251
|
Moazzami K, Mehta A, Young A, Dhindsa DS, Martin G, Mokhtari A, Hesaroieh IG, Shah A, Bremner JD, Vaccarino V, Waller EK, Quyyumi AA. The association between baseline circulating progenitor cells and vascular function: The role of aging and risk factors. Vasc Med 2022; 27:532-541. [PMID: 36062298 PMCID: PMC10150400 DOI: 10.1177/1358863x221116411] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
BACKGROUND To investigate the cross-sectional and longitudinal relationships between vascular function and circulating progenitor cell (CPC) counts with respect to aging and exposure to risk factors. METHODS In 797 adult participants, CPCs were enumerated by flow cytometry as CD45med mononuclear cells expressing CD34 epitope and its subsets co-expressing CD133, and chemokine C-X-C motif receptor 4 (CXCR4+). Arterial stiffness was evaluated by tonometry-derived pulse wave velocity (PWV) and microvascular function was assessed as digital reactive hyperemia index (RHI). RESULTS In cross-sectional analyses, for every doubling in CD34+ cell counts, PWV was 15% higher and RHI was 9% lower, after adjusting for baseline characteristics and risk factors (p for all < 0.01). There were significant CPC-by-age-by-risk factor interactions (p <0.05) for both vascular measures. Among younger subjects (< 48 years), CPC counts were higher in those with risk factors and vascular function was better in those with higher compared to those with lower CPC counts (p for all < 0.0l). In contrast, in older participants, CPCs were not higher in those with risk factors, and vascular function was worse compared to the younger age group. A lower CPC count at baseline was an independent predictor of worsening vascular function during 2-year follow-up. CONCLUSION A higher CPC count in the presence of risk factors is associated with better vascular function among younger individuals. There is no increase in CPC count with risk factors in older individuals who have worse vascular function. Moreover, a higher CPC count is associated with less vascular dysfunction with aging.
Collapse
Affiliation(s)
- Kasra Moazzami
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA, USA
- Department of Medicine, Division of Cardiology, Emory Clinical Cardiovascular Research Institute, Emory University School of Medicine, Atlanta, GA, USA
| | - Anurag Mehta
- Department of Medicine, Division of Cardiology, Emory Clinical Cardiovascular Research Institute, Emory University School of Medicine, Atlanta, GA, USA
| | - An Young
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA, USA
- Department of Medicine, Division of Cardiology, Emory Clinical Cardiovascular Research Institute, Emory University School of Medicine, Atlanta, GA, USA
| | - Devinder Singh Dhindsa
- Department of Medicine, Division of Cardiology, Emory Clinical Cardiovascular Research Institute, Emory University School of Medicine, Atlanta, GA, USA
| | - Greg Martin
- Department of Medicine, Division of Cardiology, Emory Clinical Cardiovascular Research Institute, Emory University School of Medicine, Atlanta, GA, USA
| | - Ali Mokhtari
- Department of Medicine, Division of Cardiology, Emory Clinical Cardiovascular Research Institute, Emory University School of Medicine, Atlanta, GA, USA
| | - Iraj Ghaini Hesaroieh
- Department of Medicine, Division of Cardiology, Emory Clinical Cardiovascular Research Institute, Emory University School of Medicine, Atlanta, GA, USA
| | - Amit Shah
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA, USA
- Department of Medicine, Division of Cardiology, Emory Clinical Cardiovascular Research Institute, Emory University School of Medicine, Atlanta, GA, USA
- Atlanta VA Medical Center, Decatur, GA, USA
| | - J Douglas Bremner
- Atlanta VA Medical Center, Decatur, GA, USA
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA
- Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, GA, USA
| | - Viola Vaccarino
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Edmund K Waller
- Department of Medicine, Division of Cardiology, Emory Clinical Cardiovascular Research Institute, Emory University School of Medicine, Atlanta, GA, USA
| | - Arshed A Quyyumi
- Department of Medicine, Division of Cardiology, Emory Clinical Cardiovascular Research Institute, Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|
252
|
Han Z, He X, Feng Y, Jiang W, Zhou N, Huang X. Hsp20 Promotes Endothelial Progenitor Cell Angiogenesis via Activation of PI3K/Akt Signaling Pathway under Hypoxia. Tissue Eng Regen Med 2022; 19:1251-1266. [PMID: 36042130 PMCID: PMC9679071 DOI: 10.1007/s13770-022-00481-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 07/09/2022] [Accepted: 07/13/2022] [Indexed: 10/14/2022] Open
Abstract
BACKGROUND Mandibular distraction osteogenesis (MDO) is a kind of endogenous tissue engineering technology that lengthens the jaw and opens airway so that a patient can breathe safely and comfortably on his or her own. Endothelial progenitor cells (EPCs) are crucial for MDO-related angiogenesis. Moreover, emerging evidence suggests that heat shock protein 20 (Hsp20) modulates angiogenesis under hypoxic conditions. However, the specific role of Hsp20 in EPCs, in the context of MDO, is not yet known. The aim of this study was to explore the expression of Hsp20 during MDO and the effects of Hsp20 on EPCs under hypoxia. METHODS Mandibular distraction osteogenesis and mandibular bone defect (MBD) canine model were established. The expression of CD34, CD133, HIF-1α, and Hsp20 in callus was detected by immunofluorescence on day 14 after surgery. Canine bone marrow EPCs were cultured, with or without optimal cobalt chloride (CoCl2) concentration. Hypoxic effects, caused by CoCl2, were evaluated by means of the cell cycle, cell apoptosis, transwell cell migration, and tube formation assays. The Hsp20/KDR/PI3K/Akt expression levels were evaluated via immunofluorescence, RT-qPCR, and western blot. Next, EPCs were incorporated with either Hsp20-overexpression or Hsp20-siRNA lentivirus. The resulting effects were evaluated as described above. RESULTS CD34, CD133, HIF-1α, and Hsp20 were displayed more positive in the callus of MDO compared with MBD. In addition, hypoxic conditions, generated by 0.1 mM CoCl2, in canine EPCs, accelerated cell proliferation, migration, tube formation, and Hsp20 expression. Hsp20 overexpression in EPCs significantly stimulated cell proliferation, migration, and tube formation, whereas Hsp20 inhibition produced the opposite effect. Additionally, the molecular mechanism was partly dependent on the KDR/PI3K/Akt pathway. CONCLUSION In summary, herein, we present a novel mechanism of Hsp20-mediated regulation of canine EPCs via Akt activation in a hypoxic microenvironment.
Collapse
Affiliation(s)
- Zhiqi Han
- Guangxi Medical University, Nanning, Guangxi, 530021, People's Republic of China
- Department of Oral and Maxillofacial Surgery, College of Stomatology, Hospital of Stomatology, Guangxi Medical University, Nanning, Guangxi, 530021, People's Republic of China
- Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction, Guangxi Key Laboratory of Oral and Maxillofacial Surgery Disease Treatment, Nanning, Guangxi, 530021, People's Republic of China
- Guangxi Clinical Research Center for Craniofacial Deformity, Nanning, Guangxi, 530021, People's Republic of China
| | - Xuan He
- Guangxi Medical University, Nanning, Guangxi, 530021, People's Republic of China
- Department of Oral and Maxillofacial Surgery, College of Stomatology, Hospital of Stomatology, Guangxi Medical University, Nanning, Guangxi, 530021, People's Republic of China
- Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction, Guangxi Key Laboratory of Oral and Maxillofacial Surgery Disease Treatment, Nanning, Guangxi, 530021, People's Republic of China
- Guangxi Clinical Research Center for Craniofacial Deformity, Nanning, Guangxi, 530021, People's Republic of China
| | - Yuan Feng
- Guangxi Medical University, Nanning, Guangxi, 530021, People's Republic of China
- Department of Oral and Maxillofacial Surgery, College of Stomatology, Hospital of Stomatology, Guangxi Medical University, Nanning, Guangxi, 530021, People's Republic of China
- Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction, Guangxi Key Laboratory of Oral and Maxillofacial Surgery Disease Treatment, Nanning, Guangxi, 530021, People's Republic of China
- Guangxi Clinical Research Center for Craniofacial Deformity, Nanning, Guangxi, 530021, People's Republic of China
| | - Weidong Jiang
- Guangxi Medical University, Nanning, Guangxi, 530021, People's Republic of China
- Department of Oral and Maxillofacial Surgery, College of Stomatology, Hospital of Stomatology, Guangxi Medical University, Nanning, Guangxi, 530021, People's Republic of China
- Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction, Guangxi Key Laboratory of Oral and Maxillofacial Surgery Disease Treatment, Nanning, Guangxi, 530021, People's Republic of China
- Guangxi Clinical Research Center for Craniofacial Deformity, Nanning, Guangxi, 530021, People's Republic of China
| | - Nuo Zhou
- Guangxi Medical University, Nanning, Guangxi, 530021, People's Republic of China.
- Department of Oral and Maxillofacial Surgery, College of Stomatology, Hospital of Stomatology, Guangxi Medical University, Nanning, Guangxi, 530021, People's Republic of China.
- Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction, Guangxi Key Laboratory of Oral and Maxillofacial Surgery Disease Treatment, Nanning, Guangxi, 530021, People's Republic of China.
- Guangxi Clinical Research Center for Craniofacial Deformity, Nanning, Guangxi, 530021, People's Republic of China.
| | - Xuanping Huang
- Guangxi Medical University, Nanning, Guangxi, 530021, People's Republic of China.
- Department of Oral and Maxillofacial Surgery, College of Stomatology, Hospital of Stomatology, Guangxi Medical University, Nanning, Guangxi, 530021, People's Republic of China.
- Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction, Guangxi Key Laboratory of Oral and Maxillofacial Surgery Disease Treatment, Nanning, Guangxi, 530021, People's Republic of China.
- Guangxi Clinical Research Center for Craniofacial Deformity, Nanning, Guangxi, 530021, People's Republic of China.
| |
Collapse
|
253
|
Effect of Cyclic Uniaxial Mechanical Strain on Endothelial Progenitor Cell Differentiation. Cardiovasc Eng Technol 2022; 13:872-885. [PMID: 35501625 DOI: 10.1007/s13239-022-00623-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Accepted: 03/30/2022] [Indexed: 01/27/2023]
Abstract
PURPOSE Endothelial progenitor cells (EPCs) have been used as an autologous or allogeneic source in multiple tissue engineering applications. EPCs possess high proliferative and tissue regeneration potential. The effect of shear stress on EPCs has been extensively studied but the role of cyclic mechanical strain on EPCs remains to be understood. In this study, we focused on examining the role of uniaxial cyclic strain on EPCs cultured on three-dimensional (3D) anisotropic composites that mimic healthy and diseased aortic valve tissue matrix compositions. METHODS AND RESULTS The composites were fabricated by combining centrifugal jet spun fibers with photocrosslinkable gelatin and glycosaminoglycan hydrogels. A custom-designed uniaxial cyclic stretcher was used to provide the necessary cyclic stimulation to the EPC-seeded 3D composites. The samples were cyclically strained at a rate of 1 Hz at 15% strain mimicking the physiological condition experienced by aortic valve, with static conditions serving as controls. Cell viability was high in all conditions. Immunostaining revealed reduced endothelial marker (CD31) expression with increased smooth muscle cell marker, SM22α, expression when subjected to cyclic strain. Functional analysis through Matrigel assay agreed with the immunostaining findings with reduced tubular structure formation in strained conditions compared to EPC controls. Additionally, the cells showed reduced acLDL uptake compared to controls which are in alignment with the EPCs undergoing differentiation. CONCLUSION Overall, we show that EPCs lose their endothelial progenitor phenotype, and have the potential to be differentiated into mesenchymal-like cells through cyclic mechanical stimulation.
