251
|
Mammalian cell proliferation requires noncatalytic functions of O-GlcNAc transferase. Proc Natl Acad Sci U S A 2021; 118:2016778118. [PMID: 33419956 DOI: 10.1073/pnas.2016778118] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
O-GlcNAc transferase (OGT), found in the nucleus and cytoplasm of all mammalian cell types, is essential for cell proliferation. Why OGT is required for cell growth is not known. OGT performs two enzymatic reactions in the same active site. In one, it glycosylates thousands of different proteins, and in the other, it proteolytically cleaves another essential protein involved in gene expression. Deconvoluting OGT's myriad cellular roles has been challenging because genetic deletion is lethal; complementation methods have not been established. Here, we developed approaches to replace endogenous OGT with separation-of-function variants to investigate the importance of OGT's enzymatic activities for cell viability. Using genetic complementation, we found that OGT's glycosyltransferase function is required for cell growth but its protease function is dispensable. We next used complementation to construct a cell line with degron-tagged wild-type OGT. When OGT was degraded to very low levels, cells stopped proliferating but remained viable. Adding back catalytically inactive OGT rescued growth. Therefore, OGT has an essential noncatalytic role that is necessary for cell proliferation. By developing a method to quantify how OGT's catalytic and noncatalytic activities affect protein abundance, we found that OGT's noncatalytic functions often affect different proteins from its catalytic functions. Proteins involved in oxidative phosphorylation and the actin cytoskeleton were especially impacted by the noncatalytic functions. We conclude that OGT integrates both catalytic and noncatalytic functions to control cell physiology.
Collapse
|
252
|
Praissman JL, Wells L. Proteomics-Based Insights Into the SARS-CoV-2-Mediated COVID-19 Pandemic: A Review of the First Year of Research. Mol Cell Proteomics 2021; 20:100103. [PMID: 34089862 PMCID: PMC8176883 DOI: 10.1016/j.mcpro.2021.100103] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 05/24/2021] [Indexed: 02/08/2023] Open
Abstract
In late 2019, a virus subsequently named severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) emerged in China and led to a worldwide pandemic of the disease termed coronavirus disease 2019. The global health threat posed by this pandemic led to an extremely rapid and robust mobilization of the scientific and medical communities as evidenced by the publication of more than 10,000 peer-reviewed articles and thousands of preprints in the first year of the pandemic alone. With the publication of the initial genome sequence of SARS-CoV-2, the proteomics community immediately joined this effort publishing, to date, more than 100 peer-reviewed proteomics studies and submitting many more preprints to preprint servers. In this review, we focus on peer-reviewed articles published on the proteome, glycoproteome, and glycome of SARS-CoV-2. At a basic level, proteomic studies provide valuable information on quantitative aspects of viral infection course; information on the identities, sites, and microheterogeneity of post-translational modifications; and, information on protein-protein interactions. At a biological systems level, these studies elucidate host cell and tissue responses, characterize antibodies and other immune system factors in infection, suggest biomarkers that may be useful for diagnosis and disease-course monitoring, and help in the development or repurposing of potential therapeutics. Here, we summarize results from selected early studies to provide a perspective on the current rapidly evolving literature.
Collapse
Affiliation(s)
- Jeremy L Praissman
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA
| | - Lance Wells
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA.
| |
Collapse
|
253
|
Prasanna S, Prasannakumar MK, Mahesh HB, Babu GV, Kirnaymayee P, Puneeth ME, Narayan KS, Pramesh D. Diversity and biopotential of Bacillus velezensis strains A6 and P42 against rice blast and bacterial blight of pomegranate. Arch Microbiol 2021; 203:4189-4199. [PMID: 34076737 DOI: 10.1007/s00203-021-02400-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 05/19/2021] [Accepted: 05/21/2021] [Indexed: 10/21/2022]
Abstract
Bacillus velezensis is widely known for its inherent biosynthetic potential to produce a wide range of bio-macromolecules and secondary metabolites, including polyketides (PKs) and siderophores, as well as ribosomally and non-ribosomally synthesized peptides. In the present study, we aimed to investigate the bio-macromolecules, such as proteins and peptides of Bacillus velezensis strains, namely A6 and P42 by whole-cell sequencing and highlighted the potential application in controlling phytopathogens. The bioactive compounds, specifically secondary metabolites, were characterized by whole-cell protein profiling, Thin-Layer Chromatography, Infra-Red Spectroscopy, Nuclear Magnetic Resonance, Gas Chromatograph and Electro Spray Liquid Chromatography. Gas Chromatography analysis revealed that the A6 and P42 strains exert different functional groups of compounds, such as aromatic ring, aliphatic, alkene, ketone, amine groups and carboxylic acid. Whole-cell protein profiling of A6 and P42 strains of B. velezensis by nano-ESI LC-MS/MS revealed the presence of 945 and 5303 proteins, respectively. The in vitro evaluation of crude extracts (10%) of A6 and P42 significantly inhibited the rice pathogen, Magnaporthe oryzae (MG01), whereas the cell-free culture filtrate (75%) of strain P42 showed 58.97% inhibition. Similarly, in vitro evaluation of crude extract (10%) of P42 strain inhibited bacterial blight of pomegranate pathogen, Xanthomonas axonopodis pv. punicae, which eventually resulted in a higher inhibition zone of 3 cm, whereas the cell-free extract (75%) of the same strain significantly suppressed the growth of the pathogen with an inhibition zone of 1.48 cm. From the results obtained, the crude secondary metabolites and cell-free filtrates (containing bio-macromolecules) of the strains A6 and P42 of B. velezensis can be employed for controlling the bacterial and fungal pathogens of crop plants.
Collapse
Affiliation(s)
- Siddulakshmi Prasanna
- Department of Plant Pathology, University of Agricultural Sciences, GKVK, Bengaluru, 560065, India
| | - M K Prasannakumar
- Department of Plant Pathology, University of Agricultural Sciences, GKVK, Bengaluru, 560065, India.
| | - H B Mahesh
- Department of Plant Pathology, University of Agricultural Sciences, GKVK, Bengaluru, 560065, India
| | - Gopal Venkatesh Babu
- Centre for Advanced Studies in Botany, University of Madras, Guindy Campus, Chennai, 600025, India
| | - P Kirnaymayee
- Department of Cell Biology and Molecular Genetics, Sri Devaraj URS Academy of Higher Education and Research, Kolar, Karnataka, India
| | - M E Puneeth
- Department of Plant Pathology, University of Agricultural Sciences, GKVK, Bengaluru, 560065, India
| | - Karthik S Narayan
- Centre for Advanced Studies in Botany, University of Madras, Guindy Campus, Chennai, 600025, India
| | - D Pramesh
- Agricultural Research Station, Gangavati, University of Agricultural Sciences, Raichur, Karnataka, India
| |
Collapse
|
254
|
Heap RE, Marín-Rubio JL, Peltier J, Heunis T, Dannoura A, Moore A, Trost M. Proteomics characterisation of the L929 cell supernatant and its role in BMDM differentiation. Life Sci Alliance 2021; 4:e202000957. [PMID: 33853969 PMCID: PMC8091624 DOI: 10.26508/lsa.202000957] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 03/31/2021] [Accepted: 04/07/2021] [Indexed: 01/02/2023] Open
Abstract
BMDMs are a key model system to study macrophage biology in vitro. Commonly used methods to differentiate macrophages from BM are treatment with either recombinant M-CSF or the supernatant of L929 cells, which secrete M-CSF. However, little is known about the composition of L929 cell-conditioned media (LCCM) and how it affects the BMDM phenotype. Here, we used quantitative mass spectrometry to characterise the kinetics of protein secretion from L929 cells over a 2-wk period, identifying 2,193 proteins. Whereas M-CSF is very abundant in LCCM, we identified several other immune-regulatory proteins such as macrophage migration inhibitory factor (MIF), osteopontin, and chemokines such as Ccl2 and Ccl7 at surprisingly high abundance levels. We therefore further characterised the proteomes of BMDMs after differentiation with M-CSF, M-CSF + MIF, or LCCM, respectively. Interestingly, macrophages differentiated with LCCM induced a stronger anti-inflammatory M1 phenotype that those differentiated with M-CSF. This resource will be valuable to all researchers using LCCM for the differentiation of BMDMs.
Collapse
Affiliation(s)
- Rachel E Heap
- Laboratory for Biological Mass Spectrometry, Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - José Luis Marín-Rubio
- Laboratory for Biological Mass Spectrometry, Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Julien Peltier
- Laboratory for Biological Mass Spectrometry, Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Tiaan Heunis
- Laboratory for Biological Mass Spectrometry, Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Abeer Dannoura
- Laboratory for Biological Mass Spectrometry, Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Adam Moore
- Laboratory for Biological Mass Spectrometry, Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Matthias Trost
- Laboratory for Biological Mass Spectrometry, Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
| |
Collapse
|
255
|
Tarazona S, Arzalluz-Luque A, Conesa A. Undisclosed, unmet and neglected challenges in multi-omics studies. NATURE COMPUTATIONAL SCIENCE 2021; 1:395-402. [PMID: 38217236 DOI: 10.1038/s43588-021-00086-z] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 05/17/2021] [Indexed: 01/15/2024]
Abstract
Multi-omics approaches have become a reality in both large genomics projects and small laboratories. However, the multi-omics research community still faces a number of issues that have either not been sufficiently discussed or for which current solutions are still limited. In this Perspective, we elaborate on these limitations and suggest points of attention for future research. We finally discuss new opportunities and challenges brought to the field by the rapid development of single-cell high-throughput molecular technologies.
Collapse
Affiliation(s)
- Sonia Tarazona
- Department of Applied Statistics, Operations Research and Quality, Universitat Politècnica de València, Valencia, Spain
| | - Angeles Arzalluz-Luque
- Department of Applied Statistics, Operations Research and Quality, Universitat Politècnica de València, Valencia, Spain
| | - Ana Conesa
- Microbiology and Cell Science Department, Institute for Food and Agricultural Research, University of Florida, Gainesville, FL, USA.
- Genetics Institute, University of Florida, Gainesville, FL, USA.
- Institute for Integrative Systems Biology, Spanish National Research Council, Valencia, Spain.
| |
Collapse
|
256
|
Exploring the Metabolic Heterogeneity of Cancers: A Benchmark Study of Context-Specific Models. J Pers Med 2021; 11:jpm11060496. [PMID: 34205912 PMCID: PMC8229374 DOI: 10.3390/jpm11060496] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 05/25/2021] [Accepted: 05/28/2021] [Indexed: 12/18/2022] Open
Abstract
Metabolic heterogeneity is a hallmark of cancer and can distinguish a normal phenotype from a cancer phenotype. In the systems biology domain, context-specific models facilitate extracting physiologically relevant information from high-quality data. Here, to utilize the heterogeneity of metabolic patterns to discover biomarkers of all cancers, we benchmarked thousands of context-specific models using well-established algorithms for the integration of omics data into the generic human metabolic model Recon3D. By analyzing the active reactions capable of carrying flux and their magnitude through flux balance analysis, we proved that the metabolic pattern of each cancer is unique and could act as a cancer metabolic fingerprint. Subsequently, we searched for proper feature selection methods to cluster the flux states characterizing each cancer. We employed PCA-based dimensionality reduction and a random forest learning algorithm to reveal reactions containing the most relevant information in order to effectively identify the most influential fluxes. Conclusively, we discovered different pathways that are probably the main sources for metabolic heterogeneity in cancers. We designed the GEMbench website to interactively present the data, methods, and analysis results.
Collapse
|
257
|
LaMontagne MG, Tran PL, Benavidez A, Morano LD. Development of an inexpensive matrix-assisted laser desorption-time of flight mass spectrometry method for the identification of endophytes and rhizobacteria cultured from the microbiome associated with maize. PeerJ 2021; 9:e11359. [PMID: 34123583 PMCID: PMC8166240 DOI: 10.7717/peerj.11359] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 04/06/2021] [Indexed: 12/14/2022] Open
Abstract
Many endophytes and rhizobacteria associated with plants support the growth and health of their hosts. The vast majority of these potentially beneficial bacteria have yet to be characterized, in part because of the cost of identifying bacterial isolates. Matrix-assisted laser desorption-time of flight (MALDI-TOF) has enabled culturomic studies of host-associated microbiomes but analysis of mass spectra generated from plant-associated bacteria requires optimization. In this study, we aligned mass spectra generated from endophytes and rhizobacteria isolated from heritage and sweet varieties of Zea mays. Multiple iterations of alignment attempts identified a set of parameters that sorted 114 isolates into 60 coherent MALDI-TOF taxonomic units (MTUs). These MTUs corresponded to strains with practically identical (>99%) 16S rRNA gene sequences. Mass spectra were used to train a machine learning algorithm that classified 100% of the isolates into 60 MTUs. These MTUs provided >70% coverage of aerobic, heterotrophic bacteria readily cultured with nutrient rich media from the maize microbiome and allowed prediction of the total diversity recoverable with that particular cultivation method. Acidovorax sp., Pseudomonas sp. and Cellulosimicrobium sp. dominated the library generated from the rhizoplane. Relative to the sweet variety, the heritage variety c ontained a high number of MTUs. The ability to detect these differences in libraries, suggests a rapid and inexpensive method of describing the diversity of bacteria cultured from the endosphere and rhizosphere of maize.
Collapse
Affiliation(s)
- Michael G LaMontagne
- Department of Biology and Biotechnology, University of Houston, Clear Lake, Houston, Texas, United States
| | - Phi L Tran
- Department of Biology and Biotechnology, University of Houston, Clear Lake, Houston, Texas, United States
| | - Alexander Benavidez
- Department of Natural Sciences, University of Houston, Downtown, Houston, Texas, United States
| | - Lisa D Morano
- Department of Natural Sciences, University of Houston, Downtown, Houston, Texas, United States
| |
Collapse
|
258
|
Kapell S, Jakobsson ME. Large-scale identification of protein histidine methylation in human cells. NAR Genom Bioinform 2021; 3:lqab045. [PMID: 34046594 PMCID: PMC8140740 DOI: 10.1093/nargab/lqab045] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 04/21/2021] [Accepted: 04/30/2021] [Indexed: 12/14/2022] Open
Abstract
Methylation can occur on histidine, lysine and arginine residues in proteins and often serves a regulatory function. Histidine methylation has recently attracted attention through the discovery of the human histidine methyltransferase enzymes SETD3 and METTL9. There are currently no methods to enrich histidine methylated peptides for mass spectrometry analysis and large-scale studies of the modification are hitherto absent. Here, we query ultra-comprehensive human proteome datasets to generate a resource of histidine methylation sites. In HeLa cells alone, we report 299 histidine methylation sites as well as 895 lysine methylation events. We use this resource to explore the frequency, localization, targeted domains, protein types and sequence requirements of histidine methylation and benchmark all analyses to methylation events on lysine and arginine. Our results demonstrate that histidine methylation is widespread in human cells and tissues and that the modification is over-represented in regions of mono-spaced histidine repeats. We also report colocalization of the modification with functionally important phosphorylation sites and disease associated mutations to identify regions of likely regulatory and functional importance. Taken together, we here report a system level analysis of human histidine methylation and our results represent a comprehensive resource enabling targeted studies of individual histidine methylation events.
Collapse
Affiliation(s)
- Sebastian Kapell
- National Bioinformatics Infrastructure Sweden (NBIS), Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, 10691 Stockholm, Sweden
| | | |
Collapse
|
259
|
Pozo F, Martinez-Gomez L, Walsh TA, Rodriguez JM, Di Domenico T, Abascal F, Vazquez J, Tress ML. Assessing the functional relevance of splice isoforms. NAR Genom Bioinform 2021; 3:lqab044. [PMID: 34046593 PMCID: PMC8140736 DOI: 10.1093/nargab/lqab044] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 04/22/2021] [Accepted: 05/17/2021] [Indexed: 12/20/2022] Open
Abstract
Alternative splicing of messenger RNA can generate an array of mature transcripts, but it is not clear how many go on to produce functionally relevant protein isoforms. There is only limited evidence for alternative proteins in proteomics analyses and data from population genetic variation studies indicate that most alternative exons are evolving neutrally. Determining which transcripts produce biologically important isoforms is key to understanding isoform function and to interpreting the real impact of somatic mutations and germline variations. Here we have developed a method, TRIFID, to classify the functional importance of splice isoforms. TRIFID was trained on isoforms detected in large-scale proteomics analyses and distinguishes these biologically important splice isoforms with high confidence. Isoforms predicted as functionally important by the algorithm had measurable cross species conservation and significantly fewer broken functional domains. Additionally, exons that code for these functionally important protein isoforms are under purifying selection, while exons from low scoring transcripts largely appear to be evolving neutrally. TRIFID has been developed for the human genome, but it could in principle be applied to other well-annotated species. We believe that this method will generate valuable insights into the cellular importance of alternative splicing.
Collapse
Affiliation(s)
- Fernando Pozo
- Bioinformatics Unit, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Laura Martinez-Gomez
- Bioinformatics Unit, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Thomas A Walsh
- Bioinformatics Unit, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - José Manuel Rodriguez
- Cardiovascular Proteomics Laboratory, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Tomas Di Domenico
- Bioinformatics Unit, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Federico Abascal
- Somatic Evolution Group, Wellcome Sanger Institute, Hinxton CB10 1SA, UK
| | - Jesús Vazquez
- Cardiovascular Proteomics Laboratory, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Michael L Tress
- Bioinformatics Unit, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| |
Collapse
|
260
|
Wang D, Jiang A, Feng J, Li G, Guo D, Sajid M, Wu K, Zhang Q, Ponty Y, Will S, Liu F, Yu X, Li S, Liu Q, Yang XL, Guo M, Li X, Chen M, Shi ZL, Lan K, Chen Y, Zhou Y. The SARS-CoV-2 subgenome landscape and its novel regulatory features. Mol Cell 2021; 81:2135-2147.e5. [PMID: 33713597 PMCID: PMC7927579 DOI: 10.1016/j.molcel.2021.02.036] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 10/28/2020] [Accepted: 02/24/2021] [Indexed: 12/31/2022]
Abstract
Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is currently a global pandemic. CoVs are known to generate negative subgenomes (subgenomic RNAs [sgRNAs]) through transcription-regulating sequence (TRS)-dependent template switching, but the global dynamic landscapes of coronaviral subgenomes and regulatory rules remain unclear. Here, using next-generation sequencing (NGS) short-read and Nanopore long-read poly(A) RNA sequencing in two cell types at multiple time points after infection with SARS-CoV-2, we identified hundreds of template switches and constructed the dynamic landscapes of SARS-CoV-2 subgenomes. Interestingly, template switching could occur in a bidirectional manner, with diverse SARS-CoV-2 subgenomes generated from successive template-switching events. The majority of template switches result from RNA-RNA interactions, including seed and compensatory modes, with terminal pairing status as a key determinant. Two TRS-independent template switch modes are also responsible for subgenome biogenesis. Our findings reveal the subgenome landscape of SARS-CoV-2 and its regulatory features, providing a molecular basis for understanding subgenome biogenesis and developing novel anti-viral strategies.
