251
|
Bondonno NP, Murray K, Bondonno CP, Lewis JR, Croft KD, Kyrø C, Gislason G, Tjønneland A, Scalbert A, Cassidy A, Piccini JP, Overvad K, Hodgson JM, Dalgaard F. Flavonoid intake and its association with atrial fibrillation. Clin Nutr 2020; 39:3821-3828. [PMID: 32386860 DOI: 10.1016/j.clnu.2020.04.025] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 04/12/2020] [Accepted: 04/16/2020] [Indexed: 10/24/2022]
Abstract
BACKGROUND & AIMS Primary prevention of atrial fibrillation (AF) through behavioural and dietary modification is a critically important and unmet need. Flavonoids are bioactive dietary compounds with promising cardiovascular health benefits. Our aim was to investigate the association between flavonoid intake and clinically apparent AF. METHODS Baseline data from 55 613 participants of the Danish Diet, Cancer and Health Study, without AF, recruited between 1993 and 1997, were cross-linked with Danish nationwide registries. Total flavonoid and flavonoid subclass intakes were calculated from validated food frequency questionnaires using the Phenol-Explorer database. Associations between flavonoid intake and incident AF (first-time hospitalization or outpatient visit) were examined using restricted cubic splines based on Cox proportional hazards models. RESULTS During a median [IQR] follow-up of 21 [18-22] years, 7291 participants were diagnosed with AF. Total flavonoid intake was not statistically significantly associated with risk of incident AF in the whole cohort. However, compared to the lowest quintile, a total flavonoid intake of 1000 mg/day was associated with a lower risk of AF in smokers [0.86 (0.77, 0.96)] but not in non-smokers [0.96 (0.88, 1.06)], and a lower risk of AF in high alcohol consumers [>20 g/d: 0.84 (0.75, 0.95)] but not in low-to-moderate alcohol consumers [<20 g/d: 0.97 (0.89, 1.07)]. CONCLUSION Intake of flavonoids was not significantly associated with a lower risk of incident AF. However, higher intakes of flavonoids may be beneficial for those at a higher risk of developing AF.
Collapse
Affiliation(s)
- Nicola P Bondonno
- School of Medical and Health Sciences, Edith Cowan University, Perth, Australia; School of Biomedical Sciences, The University of Western Australia, Royal Perth Hospital, Perth, Western Australia, Australia; Institute for Global Food Security, Queen's University Belfast, Northern Ireland, UK.
| | - Kevin Murray
- School of Population and Global Health, University of Western Australia, Australia
| | - Catherine P Bondonno
- School of Medical and Health Sciences, Edith Cowan University, Perth, Australia; School of Biomedical Sciences, The University of Western Australia, Royal Perth Hospital, Perth, Western Australia, Australia
| | - Joshua R Lewis
- School of Medical and Health Sciences, Edith Cowan University, Perth, Australia; School of Biomedical Sciences, The University of Western Australia, Royal Perth Hospital, Perth, Western Australia, Australia
| | - Kevin D Croft
- School of Biomedical Sciences, The University of Western Australia, Royal Perth Hospital, Perth, Western Australia, Australia
| | - Cecilie Kyrø
- The Danish Cancer Society Research Centre, Copenhagen, Denmark
| | - Gunnar Gislason
- Department of Cardiology, Herlev & Gentofte University Hospital, Copenhagen, Denmark; The National Institute of Public Health, University of Southern Denmark, Odense, Denmark; The Danish Heart Foundation, Copenhagen, Denmark
| | - Anne Tjønneland
- The Danish Cancer Society Research Centre, Copenhagen, Denmark; Department of Public Health, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | - Aedín Cassidy
- Institute for Global Food Security, Queen's University Belfast, Northern Ireland, UK
| | - Jonathan P Piccini
- Duke Center for Atrial Fibrillation, Duke University Medical Center, Duke Clinical Research Institute, Durham, NC, USA
| | - Kim Overvad
- Department of Public Health, Aarhus University, Aarhus, Denmark; Department of Cardiology, Aalborg University Hospital, Aalborg, Denmark
| | - Jonathan M Hodgson
- School of Medical and Health Sciences, Edith Cowan University, Perth, Australia; School of Biomedical Sciences, The University of Western Australia, Royal Perth Hospital, Perth, Western Australia, Australia
| | - Frederik Dalgaard
- Department of Cardiology, Herlev & Gentofte University Hospital, Copenhagen, Denmark
| |
Collapse
|
252
|
Khan H, Tundis R, Ullah H, Aschner M, Belwal T, Mirzaei H, Akkol EK. Flavonoids targeting NRF2 in neurodegenerative disorders. Food Chem Toxicol 2020; 146:111817. [PMID: 33069760 DOI: 10.1016/j.fct.2020.111817] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 10/11/2020] [Accepted: 10/12/2020] [Indexed: 02/05/2023]
Affiliation(s)
- Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University Mardan, 23200, Pakistan.
| | - Rosa Tundis
- Department of Pharmacy, Health and Nutritional Sciences University of Calabria, Via P. Bucci 87036 Rende (CS), Italy.
| | - Hammad Ullah
- Department of Pharmacy, Abdul Wali Khan University Mardan, 23200, Pakistan
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA.
| | - Tarun Belwal
- Centre for Biodiversity Conservation and Management, G.B. Plant National Institute of Himalayan Environment and Sustainable Development, Kosi-Katarmal, Almora, Uttarakhand, India.
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, I.R, Iran.
| | - Esra Kupeli Akkol
- Department of Pharmacognosy, Faculty of Pharmacy Gazi University 06330, Etiler/Ankara Turkey.
| |
Collapse
|
253
|
Martini S, Tagliazucchi D, Minelli G, Lo Fiego DP. Influence of linseed and antioxidant-rich diets in pig nutrition on lipid oxidation during cooking and in vitro digestion of pork. Food Res Int 2020; 137:109528. [PMID: 33233160 DOI: 10.1016/j.foodres.2020.109528] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 06/25/2020] [Accepted: 07/08/2020] [Indexed: 11/18/2022]
Abstract
Enrichment of pig diets with polyunsaturated fatty acids (PUFA) is considered an emerging strategy to increase their intake in the human diet. However, PUFA are particularly vulnerable to oxidative reactions leading to the generation of toxic compounds. The aim of this study was to evaluate the effect of supplementation of pig diets with extruded linseed (L), either or not in combination with synthetic antioxidants (E, tocopheryl-acetate and selenium) or natural extracts (P, grape-skin and oregano), and basal diet (C, without linseed) on the oxidative stability in raw, grilled and in vitro digested pork. The diet supplementation with antioxidant-rich ingredients resulted in the accumulation of specific metabolites in meat. Actually, 11 different phenolic- and 6 tocopherol-derived metabolites were identified by UHPLC/HR-MS. These metabolites were potentially correlated with the reduction in the oxidative phenomena occurring during meat cooking and digestion. Specifically, 16% and 35% reduction in the amounts of lipid hydroperoxides and TBA-RS were assessed after cooking of meat from P diet, respect to the L diet. Diet supplementations with α-tocopheryl acetate and selenium reduced the oxidative reactions only during meat cooking. A significant reduction was attended at the end of in vitro digestion, showing about 24% and 34% hydroperoxides and TBA-RS concentration reductions, respectively, in P diet samples respect to the L ones. Thus, our study suggests that the appearance of phenolic metabolites in meat could be associated to a reduction in the oxidative phenomena during meat cooking and digestion.
Collapse
Affiliation(s)
- Serena Martini
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Amendola 2, 42122 Reggio Emilia, Italy.
| | - Davide Tagliazucchi
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Amendola 2, 42122 Reggio Emilia, Italy; Interdepartmental Research Centre for Agri-Food Biological Resources Improvement and Valorisation (BIOGEST-SITEIA), University of Modena and Reggio Emilia, Via Amendola 2, 42122 Reggio Emilia, Italy
| | - Giovanna Minelli
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Amendola 2, 42122 Reggio Emilia, Italy; Interdepartmental Research Centre for Agri-Food Biological Resources Improvement and Valorisation (BIOGEST-SITEIA), University of Modena and Reggio Emilia, Via Amendola 2, 42122 Reggio Emilia, Italy
| | - Domenico Pietro Lo Fiego
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Amendola 2, 42122 Reggio Emilia, Italy; Interdepartmental Research Centre for Agri-Food Biological Resources Improvement and Valorisation (BIOGEST-SITEIA), University of Modena and Reggio Emilia, Via Amendola 2, 42122 Reggio Emilia, Italy
| |
Collapse
|
254
|
Hasyima Omar M, González Barrio R, Pereira-Caro G, Almutairi TM, Crozier A. In vitro catabolism of 3',4'-dihydroxycinnamic acid by human colonic microbiota. Int J Food Sci Nutr 2020; 72:511-517. [PMID: 33238790 DOI: 10.1080/09637486.2020.1850650] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
3',4'-Dihydroxycinnamic acid (aka caffeic acid) is a common dietary component found in a variety of plant-derived food products either in a free form or esterified as in chlorogenic acids such as 5-O-caffeoylquinic acid. The dihydroxycinnamate is produced principally by hydrolysis in the colon of 5-O-caffeoylquinic acid and other caffeoylquinic acid esters, and is catabolised by the resident microbiota prior to absorption. In the present study 3',4'-dihydroxycinnamic acid was incubated in vitro, with or without glucose, under anaerobic conditions with faecal slurries obtained from five volunteers. The main resultant catabolites to accumulate were 3-(3',4'-dihydroxyphenyl)propanoic acid (aka dihydrocaffeic acid), 3-(3'-hydroxyphenyl)propanoic acid and phenylacetic acid. Both the rate of degradation of the hydroxycinnamate substrate and the catabolite profile varied between the faecal samples from the individual volunteers. Overall there was no clear cut effect when glucose was added to incubation medium.
Collapse
Affiliation(s)
| | - Rocío González Barrio
- Department of Food Science and Nutrition Department, University of Murcia, Espinardo, Spain
| | - Gema Pereira-Caro
- Department of Food Science and Health, IFAPA-Alameda del Obispo, Córdoba, Spain
| | | | - Alan Crozier
- Department of Chemistry, King Saud University, Riyadh, Saudi Arabia.,School of Medicine, Dentistry and Nursing, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
255
|
Liu X, Cheng J, Zhu X, Zhang G, Yang S, Guo X, Jiang H, Ma Y. De Novo Biosynthesis of Multiple Pinocembrin Derivatives in Saccharomyces cerevisiae. ACS Synth Biol 2020; 9:3042-3051. [PMID: 33107298 DOI: 10.1021/acssynbio.0c00289] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Pinocembrin derived flavones are the major bioactive compounds presented in the Lamiaceae plants that have long been of interest due to their great pharmaceutical and economical significance. Modifications on the central skeleton of the flavone moiety have a huge impact on their biological activities. However, the enzymes responsible for structure modification of most flavones are either inefficient or remain unidentified. By integrating omics analysis of Scutellaria barbata and synthetic biology tools in yeast chassis, we characterized a novel gene encoding flavone 7-O-methyltransferase (F7OMT) and discovered a new flavone 8-hydroxylase (F8H) with increased activity. We also identified a series of flavone 6-hydroxylases (F6Hs) and flavone 8-O-methyltransferases (F8OMTs) in this study. Subsequently, we constructed the biosynthetic pathway for chrysin production by assembling catalytic elements from different species and improved the titer to 10.06 mg/L. Using the established chrysin production platform, we achieved the de novo biosynthesis of baicalein, baicalin, norwogonin, wogonin, isowogonin, and moslosooflavone in yeast. Our results indicated that the combination of omics and synthetic biology can greatly speed up the efficiency of gene mining in plants and the engineered yeasts established an alternative way for the production of pinocembrin derivatives.
Collapse
Affiliation(s)
- Xiaonan Liu
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jian Cheng
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Xiaoxi Zhu
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guanghui Zhang
- State Key Laboratory of Conservation and Utilization of Bio-resources in Yunnan, National & Local Joint Engineering Research Center on Gemplasm Utilization & Innovation of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, Kunming 650201, China
| | - Shengchao Yang
- State Key Laboratory of Conservation and Utilization of Bio-resources in Yunnan, National & Local Joint Engineering Research Center on Gemplasm Utilization & Innovation of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, Kunming 650201, China
| | - Xiaoxian Guo
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Huifeng Jiang
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Yanhe Ma
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| |
Collapse
|
256
|
Pereira-Caro G, Clifford MN, Polyviou T, Ludwig IA, Alfheeaid H, Moreno-Rojas JM, Garcia AL, Malkova D, Crozier A. Plasma pharmacokinetics of (poly)phenol metabolites and catabolites after ingestion of orange juice by endurance trained men. Free Radic Biol Med 2020; 160:784-795. [PMID: 32927016 DOI: 10.1016/j.freeradbiomed.2020.09.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 08/27/2020] [Accepted: 09/04/2020] [Indexed: 01/14/2023]
Abstract
The health benefits of orange juice (OJ) consumption are attributed in part to the circulating flavanone phase II metabolites and their microbial-derived ring fission phenolic catabolites. The present study investigated these compounds in the bloodstream after acute intake of 500 mL of OJ. Plasma samples obtained at 0, 1, 2, 3, 4, 5, 6, 7, 8 and 24 h after OJ intake were analysed by HPLC-HR-MS. Eleven flavanone metabolites and 36 phenolic catabolites were identified and quantified in plasma. The main metabolites were hesperetin-3'-sulfate with a peak plasma concentration (Cmax) of 80 nmol/L, followed by hesperetin-7-glucuronide (Cmax 24 nmol/L), hesperetin-3'-glucuronide (Cmax 18 nmol/L) and naringenin-7-glucuronide (Cmax 21 nmol/L). Among the main phenolic catabolites to increase in plasma after OJ consumption were 3'-methoxycinnamic acid-4'-sulfate (Cmax 19 nmol/L), 3-hydroxy-3-(3'-hydroxy-4'-methoxyphenyl)propanoic acid (Cmax 20 nmol/L), 3-(3'-hydroxy-4'-methoxyphenyl)propanoic acid (Cmax 19 nmol/L), 3-(4'-hydroxyphenyl)propanoic acid (Cmax 25 nmol/L), and 3-(phenyl)propanoic acid (Cmax 19 nmol/L), as well as substantial amounts of phenylacetic and hippuric acids. The comprehensive plasma pharmacokinetic profiles that were obtained are of value to the design of future ex vivo cell studies, aimed at elucidating the mechanisms underlying the potential health benefits of OJ consumption. CLINICAL TRIAL REGISTRATION NUMBER: This trial was registered at clinicaltrials.gov as NCT02627547.
