251
|
Fish AM, Cachia A, Fischer C, Mankiw C, Reardon PK, Clasen LS, Blumenthal JD, Greenstein D, Giedd JN, Mangin JF, Raznahan A. Influences of Brain Size, Sex, and Sex Chromosome Complement on the Architecture of Human Cortical Folding. Cereb Cortex 2017; 27:5557-5567. [PMID: 27799275 PMCID: PMC6075547 DOI: 10.1093/cercor/bhw323] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2016] [Revised: 01/01/2016] [Accepted: 01/01/2016] [Indexed: 11/12/2022] Open
Abstract
Gyrification is a fundamental property of the human cortex that is increasingly studied by basic and clinical neuroscience. However, it remains unclear if and how the global architecture of cortical folding varies with 3 interwoven sources of anatomical variation: brain size, sex, and sex chromosome dosage (SCD). Here, for 375 individuals spanning 7 karyotype groups (XX, XY, XXX, XYY, XXY, XXYY, XXXXY), we use structural neuroimaging to measure a global sulcation index (SI, total sulcal/cortical hull area) and both determinants of sulcal area: total sulcal length and mean sulcal depth. We detail large and patterned effects of sex and SCD across all folding metrics, but show that these effects are in fact largely consistent with the normative scaling of cortical folding in health: larger human brains have disproportionately high SI due to a relative expansion of sulcal area versus hull area, which arises because disproportionate sulcal lengthening overcomes a lack of proportionate sulcal deepening. Accounting for these normative allometries reveals 1) brain size-independent sulcal lengthening in males versus females, and 2) insensitivity of overall folding architecture to SCD. Our methodology and findings provide a novel context for future studies of human cortical folding in health and disease.
Collapse
Affiliation(s)
- Ari M Fish
- Developmental Neurogenomics Unit, Child Psychiatry Branch, National Institute of Mental Health, Bethesda, MD 20892, USA
| | - Arnaud Cachia
- CNRS-University Paris Descartes UMR 8240, Laboratory for the Psychology of Child Development and Education, La Sorbonne, Paris 75005, France
- INSERM-Paris Descartes University UMR 894, Imaging Biomarkers of Brain Development and Disorders, Ste Anne Hospital, Paris 75014, France
| | - Clara Fischer
- UNATI, Neurospin, CEA, Gif-sur-Yvette 91191, France
- CATI Multicenter Neuroimaging Platform, Neurospin, cati-neuroimaging.com, Gif-sur-Yvette 91191, France
| | - Catherine Mankiw
- Developmental Neurogenomics Unit, Child Psychiatry Branch, National Institute of Mental Health, Bethesda, MD 20892, USA
| | - P K Reardon
- Developmental Neurogenomics Unit, Child Psychiatry Branch, National Institute of Mental Health, Bethesda, MD 20892, USA
| | - Liv S Clasen
- Developmental Neurogenomics Unit, Child Psychiatry Branch, National Institute of Mental Health, Bethesda, MD 20892, USA
| | - Jonathan D Blumenthal
- Developmental Neurogenomics Unit, Child Psychiatry Branch, National Institute of Mental Health, Bethesda, MD 20892, USA
| | - Deanna Greenstein
- Developmental Neurogenomics Unit, Child Psychiatry Branch, National Institute of Mental Health, Bethesda, MD 20892, USA
| | - Jay N Giedd
- Department of Psychiatry, University of California, San Diego, La Jolla, CA 92093, USA
| | - Jean-François Mangin
- UNATI, Neurospin, CEA, Gif-sur-Yvette 91191, France
- CATI Multicenter Neuroimaging Platform, Neurospin, cati-neuroimaging.com, Gif-sur-Yvette 91191, France
| | - Armin Raznahan
- Developmental Neurogenomics Unit, Child Psychiatry Branch, National Institute of Mental Health, Bethesda, MD 20892, USA
| |
Collapse
|
252
|
Szymkowicz SM, Dotson VM, McLaren ME, De Wit L, O'Shea DM, Talty FT, O'Shea A, Porges EC, Cohen RA, Woods AJ. Precuneus abnormalities in middle-aged to older adults with depressive symptoms: An analysis of BDI-II symptom dimensions. Psychiatry Res 2017; 268:9-14. [PMID: 28837829 PMCID: PMC5593781 DOI: 10.1016/j.pscychresns.2017.08.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 04/28/2017] [Accepted: 08/11/2017] [Indexed: 12/11/2022]
Abstract
We recently reported age-related increases in left precuneus cortical thickness (CT) in older adults with elevated total depressive symptoms. However, it is unclear whether abnormalities in precuneus surface area (SA) are also evident and whether specific symptom dimensions of depression moderated age effects on these measurements. Seventy-three adults completed the Beck Depression Inventory - 2nd edition (BDI-II) and underwent structural neuroimaging. Measures of CT and SA were extracted from the right and left precuneus via FreeSurfer. Regression models included regions of interest as dependent variables, with age, BDI-II subscale scores (e.g., affective, cognitive, and somatic symptoms), and their interactions as independent variables, controlling for mean hemispheric thickness (for CT) or total intracranial volume (for SA). A significant age × somatic symptom interaction was found for left precuneus CT, such that elevated levels of somatic symptoms were significantly associated with age-related cortical thinning. No depressive symptom dimensions moderated the relationship between age and SA, suggesting that CT may be a more sensitive measure of brain abnormalities in middle-aged to older adults with depressive symptoms.
Collapse
Affiliation(s)
- Sarah M Szymkowicz
- Department of Clinical and Health Psychology, University of Florida, Gainesville, FL, USA.
| | - Vonetta M Dotson
- Department of Clinical and Health Psychology, University of Florida, Gainesville, FL, USA; Department of Neuroscience, University of Florida, Gainesville, FL, USA
| | - Molly E McLaren
- Department of Clinical and Health Psychology, University of Florida, Gainesville, FL, USA
| | - Liselotte De Wit
- Department of Clinical and Health Psychology, University of Florida, Gainesville, FL, USA
| | - Deirdre M O'Shea
- Department of Clinical and Health Psychology, University of Florida, Gainesville, FL, USA
| | - Francis T Talty
- Department of Clinical and Health Psychology, University of Florida, Gainesville, FL, USA
| | - Andrew O'Shea
- Department of Clinical and Health Psychology, University of Florida, Gainesville, FL, USA; Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, Gainesville, FL, USA
| | - Eric C Porges
- Department of Clinical and Health Psychology, University of Florida, Gainesville, FL, USA; Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, Gainesville, FL, USA
| | - Ronald A Cohen
- Department of Clinical and Health Psychology, University of Florida, Gainesville, FL, USA; Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, Gainesville, FL, USA
| | - Adam J Woods
- Department of Clinical and Health Psychology, University of Florida, Gainesville, FL, USA; Department of Neuroscience, University of Florida, Gainesville, FL, USA; Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, Gainesville, FL, USA
| |
Collapse
|
253
|
Brain structural differences between 73- and 92-year olds matched for childhood intelligence, social background, and intracranial volume. Neurobiol Aging 2017; 62:146-158. [PMID: 29149632 PMCID: PMC5759896 DOI: 10.1016/j.neurobiolaging.2017.10.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 09/05/2017] [Accepted: 10/06/2017] [Indexed: 01/17/2023]
Abstract
Fully characterizing age differences in the brain is a key task for combating aging-related cognitive decline. Using propensity score matching on 2 independent, narrow-age cohorts, we used data on childhood cognitive ability, socioeconomic background, and intracranial volume to match participants at mean age of 92 years (n = 42) to very similar participants at mean age of 73 years (n = 126). Examining a variety of global and regional structural neuroimaging variables, there were large differences in gray and white matter volumes, cortical surface area, cortical thickness, and white matter hyperintensity volume and spatial extent. In a mediation analysis, the total volume of white matter hyperintensities and total cortical surface area jointly mediated 24.9% of the relation between age and general cognitive ability (tissue volumes and cortical thickness were not significant mediators in this analysis). These findings provide an unusual and valuable perspective on neurostructural aging, in which brains from the 8th and 10th decades of life differ widely despite the same cognitive, socioeconomic, and brain-volumetric starting points.
Collapse
|
254
|
Brain cortical characteristics of lifetime cognitive ageing. Brain Struct Funct 2017; 223:509-518. [PMID: 28879544 PMCID: PMC5772145 DOI: 10.1007/s00429-017-1505-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Accepted: 08/20/2017] [Indexed: 12/02/2022]
Abstract
Regional cortical brain volume is the product of surface area and thickness. These measures exhibit partially distinct trajectories of change across the brain’s cortex in older age, but it is unclear which cortical characteristics at which loci are sensitive to cognitive ageing differences. We examine associations between change in intelligence from age 11 to 73 years and regional cortical volume, surface area, and thickness measured at age 73 years in 568 community-dwelling older adults, all born in 1936. A relative positive change in intelligence from 11 to 73 was associated with larger volume and surface area in selective frontal, temporal, parietal, and occipital regions (r < 0.180, FDR-corrected q < 0.05). There were no significant associations between cognitive ageing and a thinner cortex for any region. Interestingly, thickness and surface area were phenotypically independent across bilateral lateral temporal loci, whose surface area was significantly related to change in intelligence. These findings suggest that associations between regional cortical volume and cognitive ageing differences are predominantly driven by surface area rather than thickness among healthy older adults. Regional brain surface area has been relatively underexplored, and is a potentially informative biomarker for identifying determinants of cognitive ageing differences.
Collapse
|
255
|
Madan CR. Advances in Studying Brain Morphology: The Benefits of Open-Access Data. Front Hum Neurosci 2017; 11:405. [PMID: 28824407 PMCID: PMC5543094 DOI: 10.3389/fnhum.2017.00405] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Accepted: 07/21/2017] [Indexed: 12/20/2022] Open
|
256
|
Abstract
Adolescence is a period marked by increases in risk taking, sensation seeking, and emotion dysregulation. Neurobiological models of adolescent development propose that lagging development in brain regions associated with affect and behavior control compared to regions associated with reward and emotion processing may underlie these behavioral manifestations. Cross-sectional studies have identified several functional brain networks that may contribute to risk for substance use and psychopathology in adolescents. Determining brain structure measures that prospectively predict substance use and psychopathology could refine our understanding of the mechanisms that contribute to these problems, and lead to improved prevention efforts. Participants (N = 265) were healthy substance-naïve adolescents (ages 12-14) who underwent magnetic resonance imaging and then were followed annually for up to 13 years. Cortical thickness and surface area measures for three prefrontal regions (dorsolateral prefrontal cortex, inferior frontal gyrus, and orbitofrontal cortex) and three cortical regions from identified functional networks (anterior cingulate cortex, insular cortex, and parietal cortex) were used to predict subsequent binge drinking, externalizing symptoms, and internalizing symptoms. Thinner dorsolateral prefrontal cortex and inferior frontal cortex in early adolescence predicted more binge drinking and externalizing symptoms, respectively, in late adolescence (ps < .05). Having a family history of alcohol use disorder predicted more subsequent binge drinking and externalizing symptoms. Thinner parietal cortex, but not family history, predicted more subsequent internalizing symptoms (p < .05). This study emphasizes the temporal association between maturation of the salience, inhibition, and executive control networks in early adolescence and late adolescent behavior outcomes. Our findings indicate that developmental variations in these brain regions predate behavioral outcomes of substance use and psychopathology, and may therefore serve as prospective biomarkers of vulnerability.
Collapse
|
257
|
Giroud N, Hirsiger S, Muri R, Kegel A, Dillier N, Meyer M. Neuroanatomical and resting state EEG power correlates of central hearing loss in older adults. Brain Struct Funct 2017; 223:145-163. [DOI: 10.1007/s00429-017-1477-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Accepted: 07/11/2017] [Indexed: 02/02/2023]
|
258
|
Hirjak D, Wolf RC, Pfeifer B, Kubera KM, Thomann AK, Seidl U, Maier-Hein KH, Schröder J, Thomann PA. Cortical signature of clock drawing performance in Alzheimer's disease and mild cognitive impairment. J Psychiatr Res 2017; 90:133-142. [PMID: 28284155 DOI: 10.1016/j.jpsychires.2017.02.019] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 02/19/2017] [Accepted: 02/21/2017] [Indexed: 12/24/2022]
Abstract
It is unclear whether clock drawing test (CDT) performance relies on a widely distributed cortical network, or whether this test predominantly taps into parietal cortex function. So far, associations between cortical integrity and CDT impairment in Alzheimer's disease (AD) and mild cognitive impairment (MCI) largely stem from cortical volume analyses. Given that volume is a product of thickness and surface area, investigation of the relationship between CDT and these two cortical measures might contribute to better understanding of this cognitive screening tool for AD. 38 patients with AD, 38 individuals with MCI and 31 healthy controls (HC) underwent CDT assessment and MRI at 3 Tesla. The surface-based analysis via Freesurfer enabled calculation of cortical thickness and surface area. CDT was scored according to the method proposed by Shulman and related to the two distinct cortical measurements. Higher CDT scores across the entire sample were associated with cortical thickness in bilateral temporal gyrus, the right supramarginal gyrus, and the bilateral parietal gyrus, respectively (p < 0.001 CWP corr.). Significant associations between CDT and cortical thickness reduction in the parietal lobe remained significant when analyses were restricted to AD individuals. There was no statistically significant association between CDT scores and surface area (p < 0.001 CWP corr.). In conclusion, CDT performance may be driven by cortical thickness alterations in regions previously identified as "AD vulnerable", i.e. regions predominantly including temporal and parietal lobes. Our results suggest that cortical features of distinct evolutionary and genetic origin differently contribute to CDT performance.