Collapse
Affiliation(s)
- Dehe Wang
- State Key Laboratory of Virology, Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, China; Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, China
| | - Ao Jiang
- State Key Laboratory of Virology, Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, China
| | - Jiangpeng Feng
- State Key Laboratory of Virology, Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, China
| | - Guangnan Li
- State Key Laboratory of Virology, Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, China; Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, China
| | - Dong Guo
- State Key Laboratory of Virology, Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, China
| | - Muhammad Sajid
- State Key Laboratory of Virology, Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, China
| | - Kai Wu
- State Key Laboratory of Virology, Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, China; Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, China
| | - Qiuhan Zhang
- State Key Laboratory of Virology, Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, China
| | - Yann Ponty
- CNRS UMR 7161 LIX, Ecole Polytechnique, Institut Polytechnique de Paris, Paris, France
| | - Sebastian Will
- CNRS UMR 7161 LIX, Ecole Polytechnique, Institut Polytechnique de Paris, Paris, France
| | - Feiyan Liu
- State Key Laboratory of Virology, Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, China; Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, China
| | - Xinghai Yu
- State Key Laboratory of Virology, Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, China; Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, China
| | - Shaopeng Li
- State Key Laboratory of Virology, Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, China; Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, China
| | - Qianyun Liu
- State Key Laboratory of Virology, Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, China
| | - Xing-Lou Yang
- CAS Key Laboratory of Special Pathogens, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
| | - Ming Guo
- State Key Laboratory of Virology, Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, China
| | - Xingqiao Li
- State Key Laboratory of Virology, Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, China; Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, China
| | - Mingzhou Chen
- State Key Laboratory of Virology, Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, China
| | - Zheng-Li Shi
- CAS Key Laboratory of Special Pathogens, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
| | - Ke Lan
- State Key Laboratory of Virology, Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, China; Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, China.
| | - Yu Chen
- State Key Laboratory of Virology, Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, China.
| | - Yu Zhou
- State Key Laboratory of Virology, Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, China; Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, China.
| |
Collapse
|
261
|
Gama-Brambila RA, Chen J, Zhou J, Tascher G, Münch C, Cheng X. A PROTAC targets splicing factor 3B1. Cell Chem Biol 2021; 28:1616-1627.e8. [PMID: 34048672 DOI: 10.1016/j.chembiol.2021.04.018] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 03/14/2021] [Accepted: 04/23/2021] [Indexed: 02/06/2023]
Abstract
The proteolysis-targeting chimeras (PROTACs) are a new technology to degrade target proteins. However, their clinical application is limited currently by lack of chemical binders to target proteins. For instance, it is still unknown whether splicing factor 3B subunit 1 (SF3B1) is targetable by PROTACs. We recently identified a 2-aminothiazole derivative (herein O4I2) as a promoter in the generation of human pluripotent stem cells. In this work, proteomic analysis on the biotinylated O4I2 revealed that O4I2 targeted SF3B1 and positively regulated RNA splicing. Fusing thalidomide-the ligand of the cereblon ubiquitin ligase-to O4I2 led to a new PROTAC-O4I2, which selectively degraded SF3B1 and induced cellular apoptosis in a CRBN-dependent manner. In a Drosophila intestinal tumor model, PROTAC-O4I2 increased survival by interference with the maintenance and proliferation of stem cell. Thus, our finding demonstrates that SF3B1 is PROTACable by utilizing noninhibitory chemicals, which expands the list of PROTAC target proteins.
Collapse
Affiliation(s)
- Rodrigo A Gama-Brambila
- Buchmann Institute for Molecular Life Sciences, Pharmaceutical Chemistry, Goethe University Frankfurt am Main, Max-von-Laue-Strasse 15. R. 3.652, 60438 Frankfurt am Main, Germany
| | - Jie Chen
- Buchmann Institute for Molecular Life Sciences, Pharmaceutical Chemistry, Goethe University Frankfurt am Main, Max-von-Laue-Strasse 15. R. 3.652, 60438 Frankfurt am Main, Germany
| | - Jun Zhou
- Division Signaling and Functional Genomics, Department for Cell and Molecular Biology, Medical Faculty Mannheim, German Cancer Research Center and Heidelberg University, 69120 Heidelberg, Germany
| | - Georg Tascher
- Institute of Biochemistry II, Faculty of Medicine, Goethe University Frankfurt am Main, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany
| | - Christian Münch
- Institute of Biochemistry II, Faculty of Medicine, Goethe University Frankfurt am Main, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany
| | - Xinlai Cheng
- Buchmann Institute for Molecular Life Sciences, Pharmaceutical Chemistry, Goethe University Frankfurt am Main, Max-von-Laue-Strasse 15. R. 3.652, 60438 Frankfurt am Main, Germany.
| |
Collapse
|
262
|
Park HS, Papanastasi E, Blanchard G, Chiticariu E, Bachmann D, Plomann M, Morice-Picard F, Vabres P, Smahi A, Huber M, Pich C, Hohl D. ARP-T1-associated Bazex-Dupré-Christol syndrome is an inherited basal cell cancer with ciliary defects characteristic of ciliopathies. Commun Biol 2021; 4:544. [PMID: 33972689 PMCID: PMC8110579 DOI: 10.1038/s42003-021-02054-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 03/30/2021] [Indexed: 01/20/2023] Open
Abstract
Actin-Related Protein-Testis1 (ARP-T1)/ACTRT1 gene mutations cause the Bazex-Dupré-Christol Syndrome (BDCS) characterized by follicular atrophoderma, hypotrichosis, and basal cell cancer. Here, we report an ARP-T1 interactome (PXD016557) that includes proteins involved in ciliogenesis, endosomal recycling, and septin ring formation. In agreement, ARP-T1 localizes to the midbody during cytokinesis and the basal body of primary cilia in interphase. Tissue samples from ARP-T1-associated BDCS patients have reduced ciliary length. The severity of the shortened cilia significantly correlates with the ARP-T1 levels, which was further validated by ACTRT1 knockdown in culture cells. Thus, we propose that ARP-T1 participates in the regulation of cilia length and that ARP-T1-associated BDCS is a case of skin cancer with ciliopathy characteristics. Park et al. characterise the interactome, localisation and function of Actin-Related Protein-Testis1 protein (ARP-T1), encoded by the ACTRT1 gene, associated with inherited basal cell cancer. They find that ARP-T1 is localised to the primary cilia basal body in epidermal cells, interacts with the cilia machinery, and is needed for proper ciliogenesis.
Collapse
Affiliation(s)
- Hyun-Sook Park
- Department of Dermatology, CHUV-FBM UNIL, Hôpital de Beaumont, Lausanne, Switzerland
| | - Eirini Papanastasi
- Department of Dermatology, CHUV-FBM UNIL, Hôpital de Beaumont, Lausanne, Switzerland
| | - Gabriela Blanchard
- Department of Dermatology, CHUV-FBM UNIL, Hôpital de Beaumont, Lausanne, Switzerland
| | - Elena Chiticariu
- Department of Dermatology, CHUV-FBM UNIL, Hôpital de Beaumont, Lausanne, Switzerland
| | - Daniel Bachmann
- Department of Dermatology, CHUV-FBM UNIL, Hôpital de Beaumont, Lausanne, Switzerland
| | - Markus Plomann
- Center for Biochemistry, University of Cologne, Cologne, Germany
| | | | - Pierre Vabres
- Department of Dermatology, CHU, Hôpital du Bocage, Dijon, France
| | - Asma Smahi
- Paris Descartes University, Sorbonne Paris Cité, Paris, France.,IMAGINE Institute INSERM UMR 1163, Paris, France
| | - Marcel Huber
- Department of Dermatology, CHUV-FBM UNIL, Hôpital de Beaumont, Lausanne, Switzerland
| | - Christine Pich
- Department of Dermatology, CHUV-FBM UNIL, Hôpital de Beaumont, Lausanne, Switzerland
| | - Daniel Hohl
- Department of Dermatology, CHUV-FBM UNIL, Hôpital de Beaumont, Lausanne, Switzerland.
| |
Collapse
|
263
|
Chan QWT, Rogalski J, Moon KM, Foster LJ. The application of forensic proteomics to identify an unknown snake venom in a deceased toddler. Forensic Sci Int 2021; 323:110820. [PMID: 33984813 DOI: 10.1016/j.forsciint.2021.110820] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 04/23/2021] [Accepted: 04/26/2021] [Indexed: 10/21/2022]
Abstract
Proteomics is the global analysis of proteins in a sample, and its methodologies are commonly applied in life science research. Despite its wide applicability however, proteomics is rarely used as a tool in criminal investigations. Here we present a case where the technique provided key evidence in a case that involved the death of a two-year old girl. The defendant was known to keep exotic snakes, including several venomous species, which led the coroner to probe whether there could be snake venom in the blood of the deceased. One major challenge of the investigation was the overwhelming presence of several blood proteins, such as apolipoprotein and complement proteins, which hinders the detection of less abundant analytes. In a counter-acting strategy, a combination of immunodepletion and fractionation methods was used; the sample was then submitted to tandem mass spectrometry for peptide identification. Using this strategy, 15,000 peptides could be sequenced. However, the subsequent challenge was to differentiate between human and snake proteins, given the genetic similarities that are shared by the two vertebrate species. After a thorough bioinformatics search and manual inspection, we found that<1% of the sequenced peptides could be matched unequivocally to snake proteins, including a well-known venom component, phospholipase A2. This evidence, in part, led to a court-issued search warrant of the defendant's home, followed by his arrest and an eventual guilty plea with formal sentencing to 18 months in prison. The work outlined here is an example of how proteomics technology can help to expand the toolkit for molecular forensics.
Collapse
Affiliation(s)
- Queenie W T Chan
- Michael Smith Laboratories and Department of Biochemistry & Molecular Biology, University of British Columbia, 2185 E Mall, Vancouver, BC V6T 1Z4, Canada
| | - Jason Rogalski
- Michael Smith Laboratories and Department of Biochemistry & Molecular Biology, University of British Columbia, 2185 E Mall, Vancouver, BC V6T 1Z4, Canada
| | - Kyung-Mee Moon
- Michael Smith Laboratories and Department of Biochemistry & Molecular Biology, University of British Columbia, 2185 E Mall, Vancouver, BC V6T 1Z4, Canada
| | - Leonard J Foster
- Michael Smith Laboratories and Department of Biochemistry & Molecular Biology, University of British Columbia, 2185 E Mall, Vancouver, BC V6T 1Z4, Canada.
| |
Collapse
|
264
|
Rossouw SC, Bendou H, Blignaut RJ, Bell L, Rigby J, Christoffels A. Evaluation of Protein Purification Techniques and Effects of Storage Duration on LC-MS/MS Analysis of Archived FFPE Human CRC Tissues. Pathol Oncol Res 2021; 27:622855. [PMID: 34257588 PMCID: PMC8262168 DOI: 10.3389/pore.2021.622855] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 03/01/2021] [Indexed: 12/17/2022]
Abstract
To elucidate cancer pathogenesis and its mechanisms at the molecular level, the collecting and characterization of large individual patient tissue cohorts are required. Since most pathology institutes routinely preserve biopsy tissues by standardized methods of formalin fixation and paraffin embedment, these archived FFPE tissues are important collections of pathology material that include patient metadata, such as medical history and treatments. FFPE blocks can be stored under ambient conditions for decades, while retaining cellular morphology, due to modifications induced by formalin. However, the effect of long-term storage, at resource-limited institutions in developing countries, on extractable protein quantity/quality has not yet been investigated. In addition, the optimal sample preparation techniques required for accurate and reproducible results from label-free LC-MS/MS analysis across block ages remains unclear. This study investigated protein extraction efficiency of 1, 5, and 10-year old human colorectal carcinoma resection tissue and assessed three different gel-free protein purification methods for label-free LC-MS/MS analysis. A sample size of n = 17 patients per experimental group (with experiment power = 0.7 and α = 0.05, resulting in 70% confidence level) was selected. Data were evaluated in terms of protein concentration extracted, peptide/protein identifications, method reproducibility and efficiency, sample proteome integrity (due to storage time), as well as protein/peptide distribution according to biological processes, cellular components, and physicochemical properties. Data are available via ProteomeXchange with identifier PXD017198. The results indicate that the amount of protein extracted is significantly dependent on block age (p < 0.0001), with older blocks yielding less protein than newer blocks. Detergent removal plates were the most efficient and overall reproducible protein purification method with regard to number of peptide and protein identifications, followed by the MagReSyn® SP3/HILIC method (with on-bead enzymatic digestion), and lastly the acetone precipitation and formic acid resolubilization method. Overall, the results indicate that long-term storage of FFPE tissues (as measured by methionine oxidation) does not considerably interfere with retrospective proteomic analysis (p > 0.1). Block age mainly affects initial protein extraction yields and does not extensively impact on subsequent label-free LC-MS/MS analysis results.
Collapse
Affiliation(s)
- Sophia C. Rossouw
- South African Medical Research Council Bioinformatics Unit, South African National Bioinformatics Institute, University of the Western Cape, Bellville, South Africa
| | - Hocine Bendou
- South African Medical Research Council Bioinformatics Unit, South African National Bioinformatics Institute, University of the Western Cape, Bellville, South Africa
| | - Renette J. Blignaut
- Department of Statistics and Population Studies, University of the Western Cape, Bellville, South Africa
| | - Liam Bell
- Centre for Proteomic and Genomic Research, Observatory, Cape Town, South Africa
| | - Jonathan Rigby
- Division of Anatomical Pathology, Department of Pathology, Faculty of Health Sciences, University of Stellenbosch, National Health Laboratory Service, Tygerberg Hospital, Cape Town, South Africa
| | - Alan Christoffels
- South African Medical Research Council Bioinformatics Unit, South African National Bioinformatics Institute, University of the Western Cape, Bellville, South Africa
| |
Collapse
|
265
|
Tsai IJ, Su ECY, Tsai IL, Lin CY. Clinical Assay for the Early Detection of Colorectal Cancer Using Mass Spectrometric Wheat Germ Agglutinin Multiple Reaction Monitoring. Cancers (Basel) 2021; 13:cancers13092190. [PMID: 34063271 PMCID: PMC8124906 DOI: 10.3390/cancers13092190] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 04/26/2021] [Accepted: 04/29/2021] [Indexed: 12/17/2022] Open
Abstract
Simple Summary Colorectal cancer (CRC) is currently the third leading cause of cancer death worldwide. Early diagnosis of CRC is important for increasing the opportunity for treatment and receiving a good prognosis. The aim of our study was to develop a detection method that combined wheat germ agglutinin (WGA) chromatography with mass spectrometry (MS) for early detection of CRC. Further, machine learning algorithms and logistic regression were applied to combine multiple biomarkers we discovered. We validated in a population of 286 plasma samples the diagnostic performance of peptides corresponding to WGA-captured protein and its combination, which received a sensitivity of 84.5% and a specificity of 97.5% in the diagnoses of CRC. Proteomic biomarkers combined with algorithms can provide a powerful tool for discriminating patients with CRC and health controls (HCs). Measurements of WGA-captured PF4, ITIH4, and APOE with MS are then useful for early detection of CRC. Additionally, our study revealed the potential of applying lectin chromatography with MS for disease diagnosis. Abstract Colorectal cancer (CRC) is currently the third leading cause of cancer-related mortality in the world. U.S. Food and Drug Administration-approved circulating tumor markers, including carcinoembryonic antigen, carbohydrate antigen (CA) 19-9 and CA125 were used as prognostic biomarkers of CRC that attributed to low sensitivity in diagnosis of CRC. Therefore, our purpose is to develop a novel strategy for novel clinical biomarkers for early CRC diagnosis. We used mass spectrometry (MS) methods such as nanoLC-MS/MS, targeted LC-MS/MS, and stable isotope-labeled multiple reaction monitoring (MRM) MS coupled to test machine learning algorithms and logistic regression to analyze plasma samples from patients with early-stage CRC, late-stage CRC, and healthy controls (HCs). On the basis of our methods, 356 peptides were identified, 6 differential expressed peptides were verified, and finally three peptides corresponding wheat germ agglutinin (WGA)-captured proteins were semi-quantitated in 286 plasma samples (80 HCs and 206 CRCs). The novel peptide biomarkers combination of PF454–62, ITIH4429–438, and APOE198–207 achieved sensitivity 84.5%, specificity 97.5% and an AUC of 0.96 in CRC diagnosis. In conclusion, our study demonstrated that WGA-captured plasma PF454–62, ITIH4429–438, and APOE198–207 levels in combination may serve as highly effective early diagnostic biomarkers for patients with CRC.
Collapse
Affiliation(s)
- I-Jung Tsai
- Ph.D. Program in Medical Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan;
| | - Emily Chia-Yu Su
- Graduate Institute of Biomedical Informatics, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan;
- Clinical Big Data Research Center, Taipei Medical University Hospital, Taipei 11031, Taiwan
| | - I-Lin Tsai
- Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan;
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Ching-Yu Lin
- Ph.D. Program in Medical Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan;
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
- Correspondence: ; Tel.: +886-2-2736-1661 (ext. 3326)
| |
Collapse
|
266
|
van Gelder CAGH, Altelaar M. Neuroproteomics of the Synapse: Subcellular Quantification of Protein Networks and Signaling Dynamics. Mol Cell Proteomics 2021; 20:100087. [PMID: 33933679 PMCID: PMC8167277 DOI: 10.1016/j.mcpro.2021.100087] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 04/21/2021] [Accepted: 04/26/2021] [Indexed: 01/21/2023] Open
Abstract
One of the most fascinating features of the brain is its ability to adapt to its surroundings. Synaptic plasticity, the dynamic mechanism of functional and structural alterations in synaptic strength, is essential for brain functioning and underlies a variety of processes such as learning and memory. Although the molecular mechanisms underlying such rapid plasticity are not fully understood, a consensus exists on the important role of proteins. The study of these neuronal proteins using neuroproteomics has increased rapidly in the last decades, and advancements in MS-based proteomics have broadened our understanding of neuroplasticity exponentially. In this review, we discuss the trends in MS-based neuroproteomics for the study of synaptic protein-protein interactions and protein signaling dynamics, with a focus on sample types, different labeling and enrichment approaches, and data analysis and interpretation. We highlight studies from the last 5 years, with a focus on synapse structure, composition, functioning, or signaling and finally discuss some recent developments that could further advance the field of neuroproteomics.