Collapse
Affiliation(s)
- Gema Pereira-Caro
- Department of Food and Health, Andalusian Institute of Agricultural and Fishery Research and Training, IFAPA, Alameda Del Obispo, 14004, Córdoba, Spain.
| | - Michael N Clifford
- School of Bioscience and Medicine, Faculty of Health and Medical Sciences University of Surrey, Guildford, GU2 5XH, United Kingdom; Department of Nutrition, Dietetics and Food, Monash University, Notting Hill, VIC, 3168, Australia
| | - Thelma Polyviou
- Human Nutrition, New Lister Building, University of Glasgow, Glasgow Royal Infirmary, 10-16 Alexandra Parade, Glasgow, G31 2ER, UK
| | - Iziar A Ludwig
- Medicinal Chemistry Laboratory, Center for Applied Medicinal Research, University of Navarra, Avda. Pío XII 55, E-31008, Pamplona, Spain
| | - Hani Alfheeaid
- Department of Food Science and Human Nutrition, College of Agriculture and Veterinary Medicine, Qassim University, Saudi Arabia
| | - José Manuel Moreno-Rojas
- Department of Food and Health, Andalusian Institute of Agricultural and Fishery Research and Training, IFAPA, Alameda Del Obispo, 14004, Córdoba, Spain
| | - Ada L Garcia
- Human Nutrition, New Lister Building, University of Glasgow, Glasgow Royal Infirmary, 10-16 Alexandra Parade, Glasgow, G31 2ER, UK
| | - Dalia Malkova
- Human Nutrition, New Lister Building, University of Glasgow, Glasgow Royal Infirmary, 10-16 Alexandra Parade, Glasgow, G31 2ER, UK
| | - Alan Crozier
- School of Medicine, Dentistry and Nursing, University of Glasgow, Glasgow, G12 8QQ, UK; United Kingdom and Department of Nutrition, University of California, Davis, CA, 95616, USA
| |
Collapse
|
257
|
Sun CC, Su H, Zheng GD, Wang WJ, Yuan E, Zhang QF. Fabrication and characterization of dihydromyricetin encapsulated zein-caseinate nanoparticles and its bioavailability in rat. Food Chem 2020; 330:127245. [PMID: 32521399 DOI: 10.1016/j.foodchem.2020.127245] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Revised: 05/12/2020] [Accepted: 06/02/2020] [Indexed: 02/07/2023]
Abstract
Dihydromyricetin (DMY) encapsulated zein-caseinate nanoparticles (DZP) were fabricated by antisolvent method. The encapsulation and loading efficiency of DMY in DZP were 90.2% and 22.6% as determined by HPLC. DZP is spherical with particle size and ζ potential of 206.4 nm and -29.6 mV, respectively. Physicochemical characterization showed that DMY existed in amorphous form in DZP and its interaction with proteins was found. The fabrication of DZP significantly improved the stability of DMY. Besides, the diffusion rate of DMY in DZP was faster than its suspensions in both simulated gastric and intestinal fluid. The adhesion of DMY in mice gastrointestinal tract was also improved. Besides DMY itself, its methylated metabolites with further sulfation and glucuronide were identified in rat plasma by UPLC-QTOF-MS. UPLC-QqQ-MS/MS quantitative analysis showed that the oral bioavailability of DMY was 1.95 times enhanced. Besides, the concentration of DMY metabolites in plasma were all increased.
Collapse
Affiliation(s)
- Cui-Cui Sun
- Jiangxi Key Laboratory of Natural Product and Functional Food, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Hang Su
- Jiangxi Key Laboratory of Natural Product and Functional Food, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Guo-Dong Zheng
- Jiangxi Key Laboratory of Natural Product and Functional Food, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Wen-Jun Wang
- Jiangxi Key Laboratory of Natural Product and Functional Food, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - En Yuan
- College of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang 330006, China
| | - Qing-Feng Zhang
- Jiangxi Key Laboratory of Natural Product and Functional Food, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China.
| |
Collapse
|
258
|
Wang M, Zhao H, Wen X, Ho CT, Li S. Citrus flavonoids and the intestinal barrier: Interactions and effects. Compr Rev Food Sci Food Saf 2020; 20:225-251. [PMID: 33443802 DOI: 10.1111/1541-4337.12652] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 08/19/2020] [Accepted: 09/21/2020] [Indexed: 12/19/2022]
Abstract
The intestinal barrier plays a central role in sustaining gut homeostasis and, when dysfunctional, may contribute to diseases. Dietary flavonoids derived from Citrus genus represent one of the main naturally occurring phytochemicals with multiple potential benefits for the intestinal barrier function. In the intestine, citrus flavonoids (CFs) undergo ingestion from the lumen, biotransformation in the epithelial cells and/or crosstalk with luminal microbiota to afford various metabolites that may in turn exert protective actions on gut barrier along with their parental compounds. Specifically, the health-promoting properties of CFs and their metabolic bioactives for the intestinal barrier include their capacity to (a) modulate barrier permeability; (b) protect mucus layer; (c) regulate intestinal immune system; (d) fight against oxidative stress; and (e) positively shape microbiome and metabolome. Notably, local effects of CFs can also generate systemic benefits, for instance, improvement of gut microbial dysbiosis helpful to orchestrate gut homeostasis and leading to alleviation of systemic dysmetabolism. Given the important role of the intestinal barrier in overall health, further understanding of underlying action mechanisms and ultimate health effects of CFs as well as their metabolites on the intestine is of great significance to future application of citrus plants and their bioactives as dietary supplements and/or functional ingredients in medical foods.
Collapse
Affiliation(s)
- Meiyan Wang
- Tianjin Key Laboratory of Food and Biotechnology, School of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin, China
| | - Hui Zhao
- Tianjin Key Laboratory of Food and Biotechnology, School of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin, China
| | - Xiang Wen
- Tianjin Key Laboratory of Food and Biotechnology, School of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin, China.,Hubei Key Laboratory for EFGIR, Huanggang Normal University, Hubei, China
| | - Chi-Tang Ho
- Department of Food Science, Rutgers University, New Brunswick, New Jersey
| | - Shiming Li
- Hubei Key Laboratory for EFGIR, Huanggang Normal University, Hubei, China.,Department of Food Science, Rutgers University, New Brunswick, New Jersey
| |
Collapse
|
259
|
Hai Y, Zhang Y, Liang Y, Ma X, Qi X, Xiao J, Xue W, Luo Y, Yue T. Advance on the absorption, metabolism, and efficacy exertion of quercetin and its important derivatives. FOOD FRONTIERS 2020. [DOI: 10.1002/fft2.50] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Affiliation(s)
- Yu Hai
- College of Food Science and Technology Northwest University Xi'an Shaanxi P. R. China
| | - Yuanxiao Zhang
- School of Chemical Engineering Northwest University Xi'an Shaanxi P. R. China
| | - Yingzhi Liang
- College of Food Science and Technology Northwest University Xi'an Shaanxi P. R. China
| | - Xiaoyu Ma
- College of Life Science Northwest University Xi'an Shaanxi P. R. China
| | - Xiao Qi
- College of Food Science and Technology Northwest University Xi'an Shaanxi P. R. China
| | - Jianbo Xiao
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology University of Vigo ‐ Ourense Campus Ourense E‐32004 Spain
| | - Weiming Xue
- School of Chemical Engineering Northwest University Xi'an Shaanxi P. R. China
| | - Yane Luo
- College of Food Science and Technology Northwest University Xi'an Shaanxi P. R. China
| | - Tianli Yue
- College of Food Science and Technology Northwest University Xi'an Shaanxi P. R. China
- Laboratory of Quality and Safety Risk Assessment for Agro‐products (Yangling) Ministry of Agriculture Beijing P. R. China
| |
Collapse
|
260
|
Nieman DC, Ferrara F, Pecorelli A, Woodby B, Hoyle AT, Simonson A, Valacchi G. Postexercise Inflammasome Activation and IL-1β Production Mitigated by Flavonoid Supplementation in Cyclists. Int J Sport Nutr Exerc Metab 2020; 30:396-404. [PMID: 32932235 DOI: 10.1123/ijsnem.2020-0084] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 05/21/2020] [Accepted: 07/19/2020] [Indexed: 11/18/2022]
Abstract
Inflammasomes are multiprotein signaling platforms of the innate immune system that detect markers of physiological stress and promote the maturation of caspase-1 and interleukin 1 beta (IL-1β), IL-18, and gasdermin D. This randomized, cross-over trial investigated the influence of 2-week mixed flavonoid (FLAV) versus placebo (PL) supplementation on inflammasome activation and IL-1β and IL-18 production after 75-km cycling in 22 cyclists (42 ± 1.7 years). Blood samples were collected before and after the 2-week supplementation, and then 0 hr, 1.5 hr, and 21 hr postexercise (176 ± 5.4 min, 73.4 ± 2.0 %VO2max). The supplement (678 mg FLAVs) included quercetin, green tea catechins, and bilberry anthocyanins. The pattern of change in the plasma levels of the inflammasome adaptor oligomer ASC (apoptosis-associated speck-like protein containing caspase recruitment domain) was different between the FLAV and PL trials, with the FLAV ASC levels 52% lower (Cohen's d = 1.06) than PL immediately following 75-km cycling (interaction effect, p = .012). The plasma IL-1β levels in FLAV were significantly lower than PL (23-42%; Cohen's d = 0.293-0.644) throughout 21 hr of recovery (interaction effect, p = .004). The change in plasma gasdermin D levels were lower immediately postexercise in FLAV versus PL (15% contrast, p = .023; Cohen's d = 0.450). The patterns of change in plasma IL-18 and IL-37 did not differ between the FLAV and PL trials (interaction effects, p = .388, .716, respectively). These data indicate that 2-week FLAV ingestion mitigated inflammasome activation, with a corresponding decrease in IL-1β release in cyclists after a 75-km cycling time trial. The data from this study support the strategy of ingesting high amounts of FLAV to mitigate postexercise inflammation.
Collapse
|
261
|
Šola I, Vujčić Bok V, Pinterić M, Auer S, Ludwig-Müller J, Rusak G. Improving the phytochemical profile and bioactivity of Chinese cabbage sprouts by interspecific transfer of metabolites. Food Res Int 2020; 137:109726. [DOI: 10.1016/j.foodres.2020.109726] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 08/04/2020] [Accepted: 09/14/2020] [Indexed: 12/23/2022]
|
262
|
Cárdenas-Castro AP, Alvarez-Parrilla E, Montalvo-González E, Sánchez-Burgos JA, Venema K, Sáyago-Ayerdi SG. Stability and anti-topoisomerase activity of phenolic compounds of Capsicum annuum "Serrano" after gastrointestinal digestion and in vitro colonic fermentation. Int J Food Sci Nutr 2020; 71:826-838. [PMID: 32131652 DOI: 10.1080/09637486.2020.1734542] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
"Serrano" pepper is extensively used in Mexican cuisine. The aim of this study was to identify the bioaccessible phenolic compounds (PC) of "Serrano" pepper as well as short-chain fatty acids (SCFA) produced and PC bioconverted using an in vitro step-wise gastromimetic model of the intestinal digestion and anaerobic fermentation of the isolated indigestible fraction (IF). The anti-topoisomerase activity of the fermented samples was also evaluated. PC bioaccessibility was about 45% in the small intestine. Chlorogenic acid and capsaicin were identified during the intestinal digestion, while quercetin was identified as available to the gut microbiota. After 48-h fermentation, SCFA molar ratio was 77:11:12 for acetic, propionic and butyric acid. The PC identified in IF and after 12 h of fermentation showed anti-topoisomerase activity. A synergistic effect among the PC and gut metabolites mixture was observed, which indicates a possible antiproliferative mechanism that should be tested in further studies.