Collapse
|
254
|
Säljö K, Apelgren P, Stridh Orrhult L, Li S, Amoroso M, Gatenholm P, Kölby L. Long-term in vivo survival of 3D-bioprinted human lipoaspirate-derived adipose tissue: proteomic signature and cellular content. Adipocyte 2022; 11:34-46. [PMID: 34957918 PMCID: PMC8726626 DOI: 10.1080/21623945.2021.2014179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 11/11/2021] [Accepted: 11/29/2021] [Indexed: 11/05/2022] Open
Abstract
Three-dimensional (3D)-bioprinted lipoaspirate-derived adipose tissue (LAT) is a potential alternative to lipo-injection for correcting soft-tissue defects. This study investigated the long-term in vivo survival of 3D-bioprinted LAT and its proteomic signature and cellular composition. We performed proteomic and multicolour flow cytometric analyses on the lipoaspirate and 3D-bioprinted LAT constructs were transplanted into nude mice, followed by explantation after up to 150 days. LAT contained adipose-tissue-derived stem cells (ASCs), pericytes, endothelial progenitor cells (EPCs) and endothelial cells. Proteomic analysis identified 6,067 proteins, including pericyte markers, adipokines, ASC secretome proteins, proangiogenic proteins and proteins involved in adipocyte differentiation and developmental morphogenic signalling, as well as proteins not previously described in human subcutaneous fat. 3D-bioprinted LAT survived for 150 days in vivo with preservation of the construct shape and size. Furthermore, we identified human blood vessels after 30 and 150 days in vivo, indicating angiogenesis from capillaries. These results showed that LAT has a favourable proteomic signature, contains ASCs, EPCs and blood vessels that survive 3D bioprinting and can potentially facilitate angiogenesis and successful autologous fat grafting in soft-tissue reconstruction.
Collapse
Affiliation(s)
- Karin Säljö
- Department of Plastic Surgery, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Plastic Surgery, Region Västra Götaland, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Peter Apelgren
- Department of Plastic Surgery, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Plastic Surgery, Region Västra Götaland, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Linnea Stridh Orrhult
- 3D Bioprinting Centre, Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Susann Li
- Department of Clinical Chemistry and Transfusion Medicine, Institute of Biomedicine, Sahlgrenska University Hospital, Göteborg, Sweden
| | - Matteo Amoroso
- Department of Plastic Surgery, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Plastic Surgery, Region Västra Götaland, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Paul Gatenholm
- 3D Bioprinting Centre, Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Lars Kölby
- Department of Plastic Surgery, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Plastic Surgery, Region Västra Götaland, Sahlgrenska University Hospital, Gothenburg, Sweden
| |
Collapse
|
255
|
Kim JH, Bak SH, Yang HJ, Doo SW, Kim DK, Yang WJ, Kim SU, Lee HJ, Song YS. Improvement of erectile dysfunction using endothelial progenitor cells from fetal cerebral vasculature in the cavernous nerve injury of rats. Basic Clin Androl 2022; 32:21. [PMID: 36451096 PMCID: PMC9714194 DOI: 10.1186/s12610-022-00171-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Accepted: 09/05/2022] [Indexed: 12/05/2022] Open
Abstract
BACKGROUND Because of limited differentiation to endothelium from mesenchymal stem cells, it has been strongly recommended to use endothelial progenitor cells for the regeneration of the damaged endothelium of corpora cavernosa. This study was performed to investigate the immortalized human cerebral endothelial cells and their capability for repairing erectile dysfunction in a rat model of cavernous nerve injury. Circulating endothelial progenitor cells were isolated from human fetal brain vasculature at the periventricular region of telencephalic tissues. Over 95% of CD 31-positive cells were sorted and cultured for 10 days. Human cerebral endothelial progenitor cells were injected into the cavernosa of rats with cavernous nerve injury. Erectile response was then assessed. In in vivo assays, rats were divided into three groups: group 1, sham operation: group 2, bilateral cavernous nerve injury: and group 3, treatment with human cerebral endothelial cells after cavernous nerve injury. RESULTS Established immortalized circulating endothelial progenitor cells showed expression of human telomerase reverse transcriptase transcript by RT-PCR. They also showed the expression of vascular endothelial growth factor, von Willebrand factor, vascular endothelial growth factor receptor, and CD31, cell type-specific markers for endothelial cells by RT-PCR. In in vitro angiogenesis assays, they demonstrated tube formation that suggested morphological properties of endothelial progenitor cells. In in vivo assays, impaired erectile function of rat with cavernous nerve injury recovered at 2, 4, and 12 weeks after transplantation of human cerebral endothelial cells into the cavernosa. CONCLUSIONS Telomerase reverse transcriptase-circulating endothelial progenitor cells from fetal brain vasculature could repair erectile dysfunction of rats with cavernous nerve injury.
Collapse
Affiliation(s)
- Jae Heon Kim
- grid.412674.20000 0004 1773 6524Department of Urology, Soonchunhyang University School of Medicine, 04401 Seoul, Republic of Korea
| | - Sang Hong Bak
- Research Institute, e-Biogen Inc., Seoul, Republic of Korea
| | - Hee Jo Yang
- grid.412674.20000 0004 1773 6524Department of Urology, Soonchunhyang University School of Medicine, Cheonan, Republic of Korea
| | - Seung Whan Doo
- grid.412674.20000 0004 1773 6524Department of Urology, Soonchunhyang University School of Medicine, 04401 Seoul, Republic of Korea
| | - Do Kyung Kim
- grid.412674.20000 0004 1773 6524Department of Urology, Soonchunhyang University School of Medicine, 04401 Seoul, Republic of Korea
| | - Won Jae Yang
- grid.412674.20000 0004 1773 6524Department of Urology, Soonchunhyang University School of Medicine, 04401 Seoul, Republic of Korea
| | - Seung U. Kim
- grid.416957.80000 0004 0633 8774Division of Neurology, Department of Medicine, UBC Hospital, University of British Columbia, Vancouver, Canada
| | - Hong J. Lee
- Research Institute, e-Biogen Inc., Seoul, Republic of Korea ,grid.254229.a0000 0000 9611 0917Medical Research Institute, Chungbuk National University, Cheongju, Chungbuk Republic of Korea
| | - Yun Seob Song
- grid.412674.20000 0004 1773 6524Department of Urology, Soonchunhyang University School of Medicine, 04401 Seoul, Republic of Korea
| |
Collapse
|
256
|
Lu X, Zou H, Liao X, Xiong Y, Hu X, Cao J, Pan J, Li C, Zheng Y. Construction of PCL-collagen@PCL@PCL-gelatin three-layer small diameter artificial vascular grafts by electrospinning. Biomed Mater 2022; 18. [PMID: 36374009 DOI: 10.1088/1748-605x/aca269] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 11/14/2022] [Indexed: 11/16/2022]
Abstract
The demand for artificial vascular grafts in clinical applications is increasing, and it is urgent to design a tissue-engineered vascular graft with good biocompatibility and sufficient mechanical strength. In this study, three-layer small diameter artificial vascular grafts were constructed by electrospinning. Polycaprolactone (PCL) and collagen (COL) were used as the inner layer to provide good biocompatibility and cell adhesion, the middle layer was PCL to improve the mechanical properties, and gelatin (GEL) and PCL were used to construct the outer layer for further improving the mechanical properties and biocompatibility of the vascular grafts in the human body environment. The electrospun artificial vascular graft had good biocompatibility and mechanical properties. Its longitudinal maximum stress reached 2.63 ± 0.12 MPa, which exceeded the maximum stress that many natural blood vessels could withstand. The fiber diameter of the vascular grafts was related to the proportion of components that made up the vascular grafts. In the inner structure of the vascular grafts, the hydrophilicity of the vascular grafts was enhanced by the addition of COL to the PCL, and human umbilical vein endothelial cells (HUVECs) adhered more easily to the vascular grafts. In particular, the cytocompatibility and proliferation of HUVECs on the scaffold with an inner structure PCL:COL = 2:1 was superior to other ratios of vascular grafts. The vascular grafts did not cause hemolysis of red blood cells. Thus, the bionic PCL-COL@PCL@PCL-GEL composite graft is a promising material for vascular tissue engineering.
Collapse
Affiliation(s)
- Xingjian Lu
- Department of Physics, and Key Laboratory of ATMMT Ministry of Education, Zhejiang Sci-Tech University, Hangzhou 310018, People's Republic of China
| | - Hao Zou
- Department of Physics, and Key Laboratory of ATMMT Ministry of Education, Zhejiang Sci-Tech University, Hangzhou 310018, People's Republic of China
| | - Xiaokun Liao
- Department of Physics, and Key Laboratory of ATMMT Ministry of Education, Zhejiang Sci-Tech University, Hangzhou 310018, People's Republic of China
| | - Yue Xiong
- Department of Physics, and Key Laboratory of ATMMT Ministry of Education, Zhejiang Sci-Tech University, Hangzhou 310018, People's Republic of China
| | - Xiaoyan Hu
- Department of Physics, and Key Laboratory of ATMMT Ministry of Education, Zhejiang Sci-Tech University, Hangzhou 310018, People's Republic of China
| | - Jun Cao
- Department of Physics, and Key Laboratory of ATMMT Ministry of Education, Zhejiang Sci-Tech University, Hangzhou 310018, People's Republic of China
| | - Jiaqi Pan
- Department of Physics, and Key Laboratory of ATMMT Ministry of Education, Zhejiang Sci-Tech University, Hangzhou 310018, People's Republic of China
| | - Chaorong Li
- Department of Physics, and Key Laboratory of ATMMT Ministry of Education, Zhejiang Sci-Tech University, Hangzhou 310018, People's Republic of China
| | - Yingying Zheng
- Department of Physics, and Key Laboratory of ATMMT Ministry of Education, Zhejiang Sci-Tech University, Hangzhou 310018, People's Republic of China
| |
Collapse
|
257
|
Wang KC, Yang LY, Lee JE, Wu V, Chen TF, Hsieh ST, Kuo MF. Combination of indirect revascularization and endothelial progenitor cell transplantation improved cerebral perfusion and ameliorated tauopathy in a rat model of bilateral ICA ligation. Stem Cell Res Ther 2022; 13:516. [PMID: 36371197 PMCID: PMC9652785 DOI: 10.1186/s13287-022-03196-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 10/23/2022] [Indexed: 11/15/2022] Open
Abstract
Abstract
Objective
Endothelial progenitor cells (EPCs) contribute to the recovery of neurological function after ischemic stroke. Indirect revascularization has exhibited promising effects in the treatment of cerebral ischemia related to moyamoya disease and intracranial atherosclerotic disease. The role of EPCs in augmenting the revascularization effect is not clear. In this study, we investigated the therapeutic effects of indirect revascularization combined with EPC transplantation in rats with chronic cerebral ischemia.
Methods
Chronic cerebral ischemia was induced by bilateral internal carotid artery ligation (BICAL) in rats, and indirect revascularization by encephalo-myo-synangiosis (EMS) was performed 1 week later. During the EMS procedure, intramuscular injection of EPCs and the addition of stromal cell-derived factor 1 (SDF-1), and AMD3100, an SDF-1 inhibitor, were undertaken, respectively, to investigate their effects on indirect revascularization. Two weeks later, the cortical microcirculation, neuronal damage, and functional outcome were evaluated according to the microvasculature density and partial pressure of brain tissue oxygen (PbtO2), regional blood flow, expression of phosphorylated Tau (pTau), TUNEL staining and the rotarod performance test, respectively.
