel molecular proximity assay, bioluminescence resonance energy transfer (BRET), to quantify this dynamic interaction in living cells. TGFbeta1 stimulation resulted in a BRET signal within 5 min, whereas tenascin, which binds alpha(v)beta(3), did not induce a substantial BRET signal. Co-exposure to tenascin and TGFbeta1 produced no further increases in BRET than TGFbeta1 alone. Cyclin D1 was rapidly induced in cells co-exposed to TGFbeta1 and tenascin, and as a consequence proliferation induced by TGFbeta1 was dramatically enhanced in cells co-exposed to tenascin or vitronectin. Cholesterol depletion inhibited the interaction between TGFbetaRII and alpha(v)beta(3) and abrogated the proliferative effect. The cyclic RGD peptide, GpenGRGDSPCA, which blocks alpha(v)beta(3), also abolished the synergistic proliferative effect seen. These results indicate a new interaction partner for the alpha(v)beta(3) integrin, the TGFbetaIIR, in which TGFbeta1-induced responses are potentiated in the presence alpha(v)beta(3) ligands. Our data provide a novel mechanism by which TGFbeta1 may contribute to abnormal wound healing and tissue fibrosis.
Collapse
Affiliation(s)
- Amelia K Scaffidi
- Asthma and Allergy Research Institute and Centre for Asthma, Allergy and Respiratory Research, University of Western Australia
| | | | | | | | | | | | | | | | | |
Collapse
|
274
|
Ueda Y, Wang S, Dumont N, Yi JY, Koh Y, Arteaga CL. Overexpression of HER2 (erbB2) in Human Breast Epithelial Cells Unmasks Transforming Growth Factor β-induced Cell Motility. J Biol Chem 2004; 279:24505-13. [PMID: 15044465 DOI: 10.1074/jbc.m400081200] [Citation(s) in RCA: 128] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
We have examined overexpression of the human epidermal growth factor receptor 2 (HER2) to determine if it modifies the anti-proliferative effect of transforming growth factor (TGF)-beta against MCF-10A human mammary epithelial cells. Exogenous TGF-beta inhibited cell proliferation and induced Smad-dependent transcriptional reporter activity in both MCF-10A/HER2 and MCF-10A/vector control cells. Ligand-induced reporter activity was 7-fold higher in HER2-overexpressing cells. In wound closure and transwell assays, TGF-beta induced motility of HER2-transduced, but not control cells. The HER2-blocking antibody trastuzumab (Herceptin) prevented TGF-beta-induced cell motility. Expression of a constitutively active TGF-beta type I receptor (ALK5(T204D)) induced motility of MCF-10A/HER2 but not MCF-10A/vector cells. TGF-beta-induced motility was blocked by coincubation with either the phosphatidylinositol 3-kinase inhibitor LY294002, the mitogen-activated protein kinase (MAPK) inhibitor U0126, the p38 MAPK inhibitor SB202190, and an integrin beta(1) blocking antibody. Rac1 activity was higher in HER2-overexpressing cells, where both Rac1 and Pak1 proteins were constitutively associated with HER2. Both exogenous TGF-beta and transduction with constitutively active ALK5 enhanced this association. TGF-beta induced actin stress fibers as well as lamellipodia within the leading edge of wounds. Herceptin blocked basal and TGF-beta-stimulated Rac1 activity but did not repress TGF-beta-stimulated transcriptional reporter activity. These data suggest that 1) overexpression of HER2 in nontumorigenic mammary epithelial is permissive for the ability of TGF-beta to induce cell motility and Rac1 activity, and 2) HER2 and TGF-beta signaling cooperate in the induction of cellular events associated with tumor progression.
Collapse
MESH Headings
- Actins/metabolism
- Activin Receptors, Type I/metabolism
- Adenoviridae/genetics
- Antibodies, Monoclonal/metabolism
- Antibodies, Monoclonal/pharmacology
- Antibodies, Monoclonal, Humanized
- Blotting, Northern
- Breast Neoplasms/metabolism
- Bromodeoxyuridine/pharmacology
- Butadienes/pharmacology
- Cell Cycle
- Cell Division
- Cell Line
- Cell Line, Tumor
- Cell Movement
- Chromones/pharmacology
- DNA, Complementary/metabolism
- Disease Progression
- Enzyme Inhibitors/pharmacology
- Epithelial Cells/metabolism
- Gene Expression Regulation
- Genes, Reporter
- Green Fluorescent Proteins
- Humans
- Imidazoles/pharmacology
- Immunoblotting
- Integrin beta1/immunology
- Ligands
- Luminescent Proteins/metabolism
- Microscopy, Fluorescence
- Models, Genetic
- Morpholines/pharmacology
- Nitriles/pharmacology
- Phosphoinositide-3 Kinase Inhibitors
- Precipitin Tests
- Protein Serine-Threonine Kinases
- Pseudopodia/metabolism
- Pyridines/pharmacology
- Receptor, ErbB-2/biosynthesis
- Receptor, Transforming Growth Factor-beta Type I
- Receptors, Transforming Growth Factor beta/metabolism
- Retroviridae/genetics
- Signal Transduction
- Transcription, Genetic
- Transforming Growth Factor beta/metabolism
- Trastuzumab
- Wound Healing
- rac1 GTP-Binding Protein/metabolism
Collapse
Affiliation(s)
- Yukiko Ueda
- Department of Medicine, Vanderbilt University School of Medicine, Vanderbilt-Ingram Comprehensive Cancer Center, Nashville, Tennessee 37232, USA
| | | | | | | | | | | |
Collapse
|
275
|
Lee YI, Kwon YJ, Joo CK. Integrin-linked kinase function is required for transforming growth factor beta-mediated epithelial to mesenchymal transition. Biochem Biophys Res Commun 2004; 316:997-1001. [PMID: 15044083 DOI: 10.1016/j.bbrc.2004.02.150] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2004] [Indexed: 11/15/2022]
Abstract
The role of integrin-linked kinase (ILK) in transforming growth factor beta (TGFbeta)-mediated epithelial to mesenchymal transition was investigated. A stable transfection of dominant-negative ILK results in the prevention of TGFbeta-mediated E-cadherin delocalization. TGFbeta-mediated phosphorylation of Akt at Ser-473 was inhibited by dominant-negative ILK and PI3K inhibitors, LY294002 and wortmannin. Treatment with TGFbeta stimulated induction of Akt and ILK kinase activity in HaCat control cells. This increased ILK activity by TGFbeta was lowered by PI3K inhibitor, LY294002. In addition, PI3K inhibitor, dominant-negative Akt, and dominant-negative ILK could not block TGFbeta-mediated C-terminal phosphorylation of Smad2. Taken together, these data suggest that PI3K-ILK-Akt pathway that is independent of the TGFbeta-induced Smad pathway is required for TGFbeta-mediated epithelial to mesenchymal transition.