Collapse
Affiliation(s)
| | - Emilio Alvarez-Parrilla
- Departamento de Ciencias Químico-Biológicas, Instituto de Ciencias Biomédicas, Universidad Autónoma de Ciudad Juárez, Chihuahua, México
| | | | | | - Koen Venema
- Centre for Healthy Eating and Food Innovation, Maastricht University-Campus Venlo, Venlo, the Netherlands
| | | |
Collapse
|
263
|
Rubert J, Schweiger PJ, Mattivi F, Tuohy K, Jensen KB, Lunardi A. Intestinal Organoids: A Tool for Modelling Diet-Microbiome-Host Interactions. Trends Endocrinol Metab 2020; 31:848-858. [PMID: 33086077 DOI: 10.1016/j.tem.2020.02.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 02/04/2020] [Accepted: 02/06/2020] [Indexed: 12/12/2022]
Abstract
Dietary patterns, microbiome dysbiosis, and gut microbial metabolites (GMMs) have a pivotal role in the homeostasis of intestinal epithelial cells and in disease progression, such as that of colorectal cancer (CRC). Although GMMs and microorganisms have crucial roles in many biological activities, models for deciphering diet-microbiome-host relationships are largely limited to animal models. Thus, intestinal organoids (IOs) have provided unprecedented opportunities for the generation of in vitro platforms with the sufficient level of complexity to model physiological and pathological diet-microbiome-host conditions. Overall, IO responses to GMM metabolites and microorganisms can provide new insights into the mechanisms by which those agents may prevent or trigger diseases, significantly extending our knowledge of diet-microbiome-host interactions.
Collapse
Affiliation(s)
- Josep Rubert
- CIBIO - Department of Cellular, Computational, and Integrative Biology, University of Trento, Via Sommarive 9, Trento, Italy.
| | - Pawel J Schweiger
- BRIC - Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen N, DK-2200, Denmark; Novo Nordisk Foundation Center for Stem Cell Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Fulvio Mattivi
- CIBIO - Department of Cellular, Computational, and Integrative Biology, University of Trento, Via Sommarive 9, Trento, Italy
| | - Kieran Tuohy
- Department of Food Quality and Nutrition, Research and Innovation Centre, Fondazione Edmund Mach (FEM), Via E. Mach 1, San Michele all'Adige, Italy
| | - Kim B Jensen
- BRIC - Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen N, DK-2200, Denmark; Novo Nordisk Foundation Center for Stem Cell Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Andrea Lunardi
- CIBIO - Department of Cellular, Computational, and Integrative Biology, University of Trento, Via Sommarive 9, Trento, Italy
| |
Collapse
|
264
|
Chen Q, Liu X, Hu Y, Wang Y, Sun B, Chen T, Luo Y, Zhang Y, Li M, Liu Z, Wang X, Tang H. Broaden the sugar donor selectivity of blackberry glycosyltransferase UGT78H2 through residual substitutions. Int J Biol Macromol 2020; 166:277-287. [PMID: 33129904 DOI: 10.1016/j.ijbiomac.2020.10.184] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 10/21/2020] [Accepted: 10/22/2020] [Indexed: 01/31/2023]
Abstract
Glycosylated secondary metabolites constitute a large proportion of nutrients or ingredients in consumed plants and related products. The glycosyl decoration largely depends on the activity of plant UDP-glycosyltransferases (UGTs). Mechanisms underlying the substrate selectivity and specificity of these reactions remain elusive. Here we report the cloning and functional characterization of a UGT, UGT78H2 in blackberry fruits. In vitro enzyme substrate specificity analysis and enzymatic kinetics evidenced that UGT78H2 glycosylate exclusively quercetin using uridine-5' diphosphate glucuronic acid (UDP-glucuronic acid) and uridine-5' diphosphate galactose (UDP-galactose). Site-directed mutagenesis was introduced into two residuals (N340P, K360N) previously unexplored. The mutation enhanced the protein catalyzing efficiency, especially toward UDP-galactose (23% higher), and expanded the sugar donor selectivity, which can use UDP-glucose as well. Molecular modeling and biochemical analysis results enable identification of the 23rd residue (360th in UGT78H2) of the PSPG (plant secondary product glycosyltransferase) motif as a key residue in defining this sugar selecting spectrum. Additionally, promoter of UGT78H2 was obtained. Transgenic analysis using the UGT78H2pro::GUS reporter system demonstrated that transcripts controlled by the promoter predominantly expressed in younger tissues. Subcellular localization study revealed that UGT78H2 was a soluble protein in the nucleus and cytoplasm. These results clarified the bio-function of UGT78H2 and provided a valid approach for substrate selectivity modification in horticultural plants, particularly for sugar donor selectivity.
Collapse
Affiliation(s)
- Qing Chen
- College of Horticulture, Sichuan Agricultural University, China.
| | - Xunju Liu
- College of Horticulture, Sichuan Agricultural University, China.
| | - Yueyang Hu
- College of Horticulture, Sichuan Agricultural University, China
| | - Yan Wang
- Institute of Pomology and Olericulture, Sichuan Agricultural University, China.
| | - Bo Sun
- College of Horticulture, Sichuan Agricultural University, China.
| | - Tao Chen
- College of Life Science, Sichuan Agricultural University, China
| | - Ya Luo
- College of Horticulture, Sichuan Agricultural University, China.
| | - Yong Zhang
- College of Horticulture, Sichuan Agricultural University, China.
| | - Mengyao Li
- College of Horticulture, Sichuan Agricultural University, China.
| | - Zejing Liu
- College of Horticulture, Sichuan Agricultural University, China.
| | - Xiaorong Wang
- Institute of Pomology and Olericulture, Sichuan Agricultural University, China.
| | - Haoru Tang
- College of Horticulture, Sichuan Agricultural University, China; Institute of Pomology and Olericulture, Sichuan Agricultural University, China.
| |
Collapse
|
265
|
Oh JH, Karadeniz F, Lee JI, Seo Y, Jang MS, Kong CS. Effect and Comparison of Luteolin and Its Derivative Sodium Luteolin-4'-sulfonate on Adipogenic Differentiation of Human Bone Marrow-Derived Mesenchymal Stem Cells through AMPK-Mediated PPAR γ Signaling. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2020; 2020:8894910. [PMID: 33178328 PMCID: PMC7644305 DOI: 10.1155/2020/8894910] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 10/06/2020] [Accepted: 10/15/2020] [Indexed: 12/21/2022]
Abstract
Luteolin is a common phytochemical from the flavonoid family with a flavone structure. Studies reported several bioactivities for luteolin and similar flavones. Attenuating the increased adipogenesis of bone marrow cells (hBM-MSCs) has been regarded as a therapeutic target against osteoporotic bone disorders. In the present study, the potential roles of luteolin and its sulfonic acid derivative luteolin-OSO3Na in regulating adipogenic differentiation of hBM-MSCs were investigated. Adipo-induced cells were treated with or without compounds, and their effect on adipogenesis was evaluated by adipogenic marker levels such as lipid accumulation and PPARγ pathway activation. Luteolin hindered the adipogenic lipid accumulation in adipo-induced hBM-MSCs. Immunoblotting and reverse transcription-polymerase chain reaction analysis results indicated that luteolin downregulated PPARγ and downstream factors of C/EBPα and SREBP1c expression which resulted in inhibition of adipogenesis. Luteolin-OSO3Na showed similar effects; however, it was significantly less effective compared to luteolin. Investigating p38, JNK, and ERK MAPKs and AMPK activation indicated that luteolin suppressed the MAPK phosphorylation while stimulating AMPK phosphorylation. On the other hand, luteolin-OSO3Na was not able to notably affect the MAPK and AMPK activation. In conclusion, this study suggested that luteolin inhibited adipogenic differentiation of hBM-MSCs via upregulating AMPK activation. Replacing its 4'-hydroxyl group with sulfonic acid sodium salt diminished its antiadipogenic effect indicating its role in regulating AMPK activation. The general significance is that luteolin is a common phytochemical with various health-beneficial effects. The current study suggested that luteolin may serve as a lead compound for developing antiosteoporotic substances with antiadipogenic properties.
Collapse
Affiliation(s)
- Jung Hwan Oh
- Marine Biotechnology Center for Pharmaceuticals and Foods, College of Medical and Life Sciences, Silla University, Busan 46958, Republic of Korea
| | - Fatih Karadeniz
- Marine Biotechnology Center for Pharmaceuticals and Foods, College of Medical and Life Sciences, Silla University, Busan 46958, Republic of Korea
| | - Jung Im Lee
- Marine Biotechnology Center for Pharmaceuticals and Foods, College of Medical and Life Sciences, Silla University, Busan 46958, Republic of Korea
| | - Youngwan Seo
- Division of Marine Bioscience, Korea Maritime and Ocean University, Busan 49112, Republic of Korea
| | - Mi-Soon Jang
- Food Safety and Processing Research Division, National Institute of Fisheries Science, Busan 46083, Republic of Korea
| | - Chang-Suk Kong
- Marine Biotechnology Center for Pharmaceuticals and Foods, College of Medical and Life Sciences, Silla University, Busan 46958, Republic of Korea
- Department of Food and Nutrition, College of Medical and Life Sciences, Silla University, Busan 46958, Republic of Korea
| |
Collapse
|
266
|
Zielińska D, Turemko M. Electroactive Phenolic Contributors and Antioxidant Capacity of Flesh and Peel of 11 Apple Cultivars Measured by Cyclic Voltammetry and HPLC-DAD-MS/MS. Antioxidants (Basel) 2020; 9:E1054. [PMID: 33126563 PMCID: PMC7694104 DOI: 10.3390/antiox9111054] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 10/24/2020] [Accepted: 10/26/2020] [Indexed: 12/17/2022] Open
Abstract
In this study, 11 apple cultivars were characterized by their total phenolic content (TPC) and total flavonoid content (TFC) and antioxidant, reducing, and chelating capacity by 2,2-diphenyl-1-picrylhydrazyl (DPPH) test, cyclic voltammetry (CV), and ferric reducing antioxidant power (FRAP) assays; and ferrous ion chelating capacity. The phenolic compounds in flesh and peel were determined by liquid chromatography coupled to mass spectrometry and diode array detector (HPLC-DAD-MS/MS) and their electroactivity by CV. The results showed higher TPC, TFC, and antioxidant capacity by DPPH test in the peels of all apple cultivars as compared to the respective flesh. The peel extracts also showed two-fold higher FRAP values as compared to the flesh extracts. The reducing capacity of the peel and flesh determined by CV measurements confirmed the results achieved by spectrophotometric methods of evaluating antioxidant capacity. There was no significant difference in chelating capacity in the peel and flesh. The HPLC-DAD-MS/MS analysis showed the presence of 11 phenolic compounds in the peel and flesh which varied in antioxidant, reducing, and chelating activity. The order of the phenolic compound content in flesh and peel in Quinte cultivar, which showed the highest antioxidant capacity, was as follows: epicatechin > chlorogenic acid > quercetin 3-arabinoside > quercetin 3-glucoside > cyanidin 3-galactoside > quercetin 3-rhamnoside > catechin > phloridzin > rutin > phloretin = quercetin. CV results were highly correlated with those obtained by spectrophotometry and HPLC-DAD-MS/MS, providing evidence to support the use of cyclic voltammetry as a rapid method to determine the phenolic profile and reducing the power of apple flesh and peel. The association between antioxidant assays and phenolic compound content showed that the highest contribution to the antioxidant capacity of apple peel and flesh was provided by catechin, epicatechin, and cyadinin-3-galactoside, while phloretin, phloridzin, and chlorogenic acid were the main contributors to chelating activity. Results from this study clearly indicate that removing the peel from apples may induce a significant loss of antioxidants.
Collapse
Affiliation(s)
- Danuta Zielińska
- Department of Chemistry, University of Warmia and Mazury in Olsztyn, Plac Lodzki 4, 10-727 Olsztyn, Poland;
| | | |
Collapse
|
267
|
Starowicz M, Piskuła M, Achrem–Achremowicz B, Zieliński H. Phenolic Compounds from Apples: Reviewing their Occurrence, Absorption, Bioavailability, Processing, and Antioxidant Activity – a Review. POL J FOOD NUTR SCI 2020. [DOI: 10.31883/pjfns/127635] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
|
268
|
Rupasinghe HV. Special Issue "Flavonoids and Their Disease Prevention and Treatment Potential": Recent Advances and Future Perspectives. Molecules 2020; 25:E4746. [PMID: 33081132 PMCID: PMC7587571 DOI: 10.3390/molecules25204746] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 10/15/2020] [Indexed: 02/07/2023] Open
Abstract
In recent years, the interest in flavonoids as dietary bioactives to prevent human diseases, as well as their candidacy as pharmaceutical leads, has exponentially expanded [...].
Collapse
Affiliation(s)
- H.P. Vasantha Rupasinghe
- Department of Plant, Food, and Environmental Sciences, Faculty of Agriculture, Dalhousie University, Truro, NS B2N 5E3, Canada; ; Tel.: +1-902-893-6623
- Department of Pathology, Faculty of Medicine, Dalhousie University, Halifax, NS B3H 4R2, Canada
| |
Collapse
|
269
|
Williamson G, Sheedy K. Effects of Polyphenols on Insulin Resistance. Nutrients 2020; 12:E3135. [PMID: 33066504 PMCID: PMC7602234 DOI: 10.3390/nu12103135] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 10/09/2020] [Accepted: 10/12/2020] [Indexed: 12/11/2022] Open
Abstract
Insulin resistance (IR) is apparent when tissues responsible for clearing glucose from the blood, such as adipose and muscle, do not respond properly to appropriate signals. IR is estimated based on fasting blood glucose and insulin, but some measures also incorporate an oral glucose challenge. Certain (poly)phenols, as supplements or in foods, can improve insulin resistance by several mechanisms including lowering postprandial glucose, modulating glucose transport, affecting insulin signalling pathways, and by protecting against damage to insulin-secreting pancreatic β-cells. As shown by intervention studies on volunteers, the most promising candidates for improving insulin resistance are (-)-epicatechin, (-)-epicatechin-containing foods and anthocyanins. It is possible that quercetin and phenolic acids may also be active, but data from intervention studies are mixed. Longer term and especially dose-response studies on mildly insulin resistant participants are required to establish the extent to which (poly)phenols and (poly)phenol-rich foods may improve insulin resistance in compromised groups.