Results
The cortical microcirculation, according to PbtO2 and regional blood flow, was impaired 3 weeks after BICAL. These impairments were improved by the EMS procedure. The regional blood flow was further increased by the addition of SDF-1 and decreased by the addition of AMD3100. Intramuscular injection of EPCs further increased the regional blood flow as compared with the EMS group. The rotarod test results showed that the functional outcome was best in the EMS combined with EPC injection group. Western blot analysis showed that the EMS combined with EPC treatment group had significantly decreased expressions of phosphorylated Tau and phosphorylated glycogen synthase kinase 3 beta (Y216 of GSK-3β). pTau and TUNEL-positive cells were markedly increased at 3 weeks after BICAL induction. Furthermore, the groups treated with EMS combined with SDF-1 or EPCs exhibited marked decreases in the pTau expression and TUNEL-positive cells, whereas AMD3100 treatment increased TUNEL-positive cells.
Conclusion
The results of this study suggested that indirect revascularization ameliorated the cerebral ischemic changes. EPCs played a key role in augmenting the effect of indirect revascularization in the treatment of chronic cerebral ischemia.
Collapse
|
258
|
Chiang EPI, Syu JN, Hung HC, Rodriguez RL, Wang WJ, Chiang ER, Chiu SC, Chao CY, Tang FY. N-3 polyunsaturated fatty acids block the trimethylamine-N-oxide- ACE2- TMPRSS2 cascade to inhibit the infection of human endothelial progenitor cells by SARS-CoV-2. J Nutr Biochem 2022; 109:109102. [PMID: 35817244 PMCID: PMC9264727 DOI: 10.1016/j.jnutbio.2022.109102] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/11/2022] [Accepted: 06/13/2022] [Indexed: 02/06/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2(SARS-CoV-2) is a novel coronavirus that infects many types of cells and causes cytokine storms, excessive inflammation, acute respiratory distress to induce failure of respiratory system and other critical organs. In this study, our results showed that trimethylamine-N-oxide (TMAO), a metabolite generated by gut microbiota, acts as a regulatory mediator to enhance the inerleukin-6 (IL-6) cytokine production and the infection of human endothelial progenitor cells (hEPCs) by SARS-CoV-2. Treatment of N-3 polyunsaturated fatty acids (PUFAs) such as docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) could effectively block the entry of SARS-CoV-2 in hEPCs. The anti-infection effects of N-3 PUFAs were associated with the inactivation of NF-κB signaling pathway, a decreased expression of the entry receptor angiotensin-converting enzyme 2 (ACE2) and downstream transmembrane serine protease 2 in hEPCs upon the stimulation of TMAO. Treatment of DHA and EPA further effectively inhibited TMAO-mediated expression of IL-6 protein, probably through an inactivation of MAPK/p38/JNK signaling cascades and a downregulation of microRNA (miR)-221 in hEPCs. In conclusion, N-3 PUFAs such as DHA and EPA could effectively act as preventive agents to block the infection of SARS-CoV-2 and IL-6 cytokine production in hEPCs upon the stimulation of TMAO.
Collapse
Affiliation(s)
- En-Pei Isabel Chiang
- Department of Food Science and Biotechnology, National Chung Hsing University, Taichung, Taiwan, Republic of China; Innovation and Development Center of Sustainable Agriculture, National Chung Hsing University, Taichung, Taiwan, Republic of China
| | - Jia-Ning Syu
- Biomedical Science Laboratory, Department of Nutrition, China Medical University, Taichung, Taiwan, Republic of China
| | - Hung-Chang Hung
- Department of Internal Medicine, Nantou Hospital, Ministry of Health and Welfare, Nantou City, Taiwan, Republic of China
| | - Raymond L Rodriguez
- Department of Molecular and Cellular Biology, University of California, Davis, California, USA
| | - Wei-Jan Wang
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan, Republic of China
| | - En-Rung Chiang
- Department of Orthopedics and Traumatology, Taipei Veterans General Hospital, Taipei, Taiwan, Republic of China; National Yang Ming Chiao Tung University, School of Medicine, Taipei, Taiwan, Republic of China
| | - Shao-Chih Chiu
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan, Republic of China; Translational Cell Therapy Center, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan, Republic of China
| | - Che-Yi Chao
- Department of Food Nutrition and Health Biotechnology, Asia University, Taichung, Taiwan, Republic of China; Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan, Republic of China
| | - Feng-Yao Tang
- Biomedical Science Laboratory, Department of Nutrition, China Medical University, Taichung, Taiwan, Republic of China.
| |
Collapse
|
259
|
Wan G, Xu Z, Xiang X, Zhang M, Jiang T, Chen J, Li S, Wang C, Yan C, Yang X, Chen Z. Elucidation of endothelial progenitor cell dysfunction in diabetes by RNA sequencing and constructing lncRNA-miRNA-mRNA competing endogenous RNA network. J Mol Med (Berl) 2022; 100:1569-1585. [PMID: 36094536 DOI: 10.1007/s00109-022-02251-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 08/17/2022] [Accepted: 08/29/2022] [Indexed: 12/14/2022]
Abstract
With the rapid increase in the incidence of diabetes, non-healing diabetic wounds have posed a huge challenge to public health. Endothelial progenitor cell (EPC) has been widely reported to promote wound repairing, while its number and function were suppressed in diabetes. However, the specific mechanisms and competing endogenous RNA (ceRNA) network of EPCs in diabetes remain largely unknown. Thus, the transcriptome analyses were carried in the present study to clarify the mechanism underlying EPCs dysfunction in diabetes. EPCs were successfully isolated from rats. Compared to the control, diabetic rat-derived EPCs displayed impaired proliferation, migration, and tube formation ability. The differentially expressed (DE) RNAs were successfully identified by RNA sequencing in the control and diabetic groups. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analyses indicated that DE mRNAs were significantly enriched in terms and pathways involved in the functions of EPCs and wound healing. Protein-protein interaction networks revealed critical DE mRNAs in the above groups. Moreover, the whole lncRNA-miRNA-mRNA ceRNA network was constructed, in which 9 lncRNAs, 9 mRNAs, and 5 miRNAs were further validated by quantitative real-time polymerase chain reaction. Rno-miR-10b-5p and Tgfb2 were identified as key regulators of EPCs dysfunction in diabetes. The present research provided novel insight into the underlying mechanism of EPCs dysfunction in diabetes and prompted potential targets to restore the impaired functions, thus accelerating diabetic wound healing. KEY MESSAGES: • Compared to the control, diabetic rat-derived EPCs displayed impaired proliferation, migration, and tube formation ability. • The DE RNAs were successfully identified by RNA sequencing in the control and diabetic groups and analyzed by DE, GO, and KEGG analysis. • PPI and lncRNA-miRNA-mRNA ceRNA networks were constructed. • 9 lncRNAs, 9 mRNAs, and 5 miRNAs were further validated by qRT-PCR. • Rno-miR-10b-5p and Tgfb2 were identified as key regulators of EPCs dysfunction in diabetes.
Collapse
Affiliation(s)
- Gui Wan
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Zhao Xu
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xuejiao Xiang
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Maojie Zhang
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Tao Jiang
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Jing Chen
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Shengbo Li
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Cheng Wang
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Chengqi Yan
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xiaofan Yang
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Zhenbing Chen
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
260
|
Zhang Q, Duncan S, Szulc DA, Kutryk MJB. Antibody functionalized intravascular devices combined with genetically engineered endothelial colony-forming cells for targeted drug delivery: a proof-of-concept study. Eur J Pharm Biopharm 2022; 181:218-226. [DOI: 10.1016/j.ejpb.2022.11.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 11/06/2022] [Accepted: 11/14/2022] [Indexed: 11/19/2022]
|
261
|
Pu X, Zhu P, Zhou X, He Y, Wu H, Du L, Gong H, Sun X, Chen T, Zhu J, Xu Q, Zhang H. CD34 + cell atlas of main organs implicates its impact on fibrosis. Cell Mol Life Sci 2022; 79:576. [PMID: 36315271 PMCID: PMC11803001 DOI: 10.1007/s00018-022-04606-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 09/22/2022] [Accepted: 10/11/2022] [Indexed: 11/03/2022]
Abstract
RATIONALE CD34+ cells are believed being progenitors that may be used to treat cardiovascular disease. However, the exact identity and the role of CD34+ cells in physiological and pathological conditions remain unclear. METHODS We performed single-cell RNA sequencing analysis to provide a cell atlas of normal tissue/organ and pathological conditions. Furthermore, a genetic lineage tracing mouse model was used to investigate the role of CD34+ cells in angiogenesis and organ fibrosis. RESULTS Single-cell RNA sequencing analysis revealed a heterogeneous population of CD34+ cells in both physiological and pathological conditions. Using a genetic lineage tracing mouse model, we showed that CD34+ cells not only acquired endothelial cell fate involved in angiogenesis, but also, CD34+ cells expressing Pi16 may transform into myofibroblast and thus participate in organ fibrosis. CONCLUSION A heterogeneous CD34+ cells serve as a contributor not only to endothelial regeneration but also a wound healing response that may provide therapeutic insights into fibrosis.
Collapse
Affiliation(s)
- Xiangyuan Pu
- Department of Cardiology, the First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, 310003, Hangzhou, China
| | - Pengwei Zhu
- Department of Cardiology, the First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, 310003, Hangzhou, China
| | - Xuhao Zhou
- Department of Cardiology, the First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, 310003, Hangzhou, China
| | - Yangyan He
- Department of Vascular Surgery, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Hong Wu
- Department of Cardiology, the First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, 310003, Hangzhou, China
| | - Luping Du
- Department of Cardiology, the First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, 310003, Hangzhou, China
| | - Hui Gong
- Department of Cardiology, the First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, 310003, Hangzhou, China
| | - Xiaotong Sun
- Department of Cardiology, the First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, 310003, Hangzhou, China
| | - Ting Chen
- Department of Cardiology, the First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, 310003, Hangzhou, China
- Alibaba-Zhejiang University Joint Research Center of Future Digital Healthcare, Hangzhou, China
| | - Jianhua Zhu
- Department of Cardiology, the First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, 310003, Hangzhou, China.
| | - Qingbo Xu
- Department of Cardiology, the First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, 310003, Hangzhou, China.
| | - Hongkun Zhang
- Department of Vascular Surgery, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
262
|
Lemmer D, Schmidt J, Kummer K, Lemmer B, Wrede A, Seitz C, Balcarek P, Schwarze K, Müller GA, Patschan D, Patschan S. Impairment of muscular endothelial cell regeneration in dermatomyositis. Front Neurol 2022; 13:952699. [PMID: 36330424 PMCID: PMC9623165 DOI: 10.3389/fneur.2022.952699] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 09/01/2022] [Indexed: 11/22/2022] Open
Abstract
Background and aim Inflammatory myopathies are heterogeneous in terms of etiology, (immuno)pathology, and clinical findings. Endothelial cell injury, as it occurs in DM, is a common feature of numerous inflammatory and non-inflammatory vascular diseases. Vascular regeneration is mediated by both local and blood-derived mechanisms, such as the mobilization and activation of so-called proangiogenic cells (PACs) or early endothelial progenitor cells (eEPCs). The current study aimed to evaluate parameters of eEPC integrity in dermatomyositis (DM), compared to necrotizing myopathy (NM) and to non-myopathic controls. Methods Blood samples from DM and NM patients were compared to non-myositis controls and analyzed for the following parameters: circulating CD133+/VEGFR-2+ cells, number of colony-forming unit endothelial cells (CFU-ECs), concentrations of angiopoietin 1, vascular endothelial growth factor (VEGF), and CXCL-16. Muscle biopsies from DM and NM subjects underwent immunofluorescence analysis for CXCR6, nestin, and CD31 (PECAM-1). Finally, myotubes, derived from healthy donors, were stimulated with serum samples from DM and NM patients, subsequently followed by RT-PCR for the following candidates: IL-1β, IL-6, nestin, and CD31. Results Seventeen (17) DM patients, 7 NM patients, and 40 non-myositis controls were included. CD133+/VEGFR-2+ cells did not differ between the groups. Both DM and NM patients showed lower CFU-ECs than controls. In DM, intramuscular CD31 abundances were significantly reduced, which indicated vascular rarefaction. Muscular CXCR6 was elevated in both diseases. Circulating CXCL-16 was higher in DM and NM in contrast, compared to controls. Serum from patients with DM but not NM induced a profound upregulation of mRNS expression of CD31 and IL-6 in cultured myotubes. Conclusion Our study demonstrates the loss of intramuscular microvessels in DM, accompanied by endothelial activation in DM and NM. Vascular regeneration was impaired in DM and NM. The findings suggest a role for inflammation-associated vascular damage in the pathogenesis of DM.