Collapse
Affiliation(s)
- Yoon-Ik Lee
- Laboratory of Visual Sciences, Korea Eye Tissue and Gene Bank, College of Medicine, The Catholic University of Korea, Catholic Research Institutes of Medicine Science, Seoul 137-040, Republic of Korea
| | | | | |
Collapse
|
276
|
Murthy S, Weigel NL. 1alpha,25-dihydroxyvitamin D3 induced growth inhibition of PC-3 prostate cancer cells requires an active transforming growth factor beta signaling pathway. Prostate 2004; 59:282-91. [PMID: 15042604 DOI: 10.1002/pros.10373] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
BACKGROUND Prostate cancer growth inhibition by 1alpha,25-dihydroxyvitamin D3 (1,25(OH)2D3) is best characterized in the androgen dependent LNCaP cell line, where treatment with this hormone causes cell cycle arrest and apoptosis. 1,25(OH)2D3 also inhibits the growth of PC-3 prostate cancer cells, but not through the induction of G1 arrest or apoptosis. In this study, we have sought to elucidate the mechanism/s involved in PC-3 cell growth inhibition by 1,25(OH)2D3. EXPERIMENTAL METHODS We determined the effect of transforming growth factor beta (TGFbeta) blocking antibodies on 1,25(OH)2D3 mediated growth inhibition of PC-3 cells. In addition, we also studied the effects of 1,25(OH)2D3 on TGFbeta signaling and receptor expression. Finally, we assessed the role of TGFbeta signaling in the induction of the growth inhibitory protein, insulin like growth factor binding protein 3 (IGFBP-3), by 1,25(OH)2D3. RESULTS We find that 1,25(OH)2D3 action in PC-3 cells is mediated through at least two distinct pathways, the TGFbeta pathway and the IGFBP-3 pathway. We show that 1,25(OH)2D3 treatment elevates TGFbeta production and signaling, as well as receptor levels, in PC-3 cells. Further, using a blocking antibody against TGFbeta substantially reduces 1,25(OH)2D3 mediated growth inhibition without affecting IGFBP-3 induction, suggesting that IGFBP-3, alone, is insufficient to inhibit the growth of PC-3 cells.
Collapse
Affiliation(s)
- Shalini Murthy
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030, USA
| | | |
Collapse
|
277
|
Dudas M, Nagy A, Laping NJ, Moustakas A, Kaartinen V. Tgf-beta3-induced palatal fusion is mediated by Alk-5/Smad pathway. Dev Biol 2004; 266:96-108. [PMID: 14729481 DOI: 10.1016/j.ydbio.2003.10.007] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Cleft palate is among the most common birth defects in humans, caused by a failure in the complex multistep developmental process of palatogenesis. It has been recently shown that transforming growth factor beta3 (Tgf-beta3) is an absolute requirement for successful palatal fusion, both in mice and humans. However, very little is known about the mechanisms of Tgf-beta3 signaling during this process. Here we show that putative Tgf-beta type I receptors, Alk-1, Alk-2, and Alk-5, are all endogenously expressed in the palatal epithelium. Activation of Alk-5 in the Tgf-beta3 (-/-) palatal epithelium is able to rescue palatal fusion, whereas inactivation of Alk-5 in the wild-type palatal epithelium prevents palatal fusion. The effect of Alk-2 is similar, but less pronounced. The induction of fusion by activation of Alk-5 or Alk-2 is stronger in the posterior parts of the palates at the embryonic day 14 (E14), while their activation at E13.5 also restores anterior fusion, reflecting the natural anterior-posterior direction of palate maturation in vivo. We also show that Smad2 is endogenously activated in the palatal midline epithelial seam (MES) during the fusion process. By using a mutant Alk-5 receptor that is an active kinase but is unable to activate Smads, we show that activation of Smad-independent Tgf-beta responses is not sufficient to induce fusion of shelves deficient in Tgf-beta3. Based on these observations, we conclude that the Smad2-dependent Alk-5 signaling pathway is dominant in palatal fusion driven by Tgf-beta3.
Collapse
Affiliation(s)
- Marek Dudas
- Developmental Biology Program, Department of Pathology of University of Southern California, Childrens Hospital Los Angeles, Los Angeles, CA 90027, USA
| | | | | | | | | |
Collapse
|
278
|
Brown KA, Aakre ME, Gorska AE, Price JO, Eltom SE, Pietenpol JA, Moses HL. Induction by transforming growth factor-beta1 of epithelial to mesenchymal transition is a rare event in vitro. Breast Cancer Res 2004; 6:R215-31. [PMID: 15084245 PMCID: PMC400675 DOI: 10.1186/bcr778] [Citation(s) in RCA: 153] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2003] [Revised: 02/10/2004] [Accepted: 02/20/2004] [Indexed: 12/28/2022] Open
Abstract
INTRODUCTION Transforming growth factor (TGF)-beta1 is proposed to inhibit the growth of epithelial cells in early tumorigenesis, and to promote tumor cell motility and invasion in the later stages of carcinogenesis through the induction of an epithelial to mesenchymal transition (EMT). EMT is a multistep process that is characterized by changes in cell morphology and dissociation of cell-cell contacts. Although there is growing interest in TGF-beta1-mediated EMT, the phenotype is limited to only a few murine cell lines and mouse models. METHODS To identify alternative cell systems in which to study TGF-beta1-induced EMT, 18 human and mouse established cell lines and cultures of two human primary epithelial cell types were screened for TGF-beta1-induced EMT by analysis of cell morphology, and localization of zonula occludens-1, E-cadherin, and F-actin. Sensitivity to TGF-beta1 was also determined by [3H]thymidine incorporation, flow cytometry, phosphorylation of Smad2, and total levels of Smad2 and Smad3 in these cell lines and in six additional cancer cell lines. RESULTS TGF-beta1 inhibited the growth of most nontransformed cells screened, but many of the cancer cell lines were insensitive to the growth inhibitory effects of TGF-beta1. In contrast, TGF-beta1 induced Smad2 phosphorylation in the majority of cell lines, including cell lines resistant to TGF-beta1-mediated cell cycle arrest. Of the cell lines screened only two underwent TGF-beta1-induced EMT. CONCLUSION The results presented herein show that, although many cancer cell lines have lost sensitivity to the growth inhibitory effect of TGF-beta1, most show evidence of TGF-beta1 signal transduction, but only a few cell lines undergo TGF-beta1-mediated EMT.