Collapse
Affiliation(s)
- Gary Williamson
- Department of Nutrition, Dietetics and Food, School of Clinical Sciences at Monash Health, Faculty of Medicine, Nursing and Health Sciences, Monash University, BASE Facility, 264 Ferntree Gully Road, Notting Hill, VIC 3168, Australia;
| | | |
Collapse
|
270
|
Koudoufio M, Desjardins Y, Feldman F, Spahis S, Delvin E, Levy E. Insight into Polyphenol and Gut Microbiota Crosstalk: Are Their Metabolites the Key to Understand Protective Effects against Metabolic Disorders? Antioxidants (Basel) 2020; 9:E982. [PMID: 33066106 PMCID: PMC7601951 DOI: 10.3390/antiox9100982] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 09/30/2020] [Accepted: 09/30/2020] [Indexed: 12/12/2022] Open
Abstract
Lifestyle factors, especially diet and nutrition, are currently regarded as essential avenues to decrease modern-day cardiometabolic disorders (CMD), including obesity, metabolic syndrome, type 2 diabetes, and atherosclerosis. Many groups around the world attribute these trends, at least partially, to bioactive plant polyphenols given their anti-oxidant and anti-inflammatory actions. In fact, polyphenols can prevent or reverse the progression of disease processes through many distinct mechanisms. In particular, the crosstalk between polyphenols and gut microbiota, recently unveiled thanks to DNA-based tools and next generation sequencing, unravelled the central regulatory role of dietary polyphenols and their intestinal micro-ecology metabolites on the host energy metabolism and related illnesses. The objectives of this review are to: (1) provide an understanding of classification, structure, and bioavailability of dietary polyphenols; (2) underline their metabolism by gut microbiota; (3) highlight their prebiotic effects on microflora; (4) discuss the multifaceted roles of their metabolites in CMD while shedding light on the mechanisms of action; and (5) underscore their ability to initiate host epigenetic regulation. In sum, the review clearly documents whether dietary polyphenols and micro-ecology favorably interact to promote multiple physiological functions on human organism.
Collapse
Affiliation(s)
- Mireille Koudoufio
- Research Centre, Sainte-Justine University Health Center, Montreal, QC H3T 1C5, Canada; (M.K.); (F.F.); (S.S.); (E.D.)
- Department of Nutrition, Université de Montréal, Montreal, QC H3T 1J4, Canada
- Institute of Nutrition and Functional Foods, Laval University, Quebec City, QC G1V 0A6, Canada;
| | - Yves Desjardins
- Institute of Nutrition and Functional Foods, Laval University, Quebec City, QC G1V 0A6, Canada;
| | - Francis Feldman
- Research Centre, Sainte-Justine University Health Center, Montreal, QC H3T 1C5, Canada; (M.K.); (F.F.); (S.S.); (E.D.)
- Department of Nutrition, Université de Montréal, Montreal, QC H3T 1J4, Canada
- Institute of Nutrition and Functional Foods, Laval University, Quebec City, QC G1V 0A6, Canada;
| | - Schohraya Spahis
- Research Centre, Sainte-Justine University Health Center, Montreal, QC H3T 1C5, Canada; (M.K.); (F.F.); (S.S.); (E.D.)
- Department of Nutrition, Université de Montréal, Montreal, QC H3T 1J4, Canada
- Institute of Nutrition and Functional Foods, Laval University, Quebec City, QC G1V 0A6, Canada;
| | - Edgard Delvin
- Research Centre, Sainte-Justine University Health Center, Montreal, QC H3T 1C5, Canada; (M.K.); (F.F.); (S.S.); (E.D.)
- Department of Biochemistry, Université de Montréal, Montreal, QC H3T 1J4, Canada
| | - Emile Levy
- Research Centre, Sainte-Justine University Health Center, Montreal, QC H3T 1C5, Canada; (M.K.); (F.F.); (S.S.); (E.D.)
- Department of Nutrition, Université de Montréal, Montreal, QC H3T 1J4, Canada
- Institute of Nutrition and Functional Foods, Laval University, Quebec City, QC G1V 0A6, Canada;
- Department of Pediatrics, Université de Montréal, Montreal, QC H3T 1J4, Canada
| |
Collapse
|
271
|
Garcia G, Pais TF, Pinto P, Dobson G, McDougall GJ, Stewart D, Santos CN. Bioaccessible Raspberry Extracts Enriched in Ellagitannins and Ellagic Acid Derivatives Have Anti-Neuroinflammatory Properties. Antioxidants (Basel) 2020; 9:E970. [PMID: 33050384 PMCID: PMC7600793 DOI: 10.3390/antiox9100970] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 10/06/2020] [Accepted: 10/07/2020] [Indexed: 01/01/2023] Open
Abstract
Chronic neuroinflammation associated with neurodegenerative disorders has been reported to be prevented by dietary components. Particularly, dietary (poly)phenols have been identified as having anti-inflammatory and neuroprotective actions, and their ingestion is considered a major preventive factor for such disorders. To assess the relation between (poly)phenol classes and their bioactivity, we used five different raspberry genotypes, which were markedly different in their (poly)phenol profiles within a similar matrix. In addition, gastro-intestinal bio-accessible fractions were produced, which simulate the (poly)phenol metabolites that may be absorbed after digestion, and evaluated for anti-inflammatory potential using LPS-stimulated microglia. Interestingly, the fraction from genotype 2J19 enriched in ellagitannins, their degradation products and ellagic acid, attenuated pro-inflammatory markers and mediators CD40, NO, TNF-α, and intracellular superoxide via NF-κB, MAPK and NFAT pathways. Importantly, it also increased the release of the anti-inflammatory cytokine IL-10. These effects contrasted with fractions richer in anthocyanins, suggesting that ellagitannins and its derivatives are major anti-inflammatory (poly)phenols and promising compounds to alleviate neuroinflammation.
Collapse
Affiliation(s)
- Gonçalo Garcia
- Instituto de Biologia Experimental e Tecnológica (iBET), apartado 12, 2781-901 Oeiras, Portugal; (G.G.); (T.F.P.)
- ITQB, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal;
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal
| | - Teresa Faria Pais
- Instituto de Biologia Experimental e Tecnológica (iBET), apartado 12, 2781-901 Oeiras, Portugal; (G.G.); (T.F.P.)
- Instituto Gulbenkian de Ciência (IGC), Rua Quinta Grande, 2780-156 Oeiras, Portugal
| | - Paula Pinto
- ITQB, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal;
- Instituto Politécnico de Santarém, Escola Superior Agrária, Qta do Galinheiro, 2001-904 Santarém, Portugal
- Life Quality Research Centre (CIEQV), IPSantarém/IPLeiria, 2040-413 Rio Maior, Portugal
| | - Gary Dobson
- Plant Biochemistry and Food Quality Group, Environmental and Biochemical Science, The James Hutton Institute, Dundee DD2 5DA, Scotland, UK; (G.D.); (G.J.M.); (D.S.)
| | - Gordon J. McDougall
- Plant Biochemistry and Food Quality Group, Environmental and Biochemical Science, The James Hutton Institute, Dundee DD2 5DA, Scotland, UK; (G.D.); (G.J.M.); (D.S.)
| | - Derek Stewart
- Plant Biochemistry and Food Quality Group, Environmental and Biochemical Science, The James Hutton Institute, Dundee DD2 5DA, Scotland, UK; (G.D.); (G.J.M.); (D.S.)
- School of Engineering and Physical Sciences, Institute of Mechanical, Process and Energy Engineering, Heriot-Watt University, Edinburg EH14 4AS, Scotland, UK
| | - Cláudia Nunes Santos
- Instituto de Biologia Experimental e Tecnológica (iBET), apartado 12, 2781-901 Oeiras, Portugal; (G.G.); (T.F.P.)
- ITQB, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal;
- CEDOC, Chronic Diseases Research Centre, NOVA Medical School//Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, 130, 1169-056 Lisboa, Portugal
| |
Collapse
|
272
|
Castello F, Fernández-Pachón MS, Cerrillo I, Escudero-López B, Ortega Á, Rosi A, Bresciani L, Del Rio D, Mena P. Absorption, metabolism, and excretion of orange juice (poly)phenols in humans: The effect of a controlled alcoholic fermentation. Arch Biochem Biophys 2020; 695:108627. [PMID: 33039389 DOI: 10.1016/j.abb.2020.108627] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 10/07/2020] [Accepted: 10/08/2020] [Indexed: 01/13/2023]
Abstract
The consumption of orange juice provides high concentrations of health-promoting bioactive compounds, the amount of which may increase upon alcoholic fermentation. Although fermentation may offer new prospects for the industry of orange-related products, there is a lack of studies reporting the influence of controlled alcoholic fermentation on the bioavailability of orange juice (poly)phenols in humans. The aim of this study was to evaluate the absorption profile, pharmacokinetic parameters, and urinary excretion of orange juice (poly)phenols in nine volunteers after acute administration of an orange juice and a beverage prepared after controlled alcoholic fermentation of the juice. Plasma and urine samples were analysed through a UHPLC-ESI-MS/MS targeted approach. A total of 24 (poly)phenol metabolites including both flavanone and phenolic acid derivatives were quantified, most of them being recorded only in urine. Phase II conjugates of hesperetin and naringenin were the main metabolites in plasma, while phenolic acids, in particular hydroxybenzoic acids, were the main compounds in urine. (Poly)phenols in both beverages were highly bioavailable (between 46 and 59%) and a notable inter-individual variability was seen. Significant treatment × time interactions were recorded for the sum of flavanones and phenolic acids in plasma, the (poly)phenols in the fermented juice being absorbed faster than after orange juice intake. Nevertheless, despite the food matrix having an impact on the absorption profile of orange juice (poly)phenols, this did not influence the pharmacokinetic parameters and urinary excretion of the (poly)phenol metabolites.
Collapse
Affiliation(s)
- Fabio Castello
- Department of Food & Drugs, University of Parma, Via Volturno 39, 43125, Parma, Italy
| | - María-Soledad Fernández-Pachón
- Department of Molecular Biology and Biochemistry Engineering, Area of Nutrition and Food Sciences, Pablo de Olavide University, Carretera de Utrera Km 1, Seville, Spain.
| | - Isabel Cerrillo
- Department of Molecular Biology and Biochemistry Engineering, Area of Nutrition and Food Sciences, Pablo de Olavide University, Carretera de Utrera Km 1, Seville, Spain
| | - Blanca Escudero-López
- Department of Molecular Biology and Biochemistry Engineering, Area of Nutrition and Food Sciences, Pablo de Olavide University, Carretera de Utrera Km 1, Seville, Spain
| | - Ángeles Ortega
- Department of Molecular Biology and Biochemistry Engineering, Area of Nutrition and Food Sciences, Pablo de Olavide University, Carretera de Utrera Km 1, Seville, Spain
| | - Alice Rosi
- Department of Food & Drugs, University of Parma, Via Volturno 39, 43125, Parma, Italy
| | - Letizia Bresciani
- Department of Veterinary Science, University of Parma, Via Volturno 39, 43125, Parma, Italy
| | - Daniele Del Rio
- Department of Veterinary Science, University of Parma, Via Volturno 39, 43125, Parma, Italy; Microbiome Research Hub, University of Parma, Parco Area Delle Scienze 11/A, 43124, Parma, Italy.
| | - Pedro Mena
- Department of Food & Drugs, University of Parma, Via Volturno 39, 43125, Parma, Italy
| |
Collapse
|
273
|
Cold brewing of rooibos tea affects its sensory profile and physicochemical properties compared to regular hot, and boiled brewing. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.109919] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
274
|
Kay CD, Clifford MN, Mena P, McDougall GJ, Andres-Lacueva C, Cassidy A, Del Rio D, Kuhnert N, Manach C, Pereira-Caro G, Rodriguez-Mateos A, Scalbert A, Tomás-Barberán F, Williamson G, Wishart DS, Crozier A. Recommendations for standardizing nomenclature for dietary (poly)phenol catabolites. Am J Clin Nutr 2020; 112:1051-1068. [PMID: 32936878 PMCID: PMC7528558 DOI: 10.1093/ajcn/nqaa204] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 06/29/2020] [Indexed: 12/14/2022] Open
Abstract
There is a lack of focus on the protective health effects of phytochemicals in dietary guidelines. Although a number of chemical libraries and databases contain dietary phytochemicals belonging to the plant metabolome, they are not entirely relevant to human health because many constituents are extensively metabolized within the body following ingestion. This is especially apparent for the highly abundant dietary (poly)phenols, for which the situation is compounded by confusion regarding their bioavailability and metabolism, partially because of the variety of nomenclatures and trivial names used to describe compounds arising from microbial catabolism in the gastrointestinal tract. This confusion, which is perpetuated in online chemical/metabolite databases, will hinder future discovery of bioactivities and affect the establishment of future dietary guidelines if steps are not taken to overcome these issues. In order to resolve this situation, a nomenclature system for phenolic catabolites and their human phase II metabolites is proposed in this article and the basis of its format outlined. Previous names used in the literature are cited along with the recommended nomenclature, International Union of Pure and Applied Chemistry terminology, and, where appropriate, Chemical Abstracts Service numbers, InChIKey, and accurate mass.