Collapse
Affiliation(s)
- Dusan Hirjak
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University Mannheim, Germany; Center for Psychosocial Medicine, Department of General Psychiatry, University of Heidelberg, Germany.
| | - Robert C Wolf
- Center for Psychosocial Medicine, Department of General Psychiatry, University of Heidelberg, Germany
| | - Barbara Pfeifer
- Center for Psychosocial Medicine, Department of General Psychiatry, University of Heidelberg, Germany
| | - Katharina M Kubera
- Center for Psychosocial Medicine, Department of General Psychiatry, University of Heidelberg, Germany
| | - Anne K Thomann
- Department of Internal Medicine II, Medical Faculty Mannheim, University of Heidelberg, Germany
| | - Ulrich Seidl
- Center for Mental Health, Department of Psychiatry, Prießnitzweg 24, Stuttgart 70374, Germany
| | - Klaus H Maier-Hein
- Medical Image Computing Group, German Cancer Research Center (DKFZ), Germany
| | | | - Philipp A Thomann
- Center for Psychosocial Medicine, Department of General Psychiatry, University of Heidelberg, Germany; Center for Mental Health, Odenwald District Healthcare Center, Albert-Schweitzer-Straße 10-20, 64711 Erbach, Germany
| |
Collapse
|
259
|
Doan NT, Engvig A, Zaske K, Persson K, Lund MJ, Kaufmann T, Cordova-Palomera A, Alnæs D, Moberget T, Brækhus A, Barca ML, Nordvik JE, Engedal K, Agartz I, Selbæk G, Andreassen OA, Westlye LT. Distinguishing early and late brain aging from the Alzheimer's disease spectrum: consistent morphological patterns across independent samples. Neuroimage 2017; 158:282-295. [PMID: 28666881 DOI: 10.1016/j.neuroimage.2017.06.070] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 05/12/2017] [Accepted: 06/23/2017] [Indexed: 11/30/2022] Open
Abstract
Alzheimer's disease (AD) is a debilitating age-related neurodegenerative disorder. Accurate identification of individuals at risk is complicated as AD shares cognitive and brain features with aging. We applied linked independent component analysis (LICA) on three complementary measures of gray matter structure: cortical thickness, area and gray matter density of 137 AD, 78 mild (MCI) and 38 subjective cognitive impairment patients, and 355 healthy adults aged 18-78 years to identify dissociable multivariate morphological patterns sensitive to age and diagnosis. Using the lasso classifier, we performed group classification and prediction of cognition and age at different age ranges to assess the sensitivity and diagnostic accuracy of the LICA patterns in relation to AD, as well as early and late healthy aging. Three components showed high sensitivity to the diagnosis and cognitive status of AD, with different relationships with age: one reflected an anterior-posterior gradient in thickness and gray matter density and was uniquely related to diagnosis, whereas the other two, reflecting widespread cortical thickness and medial temporal lobe volume, respectively, also correlated significantly with age. Repeating the LICA decomposition and between-subject analysis on ADNI data, including 186 AD, 395 MCI and 220 age-matched healthy controls, revealed largely consistent brain patterns and clinical associations across samples. Classification results showed that multivariate LICA-derived brain characteristics could be used to predict AD and age with high accuracy (area under ROC curve up to 0.93 for classification of AD from controls). Comparison between classifiers based on feature ranking and feature selection suggests both common and unique feature sets implicated in AD and aging, and provides evidence of distinct age-related differences in early compared to late aging.
Collapse
Affiliation(s)
- Nhat Trung Doan
- NORMENT, KG Jebsen Centre for Psychosis Research, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Norway.
| | - Andreas Engvig
- NORMENT, KG Jebsen Centre for Psychosis Research, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Norway; Department of Medicine, Diakonhjemmet Hospital, Oslo, Norway
| | - Krystal Zaske
- NORMENT, KG Jebsen Centre for Psychosis Research, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Norway
| | - Karin Persson
- Norwegian National Advisory Unit on Ageing and Health, Vestfold Hospital Trust, Tønsberg, Norway; Department of Geriatric Medicine, The Memory Clinic, Oslo University Hospital, Oslo, Norway
| | - Martina Jonette Lund
- NORMENT, KG Jebsen Centre for Psychosis Research, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Norway
| | - Tobias Kaufmann
- NORMENT, KG Jebsen Centre for Psychosis Research, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Norway
| | - Aldo Cordova-Palomera
- NORMENT, KG Jebsen Centre for Psychosis Research, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Norway
| | - Dag Alnæs
- NORMENT, KG Jebsen Centre for Psychosis Research, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Norway
| | - Torgeir Moberget
- NORMENT, KG Jebsen Centre for Psychosis Research, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Norway
| | - Anne Brækhus
- Norwegian National Advisory Unit on Ageing and Health, Vestfold Hospital Trust, Tønsberg, Norway; Department of Geriatric Medicine, The Memory Clinic, Oslo University Hospital, Oslo, Norway
| | - Maria Lage Barca
- Norwegian National Advisory Unit on Ageing and Health, Vestfold Hospital Trust, Tønsberg, Norway; Department of Geriatric Medicine, The Memory Clinic, Oslo University Hospital, Oslo, Norway
| | | | - Knut Engedal
- Norwegian National Advisory Unit on Ageing and Health, Vestfold Hospital Trust, Tønsberg, Norway; Department of Geriatric Medicine, The Memory Clinic, Oslo University Hospital, Oslo, Norway
| | - Ingrid Agartz
- NORMENT, KG Jebsen Centre for Psychosis Research, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Norway; Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway
| | - Geir Selbæk
- Norwegian National Advisory Unit on Ageing and Health, Vestfold Hospital Trust, Tønsberg, Norway; Centre for Old Age Psychiatric Research, Innlandet Hospital Trust, Ottestad, Norway
| | - Ole A Andreassen
- NORMENT, KG Jebsen Centre for Psychosis Research, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Norway
| | - Lars T Westlye
- NORMENT, KG Jebsen Centre for Psychosis Research, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Norway; Department of Psychology, University of Oslo, Oslo, Norway
| | | |
Collapse
|
260
|
Hirjak D, Huber M, Kirchler E, Kubera KM, Karner M, Sambataro F, Freudenmann RW, Wolf RC. Cortical features of distinct developmental trajectories in patients with delusional infestation. Prog Neuropsychopharmacol Biol Psychiatry 2017; 76:72-79. [PMID: 28257853 DOI: 10.1016/j.pnpbp.2017.02.018] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 02/23/2017] [Accepted: 02/27/2017] [Indexed: 01/02/2023]
Abstract
BACKGROUND Although there is strong neuroimaging evidence that cortical alterations are a core feature of schizophrenia spectrum disorders, it still remains unclear to what extent such abnormalities occur in monothematic delusional disorders. In individuals with delusional infestation (DI), the delusional belief to be infested with pathogens, previous structural MRI studies have shown prefrontal, temporal, parietal, insular, thalamic and striatal gray matter volume changes. Differential contributions of cortical features of evolutionary and genetic origin (such as cortical thickness, area and folding) which may distinctly contribute to DI pathophysiology are unclear at present. METHODS In this study, 18 patients with DI and 20 healthy controls (HC) underwent MRI scanning at 1.0T. Using surface-based analyses we calculated cortical thickness, surface area and local gyrification index (LGI). Whole-brain differences between patients and controls were investigated. RESULTS Surface analyses revealed frontoparietal patterns exhibiting altered cortical thickness, surface area and LGI in DI patients compared to controls. Higher cortical thickness was found in the right medial orbitofrontal cortex (p<0.05, cluster-wise probability [CWP] corrected). Smaller surface area in patients was found in the left inferior temporal gyrus, the precuneus, the pars orbitalis of the right frontal gyrus, and the lingual gyrus (p<0.05, CWP corr.). Lower LGI was found in the left postcentral, bilateral precentral, right middle temporal, inferior parietal, and superior parietal gyri (p<0.01, CWP corr.). CONCLUSION This study lends further support to the hypothesis that cortical features of distinct evolutionary and genetic origin differently contribute to the pathogenesis of delusional disorders. Regions in which atrophy was observed are part of neural circuits associated with perception, visuospatial control and self-awareness. The data are in line with the notion of a content-specific neural signature of DI.
Collapse
Affiliation(s)
- Dusan Hirjak
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University Mannheim, Germany.
| | - Markus Huber
- Department of Psychiatry, General Hospital Bruneck, South Tyrol, Italy
| | - Erwin Kirchler
- Department of Psychiatry, General Hospital Bruneck, South Tyrol, Italy
| | - Katharina M Kubera
- Center for Psychosocial Medicine, Department of General Psychiatry, Heidelberg University, Germany
| | - Martin Karner
- Department of Radiology, General Hospital Bruneck, South Tyrol, Italy
| | - Fabio Sambataro
- Department of Experimental and Clinical Medical Sciences, Udine University, Italy
| | | | - Robert C Wolf
- Center for Psychosocial Medicine, Department of General Psychiatry, Heidelberg University, Germany
| |
Collapse
|
261
|
Madan CR, Kensinger EA. Test-retest reliability of brain morphology estimates. Brain Inform 2017; 4:107-121. [PMID: 28054317 PMCID: PMC5413592 DOI: 10.1007/s40708-016-0060-4] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Accepted: 12/26/2016] [Indexed: 12/17/2022] Open
Abstract
Metrics of brain morphology are increasingly being used to examine inter-individual differences, making it important to evaluate the reliability of these structural measures. Here we used two open-access datasets to assess the intersession reliability of three cortical measures (thickness, gyrification, and fractal dimensionality) and two subcortical measures (volume and fractal dimensionality). Reliability was generally good, particularly with the gyrification and fractal dimensionality measures. One dataset used a sequence previously optimized for brain morphology analyses and had particularly high reliability. Examining the reliability of morphological measures is critical before the measures can be validly used to investigate inter-individual differences.
Collapse
Affiliation(s)
- Christopher R Madan
- Department of Psychology, Boston College, McGuinn 300, 140 Commonwealth Ave., Chestnut Hill, MA, 02467, USA.
| | - Elizabeth A Kensinger
- Department of Psychology, Boston College, McGuinn 300, 140 Commonwealth Ave., Chestnut Hill, MA, 02467, USA
| |
Collapse
|
262
|
Sharda M, Foster NEV, Tryfon A, Doyle-Thomas KAR, Ouimet T, Anagnostou E, Evans AC, Zwaigenbaum L, Lerch JP, Lewis JD, Hyde KL. Language Ability Predicts Cortical Structure and Covariance in Boys with Autism Spectrum Disorder. Cereb Cortex 2017; 27:1849-1862. [PMID: 26891985 DOI: 10.1093/cercor/bhw024] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
There is significant clinical heterogeneity in language and communication abilities of individuals with Autism Spectrum Disorders (ASD). However, no consistent pathology regarding the relationship of these abilities to brain structure has emerged. Recent developments in anatomical correlation-based approaches to map structural covariance networks (SCNs), combined with detailed behavioral characterization, offer an alternative for studying these relationships. In this study, such an approach was used to study the integrity of SCNs of cortical thickness and surface area associated with language and communication, in 46 high-functioning, school-age children with ASD compared with 50 matched, typically developing controls (all males) with IQ > 75. Findings showed that there was alteration of cortical structure and disruption of fronto-temporal cortical covariance in ASD compared with controls. Furthermore, in an analysis of a subset of ASD participants, alterations in both cortical structure and covariance were modulated by structural language ability of the participants, but not communicative function. These findings indicate that structural language abilities are related to altered fronto-temporal cortical covariance in ASD, much more than symptom severity or cognitive ability. They also support the importance of better characterizing ASD samples while studying brain structure and for better understanding individual differences in language and communication abilities in ASD.
Collapse
Affiliation(s)
- Megha Sharda
- International Laboratory for Brain Music and Sound Research (BRAMS), Université de Montréal, Montréal, Quebec, CanadaH2V 2J2
| | - Nicholas E V Foster
- International Laboratory for Brain Music and Sound Research (BRAMS), Université de Montréal, Montréal, Quebec, CanadaH2V 2J2
| | - Ana Tryfon
- International Laboratory for Brain Music and Sound Research (BRAMS), Université de Montréal, Montréal, Quebec, Canada H2V 2J2.,Montreal Neurological Institute, Faculty of Medicine, McGill University, Montreal, Quebec, Canada H3A 2B4
| | | | - Tia Ouimet
- International Laboratory for Brain Music and Sound Research (BRAMS), Université de Montréal, Montréal, Quebec, CanadaH2V 2J2
| | | | - Alan C Evans
- Montreal Neurological Institute, Faculty of Medicine, McGill University, Montreal, Quebec, CanadaH3A 2B4
| | | | - Jason P Lerch
- The Hospital for Sick Children, University of Toronto, Toronto, Ontario, CanadaM5T 3H7
| | - John D Lewis
- Montreal Neurological Institute, Faculty of Medicine, McGill University, Montreal, Quebec, CanadaH3A 2B4
| | - Krista L Hyde
- International Laboratory for Brain Music and Sound Research (BRAMS), Université de Montréal, Montréal, Quebec, Canada H2V 2J2.,Montreal Neurological Institute, Faculty of Medicine, McGill University, Montreal, Quebec, Canada H3A 2B4
| | | |
Collapse
|
263
|
Felton A, Vazquez D, Ramos-Nunez AI, Greene MR, McDowell A, Hernandez AE, Chiarello C. Bilingualism Influences Structural Indices of Interhemispheric Organization. JOURNAL OF NEUROLINGUISTICS 2017; 42:1-11. [PMID: 28579694 PMCID: PMC5450970 DOI: 10.1016/j.jneuroling.2016.10.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Bilingualism represents an interesting model of possible experience-dependent alterations in brain structure. The current study examines whether interhemispheric adaptations in brain structure are associated with bilingualism. Corpus callosum volume and cortical thickness asymmetry across 13 regions of interest (selected to include critical language and bilingual cognitive control areas) were measured in a sample of Spanish-English bilinguals and age- and gender-matched monolingual individuals (N = 39 per group). Cortical thickness asymmetry of the anterior cingulate region differed across groups, with thicker right than left cortex for bilinguals and the reverse for monolinguals. In addition, two adjacent regions of the corpus callosum (mid-anterior and central) had greater volume in bilinguals. The findings suggest that structural indices of interhemispheric organization in a critical cognitive control region are sensitive to variations in language experience.