Collapse
Affiliation(s)
- Kimberly A Brown
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Cancer Biology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Mary E Aakre
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Cancer Biology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Agnieska E Gorska
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Cancer Biology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - James O Price
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Pathology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Veterans Affairs Medical Center, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Sakina E Eltom
- Department of Pharmacology, Meharry Medical College, Nashville, Tennessee, USA
| | - Jennifer A Pietenpol
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Biochemistry, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Harold L Moses
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Cancer Biology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| |
Collapse
|
279
|
Saika S, Kono-Saika S, Ohnishi Y, Sato M, Muragaki Y, Ooshima A, Flanders KC, Yoo J, Anzano M, Liu CY, Kao WWY, Roberts AB. Smad3 signaling is required for epithelial-mesenchymal transition of lens epithelium after injury. THE AMERICAN JOURNAL OF PATHOLOGY 2004; 164:651-63. [PMID: 14742269 PMCID: PMC1602265 DOI: 10.1016/s0002-9440(10)63153-7] [Citation(s) in RCA: 213] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Lens epithelial cells undergo epithelial-mesenchymal transition (EMT) after injury as in cataract extraction, leading to fibrosis of the lens capsule. Fibrosis of the anterior capsule can be modeled in the mouse by capsular injury in the lens, which results in EMT of the lens epithelium and subsequent deposition of extracellular matrix without contamination of other cell types from outside the lens. We have previously shown that signaling via Smad3, a key signal-transducing element downstream of transforming growth factor (TGF)-beta and activin receptors, is activated in lens epithelial cells by 12 hours after injury and that this Smad3 activation is blocked by administration of a TGF-beta 2-neutralizing antibody in mice. We now show that EMT of primary lens epithelial cells in vitro depends on TGF-beta expression and that injury-induced EMT in vivo depends, more specifically, on signaling via Smad3. Loss of Smad3 in mice blocks both morphological changes of lens epithelium to a mesenchymal phenotype and expression of the EMT markers snail, alpha-smooth muscle actin, lumican, and type I collagen in response to injury in vivo or to exposure to exogenous TGF-beta in organ culture. The results suggest that blocking the Smad3 pathway might be beneficial in inhibiting capsular fibrosis after injury and/or surgery.
Collapse
Affiliation(s)
- Shizuya Saika
- Department of Ophthalmology, Wakayama Medical University, Kimiidera, Wakayama, Japan.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
280
|
Gotzmann J, Mikula M, Eger A, Schulte-Hermann R, Foisner R, Beug H, Mikulits W. Molecular aspects of epithelial cell plasticity: implications for local tumor invasion and metastasis. Mutat Res 2004; 566:9-20. [PMID: 14706509 DOI: 10.1016/s1383-5742(03)00033-4] [Citation(s) in RCA: 243] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Carcinomas arising from epithelial cells represent the most prevalent malignancies in humans, and metastasis is the major cause for the death of carcinoma patients. The breakdown of epithelial cell homeostasis leading to aggressive cancer progression has been correlated with the loss of epithelial characteristics and the acquisition of a migratory phenotype. This phenomenon, referred to as epithelial to mesenchymal transition (EMT), is considered as a crucial event in late stage tumorigenesis. Here we summarize the multitude of EMT models derived from different tissues, and review the diversity of molecular mechanisms contributing to the plasticity of epithelial cells. In particular, the synergism between activation of Ras, provided by the aberrant stimulation of receptor tyrosine kinases, and transforming growth factor (TGF)-beta signaling plays a pivotal role in inducing EMT of various epithelial cell types. Cytokines such as TGF-beta and extracellular matrix molecules are thought to fundamentally contribute to the microenvironmental interaction between stromal and malignant cells, and provide the basis for a broad repertoire of epithelial differentiation. Investigations of EMT tumor models, which represent in vitro correlates to local invasion and metastasis in vivo, facilitate the identification of diagnostic markers for a more accurate and faithful clinical and pathological assessment of epithelial tumors. In addition, the analysis of molecular mechanisms involved in EMT might yield novel therapeutic targets for the specific treatment of aggressive carcinomas.
Collapse
Affiliation(s)
- Josef Gotzmann
- Institute of Cancer Research, University of Vienna, Borschkegasse 8a, A-1090 Vienna, Austria
| | | | | | | | | | | | | |
Collapse
|
281
|
Abstract
A set of lung diseases share the tendency for the development of progressive fibrosis ultimately leading to respiratory failure. This review examines the common pathogenetic features of these disorders in light of recent observations in both humans and animal models of disease, which reveal important pathways of lung matrix remodeling.
Collapse
Affiliation(s)
- Harold A Chapman
- Department of Medicine and Cardiovascular Research Institute, University of California at San Francisco, San Francisco, California 94143-0130, USA.
| |
Collapse
|
282
|
Kalluri R, Neilson EG. Epithelial-mesenchymal transition and its implications for fibrosis. J Clin Invest 2004. [PMID: 14679171 DOI: 10.1172/jci200320530] [Citation(s) in RCA: 1770] [Impact Index Per Article: 88.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Epithelial to mesenchymal transition (EMT) is a central mechanism for diversifying the cells found in complex tissues. This dynamic process helps organize the formation of the body plan, and while EMT is well studied in the context of embryonic development, it also plays a role in the genesis of fibroblasts during organ fibrosis in adult tissues. Emerging evidence from studies of renal fibrosis suggests that more than a third of all disease-related fibroblasts originate from tubular epithelia at the site of injury. This review highlights recent advances in the process of EMT signaling in health and disease and how it may be attenuated or reversed by selective cytokines and growth factors.