Collapse
Affiliation(s)
- Colin D Kay
- Plants for Human Health Institute, Food Bioprocessing and Nutrition Sciences Department, North Carolina State University, Kannapolis, NC, USA
| | - Michael N Clifford
- School of Bioscience and Medicine, University of Surrey, Guildford, United Kingdom
- Department of Nutrition, Dietetics and Food, Monash University, Notting Hill, Victoria, Australia
| | - Pedro Mena
- Department of Food and Drugs, University of Parma, Parma, Italy
| | - Gordon J McDougall
- The James Hutton Research Institute, Invergowrie, Dundee, United Kingdom
| | - Cristina Andres-Lacueva
- Department of Nutrition, Food Science and Gastronomy, University of Barcelona, Barcelona, Spain
- CIBER Frailty and Healthy Aging (CIBERfes), Institute of Health Carlos III, Barcelona, Spain
| | - Aedin Cassidy
- Institue for Food Security, Queen's University, Belfast, United Kingdom
| | - Daniele Del Rio
- Department of Food and Drugs, University of Parma, Parma, Italy
| | - Nikolai Kuhnert
- Department of Life Sciences and Health, Jacobs University, Bremen, Germany
| | - Claudine Manach
- Université Clermont Auvergne, INRAE, Clermont-Ferrand, France
| | - Gema Pereira-Caro
- Department of Food Science and Health, Andalusian Institute of Agricultural and Fisheries Research and Training, Cordoba, Spain
| | | | | | | | - Gary Williamson
- Department of Nutrition, Dietetics and Food, Monash University, Notting Hill, Victoria, Australia
| | - David S Wishart
- Department of Biological Sciences, University of Alberta, Edmonton, Canada
| | - Alan Crozier
- School of Medicine, Dentistry and Nursing, University of Glasgow, Glasgow, United Kingdom
- Department of Nutrition, University of California, Davis, Davis, CA, USA
| |
Collapse
|
275
|
Mena P, Bresciani L. Dietary fibre modifies gut microbiota: what’s the role of (poly)phenols? Int J Food Sci Nutr 2020; 71:783-784. [DOI: 10.1080/09637486.2020.1826913] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Pedro Mena
- Human Nutrition Unit, Department of Food and Drug, University of Parma, Parma, Italy
| | - Letizia Bresciani
- Human Nutrition Unit, Department of Veterinary Science, University of Parma, Parma, Italy
| |
Collapse
|
276
|
Ciumărnean L, Milaciu MV, Runcan O, Vesa ȘC, Răchișan AL, Negrean V, Perné MG, Donca VI, Alexescu TG, Para I, Dogaru G. The Effects of Flavonoids in Cardiovascular Diseases. Molecules 2020; 25:E4320. [PMID: 32967119 PMCID: PMC7571023 DOI: 10.3390/molecules25184320] [Citation(s) in RCA: 146] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 09/13/2020] [Accepted: 09/18/2020] [Indexed: 12/14/2022] Open
Abstract
Flavonoids are metabolites of plants and fungus. Flavonoid research has been paid special attention to in recent times after the observation of their beneficial effects on the cardiovascular system. These favorable effects are exerted by flavonoids mainly due to their antioxidant properties, which result from the ability to decrease the oxidation of low-density lipoproteins, thus improving the lipid profiles. The other positive effect exerted on the cardiovascular system is the ability of flavonoids to produce vasodilation and regulate the apoptotic processes in the endothelium. Researchers suggested that these effects, including their anti-inflammatory function, are consequences of flavonoids' potent antioxidant properties, but recent studies have shown multiple signaling pathways linked to them, thus suggesting that there are more mechanisms involved in the beneficial effect of the flavonoids on the human body. This review aims to present the latest data on the classification of these substances, their main mechanisms of action in the human body, and the beneficial effects on the physiological and pathological status of the cardiovascular system.
Collapse
Affiliation(s)
- Lorena Ciumărnean
- Department 5—Internal Medicine, 4th Medical Clinic, Faculty of Medicine, “Iuliu Haţieganu” University of Medicine and Pharmacy, 400015 Cluj-Napoca, Romania; (L.C.); (M.V.M.); (M.-G.P.); (V.N.); (T.-G.A.); (I.P.)
| | - Mircea Vasile Milaciu
- Department 5—Internal Medicine, 4th Medical Clinic, Faculty of Medicine, “Iuliu Haţieganu” University of Medicine and Pharmacy, 400015 Cluj-Napoca, Romania; (L.C.); (M.V.M.); (M.-G.P.); (V.N.); (T.-G.A.); (I.P.)
| | - Octavia Runcan
- Regional Institute of Gastroenterology and Hepatology ‘Octavian Fodor’ Cluj-Napoca, 400162 Cluj-Napoca, Romania;
| | - Ștefan Cristian Vesa
- Department 2—Functional Sciences, Discipline of Pharmacology, Toxicology and Clinical Pharmacology, Faculty of Medicine, “Iuliu Haţieganu” University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania
| | - Andreea Liana Răchișan
- Department of Pediatrics, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400177 Cluj-Napoca, Romania
| | - Vasile Negrean
- Department 5—Internal Medicine, 4th Medical Clinic, Faculty of Medicine, “Iuliu Haţieganu” University of Medicine and Pharmacy, 400015 Cluj-Napoca, Romania; (L.C.); (M.V.M.); (M.-G.P.); (V.N.); (T.-G.A.); (I.P.)
| | - Mirela-Georgiana Perné
- Department 5—Internal Medicine, 4th Medical Clinic, Faculty of Medicine, “Iuliu Haţieganu” University of Medicine and Pharmacy, 400015 Cluj-Napoca, Romania; (L.C.); (M.V.M.); (M.-G.P.); (V.N.); (T.-G.A.); (I.P.)
| | - Valer Ioan Donca
- Department of Geriatrics-Gerontology, “Iuliu Haţieganu” University of Medicine and Pharmacy, 400139 Cluj-Napoca, Romania;
| | - Teodora-Gabriela Alexescu
- Department 5—Internal Medicine, 4th Medical Clinic, Faculty of Medicine, “Iuliu Haţieganu” University of Medicine and Pharmacy, 400015 Cluj-Napoca, Romania; (L.C.); (M.V.M.); (M.-G.P.); (V.N.); (T.-G.A.); (I.P.)
| | - Ioana Para
- Department 5—Internal Medicine, 4th Medical Clinic, Faculty of Medicine, “Iuliu Haţieganu” University of Medicine and Pharmacy, 400015 Cluj-Napoca, Romania; (L.C.); (M.V.M.); (M.-G.P.); (V.N.); (T.-G.A.); (I.P.)
| | - Gabriela Dogaru
- Department of Physical Medicine & Rehabilitation, “Iuliu Hațieganu” University of Medicine and Pharmacy, Louis Pasteur Street 6, 400349 Cluj-Napoca, Romania;
| |
Collapse
|
277
|
Kothari D, Lee WD, Kim SK. Allium Flavonols: Health Benefits, Molecular Targets, and Bioavailability. Antioxidants (Basel) 2020; 9:E888. [PMID: 32961762 PMCID: PMC7555649 DOI: 10.3390/antiox9090888] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 09/11/2020] [Accepted: 09/16/2020] [Indexed: 12/14/2022] Open
Abstract
Allium species are revered worldwide as vegetables, condiments, and spices as well as the therapeutic agents in traditional medicine. The bioactive compounds in alliums mainly include organosulfur compounds, polyphenols, dietary fibers, and saponins. Flavonoids, particularly flavonols from alliums, have been demonstrated to have the antioxidant, anticancer, hypolipidemic, anti-diabetic, cardioprotective, neuroprotective, and antimicrobial activities. However, flavonols are mostly characterized from onions and have not been comprehensively reviewed across different species. This article therefore focuses on flavonol profiles from different Allium species, their health effects, underlying molecular mechanisms, and bioavailability. Intriguingly, the functional health effects of flavonols were mainly ascribed to their antioxidant and anti-inflammatory activities involving a cascade of multiple signaling pathways. Although the Allium-derived flavonols offer tremendous potential in preventing chronic disease risks, in-depth studies are needed to translate their clinical application.
Collapse
Affiliation(s)
| | | | - Soo-Ki Kim
- Department of Animal Science and Technology, Konkuk University, Seoul 05029, Korea; (D.K.); (W.-D.L.)
| |
Collapse
|
278
|
Yang C, Zhang W, Dong X, Fu C, Yuan J, Xu M, Liang Z, Qiu C, Xu C. A natural product solution to aging and aging-associated diseases. Pharmacol Ther 2020; 216:107673. [PMID: 32926934 DOI: 10.1016/j.pharmthera.2020.107673] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 09/02/2020] [Accepted: 09/02/2020] [Indexed: 12/16/2022]
Abstract
Aging is a natural biological progress accompanied by the gradual decline in physiological functions, manifested by its close association with an increased incidence of human diseases and higher vulnerability to death. Those diseases include neurological disorders, cardiovascular diseases, diabetes, and cancer, many of which are currently without effective cures. Even though aging is inevitable, there are still interventions that can be developed to prevent/delay the onset and progression of those aging-associated diseases and extend healthspan and/or lifespan. Here, we review decades of research that reveals the molecular pathways underlying aging and forms the biochemical basis for anti-aging drug development. Importantly, due to the vast chemical space of natural products and the rich history of herb medicines in treating human diseases documented in different cultures, natural products have played essential roles in aging research. Using several of the most promising natural products and their derivatives as examples, we discuss how natural products serve as an inspiration resource that helped the identification of key components/pathways underlying aging, their mechanisms of action inside the cell, and the functional scaffolds or targeting mechanisms that can be learned from natural products for drug engineering and optimization. We argue that natural products might eventually provide a solution to aging and aging-associated diseases.
Collapse
Affiliation(s)
- Chuanbin Yang
- Department of Geriatrics, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, Guangdong, China
| | - Wei Zhang
- Department of Geriatrics, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, Guangdong, China; Integrated Chinese and Western Medicine Postdoctoral Research Station, Jinan University, Guangzhou 510632, China
| | - Xiaoduo Dong
- Department of Geriatrics, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, Guangdong, China; Integrated Chinese and Western Medicine Postdoctoral Research Station, Jinan University, Guangzhou 510632, China
| | - Chunjin Fu
- Department of Geriatrics, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, Guangdong, China
| | - Jimin Yuan
- Department of Geriatrics, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, Guangdong, China
| | - Menglong Xu
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Zhen Liang
- Department of Geriatrics, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, Guangdong, China.
| | - Chen Qiu
- Department of Respiratory and Critical Care Medicine, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, Guangdong, China.
| | - Chengchao Xu
- Department of Geriatrics, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, Guangdong, China; Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA.
| |
Collapse
|
279
|
Zhou Q, Cheng KW, Xiao J, Wang M. The multifunctional roles of flavonoids against the formation of advanced glycation end products (AGEs) and AGEs-induced harmful effects. Trends Food Sci Technol 2020. [DOI: 10.1016/j.tifs.2020.06.002] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
280
|
Bi F, Yong H, Liu J, Zhang X, Shu Y, Liu J. Development and characterization of chitosan and D-α-tocopheryl polyethylene glycol 1000 succinate composite films containing different flavones. Food Packag Shelf Life 2020. [DOI: 10.1016/j.fpsl.2020.100531] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
281
|
Parmenter BH, Croft KD, Hodgson JM, Dalgaard F, Bondonno CP, Lewis JR, Cassidy A, Scalbert A, Bondonno NP. An overview and update on the epidemiology of flavonoid intake and cardiovascular disease risk. Food Funct 2020; 11:6777-6806. [PMID: 32725042 DOI: 10.1039/d0fo01118e] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
There is an accumulating body of literature reporting on dietary flavonoid intake and the risk of cardiovascular disease (CVD) in prospective cohort studies. This makes apparent the need for an overview and update on the current state of the science. To date, at least 27 prospective cohorts (in 44 publications) have evaluated the association between estimated habitual flavonoid intake and CVD risk. At this time, the totality of evidence suggests long-term consumption of flavonoid-rich foods may be associated with a lower risk of fatal and non-fatal ischemic heart disease (IHD), cerebrovascular disease, and total CVD; disease outcomes which are principally, though not exclusively, composed of cases of atherosclerotic CVD (ASCVD). To date, few studies have investigated outcome specific ASCVD, such as peripheral artery disease (PAD) or ischemic stroke. Of the flavonoid subclasses investigated, evidence more often implicates diets rich in anthocyanins, flavan-3-ols, and flavonols in lowering the risk of CVD. Although inferences are restricted by confounding and other inherent limitations of observational studies, causality appears possible based on biological plausibility, temporality, and the relative consistency of the reported associations. However, whether the associations observed represent a benefit of the isolated bioactives per se, or are a signal of the bioactives acting in concert with the co-occurring nutrient matrix within flavonoid-bearing foods, are issues of consideration. Thus, the simple interpretation, and the one most relevant for dietary advice, is that consumption of flavonoid-rich foods or diets higher in flavonoids, appear nutritionally beneficial in the prevention of CVD.