Collapse
Affiliation(s)
- Adam Felton
- University of California, Riverside, 900 University Ave., Riverside, CA, USA 92521
| | - David Vazquez
- University of California, Riverside, 900 University Ave., Riverside, CA, USA 92521
| | | | - Maya R. Greene
- University of Houston, 4800 Calhoun Rd., Houston, TX, USA 77004
| | - Alessandra McDowell
- University of California, Riverside, 900 University Ave., Riverside, CA, USA 92521
| | | | - Christine Chiarello
- University of California, Riverside, 900 University Ave., Riverside, CA, USA 92521
| |
Collapse
|
264
|
Liu B, Zhang X, Cui Y, Qin W, Tao Y, Li J, Yu C, Jiang T. Polygenic Risk for Schizophrenia Influences Cortical Gyrification in 2 Independent General Populations. Schizophr Bull 2017; 43:673-680. [PMID: 27169464 PMCID: PMC5463795 DOI: 10.1093/schbul/sbw051] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Schizophrenia is highly heritable, whereas the effect of each genetic variant is very weak. Since clinical heterogeneity and complexity of schizophrenia is high, considerable effort has been made to relate genetic variants to underlying neurobiological aspects of schizophrenia (endophenotypes). Given the polygenic nature of schizophrenia, our goal was to form a measure of additive genetic risk and explore its relationship to cortical morphology. Utilizing the data from a recent genome-wide association study that included nearly 37 000 cases of schizophrenia, we computed a polygenic risk score (PGRS) for each subject in 2 independent and healthy general populations. We then investigated the effect of polygenic risk for schizophrenia on cortical gyrification calculated from 3.0T structural imaging data in the discovery dataset (N = 315) and replication dataset (N = 357). We found a consistent effect of the polygenic risk for schizophrenia on cortical gyrification in the inferior parietal lobules in 2 independent general-population samples. A higher PGRS was significantly associated with a lower local gyrification index in the bilateral inferior parietal lobles, where case-control differences have been reported in previous studies on schizophrenia. Our findings strongly support the effectiveness of both PGRSs and endophenotypes in establishing the genetic architecture of psychiatry. Our findings may provide some implications regarding individual differences in the genetic risk for schizophrenia to cortical morphology and brain development.
Collapse
Affiliation(s)
- Bing Liu
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing, China;,National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, China
| | - Xiaolong Zhang
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing, China;,National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, China
| | - Yue Cui
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing, China;,National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, China
| | - Wen Qin
- Department of Radiology, Tianjin Medical University General Hospital, Tianjin, China
| | - Yan Tao
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing, China;,National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, China
| | - Jin Li
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing, China;,National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, China
| | - Chunshui Yu
- Department of Radiology, Tianjin Medical University General Hospital, Tianjin, China
| | - Tianzi Jiang
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing, China;,National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, China;,Center for Excellence in Brain Science and Intelligence Technology, Institute of Automation, Chinese Academy of Sciences, Beijing, China;,Queensland Brain Institute, The University of Queensland, Brisbane, Australia;,Key Laboratory for NeuroInformation of Ministry of Education, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
265
|
Brain structural investigation and hippocampal tractography in medication overuse headache: a native space analysis. Behav Brain Funct 2017; 13:6. [PMID: 28390437 PMCID: PMC5385056 DOI: 10.1186/s12993-017-0124-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Accepted: 03/31/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Spatial normalization of brain images, a prerequisite for voxel based morphometry analysis, may account for the large variability of the volumetric data in medication overuse headache (MOH); possibly because this disease concerns patients differing on both sex and age, and hence with different brain size and shape. METHODS The present study aimed at providing a subject-based analysis of macrostructure using a native space volumes segmentation (Freesurfer), and microstructure using a region of interest (ROI: i.e. hippocampus) tractography approach in MOH patients. RESULTS The results show that MOH patients had decreased volumes of left hemisphere temporal gyri (temporal superior, fusiform) and occipital middle gyrus, together with an increased volume of the left inferior (temporal) lateral ventricle. The left temporal volume was negatively correlated with depression score and medication dependence parameters. Seed-based tractography of the hippocampus revealed a decreased number of reconstructed fibers passing through the left hippocampus. CONCLUSION To our knowledge, these alterations have not been described with methods involving brain normalization, and they indicate that left hemisphere temporal areas, including the hippocampus, may play a role in MOH pathophysiology. Trial registration number NCT00833209. Registered 29 January 2009.
Collapse
|
266
|
Cao B, Mwangi B, Passos IC, Wu MJ, Keser Z, Zunta-Soares GB, Xu D, Hasan KM, Soares JC. Lifespan Gyrification Trajectories of Human Brain in Healthy Individuals and Patients with Major Psychiatric Disorders. Sci Rep 2017; 7:511. [PMID: 28360420 PMCID: PMC5428697 DOI: 10.1038/s41598-017-00582-1] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 03/03/2017] [Indexed: 12/12/2022] Open
Abstract
Cortical gyrification of the brain represents the folding characteristic of the cerebral cortex. How the brain cortical gyrification changes from childhood to old age in healthy human subjects is still unclear. Additionally, studies have shown regional gyrification alterations in patients with major psychiatric disorders, such as major depressive disorder (MDD), bipolar disorder (BD), and schizophrenia (SCZ). However, whether the lifespan trajectory of gyrification over the brain is altered in patients diagnosed with major psychiatric disorders is still unknown. In this study, we investigated the trajectories of gyrification in three independent cohorts based on structural brain images of 881 subjects from age 4 to 83. We discovered that the trajectory of gyrification during normal development and aging was not linear and could be modeled with a logarithmic function. We also found that the gyrification trajectories of patients with MDD, BD and SCZ were deviated from the healthy one during adulthood, indicating altered aging in the brain of these patients.
Collapse
Affiliation(s)
- Bo Cao
- Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center at Houston, Houston, Texas, USA.
| | - Benson Mwangi
- Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Ives Cavalcante Passos
- Graduation Program in Psychiatry and Laboratory of Molecular Psychiatry, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Mon-Ju Wu
- Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Zafer Keser
- Department of Neurology, The University of Texas Science Center at Houston, Houston, Texas, USA
| | - Giovana B Zunta-Soares
- Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Dianping Xu
- Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Khader M Hasan
- Department of Diagnostic and Interventional Imaging, The University of Texas Science Center at Houston, Houston, Texas, USA
| | - Jair C Soares
- Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| |
Collapse
|
267
|
Liem F, Varoquaux G, Kynast J, Beyer F, Kharabian Masouleh S, Huntenburg JM, Lampe L, Rahim M, Abraham A, Craddock RC, Riedel-Heller S, Luck T, Loeffler M, Schroeter ML, Witte AV, Villringer A, Margulies DS. Predicting brain-age from multimodal imaging data captures cognitive impairment. Neuroimage 2017; 148:179-188. [DOI: 10.1016/j.neuroimage.2016.11.005] [Citation(s) in RCA: 282] [Impact Index Per Article: 40.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Revised: 10/10/2016] [Accepted: 11/01/2016] [Indexed: 01/15/2023] Open
|
268
|
Malfliet A, Coppieters I, Van Wilgen P, Kregel J, De Pauw R, Dolphens M, Ickmans K. Brain changes associated with cognitive and emotional factors in chronic pain: A systematic review. Eur J Pain 2017; 21:769-786. [DOI: 10.1002/ejp.1003] [Citation(s) in RCA: 119] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/02/2016] [Indexed: 11/08/2022]
Affiliation(s)
- A. Malfliet
- Department of Physiotherapy, Human Physiology and Anatomy (KIMA); Faculty of Physical Education and Physiotherapy; Vrije Universiteit Brussels; Belgium
- Pain in Motion International Research Group; Brussels Belgium
- Department of Physical Medicine and Physiotherapy; University Hospital Brussels; Belgium
- Department of Rehabilitation Sciences and Physiotherapy; Faculty of Medicine and Health Sciences; Ghent University; Belgium
| | - I. Coppieters
- Pain in Motion International Research Group; Brussels Belgium
- Department of Rehabilitation Sciences and Physiotherapy; Faculty of Medicine and Health Sciences; Ghent University; Belgium
| | - P. Van Wilgen
- Department of Physiotherapy, Human Physiology and Anatomy (KIMA); Faculty of Physical Education and Physiotherapy; Vrije Universiteit Brussels; Belgium
- Pain in Motion International Research Group; Brussels Belgium
- Transcare; Transdisciplinary Pain Management Centre; Groningen The Netherlands
| | - J. Kregel
- Pain in Motion International Research Group; Brussels Belgium
- Department of Rehabilitation Sciences and Physiotherapy; Faculty of Medicine and Health Sciences; Ghent University; Belgium
| | - R. De Pauw
- Department of Rehabilitation Sciences and Physiotherapy; Faculty of Medicine and Health Sciences; Ghent University; Belgium
| | - M. Dolphens
- Department of Rehabilitation Sciences and Physiotherapy; Faculty of Medicine and Health Sciences; Ghent University; Belgium
| | - K. Ickmans
- Department of Physiotherapy, Human Physiology and Anatomy (KIMA); Faculty of Physical Education and Physiotherapy; Vrije Universiteit Brussels; Belgium
- Pain in Motion International Research Group; Brussels Belgium
- Department of Physical Medicine and Physiotherapy; University Hospital Brussels; Belgium
| |
Collapse
|
269
|
Last N, Tufts E, Auger LE. The Effects of Meditation on Grey Matter Atrophy and Neurodegeneration: A Systematic Review. J Alzheimers Dis 2017; 56:275-286. [DOI: 10.3233/jad-160899] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
270
|
Fjell AM, Sneve MH, Grydeland H, Storsve AB, Amlien IK, Yendiki A, Walhovd KB. Relationship between structural and functional connectivity change across the adult lifespan: A longitudinal investigation. Hum Brain Mapp 2017; 38:561-573. [PMID: 27654880 PMCID: PMC5148650 DOI: 10.1002/hbm.23403] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 08/17/2016] [Accepted: 08/31/2016] [Indexed: 12/14/2022] Open
Abstract
Extensive efforts are devoted to understand the functional (FC) and structural connections (SC) of the brain. FC is usually measured by functional magnetic resonance imaging (fMRI), and conceptualized as degree of synchronicity in brain activity between different regions. SC is typically indexed by measures of white matter (WM) properties, for example, by diffusion weighted imaging (DWI). FC and SC are intrinsically related, in that coordination of activity across regions ultimately depends on fast and efficient transfer of information made possible by structural connections. Convergence between FC and SC has been shown for specific networks, especially the default mode network (DMN). However, it is not known to what degree FC is constrained by major WM tracts and whether FC and SC change together over time. Here, 120 participants (20-85 years) were tested at two time points, separated by 3.3 years. Resting-state fMRI was used to measure FC, and DWI to measure WM microstructure as an index of SC. TRACULA, part of FreeSurfer, was used for automated tractography of 18 major WM tracts. Cortical regions with tight structural couplings defined by tractography were only weakly related at the functional level. Certain regions of the DMN showed a modest relationship between change in FC and SC, but for the most part, the two measures changed independently. The main conclusions are that anatomical alignment of SC and FC seems restricted to specific networks and tracts, and that changes in SC and FC are not necessarily strongly correlated. Hum Brain Mapp 38:561-573, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Anders M. Fjell
- Center for Lifespan Changes in Brain and Cognition, Department of PsychologyUniversity of OsloNorway, Pb. 1094 BlindernOslo0317Norway
- Department of Physical Medicine and RehabilitationUnit of neuropsychology, Oslo University HospitalNorway
| | - Markus H. Sneve
- Center for Lifespan Changes in Brain and Cognition, Department of PsychologyUniversity of OsloNorway, Pb. 1094 BlindernOslo0317Norway
| | - Håkon Grydeland
- Center for Lifespan Changes in Brain and Cognition, Department of PsychologyUniversity of OsloNorway, Pb. 1094 BlindernOslo0317Norway
| | - Andreas B. Storsve
- Center for Lifespan Changes in Brain and Cognition, Department of PsychologyUniversity of OsloNorway, Pb. 1094 BlindernOslo0317Norway
| | - Inge K. Amlien
- Center for Lifespan Changes in Brain and Cognition, Department of PsychologyUniversity of OsloNorway, Pb. 1094 BlindernOslo0317Norway
| | - Anastasia Yendiki
- Athinoula A. Martinos Center for Biomedical Imaging, Department of RadiologyMassachusetts General Hospital and Harvard Medical SchoolBostonMassachusetts
| | - Kristine B. Walhovd
- Center for Lifespan Changes in Brain and Cognition, Department of PsychologyUniversity of OsloNorway, Pb. 1094 BlindernOslo0317Norway
- Department of Physical Medicine and RehabilitationUnit of neuropsychology, Oslo University HospitalNorway
| |
Collapse
|
271
|
Sugranyes G, Solé-Padullés C, de la Serna E, Borras R, Romero S, Sanchez-Gistau V, Garcia-Rizo C, Goikolea JM, Bargallo N, Moreno D, Baeza I, Castro-Fornieles J. Cortical Morphology Characteristics of Young Offspring of Patients With Schizophrenia or Bipolar Disorder. J Am Acad Child Adolesc Psychiatry 2017; 56:79-88. [PMID: 27993232 DOI: 10.1016/j.jaac.2016.09.516] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Revised: 09/12/2016] [Accepted: 10/19/2016] [Indexed: 11/24/2022]
Abstract
OBJECTIVE Cortical surface area and thickness abnormalities have been observed in patients with schizophrenia and bipolar disorders; however, no study thus far has examined cortical morphologic measurements in children and adolescents at genetic risk for the disorders comparatively. METHOD One hundred thirty-seven participants, including 36 offspring of patients with schizophrenia (SzO), 54 offspring of patients with bipolar disorder (BpO), and 47 offspring of community controls (CcO), 6 to 17 years old, were assessed with clinical and neuroimaging methods. Sixty-nine percent of the sample was reassessed at a 27.6-month (mean) follow-up. Cortical surface reconstruction was applied to measure cortical area and thickness using FreeSurfer; mixed-effects models were used to investigate cross-sectional and longitudinal differences in global and lobar morphologic measurements. RESULTS The SzO group exhibited a cross-sectional decrease in global, parietal, and occipital lobe surface area compared with the CcO group, and in the occipital lobe compared with the BpO group. In the SzO group, global and parietal surface area values were inversely associated with attenuated positive and negative prodromal symptom scores. No cross-sectional differences in cortical thickness were observed. Division of the sample by pubertal status showed group-by-time interactions in the pubertal and postpubertal SzO subgroup, with less longitudinal decrease in cortical surface area and thickness than in the CcO and BpO subgroups, respectively. CONCLUSION The SzO, but not the BpO, group was characterized by cross-sectional decreases in surface area, and this was associated with prodromal symptoms. Longitudinal changes in cortical morphology associated with risk for schizophrenia may be expressed differently according to developmental stage.