Collapse
Affiliation(s)
- Raghu Kalluri
- Center for Matrix Biology, Beth Israel Deaconess Medical Center, 330 Brookline Ave. (DANA 514), Boston, Massachusetts 02215, USA.
| | | |
Collapse
|
283
|
Kalluri R, Neilson EG. Epithelial-mesenchymal transition and its implications for fibrosis. J Clin Invest 2004; 112:1776-84. [PMID: 14679171 PMCID: PMC297008 DOI: 10.1172/jci20530] [Citation(s) in RCA: 1026] [Impact Index Per Article: 51.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Epithelial to mesenchymal transition (EMT) is a central mechanism for diversifying the cells found in complex tissues. This dynamic process helps organize the formation of the body plan, and while EMT is well studied in the context of embryonic development, it also plays a role in the genesis of fibroblasts during organ fibrosis in adult tissues. Emerging evidence from studies of renal fibrosis suggests that more than a third of all disease-related fibroblasts originate from tubular epithelia at the site of injury. This review highlights recent advances in the process of EMT signaling in health and disease and how it may be attenuated or reversed by selective cytokines and growth factors.
Collapse
Affiliation(s)
- Raghu Kalluri
- Center for Matrix Biology, Beth Israel Deaconess Medical Center, 330 Brookline Ave. (DANA 514), Boston, Massachusetts 02215, USA.
| | | |
Collapse
|
284
|
Sato M, Muragaki Y, Saika S, Roberts AB, Ooshima A. Targeted disruption of TGF-beta1/Smad3 signaling protects against renal tubulointerstitial fibrosis induced by unilateral ureteral obstruction. J Clin Invest 2004; 112:1486-94. [PMID: 14617750 PMCID: PMC259132 DOI: 10.1172/jci19270] [Citation(s) in RCA: 329] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Tubulointerstitial fibrosis is the final common result of a variety of progressive injuries leading to chronic renal failure. Transforming growth factor-beta (TGF-beta) is reportedly upregulated in response to injurious stimuli such as unilateral ureteral obstruction (UUO), causing renal fibrosis associated with epithelial-mesenchymal transition (EMT) of the renal tubules and synthesis of extracellular matrix. We now show that mice lacking Smad3 (Smad3ex8/ex8), a key signaling intermediate downstream of the TGF-beta receptors, are protected against tubulointerstitial fibrosis following UUO as evidenced by blocking of EMT and abrogation of monocyte influx and collagen accumulation. Culture of primary renal tubular epithelial cells from wild-type or Smad3-null mice confirms that the Smad3 pathway is essential for TGF-beta1-induced EMT and autoinduction of TGF-beta1. Moreover, mechanical stretch of the cultured epithelial cells, mimicking renal tubular distention due to accumulation of urine after UUO, induces EMT following Smad3-mediated upregulation of TGF-beta1. Exogenous bone marrow monocytes accelerate EMT of the cultured epithelial cells and renal tubules in the obstructed kidney after UUO dependent on Smad3 signaling. Together the data demonstrate that the Smad3 pathway is central to the pathogenesis of interstitial fibrosis and suggest that inhibitors of this pathway may have clinical application in the treatment of obstructive nephropathy.
Collapse
Affiliation(s)
- Misako Sato
- Department of Pathology, Wakayama Medical University, Wakayama, Japan
| | | | | | | | | |
Collapse
|
285
|
Muraoka RS, Koh Y, Roebuck LR, Sanders ME, Brantley-Sieders D, Gorska AE, Moses HL, Arteaga CL. Increased malignancy of Neu-induced mammary tumors overexpressing active transforming growth factor beta1. Mol Cell Biol 2003; 23:8691-703. [PMID: 14612410 PMCID: PMC262670 DOI: 10.1128/mcb.23.23.8691-8703.2003] [Citation(s) in RCA: 155] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
To determine if Neu is dominant over transforming growth factor beta (TGF-beta), we crossed mouse mammary tumor virus (MMTV)-Neu mice with MMTV-TGF-beta1(S223/225) mice expressing active TGF-beta1 in the mammary gland. Bigenic (NT) and Neu-induced mammary tumors developed with a similar latency. The bigenic tumors and their metastases were less proliferative than those occurring in MMTV-Neu mice. However, NT tumors exhibited less apoptosis and were more locally invasive and of higher histological grade. NT mice exhibited more circulating tumor cells and lung metastases than Neu mice, while NT tumors contained higher levels of phosphorylated (active) Smad2, Akt, mitogen-activated protein kinase (MAPK), and p38, as well as vimentin content and Rac1 activity in situ than tumors expressing Neu alone. Ex vivo, NT cells exhibited higher levels of P-Akt and P-MAPK than Neu cells. These were inhibited by the TGF-beta inhibitor-soluble TGF-beta type II receptor (TbetaRII:Fc), suggesting they were activated by autocrine TGF-beta. TGF-beta stimulated migration of Neu cells into surrounding matrix, while the soluble TGF-beta inhibitor abrogated motility and invasiveness of NT cells. These data suggest that (i) the antimitogenic and prometastatic effects of TGF-beta can exist simultaneously and (ii) Neu does not abrogate TGF-beta-mediated antiproliferative action but can synergize with TGF-beta in accelerating metastatic tumor progression.
Collapse
Affiliation(s)
- Rebecca S Muraoka
- Department of Cancer Biology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA
| | | | | | | | | | | | | | | |
Collapse
|
286
|
Abstract
Development of the coronary vascular system is an interesting model in developmental biology with major implications for the clinical setting. Although coronary vessel development is a form of vasculogenesis followed by angiogenesis, this system uses several unique developmental processes not observed in the formation of other blood vessels. This review summarizes the literature that describes the development of the coronary system, highlighting the unique aspects of coronary vessel development. It should be noted that many of the basic mechanisms that govern vasculogenesis in other systems have not been analyzed in coronary vessel development. In addition, we present recent advances in the field that uncover the basic mechanisms regulating the generation of these blood vessels and identify areas in need of additional studies.