Collapse
Affiliation(s)
- Benjamin H Parmenter
- School of Biomedical Sciences, University of Western Australia, Royal Perth Hospital Research Foundation, Perth, Australia.
| | - Kevin D Croft
- School of Biomedical Sciences, University of Western Australia, Royal Perth Hospital Research Foundation, Perth, Australia.
| | - Jonathan M Hodgson
- School of Medical and Health Sciences, Edith Cowan University, Perth, Australia and Medical School, University of Western Australia, Perth, Australia
| | - Frederik Dalgaard
- Department of Cardiology, Herlev & Gentofte University Hospital, Copenhagen, Denmark
| | - Catherine P Bondonno
- School of Medical and Health Sciences, Edith Cowan University, Perth, Australia and Medical School, University of Western Australia, Perth, Australia
| | - Joshua R Lewis
- School of Medical and Health Sciences, Edith Cowan University, Perth, Australia and Medical School, University of Western Australia, Perth, Australia and Centre for Kidney Research, School of Public Health, The University of Sydney, Sydney, Australia
| | - Aedín Cassidy
- Institute for Global Food Security, Queen's University, Belfast, Northern Ireland
| | - Augustin Scalbert
- Biomarkers Group, International Agency for Research on Cancer, Lyon, France
| | - Nicola P Bondonno
- School of Biomedical Sciences, University of Western Australia, Royal Perth Hospital Research Foundation, Perth, Australia. and School of Medical and Health Sciences, Edith Cowan University, Perth, Australia and Institute for Global Food Security, Queen's University, Belfast, Northern Ireland
| |
Collapse
|
282
|
Racova Z, Anzenbacherova E, Papouskova B, Poschner S, Kucova P, Gausterer JC, Gabor F, Kolar M, Anzenbacher P. Metabolite profiling of natural substances in human: in vitro study from fecal bacteria to colon carcinoma cells (Caco-2). J Nutr Biochem 2020; 85:108482. [PMID: 32801030 DOI: 10.1016/j.jnutbio.2020.108482] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 07/02/2020] [Accepted: 08/03/2020] [Indexed: 01/13/2023]
Abstract
Flavonoids, including anthocyanins, are polyphenolic compounds present in fruits, vegetables and dietary supplements. They can be absorbed from the intestine to the bloodstream or pass into the large intestine. Various bacterial species and enzymes are present along the entire intestine. The aim of the present work was to investigate the intestinal metabolism of selected dietary polyphenol and polyphenol glycosides (quercetin, cyanidin-3-O-glucoside, cyanidin-3-O-galactoside, and delphinidin-3-O-galactoside) by human fecal bacteria. Moreover, the metabolism of metabolites formed from these compounds in human colon carcinoma cells (Caco-2) was also point of the interest. Test compounds were added to fresh human stool in broth or to Caco-2 cells in medium and then incubated for 6 or 20 h at 37°C. After incubation, samples were prepared for LC/MS determination. Main metabolic pathways were deglycosylation, hydrogenation, methylation, hydroxylation, and decomposition. 2,4,5-trihydroxybenzaldehyde, as a metabolite of cyanidin glycosides, was detected after incubation for the first time. Metabolites formed by fecal bacteria were further glucuronidated or methylated by intestinal enzymes. This metabolite profiling of natural compounds has helped to better understand the complex metabolism in the human intestine and this work also has shown the connection of metabolism of natural substances by intestinal bacteria followed by metabolism in intestinal cells.
Collapse
Affiliation(s)
- Zuzana Racova
- Department of Pharmacology, Faculty of Medicine and Dentistry, Palacky University Olomouc, Czech Republic.
| | - Eva Anzenbacherova
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacky University Olomouc, Czech Republic
| | - Barbora Papouskova
- Department of Analytical Chemistry, Faculty of Science, Palacky University Olomouc, Czech Republic
| | - Stefan Poschner
- Division of Clinical Pharmacy and Diagnostics, Department of Pharmaceutical Chemistry, University of Vienna, Austria
| | - Pavla Kucova
- Department of Microbiology, Faculty of Medicine and Dentistry, Palacky University Olomouc, Czech Republic
| | - Julia Clara Gausterer
- Department of Pharmaceutical Technology and Biopharmaceutics, University of Vienna, Austria
| | - Franz Gabor
- Department of Pharmaceutical Technology and Biopharmaceutics, University of Vienna, Austria
| | - Milan Kolar
- Department of Microbiology, Faculty of Medicine and Dentistry, Palacky University Olomouc, Czech Republic
| | - Pavel Anzenbacher
- Department of Pharmacology, Faculty of Medicine and Dentistry, Palacky University Olomouc, Czech Republic
| |
Collapse
|
283
|
Williamson G, Kerimi A. Testing of natural products in clinical trials targeting the SARS-CoV-2 (Covid-19) viral spike protein-angiotensin converting enzyme-2 (ACE2) interaction. Biochem Pharmacol 2020; 178:114123. [PMID: 32593613 PMCID: PMC7316054 DOI: 10.1016/j.bcp.2020.114123] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 06/21/2020] [Accepted: 06/23/2020] [Indexed: 02/03/2023]
Abstract
Commonly used drugs for treating many conditions are either natural products or derivatives. In silico modelling has identified several natural products including quercetin as potential highly effective disruptors of the initial infection process involving binding to the interface between the SARS-CoV-2 (Covid-19) Viral Spike Protein and the epithelial cell Angiotensin Converting Enzyme-2 (ACE2) protein. Here we argue that the oral route of administration of quercetin is unlikely to be effective in clinical trials owing to biotransformation during digestion, absorption and metabolism, but suggest that agents could be administered directly by alternative routes such as a nasal or throat spray.
Collapse
Affiliation(s)
- Gary Williamson
- Department of Nutrition, Dietetics and Food, School of Clinical Sciences at Monash Health, Faculty of Medicine, Nursing and Health Sciences, Monash University, BASE Facility, 264 Ferntree Gully Road, Notting Hill, VIC 3168, Australia.
| | - Asimina Kerimi
- Department of Nutrition, Dietetics and Food, School of Clinical Sciences at Monash Health, Faculty of Medicine, Nursing and Health Sciences, Monash University, BASE Facility, 264 Ferntree Gully Road, Notting Hill, VIC 3168, Australia
| |
Collapse
|
284
|
Khan A, Ikram M, Hahm JR, Kim MO. Antioxidant and Anti-Inflammatory Effects of Citrus Flavonoid Hesperetin: Special Focus on Neurological Disorders. Antioxidants (Basel) 2020; 9:E609. [PMID: 32664395 PMCID: PMC7402130 DOI: 10.3390/antiox9070609] [Citation(s) in RCA: 94] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 07/03/2020] [Accepted: 07/07/2020] [Indexed: 12/18/2022] Open
Abstract
Neurodegenerative disorders have emerged as a serious health issue in the current era. The most common neurodegenerative disorders are Alzheimer's disease (AD), Parkinson's disease, multiple sclerosis, and amyotrophic lateral sclerosis (ALS). These diseases involve progressive impairment of neurodegeneration and memory impairment. A wide range of compounds have been identified as potential neuroprotective agents against different models of neurodegeneration both in vivo and in vitro. Hesperetin, a flavanone class of citrus flavonoid, is a derivative of hesperidin found in citrus fruits such as oranges, grapes, and lemons. It has been extensively reported that hesperetin exerts neuroprotective effects in experimental models of neurodegenerative diseases. In this systematic review, we have compiled all the studies conducted on hesperetin in both in vivo and in vitro models of neurodegeneration. Here, we have used an approach to lessen the bias in each study, providing a least biased, broad understanding of findings and impartial conclusions of the strength of evidence and the reliability of findings. In this review, we collected different papers from a wide range of journals describing the beneficial effects of hesperetin on animal models of neurodegeneration. Our results demonstrated consistent neuroprotective effects of hesperetin against different models of neurodegeneration. In addition, we have summarized its underlying mechanisms. This study provides the foundations for future studies and recommendations of further mechanistic approaches to conduct preclinical studies on hesperetin in different models.
Collapse
Affiliation(s)
- Amjad Khan
- Division of Life Sciences and Applied Life Science (BK 21plus), College of Natural Science, Gyeongsang National University, Jinju 52828, Korea
| | - Muhammad Ikram
- Division of Life Sciences and Applied Life Science (BK 21plus), College of Natural Science, Gyeongsang National University, Jinju 52828, Korea
| | - Jong Ryeal Hahm
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Gyeongsang National University Hospital and Institute of Health Sciences and Department of Internal Medicine, College of Medicine, Gyeongsang National University, Jinju 52828, Korea
| | - Myeong Ok Kim
- Division of Life Sciences and Applied Life Science (BK 21plus), College of Natural Science, Gyeongsang National University, Jinju 52828, Korea
| |
Collapse
|
285
|
Nazzaro F, Fratianni F, De Feo V, Battistelli A, Da Cruz AG, Coppola R. Polyphenols, the new frontiers of prebiotics. ADVANCES IN FOOD AND NUTRITION RESEARCH 2020; 94:35-89. [PMID: 32892838 DOI: 10.1016/bs.afnr.2020.06.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
There is a growing interest in the identification of molecules capable to promote health and with a concurrent potential for technological applications. Prebiotics are functional ingredients naturally occurring in some plant and animal foods that since many decades stimulated considerable attention from the pharmaceutical and food industries due to their positive health effects. Together the well-known biomolecules with ascertained prebiotic effect, in last year new molecules were finally recognized as prebiotics, so capable to improve the health of an organism, also through the positive effect exerted on host microbiota. Among the so-called prebiotics, a special mention should be given to polyphenols, probably the most important, or at least among the most important secondary metabolites produced by the vegetal kingdom. This short chapter wants to emphasize polyphenols and, after briefly describing the individual microbiome, to illustrate how polyphenols can, through their influence on the microbiome, have a positive effect on the health of the individual in general, and on some pathologies in particular, for which the role of a bad status of the individual microbiome has been definitively established.
Collapse
Affiliation(s)
| | | | - Vincenzo De Feo
- Department of Pharmacy, University of Salerno, Fisciano, Salerno, Italy
| | | | - Adriano Gomes Da Cruz
- Food Department, Federal Institute of Education, Science and Technology of Rio de Janeiro, Brazil
| | - Raffaele Coppola
- Department of Agricultural, Environmental and Food Sciences, DiAAA-University of Molise, Campobasso, Italy
| |
Collapse
|
286
|
Cladis DP, Debelo H, Lachcik PJ, Ferruzzi MG, Weaver CM. Increasing Doses of Blueberry Polyphenols Alters Colonic Metabolism and Calcium Absorption in Ovariectomized Rats. Mol Nutr Food Res 2020; 64:e2000031. [PMID: 32386352 PMCID: PMC9558423 DOI: 10.1002/mnfr.202000031] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 03/25/2020] [Indexed: 12/31/2022]
Abstract
SCOPE Blueberries are rich sources of bioactive polyphenols that may provide health benefits when consumed regularly, leading to their increased marketing as dietary supplements. However, the metabolic changes associated with consuming concentrated doses of purified polyphenols, as may be present in dietary supplements, are unknown, especially when considering the colonic metabolites formed. This study aimed to evaluate the pharmacokinetics of high doses of purified blueberry polyphenols. METHODS AND RESULTS 5-month old, ovariectomized Sprague-Dawley rats are acutely dosed with purified blueberry polyphenols (0, 75, 350, and 1000 mg total polyphenols per kg body weight (bw)) and 45 Ca to measure calcium absorption. Blood and urine are collected for 48 h after dosing and phenolic metabolites measured via ultra high-pressure liquid chromatography-tandem mass spectrometry (UPLC-MS/MS). The most prominent metabolites are colonically generated cinnamic and hippuric acids. Smaller amounts of other phenolic acids, flavonols, and anthocyanins are also detected. Most metabolites follow a dose-response relationship, though several show saturated absorption. Maximal metabolite concentrations are reached within 12 h for a majority of compounds measured, while some (e.g., hippuric acid) peaked up to 24 h post-dosing. Calcium absorption is significantly increased in the highest dose group (p = 0.03). CONCLUSION These results indicate that increased doses of blueberry polyphenols induce changes in intestinal phenolic metabolism and increase calcium absorption.