Collapse
Affiliation(s)
- Charlotte A G H van Gelder
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands; Netherlands Proteomics Center, Utrecht, The Netherlands
| | - Maarten Altelaar
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands; Netherlands Proteomics Center, Utrecht, The Netherlands.
| |
Collapse
|
267
|
Chen SK, Wang YC, Lin TY, Wu HJ, Huang CJ, Ku WC. G-Protein-coupled Estrogen Receptor 1 Agonist G-1 Perturbs Sunitinib Resistance-related Phosphoproteomic Signatures in Renal Cell Carcinoma. Cancer Genomics Proteomics 2021; 18:207-220. [PMID: 33893075 DOI: 10.21873/cgp.20253] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 03/10/2021] [Accepted: 03/18/2021] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Metastatic renal cell carcinoma (RCC) often develops resistance to first-line targeted therapy such as sunitinib. G-Protein-coupled estrogen receptor 1 (GPER1) agonist G-1 was recently reported to regulate RCC physiology but the role of G-1 in RCC tumorigenesis and sunitinib resistance remains largely unknown. MATERIALS AND METHODS Parental and sunitinib-resistant 786-O cells were treated with GPER1 agonist G-1, and quantitative phosphoproteomics was performed. Bioinformatic analyses and validations, including immunoblotting, cell migration, and cell cycle distribution, were performed. RESULTS G-1 repressed cell proliferation and migration in both parental and sunitinib-resistant 786-O cells. Phosphoproteomic signatures, including phosphoinositide 3-kinase and protein kinase B (PI3K-AKT) as well as other pathways, were up-regulated in sunitinib-resistant cells but application of G-1 reversed this effect. Among phosphoprotein candidates, activating transcription factor 2 (ATF2) Thr69/71 phosphorylation was antagonistically regulated by sunitinib resistance and G-1. CONCLUSION Our results open up the possibility for managing RCC and sunitinib resistance by GPER1 agonist G-1 and its regulated pathways.
Collapse
Affiliation(s)
- Shao-Kuan Chen
- School of Medicine, College of Medicine, Fu Jen Catholic University, New Taipei City, Taiwan, R.O.C.,Department of Surgery, Sijhih Cathay General Hospital, New Taipei City, Taiwan, R.O.C
| | - Yen-Chieh Wang
- School of Medicine, College of Medicine, Fu Jen Catholic University, New Taipei City, Taiwan, R.O.C.,Division of Urology, Cathay General Hospital, Taipei City, Taiwan, R.O.C
| | - Tai-Yuan Lin
- School of Medicine, College of Medicine, Fu Jen Catholic University, New Taipei City, Taiwan, R.O.C
| | - Hsin-Jou Wu
- School of Medicine, College of Medicine, Fu Jen Catholic University, New Taipei City, Taiwan, R.O.C
| | - Chi-Jung Huang
- Department of Medical Research, Cathay General Hospital, Taipei City, Taiwan, R.O.C.,Department of Biochemistry, National Defense Medical Center, Taipei City, Taiwan, R.O.C
| | - Wei-Chi Ku
- School of Medicine, College of Medicine, Fu Jen Catholic University, New Taipei City, Taiwan, R.O.C.;
| |
Collapse
|
268
|
Bourdenx M, Martín-Segura A, Scrivo A, Rodriguez-Navarro JA, Kaushik S, Tasset I, Diaz A, Storm NJ, Xin Q, Juste YR, Stevenson E, Luengo E, Clement CC, Choi SJ, Krogan NJ, Mosharov EV, Santambrogio L, Grueninger F, Collin L, Swaney DL, Sulzer D, Gavathiotis E, Cuervo AM. Chaperone-mediated autophagy prevents collapse of the neuronal metastable proteome. Cell 2021; 184:2696-2714.e25. [PMID: 33891876 DOI: 10.1016/j.cell.2021.03.048] [Citation(s) in RCA: 209] [Impact Index Per Article: 52.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 01/03/2021] [Accepted: 03/23/2021] [Indexed: 12/18/2022]
Abstract
Components of the proteostasis network malfunction in aging, and reduced protein quality control in neurons has been proposed to promote neurodegeneration. Here, we investigate the role of chaperone-mediated autophagy (CMA), a selective autophagy shown to degrade neurodegeneration-related proteins, in neuronal proteostasis. Using mouse models with systemic and neuronal-specific CMA blockage, we demonstrate that loss of neuronal CMA leads to altered neuronal function, selective changes in the neuronal metastable proteome, and proteotoxicity, all reminiscent of brain aging. Imposing CMA loss on a mouse model of Alzheimer's disease (AD) has synergistic negative effects on the proteome at risk of aggregation, thus increasing neuronal disease vulnerability and accelerating disease progression. Conversely, chemical enhancement of CMA ameliorates pathology in two different AD experimental mouse models. We conclude that functional CMA is essential for neuronal proteostasis through the maintenance of a subset of the proteome with a higher risk of misfolding than the general proteome.
Collapse
Affiliation(s)
- Mathieu Bourdenx
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Institute for Aging Studies of the Department of Medicine of the Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| | - Adrián Martín-Segura
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Institute for Aging Studies of the Department of Medicine of the Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Aurora Scrivo
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Institute for Aging Studies of the Department of Medicine of the Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Jose A Rodriguez-Navarro
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Institute for Aging Studies of the Department of Medicine of the Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Susmita Kaushik
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Institute for Aging Studies of the Department of Medicine of the Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Inmaculada Tasset
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Institute for Aging Studies of the Department of Medicine of the Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Antonio Diaz
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Institute for Aging Studies of the Department of Medicine of the Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Nadia J Storm
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Institute for Aging Studies of the Department of Medicine of the Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Qisheng Xin
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Institute for Aging Studies of the Department of Medicine of the Albert Einstein College of Medicine, Bronx, NY 10461, USA; Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA
| | - Yves R Juste
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Institute for Aging Studies of the Department of Medicine of the Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Erica Stevenson
- Department of Cellular Molecular Pharmacology, School of Medicine and California Institute for Quantitative Biosciences, University of California, San Francisco, San Francisco, CA 94158, USA; David Gladstone Institutes, San Francisco, CA 94158, USA
| | - Enrique Luengo
- Department of Pharmacology, School of Medicine, Instituto Teófilo Hernando for Drug Discovery, Universidad Autonoma de Madrid, Madrid 28049, Spain
| | - Cristina C Clement
- Department of Radiation Oncology, Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY 10021, USA
| | - Se Joon Choi
- Department of Psychiatry, Columbia University Medical Center, New York State Psychiatric Institute, New York, NY 10461, USA
| | - Nevan J Krogan
- Department of Cellular Molecular Pharmacology, School of Medicine and California Institute for Quantitative Biosciences, University of California, San Francisco, San Francisco, CA 94158, USA; David Gladstone Institutes, San Francisco, CA 94158, USA
| | - Eugene V Mosharov
- Department of Psychiatry, Columbia University Medical Center, New York State Psychiatric Institute, New York, NY 10461, USA
| | - Laura Santambrogio
- Department of Radiation Oncology, Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY 10021, USA
| | - Fiona Grueninger
- Roche Pharma Research and Early Development (pRED), Neuro-Immunology, Roche Innovation Center Basel, CH-4070, Switzerland
| | - Ludovic Collin
- Roche Pharma Research and Early Development (pRED), Neuro-Immunology, Roche Innovation Center Basel, CH-4070, Switzerland
| | - Danielle L Swaney
- Department of Cellular Molecular Pharmacology, School of Medicine and California Institute for Quantitative Biosciences, University of California, San Francisco, San Francisco, CA 94158, USA; David Gladstone Institutes, San Francisco, CA 94158, USA
| | - David Sulzer
- Department of Psychiatry, Columbia University Medical Center, New York State Psychiatric Institute, New York, NY 10461, USA; Departments of Neurology and Pharmacology, Columbia University Medical Center, New York, NY 10032, USA
| | - Evripidis Gavathiotis
- Institute for Aging Studies of the Department of Medicine of the Albert Einstein College of Medicine, Bronx, NY 10461, USA; Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA; Department of Medicine, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| | - Ana Maria Cuervo
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Institute for Aging Studies of the Department of Medicine of the Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| |
Collapse
|
269
|
Breyer F, Härtlova A, Thurston T, Flynn HR, Chakravarty P, Janzen J, Peltier J, Heunis T, Snijders AP, Trost M, Ley SC. TPL-2 kinase induces phagosome acidification to promote macrophage killing of bacteria. EMBO J 2021; 40:e106188. [PMID: 33881780 PMCID: PMC8126920 DOI: 10.15252/embj.2020106188] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 03/11/2021] [Accepted: 03/15/2021] [Indexed: 02/05/2023] Open
Abstract
Tumour progression locus 2 (TPL‐2) kinase mediates Toll‐like receptor (TLR) activation of ERK1/2 and p38α MAP kinases in myeloid cells to modulate expression of key cytokines in innate immunity. This study identified a novel MAP kinase‐independent regulatory function for TPL‐2 in phagosome maturation, an essential process for killing of phagocytosed microbes. TPL‐2 catalytic activity was demonstrated to induce phagosome acidification and proteolysis in primary mouse and human macrophages following uptake of latex beads. Quantitative proteomics revealed that blocking TPL‐2 catalytic activity significantly altered the protein composition of phagosomes, particularly reducing the abundance of V‐ATPase proton pump subunits. Furthermore, TPL‐2 stimulated the phosphorylation of DMXL1, a regulator of V‐ATPases, to induce V‐ATPase assembly and phagosome acidification. Consistent with these results, TPL‐2 catalytic activity was required for phagosome acidification and the efficient killing of Staphylococcus aureus and Citrobacter rodentium following phagocytic uptake by macrophages. TPL‐2 therefore controls innate immune responses of macrophages to bacteria via V‐ATPase induction of phagosome maturation.
Collapse
Affiliation(s)
| | - Anetta Härtlova
- Biosciences Institute, Newcastle University, Newcastle-upon-Tyne, UK.,Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Teresa Thurston
- Department of Infectious Diseases, MRC Centre for Molecular Bacteriology & Infection, Imperial College London, London, UK
| | | | | | | | - Julien Peltier
- Biosciences Institute, Newcastle University, Newcastle-upon-Tyne, UK
| | - Tiaan Heunis
- Biosciences Institute, Newcastle University, Newcastle-upon-Tyne, UK
| | | | - Matthias Trost
- Biosciences Institute, Newcastle University, Newcastle-upon-Tyne, UK
| | - Steven C Ley
- The Francis Crick Institute, London, UK.,Department of Immunology & Inflammation, Centre for Molecular Immunology & Inflammation, Imperial College London, London, UK
| |
Collapse
|
270
|
Graw S, Chappell K, Washam CL, Gies A, Bird J, Robeson MS, Byrum SD. Multi-omics data integration considerations and study design for biological systems and disease. Mol Omics 2021; 17:170-185. [PMID: 33347526 PMCID: PMC8058243 DOI: 10.1039/d0mo00041h] [Citation(s) in RCA: 88] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
With the advancement of next-generation sequencing and mass spectrometry, there is a growing need for the ability to merge biological features in order to study a system as a whole. Features such as the transcriptome, methylome, proteome, histone post-translational modifications and the microbiome all influence the host response to various diseases and cancers. Each of these platforms have technological limitations due to sample preparation steps, amount of material needed for sequencing, and sequencing depth requirements. These features provide a snapshot of one level of regulation in a system. The obvious next step is to integrate this information and learn how genes, proteins, and/or epigenetic factors influence the phenotype of a disease in context of the system. In recent years, there has been a push for the development of data integration methods. Each method specifically integrates a subset of omics data using approaches such as conceptual integration, statistical integration, model-based integration, networks, and pathway data integration. In this review, we discuss considerations of the study design for each data feature, the limitations in gene and protein abundance and their rate of expression, the current data integration methods, and microbiome influences on gene and protein expression. The considerations discussed in this review should be regarded when developing new algorithms for integrating multi-omics data.
Collapse
Affiliation(s)
- Stefan Graw
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, 4301 West Markham Street (slot 516), Little Rock, AR 72205-7199, USA.
| | - Kevin Chappell
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, 4301 West Markham Street (slot 516), Little Rock, AR 72205-7199, USA.
| | - Charity L Washam
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, 4301 West Markham Street (slot 516), Little Rock, AR 72205-7199, USA. and Arkansas Children's Research Institute, 13 Children's Way, Little Rock, AR 72202, USA
| | - Allen Gies
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, 4301 West Markham Street (slot 516), Little Rock, AR 72205-7199, USA.
| | - Jordan Bird
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, 4301 West Markham Street (slot 516), Little Rock, AR 72205-7199, USA.
| | - Michael S Robeson
- Department of Biomedical Informatics, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA.
| | - Stephanie D Byrum
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, 4301 West Markham Street (slot 516), Little Rock, AR 72205-7199, USA. and Arkansas Children's Research Institute, 13 Children's Way, Little Rock, AR 72202, USA
| |
Collapse
|
271
|
Mills RJ, Humphrey SJ, Fortuna PRJ, Lor M, Foster SR, Quaife-Ryan GA, Johnston RL, Dumenil T, Bishop C, Rudraraju R, Rawle DJ, Le T, Zhao W, Lee L, Mackenzie-Kludas C, Mehdiabadi NR, Halliday C, Gilham D, Fu L, Nicholls SJ, Johansson J, Sweeney M, Wong NCW, Kulikowski E, Sokolowski KA, Tse BWC, Devilée L, Voges HK, Reynolds LT, Krumeich S, Mathieson E, Abu-Bonsrah D, Karavendzas K, Griffen B, Titmarsh D, Elliott DA, McMahon J, Suhrbier A, Subbarao K, Porrello ER, Smyth MJ, Engwerda CR, MacDonald KPA, Bald T, James DE, Hudson JE. BET inhibition blocks inflammation-induced cardiac dysfunction and SARS-CoV-2 infection. Cell 2021; 184:2167-2182.e22. [PMID: 33811809 PMCID: PMC7962543 DOI: 10.1016/j.cell.2021.03.026] [Citation(s) in RCA: 145] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 02/10/2021] [Accepted: 03/11/2021] [Indexed: 12/13/2022]
Abstract
Cardiac injury and dysfunction occur in COVID-19 patients and increase the risk of mortality. Causes are ill defined but could be through direct cardiac infection and/or inflammation-induced dysfunction. To identify mechanisms and cardio-protective drugs, we use a state-of-the-art pipeline combining human cardiac organoids with phosphoproteomics and single nuclei RNA sequencing. We identify an inflammatory "cytokine-storm", a cocktail of interferon gamma, interleukin 1β, and poly(I:C), induced diastolic dysfunction. Bromodomain-containing protein 4 is activated along with a viral response that is consistent in both human cardiac organoids (hCOs) and hearts of SARS-CoV-2-infected K18-hACE2 mice. Bromodomain and extraterminal family inhibitors (BETi) recover dysfunction in hCOs and completely prevent cardiac dysfunction and death in a mouse cytokine-storm model. Additionally, BETi decreases transcription of genes in the viral response, decreases ACE2 expression, and reduces SARS-CoV-2 infection of cardiomyocytes. Together, BETi, including the Food and Drug Administration (FDA) breakthrough designated drug, apabetalone, are promising candidates to prevent COVID-19 mediated cardiac damage.
Collapse
Affiliation(s)
- Richard J Mills
- QIMR Berghofer Medical Research Institute, Brisbane 4006, QLD, Australia
| | - Sean J Humphrey
- Charles Perkins Centre, School of Life and Environmental Science, The University of Sydney, Sydney 2006, NSW, Australia
| | | | - Mary Lor
- QIMR Berghofer Medical Research Institute, Brisbane 4006, QLD, Australia
| | - Simon R Foster
- QIMR Berghofer Medical Research Institute, Brisbane 4006, QLD, Australia
| | | | - Rebecca L Johnston
- QIMR Berghofer Medical Research Institute, Brisbane 4006, QLD, Australia
| | - Troy Dumenil
- QIMR Berghofer Medical Research Institute, Brisbane 4006, QLD, Australia
| | - Cameron Bishop
- QIMR Berghofer Medical Research Institute, Brisbane 4006, QLD, Australia
| | - Rajeev Rudraraju
- The WHO Collaborating Centre for Reference and Research on Influenza, The Peter Doherty Institute for Infection and Immunity, Melbourne 3000, VIC, Australia; Department of Microbiology and Immunology, The University of Melbourne, Melbourne 3052, VIC, Australia; The Peter Doherty Institute for Infection and Immunity, Melbourne 3000, VIC, Australia
| | - Daniel J Rawle
- QIMR Berghofer Medical Research Institute, Brisbane 4006, QLD, Australia
| | - Thuy Le
- QIMR Berghofer Medical Research Institute, Brisbane 4006, QLD, Australia
| | - Wei Zhao
- The Peter Doherty Institute for Infection and Immunity, Melbourne 3000, VIC, Australia
| | - Leo Lee
- The Peter Doherty Institute for Infection and Immunity, Melbourne 3000, VIC, Australia
| | | | - Neda R Mehdiabadi
- Murdoch Children's Research Institute, The Royal Children's Hospital, Melbourne 3052, VIC, Australia
| | | | - Dean Gilham
- Resverlogix Corp., Calgary T3E 6L1, AB, Canada
| | - Li Fu
- Resverlogix Corp., Calgary T3E 6L1, AB, Canada
| | - Stephen J Nicholls
- Victorian Heart Hospital, Monash University, Clayton 3168, VIC, Australia
| | | | | | | | | | - Kamil A Sokolowski
- Preclinical Imaging Facility, Translational Research Institute, Brisbane, QLD, Australia
| | - Brian W C Tse
- Preclinical Imaging Facility, Translational Research Institute, Brisbane, QLD, Australia
| | - Lynn Devilée
- QIMR Berghofer Medical Research Institute, Brisbane 4006, QLD, Australia
| | - Holly K Voges
- QIMR Berghofer Medical Research Institute, Brisbane 4006, QLD, Australia
| | - Liam T Reynolds
- QIMR Berghofer Medical Research Institute, Brisbane 4006, QLD, Australia
| | - Sophie Krumeich
- QIMR Berghofer Medical Research Institute, Brisbane 4006, QLD, Australia
| | - Ellen Mathieson
- QIMR Berghofer Medical Research Institute, Brisbane 4006, QLD, Australia
| | - Dad Abu-Bonsrah
- Murdoch Children's Research Institute, The Royal Children's Hospital, Melbourne 3052, VIC, Australia; Department of Paediatrics, The University of Melbourne, Melbourne 3052, VIC, Australia
| | - Kathy Karavendzas
- Murdoch Children's Research Institute, The Royal Children's Hospital, Melbourne 3052, VIC, Australia
| | - Brendan Griffen
- Dynomics Inc., San Mateo, CA 94401, USA; Dynomics Pty Ltd, Brisbane 4000, QLD, Australia
| | - Drew Titmarsh
- Dynomics Inc., San Mateo, CA 94401, USA; Dynomics Pty Ltd, Brisbane 4000, QLD, Australia
| | - David A Elliott
- Murdoch Children's Research Institute, The Royal Children's Hospital, Melbourne 3052, VIC, Australia
| | - James McMahon
- Department of Infectious Diseases, Alfred Hospital and Monash University, Melbourne 3004, VIC, Australia; Department of Infectious Diseases, Monash Medical Centre, Clayton 3168, VIC, Australia
| | - Andreas Suhrbier
- QIMR Berghofer Medical Research Institute, Brisbane 4006, QLD, Australia; GVN Center of Excellence, Australian Infectious Diseases Research Centre, Brisbane, QLD, Australia
| | - Kanta Subbarao
- The WHO Collaborating Centre for Reference and Research on Influenza, The Peter Doherty Institute for Infection and Immunity, Melbourne 3000, VIC, Australia; The Peter Doherty Institute for Infection and Immunity, Melbourne 3000, VIC, Australia
| | - Enzo R Porrello
- Murdoch Children's Research Institute, The Royal Children's Hospital, Melbourne 3052, VIC, Australia; Department of Physiology, School of Biomedical Sciences, The University of Melbourne, Melbourne 3052, VIC, Australia
| | - Mark J Smyth
- QIMR Berghofer Medical Research Institute, Brisbane 4006, QLD, Australia
| | | | | | - Tobias Bald
- QIMR Berghofer Medical Research Institute, Brisbane 4006, QLD, Australia; Institute of Experimental Oncology, University Hospital Bonn, Bonn 53127, Germany
| | - David E James
- Charles Perkins Centre, School of Life and Environmental Science, The University of Sydney, Sydney 2006, NSW, Australia; Faculty of Medicine and Health, The University of Sydney, Sydney 2006, NSW, Australia
| | - James E Hudson
- QIMR Berghofer Medical Research Institute, Brisbane 4006, QLD, Australia.