Collapse
Affiliation(s)
- Aya M Wada
- Stahlman Cardiovascular Laboratories, Program for Developmental Biology, Division of Cardiovascular Medicine, Vanderbilt University, Nashville, Tenn, USA
| | | | | |
Collapse
|
287
|
Bhowmick NA, Ghiassi M, Aakre M, Brown K, Singh V, Moses HL. TGF-beta-induced RhoA and p160ROCK activation is involved in the inhibition of Cdc25A with resultant cell-cycle arrest. Proc Natl Acad Sci U S A 2003; 100:15548-53. [PMID: 14657354 PMCID: PMC307605 DOI: 10.1073/pnas.2536483100] [Citation(s) in RCA: 99] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The ability of the transforming growth factor beta (TGF-beta) signaling pathways to inhibit proliferation of most cells while stimulating proliferation of others remains a conundrum. In this article, we report that the absence of RhoA and p160ROCK activity in fibroblastic NIH 3T3 cells and its presence in epithelial NMuMG cells can at least partially explain the difference in the TGF-beta growth response. Further, evidence is presented for TGF-beta-stimulated p160ROCK translocation to the nucleus and inhibitory phosphorylation of the cyclin-dependent kinase-activating phosphatase, Cdc25A. The resultant suppression of Cdk2 activity contributes to G1/S inhibition in NMuMG cells. These data provide evidence that signaling through RhoA and p160ROCK is important in TGF-beta inhibition of cell proliferation and links signaling components for epithelial transdifferentiation with regulation of cell-cycle progression.
Collapse
Affiliation(s)
- Neil A Bhowmick
- Department of Cancer Biology, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN 37232-6838, USA.
| | | | | | | | | | | |
Collapse
|
288
|
Sato M, Muragaki Y, Saika S, Roberts AB, Ooshima A. Targeted disruption of TGF-β1/Smad3 signaling protects against renal tubulointerstitial fibrosis induced by unilateral ureteral obstruction. J Clin Invest 2003. [DOI: 10.1172/jci200319270] [Citation(s) in RCA: 608] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
|
289
|
Li X, Udagawa N, Takami M, Sato N, Kobayashi Y, Takahashi N. p38 Mitogen-activated protein kinase is crucially involved in osteoclast differentiation but not in cytokine production, phagocytosis, or dendritic cell differentiation of bone marrow macrophages. Endocrinology 2003; 144:4999-5005. [PMID: 12960069 DOI: 10.1210/en.2003-0166] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
We previously reported that p38 MAPK signaling is required for osteoclast differentiation but not osteoclast function. Here we further investigated the role of p38 MAPK in the function and differentiation of mouse bone marrow macrophages (BMM phi), common precursors of osteoclasts and dendritic cells. Lipopolysaccharide (LPS) activated the p38 MAPK signaling pathway in BMM phi by sequential phosphorylation of MAPK kinase 3/6, p38 MAPK, and activating transcription factor-2. Treatment of BMM phi with SB203580, a p38 MAPK inhibitor, suppressed LPS-induced phosphorylation of activating transcription factor-2. LPS stimulated production of IL-1 beta, TNF alpha, and IL-6 in BMM phi, and SB203580 failed to inhibit the LPS-induced cytokine production. BMM phi incorporated latex beads via phagocytosis, and SB203580 had no effect on this phagocytosis. BMM phi differentiated into dendritic cells when treated with granulocyte macrophage colony-stimulating factor together with CD40 ligand, TNF alpha, or LPS, and SB203580 failed to inhibit this differentiation. Thus, p38 MAPK-mediated signals are not involved in either BMM phi function or BMM phi differentiation into dendritic cells. The differentiation of BMM phi into osteoclasts in response to receptor activator of nuclear factor-kappa B ligand or TNF alpha was strongly inhibited by SB203580. These findings emphasize the crucial roles of p38 MAPK-mediated signaling in osteoclast differentiation.
Collapse
Affiliation(s)
- Xiaotong Li
- Institute for Oral Science, Matsumoto Dental University, Shiojiri, Nagano 399-0781, Japan
| | | | | | | | | | | |
Collapse
|
290
|
Gorska AE, Jensen RA, Shyr Y, Aakre ME, Bhowmick NA, Moses HL. Transgenic mice expressing a dominant-negative mutant type II transforming growth factor-beta receptor exhibit impaired mammary development and enhanced mammary tumor formation. THE AMERICAN JOURNAL OF PATHOLOGY 2003; 163:1539-49. [PMID: 14507660 PMCID: PMC1868288 DOI: 10.1016/s0002-9440(10)63510-9] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
We have previously shown that expression of a dominant-negative type II transforming growth factor-beta receptor (DNIIR) in mammary epithelium under control of the MMTV promoter/enhancer causes alveolar hyperplasia and differentiation in virgin mice. Here we show that MMTV-DNIIR female mice have accelerated mammary gland differentiation during early pregnancy with impaired development during late pregnancy and lactation followed by delayed postlactational involution. Mammary tumors, mostly carcinoma in situ, developed spontaneously in the MMTV-DNIIR mice with a long median latency (27.5 months). Crossbreeding to MMTV-transforming growth factor (TGF)-alpha mice to obtain mice expressing both transgenes resulted in mammary tumor formation with a much shorter latency more similar to those expressing only the MMTV-TGF-alpha transgene (<10 months median latency). The major difference in mammary tumors arising in MMTV-TGF-alpha compared to bigenic MMTV-DNIIR/MMTV-TGF-alpha was the marked suppression of tumor invasion by DNIIR transgene expression. Invading carcinoma cells in both MMTV-DNIIR and bigenic animals showed loss of DNIIR transgene expression as determined by in situ hybridization. The data indicate that signaling from endogenous TGF-betas not only plays an important role in normal mammary gland physiology but also can also suppress the early stage of tumor formation and contribute to tumor invasion once carcinomas have developed.