Collapse
Affiliation(s)
- Dennis P. Cladis
- Dept. of Food Science, Purdue University, 745 Agriculture Mall Dr, W Lafayette, IN 47907, USA
| | - Hawi Debelo
- Plants for Human Health Institute, North Carolina State University, 600 Laureate Way, Kannapolis, NC 28081, USA
| | - Pamela J. Lachcik
- Dept. of Nutrition Science, Purdue University, 700 W State St, W Lafayette, IN 47907, USA
| | - Mario G. Ferruzzi
- Plants for Human Health Institute, North Carolina State University, 600 Laureate Way, Kannapolis, NC 28081, USA
| | - Connie M. Weaver
- Dept. of Food Science, Purdue University, 745 Agriculture Mall Dr, W Lafayette, IN 47907, USA
| |
Collapse
|
287
|
Martel J, Ojcius DM, Ko YF, Young JD. Phytochemicals as Prebiotics and Biological Stress Inducers. Trends Biochem Sci 2020; 45:462-471. [DOI: 10.1016/j.tibs.2020.02.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 01/30/2020] [Accepted: 02/18/2020] [Indexed: 02/07/2023]
|
288
|
Santana RV, Santos DCD, Santana ACA, Oliveira Filho JGD, Almeida ABD, Lima TMD, Silva FG, Egea MB. Quality parameters and sensorial profile of clarified “Cerrado” cashew juice supplemented with Sacharomyces boulardii and different sweeteners. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.109319] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
289
|
Little R, Houghton MJ, Carr IM, Wabitsch M, Kerimi A, Williamson G. The Ability of Quercetin and Ferulic Acid to Lower Stored Fat is Dependent on the Metabolic Background of Human Adipocytes. Mol Nutr Food Res 2020; 64:e2000034. [PMID: 32350998 DOI: 10.1002/mnfr.202000034] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 04/12/2020] [Indexed: 12/15/2022]
Abstract
SCOPE Dietary flavonoids and phenolic acids can modulate lipid metabolism, but effects on mature human adipocytes are not well characterized. MATERIALS AND METHODS Human adipocytes are differentiated, and contain accumulated lipids, mimicking white adipocytes. They are then cultured either under conditions of actively synthesizing and accumulating additional lipids through lipogenesis ("ongoing lipogenic state") or under conditions of maintaining but not increasing stored lipids ("lipid storage state"). Total lipid, lipidomic and transcriptomics analyses are employed to assess changes after treatment with quercetin and/or ferulic acid. RESULTS In the "lipid storage state," a longer-term treatment (3 doses over 72 h) with low concentrations of quercetin and ferulic acid together significantly lowered stored lipid content, modified lipid composition, and modulated genes related to lipid metabolism with a strong implication of peroxisome proliferator-activated receptor (PPARα)/retinoid X receptor (RXRα) involvement. In the "ongoing lipogenic state," the effect of quercetin and ferulic acid is markedly different, with fewer changes in gene expression and lipid composition, and no detectable involvement of PPARα/RXRα, with a tenfold higher concentration required to attenuate stored lipid content. CONCLUSIONS Multiple low-dose treatment of quercetin and ferulic acid modulates lipid metabolism in adipocytes, but the effect is dramatically dependent on the metabolic state of the cell.
Collapse
Affiliation(s)
- Robert Little
- School of Food Science and Nutrition, University of Leeds, Woodhouse Lane, Leeds, LS2 9JT, UK
| | - Michael J Houghton
- School of Food Science and Nutrition, University of Leeds, Woodhouse Lane, Leeds, LS2 9JT, UK.,Department of Nutrition, Dietetics and Food, School of Clinical Sciences at Monash Health, Faculty of Medicine, Nursing and Health Sciences, Monash University, BASE Facility, 264 Ferntree Gully Road, Notting Hill, VIC, 3168, Australia
| | - Ian M Carr
- Saint James' University Hospital, Granville Road, Leeds, LS9 7TF, UK
| | - Martin Wabitsch
- Division of Paediatric Endocrinology and Diabetes, Department of Paediatrics and Adolescent Medicine University Medical Centre, University of Ulm, Ulm, 89075, Germany
| | - Asimina Kerimi
- School of Food Science and Nutrition, University of Leeds, Woodhouse Lane, Leeds, LS2 9JT, UK.,Department of Nutrition, Dietetics and Food, School of Clinical Sciences at Monash Health, Faculty of Medicine, Nursing and Health Sciences, Monash University, BASE Facility, 264 Ferntree Gully Road, Notting Hill, VIC, 3168, Australia
| | - Gary Williamson
- School of Food Science and Nutrition, University of Leeds, Woodhouse Lane, Leeds, LS2 9JT, UK.,Department of Nutrition, Dietetics and Food, School of Clinical Sciences at Monash Health, Faculty of Medicine, Nursing and Health Sciences, Monash University, BASE Facility, 264 Ferntree Gully Road, Notting Hill, VIC, 3168, Australia
| |
Collapse
|
290
|
Wang Y, Berhow MA, Black M, Jeffery EH. A comparison of the absorption and metabolism of the major quercetin in brassica, quercetin-3-O-sophoroside, to that of quercetin aglycone, in rats. Food Chem 2020; 311:125880. [DOI: 10.1016/j.foodchem.2019.125880] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 11/06/2019] [Accepted: 11/07/2019] [Indexed: 01/16/2023]
|
291
|
Pereira-Caro G, Gaillet S, Ordóñez JL, Mena P, Bresciani L, Bindon KA, Del Rio D, Rouanet JM, Moreno-Rojas JM, Crozier A. Bioavailability of red wine and grape seed proanthocyanidins in rats. Food Funct 2020; 11:3986-4001. [PMID: 32347279 DOI: 10.1039/d0fo00350f] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
This study explored plasma levels and urinary and fecal excretion of metabolites and microbial-derived catabolites over a 24 h period following the ingestion of red wine (RWP) or grape seed (GSP) proanthocyanidin-rich extracts by rats. In total, 35 structurally-related (epi)catechin metabolites (SREMs) and 5-carbon side chain ring fission metabolites (5C-RFMs) (phenyl-γ-valerolactones and phenylvaleric acids), and 50 phenolic acid and aromatic catabolites were detected after intakes of both extracts. The consumption of the RWP extract, but not the GSP extract, led to the appearance of a ∼200 nmol L-1 peak plasma concentration of SREMs formed from flavan-3-ol monomers. In contrast, ingestion of the GSPs, but not the RWPs, resulted in a substantial increase in microbiota-derived 5-carbon side chain ring fission metabolites (5C-RFMs) in plasma. 5C-RFMs, along with low molecular weight phenolic catabolites were detected in urine after ingestion of both extracts. The GSP and RWP extracts had respective mean degrees of polymerisation 5.9 and 6.5 subunits, and the RWP extract had an upper polymer size of 21 subunits compared to 44 subunits for the GSP extract. The differences in plasma metabolite profiles might, therefore, be a consequence of this polydispersity impacting on the microbiota-mediated rates of cleavage of the proanthocyanidin subunits and their subsequent metabolism and absorption. Urinary excretion of phenolic catabolites indicated that 11% of RWPs and 7% for GSPs were subjected to microbial degradation. In all probability these figures, rather than representing the percentage of proanthocyanidins that are completely degraded, indicate partial cleavage of monomer subunits producing a much higher percentage of shortened proanthocyanidin chains. Obtaining more detailed information on the in vivo fate of proanthocyanidins is challenging because of the difficulties in analysing unabsorbed parent proanthocyanidins and their partially degraded flavan-3-ol subunit chains in feces. Further progress awaits the development of improved purification and analytical techniques for proanthocyanidins and their use in feeding studies, and in vitro fecal and bacterial incubations, with radio and/or stable isotope-labelled substrates.
Collapse
Affiliation(s)
- Gema Pereira-Caro
- Department of Food Science and Health. Andalusian Institute of Agricultural and Fisheries Research and Training (IFAPA), Avenida Menéndez-Pidal, SN, 14004, Córdoba, Spain.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
292
|
Cömert ED, Gökmen V. Physiological relevance of food antioxidants. ADVANCES IN FOOD AND NUTRITION RESEARCH 2020; 93:205-250. [PMID: 32711863 DOI: 10.1016/bs.afnr.2020.03.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Dietary antioxidants are associated with prevention of oxidative stress related chronic diseases including certain types of cancer, cardiovascular diseases, diabetes, and neurodegenerative diseases. In recent years, there has been a growing interest in extending the knowledge on their physiological effects in human body. There are numbers of epidemiological, clinical, meta-analysis, and in vitro studies to explain formation mechanisms of each chronic diseases as well as the potential effects of dietary antioxidants on these diseases and gut health. Comprehensive studies for food antioxidants' journey from dietary intake to target tissues/organs deserve a serious consideration to have a clear understanding on the physiological effects of dietary antioxidants. Therefore, absorption and metabolism of dietary antioxidants, and the factors affecting their absorption, such as solubility of antioxidants, food matrix, and interaction between antioxidants have been evaluated in several research articles. This chapter provides an overview about potential health effects of dietary antioxidants considering with their absorption and metabolism in human body.
Collapse
Affiliation(s)
- Ezgi Doğan Cömert
- Food Quality and Safety (FoQuS) Research Group, Department of Food Engineering, Hacettepe University, Ankara, Turkey
| | - Vural Gökmen
- Food Quality and Safety (FoQuS) Research Group, Department of Food Engineering, Hacettepe University, Ankara, Turkey.
| |
Collapse
|
293
|
Punt A, Firman J, Boobis A, Cronin M, Gosling JP, Wilks MF, Hepburn PA, Thiel A, Fussell KC. Potential of ToxCast Data in the Safety Assessment of Food Chemicals. Toxicol Sci 2020; 174:326-340. [PMID: 32040188 PMCID: PMC7098372 DOI: 10.1093/toxsci/kfaa008] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Tox21 and ToxCast are high-throughput in vitro screening programs coordinated by the U.S. National Toxicology Program and the U.S. Environmental Protection Agency, respectively, with the goal of forecasting biological effects in vivo based on bioactivity profiling. The present study investigated whether mechanistic insights in the biological targets of food-relevant chemicals can be obtained from ToxCast results when the chemicals are grouped according to structural similarity. Starting from the 556 direct additives that have been identified in the ToxCast database by Karmaus et al. [Karmaus, A. L., Trautman, T. D., Krishan, M., Filer, D. L., and Fix, L. A. (2017). Curation of food-relevant chemicals in ToxCast. Food Chem. Toxicol. 103, 174-182.], the results showed that, despite the limited number of assays in which the chemical groups have been tested, sufficient results are available within so-called "DNA binding" and "nuclear receptor" target families to profile the biological activities of the defined chemical groups for these targets. The most obvious activity identified was the estrogen receptor-mediated actions of the chemical group containing parabens and structurally related gallates, as well the chemical group containing genistein and daidzein (the latter 2 being particularly active toward estrogen receptor β as a potential health benefit). These group effects, as well as the biological activities of other chemical groups, were evaluated in a series of case studies. Overall, the results of the present study suggest that high-throughput screening data could add to the evidence considered for regulatory risk assessment of food chemicals and to the evaluation of desirable effects of nutrients and phytonutrients. The data will be particularly useful for providing mechanistic information and to fill data gaps with read-across.
Collapse
Affiliation(s)
- Ans Punt
- Wageningen Food Safety Research, 6700 AE Wageningen, The Netherlands
| | - James Firman
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool L3 3AF, UK
| | - Alan Boobis
- National Heart & Lung Institute, Imperial College London, London W12 0NN, UK
| | - Mark Cronin
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool L3 3AF, UK
| | | | - Martin F Wilks
- Swiss Centre for Applied Human Toxicology, University of Basel, 4055 Basel, Switzerland
| | - Paul A Hepburn
- Unilever, Safety & Environmental Assurance Centre, Colworth Science Park, Sharnbrook MK44 1LQ, UK
| | - Anette Thiel
- DSM Nutritional Products, 4303 Kaiseraugst, Switzerland
| | | |
Collapse
|
294
|
Toubal S, Oiry C, Bayle M, Cros G, Neasta J. Urolithin C increases glucose-induced ERK activation which contributes to insulin secretion. Fundam Clin Pharmacol 2020; 34:571-580. [PMID: 32083757 DOI: 10.1111/fcp.12551] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 02/14/2020] [Accepted: 02/20/2020] [Indexed: 12/31/2022]
Abstract
Polyphenols exert pharmacological actions through protein-mediated mechanisms and by modulating intracellular signalling pathways. We recently showed that a gut-microbial metabolite of ellagic acid named urolithin C is a glucose-dependent activator of insulin secretion acting by facilitating L-type Ca2+ channel opening and Ca2+ influx into pancreatic β-cells. However, it is still unknown whether urolithin C regulates key intracellular signalling proteins in β-cells. Here, we report that urolithin C enhanced glucose-induced extracellular signal-regulated kinases 1/2 (ERK1/2) activation as shown by higher phosphorylation levels in INS-1 β-cells. Interestingly, inhibition of ERK1/2 with two structurally distinct inhibitors led to a reduction in urolithin C effect on insulin secretion. Finally, we provide data to suggest that urolithin C-mediated ERK1/2 phosphorylation involved insulin signalling in INS-1 cells. Together, these data indicate that the pharmacological action of urolithin C on insulin secretion relies, in part, on its capacity to enhance glucose-induced ERK1/2 activation. Therefore, our study extends our understanding of the pharmacological action of urolithin C in β-cells. More generally, our findings revealed that urolithin C modulated the activation of key multifunctional intracellular signalling kinases which participate in the regulation of numerous biological processes.