| |
Collapse
|
272
|
Mielke K, Wagner R, Mishra LS, Demir F, Perrar A, Huesgen PF, Funk C. Abundance of metalloprotease FtsH12 modulates chloroplast development in Arabidopsis thaliana. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:3455-3473. [PMID: 33216923 PMCID: PMC8042743 DOI: 10.1093/jxb/eraa550] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 11/19/2020] [Indexed: 05/11/2023]
Abstract
The ATP-dependent metalloprotease FtsH12 (filamentation temperature sensitive protein H 12) has been suggested to participate in a heteromeric motor complex, driving protein translocation into the chloroplast. FtsH12 was immuno-detected in proplastids, seedlings, leaves, and roots. Expression of Myc-tagged FtsH12 under its native promotor allowed identification of FtsHi1, 2, 4, and 5, and plastidic NAD-malate dehydrogenase, five of the six interaction partners in the suggested import motor complex. Arabidopsis thaliana mutant seedlings with reduced FTSH12 abundance exhibited pale cotyledons and small, deformed chloroplasts with altered thylakoid structure. Mature plants retained these chloroplast defects, resulting in slightly variegated leaves and lower chlorophyll content. Label-free proteomics revealed strong changes in the proteome composition of FTSH12 knock-down seedlings, reflecting impaired plastid development. The composition of the translocon on the inner chloroplast membrane (TIC) protein import complex was altered, with coordinated reduction of the FtsH12-FtsHi complex subunits and accumulation of the 1 MDa TIC complex subunits TIC56, TIC214 and TIC22-III. FTSH12 overexpressor lines showed no obvious phenotype, but still displayed distinct differences in their proteome. N-terminome analyses further demonstrated normal proteolytic maturation of plastid-imported proteins irrespective of FTSH12 abundance. Together, our data suggest that FtsH12 has highest impact during seedling development; its abundance alters the plastid import machinery and impairs chloroplast development.
Collapse
Affiliation(s)
- Kati Mielke
- Department of Chemistry, Umeå University, Umeå, Sweden
| | - Raik Wagner
- Department of Chemistry, Umeå University, Umeå, Sweden
| | | | - Fatih Demir
- Central Institute for Engineering, Electronics and Analytics, Jülich, Germany
| | - Andreas Perrar
- Central Institute for Engineering, Electronics and Analytics, Jülich, Germany
| | - Pitter F Huesgen
- Central Institute for Engineering, Electronics and Analytics, Jülich, Germany
- CECAD, Medical Faculty and University Hospital, University of Cologne, Cologne, Germany
- Institute of Biochemistry, University of Cologne, Cologne, Germany
| | | |
Collapse
|
273
|
Dülfer J, Yan H, Brodmerkel MN, Creutznacher R, Mallagaray A, Peters T, Caleman C, Marklund EG, Uetrecht C. Glycan-Induced Protein Dynamics in Human Norovirus P Dimers Depend on Virus Strain and Deamidation Status. Molecules 2021; 26:molecules26082125. [PMID: 33917179 PMCID: PMC8067865 DOI: 10.3390/molecules26082125] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 03/29/2021] [Accepted: 03/31/2021] [Indexed: 02/07/2023] Open
Abstract
Noroviruses are the major cause of viral gastroenteritis and re-emerge worldwide every year, with GII.4 currently being the most frequent human genotype. The norovirus capsid protein VP1 is essential for host immune response. The P domain mediates cell attachment via histo blood-group antigens (HBGAs) in a strain-dependent manner but how these glycan-interactions actually relate to cell entry remains unclear. Here, hydrogen/deuterium exchange mass spectrometry (HDX-MS) is used to investigate glycan-induced protein dynamics in P dimers of different strains, which exhibit high structural similarity but different prevalence in humans. While the almost identical strains GII.4 Saga and GII.4 MI001 share glycan-induced dynamics, the dynamics differ in the emerging GII.17 Kawasaki 308 and rare GII.10 Vietnam 026 strain. The structural aspects of glycan binding to fully deamidated GII.4 P dimers have been investigated before. However, considering the high specificity and half-life of N373D under physiological conditions, large fractions of partially deamidated virions with potentially altered dynamics in their P domains are likely to occur. Therefore, we also examined glycan binding to partially deamidated GII.4 Saga and GII.4 MI001 P dimers. Such mixed species exhibit increased exposure to solvent in the P dimer upon glycan binding as opposed to pure wildtype. Furthermore, deamidated P dimers display increased flexibility and a monomeric subpopulation. Our results indicate that glycan binding induces strain-dependent structural dynamics, which are further altered by N373 deamidation, and hence hint at a complex role of deamidation in modulating glycan-mediated cell attachment in GII.4 strains.
Collapse
Affiliation(s)
- Jasmin Dülfer
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, 20251 Hamburg, Germany; (J.D.); (H.Y.)
| | - Hao Yan
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, 20251 Hamburg, Germany; (J.D.); (H.Y.)
| | - Maxim N. Brodmerkel
- Department of Chemistry—BMC, Uppsala University, 75105 Uppsala, Sweden; (M.N.B.); (E.G.M.)
| | - Robert Creutznacher
- Institute of Chemistry and Metabolomics, University of Lübeck, 23562 Lübeck, Germany; (R.C.); (A.M.); (T.P.)
| | - Alvaro Mallagaray
- Institute of Chemistry and Metabolomics, University of Lübeck, 23562 Lübeck, Germany; (R.C.); (A.M.); (T.P.)
| | - Thomas Peters
- Institute of Chemistry and Metabolomics, University of Lübeck, 23562 Lübeck, Germany; (R.C.); (A.M.); (T.P.)
| | - Carl Caleman
- Department of Physics and Astronomy, Uppsala University, 75105 Uppsala, Sweden;
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron, 22607 Hamburg, Germany
| | - Erik G. Marklund
- Department of Chemistry—BMC, Uppsala University, 75105 Uppsala, Sweden; (M.N.B.); (E.G.M.)
| | - Charlotte Uetrecht
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, 20251 Hamburg, Germany; (J.D.); (H.Y.)
- European XFEL GmbH, 22869 Schenefeld, Germany
- Correspondence:
| |
Collapse
|
274
|
Schvarcz CA, Danics L, Krenács T, Viana P, Béres R, Vancsik T, Nagy Á, Gyenesei A, Kun J, Fonović M, Vidmar R, Benyó Z, Kaucsár T, Hamar P. Modulated Electro-Hyperthermia Induces a Prominent Local Stress Response and Growth Inhibition in Mouse Breast Cancer Isografts. Cancers (Basel) 2021; 13:1744. [PMID: 33917524 PMCID: PMC8038813 DOI: 10.3390/cancers13071744] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 03/20/2021] [Accepted: 03/24/2021] [Indexed: 02/07/2023] Open
Abstract
Modulated electro-hyperthermia (mEHT) is a selective cancer treatment used in human oncology complementing other therapies. During mEHT, a focused electromagnetic field (EMF) is generated within the tumor inducing cell death by thermal and nonthermal effects. Here we investigated molecular changes elicited by mEHT using multiplex methods in an aggressive, therapy-resistant triple negative breast cancer (TNBC) model. 4T1/4T07 isografts inoculated orthotopically into female BALB/c mice were treated with mEHT three to five times. mEHT induced the upregulation of the stress-related Hsp70 and cleaved caspase-3 proteins, resulting in effective inhibition of tumor growth and proliferation. Several acute stress response proteins, including protease inhibitors, coagulation and heat shock factors, and complement family members, were among the most upregulated treatment-related genes/proteins as revealed by next-generation sequencing (NGS), Nanostring and mass spectrometry (MS). pathway analysis demonstrated that several of these proteins belong to the response to stimulus pathway. Cell culture treatments confirmed that the source of these proteins was the tumor cells. The heat-shock factor inhibitor KRIBB11 reduced mEHT-induced complement factor 4 (C4) mRNA increase. In conclusion, mEHT monotherapy induced tumor growth inhibition and a complex stress response. Inhibition of this stress response is likely to enhance the effectiveness of mEHT and other cancer treatments.
Collapse
Affiliation(s)
- Csaba András Schvarcz
- Institute of Translational Medicine, Semmelweis University, 1094 Budapest, Hungary; (C.A.S.); (L.D.); (P.V.); (R.B.); (T.V.); (Z.B.); (T.K.)
| | - Lea Danics
- Institute of Translational Medicine, Semmelweis University, 1094 Budapest, Hungary; (C.A.S.); (L.D.); (P.V.); (R.B.); (T.V.); (Z.B.); (T.K.)
| | - Tibor Krenács
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, 1085 Budapest, Hungary;
| | - Pedro Viana
- Institute of Translational Medicine, Semmelweis University, 1094 Budapest, Hungary; (C.A.S.); (L.D.); (P.V.); (R.B.); (T.V.); (Z.B.); (T.K.)
| | - Rita Béres
- Institute of Translational Medicine, Semmelweis University, 1094 Budapest, Hungary; (C.A.S.); (L.D.); (P.V.); (R.B.); (T.V.); (Z.B.); (T.K.)
| | - Tamás Vancsik
- Institute of Translational Medicine, Semmelweis University, 1094 Budapest, Hungary; (C.A.S.); (L.D.); (P.V.); (R.B.); (T.V.); (Z.B.); (T.K.)
| | - Ákos Nagy
- Molecular Oncohematology Research Group, 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, 1085 Budapest, Hungary;
| | - Attila Gyenesei
- Bioinformatics Research Group, Genomics and Bioinformatics Core Facility, János Szentágothai Research Centre, University of Pécs, H-7624 Pécs, Hungary; (A.G.); (J.K.)
| | - József Kun
- Bioinformatics Research Group, Genomics and Bioinformatics Core Facility, János Szentágothai Research Centre, University of Pécs, H-7624 Pécs, Hungary; (A.G.); (J.K.)
- Department of Pharmacology and Pharmacotherapy, Medical School & Szentágothai Research Centre, Molecular Pharmacology Research Group, Centre for Neuroscience, University of Pécs, H-7624 Pécs, Hungary
| | - Marko Fonović
- Department of Biochemistry and Molecular and Structural Biology, Jožef Stefan Institute, 1000 Ljubljana, Slovenia; (M.F.); (R.V.)
| | - Robert Vidmar
- Department of Biochemistry and Molecular and Structural Biology, Jožef Stefan Institute, 1000 Ljubljana, Slovenia; (M.F.); (R.V.)
| | - Zoltán Benyó
- Institute of Translational Medicine, Semmelweis University, 1094 Budapest, Hungary; (C.A.S.); (L.D.); (P.V.); (R.B.); (T.V.); (Z.B.); (T.K.)
| | - Tamás Kaucsár
- Institute of Translational Medicine, Semmelweis University, 1094 Budapest, Hungary; (C.A.S.); (L.D.); (P.V.); (R.B.); (T.V.); (Z.B.); (T.K.)
| | - Péter Hamar
- Institute of Translational Medicine, Semmelweis University, 1094 Budapest, Hungary; (C.A.S.); (L.D.); (P.V.); (R.B.); (T.V.); (Z.B.); (T.K.)
| |
Collapse
|
275
|
Del Prete E, Facchiano A, Profumo A, Angelini C, Romano P. GeenaR: A Web Tool for Reproducible MALDI-TOF Analysis. Front Genet 2021; 12:635814. [PMID: 33854526 PMCID: PMC8039533 DOI: 10.3389/fgene.2021.635814] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 03/01/2021] [Indexed: 12/21/2022] Open
Abstract
Mass spectrometry is a widely applied technology with a strong impact in the proteomics field. MALDI-TOF is a combined technology in mass spectrometry with many applications in characterizing biological samples from different sources, such as the identification of cancer biomarkers, the detection of food frauds, the identification of doping substances in athletes’ fluids, and so on. The massive quantity of data, in the form of mass spectra, are often biased and altered by different sources of noise. Therefore, extracting the most relevant features that characterize the samples is often challenging and requires combining several computational methods. Here, we present GeenaR, a novel web tool that provides a complete workflow for pre-processing, analyzing, visualizing, and comparing MALDI-TOF mass spectra. GeenaR is user-friendly, provides many different functionalities for the analysis of the mass spectra, and supports reproducible research since it produces a human-readable report that contains function parameters, results, and the code used for processing the mass spectra. First, we illustrate the features available in GeenaR. Then, we describe its internal structure. Finally, we prove its capabilities in analyzing oncological datasets by presenting two case studies related to ovarian cancer and colorectal cancer. GeenaR is available at http://proteomics.hsanmartino.it/geenar/.
Collapse
Affiliation(s)
- Eugenio Del Prete
- Institute for Applied Mathematics, National Research Council, Naples, Italy
| | - Angelo Facchiano
- Institute of Food Sciences, National Research Council, Avellino, Italy
| | - Aldo Profumo
- Proteomica e Spettrometria di Massa, IRCCS Ospedale Policlinico San Martino IST, Genova, Italy
| | - Claudia Angelini
- Institute for Applied Mathematics, National Research Council, Naples, Italy
| | - Paolo Romano
- Proteomica e Spettrometria di Massa, IRCCS Ospedale Policlinico San Martino IST, Genova, Italy
| |
Collapse
|
276
|
Coagulation factor IX analysis in bioreactor cell culture supernatant predicts quality of the purified product. Commun Biol 2021; 4:390. [PMID: 33758337 PMCID: PMC7988164 DOI: 10.1038/s42003-021-01903-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 02/18/2021] [Indexed: 02/07/2023] Open
Abstract
Coagulation factor IX (FIX) is a complex post-translationally modified human serum glycoprotein and high-value biopharmaceutical. The quality of recombinant FIX (rFIX), especially complete γ-carboxylation, is critical for rFIX clinical efficacy. Bioreactor operating conditions can impact rFIX production and post-translational modifications (PTMs). With the goal of optimizing rFIX production, we developed a suite of Data Independent Acquisition Mass Spectrometry (DIA-MS) proteomics methods and used these to investigate rFIX yield, γ-carboxylation, other PTMs, and host cell proteins during bioreactor culture and after purification. We detail the dynamics of site-specific PTM occupancy and structure on rFIX during production, which correlated with the efficiency of purification and the quality of the purified product. We identified new PTMs in rFIX near the GLA domain which could impact rFIX GLA-dependent purification and function. Our workflows are applicable to other biologics and expression systems, and should aid in the optimization and quality control of upstream and downstream bioprocesses.
Collapse
|
277
|
Marx C, Schaarschmidt MU, Kirkpatrick J, Marx-Blümel L, Halilovic M, Westermann M, Hoelzer D, Meyer FB, Geng Y, Buder K, Schadwinkel HM, Siniuk K, Becker S, Thierbach R, Beck JF, Sonnemann J, Wang ZQ. Cooperative treatment effectiveness of ATR and HSP90 inhibition in Ewing's sarcoma cells. Cell Biosci 2021; 11:57. [PMID: 33743824 PMCID: PMC7981928 DOI: 10.1186/s13578-021-00571-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 03/12/2021] [Indexed: 11/10/2022] Open
Abstract
INTRODUCTION Ewing's sarcoma is an aggressive childhood malignancy whose outcome has not substantially improved over the last two decades. In this study, combination treatments of the HSP90 inhibitor AUY922 with either the ATR inhibitor VE821 or the ATM inhibitor KU55933 were investigated for their effectiveness in Ewing's sarcoma cells. METHODS Effects were determined in p53 wild-type and p53 null Ewing's sarcoma cell lines by flow cytometric analyses of cell death, mitochondrial depolarization and cell-cycle distribution as well as fluorescence and transmission electron microscopy. They were molecularly characterized by gene and protein expression profiling, and by quantitative whole proteome analysis. RESULTS AUY922 alone induced DNA damage, apoptosis and ER stress, while reducing the abundance of DNA repair proteins. The combination of AUY922 with VE821 led to strong apoptosis induction independent of the cellular p53 status, yet based on different molecular mechanisms. p53 wild-type cells activated pro-apoptotic gene transcription and underwent mitochondria-mediated apoptosis, while p53 null cells accumulated higher levels of DNA damage, ER stress and autophagy, eventually leading to apoptosis. Impaired PI3K/AKT/mTOR signaling further contributed to the antineoplastic combination effects of AUY922 and VE821. In contrast, the combination of AUY922 with KU55933 did not produce a cooperative effect. CONCLUSION Our study reveals that HSP90 and ATR inhibitor combination treatment may be an effective therapeutic approach for Ewing's sarcoma irrespective of the p53 status.