Collapse
MESH Headings
- Animals
- Carcinoma/genetics
- Carcinoma/pathology
- Female
- Gene Expression
- Genes, Dominant
- Genes, Viral/genetics
- Lactation
- Mammary Glands, Animal/growth & development
- Mammary Glands, Animal/pathology
- Mammary Neoplasms, Animal/genetics
- Mammary Neoplasms, Animal/pathology
- Mammary Tumor Virus, Mouse/genetics
- Mice
- Mice, Transgenic
- Mutation
- Neoplasm Invasiveness
- Pregnancy
- Promoter Regions, Genetic
- Receptors, Transforming Growth Factor beta/genetics
- Transforming Growth Factor alpha/genetics
- Transforming Growth Factor beta/metabolism
- Transforming Growth Factor beta2
Collapse
Affiliation(s)
- Agnieszka E Gorska
- Vanderbilt-Ingram Cancer Center and the Department of Cancer Biology, Vanderbilt University Medical Center, Nashville, Tennessee 37232, USA
| | | | | | | | | | | |
Collapse
|
291
|
Horowitz JC, Lee DY, Waghray M, Keshamouni VG, Thomas PE, Zhang H, Cui Z, Thannickal VJ. Activation of the pro-survival phosphatidylinositol 3-kinase/AKT pathway by transforming growth factor-beta1 in mesenchymal cells is mediated by p38 MAPK-dependent induction of an autocrine growth factor. J Biol Chem 2003; 279:1359-67. [PMID: 14576166 PMCID: PMC1360222 DOI: 10.1074/jbc.m306248200] [Citation(s) in RCA: 197] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Transforming growth factor-beta1 (TGF-beta1) is a multifunctional cytokine involved in differentiation, growth, and survival of mesenchymal cells while inhibiting growth/survival of most other cell types. The mechanism(s) of pro-survival signaling by TGF-beta1 in mesenchymal cells is unclear. In this report, we demonstrate that TGF-beta1 protects against serum deprivation-induced apoptosis of mesenchymal cells isolated from patients with acute lung injury and of normal human fetal lung fibroblasts (IMR-90). TGF-beta receptor(s)-activated signaling in these cells involves rapid activation of the Smad and p38 MAPK pathways within minutes of TGF-beta1 treatment followed by a more delayed activation of the pro-survival phosphatidylinositol 3-kinase-protein kinase B (PKB)/Akt pathway. Pharmacological inhibition of p38 MAPK with SB203580 or expression of a p38 kinase-deficient mutant protein inhibits TGF-beta1-induced PKB/Akt phosphorylation. Conditioned medium from TGF-beta1-treated cells rapidly induces PKB/Akt activation in an SB203580- and suramin-sensitive manner, suggesting p38 MAPK-dependent production of a secreted growth factor that activates this pro-survival pathway by an autocrine/paracrine mechanism. Inhibition of the phosphatidylinositol 3-kinase-PKB/Akt pathway blocks TGF-beta1-induced resistance to apoptosis. These results demonstrate the activation of a novel TGF-beta1-activated pro-survival/anti-apoptotic signaling pathway in mesenchymal cells/fibroblasts that may explain cell-specific actions of TGF-beta1 and provide mechanistic insights into its pro-fibrotic and tumor-promoting effects.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Victor J. Thannickal
- ‡ To whom correspondence should be addressed: Division of Pulmonary and Critical Care Medicine, University of Michigan Medical Center, 6301 MSRB III, 1150 W. Medical Center Dr., Ann Arbor, MI 48109. Tel.: 734-936-9371; Fax: 734-764-4556; E-mail:
| |
Collapse
|
292
|
Taddei I, Faraldo MM, Teulière J, Deugnier MA, Thiery JP, Glukhova MA. Integrins in mammary gland development and differentiation of mammary epithelium. J Mammary Gland Biol Neoplasia 2003; 8:383-94. [PMID: 14985635 DOI: 10.1023/b:jomg.0000017426.74915.b9] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Integrins are major extracellular matrix (ECM) receptors that can also serve for some cell-cell interactions. They have been identified as important regulators of mammary epithelial cell growth and differentiation. Their ability to promote cell anchorage, proliferation, survival, migration, and the induction of active ECM-degrading enzymes suggests that they play an essential role in normal mammary morphogenesis, but, on the other hand, reveals their potential to promote tumor progression.
Collapse
Affiliation(s)
- Ilaria Taddei
- UMR 144 CNRS-Institut Curie, Section de Recherche, 26, rue d'Ulm, 75248 Paris Cedex 05, France
| | | | | | | | | | | |
Collapse
|
293
|
Kracklauer MP, Schmidt C, Sclabas GM. TGFbeta1 signaling via alphaVbeta6 integrin. Mol Cancer 2003; 2:28. [PMID: 12935295 PMCID: PMC184456 DOI: 10.1186/1476-4598-2-28] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2003] [Accepted: 08/07/2003] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Transforming growth factor beta1 (TGFbeta1) is a potent inhibitor of epithelial cell growth, thus playing an important role in tissue homeostasis. Most carcinoma cells exhibit a reduced sensitivity for TGFbeta1 mediated growth inhibition, suggesting TGFbeta1 participation in the development of these cancers. The tumor suppressor gene DPC4/SMAD4, which is frequently inactivated in carcinoma cells, has been described as a key player in TGFbeta1 mediated growth inhibition. However, some carcinoma cells lacking functional SMAD4 are sensitive to TGFbeta1 induced growth inhibition, thus requiring a SMAD4 independent TGFbeta1 pathway. RESULTS Here we report that mature TGFbeta1 is a ligand for the integrin alphaVbeta6, independent of the common integrin binding sequence motif RGD. After TGFbeta1 binds to alphaVbeta6 integrin, different signaling proteins are activated in TGFbeta1-sensitive carcinoma cells, but not in cells that are insensitive to TGFbeta1. Among others, interaction of TGFbeta1 with the alphaVbeta6 integrin resulted in an upregulation of the cell cycle inhibitors p21/WAF1 and p27 leading to growth inhibition in SMAD4 deleted as well as in SMAD4 wildtype carcinoma cells. CONCLUSIONS Our data provide support for the existence of an alternate TGFbeta1 signaling pathway that is independent of the known SMAD pathway. This alternate pathway involves alphaVbeta6 integrin and the Ras/MAP kinase pathway and does not employ an RGD motif in TGFbeta1-sensitive tumor cells. The combined action of these two pathways seems to be necessary to elicit a complete TGFbeta1 signal.