Collapse
Affiliation(s)
- Gisela Sugranyes
- August Pi i Sunyer Biomedical Research Institute, Barcelona; Institute of Neuroscience, Hospital Clínic, Barcelona; Biomedical Research Networking Center Consortium.
| | | | - Elena de la Serna
- Institute of Neuroscience, Hospital Clínic, Barcelona; Biomedical Research Networking Center Consortium
| | - Roger Borras
- August Pi i Sunyer Biomedical Research Institute, Barcelona
| | - Soledad Romero
- Institute of Neuroscience, Hospital Clínic, Barcelona; Biomedical Research Networking Center Consortium
| | - Vanessa Sanchez-Gistau
- August Pi i Sunyer Biomedical Research Institute, Barcelona; Institute of Neuroscience, Hospital Clínic, Barcelona; Biomedical Research Networking Center Consortium
| | - Clemente Garcia-Rizo
- August Pi i Sunyer Biomedical Research Institute, Barcelona; Institute of Neuroscience, Hospital Clínic, Barcelona; Biomedical Research Networking Center Consortium
| | - Jose Manuel Goikolea
- August Pi i Sunyer Biomedical Research Institute, Barcelona; Institute of Neuroscience, Hospital Clínic, Barcelona; Biomedical Research Networking Center Consortium
| | - Nuria Bargallo
- August Pi i Sunyer Biomedical Research Institute, Barcelona; Biomedical Research Networking Center Consortium; Image Diagnosis Center, Hospital Clínic, Barcelona
| | - Dolores Moreno
- Biomedical Research Networking Center Consortium; Hospital General Universitario Gregorio Marañón and School of Medicine, Universidad Complutense, Madrid
| | - Inmaculada Baeza
- August Pi i Sunyer Biomedical Research Institute, Barcelona; Institute of Neuroscience, Hospital Clínic, Barcelona; Biomedical Research Networking Center Consortium
| | - Josefina Castro-Fornieles
- August Pi i Sunyer Biomedical Research Institute, Barcelona; Institute of Neuroscience, Hospital Clínic, Barcelona; Biomedical Research Networking Center Consortium; University of Barcelona
| |
Collapse
|
272
|
Eriksen CS, Garde E, Reislev NL, Wimmelmann CL, Bieler T, Ziegler AK, Gylling AT, Dideriksen KJ, Siebner HR, Mortensen EL, Kjaer M. Physical activity as intervention for age-related loss of muscle mass and function: protocol for a randomised controlled trial (the LISA study). BMJ Open 2016; 6:e012951. [PMID: 27913559 PMCID: PMC5168596 DOI: 10.1136/bmjopen-2016-012951] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Revised: 10/04/2016] [Accepted: 11/08/2016] [Indexed: 12/25/2022] Open
Abstract
INTRODUCTION Physical and cognitive function decline with age, accelerating during the 6th decade. Loss of muscle power (force×velocity product) is a dominant physical determinant for loss of functional ability, especially if the lower extremities are affected. Muscle strength training is known to maintain or even improve muscle power as well as physical function in older adults, but the optimal type of training for beneficial long-term training effects over several years is unknown. Moreover, the impact of muscle strength training on cognitive function and brain structure remains speculative. The primary aim of this randomised controlled trial is to compare the efficacy of two different 1 year strength training regimens on immediate and long-lasting improvements in muscle power in retirement-age individuals. Secondary aims are to evaluate the effect on muscle strength, muscle mass, physical and cognitive function, mental well-being, health-related quality of life and brain morphology. METHODS AND ANALYSIS The study includes 450 home-dwelling men and women (62-70 years). Participants are randomly allocated to (1) 1 year of supervised, centre-based heavy resistance training, (2) home-based moderate intensity resistance training or (3) habitual physical activity (control). Changes in primary (leg extensor power) and secondary outcomes are analysed according to the intention to treat principle and per protocol at 1, 2, 4, 7 and 10 years. ETHICS AND DISSEMINATION The study is expected to generate new insights into training-induced promotion of functional ability and independency after retirement and will help to formulate national recommendations regarding physical activity schemes for the growing population of older individuals in western societies. Results will be published in scientific peer-reviewed journals, in PhD theses and at public meetings. The study is approved by the Regional Ethical Committee (Capital Region, Copenhagen, Denmark, number H-3-2014-017). TRIAL REGISTRATION NUMBER NCT02123641.
Collapse
Affiliation(s)
- Christian Skou Eriksen
- Department of Orthopedic Surgery M, Institute of Sports Medicine Copenhagen, Bispebjerg and Frederiksberg University Hospitals, Copenhagen, Denmark
- Faculty of Health and Medical Sciences, Center for Healthy Aging, University of Copenhagen, Copenhagen, Demark
| | - Ellen Garde
- Faculty of Health and Medical Sciences, Center for Healthy Aging, University of Copenhagen, Copenhagen, Demark
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, Copenhagen, Denmark
- Department of Public Health, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Nina Linde Reislev
- Faculty of Health and Medical Sciences, Center for Healthy Aging, University of Copenhagen, Copenhagen, Demark
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, Copenhagen, Denmark
| | - Cathrine Lawaetz Wimmelmann
- Faculty of Health and Medical Sciences, Center for Healthy Aging, University of Copenhagen, Copenhagen, Demark
- Department of Public Health, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Theresa Bieler
- Department of Orthopedic Surgery M, Institute of Sports Medicine Copenhagen, Bispebjerg and Frederiksberg University Hospitals, Copenhagen, Denmark
- Faculty of Health and Medical Sciences, Center for Healthy Aging, University of Copenhagen, Copenhagen, Demark
- Department of Physical and Occupational Therapy, Bispebjerg and Frederiksberg University Hospitals, Copenhagen, Denmark
| | - Andreas Kraag Ziegler
- Department of Orthopedic Surgery M, Institute of Sports Medicine Copenhagen, Bispebjerg and Frederiksberg University Hospitals, Copenhagen, Denmark
- Faculty of Health and Medical Sciences, Center for Healthy Aging, University of Copenhagen, Copenhagen, Demark
| | - Anne Theil Gylling
- Department of Orthopedic Surgery M, Institute of Sports Medicine Copenhagen, Bispebjerg and Frederiksberg University Hospitals, Copenhagen, Denmark
- Faculty of Health and Medical Sciences, Center for Healthy Aging, University of Copenhagen, Copenhagen, Demark
| | - Kasper Juel Dideriksen
- Department of Orthopedic Surgery M, Institute of Sports Medicine Copenhagen, Bispebjerg and Frederiksberg University Hospitals, Copenhagen, Denmark
- Faculty of Health and Medical Sciences, Center for Healthy Aging, University of Copenhagen, Copenhagen, Demark
| | - Hartwig Roman Siebner
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, Copenhagen, Denmark
- Department of Neurology, Bispebjerg and Frederiksberg University Hospitals, Copenhagen, Denmark
| | - Erik Lykke Mortensen
- Faculty of Health and Medical Sciences, Center for Healthy Aging, University of Copenhagen, Copenhagen, Demark
- Department of Public Health, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Michael Kjaer
- Department of Orthopedic Surgery M, Institute of Sports Medicine Copenhagen, Bispebjerg and Frederiksberg University Hospitals, Copenhagen, Denmark
- Faculty of Health and Medical Sciences, Center for Healthy Aging, University of Copenhagen, Copenhagen, Demark
| |
Collapse
|
273
|
Differential tinnitus-related neuroplastic alterations of cortical thickness and surface area. Hear Res 2016; 342:1-12. [DOI: 10.1016/j.heares.2016.08.016] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 08/26/2016] [Accepted: 08/31/2016] [Indexed: 12/27/2022]
|
274
|
Aguirre GK, Datta R, Benson NC, Prasad S, Jacobson SG, Cideciyan AV, Bridge H, Watkins KE, Butt OH, Dain AS, Brandes L, Gennatas ED. Patterns of Individual Variation in Visual Pathway Structure and Function in the Sighted and Blind. PLoS One 2016; 11:e0164677. [PMID: 27812129 PMCID: PMC5094697 DOI: 10.1371/journal.pone.0164677] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 09/28/2016] [Indexed: 11/18/2022] Open
Abstract
Many structural and functional brain alterations accompany blindness, with substantial individual variation in these effects. In normally sighted people, there is correlated individual variation in some visual pathway structures. Here we examined if the changes in brain anatomy produced by blindness alter the patterns of anatomical variation found in the sighted. We derived eight measures of central visual pathway anatomy from a structural image of the brain from 59 sighted and 53 blind people. These measures showed highly significant differences in mean size between the sighted and blind cohorts. When we examined the measurements across individuals within each group we found three clusters of correlated variation, with V1 surface area and pericalcarine volume linked, and independent of the thickness of V1 cortex. These two clusters were in turn relatively independent of the volumes of the optic chiasm and lateral geniculate nucleus. This same pattern of variation in visual pathway anatomy was found in the sighted and the blind. Anatomical changes within these clusters were graded by the timing of onset of blindness, with those subjects with a post-natal onset of blindness having alterations in brain anatomy that were intermediate to those seen in the sighted and congenitally blind. Many of the blind and sighted subjects also contributed functional MRI measures of cross-modal responses within visual cortex, and a diffusion tensor imaging measure of fractional anisotropy within the optic radiations and the splenium of the corpus callosum. We again found group differences between the blind and sighted in these measures. The previously identified clusters of anatomical variation were also found to be differentially related to these additional measures: across subjects, V1 cortical thickness was related to cross-modal activation, and the volume of the optic chiasm and lateral geniculate was related to fractional anisotropy in the visual pathway. Our findings show that several of the structural and functional effects of blindness may be reduced to a smaller set of dimensions. It also seems that the changes in the brain that accompany blindness are on a continuum with normal variation found in the sighted.
Collapse
Affiliation(s)
- Geoffrey K. Aguirre
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States of America
- * E-mail:
| | - Ritobrato Datta
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States of America
| | - Noah C. Benson
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States of America
| | - Sashank Prasad
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States of America
| | - Samuel G. Jacobson
- Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States of America
| | - Artur V. Cideciyan
- Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States of America
| | - Holly Bridge
- FMRIB Centre, Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, United Kingdom
| | - Kate E. Watkins
- Department of Experimental Psychology, University of Oxford, Oxford, OX1 3UD, United Kingdom
| | - Omar H. Butt
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States of America
| | - Aleksandra S. Dain
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States of America
| | - Lauren Brandes
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States of America
| | - Efstathios D. Gennatas
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States of America
| |
Collapse
|
275
|
Age-related differences in the structural complexity of subcortical and ventricular structures. Neurobiol Aging 2016; 50:87-95. [PMID: 27939959 DOI: 10.1016/j.neurobiolaging.2016.10.023] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Revised: 10/19/2016] [Accepted: 10/20/2016] [Indexed: 02/05/2023]
Abstract
It has been well established that the volume of several subcortical structures decreases in relation to age. Different metrics of cortical structure (e.g., volume, thickness, surface area, and gyrification) have been shown to index distinct characteristics of interindividual differences; thus, it is important to consider the relation of age to multiple structural measures. Here, we compare age-related differences in subcortical and ventricular volume to those differences revealed with a measure of structural complexity, quantified as fractal dimensionality. Across 3 large data sets, totaling nearly 900 individuals across the adult lifespan (aged 18-94 years), we found greater age-related differences in complexity than volume for the subcortical structures, particularly in the caudate and thalamus. The structural complexity of ventricular structures was not more strongly related to age than volume. These results demonstrate that considering shape-related characteristics improves sensitivity to detect age-related differences in subcortical structures.
Collapse
|
276
|
Pfefferbaum A, Rohlfing T, Pohl KM, Lane B, Chu W, Kwon D, Nolan Nichols B, Brown SA, Tapert SF, Cummins K, Thompson WK, Brumback T, Meloy M, Jernigan TL, Dale A, Colrain IM, Baker FC, Prouty D, De Bellis MD, Voyvodic JT, Clark DB, Luna B, Chung T, Nagel BJ, Sullivan EV. Adolescent Development of Cortical and White Matter Structure in the NCANDA Sample: Role of Sex, Ethnicity, Puberty, and Alcohol Drinking. Cereb Cortex 2016; 26:4101-21. [PMID: 26408800 PMCID: PMC5027999 DOI: 10.1093/cercor/bhv205] [Citation(s) in RCA: 98] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Brain structural development continues throughout adolescence, when experimentation with alcohol is often initiated. To parse contributions from biological and environmental factors on neurodevelopment, this study used baseline National Consortium on Alcohol and NeuroDevelopment in Adolescence (NCANDA) magnetic resonance imaging (MRI) data, acquired in 674 adolescents meeting no/low alcohol or drug use criteria and 134 adolescents exceeding criteria. Spatial integrity of images across the 5 recruitment sites was assured by morphological scaling using Alzheimer's disease neuroimaging initiative phantom-derived volume scalar metrics. Clinical MRI readings identified structural anomalies in 11.4%. Cortical volume and thickness were smaller and white matter volumes were larger in older than in younger adolescents. Effects of sex (male > female) and ethnicity (majority > minority) were significant for volume and surface but minimal for cortical thickness. Adjusting volume and area for supratentorial volume attenuated or removed sex and ethnicity effects. That cortical thickness showed age-related decline and was unrelated to supratentorial volume is consistent with the radial unit hypothesis, suggesting a universal neural development characteristic robust to sex and ethnicity. Comparison of NCANDA with PING data revealed similar but flatter, age-related declines in cortical volumes and thickness. Smaller, thinner frontal, and temporal cortices in the exceeds-criteria than no/low-drinking group suggested untoward effects of excessive alcohol consumption on brain structural development.