Collapse
Affiliation(s)
- Christian Marx
- Leibniz Institute On Aging - Fritz Lipmann Institute (FLI), Jena, Germany
| | - Marc U Schaarschmidt
- Department of Pediatric Hematology and Oncology, Children's Clinic, Jena University Hospital, Jena, Germany.,Research Center Lobeda, Jena University Hospital, Jena, Germany
| | - Joanna Kirkpatrick
- Leibniz Institute On Aging - Fritz Lipmann Institute (FLI), Jena, Germany.,Francis Crick Institute, London, UK
| | - Lisa Marx-Blümel
- Department of Pediatric Hematology and Oncology, Children's Clinic, Jena University Hospital, Jena, Germany.,Research Center Lobeda, Jena University Hospital, Jena, Germany
| | - Melisa Halilovic
- Leibniz Institute On Aging - Fritz Lipmann Institute (FLI), Jena, Germany
| | | | - Doerte Hoelzer
- Department of Human Nutrition, Institute of Nutrition, Friedrich Schiller University Jena, Jena, Germany.,Biopharmaceutical New Technologies (BioNTech) Corporation, Mainz, Germany
| | - Felix B Meyer
- Department of Human Nutrition, Institute of Nutrition, Friedrich Schiller University Jena, Jena, Germany
| | - Yibo Geng
- Leibniz Institute On Aging - Fritz Lipmann Institute (FLI), Jena, Germany.,Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Katrin Buder
- Leibniz Institute On Aging - Fritz Lipmann Institute (FLI), Jena, Germany
| | - Hauke M Schadwinkel
- Department of Pediatric Hematology and Oncology, Children's Clinic, Jena University Hospital, Jena, Germany.,Research Center Lobeda, Jena University Hospital, Jena, Germany
| | - Kanstantsin Siniuk
- Leibniz Institute On Aging - Fritz Lipmann Institute (FLI), Jena, Germany
| | - Sabine Becker
- Department of Pediatric Hematology and Oncology, Children's Clinic, Jena University Hospital, Jena, Germany.,Research Center Lobeda, Jena University Hospital, Jena, Germany
| | - René Thierbach
- Department of Human Nutrition, Institute of Nutrition, Friedrich Schiller University Jena, Jena, Germany
| | - James F Beck
- Department of Pediatric Hematology and Oncology, Children's Clinic, Jena University Hospital, Jena, Germany
| | - Jürgen Sonnemann
- Department of Pediatric Hematology and Oncology, Children's Clinic, Jena University Hospital, Jena, Germany. .,Research Center Lobeda, Jena University Hospital, Jena, Germany. .,Klinik Für Kinder- Und Jugendmedizin, Universitätsklinikum Jena, Am Klinikum 1, 07747, Jena, Germany.
| | - Zhao-Qi Wang
- Leibniz Institute On Aging - Fritz Lipmann Institute (FLI), Jena, Germany.,Faculty of Biology and Pharmacy, Friedrich Schiller University of Jena, Jena, Germany
| |
Collapse
|
278
|
Bo F, Shengdong L, Zongshuai W, Fang C, Zheng W, Chunhua G, Geng L, Ling'an K. Global analysis of lysine 2-hydroxyisobutyrylation in wheat root. Sci Rep 2021; 11:6327. [PMID: 33737719 PMCID: PMC7973580 DOI: 10.1038/s41598-021-85879-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 03/03/2021] [Indexed: 12/13/2022] Open
Abstract
Lysine 2-hydroxyisobutyrylation (Khib) is a novel naturally occurring post-translational modification. The system Khib identification at proteomics level has been performed in various species and tissues to characterize the role of Khib in biological activities. However, the study of Khib in plant species is relatively less. In the present study, the first plant root tissues lysine 2-hydroxyisobutyrylome analysis was performed in wheat with antibody immunoprecipitation affinity, high resolution mass spectrometry-based proteomics and bioinformatics analysis. In total, 6328 Khib sites in 2186 proteins were repeatedly identified in three replicates. These Khib proteins showed a wide subcellular location distribution. Function and pathways characterization of these Khib proteins indicated that many cellular functions and metabolism pathways were potentially affected by this modification. Protein and amino acid metabolism related process may be regulated by Khib, especially ribosome activities and proteins biosynthesis process. Carbohydrate metabolism and energy production related processes including glycolysis/gluconeogenesis, TCA cycle and oxidative phosphorylation pathways were also affected by Khib modification. Besides, root sulfur assimilation and transformation related enzymes exhibited Khib modification. Our work illustrated the potential regulation role of Khib in wheat root physiology and biology, which could be used as a useful reference for Khib study in plant root.
Collapse
Affiliation(s)
- Feng Bo
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Ji'nan, Shandong, 250100, People's Republic of China
| | - Li Shengdong
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Ji'nan, Shandong, 250100, People's Republic of China
| | - Wang Zongshuai
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Ji'nan, Shandong, 250100, People's Republic of China
| | - Cao Fang
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Ji'nan, Shandong, 250100, People's Republic of China
| | - Wang Zheng
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Ji'nan, Shandong, 250100, People's Republic of China
| | - Gao Chunhua
- Cotton Research Center, Shandong Academy of Agricultural Sciences, Ji'nan, Shandong, 250100, People's Republic of China
| | - Li Geng
- College of Agronomy, Shandong Agricultural University, Tai'an, Shandong, 271018, People's Republic of China.
| | - Kong Ling'an
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Ji'nan, Shandong, 250100, People's Republic of China.
| |
Collapse
|
279
|
Wilson JL, Nägele T, Linke M, Demel F, Fritsch SD, Mayr HK, Cai Z, Katholnig K, Sun X, Fragner L, Miller A, Haschemi A, Popa A, Bergthaler A, Hengstschläger M, Weichhart T, Weckwerth W. Inverse Data-Driven Modeling and Multiomics Analysis Reveals Phgdh as a Metabolic Checkpoint of Macrophage Polarization and Proliferation. Cell Rep 2021; 30:1542-1552.e7. [PMID: 32023468 PMCID: PMC7003064 DOI: 10.1016/j.celrep.2020.01.011] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2018] [Revised: 07/23/2019] [Accepted: 01/02/2020] [Indexed: 01/12/2023] Open
Abstract
Mechanistic or mammalian target of rapamycin complex 1 (mTORC1) is an important regulator of effector functions, proliferation, and cellular metabolism in macrophages. The biochemical processes that are controlled by mTORC1 are still being defined. Here, we demonstrate that integrative multiomics in conjunction with a data-driven inverse modeling approach, termed COVRECON, identifies a biochemical node that influences overall metabolic profiles and reactions of mTORC1-dependent macrophage metabolism. Using a combined approach of metabolomics, proteomics, mRNA expression analysis, and enzymatic activity measurements, we demonstrate that Tsc2, a negative regulator of mTORC1 signaling, critically influences the cellular activity of macrophages by regulating the enzyme phosphoglycerate dehydrogenase (Phgdh) in an mTORC1-dependent manner. More generally, while lipopolysaccharide (LPS)-stimulated macrophages repress Phgdh activity, IL-4-stimulated macrophages increase the activity of the enzyme required for the expression of key anti-inflammatory molecules and macrophage proliferation. Thus, we identify Phgdh as a metabolic checkpoint of M2 macrophages. Metabolomics and inverse modeling reveal a Tsc2/mTORC1-dependent checkpoint in macrophages M2 macrophages have high Phgdh activity Phgdh activity promotes M2 polarization Phgdh activity supports macrophage proliferation
Collapse
Affiliation(s)
- Jayne Louise Wilson
- Center of Pathobiochemistry and Genetics, Institute of Medical Genetics, Medical University of Vienna, Vienna 1090, Austria
| | - Thomas Nägele
- Department of Ecogenomics and Systems Biology, University of Vienna, Vienna 1090, Austria; Vienna Metabolomics Center (VIME), University of Vienna, Vienna 1090, Austria; Department Biology I, Ludwig Maximilians University Munich, 82152 Planegg-Martinsried, Germany
| | - Monika Linke
- Center of Pathobiochemistry and Genetics, Institute of Medical Genetics, Medical University of Vienna, Vienna 1090, Austria
| | - Florian Demel
- Center of Pathobiochemistry and Genetics, Institute of Medical Genetics, Medical University of Vienna, Vienna 1090, Austria
| | - Stephanie D Fritsch
- Center of Pathobiochemistry and Genetics, Institute of Medical Genetics, Medical University of Vienna, Vienna 1090, Austria
| | - Hannah Katharina Mayr
- Center of Pathobiochemistry and Genetics, Institute of Medical Genetics, Medical University of Vienna, Vienna 1090, Austria
| | - Zhengnan Cai
- Department of Ecogenomics and Systems Biology, University of Vienna, Vienna 1090, Austria
| | - Karl Katholnig
- Center of Pathobiochemistry and Genetics, Institute of Medical Genetics, Medical University of Vienna, Vienna 1090, Austria
| | - Xiaoliang Sun
- Vienna Metabolomics Center (VIME), University of Vienna, Vienna 1090, Austria
| | - Lena Fragner
- Department of Ecogenomics and Systems Biology, University of Vienna, Vienna 1090, Austria; Vienna Metabolomics Center (VIME), University of Vienna, Vienna 1090, Austria
| | - Anne Miller
- Department of Laboratory Medicine, Medical University of Vienna, Vienna 1090, Austria
| | - Arvand Haschemi
- Department of Laboratory Medicine, Medical University of Vienna, Vienna 1090, Austria
| | - Alexandra Popa
- CeMM Research Center for Molecular Medicine, Austrian Academy of Sciences, Vienna 1090, Austria
| | - Andreas Bergthaler
- CeMM Research Center for Molecular Medicine, Austrian Academy of Sciences, Vienna 1090, Austria
| | - Markus Hengstschläger
- Center of Pathobiochemistry and Genetics, Institute of Medical Genetics, Medical University of Vienna, Vienna 1090, Austria
| | - Thomas Weichhart
- Center of Pathobiochemistry and Genetics, Institute of Medical Genetics, Medical University of Vienna, Vienna 1090, Austria.
| | - Wolfram Weckwerth
- Department of Ecogenomics and Systems Biology, University of Vienna, Vienna 1090, Austria; Vienna Metabolomics Center (VIME), University of Vienna, Vienna 1090, Austria.
| |
Collapse
|
280
|
Castro CN, Rosenzwajg M, Carapito R, Shahrooei M, Konantz M, Khan A, Miao Z, Groß M, Tranchant T, Radosavljevic M, Paul N, Stemmelen T, Pitoiset F, Hirschler A, Nespola B, Molitor A, Rolli V, Pichot A, Faletti LE, Rinaldi B, Friant S, Mednikov M, Karauzum H, Aman MJ, Carapito C, Lengerke C, Ziaee V, Eyaid W, Ehl S, Alroqi F, Parvaneh N, Bahram S. NCKAP1L defects lead to a novel syndrome combining immunodeficiency, lymphoproliferation, and hyperinflammation. J Exp Med 2021; 217:152004. [PMID: 32766723 PMCID: PMC7526481 DOI: 10.1084/jem.20192275] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 06/22/2020] [Accepted: 07/21/2020] [Indexed: 12/29/2022] Open
Abstract
The Nck-associated protein 1–like (NCKAP1L) gene, alternatively called hematopoietic protein 1 (HEM-1), encodes a hematopoietic lineage–specific regulator of the actin cytoskeleton. Nckap1l-deficient mice have anomalies in lymphocyte development, phagocytosis, and neutrophil migration. Here we report, for the first time, NCKAP1L deficiency cases in humans. In two unrelated patients of Middle Eastern origin, recessive mutations in NCKAP1L abolishing protein expression led to immunodeficiency, lymphoproliferation, and hyperinflammation with features of hemophagocytic lymphohistiocytosis. Immunophenotyping showed an inverted CD4/CD8 ratio with a major shift of both CD4+ and CD8+ cells toward memory compartments, in line with combined RNA-seq/proteomics analyses revealing a T cell exhaustion signature. Consistent with the core function of NCKAP1L in the reorganization of the actin cytoskeleton, patients’ T cells displayed impaired early activation, immune synapse morphology, and leading edge formation. Moreover, knockdown of nckap1l in zebrafish led to defects in neutrophil migration. Hence, NCKAP1L mutations lead to broad immune dysregulation in humans, which could be classified within actinopathies.
Collapse
Affiliation(s)
- Carla Noemi Castro
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Michelle Rosenzwajg
- Assistance Publique-Hôpitaux de Paris, Pitié-Salpêtrière Hospital, Biotherapy (Centre d'Investigation Clinique intégré en Biothérapies & immunologie; CIC-BTi) and Inflammation-Immunopathology-Biotherapy Department (i2B), Paris, France.,Sorbonne Université, Institut National de la Santé et de la Recherche Médicale UMR_S 959, Immunology-Immunopathology-Immunotherapy (i3), Paris, France
| | - Raphael Carapito
- Laboratoire d'ImmunoRhumatologie Moléculaire, Plateforme GENOMAX, Institut National de la Santé et de la Recherche Médicale UMR_S 1109, Faculté de Médecine, Fédération Hospitalo-Universitaire OMICARE, Fédération de Médecine Translationnelle de Strasbourg, Laboratory of Excellence TRANSPLANTEX, Université de Strasbourg, Strasbourg, France.,Service d'Immunologie Biologique, Plateau Technique de Biologie, Pôle de Biologie, Nouvel Hôpital Civil, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Mohammad Shahrooei
- Specialized Immunology Laboratory of Dr. Shahrooei, Sina Medical Complex, Ahvaz, Iran.,Department of Microbiology and Immunology, University of Leuven, Leuven, Belgium
| | - Martina Konantz
- University of Basel and University Hospital Basel, Department of Biomedicine, Basel, Switzerland
| | - Amjad Khan
- Department of Pediatrics, King Abdulaziz Medical City, King Abdullah Specialized Children's Hospital, Riyadh, Saudi Arabia.,King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia.,King Abdullah International Medical Research Center, Riyadh, Saudi Arabia
| | - Zhichao Miao
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK.,Shanghai Fourth People's Hospital Affiliated to Tongji University School of Medicine, Shanghai, Hongkou, China
| | - Miriam Groß
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Thibaud Tranchant
- Laboratoire d'ImmunoRhumatologie Moléculaire, Plateforme GENOMAX, Institut National de la Santé et de la Recherche Médicale UMR_S 1109, Faculté de Médecine, Fédération Hospitalo-Universitaire OMICARE, Fédération de Médecine Translationnelle de Strasbourg, Laboratory of Excellence TRANSPLANTEX, Université de Strasbourg, Strasbourg, France
| | - Mirjana Radosavljevic
- Laboratoire d'ImmunoRhumatologie Moléculaire, Plateforme GENOMAX, Institut National de la Santé et de la Recherche Médicale UMR_S 1109, Faculté de Médecine, Fédération Hospitalo-Universitaire OMICARE, Fédération de Médecine Translationnelle de Strasbourg, Laboratory of Excellence TRANSPLANTEX, Université de Strasbourg, Strasbourg, France.,Service d'Immunologie Biologique, Plateau Technique de Biologie, Pôle de Biologie, Nouvel Hôpital Civil, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Nicodème Paul
- Laboratoire d'ImmunoRhumatologie Moléculaire, Plateforme GENOMAX, Institut National de la Santé et de la Recherche Médicale UMR_S 1109, Faculté de Médecine, Fédération Hospitalo-Universitaire OMICARE, Fédération de Médecine Translationnelle de Strasbourg, Laboratory of Excellence TRANSPLANTEX, Université de Strasbourg, Strasbourg, France
| | - Tristan Stemmelen
- Laboratoire d'ImmunoRhumatologie Moléculaire, Plateforme GENOMAX, Institut National de la Santé et de la Recherche Médicale UMR_S 1109, Faculté de Médecine, Fédération Hospitalo-Universitaire OMICARE, Fédération de Médecine Translationnelle de Strasbourg, Laboratory of Excellence TRANSPLANTEX, Université de Strasbourg, Strasbourg, France
| | - Fabien Pitoiset
- Assistance Publique-Hôpitaux de Paris, Pitié-Salpêtrière Hospital, Biotherapy (Centre d'Investigation Clinique intégré en Biothérapies & immunologie; CIC-BTi) and Inflammation-Immunopathology-Biotherapy Department (i2B), Paris, France.,Sorbonne Université, Institut National de la Santé et de la Recherche Médicale UMR_S 959, Immunology-Immunopathology-Immunotherapy (i3), Paris, France
| | - Aurélie Hirschler
- Laboratoire de Spectrométrie de Masse Bio-Organique, Institut Pluridisciplinaire Hubert Curien, UMR 7178, Université de Strasbourg, Centre National de la Recherche Scientifique, Strasbourg, France
| | - Benoit Nespola
- Service d'Immunologie Biologique, Plateau Technique de Biologie, Pôle de Biologie, Nouvel Hôpital Civil, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Anne Molitor
- Laboratoire d'ImmunoRhumatologie Moléculaire, Plateforme GENOMAX, Institut National de la Santé et de la Recherche Médicale UMR_S 1109, Faculté de Médecine, Fédération Hospitalo-Universitaire OMICARE, Fédération de Médecine Translationnelle de Strasbourg, Laboratory of Excellence TRANSPLANTEX, Université de Strasbourg, Strasbourg, France
| | - Véronique Rolli
- Laboratoire d'ImmunoRhumatologie Moléculaire, Plateforme GENOMAX, Institut National de la Santé et de la Recherche Médicale UMR_S 1109, Faculté de Médecine, Fédération Hospitalo-Universitaire OMICARE, Fédération de Médecine Translationnelle de Strasbourg, Laboratory of Excellence TRANSPLANTEX, Université de Strasbourg, Strasbourg, France.,Service d'Immunologie Biologique, Plateau Technique de Biologie, Pôle de Biologie, Nouvel Hôpital Civil, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Angélique Pichot
- Laboratoire d'ImmunoRhumatologie Moléculaire, Plateforme GENOMAX, Institut National de la Santé et de la Recherche Médicale UMR_S 1109, Faculté de Médecine, Fédération Hospitalo-Universitaire OMICARE, Fédération de Médecine Translationnelle de Strasbourg, Laboratory of Excellence TRANSPLANTEX, Université de Strasbourg, Strasbourg, France
| | - Laura Eva Faletti
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Department of Pediatrics and Adolescent Medicine, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Bruno Rinaldi
- Laboratoire de Génétique Moléculaire, Génomique, Microbiologie, UMR7156/Université de Strasbourg, Centre National de la Recherche Scientifique, Strasbourg, France
| | - Sylvie Friant
- Laboratoire de Génétique Moléculaire, Génomique, Microbiologie, UMR7156/Université de Strasbourg, Centre National de la Recherche Scientifique, Strasbourg, France
| | | | | | | | - Christine Carapito
- Laboratoire de Spectrométrie de Masse Bio-Organique, Institut Pluridisciplinaire Hubert Curien, UMR 7178, Université de Strasbourg, Centre National de la Recherche Scientifique, Strasbourg, France
| | - Claudia Lengerke
- University of Basel and University Hospital Basel, Department of Biomedicine, Basel, Switzerland
| | - Vahid Ziaee
- Pediatric Rheumatology Research Group, Rheumatology Research Center, Tehran University of Medical Sciences, Tehran, Iran.,Department of Pediatrics, Tehran University of Medical Sciences, Tehran, Iran
| | - Wafaa Eyaid
- Department of Pediatrics, King Abdulaziz Medical City, King Abdullah Specialized Children's Hospital, Riyadh, Saudi Arabia.,King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia.,King Abdullah International Medical Research Center, Riyadh, Saudi Arabia
| | - Stephan Ehl
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Department of Pediatrics and Adolescent Medicine, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Fayhan Alroqi
- Department of Pediatrics, King Abdulaziz Medical City, King Abdullah Specialized Children's Hospital, Riyadh, Saudi Arabia.,King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia.,King Abdullah International Medical Research Center, Riyadh, Saudi Arabia
| | - Nima Parvaneh
- Division of Allergy and Clinical Immunology, Department of Pediatrics, Tehran University of Medical Sciences, Tehran, Iran.,Research Center for Immunodeficiencies, Tehran University of Medical Sciences, Tehran, Iran
| | - Seiamak Bahram
- Laboratoire d'ImmunoRhumatologie Moléculaire, Plateforme GENOMAX, Institut National de la Santé et de la Recherche Médicale UMR_S 1109, Faculté de Médecine, Fédération Hospitalo-Universitaire OMICARE, Fédération de Médecine Translationnelle de Strasbourg, Laboratory of Excellence TRANSPLANTEX, Université de Strasbourg, Strasbourg, France.,Service d'Immunologie Biologique, Plateau Technique de Biologie, Pôle de Biologie, Nouvel Hôpital Civil, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| |
Collapse
|
281
|
Caufield JH, Sigdel D, Fu J, Choi H, Guevara-Gonzalez V, Wang D, Ping P. Cardiovascular Informatics: building a bridge to data harmony. Cardiovasc Res 2021; 118:732-745. [PMID: 33751044 DOI: 10.1093/cvr/cvab067] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 03/03/2021] [Indexed: 12/11/2022] Open
Abstract
The search for new strategies for better understanding cardiovascular disease is a constant one, spanning multitudinous types of observations and studies. A comprehensive characterization of each disease state and its biomolecular underpinnings relies upon insights gleaned from extensive information collection of various types of data. Researchers and clinicians in cardiovascular biomedicine repeatedly face questions regarding which types of data may best answer their questions, how to integrate information from multiple datasets of various types, and how to adapt emerging advances in machine learning and/or artificial intelligence to their needs in data processing. Frequently lauded as a field with great practical and translational potential, the interface between biomedical informatics and cardiovascular medicine is challenged with staggeringly massive datasets. Successful application of computational approaches to decode these complex and gigantic amounts of information becomes an essential step toward realizing the desired benefits. In this review, we examine recent efforts to adapt informatics strategies to cardiovascular biomedical research: automated information extraction and unification of multifaceted -omics data. We discuss how and why this interdisciplinary space of Cardiovascular Informatics is particularly relevant to and supportive of current experimental and clinical research. We describe in detail how open data sources and methods can drive discovery while demanding few initial resources, an advantage afforded by widespread availability of cloud computing-driven platforms. Subsequently, we provide examples of how interoperable computational systems facilitate exploration of data from multiple sources, including both consistently-formatted structured data and unstructured data. Taken together, these approaches for achieving data harmony enable molecular phenotyping of cardiovascular (CV) diseases and unification of cardiovascular knowledge.