Collapse
Affiliation(s)
- D. Lemmer
- Department of Nephrology and Rheumatology, University Medical Center Göttingen, Göttingen, Germany
- Immanuel Krankenhaus Berlin, Medical Center of Rheumatology Berlin-Buch, Berlin, Germany
| | - J. Schmidt
- Department of Neurology and Pain Treatment, Immanuel Klinik Rüdersdorf, University Hospital of the Brandenburg Medical School Theodor Fontane, Rüdersdorf bei Berlin, Germany
- Faculty of Health Sciences Brandenburg, Brandenburg Medical School Theodor Fontane, Rüdersdorf bei Berlin, Germany
- Department of Neurology, Neuromuscular Center, University Medical Center Göttingen, Göttingen, Germany
| | - K. Kummer
- Department of Neurology, Neuromuscular Center, University Medical Center Göttingen, Göttingen, Germany
| | - B. Lemmer
- Department of Physics, Georg-August-University Göttingen, Göttingen, Germany
| | - A. Wrede
- Department of Neuropathology, University Medical Center Göttingen, Göttingen, Germany
| | - C. Seitz
- Department of Dermatology, Allergology and Venereology, University Medical Center Göttingen, Göttingen, Germany
| | - P. Balcarek
- Department of Trauma Surgery, Orthopedics and Plastic Surgery, University Medical Center Göttingen, Göttingen, Germany
- Arcus Klinik, Pforzheim, Germany
| | - K. Schwarze
- Department of Nephrology and Rheumatology, University Medical Center Göttingen, Göttingen, Germany
| | - G. A. Müller
- Department of Nephrology and Rheumatology, University Medical Center Göttingen, Göttingen, Germany
| | - D. Patschan
- Faculty of Health Sciences Brandenburg, Brandenburg Medical School Theodor Fontane, Rüdersdorf bei Berlin, Germany
- Department of Medicine 1, Cardiology, Angiology, and Nephrology, University Hospital Brandenburg of the Brandenburg Medical School Theodor Fontane, Branderburg, Germany
| | - S. Patschan
- Faculty of Health Sciences Brandenburg, Brandenburg Medical School Theodor Fontane, Rüdersdorf bei Berlin, Germany
- Department of Medicine 1, Cardiology, Angiology, and Nephrology, University Hospital Brandenburg of the Brandenburg Medical School Theodor Fontane, Branderburg, Germany
- *Correspondence: S. Patschan
| |
Collapse
|
263
|
Jiang S, Ito-Hirano R, Shen TNY, Fujimura S, Mizuno H, Tanaka R. Effect of MNCQQ Cells on Migration of Human Dermal Fibroblast in Diabetic Condition. Biomedicines 2022; 10:biomedicines10102544. [PMID: 36289806 PMCID: PMC9599466 DOI: 10.3390/biomedicines10102544] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/05/2022] [Accepted: 10/09/2022] [Indexed: 11/18/2022] Open
Abstract
A major symptom of diabetes mellitus (DM) is unfit hyperglycemia, which leads to impaired wound healing. It has been reported that the migration of fibroblasts can be suppressed under high glucose (HG) conditions. In our previous study, we introduced a serum-free culture method for mononuclear cells (MNCs) called quantity and quality control culture (QQc), which could improve the vasculogenic and tissue regeneration ability of MNCs. In this study, we described a culture model in which we applied a high glucose condition in human dermal fibroblasts to simulate the hyperglycemia condition in diabetic patients. MNC-QQ cells were cocultured with fibroblasts in this model to evaluate its role in improving fibroblasts dysfunction induced by HG and investigate its molecular mechanism. It was proven in this study that the impaired migration of fibroblasts induced by high glucose could be remarkably enhanced by coculture with MNC-QQ cells. PDGF B is known to play important roles in fibroblasts migration. Quantitative PCR revealed that MNC-QQ cells enhanced the gene expressions of PDGF B in fibroblasts under HG. Taken with these results, our data suggested a possibility that MNC-QQ cells accelerate wound healing via improving the fibroblasts migration and promote the gene expressions of PDGF B under diabetic conditions.
Collapse
Affiliation(s)
- Sen Jiang
- Division of Regenerative Therapy, Graduate School of Medicine, Juntendo University, 2-1-1, Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
- Intractable Disease Research Center, Graduate School of Medicine, Juntendo University, 2-1-1, Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Rie Ito-Hirano
- Division of Regenerative Therapy, Graduate School of Medicine, Juntendo University, 2-1-1, Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
- Center for Genomic and Regenerative Medicine, Graduate School of Medicine, Juntendo University, 2-1-1, Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Tsubame Nishikai-Yan Shen
- Division of Regenerative Therapy, Graduate School of Medicine, Juntendo University, 2-1-1, Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
- Intractable Disease Research Center, Graduate School of Medicine, Juntendo University, 2-1-1, Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
- Department of Plastic and Reconstructive Surgery, School of Medicine, Juntendo University, 2-1-1, Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Satoshi Fujimura
- Division of Regenerative Therapy, Graduate School of Medicine, Juntendo University, 2-1-1, Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
- Intractable Disease Research Center, Graduate School of Medicine, Juntendo University, 2-1-1, Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Hiroshi Mizuno
- Intractable Disease Research Center, Graduate School of Medicine, Juntendo University, 2-1-1, Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
- Department of Plastic and Reconstructive Surgery, School of Medicine, Juntendo University, 2-1-1, Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Rica Tanaka
- Division of Regenerative Therapy, Graduate School of Medicine, Juntendo University, 2-1-1, Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
- Intractable Disease Research Center, Graduate School of Medicine, Juntendo University, 2-1-1, Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
- Department of Plastic and Reconstructive Surgery, School of Medicine, Juntendo University, 2-1-1, Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
- Correspondence:
| |
Collapse
|
264
|
Marei I, Ahmetaj-Shala B, Triggle CR. Biofunctionalization of cardiovascular stents to induce endothelialization: Implications for in- stent thrombosis in diabetes. Front Pharmacol 2022; 13:982185. [PMID: 36299902 PMCID: PMC9589287 DOI: 10.3389/fphar.2022.982185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 08/31/2022] [Indexed: 11/13/2022] Open
Abstract
Stent thrombosis remains one of the main causes that lead to vascular stent failure in patients undergoing percutaneous coronary intervention (PCI). Type 2 diabetes mellitus is accompanied by endothelial dysfunction and platelet hyperactivity and is associated with suboptimal outcomes following PCI, and an increase in the incidence of late stent thrombosis. Evidence suggests that late stent thrombosis is caused by the delayed and impaired endothelialization of the lumen of the stent. The endothelium has a key role in modulating inflammation and thrombosis and maintaining homeostasis, thus restoring a functional endothelial cell layer is an important target for the prevention of stent thrombosis. Modifications using specific molecules to induce endothelial cell adhesion, proliferation and function can improve stents endothelialization and prevent thrombosis. Blood endothelial progenitor cells (EPCs) represent a potential cell source for the in situ-endothelialization of vascular conduits and stents. We aim in this review to summarize the main biofunctionalization strategies to induce the in-situ endothelialization of coronary artery stents using circulating endothelial stem cells.
Collapse
Affiliation(s)
- Isra Marei
- Department of Pharmacology, Weill Cornell Medicine- Qatar, Doha, Qatar
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
- *Correspondence: Isra Marei, ; Chris R. Triggle,
| | | | - Chris R. Triggle
- Department of Pharmacology, Weill Cornell Medicine- Qatar, Doha, Qatar
- *Correspondence: Isra Marei, ; Chris R. Triggle,
| |
Collapse
|
265
|
Blasiak J, Kaarniranta K. Secretory autophagy: a turn key for understanding AMD pathology and developing new therapeutic targets? Expert Opin Ther Targets 2022; 26:883-895. [PMID: 36529978 DOI: 10.1080/14728222.2022.2157260] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
INTRODUCTION Age-related macular degeneration (AMD) is an eye disease leading to vision loss with poorly known pathogenesis and limited therapeutic options. Degradative autophagy (DA) is impaired in AMD, but emerging evidence points to secretary autophagy (SA) as a key element in AMD pathogenesis. AREAS COVERED SA may cause the release of proteins and protein aggregates, lipofuscin, beta amyloid, faulty mitochondria, pro-inflammatory and pro-angiogenic factors from the retinal pigment epithelium (RPE) that may contribute to drusen formation and choroidal neovascularization. SA may replace DA, when formation of autolysosome is impaired, and then a harmful cargo, instead of being degraded, is extruded from the RPE contributing to drusen and/or angiogenic environment. Therefore, the interplay between DA and SA may be critical for drusen formation and choroidal neovascularization, so it can be a turn key to understand AMD pathogenesis. EXPERT OPINION Although SA fulfills some beneficial functions, it is detrimental for the retina in many cases. Therefore, inhibiting SA may be a therapeutic strategy in AMD, but it is challenged by the development of selective SA inhibitors that would not affect DA. The TRIM16, SEC22B and RAB8A proteins, specific for secretory autophagosome, may be primary candidates as therapeutic targets, but their action is not limited to autophagy and therefore requires further studies.
Collapse
Affiliation(s)
- Janusz Blasiak
- Department of Molecular Genetics, University of Lodz, Lodz, Poland
| | - Kai Kaarniranta
- Department of Ophthalmology, University of Eastern Finland, Kuopio, Finland.,Department of Ophthalmology, Kuopio University Hospital, Kuopio, Finland
| |
Collapse
|
266
|
Douglass M, Garren M, Devine R, Mondal A, Handa H. Bio-inspired hemocompatible surface modifications for biomedical applications. PROGRESS IN MATERIALS SCIENCE 2022; 130:100997. [PMID: 36660552 PMCID: PMC9844968 DOI: 10.1016/j.pmatsci.2022.100997] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
When blood first encounters the artificial surface of a medical device, a complex series of biochemical reactions is triggered, potentially resulting in clinical complications such as embolism/occlusion, inflammation, or device failure. Preventing thrombus formation on the surface of blood-contacting devices is crucial for maintaining device functionality and patient safety. As the number of patients reliant on blood-contacting devices continues to grow, minimizing the risk associated with these devices is vital towards lowering healthcare-associated morbidity and mortality. The current standard clinical practice primarily requires the systemic administration of anticoagulants such as heparin, which can result in serious complications such as post-operative bleeding and heparin-induced thrombocytopenia (HIT). Due to these complications, the administration of antithrombotic agents remains one of the leading causes of clinical drug-related deaths. To reduce the side effects spurred by systemic anticoagulation, researchers have been inspired by the hemocompatibility exhibited by natural phenomena, and thus have begun developing medical-grade surfaces which aim to exhibit total hemocompatibility via biomimicry. This review paper aims to address different bio-inspired surface modifications that increase hemocompatibility, discuss the limitations of each method, and explore the future direction for hemocompatible surface research.