Collapse
Affiliation(s)
- Adolf Pfefferbaum
- Center for Health Sciences, SRI International, Menlo Park, CA, USA
- Department of Psychiatry and Behavioral Sciences
| | - Torsten Rohlfing
- Center for Health Sciences, SRI International, Menlo Park, CA, USA
- Current address: Google, Inc
| | - Kilian M. Pohl
- Center for Health Sciences, SRI International, Menlo Park, CA, USA
- Department of Psychiatry and Behavioral Sciences
| | - Barton Lane
- Department of Radiology, Stanford University School of Medicine, Stanford, CA, USA
| | - Weiwei Chu
- Center for Health Sciences, SRI International, Menlo Park, CA, USA
| | - Dongjin Kwon
- Center for Health Sciences, SRI International, Menlo Park, CA, USA
| | - B. Nolan Nichols
- Center for Health Sciences, SRI International, Menlo Park, CA, USA
- Department of Psychiatry and Behavioral Sciences
| | | | - Susan F. Tapert
- Department of Psychiatry
- Veterans Affairs San Diego Healthcare System, La Jolla, CA, USA
| | | | | | | | | | | | - Anders Dale
- Center for Human Development
- Departments of Neurosciences and Radiology, University of California, San Diego, La Jolla, CA, USA
| | - Ian M. Colrain
- Center for Health Sciences, SRI International, Menlo Park, CA, USA
| | - Fiona C. Baker
- Center for Health Sciences, SRI International, Menlo Park, CA, USA
| | - Devin Prouty
- Center for Health Sciences, SRI International, Menlo Park, CA, USA
| | | | - James T. Voyvodic
- Department of Radiology, Duke University School of Medicine, Durham, NC, USA
| | - Duncan B. Clark
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Beatriz Luna
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Tammy Chung
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Bonnie J. Nagel
- Department of Psychiatry
- Department of Behavioral Neuroscience, Oregon Health and Sciences University, Portland, OR, USA
| | | |
Collapse
|
277
|
Chen PY, Chiou JM, Yang YF, Chen YT, Hsieh HL, Chang YL, Tseng WYI. Heterogeneous Aging Effects on Functional Connectivity in Different Cortical Regions: A Resting-State Functional MRI Study Using Functional Data Analysis. PLoS One 2016; 11:e0162028. [PMID: 27658309 PMCID: PMC5033468 DOI: 10.1371/journal.pone.0162028] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Accepted: 08/16/2016] [Indexed: 01/01/2023] Open
Abstract
Brain aging is a complex and heterogeneous process characterized by the selective loss and preservation of brain functions. This study examines the normal aging effects on the cerebral cortex by characterizing changes in functional connectivity using resting-state fMRI data. Previous resting-state fMRI studies on normal aging have examined specific networks of the brain, whereas few studies have examined cortical-cortical connectivities across the entire brain. To characterize the effects of normal aging on the cerebral cortex, we proposed the Pearson functional product-moment correlation coefficient for measuring functional connectivity, which has advantages over the traditional correlation coefficient. The distinct patterns of changes in functional connectivity within and among the four cerebral lobes clarified the effects of normal aging on cortical function. Besides, the advantages of the proposed approach over other methods considered were demonstrated through simulation comparisons. The results showed heterogeneous changes in functional connectivity in normal aging. Specifically, the elderly group exhibited enhanced inter-lobe connectivity between the frontal lobe and the other lobes. Inter-lobe connectivity decreased between the temporal and parietal lobes. The results support the frontal aging hypothesis proposed in behavioral and structural MRI studies. In conclusion, functional correlation analysis enables differentiation of changes in functional connectivities and characterizes the heterogeneous aging effects in different cortical regions.
Collapse
Affiliation(s)
- Pin-Yu Chen
- Department of Life Science, National Taiwan University, Taipei, Taiwan
- Institute of Medical Device and Imaging, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Jeng-Min Chiou
- Institute of Statistical Sciences, Academia Sinica, Taipei, Taiwan
| | - Ya-Fang Yang
- Institute of Statistical Sciences, Academia Sinica, Taipei, Taiwan
| | - Yu-Ting Chen
- Institute of Statistical Sciences, Academia Sinica, Taipei, Taiwan
| | - Hsin-Long Hsieh
- Institute of Medical Device and Imaging, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Yu-Ling Chang
- Department of Psychology, National Taiwan University, Taipei, Taiwan
| | - Wen-Yih I. Tseng
- Department of Life Science, National Taiwan University, Taipei, Taiwan
- Institute of Medical Device and Imaging, National Taiwan University College of Medicine, Taipei, Taiwan
- Molecular Imaging Center, National Taiwan University, Taipei, Taiwan
- * E-mail:
| |
Collapse
|
278
|
Altered Markers of Brain Development in Crohn's Disease with Extraintestinal Manifestations - A Pilot Study. PLoS One 2016; 11:e0163202. [PMID: 27655165 PMCID: PMC5031401 DOI: 10.1371/journal.pone.0163202] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2016] [Accepted: 09/06/2016] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND AND OBJECTIVE Alterations of brain morphology in Crohn's disease have been reported, but data is scarce and heterogenous and the possible impact of disease predisposition on brain development is unknown. Assuming a systemic course of the disease, brain involvement seems more probable in presence of extraintestinal manifestations, but this question has not yet been addressed. The present study examined the relationship between Crohn's disease and brain structure and focused on the connection with extraintestinal manifestations and markers of brain development. METHODS In a pilot study, brains of 15 patients with Crohn's disease (of which 9 had a history of extraintestinal manifestations, i.e. arthritis, erythema nodosum and primary sclerosing cholangitis) were compared to matched healthy controls using high resolution magnetic resonance imaging. Patients and controls were tested for depression, fatigue and global cognitive function. Cortical thickness, surface area and folding were determined via cortical surface modeling. RESULTS The overall group comparison (i.e. all patients vs. controls) yielded no significant results. In the patient subgroup with extraintestinal manifestations, changes in cortical area and folding, but not thickness, were identified: Patients showed elevated cortical surface area in the left middle frontal lobe (p<0.05) and hypergyrification in the left lingual gyrus (p<0.001) compared to healthy controls. Hypogyrification of the right insular cortex (p<0.05) and hypergyrification of the right anterior cingulate cortex (p<0.001) were detected in the subgroup comparison of patients with against without extraintestinal manifestations. P-values are corrected for multiple comparisons. CONCLUSIONS Our findings lend further support to the hypothesis that Crohn's disease is associated with aberrant brain structure and preliminary support for the hypothesis that these changes are associated with a systemic course of the disease as indicated by extraintestinal manifestations. Changes in cortical surface area and folding suggest a possible involvement of Crohn's disease or its predisposition during brain development.
Collapse
|
279
|
Madan C. Improved understanding of brain morphology through 3D printing: A brief guide. RESEARCH IDEAS AND OUTCOMES 2016. [DOI: 10.3897/rio.2.e10398] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Brain morphology can provide insights into inter-individual differences. In the present guide, we outline the steps for generating a print-ready 3D model of brain structures from a standard T1-weighted structural MRI volume. By improving our understanding of brain morphology, we hope to enhance teaching and scientific communication, as well as aid in the development of novel measures of brain morphology.
The present guide details the steps for generating a print-ready 3D model of brain structures from a standard T1-weighted structural MRI volume.
Collapse
|
280
|
Madan C. Improved understanding of brain morphology through 3D printing: A brief guide. RESEARCH IDEAS AND OUTCOMES 2016. [DOI: 10.3897/rio.2.e10266] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
281
|
Vaqué-Alcázar L, Sala-Llonch R, Valls-Pedret C, Vidal-Piñeiro D, Fernández-Cabello S, Bargalló N, Ros E, Bartrés-Faz D. Differential age-related gray and white matter impact mediates educational influence on elders’ cognition. Brain Imaging Behav 2016; 11:318-332. [DOI: 10.1007/s11682-016-9584-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
282
|
Effects of Long-term Diving Training on Cortical Gyrification. Sci Rep 2016; 6:28243. [PMID: 27320849 PMCID: PMC4913303 DOI: 10.1038/srep28243] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Accepted: 06/01/2016] [Indexed: 11/09/2022] Open
Abstract
During human brain development, cortical gyrification, which is believed to facilitate compact wiring of neural circuits, has been shown to follow an inverted U-shaped curve, coinciding with the two-stage neurodevelopmental process of initial synaptic overproduction with subsequent pruning. This trajectory allows postnatal experiences to refine the wiring, which may manifest as endophenotypic changes in cortical gyrification. Diving experts, typical elite athletes who commence intensive motor training at a very young age in their early childhood, serve ideal models for examining the gyrification changes related to long-term intensive diving training. Using local gyrification index (LGI), we compared the cortical gyrification between 12 diving experts and 12 controls. Compared with controls, diving experts showed widespread LGI reductions in regions relevant to diving performance. Negative correlations between LGIs and years of diving training were also observed in diving experts. Further exploratory network efficiency analysis of structural cortical networks, inferred from interregional correlation of LGIs, revealed comparable global and local efficiency in diving experts relative to controls. These findings suggest that gyrification reductions in diving experts may be the result of long-term diving training which could refine the neural circuitry (via synaptic pruning) and might be the anatomical substrate underlying their extraordinary diving performance.
Collapse
|
283
|
Storsve AB, Fjell AM, Yendiki A, Walhovd KB. Longitudinal Changes in White Matter Tract Integrity across the Adult Lifespan and Its Relation to Cortical Thinning. PLoS One 2016; 11:e0156770. [PMID: 27253393 PMCID: PMC4890742 DOI: 10.1371/journal.pone.0156770] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Accepted: 05/19/2016] [Indexed: 02/02/2023] Open
Abstract
A causal link between decreases in white matter (WM) integrity and cortical degeneration is assumed, but there is scarce knowledge on the relationship between these changes across the adult human lifespan. We investigated changes in thickness throughout the cortical mantle and WM tract integrity derived from T1 and diffusion weighted magnetic resonance imaging (MRI) scans in 201 healthy adults aged 23-87 years over a mean interval of 3.6 years. Fractional anisotropy (FA), mean (MD), radial (RD) and axial (AD) diffusivity changes were calculated for forceps minor and major and eight major white matter tracts in each hemisphere by use of a novel automated longitudinal tractography constrained by underlying anatomy (TRACULA) approach. We hypothesized that increasing MD and decreasing FA across tracts would relate to cortical thinning, with some anatomical specificity. WM integrity decreased across tracts non-uniformly, with mean annual percentage decreases ranging from 0.20 in the Inferior Longitudinal Fasciculus to 0.65 in the Superior Longitudinal Fasciculus. For most tracts, greater MD increases and FA decreases related to more cortical thinning, in areas in part overlapping with but also outside the projected tract endings. The findings indicate a combination of global and tract-specific relationships between WM integrity and cortical thinning.
Collapse
Affiliation(s)
- Andreas B. Storsve
- Research Group for Lifespan Changes in Brain and Cognition, Department of Psychology, University of Oslo, 0373, Oslo, Norway
| | - Anders M. Fjell
- Research Group for Lifespan Changes in Brain and Cognition, Department of Psychology, University of Oslo, 0373, Oslo, Norway
- Department of Physical Medicine and Rehabilitation, Unit of Neuropsychology, Oslo University Hospital, 0424, Oslo, Norway
| | - Anastasia Yendiki
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States of America
| | - Kristine B. Walhovd
- Research Group for Lifespan Changes in Brain and Cognition, Department of Psychology, University of Oslo, 0373, Oslo, Norway
- Department of Physical Medicine and Rehabilitation, Unit of Neuropsychology, Oslo University Hospital, 0424, Oslo, Norway
| |
Collapse
|
284
|
Moeskops P, Viergever MA, Mendrik AM, de Vries LS, Benders MJNL, Isgum I. Automatic Segmentation of MR Brain Images With a Convolutional Neural Network. IEEE TRANSACTIONS ON MEDICAL IMAGING 2016; 35:1252-1261. [PMID: 27046893 DOI: 10.1109/tmi.2016.2548501] [Citation(s) in RCA: 371] [Impact Index Per Article: 46.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Automatic segmentation in MR brain images is important for quantitative analysis in large-scale studies with images acquired at all ages. This paper presents a method for the automatic segmentation of MR brain images into a number of tissue classes using a convolutional neural network. To ensure that the method obtains accurate segmentation details as well as spatial consistency, the network uses multiple patch sizes and multiple convolution kernel sizes to acquire multi-scale information about each voxel. The method is not dependent on explicit features, but learns to recognise the information that is important for the classification based on training data. The method requires a single anatomical MR image only. The segmentation method is applied to five different data sets: coronal T2-weighted images of preterm infants acquired at 30 weeks postmenstrual age (PMA) and 40 weeks PMA, axial T2-weighted images of preterm infants acquired at 40 weeks PMA, axial T1-weighted images of ageing adults acquired at an average age of 70 years, and T1-weighted images of young adults acquired at an average age of 23 years. The method obtained the following average Dice coefficients over all segmented tissue classes for each data set, respectively: 0.87, 0.82, 0.84, 0.86, and 0.91. The results demonstrate that the method obtains accurate segmentations in all five sets, and hence demonstrates its robustness to differences in age and acquisition protocol.
Collapse
|
285
|
Gregory MD, Kippenhan JS, Dickinson D, Carrasco J, Mattay VS, Weinberger DR, Berman KF. Regional Variations in Brain Gyrification Are Associated with General Cognitive Ability in Humans. Curr Biol 2016; 26:1301-5. [PMID: 27133866 DOI: 10.1016/j.cub.2016.03.021] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Revised: 02/12/2016] [Accepted: 03/07/2016] [Indexed: 11/16/2022]
Abstract
Searching for a neurobiological understanding of human intellectual capabilities has long occupied those very capabilities. Brain gyrification, or folding of the cortex, is as highly evolved and variable a characteristic in humans as is intelligence. Indeed, gyrification scales with brain size, and relationships between brain size and intelligence have been demonstrated in humans [1-3]. However, gyrification shows a large degree of variability that is independent from brain size [4-6], suggesting that the former may independently contribute to cognitive abilities and thus supporting a direct investigation of this parameter in the context of intelligence. Moreover, uncovering the regional pattern of such an association could offer insights into evolutionary and neural mechanisms. We tested for this brain-behavior relationship in two separate, independently collected, large cohorts-440 healthy adults and 662 healthy children-using high-resolution structural neuroimaging and comprehensive neuropsychometric batteries. In both samples, general cognitive ability was significantly associated (pFDR < 0.01) with increasing gyrification in a network of neocortical regions, including large portions of the prefrontal cortex, inferior parietal lobule, and temporoparietal junction, as well as the insula, cingulate cortex, and fusiform gyrus, a regional distribution that was nearly identical in both samples (Dice similarity coefficient = 0.80). This neuroanatomical pattern is consistent with an existing, well-known proposal, the Parieto-Frontal Integration Theory of intelligence [7], and is also consistent with research in comparative evolutionary biology showing rapid neocortical expansion of these regions in humans relative to other species. These data provide a framework for understanding the neurobiology of human cognitive abilities and suggest a potential neurocellular association.