Collapse
Affiliation(s)
- J Harry Caufield
- NHLBI Integrated Cardiovascular Data Science Training Program at University of California, Los Angeles (UCLA), Los Angeles, CA, 90095, USA.,Departments of Physiology at UCLA School of Medicine, Los Angeles, CA, 90095, USA
| | - Dibakar Sigdel
- NHLBI Integrated Cardiovascular Data Science Training Program at University of California, Los Angeles (UCLA), Los Angeles, CA, 90095, USA.,Departments of Physiology at UCLA School of Medicine, Los Angeles, CA, 90095, USA
| | - John Fu
- NHLBI Integrated Cardiovascular Data Science Training Program at University of California, Los Angeles (UCLA), Los Angeles, CA, 90095, USA
| | - Howard Choi
- NHLBI Integrated Cardiovascular Data Science Training Program at University of California, Los Angeles (UCLA), Los Angeles, CA, 90095, USA
| | - Vladimir Guevara-Gonzalez
- NHLBI Integrated Cardiovascular Data Science Training Program at University of California, Los Angeles (UCLA), Los Angeles, CA, 90095, USA
| | - Ding Wang
- Departments of Physiology at UCLA School of Medicine, Los Angeles, CA, 90095, USA
| | - Peipei Ping
- NHLBI Integrated Cardiovascular Data Science Training Program at University of California, Los Angeles (UCLA), Los Angeles, CA, 90095, USA.,Departments of Physiology at UCLA School of Medicine, Los Angeles, CA, 90095, USA.,Department of Medicine (Cardiology) at UCLA School of Medicine, Los Angeles, CA, 90095, USA.,Bioinformatics and Medical Informatics, Los Angeles, CA, 90095, USA.,Scalable Analytics Institute (ScAi) at UCLA School of Engineering, Los Angeles, CA, 90095, USA
| |
Collapse
|
282
|
Singhvi N, Singh P, Prakash O, Gupta V, Lal S, Bechthold A, Singh Y, Singh RK, Lal R. Differential mass spectrometry-based proteome analyses unveil major regulatory hubs in rifamycin B production in Amycolatopsis mediterranei. J Proteomics 2021; 239:104168. [PMID: 33662614 DOI: 10.1016/j.jprot.2021.104168] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 02/19/2021] [Accepted: 02/23/2021] [Indexed: 01/18/2023]
Abstract
Rifamycin B is produced by Amycolatopsis mediterranei S699 as a secondary metabolite. Its semi-synthetic derivatives have been used for curing tuberculosis caused by Mycobacterium tuberculosis. But the emergence of rifampicin-resistant strains required analogs of rifamycin B to be developed by rifamycin biosynthetic gene cluster manipulation. In 2014 genetic engineering of the rifamycin polyketide synthase gene cluster in S699 led to a mutant, A. mediterranei DCO#34, that produced 24-desmethylrifamycin B. Unfortunately, the productivity was strongly reduced to 20 mgL-1 as compared to 50 mgL-1 of rifamycin B. To understand the mechanisms leading to reduced productivity and rifamycin biosynthesis by A. mediterranei S699 during the early and late growth phase we performed a proteome study for wild type strain S699, mutant DCO#34, and the non-producer strain SCO2-2. Proteins identification and relative label-free quantification were performed by nLC-MS/MS. Data are available via ProteomeXchange with identifier PXD016416. Also, in-silico protein-protein interaction approach was used to determine the relationship between different structural and regulatory proteins involved in rifamycin biosynthesis. Our studies revealed RifA, RifK, RifL, Rif-Orf19 as the major regulatory hubs. Relative abundance expression values revealed that genes encoding RifC-RifI and the transporter RifP, down-regulated in DCO#34 and genes encoding RifR, RifZ, other regulatory proteins up-regulated. SIGNIFICANCE: The study is designed mainly to understand the underlying mechanisms of rifamycin biosynthesis in Amycolatopsis mediterranei. This resulted in the identification of regulatory hubs which play a crucial role in regulating secondary metabolism. It elucidates the complex mechanism of secondary metabolite biosynthesis and their conversion and extracellular transportation in temporal correlation with the different growth phases. The study also elucidated the mechanisms leading to reduced production of analog, 24-desmethylrifamycin B by the genetically modified strain DCO#34, derivatives of which have been found effective against rifampicin-resistant strains of Mycobacterium tuberculosis. These results can be useful while carrying out genetic manipulations to improve the strains of Amycolatopsis to produce better analogs/drugs and promote the eradication of TB. Thus, this study is contributing significantly to the growing knowledge in the field of the crucial drug, rifamycin B biosynthesis by an economically important bacterium Amycolatopsis mediterranei.
Collapse
Affiliation(s)
- Nirjara Singhvi
- Department of Zoology, University of Delhi, Delhi 110007, India
| | - Priya Singh
- Department of Zoology, University of Delhi, Delhi 110007, India
| | - Om Prakash
- National Centre for Microbial Resource-National Centre for Cell Sciences, Pune, Maharashtra 411007, India
| | - Vipin Gupta
- Department of Zoology, University of Delhi, Delhi 110007, India
| | - Sukanya Lal
- Department of Zoology, Ramjas College, University of Delhi, Delhi 110007, India
| | - Andreas Bechthold
- Pharmaceutical Biology and Biotechnology, Institute of Pharmaceutical Sciences, Albert-Ludwigs University, 79104 Freiburg, Germany
| | - Yogendra Singh
- Department of Zoology, University of Delhi, Delhi 110007, India
| | - Rakesh Kumar Singh
- Translational Science Laboratory, Florida State University, FL 32306, USA
| | - Rup Lal
- Department of Zoology, University of Delhi, Delhi 110007, India.
| |
Collapse
|
283
|
Isolation and characterization of extracellular vesicle subpopulations from tissues. Nat Protoc 2021; 16:1548-1580. [PMID: 33495626 DOI: 10.1038/s41596-020-00466-1] [Citation(s) in RCA: 274] [Impact Index Per Article: 68.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 11/16/2020] [Indexed: 02/07/2023]
Abstract
Extracellular vesicles (EVs) are lipid bilayered membrane structures released by all cells. Most EV studies have been performed by using cell lines or body fluids, but the number of studies on tissue-derived EVs is still limited. Here, we present a protocol to isolate up to six different EV subpopulations directly from tissues. The approach includes enzymatic treatment of dissociated tissues followed by differential ultracentrifugation and density separation. The isolated EV subpopulations are characterized by electron microscopy and RNA profiling. In addition, their protein cargo can be determined with mass spectrometry, western blot and ExoView. Tissue-EV isolation can be performed in 22 h, but a simplified version can be completed in 8 h. Most experiments with the protocol have used human melanoma metastases, but the protocol can be applied to other cancer and non-cancer tissues. The procedure can be adopted by researchers experienced with cell culture and EV isolation.
Collapse
|
284
|
Figueiredo J, Cavaco AR, Guerra-Guimarães L, Leclercq C, Renaut J, Cunha J, Eiras-Dias J, Cordeiro C, Matos AR, Sousa Silva M, Figueiredo A. An apoplastic fluid extraction method for the characterization of grapevine leaves proteome and metabolome from a single sample. PHYSIOLOGIA PLANTARUM 2021; 171:343-357. [PMID: 32860657 DOI: 10.1111/ppl.13198] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 08/19/2020] [Accepted: 08/20/2020] [Indexed: 05/23/2023]
Abstract
The analysis of complex biological systems keeps challenging researchers. The main goal of systems biology is to decipher interactions within cells, by integrating datasets from large scale analytical approaches including transcriptomics, proteomics and metabolomics and more specialized 'OMICS' such as epigenomics and lipidomics. Studying different cellular compartments allows a broader understanding of cell dynamics. Plant apoplast, the cellular compartment external to the plasma membrane including the cell wall, is particularly demanding to analyze. Despite our knowledge on apoplast involvement on several processes from cell growth to stress responses, its dynamics is still poorly known due to the lack of efficient extraction processes adequate to each plant system. Analyzing woody plants such as grapevine raises even more challenges. Grapevine is among the most important fruit crops worldwide and a wider characterization of its apoplast is essential for a deeper understanding of its physiology and cellular mechanisms. Here, we describe, for the first time, a vacuum-infiltration-centrifugation method that allows a simultaneous extraction of grapevine apoplastic proteins and metabolites from leaves on a single sample, compatible with high-throughput mass spectrometry analyses. The extracted apoplast from two grapevine cultivars, Vitis vinifera cv 'Trincadeira' and 'Regent', was directly used for proteomics and metabolomics analysis. The proteome was analyzed by nanoLC-MS/MS and more than 700 common proteins were identified, with highly diverse biological functions. The metabolome profile through FT-ICR-MS allowed the identification of 514 unique putative compounds revealing a broad spectrum of molecular classes.
Collapse
Affiliation(s)
- Joana Figueiredo
- University of Lisboa, Faculty of Sciences, BioISI - Biosystems & Integrative Sciences Institute, Lisbon, Portugal
- Laboratório de FTICR e Espectrometria de Massa Estrutural, Faculdade de Ciências da Universidade de Lisboa, Lisbon, Portugal
- Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade de Lisboa, Lisbon, Portugal
| | - Ana Rita Cavaco
- University of Lisboa, Faculty of Sciences, BioISI - Biosystems & Integrative Sciences Institute, Lisbon, Portugal
| | - Leonor Guerra-Guimarães
- Centro de Investigação das Ferrugens do Cafeeiro, Instituto Superior de Agronomia, Universidade de Lisboa, Oeiras, Portugal
- Linking Landscape, Environment, Agriculture and Food, Instituto Superior de Agronomia, Universidade de Lisboa, Lisbon, Portugal
| | - Céline Leclercq
- Luxembourg Institute of Science and Technology, Belvaux, Luxembourg
| | - Jenny Renaut
- Luxembourg Institute of Science and Technology, Belvaux, Luxembourg
| | - Jorge Cunha
- Instituto Nacional de Investigação Agrária e Veterinária - Estação Vitivinícola Nacional, Dois Portos, Portugal
| | - José Eiras-Dias
- Instituto Nacional de Investigação Agrária e Veterinária - Estação Vitivinícola Nacional, Dois Portos, Portugal
| | - Carlos Cordeiro
- Laboratório de FTICR e Espectrometria de Massa Estrutural, Faculdade de Ciências da Universidade de Lisboa, Lisbon, Portugal
- Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade de Lisboa, Lisbon, Portugal
| | - Ana Rita Matos
- University of Lisboa, Faculty of Sciences, BioISI - Biosystems & Integrative Sciences Institute, Lisbon, Portugal
| | - Marta Sousa Silva
- Laboratório de FTICR e Espectrometria de Massa Estrutural, Faculdade de Ciências da Universidade de Lisboa, Lisbon, Portugal
- Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade de Lisboa, Lisbon, Portugal
| | - Andreia Figueiredo
- University of Lisboa, Faculty of Sciences, BioISI - Biosystems & Integrative Sciences Institute, Lisbon, Portugal
| |
Collapse
|
285
|
Paakinaho V, Lempiäinen JK, Sigismondo G, Niskanen EA, Malinen M, Jääskeläinen T, Varjosalo M, Krijgsveld J, Palvimo J. SUMOylation regulates the protein network and chromatin accessibility at glucocorticoid receptor-binding sites. Nucleic Acids Res 2021; 49:1951-1971. [PMID: 33524141 PMCID: PMC7913686 DOI: 10.1093/nar/gkab032] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 01/07/2021] [Accepted: 01/12/2021] [Indexed: 12/13/2022] Open
Abstract
Glucocorticoid receptor (GR) is an essential transcription factor (TF), controlling metabolism, development and immune responses. SUMOylation regulates chromatin occupancy and target gene expression of GR in a locus-selective manner, but the mechanism of regulation has remained elusive. Here, we identify the protein network around chromatin-bound GR by using selective isolation of chromatin-associated proteins and show that the network is affected by receptor SUMOylation, with several nuclear receptor coregulators and chromatin modifiers preferring interaction with SUMOylation-deficient GR and proteins implicated in transcriptional repression preferring interaction with SUMOylation-competent GR. This difference is reflected in our chromatin binding, chromatin accessibility and gene expression data, showing that the SUMOylation-deficient GR is more potent in binding and opening chromatin at glucocorticoid-regulated enhancers and inducing expression of target loci. Blockage of SUMOylation by a SUMO-activating enzyme inhibitor (ML-792) phenocopied to a large extent the consequences of GR SUMOylation deficiency on chromatin binding and target gene expression. Our results thus show that SUMOylation modulates the specificity of GR by regulating its chromatin protein network and accessibility at GR-bound enhancers. We speculate that many other SUMOylated TFs utilize a similar regulatory mechanism.
Collapse
Affiliation(s)
- Ville Paakinaho
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| | | | | | - Einari A Niskanen
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| | - Marjo Malinen
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
- Department of Environmental and Biological Sciences, University of Eastern Finland, Joensuu, Finland
| | - Tiina Jääskeläinen
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| | - Markku Varjosalo
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Jeroen Krijgsveld
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- Heidelberg University, Medical Faculty, Heidelberg, Germany
| | - Jorma J Palvimo
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| |
Collapse
|
286
|
Robichaud S, Fairman G, Vijithakumar V, Mak E, Cook DP, Pelletier AR, Huard S, Vanderhyden BC, Figeys D, Lavallée-Adam M, Baetz K, Ouimet M. Identification of novel lipid droplet factors that regulate lipophagy and cholesterol efflux in macrophage foam cells. Autophagy 2021; 17:3671-3689. [PMID: 33590792 PMCID: PMC8632324 DOI: 10.1080/15548627.2021.1886839] [Citation(s) in RCA: 114] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Macrophage autophagy is a highly anti-atherogenic process that promotes the catabolism of cytosolic lipid droplets (LDs) to maintain cellular lipid homeostasis. Selective autophagy relies on tags such as ubiquitin and a set of selectivity factors including selective autophagy receptors (SARs) to label specific cargo for degradation. Originally described in yeast cells, "lipophagy" refers to the degradation of LDs by autophagy. Yet, how LDs are targeted for autophagy is poorly defined. Here, we employed mass spectrometry to identify lipophagy factors within the macrophage foam cell LD proteome. In addition to structural proteins (e.g., PLIN2), metabolic enzymes (e.g., ACSL) and neutral lipases (e.g., PNPLA2), we found the association of proteins related to the ubiquitination machinery (e.g., AUP1) and autophagy (e.g., HMGB, YWHA/14-3-3 proteins). The functional role of candidate lipophagy factors (a total of 91) was tested using a custom siRNA array combined with high-content cholesterol efflux assays. We observed that knocking down several of these genes, including Hmgb1, Hmgb2, Hspa5, and Scarb2, significantly reduced cholesterol efflux, and SARs SQSTM1/p62, NBR1 and OPTN localized to LDs, suggesting a role for these in lipophagy. Using yeast lipophagy assays, we established a genetic requirement for several candidate lipophagy factors in lipophagy, including HSPA5, UBE2G2 and AUP1. Our study is the first to systematically identify several LD-associated proteins of the lipophagy machinery, a finding with important biological and therapeutic implications. Targeting these to selectively enhance lipophagy to promote cholesterol efflux in foam cells may represent a novel strategy to treat atherosclerosis.Abbreviations:ADGRL3: adhesion G protein-coupled receptor L3; agLDL: aggregated low density lipoprotein; AMPK: AMP-activated protein kinase; APOA1: apolipoprotein A1; ATG: autophagy related; AUP1: AUP1 lipid droplet regulating VLDL assembly factor; BMDM: bone-marrow derived macrophages; BNIP3L: BCL2/adenovirus E1B interacting protein 3-like; BSA: bovine serum albumin; CALCOCO2: calcium binding and coiled-coil domain 2; CIRBP: cold inducible RNA binding protein; COLGALT1: collagen beta(1-O)galactosyltransferase 1; CORO1A: coronin 1A; DMA: deletion mutant array; Faa4: long chain fatty acyl-CoA synthetase; FBS: fetal bovine serum; FUS: fused in sarcoma; HMGB1: high mobility group box 1; HMGB2: high mobility group box 2: HSP90AA1: heat shock protein 90: alpha (cytosolic): class A member 1; HSPA5: heat shock protein family A (Hsp70) member 5; HSPA8: heat shock protein 8; HSPB1: heat shock protein 1; HSPH1: heat shock 105kDa/110kDa protein 1; LDAH: lipid droplet associated hydrolase; LIPA: lysosomal acid lipase A; LIR: LC3-interacting region; MACROH2A1: macroH2A.1 histone; MAP1LC3: microtubule-associated protein 1 light chain 3; MCOLN1: mucolipin 1; NBR1: NBR1, autophagy cargo receptor; NPC2: NPC intracellular cholesterol transporter 2; OPTN: optineurin; P/S: penicillin-streptomycin; PLIN2: perilipin 2; PLIN3: perilipin 3; PNPLA2: patatin like phospholipase domain containing 2; RAB: RAB, member RAS oncogene family; RBBP7, retinoblastoma binding protein 7, chromatin remodeling factor; SAR: selective autophagy receptor; SCARB2: scavenger receptor class B, member 2; SGA: synthetic genetic array; SQSTM1: sequestosome 1; TAX1BP1: Tax1 (human T cell leukemia virus type I) binding protein 1; TFEB: transcription factor EB; TOLLIP: toll interacting protein; UBE2G2: ubiquitin conjugating enzyme E2 G2; UVRAG: UV radiation resistance associated gene; VDAC2: voltage dependent anion channel 2; VIM: vimentin.