Collapse
Affiliation(s)
- Megan Douglass
- School of Chemical, Materials and Biomedical Engineering, College of Engineering, University of Georgia, Athens, GA, USA
| | - Mark Garren
- School of Chemical, Materials and Biomedical Engineering, College of Engineering, University of Georgia, Athens, GA, USA
| | - Ryan Devine
- School of Chemical, Materials and Biomedical Engineering, College of Engineering, University of Georgia, Athens, GA, USA
| | - Arnab Mondal
- School of Chemical, Materials and Biomedical Engineering, College of Engineering, University of Georgia, Athens, GA, USA
| | - Hitesh Handa
- School of Chemical, Materials and Biomedical Engineering, College of Engineering, University of Georgia, Athens, GA, USA
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, GA, USA
| |
Collapse
|
267
|
Abstract
PURPOSE OF REVIEW The purpose of this narrative review is to give an overview about the effects of multimodal prehabilitation and current existing and prospectively planned studies. The potential efficacy of exercise in the context of prehabilitation ranges from preoperatively improving patients' functional capacity to inducing cellular mechanisms that affect organ perfusion via endothelial regeneration, anti-inflammatory processes and tumour defense. RECENT FINDINGS Current studies show that prehabilitation is capable of reducing certain postoperative complications and length of hospital stay in certain patient populations. These findings are based on small to mid-size trials with large heterogeneity, lacking generalizability and evidence that prehabilitation has positive effects on long term survival. SUMMARY The concept of prehabilitation contains the features, namely preoperative exercise, nutritional intervention and psychological support. Preoperative exercise holds potential molecular effects that can be utilized in the perioperative period in order to improve patients' postoperative outcome. Future multimodal prehabilitation trials must specifically clarify the clinical impact of this concept on patients' quality of life after major cancer surgery and cancer-specific survival.
Collapse
Affiliation(s)
- Tobias Esser
- Institute of Sports and Sports Medicine, TU Dortmund University, Dortmund
| | - Philipp Zimmer
- Institute of Sports and Sports Medicine, TU Dortmund University, Dortmund
| | - Robert Schier
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Department for Anaesthesiology and Intensive Care Medicine, Cologne, Germany
| |
Collapse
|
268
|
Exarchos V, Zacharova E, Neuber S, Giampietro C, Motta SE, Hinkov H, Emmert MY, Nazari-Shafti TZ. The path to a hemocompatible cardiovascular implant: Advances and challenges of current endothelialization strategies. Front Cardiovasc Med 2022; 9:971028. [PMID: 36186971 PMCID: PMC9515323 DOI: 10.3389/fcvm.2022.971028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 08/01/2022] [Indexed: 11/13/2022] Open
Abstract
Cardiovascular (CV) implants are still associated with thrombogenicity due to insufficient hemocompatibility. Endothelialization of their luminal surface is a promising strategy to increase their hemocompatibility. In this review, we provide a collection of research studies and review articles aiming to summarize the recent efforts on surface modifications of CV implants, including stents, grafts, valves, and ventricular assist devises. We focus in particular on the implementation of micrometer or nanoscale surface modifications, physical characteristics of known biomaterials (such as wetness and stiffness), and surface morphological features (such as gratings, fibers, pores, and pits). We also review how biomechanical signals originating from the endothelial cell for surface interaction can be directed by topography engineering approaches toward the survival of the endothelium and its long-term adaptation. Finally, we summarize the regulatory and economic challenges that may prevent clinical implementation of endothelialized CV implants.
Collapse
Affiliation(s)
- Vasileios Exarchos
- Cardiosurgical Research Group, Department of Cardiothoracic and Vascular Surgery, German Heart Center Berlin, Berlin, Germany
- Translational Cardiovascular Regenerative Technologies Group, Berlin Institute of Health at Charité – Universitätsmedizin Berlin, BIH Center for Regenerative Therapies, Berlin, Germany
| | - Ema Zacharova
- Cardiosurgical Research Group, Department of Cardiothoracic and Vascular Surgery, German Heart Center Berlin, Berlin, Germany
- Translational Cardiovascular Regenerative Technologies Group, Berlin Institute of Health at Charité – Universitätsmedizin Berlin, BIH Center for Regenerative Therapies, Berlin, Germany
- Department of Life Sciences, IMC University of Applied Sciences Krems, Krems an der Donau, Austria
| | - Sebastian Neuber
- Cardiosurgical Research Group, Department of Cardiothoracic and Vascular Surgery, German Heart Center Berlin, Berlin, Germany
- Translational Cardiovascular Regenerative Technologies Group, Berlin Institute of Health at Charité – Universitätsmedizin Berlin, BIH Center for Regenerative Therapies, Berlin, Germany
| | - Costanza Giampietro
- Experimental Continuum Mechanics, Empa Swiss Federal Laboratories for Materials Science and Technology, Dübendorf, Switzerland
- Department of Mechanical and Process Engineering, Institute for Mechanical Systems, ETH Zürich, Zurich, Switzerland
| | - Sarah E. Motta
- Institute for Regenerative Medicine, University of Zurich, Zurich, Switzerland
| | - Hristian Hinkov
- Cardiosurgical Research Group, Department of Cardiothoracic and Vascular Surgery, German Heart Center Berlin, Berlin, Germany
- Translational Cardiovascular Regenerative Technologies Group, Berlin Institute of Health at Charité – Universitätsmedizin Berlin, BIH Center for Regenerative Therapies, Berlin, Germany
| | - Maximilian Y. Emmert
- Cardiosurgical Research Group, Department of Cardiothoracic and Vascular Surgery, German Heart Center Berlin, Berlin, Germany
- Translational Cardiovascular Regenerative Technologies Group, Berlin Institute of Health at Charité – Universitätsmedizin Berlin, BIH Center for Regenerative Therapies, Berlin, Germany
- Institute for Regenerative Medicine, University of Zurich, Zurich, Switzerland
- Clinic for Cardiovascular Surgery, Charité – Universitätsmedizin Berlin, Berlin, Germany
- Department of Health Sciences and Technology, ETH Zürich, Zurich, Switzerland
| | - Timo Z. Nazari-Shafti
- Cardiosurgical Research Group, Department of Cardiothoracic and Vascular Surgery, German Heart Center Berlin, Berlin, Germany
- Translational Cardiovascular Regenerative Technologies Group, Berlin Institute of Health at Charité – Universitätsmedizin Berlin, BIH Center for Regenerative Therapies, Berlin, Germany
- Berlin Institute of Health at Charité – Universitätsmedizin Berlin, BIH Biomedical Innovation Academy, BIH Charité (Junior) (Digital) Clinician Scientist Program, Berlin, Germany
- *Correspondence: Timo Z. Nazari-Shafti,
| |
Collapse
|
269
|
Yang W, Wang H, Guo Q, Xu X, Guo T, Sun L. Roles of TRPV4 in Regulating Circulating Angiogenic Cells to Promote Coronary Microvascular Regeneration. J Cardiovasc Transl Res 2022; 16:414-426. [PMID: 36103035 DOI: 10.1007/s12265-022-10305-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 08/17/2022] [Indexed: 11/24/2022]
Abstract
To clarify the mechanisms underlying TRPV4 regulating angiogenesis by enhancing the activity of CACs, we detected the angiogenesis ability of HUVEC co-cultured with CACs, the effects of ILK on TRPV4 expression and CACs activity, and the impacts of TRPV4 agonist or inhibitor on cardio-protection of AMI rats with or without CAC transplantation. ILK overexpression or TRPV4 agonist promoted the angiogenesis in HUVEC co-cultured with CACs. ILK overexpression or activation upregulated TRPV4 expression in CACs, while TRPV4 agonist stimulation also regulated ILK expression. TRPV4 agonist effectively improved the myocardial function of AMI rats. Moreover, this effect could be strengthened when combined with CAC transplantation, as CAC transplantation dramatically upregulated the expression of ILK and TRPV4 in heart tissues of AMI rats. Thus, the application of TRPV4 agonist may maintain the activity of CACs to promote angiogenesis and microcirculation reconstruction in the area of myocardial infarction and substantially improve the therapeutic effect.
Collapse
Affiliation(s)
- Wenhui Yang
- Department of Cardiology, Fuwai Yunnan Cardiovascular Hospital, Kunming, China
| | - Haizhen Wang
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming, 650201, China
| | - Qiuzhe Guo
- Department of Cardiology, Fuwai Yunnan Cardiovascular Hospital, Kunming, China
| | - Xiaocui Xu
- Kunming Medical University, Kunming, China
| | - Tao Guo
- Department of Cardiology, Fuwai Yunnan Cardiovascular Hospital, Kunming, China.
| | - Lin Sun
- Department of Cardiology, Fuwai Yunnan Cardiovascular Hospital, Kunming, China.
| |
Collapse
|
270
|
Custodia A, Ouro A, Sargento-Freitas J, Aramburu-Núñez M, Pías-Peleteiro JM, Hervella P, Rosell A, Ferreira L, Castillo J, Romaus-Sanjurjo D, Sobrino T. Unraveling the potential of endothelial progenitor cells as a treatment following ischemic stroke. Front Neurol 2022; 13:940682. [PMID: 36158970 PMCID: PMC9492921 DOI: 10.3389/fneur.2022.940682] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 08/15/2022] [Indexed: 11/13/2022] Open
Abstract
Ischemic stroke is becoming one of the most common causes of death and disability in developed countries. Since current therapeutic options are quite limited, focused on acute reperfusion therapies that are hampered by a very narrow therapeutic time window, it is essential to discover novel treatments that not only stop the progression of the ischemic cascade during the acute phase, but also improve the recovery of stroke patients during the sub-acute or chronic phase. In this regard, several studies have shown that endothelial progenitor cells (EPCs) can repair damaged vessels as well as generate new ones following cerebrovascular damage. EPCs are circulating cells with characteristics of both endothelial cells and adult stem cells presenting the ability to differentiate into mature endothelial cells and self-renew, respectively. Moreover, EPCs have the advantage of being already present in healthy conditions as circulating cells that participate in the maintenance of the endothelium in a direct and paracrine way. In this scenario, EPCs appear as a promising target to tackle stroke by self-promoting re-endothelization, angiogenesis and vasculogenesis. Based on clinical data showing a better neurological and functional outcome in ischemic stroke patients with higher levels of circulating EPCs, novel and promising therapeutic approaches would be pharmacological treatment promoting EPCs-generation as well as EPCs-based therapies. Here, we will review the latest advances in preclinical as well as clinical research on EPCs application following stroke, not only as a single treatment but also in combination with new therapeutic approaches.