Collapse
Affiliation(s)
- Michael D Gregory
- Section on Integrative Neuroimaging, Clinical and Translational Neuroscience Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892, USA.
| | - J Shane Kippenhan
- Section on Integrative Neuroimaging, Clinical and Translational Neuroscience Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892, USA
| | - Dwight Dickinson
- Psychosis and Cognitive Studies Section, Clinical and Translational Neuroscience Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jessica Carrasco
- Section on Integrative Neuroimaging, Clinical and Translational Neuroscience Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892, USA
| | - Venkata S Mattay
- Lieber Institute for Brain Development, Baltimore, MD 21205, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Daniel R Weinberger
- Lieber Institute for Brain Development, Baltimore, MD 21205, USA; Departments of Psychiatry and Neuroscience and the McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Karen F Berman
- Section on Integrative Neuroimaging, Clinical and Translational Neuroscience Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892, USA; Psychosis and Cognitive Studies Section, Clinical and Translational Neuroscience Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
286
|
Madan CR, Kensinger EA. Cortical complexity as a measure of age-related brain atrophy. Neuroimage 2016; 134:617-629. [PMID: 27103141 DOI: 10.1016/j.neuroimage.2016.04.029] [Citation(s) in RCA: 99] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2015] [Revised: 04/01/2016] [Accepted: 04/07/2016] [Indexed: 12/23/2022] Open
Abstract
The structure of the human brain changes in a variety of ways as we age. While a sizeable literature has examined age-related differences in cortical thickness, and to a lesser degree, gyrification, here we examined differences in cortical complexity, as indexed by fractal dimensionality in a sample of over 400 individuals across the adult lifespan. While prior studies have shown differences in fractal dimensionality between patient populations and age-matched, healthy controls, it is unclear how well this measure would relate to age-related cortical atrophy. Initially computing a single measure for the entire cortical ribbon, i.e., unparcellated gray matter, we found fractal dimensionality to be more sensitive to age-related differences than either cortical thickness or gyrification index. We additionally observed regional differences in age-related atrophy between the three measures, suggesting that they may index distinct differences in cortical structure. We also provide a freely available MATLAB toolbox for calculating fractal dimensionality.
Collapse
|
287
|
Vuoksimaa E, Panizzon MS, Chen CH, Fiecas M, Eyler LT, Fennema-Notestine C, Hagler DJ, Franz CE, Jak AJ, Lyons MJ, Neale MC, Rinker DA, Thompson WK, Tsuang MT, Dale AM, Kremen WS. Is bigger always better? The importance of cortical configuration with respect to cognitive ability. Neuroimage 2016; 129:356-366. [PMID: 26827810 PMCID: PMC4838639 DOI: 10.1016/j.neuroimage.2016.01.049] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Revised: 01/21/2016] [Accepted: 01/22/2016] [Indexed: 02/08/2023] Open
Abstract
General cognitive ability (GCA) has substantial explanatory power for behavioral and health outcomes, but its cortical substrate is still not fully established. GCA is highly polygenic and research to date strongly suggests that its cortical substrate is highly polyregional. We show in map-based and region-of-interest-based analyses of adult twins that a complex cortical configuration underlies GCA. Having relatively greater surface area in evolutionary and developmentally high-expanded prefrontal, lateral temporal, and inferior parietal regions is positively correlated with GCA, whereas relatively greater surface area in low-expanded occipital, medial temporal, and motor cortices is negatively correlated with GCA. Essentially the opposite pattern holds for relative cortical thickness. The phenotypic positive-to-negative gradients in our cortical-GCA association maps were largely driven by a similar pattern of genetic associations. The patterns are consistent with regional cortical stretching whereby relatively greater surface area is related to relatively thinner cortex in high-expanded regions. Thus, the typical "bigger is better" view does not adequately capture cortical-GCA associations. Rather, cognitive ability is influenced by complex configurations of cortical development patterns that are strongly influenced by genetic factors. Optimal cognitive ability appears to be driven both by the absolute size and the polyregional configuration of the entire cortex rather than by small, circumscribed regions.
Collapse
Affiliation(s)
- Eero Vuoksimaa
- Department of Psychiatry, University of California, San Diego, La Jolla, CA 92093, USA; Center for Behavioral Genomics Twin Research Laboratory, University of California, San Diego, La Jolla, CA 92093, USA; Department of Public Health, and Institute for Molecular Medicine (FIMM), University of Helsinki, Helsinki, Finland.
| | - Matthew S Panizzon
- Department of Psychiatry, University of California, San Diego, La Jolla, CA 92093, USA; Center for Behavioral Genomics Twin Research Laboratory, University of California, San Diego, La Jolla, CA 92093, USA
| | - Chi-Hua Chen
- Department of Psychiatry, University of California, San Diego, La Jolla, CA 92093, USA; Center for Behavioral Genomics Twin Research Laboratory, University of California, San Diego, La Jolla, CA 92093, USA; Department of Radiology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Mark Fiecas
- Department of Psychiatry, University of California, San Diego, La Jolla, CA 92093, USA; Center for Behavioral Genomics Twin Research Laboratory, University of California, San Diego, La Jolla, CA 92093, USA
| | - Lisa T Eyler
- Mental Illness Research Education and Clinical Center, VA San Diego Healthcare System, San Diego, CA, USA; Department of Psychiatry, University of California, San Diego, La Jolla, CA 92093, USA
| | - Christine Fennema-Notestine
- Department of Psychiatry, University of California, San Diego, La Jolla, CA 92093, USA; Department of Radiology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Donald J Hagler
- Department of Radiology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Carol E Franz
- Department of Psychiatry, University of California, San Diego, La Jolla, CA 92093, USA; Center for Behavioral Genomics Twin Research Laboratory, University of California, San Diego, La Jolla, CA 92093, USA
| | - Amy J Jak
- Department of Psychiatry, University of California, San Diego, La Jolla, CA 92093, USA; Center of Excellence for Stress and Mental Health, VA San Diego Healthcare System, La Jolla, CA 92093, USA
| | - Michael J Lyons
- Department of Psychological and Brain Sciences, Boston University, Boston, MA 02215, USA
| | - Michael C Neale
- Virginia Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth University School of Medicine, Richmond, VA 23220, USA
| | - Daniel A Rinker
- Department of Psychiatry, University of California, San Diego, La Jolla, CA 92093, USA; Department of Radiology, University of California, San Diego, La Jolla, CA 92093, USA; Imaging Genetics Center, Institute for Neuroimaging and Informatics, University of Southern California, Los Angeles, CA, USA
| | - Wesley K Thompson
- Department of Psychiatry, University of California, San Diego, La Jolla, CA 92093, USA
| | - Ming T Tsuang
- Department of Psychiatry, University of California, San Diego, La Jolla, CA 92093, USA; Center for Behavioral Genomics Twin Research Laboratory, University of California, San Diego, La Jolla, CA 92093, USA
| | - Anders M Dale
- Department of Radiology, University of California, San Diego, La Jolla, CA 92093, USA; Department of Neurosciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - William S Kremen
- Department of Psychiatry, University of California, San Diego, La Jolla, CA 92093, USA; Center for Behavioral Genomics Twin Research Laboratory, University of California, San Diego, La Jolla, CA 92093, USA; Center of Excellence for Stress and Mental Health, VA San Diego Healthcare System, La Jolla, CA 92093, USA.
| |
Collapse
|
288
|
Szymkowicz SM, McLaren ME, Kirton JW, O’Shea A, Woods AJ, Manini TM, Anton SD, Dotson VM. Depressive symptom severity is associated with increased cortical thickness in older adults. Int J Geriatr Psychiatry 2016; 31. [PMID: 26205176 PMCID: PMC4724336 DOI: 10.1002/gps.4324] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
OBJECTIVE Structural neuroimaging studies in older adults have consistently shown volume reductions in both major and subthreshold depression. Cortical thickness, another measure of brain structure, has not been well studied in this population. We examined cortical thickness in older adults across a range of depressive symptom (DS) severity. METHODS Forty-three community-dwelling older adults (mean age = 68.80 ± 7.00 years) underwent magnetic resonance imaging. Based on a priori hypotheses, we examined cortical thickness in regions of interest in the rostral anterior cingulate, orbitofrontal cortex, middle frontal gyrus, and isthmus cingulate using multiple linear regressions with depression questionnaire scores as the independent variable and age, sex, and mean hemispheric thickness as covariates. We also performed an exploratory vertex-wise analysis. RESULTS After correction for multiple comparisons, we found an association between increased DSs and greater cortical thickness in the right isthmus cingulate (F(1, 38) = 8.09, false discovery rate corrected p = 0.028; R(2) = 35.78) in the region of interest analysis and in the left precuneus (cluster size = 413, p = 0.00002) in the vertex-wise analysis. CONCLUSIONS Older adults with higher DSs also have greater cortical thickness in the isthmus cingulate and precuneus, areas important for emotion regulation and self-referential processing. Additional research is needed to elucidate the mechanisms and potential clinical significance underlying this relationship.
Collapse
Affiliation(s)
| | - Molly E. McLaren
- Department of Clinical & Health Psychology, University of Florida
| | - Joshua W. Kirton
- Department of Clinical & Health Psychology, University of Florida
| | - Andrew O’Shea
- Department of Aging & Geriatric Research, University of Florida,Cognitive Aging and Memory Clinical Translational Research Program, University of Florida
| | - Adam J. Woods
- Department of Aging & Geriatric Research, University of Florida,Cognitive Aging and Memory Clinical Translational Research Program, University of Florida,Department of Neuroscience, University of Florida
| | - Todd M. Manini
- Department of Aging & Geriatric Research, University of Florida
| | | | - Vonetta M. Dotson
- Department of Clinical & Health Psychology, University of Florida,Department of Neuroscience, University of Florida
| |
Collapse
|
289
|
Sussman D, Leung RC, Chakravarty MM, Lerch JP, Taylor MJ. The developing human brain: age-related changes in cortical, subcortical, and cerebellar anatomy. Brain Behav 2016; 6:e00457. [PMID: 27066310 PMCID: PMC4802426 DOI: 10.1002/brb3.457] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Revised: 02/23/2016] [Accepted: 02/24/2016] [Indexed: 11/05/2022] Open
Abstract
INTRODUCTION This study is the first to characterize normal development and sex differences across neuroanatomical structures in cortical, subcortical, and cerebellar brain regions in a single large cohort. METHODS One hundred and ninety-two magnetic resonance images were examined from 96 typically developing females and 96 age-matched typically developing males from 4 to 18 years of age. Image segmentation of the cortex was conducted with CIVET, while that of the cerebellum, hippocampi, thalamus, and basal ganglia were conducted using the MAGeT algorithm. RESULTS Cortical thickness analysis revealed that most cortical regions decrease linearly, while surface area increases linearly with age. Volume relative to total cerebrum followed a quadratic trend with age, with only the left supramarginal gyrus showing sexual dimorphism. Hippocampal relative volume increased linearly, while the thalamus, caudate, and putamen decreased linearly, and the cerebellum did not change with age. The relative volumes of several subcortical subregions followed inverted U-shaped trends that peaked at ~12 years of age. Many subcortical structures were found to be larger in females than in males, independently of age, while others showed a sex-by-age interaction. CONCLUSION This study provides a comprehensive assessment of cortical, subcortical, and cerebellar growth patterns during normal development, and draws attention to the role of sex on neuroanatomical maturation throughout childhood and adolescence.
Collapse
Affiliation(s)
- Dafna Sussman
- Physiology and Experimental Medicine The Hospital for Sick Children University of Toronto 555 University Avenue Toronto Ontario M5G 1X8 Canada
| | - Rachel C Leung
- Diagnostic Imaging Research The Hospital for Sick Children University of Toronto 555 University Avenue Toronto Ontario M5G 1X8 Canada
| | - M Mallar Chakravarty
- Cerebral Imaging Centre Douglas Mental Health University Institute Verdun Quebec Canada; Departments of Psychiatry and Biomedical Engineering McGill University Montreal Quebec Canada
| | - Jason P Lerch
- Mouse Imaging Centre (MICe) The Hospital for Sick Children 25 Orde Street Toronto Ontario M5T 3H7 Canada; Department of Medical Biophysics University of Toronto 101 College Street Toronto Ontario M5G 1L7 Canada
| | - Margot J Taylor
- Diagnostic Imaging Research The Hospital for Sick Children University of Toronto 555 University Avenue Toronto Ontario M5G 1X8 Canada
| |
Collapse
|
290
|
Maingault S, Tzourio-Mazoyer N, Mazoyer B, Crivello F. Regional correlations between cortical thickness and surface area asymmetries: A surface-based morphometry study of 250 adults. Neuropsychologia 2016; 93:350-364. [PMID: 27020136 DOI: 10.1016/j.neuropsychologia.2016.03.025] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Revised: 03/21/2016] [Accepted: 03/23/2016] [Indexed: 10/22/2022]
Abstract
We report on the patterns of asymmetries of various MRI-derived cortical phenotypes, namely cortical thickness (CT), cortical surface area (CSA), cortical volume (CV) and sulcal depth (SULC), as well as on their cross-relationships. A surface-based approach was designed to obtain cortical asymmetry maps unbiased for inter-hemispheric structural positional misalignment. Accurate vertex-wise asymmetries of CT, CSA, CV, and SULC were so obtained in 250 individuals including 120 left-handers that had been selected from a larger population as having a typical leftward language lateralization. We found no significant effect of handedness on CT, CSA or CV asymmetries, although a trend for a significant difference in the SULC asymmetry of the Rolandic genu was present (leftward in right-handers, rightward in left-handers). At the hemispheric level, we found rightward CT and CSA asymmetries that were not correlated. At the regional level, asymmetry patterns of CT and CSA were marked by a spatial overlap of both concordant and opposite CT and CSA asymmetries. Half of these regions of overlap presented a significant association (positive or negative) between CT and CSA asymmetries. Strikingly, the 3 regions showing positive correlations between CT and CSA asymmetries were those known to exhibit robust asymmetries across methodologies, such as the leftward asymmetrical planum temporale and the rightward asymmetrical superior temporal sulcus and cingulate cortex. This study demonstrates that regional correlations between CT and CSA asymmetries are a characteristic of brain structural organization that could be of significance in the choice of structural markers in studies dealing with the genetic basis of brain lateralization.