Collapse
Affiliation(s)
- Martin P Kracklauer
- Section of Molecular Cell and Developmental Biology, Institute for Cellular and Molecular Biology, The University of Texas at Austin, 1 University Station, A4800, 78712, Austin, TX, USA
| | - Christian Schmidt
- Department of Surgical Oncology and Molecular Oncology, University of Texas M. D. Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, Texas 77030, USA
| | - Guido M Sclabas
- Department of Surgical Oncology and Molecular Oncology, University of Texas M. D. Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, Texas 77030, USA
- Department of Visceral and Transplantation Surgery, The University of Bern, Inselspital, Bern, 3010, Switzerland
| |
Collapse
|
294
|
Hayashida T, Decaestecker M, Schnaper HW. Cross-talk between ERK MAP kinase and Smad signaling pathways enhances TGF-beta-dependent responses in human mesangial cells. FASEB J 2003; 17:1576-8. [PMID: 12824291 DOI: 10.1096/fj.03-0037fje] [Citation(s) in RCA: 293] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Transforming growth factor beta (TGF-beta) stimulates renal cell fibrogenesis by a poorly understood mechanism. Previously, we suggested a synergy between TGF-beta1 activated extracellular signal-regulated kinase (ERK) and Smad signaling in collagen production by human glomerular mesangial cells. In a heterologous DNA binding transcription assay, biochemical or dominant-negative ERK blockade reduced TGF-beta1 induced Smad3 activity. Total serine phosphorylation of Smad2/3, but not phosphorylation of the C-terminal SS(P)XS(P) motif, was decreased by pretreatment with the MEK/ERK inhibitors, PD98059 (10 microM) or U0126 (25 microM). This effect was not seen in the mouse mammary epithelial NMuMG cell line, indicating that ERK-dependent activation of Smad2/3 occurs only in certain cell types. TGF-beta stimulated phosphorylation of an expressed Smad3A construct, with a mutated C-terminal SS(P)XS(P) motif, was reduced by a MEK/ERK inhibitor. In contrast, MEK/ERK inhibition did not affect phosphorylation of a Smad3 construct mutated at consensus phosphorylation sites in the linker region (Smad3EPSM). Constitutively active MEK (caMEK) induced alpha2(I) collagen promoter activity, an effect blocked by co-transfected Smad3EPSM, but not Smad3A. The effects of caMEK and TGF-beta1 on collagen promoter activity were additive. These results indicate that ERK-dependent R-Smad linker region phosphorylation enhances collagen I synthesis and imply positive cross talk between the ERK and Smad pathways in human mesangial cells.
Collapse
Affiliation(s)
- Tomoko Hayashida
- Department of Pediatrics, The Feinberg School of Medicine, Northwestern University, W-140, Pediatrics, 303 E Chicago Ave., Ward 12-112, Chicago, Illinois 60611-3008, USA.
| | | | | |
Collapse
|
295
|
Bates RC, Mercurio AM. Tumor necrosis factor-alpha stimulates the epithelial-to-mesenchymal transition of human colonic organoids. Mol Biol Cell 2003; 14:1790-800. [PMID: 12802055 PMCID: PMC165077 DOI: 10.1091/mbc.e02-09-0583] [Citation(s) in RCA: 261] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
An epithelial-mesenchymal transition (EMT) characterizes the progression of many carcinomas and it is linked to the acquisition of an invasive phenotype. Given that the tumor microenvironment is an active participant in tumor progression, an important issue is whether a reactive stroma can modulate this process. Using a novel EMT model of colon carcinoma spheroids, we demonstrate that their transforming-growth factor-beta1 (TGF-beta)-induced EMT is accelerated dramatically by the presence of activated macrophages, and we identify tumor necrosis factor-alpha (TNF-alpha) as the critical factor produced by macrophages that accelerates the EMT. A synergy of TNF-alpha and TGF-beta signaling promotes a rapid morphological conversion of the highly organized colonic epithelium to dispersed cells with a mesenchymal phenotype, and this process is dependent on enhanced p38 MAPK activity. Moreover, exposure to TNF-alpha stimulates a rapid burst of ERK activation that results in the autocrine production of this cytokine by the tumor cells themselves. These results establish a novel role for the stroma in influencing EMT in colon carcinoma, and they identify a selective advantage to the stromal presence of infiltrating leukocytes in regulating malignant tumor progression.
Collapse
Affiliation(s)
- Richard C Bates
- Division of Cancer Biology and Angiogenesis, Department of Pathology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts 02215, USA.
| | | |
Collapse
|
296
|
Lindemann RK, Nordheim A, Dittmer J. Interfering with TGFbeta-induced Smad3 nuclear accumulation differentially affects TGFbeta-dependent gene expression. Mol Cancer 2003; 2:20. [PMID: 12747808 PMCID: PMC153548 DOI: 10.1186/1476-4598-2-20] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2003] [Accepted: 03/19/2003] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND Transforming growth factor-beta (TGFbeta) plays an important role in late-stage carcinogenesis by stimulating invasive behavior of cancer cells, promoting neo-angiogenesis and by helping cancer cells to escape surveillance by the immune system. It also supports colonization of the bone by metastatic breast cancer cells by increasing expression of osteolytic parathyroid hormone-related protein (PTHrP). Interfering with TGFbeta signalling may thus weaken the malignant properties of cancer cells. We investigated to what extent two inhibitors, SB-202190 and SB-203580, interfere with TGFbeta-signalling in invasive MDA-MB-231 breast cancer cells. These compounds, formerly used as p38-MAPK-specific inhibitors, were recently also demonstrated to inhibit TGFbeta type I receptor kinase. RESULTS Our results show that these inhibitors delay the onset of TGFbeta-induced nuclear accumulation of Smad3 and reduces its amplitude. This effect was accompanied by a strong reduction in TGFbeta-responsivess of the slow-responder genes pthrp, pai-1 and upa, while the reactivity of the fast-responder gene smad7 to TGFbeta remained almost unchanged. Neither was the TGFbeta response of the fast-responder ese-1/esx gene, whose expression we found to be strongly downregulated by TGFbeta, affected by the inhibitors. CONCLUSION The data show that SB-202190 and SB-203580 suppress TGFbeta-dependent activation of genes that are important for the acquisition of invasive behavior, while having no effect on the expression of the natural TGFbeta inhibitor Smad7. This suggests that these compounds are potent inhibitors of malignant behavior of cancer cells.