Collapse
Affiliation(s)
- Sabrina Robichaud
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada.,University of Ottawa Heart Institute, Ottawa, ON, Canada
| | - Garrett Fairman
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada.,University of Ottawa Heart Institute, Ottawa, ON, Canada
| | - Viyashini Vijithakumar
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada.,University of Ottawa Heart Institute, Ottawa, ON, Canada
| | - Esther Mak
- University of Ottawa Heart Institute, Ottawa, ON, Canada
| | - David P Cook
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada.,Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Alexander R Pelletier
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada.,Ottawa Institute of Systems Biology, Ottawa, ON, Canada
| | - Sylvain Huard
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada.,Ottawa Institute of Systems Biology, Ottawa, ON, Canada
| | - Barbara C Vanderhyden
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada.,Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Daniel Figeys
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada.,Ottawa Institute of Systems Biology, Ottawa, ON, Canada
| | - Mathieu Lavallée-Adam
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada.,Ottawa Institute of Systems Biology, Ottawa, ON, Canada
| | - Kristin Baetz
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada.,Ottawa Institute of Systems Biology, Ottawa, ON, Canada
| | - Mireille Ouimet
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada.,University of Ottawa Heart Institute, Ottawa, ON, Canada
| |
Collapse
|
287
|
Bittremieux W, Adams C, Laukens K, Dorrestein PC, Bandeira N. Open Science Resources for the Mass Spectrometry-Based Analysis of SARS-CoV-2. J Proteome Res 2021; 20:1464-1475. [PMID: 33605735 DOI: 10.1021/acs.jproteome.0c00929] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The SARS-CoV-2 virus is the causative agent of the 2020 pandemic leading to the COVID-19 respiratory disease. With many scientific and humanitarian efforts ongoing to develop diagnostic tests, vaccines, and treatments for COVID-19, and to prevent the spread of SARS-CoV-2, mass spectrometry research, including proteomics, is playing a role in determining the biology of this viral infection. Proteomics studies are starting to lead to an understanding of the roles of viral and host proteins during SARS-CoV-2 infection, their protein-protein interactions, and post-translational modifications. This is beginning to provide insights into potential therapeutic targets or diagnostic strategies that can be used to reduce the long-term burden of the pandemic. However, the extraordinary situation caused by the global pandemic is also highlighting the need to improve mass spectrometry data and workflow sharing. We therefore describe freely available data and computational resources that can facilitate and assist the mass spectrometry-based analysis of SARS-CoV-2. We exemplify this by reanalyzing a virus-host interactome data set to detect protein-protein interactions and identify host proteins that could potentially be used as targets for drug repurposing.
Collapse
Affiliation(s)
- Wout Bittremieux
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla 92093, California, United States.,Department of Computer Science, University of Antwerp, Antwerp 2020, Belgium
| | - Charlotte Adams
- Department of Computer Science, University of Antwerp, Antwerp 2020, Belgium
| | - Kris Laukens
- Department of Computer Science, University of Antwerp, Antwerp 2020, Belgium
| | - Pieter C Dorrestein
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla 92093, California, United States
| | - Nuno Bandeira
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla 92093, California, United States.,Department of Computer Science and Engineering, University of California San Diego, La Jolla 92093, California, United States
| |
Collapse
|
288
|
Yan T, Desai HS, Boatner LM, Yen SL, Cao J, Palafox MF, Jami-Alahmadi Y, Backus KM. SP3-FAIMS Chemoproteomics for High-Coverage Profiling of the Human Cysteinome*. Chembiochem 2021; 22:1841-1851. [PMID: 33442901 DOI: 10.1002/cbic.202000870] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 01/12/2021] [Indexed: 12/23/2022]
Abstract
Chemoproteomics has enabled the rapid and proteome-wide discovery of functional, redox-sensitive, and ligandable cysteine residues. Despite widespread adoption and considerable advances in both sample-preparation workflows and MS instrumentation, chemoproteomics experiments still typically only identify a small fraction of all cysteines encoded by the human genome. Here, we develop an optimized sample-preparation workflow that combines enhanced peptide labeling with single-pot, solid-phase-enhanced sample-preparation (SP3) to improve the recovery of biotinylated peptides, even from small sample sizes. By combining this improved workflow with on-line high-field asymmetric waveform ion mobility spectrometry (FAIMS) separation of labeled peptides, we achieve unprecedented coverage of >14000 unique cysteines in a single-shot 70 min experiment. Showcasing the wide utility of the SP3-FAIMS chemoproteomic method, we find that it is also compatible with competitive small-molecule screening by isotopic tandem orthogonal proteolysis-activity-based protein profiling (isoTOP-ABPP). In aggregate, our analysis of 18 samples from seven cell lines identified 34225 unique cysteines using only ∼28 h of instrument time. The comprehensive spectral library and improved coverage provided by the SP3-FAIMS chemoproteomics method will provide the technical foundation for future studies aimed at deciphering the functions and druggability of the human cysteineome.
Collapse
Affiliation(s)
- Tianyang Yan
- Department of Biological Chemistry Department, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095, USA.,Department of Chemistry and Biochemistry, UCLA, Los Angeles, CA 90095, USA
| | - Heta S Desai
- Department of Biological Chemistry Department, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095, USA.,Molecular Biology Institute, UCLA, Los Angeles, CA 90095, USA
| | - Lisa M Boatner
- Department of Biological Chemistry Department, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095, USA.,Department of Chemistry and Biochemistry, UCLA, Los Angeles, CA 90095, USA
| | - Stephanie L Yen
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, CA 90095, USA
| | - Jian Cao
- Department of Biological Chemistry Department, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095, USA
| | - Maria F Palafox
- Department of Biological Chemistry Department, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095, USA.,Department of Human Genetics, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095, USA
| | - Yasaman Jami-Alahmadi
- Department of Biological Chemistry Department, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095, USA
| | - Keriann M Backus
- Department of Biological Chemistry Department, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095, USA.,Department of Chemistry and Biochemistry, UCLA, Los Angeles, CA 90095, USA.,Molecular Biology Institute, UCLA, Los Angeles, CA 90095, USA.,DOE Institute for Genomics and Proteomics, UCLA, Los Angeles, CA 90095, USA.,Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, CA 90095, USA.,Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, UCLA, Los Angeles, CA 90095, USA
| |
Collapse
|
289
|
Mass spectrometry-based approaches to study lanthanides and lanthanide-dependent proteins in the phyllosphere. Methods Enzymol 2021; 650:215-236. [PMID: 33867023 DOI: 10.1016/bs.mie.2021.01.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Rare-earth elements (REEs) were recently discovered to be biologically significant. The finding was originally made with the methanol dehydrogenase XoxF, which depends on REEs for its activity, and reports of lanthanide-utilizing bacteria have since expanded. Environmental proteomics allows the identification of proteins specifically induced by the presence of lanthanides or can provide insights into the preferred use of lanthanide-dependent and -independent isoenzymes, for example. Here we describe protocols for the growth and subsequent mass spectrometry-based proteome analysis of bacteria obtained from controlled artificial media and from the phyllosphere of the model plant Arabidopsis thaliana. In addition, the use of inductively coupled plasma mass spectrometry (ICP-MS) is described for the quantification of REEs in biological samples.
Collapse
|
290
|
Buffon G, Blasi ÉADR, Lamb TI, Adamski JM, Schwambach J, Ricachenevsky FK, Bertolazi A, Silveira V, Lopes MCB, Sperotto RA. Oryza sativa cv. Nipponbare and Oryza barthii as Unexpected Tolerance and Susceptibility Sources Against Schizotetranychus oryzae (Acari: Tetranychidae) Mite Infestation. FRONTIERS IN PLANT SCIENCE 2021; 12:613568. [PMID: 33643348 PMCID: PMC7902502 DOI: 10.3389/fpls.2021.613568] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 01/21/2021] [Indexed: 06/12/2023]
Abstract
Cultivated rice (Oryza sativa L.) is frequently exposed to multiple stresses, including Schizotetranychus oryzae mite infestation. Rice domestication has narrowed the genetic diversity of the species, leading to a wide susceptibility. This work aimed to analyze the response of two African rice species (Oryza barthii and Oryza glaberrima), weedy rice (O. sativa f. spontanea), and O. sativa cv. Nipponbare to S. oryzae infestation. Surprisingly, leaf damage, histochemistry, and chlorophyll concentration/fluorescence indicated that the African species present a higher level of leaf damage, increased accumulation of H2O2, and lower photosynthetic capacity when compared to O. sativa plants under infested conditions. Infestation decreased tiller number, except in Nipponbare, and caused the death of O. barthii and O. glaberrima plants during the reproductive stage. While infestation did not affect the weight of 1,000 grains in both O. sativa, the number of panicles per plant was affected only in O. sativa f. spontanea, and the percentage of full seeds per panicle and seed length were increased only in Nipponbare. Using proteomic analysis, we identified 195 differentially abundant proteins when comparing susceptible (O. barthii) and tolerant (Nipponbare) plants under control and infested conditions. O. barthii presents a less abundant antioxidant arsenal and is unable to modulate proteins involved in general metabolism and energy production under infested condition. Nipponbare presents high abundance of detoxification-related proteins, general metabolic processes, and energy production, suggesting that the primary metabolism is maintained more active compared to O. barthii under infested condition. Also, under infested conditions, Nipponbare presents higher levels of proline and a greater abundance of defense-related proteins, such as osmotin, ricin B-like lectin, and protease inhibitors (PIs). These differentially abundant proteins can be used as biotechnological tools in breeding programs aiming at increased tolerance to mite infestation.
Collapse
Affiliation(s)
- Giseli Buffon
- Graduate Program in Biotechnology, University of Taquari Valley-Univates, Lajeado, Brazil
| | | | - Thainá Inês Lamb
- Biological Sciences and Health Center, University of Taquari Valley-Univates, Lajeado, Brazil
| | - Janete Mariza Adamski
- Graduate Program in Botany, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Joséli Schwambach
- Graduate Program in Biotechnology, University of Caxias do Sul, Caxias do Sul, Brazil
| | - Felipe Klein Ricachenevsky
- Graduate Program in Molecular and Cellular Biology, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Amanda Bertolazi
- Laboratory of Biotechnology, Bioscience and Biotechnology Center, State University of Northern Rio de Janeiro Darcy Ribeiro, Campos dos Goytacazes, Brazil
| | - Vanildo Silveira
- Laboratory of Biotechnology, Bioscience and Biotechnology Center, State University of Northern Rio de Janeiro Darcy Ribeiro, Campos dos Goytacazes, Brazil
| | | | - Raul Antonio Sperotto
- Graduate Program in Biotechnology, University of Taquari Valley-Univates, Lajeado, Brazil
- Biological Sciences and Health Center, University of Taquari Valley-Univates, Lajeado, Brazil
| |
Collapse
|
291
|
A Grad-seq View of RNA and Protein Complexes in Pseudomonas aeruginosa under Standard and Bacteriophage Predation Conditions. mBio 2021; 12:mBio.03454-20. [PMID: 33563827 PMCID: PMC8545117 DOI: 10.1128/mbio.03454-20] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The Gram-negative rod-shaped bacterium Pseudomonas aeruginosa is not only a major cause of nosocomial infections but also serves as a model species of bacterial RNA biology. While its transcriptome architecture and posttranscriptional regulation through the RNA-binding proteins Hfq, RsmA, and RsmN have been studied in detail, global information about stable RNA-protein complexes in this human pathogen is currently lacking. Here, we implement gradient profiling by sequencing (Grad-seq) in exponentially growing P. aeruginosa cells to comprehensively predict RNA and protein complexes, based on glycerol gradient sedimentation profiles of >73% of all transcripts and ∼40% of all proteins. As to benchmarking, our global profiles readily reported complexes of stable RNAs of P. aeruginosa, including 6S RNA with RNA polymerase and associated product RNAs (pRNAs). We observe specific clusters of noncoding RNAs, which correlate with Hfq and RsmA/N, and provide a first hint that P. aeruginosa expresses a ProQ-like FinO domain-containing RNA-binding protein. To understand how biological stress may perturb cellular RNA/protein complexes, we performed Grad-seq after infection by the bacteriophage ΦKZ. This model phage, which has a well-defined transcription profile during host takeover, displayed efficient translational utilization of phage mRNAs and tRNAs, as evident from their increased cosedimentation with ribosomal subunits. Additionally, Grad-seq experimentally determines previously overlooked phage-encoded noncoding RNAs. Taken together, the Pseudomonas protein and RNA complex data provided here will pave the way to a better understanding of RNA-protein interactions during viral predation of the bacterial cell.
Collapse
|
292
|
Bassignani A, Plancade S, Berland M, Blein-Nicolas M, Guillot A, Chevret D, Moritz C, Huet S, Rizkalla S, Clément K, Doré J, Langella O, Juste C. Benefits of Iterative Searches of Large Databases to Interpret Large Human Gut Metaproteomic Data Sets. J Proteome Res 2021; 20:1522-1534. [PMID: 33528260 DOI: 10.1021/acs.jproteome.0c00669] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The gut microbiota are increasingly considered as a main partner of human health. Metaproteomics enables us to move from the functional potential revealed by metagenomics to the functions actually operating in the microbiome. However, metaproteome deciphering remains challenging. In particular, confident interpretation of a myriad of MS/MS spectra can only be pursued with smart database searches. Here, we compare the interpretation of MS/MS data sets from 48 individual human gut microbiomes using three interrogation strategies of the dedicated Integrated nonredundant Gene Catalog (IGC 9.9 million genes from 1267 individual fecal samples) together with the Homo sapiens database: the classical single-step interrogation strategy and two iterative strategies (in either two or three steps) aimed at preselecting a reduced-sized, more targeted search space for the final peptide spectrum matching. Both iterative searches outperformed the single-step classical search in terms of the number of peptides and protein clusters identified and the depth of taxonomic and functional knowledge, and this was the most convincing with the three-step approach. However, iterative searches do not help in reducing variability of repeated analyses, which is inherent to the traditional data-dependent acquisition mode, but this variability did not affect the hierarchical relationship between replicates and all other samples.
Collapse
Affiliation(s)
- Ariane Bassignani
- Université Paris-Saclay, INRAE, MGP, 78350, Jouy-en-Josas, France.,Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350, Jouy-en-Josas, France.,Université Paris-Saclay, INRAE, CNRS, AgroParisTech, GQE - Le Moulon, 91190, Gif-sur-Yvette, France.,MaIAGE, INRAE, Université Paris-Saclay, 78350 Jouy-en-Josas, France
| | - Sandra Plancade
- MaIAGE, INRAE, Université Paris-Saclay, 78350 Jouy-en-Josas, France.,INRAE, UR875 MIAT, F-31326 Castanet-Tolosan, France
| | - Magali Berland
- Université Paris-Saclay, INRAE, MGP, 78350, Jouy-en-Josas, France
| | - Melisande Blein-Nicolas
- Université Paris-Saclay, INRAE, CNRS, AgroParisTech, GQE - Le Moulon, 91190, Gif-sur-Yvette, France
| | - Alain Guillot
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350, Jouy-en-Josas, France
| | - Didier Chevret
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350, Jouy-en-Josas, France
| | - Chloé Moritz
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350, Jouy-en-Josas, France
| | - Sylvie Huet
- MaIAGE, INRAE, Université Paris-Saclay, 78350 Jouy-en-Josas, France
| | - Salwa Rizkalla
- Sorbonne Université, Inserm, UMRS Nutrition et Obésités; approches systémiques, Paris 75006, France.,Assistance Publique Hôpitaux de Paris, Service de Nutrition, CRNH Ile-de-France, Pitié-Salpêtrière Hospital, Paris 75013, France
| | - Karine Clément
- Sorbonne Université, Inserm, UMRS Nutrition et Obésités; approches systémiques, Paris 75006, France.,Assistance Publique Hôpitaux de Paris, Service de Nutrition, CRNH Ile-de-France, Pitié-Salpêtrière Hospital, Paris 75013, France
| | - Joël Doré
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350, Jouy-en-Josas, France
| | - Olivier Langella
- Université Paris-Saclay, INRAE, CNRS, AgroParisTech, GQE - Le Moulon, 91190, Gif-sur-Yvette, France
| | - Catherine Juste
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350, Jouy-en-Josas, France
| |
Collapse
|
293
|
James J, Zemskova M, Eccles CA, Varghese MV, Niihori M, Barker NK, Luo M, Mandarino LJ, Langlais PR, Rafikova O, Rafikov R. Single Mutation in the NFU1 Gene Metabolically Reprograms Pulmonary Artery Smooth Muscle Cells. Arterioscler Thromb Vasc Biol 2021; 41:734-754. [PMID: 33297749 PMCID: PMC7837686 DOI: 10.1161/atvbaha.120.314655] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 11/30/2020] [Indexed: 02/06/2023]
Abstract
OBJECTIVE NFU1 is a mitochondrial iron-sulfur scaffold protein, involved in iron-sulfur assembly and transfer to complex II and LAS (lipoic acid synthase). Patients with the point mutation NFU1G208C and CRISPR/CAS9 (clustered regularly interspaced short palindromic repeats/clustered regularly interspaced short palindromic repeat-associated 9)-generated rats develop mitochondrial dysfunction leading to pulmonary arterial hypertension. However, the mechanistic understanding of pulmonary vascular proliferation due to a single mutation in NFU1 remains unresolved. Approach and Results: Quantitative proteomics of isolated mitochondria showed the entire phenotypic transformation of NFU1G206C rats with a disturbed mitochondrial proteomic landscape, involving significant changes in the expression of 208 mitochondrial proteins. The NFU1 mutation deranged the expression pattern of electron transport proteins, resulting in a significant decrease in mitochondrial respiration. Reduced reliance on mitochondrial respiration amplified glycolysis in pulmonary artery smooth muscle cell (PASMC) and activated GPD (glycerol-3-phosphate dehydrogenase), linking glycolysis to oxidative phosphorylation and lipid metabolism. Decreased PDH (pyruvate dehydrogenase) activity due to the lipoic acid shortage is compensated by increased fatty acid metabolism and oxidation. PASMC became dependent on extracellular fatty acid sources due to upregulated transporters such as CD36 (cluster of differentiation 36) and CPT (carnitine palmitoyltransferase)-1. Finally, the NFU1 mutation produced a dysregulated antioxidant system in the mitochondria, leading to increased reactive oxygen species levels. PASMC from NFU1 rats showed apoptosis resistance, increased anaplerosis, and attained a highly proliferative phenotype. Attenuation of mitochondrial reactive oxygen species by mitochondrial-targeted antioxidant significantly decreased PASMC proliferation. CONCLUSIONS The alteration in iron-sulfur metabolism completely transforms the proteomic landscape of the mitochondria, leading toward metabolic plasticity and redistribution of energy sources to the acquisition of a proliferative phenotype by the PASMC.