Collapse
Affiliation(s)
- Sophie Maingault
- Université de Bordeaux, GIN, IMN UMR 5293, Bordeaux, France; Centre National de la Recherche Scientifique, GIN, IMN UMR 5293, Bordeaux, France; CEA, GIN, IMN UMR 5293, Bordeaux, France
| | - Nathalie Tzourio-Mazoyer
- Université de Bordeaux, GIN, IMN UMR 5293, Bordeaux, France; Centre National de la Recherche Scientifique, GIN, IMN UMR 5293, Bordeaux, France; CEA, GIN, IMN UMR 5293, Bordeaux, France
| | - Bernard Mazoyer
- Université de Bordeaux, GIN, IMN UMR 5293, Bordeaux, France; Centre National de la Recherche Scientifique, GIN, IMN UMR 5293, Bordeaux, France; CEA, GIN, IMN UMR 5293, Bordeaux, France
| | - Fabrice Crivello
- Université de Bordeaux, GIN, IMN UMR 5293, Bordeaux, France; Centre National de la Recherche Scientifique, GIN, IMN UMR 5293, Bordeaux, France; CEA, GIN, IMN UMR 5293, Bordeaux, France.
| |
Collapse
|
291
|
Marie D, Maingault S, Crivello F, Mazoyer B, Tzourio-Mazoyer N. Surface-Based Morphometry of Cortical Thickness and Surface Area Associated with Heschl's Gyri Duplications in 430 Healthy Volunteers. Front Hum Neurosci 2016; 10:69. [PMID: 27014013 PMCID: PMC4779901 DOI: 10.3389/fnhum.2016.00069] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Accepted: 02/11/2016] [Indexed: 01/31/2023] Open
Abstract
We applied Surface-Based Morphometry to assess the variations in cortical thickness (CT) and cortical surface area (CSA) in relation to the occurrence of Heschl's gyrus (HG) duplications in each hemisphere. 430 healthy brains that had previously been classified as having a single HG, Common Stem Duplication (CSD) or Complete Posterior Duplication (CPD) in each hemisphere were analyzed. To optimally align the HG area across the different groups of gyrification, we computed a specific surface-based template composed of 40 individuals with a symmetrical HG gyrification pattern (20 single HG, 10 CPD, 10 CSD). After normalizing the 430 participants' T1 images to this specific template, we separately compared the groups constituted of participants with a single HG, CPD, and CSD in each hemisphere. The occurrence of a duplication in either hemisphere was associated with an increase in CT posterior to the primary auditory cortex. This may be the neural support of expertise or great abilities in either speech or music processing domains that were related with duplications by previous studies. A decrease in CSA in the planum temporale was detected in cases with duplication in the left hemisphere. In the right hemisphere, a medial decrease in CSA and a lateral increase in CSA were present in HG when a CPD occurred together with an increase in CSA in the depth of the superior temporal sulcus (STS) in CSD compared to a single HG. These variations associated with duplication might be related to the functions that they process jointly within each hemisphere: temporal and speech processing in the left and spectral and music processing in the right.
Collapse
Affiliation(s)
- Damien Marie
- Groupe d'Imagerie Neurofonctionnelle, Institut des Maladies Neurodégénératives UMR 5293, Université de BordeauxBordeaux, France; Centre National de la Recherche Scientifique, Groupe d'Imagerie Neurofonctionnelle, Institut des Maladies Neurodégénératives UMR 5293Bordeaux, France; Commissariat à l'Énergie Atomique et aux Énergies Alternatives, Groupe d'Imagerie Neurofonctionnelle, Institut des Maladies Neurodégénératives UMR 5293Bordeaux, France
| | - Sophie Maingault
- Groupe d'Imagerie Neurofonctionnelle, Institut des Maladies Neurodégénératives UMR 5293, Université de BordeauxBordeaux, France; Centre National de la Recherche Scientifique, Groupe d'Imagerie Neurofonctionnelle, Institut des Maladies Neurodégénératives UMR 5293Bordeaux, France; Commissariat à l'Énergie Atomique et aux Énergies Alternatives, Groupe d'Imagerie Neurofonctionnelle, Institut des Maladies Neurodégénératives UMR 5293Bordeaux, France
| | - Fabrice Crivello
- Groupe d'Imagerie Neurofonctionnelle, Institut des Maladies Neurodégénératives UMR 5293, Université de BordeauxBordeaux, France; Centre National de la Recherche Scientifique, Groupe d'Imagerie Neurofonctionnelle, Institut des Maladies Neurodégénératives UMR 5293Bordeaux, France; Commissariat à l'Énergie Atomique et aux Énergies Alternatives, Groupe d'Imagerie Neurofonctionnelle, Institut des Maladies Neurodégénératives UMR 5293Bordeaux, France
| | - Bernard Mazoyer
- Groupe d'Imagerie Neurofonctionnelle, Institut des Maladies Neurodégénératives UMR 5293, Université de BordeauxBordeaux, France; Centre National de la Recherche Scientifique, Groupe d'Imagerie Neurofonctionnelle, Institut des Maladies Neurodégénératives UMR 5293Bordeaux, France; Commissariat à l'Énergie Atomique et aux Énergies Alternatives, Groupe d'Imagerie Neurofonctionnelle, Institut des Maladies Neurodégénératives UMR 5293Bordeaux, France
| | - Nathalie Tzourio-Mazoyer
- Groupe d'Imagerie Neurofonctionnelle, Institut des Maladies Neurodégénératives UMR 5293, Université de BordeauxBordeaux, France; Centre National de la Recherche Scientifique, Groupe d'Imagerie Neurofonctionnelle, Institut des Maladies Neurodégénératives UMR 5293Bordeaux, France; Commissariat à l'Énergie Atomique et aux Énergies Alternatives, Groupe d'Imagerie Neurofonctionnelle, Institut des Maladies Neurodégénératives UMR 5293Bordeaux, France
| |
Collapse
|
292
|
Jockwitz C, Caspers S, Lux S, Jütten K, Schleicher A, Eickhoff SB, Amunts K, Zilles K. Age- and function-related regional changes in cortical folding of the default mode network in older adults. Brain Struct Funct 2016; 222:83-99. [PMID: 26943919 DOI: 10.1007/s00429-016-1202-4] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Accepted: 02/09/2016] [Indexed: 10/22/2022]
Abstract
Healthy aging is accompanied by changes in the functional architecture of the default mode network (DMN), e.g. a posterior to anterior shift (PASA) of activations. The putative structural correlate for this functional reorganization, however, is largely unknown. Changes in gyrification, i.e. decreases of cortical folding were found to be a marker of atrophy of the brain in later decades of life. Therefore, the present study assessed local gyrification indices of the DMN in relation to age and cognitive performance in 749 older adults aged 55-85 years. Age-related decreases in local gyrification indices were found in the anterior part of the DMN [particularly; medial prefrontal cortex (mPFC)] of the right hemisphere, and the medial posterior parts of the DMN [particularly; posterior cingulate cortex (PCC)/precuneus] of both hemispheres. Positive correlations between cognitive performance and local gyrification indices were found for (1) selective attention and left PCC/precuneus, (2) visual/visual-spatial working memory and bilateral PCC/precuneus and right angular gyrus (AG), and (3) semantic verbal fluency and right AG and right mPFC. The more pronounced age-related decrease in local gyrification indices of the posterior parts of the DMN supports the functionally motivated PASA theory by correlated structural changes. Surprisingly, the prominent age-related decrease in local gyrification indices in right hemispheric ROIs provides evidence for a structural underpinning of the right hemi-aging hypothesis. Noticeably, the performance-related changes in local gyrification largely involved the same parts of the DMN that were subject to age-related local gyrification decreases. Thus, the present study lends support for a combined structural and functional theory of aging, in that the functional changes in the DMN during aging are accompanied by comparably localized structural alterations.
Collapse
Affiliation(s)
- Christiane Jockwitz
- C. & O. Vogt Institute for Brain Research, Heinrich Heine University, 40225, Düsseldorf, Germany.,Institute of Neuroscience and Medicine-1, Research Center Jülich, 52425 Jülich, Germany
| | - Svenja Caspers
- C. & O. Vogt Institute for Brain Research, Heinrich Heine University, 40225, Düsseldorf, Germany. .,Institute of Neuroscience and Medicine-1, Research Center Jülich, 52425 Jülich, Germany.
| | - Silke Lux
- Institute of Neuroscience and Medicine-1, Research Center Jülich, 52425 Jülich, Germany
| | - Kerstin Jütten
- Institute of Neuroscience and Medicine-1, Research Center Jülich, 52425 Jülich, Germany
| | - Axel Schleicher
- Institute of Neuroscience and Medicine-1, Research Center Jülich, 52425 Jülich, Germany
| | - Simon B Eickhoff
- Institute of Neuroscience and Medicine-1, Research Center Jülich, 52425 Jülich, Germany.,Institute Clinical Neuroscience and Medical Psychology, University of Düsseldorf, Düsseldorf, Germany
| | - Katrin Amunts
- C. & O. Vogt Institute for Brain Research, Heinrich Heine University, 40225, Düsseldorf, Germany.,Institute of Neuroscience and Medicine-1, Research Center Jülich, 52425 Jülich, Germany
| | - Karl Zilles
- Institute of Neuroscience and Medicine-1, Research Center Jülich, 52425 Jülich, Germany.,JARA-Brain, Jülich-Aachen Research Alliance, Jülich, Germany.,Department of Psychiatry, Psychotherapy and Psychosomatics, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
293
|
Cachia A, Borst G, Tissier C, Fisher C, Plaze M, Gay O, Rivière D, Gogtay N, Giedd J, Mangin JF, Houdé O, Raznahan A. Longitudinal stability of the folding pattern of the anterior cingulate cortex during development. Dev Cogn Neurosci 2016; 19:122-7. [PMID: 26974743 PMCID: PMC4912935 DOI: 10.1016/j.dcn.2016.02.011] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Revised: 01/19/2016] [Accepted: 02/28/2016] [Indexed: 12/18/2022] Open
Abstract
Prenatal processes are likely critical for the differences in cognitive ability and disease risk that unfold in postnatal life. Prenatally established cortical folding patterns are increasingly studied as an adult proxy for earlier development events - under the as yet untested assumption that an individual's folding pattern is developmentally fixed. Here, we provide the first empirical test of this stability assumption using 263 longitudinally-acquired structural MRI brain scans from 75 typically developing individuals spanning ages 7 to 32 years. We focus on the anterior cingulate cortex (ACC) - an intensely studied cortical region that presents two qualitatively distinct and reliably classifiable sulcal patterns with links to postnatal behavior. We show - without exception-that individual ACC sulcal patterns are fixed from childhood to adulthood, at the same time that quantitative anatomical ACC metrics are undergoing profound developmental change. Our findings buttress use of folding typology as a postnatally-stable marker for linking variations in early brain development to later neurocognitive outcomes in ex utero life.
Collapse
Affiliation(s)
- A Cachia
- CNRS UMR 8240, Laboratory for the Psychology of Child Development and Education, Paris, France; University Paris Descartes, Sorbonne Paris Cité, Paris, France; INSERM UMR 894, Center of Psychiatry and Neurosciences, Paris, France; Institut Universitaire de France, Paris, France.
| | - G Borst
- CNRS UMR 8240, Laboratory for the Psychology of Child Development and Education, Paris, France; University Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - C Tissier
- CNRS UMR 8240, Laboratory for the Psychology of Child Development and Education, Paris, France; University Paris Descartes, Sorbonne Paris Cité, Paris, France; INSERM UMR 894, Center of Psychiatry and Neurosciences, Paris, France
| | - C Fisher
- CATI Multicenter Neuroimaging Plaform, cati-neuroimaging.com, France; UNATI, Neurospin, CEA, Gif-sur-Yvette, France
| | - M Plaze
- INSERM UMR 894, Center of Psychiatry and Neurosciences, Paris, France
| | - O Gay
- INSERM UMR 894, Center of Psychiatry and Neurosciences, Paris, France
| | - D Rivière
- UNATI, Neurospin, CEA, Gif-sur-Yvette, France
| | - N Gogtay
- National Institute of Mental Health (NIMH) and the National Institutes of Health Intramural Research Program, Bethesda, USA
| | - J Giedd
- National Institute of Mental Health (NIMH) and the National Institutes of Health Intramural Research Program, Bethesda, USA
| | - J-F Mangin
- CATI Multicenter Neuroimaging Plaform, cati-neuroimaging.com, France; UNATI, Neurospin, CEA, Gif-sur-Yvette, France
| | - O Houdé
- CNRS UMR 8240, Laboratory for the Psychology of Child Development and Education, Paris, France; University Paris Descartes, Sorbonne Paris Cité, Paris, France; Institut Universitaire de France, Paris, France
| | - A Raznahan
- National Institute of Mental Health (NIMH) and the National Institutes of Health Intramural Research Program, Bethesda, USA
| |
Collapse
|
294
|
Lorio S, Kherif F, Ruef A, Melie-Garcia L, Frackowiak R, Ashburner J, Helms G, Lutti A, Draganski B. Neurobiological origin of spurious brain morphological changes: A quantitative MRI study. Hum Brain Mapp 2016; 37:1801-15. [PMID: 26876452 PMCID: PMC4855623 DOI: 10.1002/hbm.23137] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Revised: 01/18/2016] [Accepted: 01/26/2016] [Indexed: 01/04/2023] Open
Abstract
The high gray‐white matter contrast and spatial resolution provided by T1‐weighted magnetic resonance imaging (MRI) has made it a widely used imaging protocol for computational anatomy studies of the brain. While the image intensity in T1‐weighted images is predominantly driven by T1, other MRI parameters affect the image contrast, and hence brain morphological measures derived from the data. Because MRI parameters are correlates of different histological properties of brain tissue, this mixed contribution hampers the neurobiological interpretation of morphometry findings, an issue which remains largely ignored in the community. We acquired quantitative maps of the MRI parameters that determine signal intensities in T1‐weighted images (R1 (=1/T1), R2*, and PD) in a large cohort of healthy subjects (n = 120, aged 18–87 years). Synthetic T1‐weighted images were calculated from these quantitative maps and used to extract morphometry features—gray matter volume and cortical thickness. We observed significant variations in morphometry measures obtained from synthetic images derived from different subsets of MRI parameters. We also detected a modulation of these variations by age. Our findings highlight the impact of microstructural properties of brain tissue—myelination, iron, and water content—on automated measures of brain morphology and show that microstructural tissue changes might lead to the detection of spurious morphological changes in computational anatomy studies. They motivate a review of previous morphological results obtained from standard anatomical MRI images and highlight the value of quantitative MRI data for the inference of microscopic tissue changes in the healthy and diseased brain. Hum Brain Mapp 37:1801–1815, 2016. © 2016 The Authors. Human Brain Mapping Published by Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Sara Lorio
- LREN - Department of Clinical Neurosciences, CHUV, University of Lausanne, Lausanne Switzerland
| | - Ferath Kherif
- LREN - Department of Clinical Neurosciences, CHUV, University of Lausanne, Lausanne Switzerland
| | - Anne Ruef
- LREN - Department of Clinical Neurosciences, CHUV, University of Lausanne, Lausanne Switzerland
| | - Lester Melie-Garcia
- LREN - Department of Clinical Neurosciences, CHUV, University of Lausanne, Lausanne Switzerland
| | - Richard Frackowiak
- LREN - Department of Clinical Neurosciences, CHUV, University of Lausanne, Lausanne Switzerland
| | - John Ashburner
- Wellcome Trust Centre for Neuroimaging, UCL Institute of Neurology, UCL, London, United Kingdom
| | - Gunther Helms
- Department of Clinical Sciences, Lund University, Medical Radiation Physics, Lund, Sweden
| | - Antoine Lutti
- LREN - Department of Clinical Neurosciences, CHUV, University of Lausanne, Lausanne Switzerland
| | - Bodgan Draganski
- LREN - Department of Clinical Neurosciences, CHUV, University of Lausanne, Lausanne Switzerland.,Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| |
Collapse
|
295
|
Miskovich TA, Pedersen WS, Belleau EL, Shollenbarger S, Lisdahl KM, Larson CL. Cortical Gyrification Patterns Associated with Trait Anxiety. PLoS One 2016; 11:e0149434. [PMID: 26872350 PMCID: PMC4752488 DOI: 10.1371/journal.pone.0149434] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Accepted: 01/30/2016] [Indexed: 01/04/2023] Open
Abstract
Dispositional anxiety is a stable personality trait that is a key risk factor for internalizing disorders, and understanding the neural correlates of trait anxiety may help us better understand the development of these disorders. Abnormal cortical folding is thought to reflect differences in cortical connectivity occurring during brain development. Therefore, assessing gyrification may advance understanding of cortical development and organization associated with trait anxiety. Previous literature has revealed structural abnormalities in trait anxiety and related disorders, but no study to our knowledge has examined gyrification in trait anxiety. We utilized a relatively novel measure, the local gyrification index (LGI), to explore differences in gyrification as a function of trait anxiety. We obtained structural MRI scans using a 3T magnetic resonance scanner on 113 young adults. Results indicated a negative correlation between trait anxiety and LGI in the left superior parietal cortex, specifically the precuneus, reflecting less cortical complexity among those high on trait anxiety. Our findings suggest that aberrations in cortical gyrification in a key region of the default mode network is a correlate of trait anxiety and may reflect disrupted local parietal connectivity.