Collapse
Affiliation(s)
- Antía Custodia
- NeuroAging Laboratory (NEURAL), Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - Alberto Ouro
- NeuroAging Laboratory (NEURAL), Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - João Sargento-Freitas
- Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
- Faculdade de Medicina da Universidade de Coimbra, Coimbra, Portugal
- Centro Neurociências e Biologia Celular, Coimbra, Portugal
| | - Marta Aramburu-Núñez
- NeuroAging Laboratory (NEURAL), Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - Juan Manuel Pías-Peleteiro
- NeuroAging Laboratory (NEURAL), Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - Pablo Hervella
- Neuroimaging and Biotechnology Laboratory (NOBEL), Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - Anna Rosell
- Neurovascular Research Laboratory, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Lino Ferreira
- Faculdade de Medicina da Universidade de Coimbra, Coimbra, Portugal
- Centro Neurociências e Biologia Celular, Coimbra, Portugal
- CNC-Center for Neuroscience and Cell Biology, CIBB-Centre for Innovative Biomedicine and Biotechnology, UC, Biotech Parque Tecnológico de Cantanhede, University of Coimbra, Coimbra, Portugal
| | - José Castillo
- Neuroimaging and Biotechnology Laboratory (NOBEL), Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - Daniel Romaus-Sanjurjo
- NeuroAging Laboratory (NEURAL), Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
- *Correspondence: Daniel Romaus-Sanjurjo
| | - Tomás Sobrino
- NeuroAging Laboratory (NEURAL), Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
- Tomás Sobrino
| |
Collapse
|
271
|
Del Rio APT, Frade-Guanaes JO, Ospina-Prieto S, Duarte BKL, Bertolo MB, Ozelo MC, Sachetto Z. Impaired repair properties of endothelial colony-forming cells in patients with granulomatosis with polyangiitis. J Cell Mol Med 2022; 26:5044-5053. [PMID: 36052734 PMCID: PMC9549508 DOI: 10.1111/jcmm.17531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 07/04/2022] [Accepted: 08/17/2022] [Indexed: 12/01/2022] Open
Abstract
In patients with ANCA‐associated vasculitis, interactions between neutrophils and endothelial cells cause endothelial damage and imbalance. Endothelial colony‐forming cells (ECFCs) represent a cellular population of the endothelial lineage with proliferative capacity and vasoreparative properties. This study aimed to evaluate the angiogenic capacity of ECFCs of patients with granulomatosis with polyangiitis (GPA). The ECFCs of 13 patients with PR3‐positive GPA and 14 healthy controls were isolated and characterized using fluorescence‐activated cell sorting, capillary tube formation measurement, scratching assays and migration assays with and without plasma stimulation. Furthermore, three patients with active disease underwent post‐treatment recollection of ECFCs for longitudinal evaluation. The ECFCs from the patients and controls showed similar capillary structure formation. However, the ECFCs from the patients with inactive GPA exhibited early losses of angiogenic capacity. Impairments in the migration capacities of the ECFCs were also observed in patients with GPA and controls (12th h, p = 0.05). Incubation of ECFCs from patients with GPA in remission with plasma from healthy controls significantly decreased migration capacity (p = 0.0001). Longitudinal analysis revealed that treatment significantly lowered ECFC migration rates. This study revealed that ECFCs from the patients with PR3‐positive GPA in remission demonstrated early losses of tube formation and reduced migration capacity compared to those of the healthy controls, suggesting impairment of endothelial function.
Collapse
Affiliation(s)
- Ana Paula Toledo Del Rio
- Rheumatology Discipline, School of Medical Sciences, University of Campinas (UNICAMP), Campinas, Brazil
| | - Jéssica O Frade-Guanaes
- Hemocentro UNICAMP, School of Medical Sciences, University of Campinas (UNICAMP), Campinas, Brazil
| | - Stephanie Ospina-Prieto
- Hemocentro UNICAMP, School of Medical Sciences, University of Campinas (UNICAMP), Campinas, Brazil
| | - Bruno K L Duarte
- Hemocentro UNICAMP, School of Medical Sciences, University of Campinas (UNICAMP), Campinas, Brazil
| | - Manoel Barros Bertolo
- Rheumatology Discipline, School of Medical Sciences, University of Campinas (UNICAMP), Campinas, Brazil
| | - Margareth C Ozelo
- Hemocentro UNICAMP, School of Medical Sciences, University of Campinas (UNICAMP), Campinas, Brazil
| | - Zoraida Sachetto
- Rheumatology Discipline, School of Medical Sciences, University of Campinas (UNICAMP), Campinas, Brazil
| |
Collapse
|
272
|
Bauer CJ, Findlay M, Koliamitra C, Zimmer P, Schick V, Ludwig S, Gurtner GC, Riedel B, Schier R. Preoperative exercise induces endothelial progenitor cell mobilisation in patients undergoing major surgery – A prospective randomised controlled clinical proof-of-concept trial. Heliyon 2022; 8:e10705. [PMID: 36200018 PMCID: PMC9529507 DOI: 10.1016/j.heliyon.2022.e10705] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 05/10/2022] [Accepted: 09/14/2022] [Indexed: 11/17/2022] Open
Abstract
Introduction Prehabilitation is increasingly recognised as a therapeutic option to reduce postoperative complications. Investigating the beneficial effects of exercise on cellular mechanisms, we have previously shown that a single episode of exhaustive exercise effectively stimulates endothelial progenitor cells (a cell population associated with vascular maintenance, repair, angiogenesis, and neovascularization) in correlation with fewer postoperative complications, despite the ongoing debate about the appropriate cell surface marker profiles of these cells (common phenotypical definitions include CD45dim, CD133+, CD34+ and/or CD31+). In order to translate these findings into clinical application, a feasible prehabilitation programme achieving both functional and cellular benefits in a suitable timeframe to expedite surgery is necessary. Objective The objective of this study was to test the hypothesis that a four-week prehabilitation programme of vigorous-intensity interval exercise training is feasible, increases physical capacity (primary outcome) and the circulatory number of endothelial progenitor cells within peripheral blood. Methods In this unblinded, parallel-group, randomised controlled proof-of-concept clinical trial (German Clinical Trial Register number: DRKS00000527) conducted between 01st December 2014 and 30th November 2016, fifteen female adult patients scheduled for incontinence surgery with abdominal laparotomy at the University Hospital Cologne were allocated to either an exercise (n = 8, exclusion of 1 patient, analysed n = 7) or non-exercise group (n = 7, exclusion of 1 patient, analysed n = 6). The exercise group's intervention consisted of a vigorous-intensity interval training for four weeks preoperatively. Cardiopulmonary Exercise Testing accompanied by peripheral blood collection was performed before and after the (non-)training phase. Cellular investigations were conducted by flow cytometry and cluster-based analyses. Results Vigorous-intensity interval training over four weeks was feasible in the exercise group (successful completion by 8 out of 8 patients without any harms), with significant improvements in patients' functional capacity (increased oxygen uptake at anaerobic threshold [intervention group mean + 1.71 ± 3.20 mL/min/kg vs. control group mean −1.83 ± 2.14 mL/min/kg; p = 0.042] and peak exercise [intervention group mean + 1.71 ± 1.60 mL/min/kg vs. control group mean −1.67 ± 1.37 mL/min/kg; p = 0.002]) and a significant increase in the circulatory number of endothelial progenitor cells (proportionate CD45dim/CD14dim/CD133+/CD309+/CD34+/CD31 + subpopulation within the circulating CD45-pool [p = 0.016]). Conclusions We introduce a novel prehabilitation concept that shows effective stimulation of an endothelial progenitor cell subpopulation within four weeks of preoperative exercise, serving as a clinical cell-mediated intervention with the aim to reduce surgical complications. Funding Institutional funding. DFG (German Research Foundation, 491454339) support for the Article Processing Charge.
Collapse
Affiliation(s)
- Claus Juergen Bauer
- Department of Internal Medicine—Oncology, Hematology and Rheumatology, University Hospital Bonn, Bonn, Germany
| | - Michael Findlay
- Department of Surgery, Division of Cancer Surgery, Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Christina Koliamitra
- Institute for Cardiovascular Research and Sports Medicine, German Sports University Cologne, Cologne, Germany
| | - Philipp Zimmer
- Institute of Sports and Sports Medicine, TU Dortmund University, Dortmund, Germany
| | - Volker Schick
- Department of Anaesthesiology and Intensive Care Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Sebastian Ludwig
- Department of Obstetrics and Gynaecology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Geoffrey C. Gurtner
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, USA
| | - Bernhard Riedel
- Department of Anaesthetics, Perioperative Medicine and Pain Medicine, Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Robert Schier
- Department of Anaesthesiology and Intensive Care Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Corresponding author.
| |
Collapse
|
273
|
Phowira J, Ahmed FW, Bakhashab S, Weaver JU. Upregulated miR-18a-5p in Colony Forming Unit-Hill’s in Subclinical Cardiovascular Disease and Metformin Therapy; MERIT Study. Biomedicines 2022; 10:biomedicines10092136. [PMID: 36140236 PMCID: PMC9496122 DOI: 10.3390/biomedicines10092136] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/22/2022] [Accepted: 08/23/2022] [Indexed: 11/16/2022] Open
Abstract
Colony forming unit-Hill’s (CFU-Hill’s) colonies are hematopoietic-derived cells that participate in neovasculogenesis and serve as a biomarker for vascular health. In animals, overexpression of miR-18a-5p was shown to be pro-atherogenic. We had shown that well-controlled type 1 diabetes mellitus (T1DM) is characterized by an inflammatory state, endothelial dysfunction, and reduced number of CFU-Hill’s, a model of subclinical cardiovascular disease (CVD). MERIT study explored the role of miR-18a-5p expression in CFU-Hill’s colonies in T1DM, and the cardioprotective effect of metformin in subclinical CVD. In T1DM, miR-18a-5p was significantly upregulated whereas metformin reduced it to HC levels. MiR-18a-5p was inversely correlated with CFU-Hill’s colonies, CD34+, CD34+CD133+ cells, and positively with IL-10, C-reactive protein, vascular endothelial growth factor-D (VEGF-D), and thrombomodulin. The receiver operating characteristic curve demonstrated, miR-18a-5p as a biomarker of T1DM, and upregulated miR-18a-5p defining subclinical CVD at HbA1c of 44.5 mmol/mol (pre-diabetes). Ingenuity pathway analysis documented miR-18a-5p inhibiting mRNA expression of insulin-like growth factor-1, estrogen receptor-1, hypoxia-inducible factor-1α cellular communication network factor-2, and protein inhibitor of activated STAT 3, whilst metformin upregulated these mRNAs via transforming growth factor beta-1 and VEGF. We confirmed the pro-atherogenic effect of miR-18a-5p in subclinical CVD and identified several target genes for future CVD therapies.
Collapse
Affiliation(s)
- Jason Phowira
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
- Faculty of Medicine, Universitas Indonesia, Jakarta 10430, Indonesia
| | - Fahad W. Ahmed
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
- Department of Diabetes, Queen Elizabeth Hospital, Gateshead, Newcastle upon Tyne NE9 6SH, UK
- Department of Medical Oncology, King Faisal Specialist Hospital and Research Centre, Madinah 42522, Saudi Arabia
| | - Sherin Bakhashab
- Biochemistry Department, King Abdulaziz University, P.O. Box 80218, Jeddah 21589, Saudi Arabia
| | - Jolanta U. Weaver
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
- Department of Diabetes, Queen Elizabeth Hospital, Gateshead, Newcastle upon Tyne NE9 6SH, UK
- Vascular Biology and Medicine Theme, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
- Correspondence: ; Tel.: +44-191-445-2181
| |
Collapse
|
274
|
Hashemi G, Dight J, Khosrotehrani K, Sormani L. Melanoma Tumour Vascularization and Tissue-Resident Endothelial Progenitor Cells. Cancers (Basel) 2022; 14:4216. [PMID: 36077754 PMCID: PMC9454996 DOI: 10.3390/cancers14174216] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/17/2022] [Accepted: 08/24/2022] [Indexed: 11/20/2022] Open
Abstract
The aggressiveness of solid cancers, such as melanoma, relies on their metastatic potential. It has become evident that this key cause of mortality is largely conferred by the tumour-associated stromal cells, especially endothelial cells. In addition to their essential role in the formation of the tumour vasculature, endothelial cells significantly contribute to the establishment of the tumour microenvironment, thus enabling the dissemination of cancer cells. Melanoma tumour vascularization occurs through diverse biological processes. Vasculogenesis is the formation of de novo blood vessels from endothelial progenitor cells (EPCs), and recent research has shown the role of EPCs in melanoma tumour vascularization. A more detailed understanding of the complex role of EPCs and how they contribute to the abnormal vessel structures in tumours is of importance. Moreover, anti-angiogenic drugs have a limited effect on melanoma tumour vascularization, and the role of these drugs on EPCs remains to be clarified. Overall, targeting cancer vasculature remains a challenge, and the role of anti-angiogenic drugs and combination therapies in melanoma, a focus of this review, is an area of extensive exploration.