Collapse
MESH Headings
- Animals
- Apoptosis
- Cell Proliferation
- Cells, Cultured
- Cellular Reprogramming
- Energy Metabolism
- Fatty Acids/metabolism
- Female
- Mitochondria, Liver/genetics
- Mitochondria, Liver/metabolism
- Mitochondria, Liver/pathology
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Phenotype
- Point Mutation
- Proteome
- Pulmonary Artery/metabolism
- Pulmonary Artery/pathology
- Rats, Sprague-Dawley
- Reactive Oxygen Species/metabolism
- Signal Transduction
- Rats
Collapse
Affiliation(s)
- Joel James
- Department of Medicine, Division of Endocrinology, University of Arizona College of Medicine, Tucson
| | - Marina Zemskova
- Department of Medicine, Division of Endocrinology, University of Arizona College of Medicine, Tucson
| | - Cody A. Eccles
- Department of Medicine, Division of Endocrinology, University of Arizona College of Medicine, Tucson
| | - Mathews V. Varghese
- Department of Medicine, Division of Endocrinology, University of Arizona College of Medicine, Tucson
| | - Maki Niihori
- Department of Medicine, Division of Endocrinology, University of Arizona College of Medicine, Tucson
| | - Natalie K. Barker
- Department of Medicine, Division of Endocrinology, University of Arizona College of Medicine, Tucson
| | - Moulun Luo
- Department of Medicine, Division of Endocrinology, University of Arizona College of Medicine, Tucson
| | - Lawrence J. Mandarino
- Department of Medicine, Division of Endocrinology, University of Arizona College of Medicine, Tucson
| | - Paul R. Langlais
- Department of Medicine, Division of Endocrinology, University of Arizona College of Medicine, Tucson
| | - Olga Rafikova
- Department of Medicine, Division of Endocrinology, University of Arizona College of Medicine, Tucson
| | - Ruslan Rafikov
- Department of Medicine, Division of Endocrinology, University of Arizona College of Medicine, Tucson
| |
Collapse
|
294
|
Chu LC, Offenborn JN, Steinhorst L, Wu XN, Xi L, Li Z, Jacquot A, Lejay L, Kudla J, Schulze WX. Plasma membrane calcineurin B-like calcium-ion sensor proteins function in regulating primary root growth and nitrate uptake by affecting global phosphorylation patterns and microdomain protein distribution. THE NEW PHYTOLOGIST 2021; 229:2223-2237. [PMID: 33098106 DOI: 10.1111/nph.17017] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 09/27/2020] [Indexed: 05/25/2023]
Abstract
The collective function of calcineurin B-like (CBL) calcium ion (Ca2+ ) sensors and CBL-interacting protein kinases (CIPKs) in decoding plasma-membrane-initiated Ca2+ signals to convey developmental and adaptive responses to fluctuating nitrate availability remained to be determined. Here, we generated a cbl-quintuple mutant in Arabidopsis thaliana devoid of these Ca2+ sensors at the plasma membrane and performed comparative phenotyping, nitrate flux determination, phosphoproteome analyses, and studies of membrane domain protein distribution in response to low and high nitrate availability. We observed that CBL proteins exert multifaceted regulation of primary and lateral root growth and nitrate fluxes. Accordingly, we found that loss of plasma membrane Ca2+ sensor function simultaneously affected protein phosphorylation of numerous membrane proteins, including several nitrate transporters, proton pumps, and aquaporins, as well as their distribution within plasma membrane microdomains, and identified a specific phosphorylation and domain distribution pattern during distinct phases of low and high nitrate responses. Collectively, these analyses reveal a central and coordinative function of CBL-CIPK-mediated signaling in conveying plant adaptation to fluctuating nitrate availability and identify a crucial role of Ca2+ signaling in regulating the composition and dynamics of plasma membrane microdomains.
Collapse
Affiliation(s)
- Liang-Cui Chu
- Department of Plant Systems Biology, University of Hohenheim, Stuttgart, 70593, Germany
| | - Jan Niklas Offenborn
- Institut für Biologie und Biotechnologie der Pflanzen, Westfälische Wilhelms-Universität Münster, Schlossplatz 7, Münster, 48149, Germany
| | - Leonie Steinhorst
- Institut für Biologie und Biotechnologie der Pflanzen, Westfälische Wilhelms-Universität Münster, Schlossplatz 7, Münster, 48149, Germany
| | - Xu Na Wu
- Department of Plant Systems Biology, University of Hohenheim, Stuttgart, 70593, Germany
| | - Lin Xi
- Department of Plant Systems Biology, University of Hohenheim, Stuttgart, 70593, Germany
| | - Zhi Li
- Department of Plant Systems Biology, University of Hohenheim, Stuttgart, 70593, Germany
| | - Aurore Jacquot
- BPMP, Université de Montpellier, CNRS, INRAE, Institut Agro, Montpellier, 34060, France
| | - Laurence Lejay
- BPMP, Université de Montpellier, CNRS, INRAE, Institut Agro, Montpellier, 34060, France
| | - Jörg Kudla
- Institut für Biologie und Biotechnologie der Pflanzen, Westfälische Wilhelms-Universität Münster, Schlossplatz 7, Münster, 48149, Germany
| | - Waltraud X Schulze
- Department of Plant Systems Biology, University of Hohenheim, Stuttgart, 70593, Germany
| |
Collapse
|
295
|
Chronic caloric restriction maintains a youthful phosphoproteome in aged skeletal muscle. Mech Ageing Dev 2021; 195:111443. [PMID: 33529682 DOI: 10.1016/j.mad.2021.111443] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 01/22/2021] [Accepted: 01/26/2021] [Indexed: 11/23/2022]
Abstract
Caloric restriction (CR) can prolong aged skeletal muscle function, yet the molecular mechanisms are not completely understood. We performed phosphoproteomic analysis on muscle from young and old mice fed an ad libitum diet, and old mice fed a CR diet. CR promoted a youthful phosphoproteomic signature, suppressing several known "pro-aging" pathways including Protein kinase A (PKA). This study validates global signaling changes in skeletal muscle during CR.
Collapse
|
296
|
Sirtuin 5 Is Regulated by the SCF Cyclin F Ubiquitin Ligase and Is Involved in Cell Cycle Control. Mol Cell Biol 2021; 41:MCB.00269-20. [PMID: 33168699 DOI: 10.1128/mcb.00269-20] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 11/03/2020] [Indexed: 12/31/2022] Open
Abstract
The ubiquitin-proteasome system is essential for cell cycle progression. Cyclin F is a cell cycle-regulated substrate adapter F-box protein for the Skp1, CUL1, and F-box protein (SCF) family of E3 ubiquitin ligases. Despite its importance in cell cycle progression, identifying cyclin F-bound SCF complex (SCFCyclin F) substrates has remained challenging. Since cyclin F overexpression rescues a yeast mutant in the cdc4 gene, we considered the possibility that other genes that genetically modify cdc4 mutant lethality could also encode cyclin F substrates. We identified the mitochondrial and cytosolic deacylating enzyme sirtuin 5 (SIRT5) as a novel cyclin F substrate. SIRT5 has been implicated in metabolic processes, but its connection to the cell cycle is not known. We show that cyclin F interacts with and controls the ubiquitination, abundance, and stability of SIRT5. We show SIRT5 knockout results in a diminished G1 population and a subsequent increase in both S and G2/M. Global proteomic analyses reveal cyclin-dependent kinase (CDK) signaling changes congruent with the cell cycle changes in SIRT5 knockout cells. Together, these data demonstrate that SIRT5 is regulated by cyclin F and suggest a connection between SIRT5, cell cycle regulation, and metabolism.
Collapse
|
297
|
Oka M, Xu L, Suzuki T, Yoshikawa T, Sakamoto H, Uemura H, Yoshizawa AC, Suzuki Y, Nakatsura T, Ishihama Y, Suzuki A, Seki M. Aberrant splicing isoforms detected by full-length transcriptome sequencing as transcripts of potential neoantigens in non-small cell lung cancer. Genome Biol 2021; 22:9. [PMID: 33397462 PMCID: PMC7780684 DOI: 10.1186/s13059-020-02240-8] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 12/14/2020] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Long-read sequencing of full-length cDNAs enables the detection of structures of aberrant splicing isoforms in cancer cells. These isoforms are occasionally translated, presented by HLA molecules, and recognized as neoantigens. This study used a long-read sequencer (MinION) to construct a comprehensive catalog of aberrant splicing isoforms in non-small-cell lung cancers, by which novel isoforms and potential neoantigens are identified. RESULTS Full-length cDNA sequencing is performed using 22 cell lines, and a total of 2021 novel splicing isoforms are identified. The protein expression of some of these isoforms is then validated by proteome analysis. Ablations of a nonsense-mediated mRNA decay (NMD) factor, UPF1, and a splicing factor, SF3B1, are found to increase the proportion of aberrant transcripts. NetMHC evaluation of the binding affinities to each type of HLA molecule reveals that some of the isoforms potentially generate neoantigen candidates. We also identify aberrant splicing isoforms in seven non-small-cell lung cancer specimens. An enzyme-linked immune absorbent spot assay indicates that approximately half the peptide candidates have the potential to activate T cell responses through their interaction with HLA molecules. Finally, we estimate the number of isoforms in The Cancer Genome Atlas (TCGA) datasets by referring to the constructed catalog and found that disruption of NMD factors is significantly correlated with the number of splicing isoforms found in the TCGA-Lung Adenocarcinoma data collection. CONCLUSIONS Our results indicate that long-read sequencing of full-length cDNAs is essential for the precise identification of aberrant transcript structures in cancer cells.
Collapse
Affiliation(s)
- Miho Oka
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, Japan
- Ono Pharmaceutical Co., Ltd., Ibaraki, Japan
| | - Liu Xu
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, Japan
| | - Toshihiro Suzuki
- General Medical Education and Research Center, Teikyo University, Tokyo, Japan
- Division of Cancer Immunotherapy, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Chiba, Japan
| | - Toshiaki Yoshikawa
- Division of Cancer Immunotherapy, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Chiba, Japan
| | - Hiromi Sakamoto
- Department of Clinical Genomics, National Cancer Center Research Institute, Tokyo, Japan
| | - Hayato Uemura
- Department of Molecular and Cellular BioAnalysis, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | - Akiyasu C. Yoshizawa
- Department of Molecular and Cellular BioAnalysis, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | - Yutaka Suzuki
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, Japan
| | - Tetsuya Nakatsura
- Division of Cancer Immunotherapy, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Chiba, Japan
| | - Yasushi Ishihama
- Department of Molecular and Cellular BioAnalysis, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | - Ayako Suzuki
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, Japan
| | - Masahide Seki
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, Japan
| |
Collapse
|
298
|
Watanabe Y, Yoshizawa AC, Ishihama Y, Okuda S. The jPOST Repository as a Public Data Repository for Shotgun Proteomics. Methods Mol Biol 2021; 2259:309-322. [PMID: 33687724 DOI: 10.1007/978-1-0716-1178-4_20] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
In recent years, mass spectrometry-based proteomics approach has made significant progress and the number of datasets related to various proteomics projects has increased worldwide. To promote the sharing and reuse of promising datasets, it is important to build an appropriate, high-quality public data repository. For this purpose, several repositories have already been created. The jPOST repository that we developed in 2016 has successfully implemented several unique features, such as fast file upload, flexible file management, and an easy-to-use interface. In addition, this repository is an official member of the ProteomeXchange Consortium established to facilitate standard data submission and global dissemination of mass spectrometry proteomics data. Our repository contributes to the global partnership for sharing and storing all the datasets related to various proteomics experiments.
Collapse
Affiliation(s)
- Yu Watanabe
- Division of bioinformatics, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | | | - Yasushi Ishihama
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | - Shujiro Okuda
- Division of bioinformatics, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan.
| |
Collapse
|
299
|
Cremer SE, Catalfamo JL, Goggs R, Seemann SE, Kristensen AT, Szklanna PB, Maguire PB, Brooks MB. The canine activated platelet secretome (CAPS): A translational model of thrombin-evoked platelet activation response. Res Pract Thromb Haemost 2021; 5:55-68. [PMID: 33537530 PMCID: PMC7845059 DOI: 10.1002/rth2.12450] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 09/20/2020] [Accepted: 10/07/2020] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Domestic dogs represent a translational animal model to study naturally occurring human disease. Proteomics has emerged as a promising tool for characterizing human platelet pathophysiology; thus a detailed characterization of the core canine activated platelet secretome (CAPS) will enhance utilization of the canine model. The objectives of this study were development of a robust, high throughput, label-free approach for proteomic identification and quantification of the canine platelet (i) thrombin releasate proteins, and (ii) the protein subgroup that constitutes CAPS. METHODS Platelets were isolated from 10 healthy dogs and stimulated with 50 nmol/L of γ-thrombin or saline. Proteins were in-solution trypsin-digested and analyzed by nano-liquid chromatography-tandem spectrometry. Core releasate proteins were defined as those present in 10 of 10 dogs, and CAPS defined as releasate proteins with a significantly higher abundance in stimulated versus saline controls (corrected P < .05). RESULTS A total of 2865 proteins were identified; 1126 releasate proteins were present in all dogs, 650 were defined as CAPS. Among the differences from human platelets were a canine lack of platelet factor 4 and vascular endothelial growth factor C, and a 10- to 20-fold lower concentration of proteins such as haptoglobin, alpha-2 macroglobulin, von Willebrand factor, and amyloid-beta A4. Twenty-eight CAPS proteins, including cytokines, adhesion molecules, granule proteins, and calcium regulatory proteins have not previously been attributed to human platelets. CONCLUSIONS CAPS proteins represent a robust characterization of a large animal platelet secretome and a novel tool to model platelet physiology, pathophysiology, and to identify translational biomarkers of platelet-mediated disease.
Collapse
Affiliation(s)
- Signe E. Cremer
- Department of Veterinary Clinical SciencesUniversity of CopenhagenCopenhagenDenmark
- Department of Population Medicine and Diagnostic SciencesCornell UniversityIthacaNYUSA
| | - James L. Catalfamo
- Department of Population Medicine and Diagnostic SciencesCornell UniversityIthacaNYUSA
| | - Robert Goggs
- Department of Clinical SciencesCornell UniversityIthacaNYUSA
| | - Stefan E. Seemann
- Department of Veterinary and Animal SciencesCenter for Non‐coding RNA in Technology and HealthUniversity of CopenhagenCopenhagenDenmark
| | | | - Paulina B. Szklanna
- School of Biomolecular and Biomedical ScienceUniversity College DublinDublinIreland
| | - Patricia B. Maguire
- School of Biomolecular and Biomedical ScienceUniversity College DublinDublinIreland
| | - Marjory B. Brooks
- Department of Population Medicine and Diagnostic SciencesCornell UniversityIthacaNYUSA
| |
Collapse
|
300
|
Frear CC, Zang T, Griffin BR, McPhail SM, Parker TJ, Kimble RM, Cuttle L. The modulation of the burn wound environment by negative pressure wound therapy: Insights from the proteome. Wound Repair Regen 2020; 29:288-297. [PMID: 33374033 DOI: 10.1111/wrr.12887] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 12/02/2020] [Indexed: 12/24/2022]
Abstract
Negative pressure wound therapy has been used to promote wound healing in a variety of settings, including as an adjunct to silver-impregnated dressings in the acute management of paediatric burns. Fluid aspirated by the negative pressure wound therapy system represents a potentially insightful research matrix for understanding the burn wound microenvironment and the intervention's biochemical mechanisms of action. The aim of this study was to characterize the proteome of wound fluid collected using negative pressure wound therapy from children with small-area thermal burns. Samples were obtained as part of a randomized controlled trial investigating the clinical efficacy of adjunctive negative pressure wound therapy. They were compared with blister fluid specimens from paediatric burn patients matched according to demographic and injury characteristics. Protein identification and quantification were performed via liquid chromatography tandem mass spectrometry and sequential window acquisition of all theoretical mass spectra data-independent acquisition. Proteins and biological pathways that were unique to or enriched in negative pressure wound therapy fluid samples were evaluated using principal components, partial least squares-discriminant, and gene ontology enrichment analyses. Eight viable samples of negative pressure wound therapy fluid were collected and analyzed with eight matched blister fluid samples. A total of 502 proteins were quantitatively profiled in the negative pressure wound therapy fluid, of which 444 (88.4%) were shared with blister fluid. Several proteins exhibited significant abundance differences between fluid types, with negative pressure wound therapy fluid showing a higher abundance of matrix metalloproteinase-9, arginase-1, low affinity immunoglobulin gamma Fc region receptor III-A, filamin-A, alpha-2-macroglobulin, and hemoglobin subunit alpha. The results lend support to the hypothesis that negative pressure wound therapy augments wound healing through the modulation of factors involved in the inflammatory response, granulation tissue synthesis, and extracellular matrix maintenance. Data are available via ProteomeXchange with identifier PXD023168.
Collapse
Affiliation(s)
- Cody C Frear
- Centre for Children's Burns and Trauma Research, South Brisbane, Queensland, Australia.,Faculty of Medicine, University of Queensland, Herston, Queensland, Australia
| | - Tuo Zang
- Centre for Children's Burns and Trauma Research, South Brisbane, Queensland, Australia.,Faculty of Health, Queensland University of Technology, Kelvin Grove, Queensland, Australia
| | - Bronwyn R Griffin
- Centre for Children's Burns and Trauma Research, South Brisbane, Queensland, Australia.,Faculty of Health, Queensland University of Technology, Kelvin Grove, Queensland, Australia
| | - Steven M McPhail
- Faculty of Health, Queensland University of Technology, Kelvin Grove, Queensland, Australia.,Clinical Informatics Directorate, Metro South Health, Brisbane, Queensland, Australia
| | - Tony J Parker
- Faculty of Health, Queensland University of Technology, Kelvin Grove, Queensland, Australia
| | - Roy M Kimble
- Centre for Children's Burns and Trauma Research, South Brisbane, Queensland, Australia.,Faculty of Medicine, University of Queensland, Herston, Queensland, Australia.,Queensland Children's Hospital, South Brisbane, Queensland, Australia
| | - Leila Cuttle
- Centre for Children's Burns and Trauma Research, South Brisbane, Queensland, Australia.,Faculty of Health, Queensland University of Technology, Kelvin Grove, Queensland, Australia
| |
Collapse
|