Collapse
Affiliation(s)
- Tara A. Miskovich
- Department of Psychology, University of Wisconsin-Milwaukee, Milwaukee, WI, United States of America
| | - Walker S. Pedersen
- Department of Psychology, University of Wisconsin-Milwaukee, Milwaukee, WI, United States of America
| | - Emily L. Belleau
- Department of Psychology, University of Wisconsin-Milwaukee, Milwaukee, WI, United States of America
| | - Skyler Shollenbarger
- Department of Psychology, University of Wisconsin-Milwaukee, Milwaukee, WI, United States of America
| | - Krista M. Lisdahl
- Department of Psychology, University of Wisconsin-Milwaukee, Milwaukee, WI, United States of America
| | - Christine L. Larson
- Department of Psychology, University of Wisconsin-Milwaukee, Milwaukee, WI, United States of America
- * E-mail:
| |
Collapse
|
296
|
Pohl KM, Sullivan EV, Rohlfing T, Chu W, Kwon D, Nichols BN, Zhang Y, Brown SA, Tapert SF, Cummins K, Thompson WK, Brumback T, Colrain IM, Baker FC, Prouty D, De Bellis MD, Voyvodic JT, Clark DB, Schirda C, Nagel BJ, Pfefferbaum A. Harmonizing DTI measurements across scanners to examine the development of white matter microstructure in 803 adolescents of the NCANDA study. Neuroimage 2016; 130:194-213. [PMID: 26872408 DOI: 10.1016/j.neuroimage.2016.01.061] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Revised: 01/23/2016] [Accepted: 01/28/2016] [Indexed: 01/18/2023] Open
Abstract
Neurodevelopment continues through adolescence, with notable maturation of white matter tracts comprising regional fiber systems progressing at different rates. To identify factors that could contribute to regional differences in white matter microstructure development, large samples of youth spanning adolescence to young adulthood are essential to parse these factors. Recruitment of adequate samples generally relies on multi-site consortia but comes with the challenge of merging data acquired on different platforms. In the current study, diffusion tensor imaging (DTI) data were acquired on GE and Siemens systems through the National Consortium on Alcohol and NeuroDevelopment in Adolescence (NCANDA), a multi-site study designed to track the trajectories of regional brain development during a time of high risk for initiating alcohol consumption. This cross-sectional analysis reports baseline Tract-Based Spatial Statistic (TBSS) of regional fractional anisotropy (FA), mean diffusivity (MD), axial diffusivity (L1), and radial diffusivity (LT) from the five consortium sites on 671 adolescents who met no/low alcohol or drug consumption criteria and 132 adolescents with a history of exceeding consumption criteria. Harmonization of DTI metrics across manufacturers entailed the use of human-phantom data, acquired multiple times on each of three non-NCANDA participants at each site's MR system, to determine a manufacturer-specific correction factor. Application of the correction factor derived from human phantom data measured on MR systems from different manufacturers reduced the standard deviation of the DTI metrics for FA by almost a half, enabling harmonization of data that would have otherwise carried systematic error. Permutation testing supported the hypothesis of higher FA and lower diffusivity measures in older adolescents and indicated that, overall, the FA, MD, and L1 of the boys were higher than those of the girls, suggesting continued microstructural development notable in the boys. The contribution of demographic and clinical differences to DTI metrics was assessed with General Additive Models (GAM) testing for age, sex, and ethnicity differences in regional skeleton mean values. The results supported the primary study hypothesis that FA skeleton mean values in the no/low-drinking group were highest at different ages. When differences in intracranial volume were covaried, FA skeleton mean reached a maximum at younger ages in girls than boys and varied in magnitude with ethnicity. Our results, however, did not support the hypothesis that youth who exceeded exposure criteria would have lower FA or higher diffusivity measures than the no/low-drinking group; detecting the effects of excessive alcohol consumption during adolescence on DTI metrics may require longitudinal study.
Collapse
Affiliation(s)
- Kilian M Pohl
- Center for Health Sciences, SRI International, Menlo Park, CA, United States; Department of Psychiatry & Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, United States
| | - Edith V Sullivan
- Department of Psychiatry & Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, United States.
| | - Torsten Rohlfing
- Center for Health Sciences, SRI International, Menlo Park, CA, United States
| | - Weiwei Chu
- Center for Health Sciences, SRI International, Menlo Park, CA, United States
| | - Dongjin Kwon
- Center for Health Sciences, SRI International, Menlo Park, CA, United States; Department of Psychiatry & Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, United States
| | - B Nolan Nichols
- Center for Health Sciences, SRI International, Menlo Park, CA, United States; Department of Psychiatry & Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, United States
| | - Yong Zhang
- Department of Psychiatry & Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, United States
| | - Sandra A Brown
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, United States
| | - Susan F Tapert
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, United States; Veterans Affairs San Diego Healthcare System, La Jolla, CA, United States
| | - Kevin Cummins
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, United States
| | - Wesley K Thompson
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, United States
| | - Ty Brumback
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, United States
| | - Ian M Colrain
- Center for Health Sciences, SRI International, Menlo Park, CA, United States
| | - Fiona C Baker
- Center for Health Sciences, SRI International, Menlo Park, CA, United States
| | - Devin Prouty
- Center for Health Sciences, SRI International, Menlo Park, CA, United States
| | - Michael D De Bellis
- Department of Psychiatry & Behavioral Sciences, Duke University School of Medicine, Durham, NC, United States
| | - James T Voyvodic
- Department of Radiology, Duke University School of Medicine, Durham, NC, United States
| | - Duncan B Clark
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, United States
| | - Claudiu Schirda
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, United States
| | - Bonnie J Nagel
- Departments of Psychiatry and Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, United States
| | - Adolf Pfefferbaum
- Center for Health Sciences, SRI International, Menlo Park, CA, United States; Department of Psychiatry & Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, United States
| |
Collapse
|
297
|
Dotson VM, Szymkowicz SM, Sozda CN, Kirton JW, Green ML, O'Shea A, McLaren ME, Anton SD, Manini TM, Woods AJ. Age Differences in Prefrontal Surface Area and Thickness in Middle Aged to Older Adults. Front Aging Neurosci 2016; 7:250. [PMID: 26834623 PMCID: PMC4717301 DOI: 10.3389/fnagi.2015.00250] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 12/21/2015] [Indexed: 02/02/2023] Open
Abstract
Age is associated with reductions in surface area and cortical thickness, particularly in prefrontal regions. There is also evidence of greater thickness in some regions at older ages. Non-linear age effects in some studies suggest that age may continue to impact brain structure in later decades of life, but relatively few studies have examined the impact of age on brain structure within middle-aged to older adults. We investigated age differences in prefrontal surface area and cortical thickness in healthy adults between the ages of 51 and 81 years. Participants received a structural 3-Tesla magnetic resonance imaging scan. Based on a priori hypotheses, primary analyses focused on surface area and cortical thickness in the dorsolateral prefrontal cortex, anterior cingulate cortex, and orbitofrontal cortex. We also performed exploratory vertex-wise analyses of surface area and cortical thickness across the entire cortex. We found that older age was associated with smaller surface area in the dorsolateral prefrontal and orbitofrontal cortices but greater cortical thickness in the dorsolateral prefrontal and anterior cingulate cortices. Vertex-wise analyses revealed smaller surface area in primarily frontal regions at older ages, but no age effects were found for cortical thickness. Results suggest age is associated with reduced surface area but greater cortical thickness in prefrontal regions during later decades of life, and highlight the differential effects age has on regional surface area and cortical thickness.
Collapse
Affiliation(s)
- Vonetta M Dotson
- Department of Clinical and Health Psychology, University of FloridaGainesville, FL, USA; Department of Neuroscience, University of FloridaGainesville, FL, USA
| | - Sarah M Szymkowicz
- Department of Clinical and Health Psychology, University of Florida Gainesville, FL, USA
| | - Christopher N Sozda
- Department of Clinical and Health Psychology, University of Florida Gainesville, FL, USA
| | - Joshua W Kirton
- Department of Clinical and Health Psychology, University of Florida Gainesville, FL, USA
| | - Mackenzie L Green
- Department of Clinical and Health Psychology, University of Florida Gainesville, FL, USA
| | - Andrew O'Shea
- Department of Aging & Geriatric Research, University of FloridaGainesville, FL, USA; Center for Cognitive Aging and Memory, Institute on Aging, University of FloridaGainesville, FL, USA
| | - Molly E McLaren
- Department of Clinical and Health Psychology, University of Florida Gainesville, FL, USA
| | - Stephen D Anton
- Department of Aging & Geriatric Research, University of Florida Gainesville, FL, USA
| | - Todd M Manini
- Department of Aging & Geriatric Research, University of Florida Gainesville, FL, USA
| | - Adam J Woods
- Department of Neuroscience, University of FloridaGainesville, FL, USA; Department of Aging & Geriatric Research, University of FloridaGainesville, FL, USA; Center for Cognitive Aging and Memory, Institute on Aging, University of FloridaGainesville, FL, USA
| |
Collapse
|
298
|
Chiarello C, Vazquez D, Felton A, McDowell A. Structural asymmetry of the human cerebral cortex: Regional and between-subject variability of surface area, cortical thickness, and local gyrification. Neuropsychologia 2016; 93:365-379. [PMID: 26792368 DOI: 10.1016/j.neuropsychologia.2016.01.012] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Revised: 12/07/2015] [Accepted: 01/11/2016] [Indexed: 10/22/2022]
Abstract
Structural asymmetry varies across individuals, brain regions, and metrics of cortical organization. The current study investigated regional differences in asymmetry of cortical surface area, thickness, and local gyrification, and the extent of between-subject variability in these metrics, in a sample of healthy young adults (N=200). Between-subject variability in cortical structure may provide a means to assess the extent of biological flexibility or constraint of brain regions, and we explored the potential influence of this variability on the phenotypic expression of structural asymmetry. The findings demonstrate that structural asymmetries are nearly ubiquitous across the cortex, with differing regional organization for the three cortical metrics. This implies that there are multiple, only partially overlapping, maps of structural asymmetry. The results further indicate that the degree of asymmetry of a brain region can be predicted by the extent of the region's between-subject variability. These findings provide evidence that reduced biological constraint promotes the expression of strong structural asymmetry.
Collapse
|
299
|
Lyall AE, Savadjiev P, Shenton ME, Kubicki M. Insights into the Brain: Neuroimaging of Brain Development and Maturation. JOURNAL OF NEUROIMAGING IN PSYCHIATRY & NEUROLOGY 2016; 1:10-19. [PMID: 28620654 PMCID: PMC5469407 DOI: 10.17756/jnpn.2016-003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The study of how the human brain develops has always been a challenge and an interest to the scientific community. In recent years, new evidence has suggested that many neuropsychiatric disorders may originate from aberrations early in development. This discovery necessitates the application of methodologies that make possible the investigation of human brain development in vivo and across the lifespan. In this commentary, we present evidence that the advent of structural neuroimaging has specifically and significantly contributed critical information about the developmental trajectories of postnatal human brain development that would otherwise not have been possible. We believe that this is particularly relevant to present day research as it has become increasingly clear that growth trajectories within the brain might serve as an endophenotype for a number of factors, ranging from IQ to psychiatric illness. We highlight seminal early works that helped to jumpstart the field of developmental neuroimaging and which inspired incredible new advances in neuroimaging methodologies that are being developed and applied in the field today.
Collapse
Affiliation(s)
- Amanda E Lyall
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.,Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Peter Savadjiev
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.,Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Martha E Shenton
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.,Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.,VA Boston Healthcare System, Brockton, MA, USA
| | - Marek Kubicki
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.,Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.,Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
300
|
Abstract
Early visual areas have neuronal receptive fields that form a sampling mosaic of visual space, resulting in a series of retinotopic maps in which the same region of space is represented in multiple visual areas. It is not clear to what extent the development and maintenance of this retinotopic organization in humans depend on retinal waves and/or visual experience. We examined the corticocortical receptive field organization of resting-state BOLD data in normally sighted, early blind, and anophthalmic (in which both eyes fail to develop) individuals and found that resting-state correlations between V1 and V2/V3 were retinotopically organized for all subject groups. These results show that the gross retinotopic pattern of resting-state connectivity across V1-V3 requires neither retinal waves nor visual experience to develop and persist into adulthood. Significance statement: Evidence from resting-state BOLD data suggests that the connections between early visual areas develop and are maintained even in the absence of retinal waves and visual experience.
Collapse
|