Collapse
Affiliation(s)
| | | | - Kiarash Khosrotehrani
- Experimental Dermatology Group, Dermatology Research Centre, The UQ Diamantina Institute, The University of Queensland, Woolloongabba, QLD 4102, Australia
| | - Laura Sormani
- Experimental Dermatology Group, Dermatology Research Centre, The UQ Diamantina Institute, The University of Queensland, Woolloongabba, QLD 4102, Australia
| |
Collapse
|
275
|
Kuo CS, Chen CY, Huang HL, Tsai HY, Chou RH, Wei JH, Huang PH, Lin SJ. Melatonin Improves Ischemia-Induced Circulation Recovery Impairment in Mice with Streptozotocin-Induced Diabetes by Improving the Endothelial Progenitor Cells Functioning. Int J Mol Sci 2022; 23:ijms23179839. [PMID: 36077238 PMCID: PMC9456213 DOI: 10.3390/ijms23179839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 08/25/2022] [Accepted: 08/26/2022] [Indexed: 11/16/2022] Open
Abstract
Patients with diabetes mellitus tend to develop ischemia-related complications and have compromised endothelial progenitor cell (EPC) function. Melatonin protects against ischemic injury, possibly via EPC modulation. We investigated whether melatonin pretreatment could restore EPC function impairment and improve circulation recovery in a diabetic critical limb ischemia mouse model. Under 25 mM high-glucose medium in vitro, EPC proliferation, nitric oxide production, tube formation, and endothelial nitric oxide synthase (eNOS) phosphorylation were significantly suppressed. Hyperglycemia promoted EPC senescence and apoptosis as well as increased reactive oxygen species (ROS) production. Melatonin treatment reversed the harmful effects of hyperglycemia on EPC through adenosine monophosphate–activated protein kinase-related mechanisms to increase eNOS phosphorylation and heme oxygenase-1 expression. In an in-vivo study, after a 4-week surgical induction of hindlimb ischemia, mice with streptozotocin (STZ)-induced diabetes showed significant reductions in new vessel formation, tissue reperfusion, and EPC mobilization in ischemic hindlimbs compared to non-diabetic mice. Mice with STZ-induced diabetes that received melatonin treatment (10 mg/kg/day, intraperitoneal) had significantly improved blood perfusion ratios of ischemic to non-ischemic limb, EPC mobilization, and densities of capillaries. In addition, a murine bone marrow transplantation model to support these findings demonstrated that melatonin stimulated bone marrow-originated EPCs to differentiate into vascular endothelial cells in femoral ligation-induced ischemic muscles. In summary, this study suggests that melatonin treatment augments EPC function along with neovascularization in response to ischemia in diabetic mice. We illustrated the protective effects of melatonin on EPC H2O2 production, senescence, and migration through melatonin receptors and modulating eNOS, AMPK, and HO-1 activities at the cellular level. Thus, melatonin might be used to treat the impairment of EPC mobilization and circulation recuperation in response to ischemic injury caused by chronic hyperglycemia. Additional studies are needed to elucidate the applicability of the results in humans.
Collapse
Affiliation(s)
- Chin-Sung Kuo
- Division of Endocrinology and Metabolism, Department of Medicine, Taipei Veterans General Hospital, Taipei 112201, Taiwan
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
| | - Chi-Yu Chen
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
| | - Hsin-Lei Huang
- Department of Nursing, College of Nursing, National Taipei University of Nursing and Health Sciences, Taipei 112303, Taiwan
- Correspondence: (H.-L.H.); (P.-H.H.); Tel.: +886-2-2871-2121 (H.-L.H.); +886-2-2875-7434 (P.-H.H.); Fax: +886-2-2875-7435 (H.-L.H. & P.-H.H.)
| | - Hsiao-Ya Tsai
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
| | - Ruey-Hsing Chou
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
- Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, Taipei 112201, Taiwan
- Cardiovascular Research Center, School of Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
| | - Jih-Hua Wei
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
- Division of Cardiology, Department of Internal Medicine, Min-Sheng General Hospital, Taoyuan 330056, Taiwan
- Department of Nutrition and Health Sciences, School of Healthcare Management, Kai-Nan University, Taoyuan 338103, Taiwan
| | - Po-Hsun Huang
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
- Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, Taipei 112201, Taiwan
- Cardiovascular Research Center, School of Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
- Department of Critical Care Medicine, Taipei Veterans General Hospital, Taipei 112201, Taiwan
- Correspondence: (H.-L.H.); (P.-H.H.); Tel.: +886-2-2871-2121 (H.-L.H.); +886-2-2875-7434 (P.-H.H.); Fax: +886-2-2875-7435 (H.-L.H. & P.-H.H.)
| | - Shing-Jong Lin
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
- Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, Taipei 112201, Taiwan
- Cardiovascular Research Center, School of Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 112201, Taiwan
- Taipei Heart Institute, Taipei Medical University, Taipei 110301, Taiwan
- Division of Cardiology, Heart Center, Cheng-Hsin General Hospital, Taipei 112401, Taiwan
| |
Collapse
|
276
|
Lana JFSD, Lana AVSD, da Fonseca LF, Coelho MA, Marques GG, Mosaner T, Ribeiro LL, Azzini GOM, Santos GS, Fonseca E, de Andrade MAP. Stromal Vascular Fraction for Knee Osteoarthritis - An Update. J Stem Cells Regen Med 2022; 18:11-20. [PMID: 36003656 DOI: 10.46582/jsrm.1801003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Accepted: 12/10/2021] [Indexed: 11/19/2022]
Abstract
Orthobiologics never cease to cause popularity within the medical science field, distinctly in regenerative medicine. Recently, adipose tissue has been an object of interest for many researchers and medical experts due to the fact that it represents a novel and potential cell source for tissue engineering and regenerative medicine purposes. Stromal vascular fraction (SVF), for instance, which is an adipose tissue-derivative, has generated optimistic results in many scenarios. Its biological potential can be harnessed and administered into injured tissues, particularly areas in which standard healing is disrupted. This is a typical feature of osteoarthritis (OA), a common degenerative joint disease which is outlined by persistent inflammation and destruction of surrounding tissues. SVF is known to carry a large amount of stem and progenitor cells, which are able to perform self-renewal, differentiation, and proliferation. Furthermore, they also secrete several cytokines and several growth factors, effectively sustaining immune modulatory effects and halting the escalated pro-inflammatory status of OA. Although SVF has shown interesting results throughout the medical community, additional research is still highly desirable in order to further elucidate its potential regarding musculoskeletal disorders, especially OA.
Collapse
Affiliation(s)
| | | | - Lucas Furtado da Fonseca
- Orthopaedic Department - Universidade Federal de São Paulo - Escola Paulista de Medicina, São Paulo - SP, Brazil
| | - Marcelo Amaral Coelho
- IOC - Instituto do Osso e da Cartilagem / The Bone and Cartilage Institute, Indaiatuba - SP, Brazil
| | | | - Tomas Mosaner
- IOC - Instituto do Osso e da Cartilagem / The Bone and Cartilage Institute, Indaiatuba - SP, Brazil
| | | | | | - Gabriel Silva Santos
- IOC - Instituto do Osso e da Cartilagem / The Bone and Cartilage Institute, Indaiatuba - SP, Brazil
| | - Eduardo Fonseca
- IOC - Instituto do Osso e da Cartilagem / The Bone and Cartilage Institute, Indaiatuba - SP, Brazil
| | | |
Collapse
|
277
|
Wong CWT, Sawhney A, Wu Y, Mak YW, Tian XY, Chan HF, Blocki A. Sourcing of human peripheral blood-derived myeloid angiogenic cells under xeno-free conditions for the treatment of critical limb ischemia. Stem Cell Res Ther 2022; 13:419. [PMID: 35964057 PMCID: PMC9375284 DOI: 10.1186/s13287-022-03095-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 07/26/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Critical limb ischemia (CLI) is the most severe form of peripheral artery disease and exhibits a high risk of lower extremity amputations. As even the most promising experimental approaches based on mesenchymal stem cells (MSCs) demonstrated only moderate therapeutic effects, we hypothesized that other cell types with intrinsic roles in angiogenesis may exhibit a stronger therapeutic potential. We have previously established a protocol to source human peripheral blood-derived angiogenic cells (BDACs). These cells promoted revascularization and took perivascular location at sites of angiogenesis, thus resembling hematopoietic pericytes, which were only described in vivo so far. We thus hypothesized that BDACs might have a superior ability to promote revascularization and rescue the affected limb in CLI. METHODS As standard BDAC sourcing techniques involve the use of animal-derived serum, we sought to establish a xeno- and/or serum-free protocol. Next, BDACs or MSCs were injected intramuscularly following the ligation of the iliac artery in a murine model. Their ability to enhance revascularization, impair necrosis and modulate inflammatory processes in the affected limb was investigated. Lastly, the secretomes of both cell types were compared to find potential indications for the observed differences in angiogenic potential. RESULTS From the various commercial media tested, one xeno-free medium enabled the derivation of cells that resembled functional BDACs in comparable numbers. When applied to a murine model of CLI, both cell types enhanced limb reperfusion and reduced necrosis, with BDACs being twice as effective as MSCs. This was also reflected in histological evaluation, where BDAC-treated animals exhibited the least muscle tissue degeneration. The BDAC secretome was enriched in a larger number of proteins with pro-angiogenic and anti-inflammatory properties, suggesting that the combination of those factors may be responsible for the superior therapeutic effect. CONCLUSIONS Functional BDACs can be sourced under xeno-free conditions paving the way for their safe clinical application. Since BDACs are derived from an easily accessible and renewable tissue, can be sourced in clinically relevant numbers and time frame and exceeded traditional MSCs in their therapeutic potential, they may represent an advantageous cell type for the treatment of CLI and other ischemic diseases.
Collapse
Affiliation(s)
- Christy Wing Tung Wong
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China.,School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Apurva Sawhney
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China.,School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Yalan Wu
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Yi Wah Mak
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China.,School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Xiao Yu Tian
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Hon Fai Chan
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China.,School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China.,Department of Orthopaedics & Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Anna Blocki
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China. .,School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China. .,Department of Orthopaedics & Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China.
| |
Collapse
|
278
|
Dai L, Uehara M, Li X, LaBarre BA, Banouni N, Ichimura T, Lee-Sundlov MM, Kasinath V, Sullivan JA, Ni H, Barone F, Giannini S, Bahmani B, Sage PT, Patsopoulos NA, Tsokos GC, Bromberg JS, Hoffmeister K, Jiang L, Abdi R. Characterization of CD41 + cells in the lymph node. Front Immunol 2022; 13:801945. [PMID: 36032128 PMCID: PMC9405417 DOI: 10.3389/fimmu.2022.801945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 07/18/2022] [Indexed: 11/23/2022] Open
Abstract
Lymph nodes (LNs) are the critical sites of immunity, and the stromal cells of LNs are crucial to their function. Our understanding of the stromal compartment of the LN has deepened recently with the characterization of nontraditional stromal cells. CD41 (integrin αIIb) is known to be expressed by platelets and hematolymphoid cells. We identified two distinct populations of CD41+Lyve1+ and CD41+Lyve1- cells in the LNs. CD41+Lyve1- cells appear in the LN mostly at the later stages of the lives of mice. We identified CD41+ cells in human LNs as well. We demonstrated that murine CD41+ cells express mesodermal markers, such as Sca-1, CD105 and CD29, but lack platelet markers. We did not observe the presence of platelets around the HEVs or within proximity to fibroblastic reticular cells of the LN. Examination of thoracic duct lymph fluid showed the presence of CD41+Lyve1- cells, suggesting that these cells recirculate throughout the body. FTY720 reduced their trafficking to lymph fluid, suggesting that their egress is controlled by the S1P1 pathway. CD41+Lyve1- cells of the LNs were sensitive to radiation, suggestive of their replicative nature. Single cell RNA sequencing data showed that the CD41+ cell population in naïve mouse LNs expressed largely stromal cell markers. Further studies are required to examine more deeply the role of CD41+ cells in the function of LNs.