Collapse
Affiliation(s)
- Slimane Toubal
- IBMM, Université de Montpellier, CNRS, ENSCM, Montpellier, France
| | - Catherine Oiry
- IBMM, Université de Montpellier, CNRS, ENSCM, Montpellier, France
| | - Morgane Bayle
- IBMM, Université de Montpellier, CNRS, ENSCM, Montpellier, France
| | - Gérard Cros
- IBMM, Université de Montpellier, CNRS, ENSCM, Montpellier, France
| | - Jérémie Neasta
- IBMM, Université de Montpellier, CNRS, ENSCM, Montpellier, France
| |
Collapse
|
295
|
Filippini T, Malavolti M, Borrelli F, Izzo AA, Fairweather-Tait SJ, Horneber M, Vinceti M. Green tea (Camellia sinensis) for the prevention of cancer. Cochrane Database Syst Rev 2020; 3:CD005004. [PMID: 32118296 PMCID: PMC7059963 DOI: 10.1002/14651858.cd005004.pub3] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BACKGROUND This review is an update of a previously published review in the Cochrane Database of Systematic Reviews (2009, Issue 3).Tea is one of the most commonly consumed beverages worldwide. Teas from the plant Camellia sinensis can be grouped into green, black and oolong tea, and drinking habits vary cross-culturally. C sinensis contains polyphenols, one subgroup being catechins. Catechins are powerful antioxidants, and laboratory studies have suggested that these compounds may inhibit cancer cell proliferation. Some experimental and nonexperimental epidemiological studies have suggested that green tea may have cancer-preventative effects. OBJECTIVES To assess possible associations between green tea consumption and the risk of cancer incidence and mortality as primary outcomes, and safety data and quality of life as secondary outcomes. SEARCH METHODS We searched eligible studies up to January 2019 in CENTRAL, MEDLINE, Embase, ClinicalTrials.gov, and reference lists of previous reviews and included studies. SELECTION CRITERIA We included all epidemiological studies, experimental (i.e. randomised controlled trials (RCTs)) and nonexperimental (non-randomised studies, i.e. observational studies with both cohort and case-control design) that investigated the association of green tea consumption with cancer risk or quality of life, or both. DATA COLLECTION AND ANALYSIS Two or more review authors independently applied the study criteria, extracted data and assessed methodological quality of studies. We summarised the results according to diagnosis of cancer type. MAIN RESULTS In this review update, we included in total 142 completed studies (11 experimental and 131 nonexperimental) and two ongoing studies. This is an additional 10 experimental and 85 nonexperimental studies from those included in the previous version of the review. Eleven experimental studies allocated a total of 1795 participants to either green tea extract or placebo, all demonstrating an overall high methodological quality based on 'Risk of bias' assessment. For incident prostate cancer, the summary risk ratio (RR) in the green tea-supplemented participants was 0.50 (95% confidence interval (CI) 0.18 to 1.36), based on three studies and involving 201 participants (low-certainty evidence). The summary RR for gynaecological cancer was 1.50 (95% CI 0.41 to 5.48; 2 studies, 1157 participants; low-certainty evidence). No evidence of effect of non-melanoma skin cancer emerged (summary RR 1.00, 95% CI 0.06 to 15.92; 1 study, 1075 participants; low-certainty evidence). In addition, adverse effects of green tea extract intake were reported, including gastrointestinal disorders, elevation of liver enzymes, and, more rarely, insomnia, raised blood pressure and skin/subcutaneous reactions. Consumption of green tea extracts induced a slight improvement in quality of life, compared with placebo, based on three experimental studies. In nonexperimental studies, we included over 1,100,000 participants from 46 cohort studies and 85 case-control studies, which were on average of intermediate to high methodological quality based on Newcastle-Ottawa Scale 'Risk of bias' assessment. When comparing the highest intake of green tea with the lowest, we found a lower overall cancer incidence (summary RR 0.83, 95% CI 0.65 to 1.07), based on three studies, involving 52,479 participants (low-certainty evidence). Conversely, we found no association between green tea consumption and cancer-related mortality (summary RR 0.99, 95% CI 0.91 to 1.07), based on eight studies and 504,366 participants (low-certainty evidence). For most of the site-specific cancers we observed a decreased RR in the highest category of green tea consumption compared with the lowest one. After stratifying the analysis according to study design, we found strongly conflicting results for some cancer sites: oesophageal, prostate and urinary tract cancer, and leukaemia showed an increased RR in cohort studies and a decreased RR or no difference in case-control studies. AUTHORS' CONCLUSIONS Overall, findings from experimental and nonexperimental epidemiological studies yielded inconsistent results, thus providing limited evidence for the beneficial effect of green tea consumption on the overall risk of cancer or on specific cancer sites. Some evidence of a beneficial effect of green tea at some cancer sites emerged from the RCTs and from case-control studies, but their methodological limitations, such as the low number and size of the studies, and the inconsistencies with the results of cohort studies, limit the interpretability of the RR estimates. The studies also indicated the occurrence of several side effects associated with high intakes of green tea. In addition, the majority of included studies were carried out in Asian populations characterised by a high intake of green tea, thus limiting the generalisability of the findings to other populations. Well conducted and adequately powered RCTs would be needed to draw conclusions on the possible beneficial effects of green tea consumption on cancer risk.
Collapse
Affiliation(s)
- Tommaso Filippini
- University of Modena and Reggio Emilia, Research Center in Environmental, Nutritional and Genetic Epidemiology (CREAGEN), Department of Biomedical, Metabolic and Neural Sciences, Via Campi 287, Modena, Italy, 41125
| | - Marcella Malavolti
- University of Modena and Reggio Emilia, Research Center in Environmental, Nutritional and Genetic Epidemiology (CREAGEN), Department of Biomedical, Metabolic and Neural Sciences, Via Campi 287, Modena, Italy, 41125
| | - Francesca Borrelli
- University of Naples 'Federico II', Department of Pharmacy, School of Medicine and Surgery, Via D Montesano 49, Naples, Italy, 80131
| | - Angelo A Izzo
- University of Naples 'Federico II', Department of Pharmacy, School of Medicine and Surgery, Via D Montesano 49, Naples, Italy, 80131
| | | | - Markus Horneber
- Paracelsus Medical University, Klinikum Nuremberg, Department of Internal Medicine, Division of Oncology and Hematology, Prof.-Ernst-Nathan-Str. 1, Nuremberg, Germany, D-90419
| | - Marco Vinceti
- University of Modena and Reggio Emilia, Research Center in Environmental, Nutritional and Genetic Epidemiology (CREAGEN), Department of Biomedical, Metabolic and Neural Sciences, Via Campi 287, Modena, Italy, 41125
- Boston University School of Public Health, Department of Epidemiology, 715 Albany Street, Boston, USA, MA 02118
| |
Collapse
|
296
|
Ferenczyova K, Kalocayova B, Bartekova M. Potential Implications of Quercetin and its Derivatives in Cardioprotection. Int J Mol Sci 2020; 21:E1585. [PMID: 32111033 PMCID: PMC7084176 DOI: 10.3390/ijms21051585] [Citation(s) in RCA: 88] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 02/20/2020] [Accepted: 02/25/2020] [Indexed: 12/24/2022] Open
Abstract
Quercetin (QCT) is a natural polyphenolic compound enriched in human food, mainly in vegetables, fruits and berries. QCT and its main derivatives, such as rhamnetin, rutin, hyperoside, etc., have been documented to possess many beneficial effects in the human body including their positive effects in the cardiovascular system. However, clinical implications of QCT and its derivatives are still rare. In the current paper we provide a complex picture of the most recent knowledge on the effects of QCT and its derivatives in different types of cardiac injury, mainly in ischemia-reperfusion (I/R) injury of the heart, but also in other pathologies such as anthracycline-induced cardiotoxicity or oxidative stress-induced cardiac injury, documented in in vitro and ex vivo, as well as in in vivo experimental models of cardiac injury. Moreover, we focus on cardiac effects of QCT in presence of metabolic comorbidities in addition to cardiovascular disease (CVD). Finally, we provide a short summary of clinical studies focused on cardiac effects of QCT. In general, it seems that QCT and its metabolites exert strong cardioprotective effects in a wide range of experimental models of cardiac injury, likely via their antioxidant, anti-inflammatory and molecular pathways-modulating properties; however, ageing and presence of lifestyle-related comorbidities may confound their beneficial effects in heart disease. On the other hand, due to very limited number of clinical trials focused on cardiac effects of QCT and its derivatives, clinical data are inconclusive. Thus, additional well-designed human studies including a high enough number of patients testing different concentrations of QCT are needed to reveal real therapeutic potential of QCT in CVD. Finally, several negative or controversial effects of QCT in the heart have been reported, and this should be also taken into consideration in QCT-based approaches aimed to treat CVD in humans.
Collapse
Affiliation(s)
- Kristina Ferenczyova
- Institute for Heart Research, Centre of Experimental Medicine, Slovak Academy of Sciences, 84104 Bratislava, Slovakia; (K.F.); (B.K.)
| | - Barbora Kalocayova
- Institute for Heart Research, Centre of Experimental Medicine, Slovak Academy of Sciences, 84104 Bratislava, Slovakia; (K.F.); (B.K.)
| | - Monika Bartekova
- Institute for Heart Research, Centre of Experimental Medicine, Slovak Academy of Sciences, 84104 Bratislava, Slovakia; (K.F.); (B.K.)
- Institute of Physiology, Comenius University in Bratislava, 81372 Bratislava, Slovakia
| |
Collapse
|
297
|
Volpp L, Ferianec V, Ježovičová M, Ďuračková Z, Scherf-Clavel O, Högger P. Constituents and Metabolites of a French Oak Wood Extract (Robuvit ®) in Serum and Blood Cell Samples of Women Undergoing Hysterectomy. Front Pharmacol 2020; 11:74. [PMID: 32174825 PMCID: PMC7054277 DOI: 10.3389/fphar.2020.00074] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 01/24/2020] [Indexed: 01/07/2023] Open
Abstract
Ellagitannins are signature constituents of oak wood and their consumption has been associated with various health benefits. In vivo, they undergo metabolic degradation including gut microbial metabolism yielding urolithins. Only limited data is available about compounds being present in blood after intake of an extract from French oak wood, Robuvit®. In the course of a randomized, double-blind, controlled clinical investigation, 66 patients undergoing hysterectomy received placebo or 300 mg Robuvit® per day before and over 8 weeks after surgery. Serum and blood cell samples were analyzed by liquid chromatography electrospray ionization tandem mass spectrometry (LC-ESI-MS/MS). The number of urolithin producers and the urolithin levels increased after intake of Robuvit®. In serum samples, the median concentration of urolithin A was 14.0 ng/ml [interquartile range (IQR) 57.4] after 8 weeks. Urolithin B was determined at 22.3 ng/ml (IQR 12.6), urolithin C at 2.66 ng/ml (IQR 2.08). In blood cells, lower concentrations and only urolithins A and B were detected. A statistically significant association of lower post-surgical pain scores with metabotype A was detected (p < 0.05). To conclude, supplementation with French oak wood extract raised urolithin generation in patients and suggested health advantages for urolithin-producers.
Collapse
Affiliation(s)
- Linda Volpp
- Institut für Pharmazie und Lebensmittelchemie, Universität Würzburg, Würzburg, Germany
| | - Vladimír Ferianec
- 2nd Department of Gynecology and Obstetrics, Faculty of Medicine, Comenius University, Bratislava, Slovakia
| | - Miriam Ježovičová
- Faculty of Medicine, Institute of Medical Chemistry, Biochemistry and Clinical Biochemistry, Comenius University, Bratislava, Slovakia
| | - Zdeňka Ďuračková
- Faculty of Medicine, Institute of Medical Chemistry, Biochemistry and Clinical Biochemistry, Comenius University, Bratislava, Slovakia
| | - Oliver Scherf-Clavel
- Institut für Pharmazie und Lebensmittelchemie, Universität Würzburg, Würzburg, Germany
| | - Petra Högger
- Institut für Pharmazie und Lebensmittelchemie, Universität Würzburg, Würzburg, Germany
| |
Collapse
|
298
|
Rathaur P, SR KJ. Metabolism and Pharmacokinetics of Phytochemicals in the Human Body. Curr Drug Metab 2020; 20:1085-1102. [DOI: 10.2174/1389200221666200103090757] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 08/27/2019] [Accepted: 11/14/2019] [Indexed: 12/12/2022]
Abstract
Background:Phytochemicals are obtained from various plants and used for the treatment of diseases as both traditional and modern medicines. Poor bioavailability of phytochemicals is a major concern in applying phytochemicals as a therapeutic agent. It is, therefore, necessary to understand the metabolism and pharmacokinetics of phytochemicals for its implication as a therapeutic agent.Methods:Articles on the metabolism of phytochemicals from the PubMed database. The articles were classified into the digestion, absorption, metabolism, excretion, toxicity, and bioavailability of phytochemicals and the effect of gut microbiota on the metabolism of phytochemicals.Results:The metabolism of each phytochemical is largely dependent on the individual's digestive ability, membrane transporters, metabolizing enzymes and gut microbiota. Further, the form of the phytochemical and genetic make-up of the individual greatly influences the metabolism of phytochemicals.Conclusion:The metabolism of phytochemicals is mostly depended on the form of phytochemicals and individualspecific variations in the metabolism of phytochemicals. Understanding the metabolism and pharmacokinetics of phytochemicals might help in applying plant-based medicines for the treatment of various diseases.
Collapse
Affiliation(s)
- Pooja Rathaur
- Department of Life Science, School of Sciences, Gujarat University, Ahmedabad, India
| | - Kaid Johar SR
- Department of Zoology, Biomedical Technology and Human Genetics, School of Sciences, Gujarat University, Ahmedabad, India
| |
Collapse
|
299
|
Eran Nagar E, Okun Z, Shpigelman A. Digestive fate of polyphenols: updated view of the influence of chemical structure and the presence of cell wall material. Curr Opin Food Sci 2020. [DOI: 10.1016/j.cofs.2019.10.009] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
300
|
Fusi F, Trezza A, Tramaglino M, Sgaragli G, Saponara S, Spiga O. The beneficial health effects of flavonoids on the cardiovascular system: Focus on K+ channels. Pharmacol Res 2020; 152:104625. [DOI: 10.1016/j.phrs.2019.104625] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 12/14/2019] [Accepted: 12/31/2019] [Indexed: 01/17/2023]
|