Collapse
Affiliation(s)
- Ralph K Lindemann
- Institut für Zellbiologie, Abteilung Molekularbiologie, Universität Tübingen, Auf der Morgenstelle 15, 72076 Tübingen, Germany
| | - Alfred Nordheim
- Institut für Zellbiologie, Abteilung Molekularbiologie, Universität Tübingen, Auf der Morgenstelle 15, 72076 Tübingen, Germany
| | - Jürgen Dittmer
- Current address: Martin-Luther-Universität Halle-Wittenberg, Universitätsklinik für Gynäkologie, Magdeburger Str. 24, 06097 Halle (Saale), Germany
| |
Collapse
|
297
|
Lee YJ, Park SJ, Lee WK, Ko JS, Kim HM. MG63 osteoblastic cell adhesion to the hydrophobic surface precoated with recombinant osteopontin fragments. Biomaterials 2003; 24:1059-66. [PMID: 12504528 DOI: 10.1016/s0142-9612(02)00439-8] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The hydrophobicity of biomaterials has been recognized as a limitation to the adequate function of anchorage-dependent cells when hydrophobic biomaterials are used for tissue engineering. This is due to flawed solid-state signals from cell adhesion. In this study, a recombinant osteopontin (rOPN17-169) fragment containing the cell adhesion motifs was expressed in E. coli and was precoated on the hydrophobic surface prior to osteoblastic MG63 cell culture. Precoating the hydrophobic surface with rOPN17-169 improved osteoblastic cell adhesion, which was blocked by soluble RGDS. The adhesion of MG63 cells to rOPN17-169 pre-coated surface-activated mitogen-activated protein kinases (MAPK) such as extracellular signal-receptor kinase 1/2, p38, and c-Jun N-terminal kinase (JNK). In addition, p38 MAPK was activated in response to a soluble factor of transforming growth factor-beta in the cells adhered to the hydrophobic surface via rOPN17-169. This suggests that rOPN17-169 precoated on the hydrophobic surface can allow osteoblastic cells to generate adhesion signals sufficient for cell adhesion, MAPK activation, and the cytokine activation of osteoblastic cells.
Collapse
Affiliation(s)
- Yun Jung Lee
- Laboratory for the Study of Molecular Biointerfaces, Department of Oral Anatomy, College of Dentistry, BK21HLS, and Intellectual Biointerface Engineering Center, Seoul National University, 28-22, YeonKun-Dong, ChongRo-Ku, Seoul 110-749, South Korea
| | | | | | | | | |
Collapse
|
298
|
Dumont N, Bakin AV, Arteaga CL. Autocrine transforming growth factor-beta signaling mediates Smad-independent motility in human cancer cells. J Biol Chem 2003; 278:3275-85. [PMID: 12421823 DOI: 10.1074/jbc.m204623200] [Citation(s) in RCA: 128] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Transforming growth factor-beta (TGF-beta) is a pleiotropic growth factor that plays a critical role in modulating cell growth, differentiation, and plasticity. There is increasing evidence that after cells lose their sensitivity to TGF-beta-mediated growth inhibition, autocrine TGF-beta signaling may potentially promote tumor cell motility and invasiveness. To understand the molecular mechanisms by which autocrine TGF-beta may selectively contribute to tumor cell motility, we have generated MDA-MB-231 breast cancer cells stably expressing a kinase-inactive type II TGF-beta receptor (T beta RII-K277R). Our data indicate that T beta RII-K277R is expressed, can associate with the type I TGF-beta receptor, and block both Smad-dependent and -independent signaling pathways activated by TGF-beta. In addition, wound closure and transwell migration assays indicated that the basal migratory potential of T beta RII-K277R expressing cells was impaired. The impaired motility of T beta RII-K277R cells could be restored by reconstituting TGF-beta signaling with a constitutively active TGF-beta type I receptor (ALK5(TD)) but not by reconstituting Smad signaling with Smad2/4 or Smad3/4 expression. In addition, the levels of ALK5(TD) expression sufficient to restore motility in the cells expressing T beta RII-K277R were associated with an increase in phosphorylation of Akt and extracellular signal-regulated kinase 1/2 but not Smad2. These data indicate that different signaling pathways require different thresholds of TGF-beta activation and suggest that TGF-beta promotes motility through mechanisms independent of Smad signaling, possibly involving activation of the phosphatidylinositol 3-kinase/Akt and/or mitogen-activated protein kinase pathways.
Collapse
Affiliation(s)
- Nancy Dumont
- Department of Cancer Biology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA
| | | | | |
Collapse
|
299
|
Dumont N, Arteaga CL. A kinase-inactive type II TGFbeta receptor impairs BMP signaling in human breast cancer cells. Biochem Biophys Res Commun 2003; 301:108-12. [PMID: 12535648 DOI: 10.1016/s0006-291x(02)02977-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Dominant negative receptor mutants are often utilized in order to abrogate signaling induced by growth factors. We have previously shown that expression of a dominant negative type II TGFbeta receptor (dnTbetaRII) in MDA-MB-231 breast cancer cells effectively abrogates TGFbeta signaling. In this letter, we report that expression of dnTbetaRII also impairs BMP2-mediated Smad1 phosphorylation as well as BMP2-mediated Smad-dependent transcriptional responses, resulting in an attenuation of BMP-mediated anti-proliferative effects. The fact that dnTbetaRII not only abrogates TGFbeta signaling but BMP signaling as well has important implications for the interpretation of data in which dominant negative mutants are utilized.
Collapse
Affiliation(s)
- Nancy Dumont
- Department of Cancer Biology, Vanderbilt University School of Medicine, 2220 Pierce Avenue, 777 Preston Research Building, Nashville, TN 37232-6307, USA
| | | |
Collapse
|
300
|
Bordin S, Whitfield D. Cutting edge: proliferating fibroblasts respond to collagenous C1q with phosphorylation of p38 mitogen-activated protein kinase and apoptotic features. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2003; 170:667-71. [PMID: 12517926 DOI: 10.4049/jimmunol.170.2.667] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Interactions of C1q collagen tails with human fibroblasts induce G(1) mitotic arrest. The hypothesis tested in this study is that the antiproliferative effect of C1q tails is mediated through activation of stress responsive pathway(s). Upon C1q treatment, proliferating fibroblasts were examined by immunoblotting with a panel of Abs to the mitogen-activated protein kinase (MAPK) superfamily. The cells selectively increased phosphorylation of p38 MAPK, upstream dual activator MAPK kinase 3/6, and downstream transcription factors activating transcription factor 2, ETS domain transcription factor 1, and C/EBP homologous protein in a time-dependent manner. Phosphorylations were mediated, in part, by ligation of surface C1q tail-binding calreticulin. These events correlated with the appearance of apoptotic nuclei and DNA fragmentation in the cultures, which increased with a time response curve. The apoptotic features were linked to p38 activities because the selective inhibitor SB203580 prevented both phosphorylation of the pathway and DNA fragmentation. Hence, p38 activation might provide a molecular basis for linking mitotic arrest and apoptosis of fibroblasts by C1q tails.
Collapse
Affiliation(s)
- Sandra Bordin
- Department of Periodontics, University of Washington, Seattle 98195, USA.
| | | |
Collapse
|