Collapse
Affiliation(s)
- Li Dai
- Transplantation Research Center, Renal Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States,China Pharmaceutical University, Nanjing, China
| | - Mayuko Uehara
- Transplantation Research Center, Renal Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Xiaofei Li
- Transplantation Research Center, Renal Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Brenna A. LaBarre
- Systems Biology and Computer Science Program, Ann Romney Center for Neurological Diseases, Department of Neurology, Brigham & Women’s Hospital, Boston, MA, United States
| | - Naima Banouni
- Transplantation Research Center, Renal Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Takaharu Ichimura
- Renal Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Melissa M. Lee-Sundlov
- Division of Hematology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States,BloodCenter of Wisconsin, Blood Research Institute, Milwaukee, WI, United States
| | - Vivek Kasinath
- Transplantation Research Center, Renal Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Jade A. Sullivan
- Department of Laboratory Medicine and Pathobiology, and Toronto Platelet Immunobiology Group, St. Michael’s Hospital, University of Toronto, Toronto, ON, Canada
| | - Heyu Ni
- Department of Laboratory Medicine and Pathobiology, and Toronto Platelet Immunobiology Group, St. Michael’s Hospital, University of Toronto, Toronto, ON, Canada,Canadian Blood Services Centre for Innovation, Toronto, ON, Canada
| | - Francesca Barone
- Centre for Translational Inflammation Research, University of Birmingham, Birmingham, United Kingdom
| | - Silvia Giannini
- Division of Hematology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Baharak Bahmani
- Transplantation Research Center, Renal Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Peter T. Sage
- Transplantation Research Center, Renal Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Nikolaos A. Patsopoulos
- Systems Biology and Computer Science Program, Ann Romney Center for Neurological Diseases, Department of Neurology, Brigham & Women’s Hospital, Boston, MA, United States,Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, MA, United States
| | - George C. Tsokos
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Jonathan S. Bromberg
- Departments of Surgery and Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Karin Hoffmeister
- Division of Hematology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States,BloodCenter of Wisconsin, Blood Research Institute, Milwaukee, WI, United States
| | - Liwei Jiang
- Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China,*Correspondence: Reza Abdi, ; Liwei Jiang,
| | - Reza Abdi
- Transplantation Research Center, Renal Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States,*Correspondence: Reza Abdi, ; Liwei Jiang,
| |
Collapse
|
279
|
Zhang L, Zhang X, Zhong X, Fan M, Wang G, Shi W, Xie R, Wei Y, Zhang H, Meng X, Wang Y, Ma Y. Soluble Flt-1 in AMI Patients Serum Inhibits Angiogenesis of Endothelial Progenitor Cells by Suppressing Akt and Erk’s Activity. BIOLOGY 2022; 11:biology11081194. [PMID: 36009821 PMCID: PMC9404789 DOI: 10.3390/biology11081194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/27/2022] [Accepted: 08/06/2022] [Indexed: 11/16/2022]
Abstract
Simple Summary Acute myocardial infarction (AMI) is the leading cause of mortality in the world. Endothelial progenitor cells (EPCs) exert important roles in the recovery of collateral circulation via angiogenesis. In this study, we studied the characteristics of EPCs isolated from the peripheral blood of AMI patients and healthy subjects. We found that the number of EPCs increased in AMI patients and exhibited faster migration compared to healthy subjects. However, no difference in angiogenic activity was observed in EPCs between AMI patients and healthy subjects. Interestingly, the serum level of sFlt-1 was elevated in AMI patients. Further analysis demonstrated that sFlt-1 inhibited EPCs angiogenesis in vitro by inhibiting the Akt and Erk signaling pathways. In conclusion, our study uncovered that EPCs increased in quantity, but their angiogenesis activity was inhibited by serum sFlt-1 in AMI patients. Abstract In acute myocardial infarction (AMI), endothelial progenitor cells (EPCs) are essential for the recovery of collateral circulation via angiogenesis. Clinical research has shown that the poor prognosis of the patients with AMI is closely associated with the cell quantity and function of EPCs. Whether there are differences in the biological features of EPCs from AMI patients and healthy subjects is worth exploring. In this study, EPCs were isolated from human peripheral blood and identified as late-stage EPCs by flow cytometry, immunofluorescence, and blood vessel formation assay. Compared to healthy subjects, AMI patients had more EPCs in the peripheral blood compared to healthy subjects. In addition, EPCs from AMI patients exhibited higher migration ability in the transwell assay compared to EPCs from healthy subjects. However, no difference in the angiogenesis of EPCs was observed between AMI patients and healthy subjects. Further studies revealed that soluble vascular endothelial growth factor receptor 1 (sFlt-1) in the serum of AMI patients was involved in the inhibition of EPCs angiogenesis by suppressing the Akt and Erk pathways. In conclusion, this study demonstrated that elevated serum sFlt-1 inhibits angiogenesis of EPC in AMI patients. Our findings uncover a pathogenic role of sFlt-1 in AMI.
Collapse
Affiliation(s)
- Lijie Zhang
- Joint National Laboratory for Antibody Drug Engineering, The First Affiliated Hospital of Henan University, Henan University, Kaifeng 475004, China
| | - Xingkun Zhang
- Henan Key Laboratory of Coronary Heart Disease Control & Prevention, Department of Cardiology, Central China Fuwai Hospital, Zhengzhou 450003, China
- Department of Cardiology, Henan Provincial People’s Hospital, Zhengzhou 451450, China
| | - Xiaoming Zhong
- Department of Cardiology, Huaihe Hospital of Henan University, Kaifeng 475000, China
| | - Mengya Fan
- Joint National Laboratory for Antibody Drug Engineering, The First Affiliated Hospital of Henan University, Henan University, Kaifeng 475004, China
| | - Guoliang Wang
- Department of Cardiovascular, the First Affiliated Hospital of Henan University, Kaifeng 475004, China
| | - Wei Shi
- Joint National Laboratory for Antibody Drug Engineering, The First Affiliated Hospital of Henan University, Henan University, Kaifeng 475004, China
| | - Ran Xie
- Joint National Laboratory for Antibody Drug Engineering, The First Affiliated Hospital of Henan University, Henan University, Kaifeng 475004, China
| | - Yinxiang Wei
- Joint National Laboratory for Antibody Drug Engineering, The First Affiliated Hospital of Henan University, Henan University, Kaifeng 475004, China
| | - Hailong Zhang
- Joint National Laboratory for Antibody Drug Engineering, The First Affiliated Hospital of Henan University, Henan University, Kaifeng 475004, China
| | - Xiangxu Meng
- Department of Cardiovascular, the First Affiliated Hospital of Henan University, Kaifeng 475004, China
| | - Yaohui Wang
- Joint National Laboratory for Antibody Drug Engineering, The First Affiliated Hospital of Henan University, Henan University, Kaifeng 475004, China
- Correspondence: (Y.W.); (Y.M.)
| | - Yuanfang Ma
- Joint National Laboratory for Antibody Drug Engineering, The First Affiliated Hospital of Henan University, Henan University, Kaifeng 475004, China
- Correspondence: (Y.W.); (Y.M.)
| |
Collapse
|
280
|
Xia HF, Lai WQ, Chen GH, Li Y, Xie QH, Jia YL, Chen G, Zhao YF. A histological study of vascular wall resident stem cells in venous malformations. Cell Tissue Res 2022; 390:229-243. [PMID: 35916917 DOI: 10.1007/s00441-022-03672-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 07/13/2022] [Indexed: 11/25/2022]
Abstract
Vascular wall resident stem cells (VW-SCs) play a key role in vascular formation and remodeling under both physiological and pathological situations. They not only serve as a reservoir to supply all types of vascular cells needed, but also regulate vascular homeostasis by paracrine effects. Venous malformations (VMs) are common congenital vascular malformations which are just characterized by the deficient quantity and abnormal function of vascular cells. However, the existence and role of VW-SCs in VMs is still unclear at present. In this study, the level and distribution of VW-SCs in 22 specimens of VMs were measured by immunochemistry, double-labeling immunofluorescence, and qPCR, followed by the Spearman rank correlation test. We found that both the protein and mRNA expression levels of CD34, vWF, VEGFR2, CD44, CD90, and CD105 were significantly downregulated in VMs compared with that in normal venules. VW-SCs were sporadically distributed or even absent within and outside the endothelium of VMs. The expression of the VW-SC-related markers was positively correlated with the density of both endothelial cells and perivascular cells. All those results and established evidence indicated that VW-SCs were more sporadically distributed with fewer amounts in VMs, which possibly contributing to the deficiency of vascular cells in VMs.
Collapse
Affiliation(s)
- Hou-Fu Xia
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, 430079, China.,Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
| | - Wen-Qiang Lai
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Gao-Hong Chen
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
| | - Ye Li
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
| | - Qi-Hui Xie
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
| | - Yu-Lin Jia
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Gang Chen
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, 430079, China. .,Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Wuhan University, Wuhan, 430079, China.
| | - Yi-Fang Zhao
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, 430079, China. .,Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Wuhan University, Wuhan, 430079, China.
| |
Collapse
|
281
|
Lyall GK, Birk GK, Harris E, Ferguson C, Riches-Suman K, Kearney MT, Porter KE, Birch KM. Efficacy of interval exercise training to improve vascular health in sedentary postmenopausal females. Physiol Rep 2022; 10:e15441. [PMID: 35986498 PMCID: PMC9391601 DOI: 10.14814/phy2.15441] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 08/05/2022] [Accepted: 08/09/2022] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Menopause represents a turning point where vascular damage begins to outweigh reparative processes, leading to increased cardiovascular disease (CVD) risk. Exercise training reduces CVD risk in postmenopausal females via improvements in traditional risk factors and direct changes to the vasculature. We assessed the effect of moderate (MODERATE-IT) versus heavy (HEAVY-IT) intensity interval exercise training upon markers of cardiovascular health and vascular repair in postmenopausal females. METHODS Twenty-seven healthy postmenopausal females (56 ± 4 yr) were assigned to 12 weeks of either MODERATE-IT or HEAVY-IT, twice per week. MODERATE-IT consisted of 10s work, and 10s active recovery repeated for 30 min. HEAVY-IT comprised 30s work, and 30s active recovery repeated for 21 ± 2 min. Endothelial function (flow-mediated dilation), arterial stiffness (pulse wave velocity), and V̇O2peak were assessed pre-training and post-training. Blood samples were obtained pre-training and post-training for enumeration of circulating angiogenic cells (CACs), culture of CACs, and lipoprotein profile. RESULTS V̇O2peak increased 2.4 ± 2.8 ml/kg/min following HEAVY-IT only (p < 0.05). Brachial blood pressure and endothelial function were unchanged with exercise training (p > 0.05). Peripheral pulse wave velocity reduced 8% with exercise training, irrespective of intensity (p < 0.05). Exercise training had no effect on lipoprotein profile or endothelin-1 (p > 0.05). CAC adhesion to vascular smooth muscle cells (VSMC) increased 30 min post plating following MODERATE-IT only (p < 0.05). CONCLUSIONS HEAVY-IT was more effective at increasing V̇O2peak in postmenopausal females. The ability of CACs to adhere to VSMC improved following MODERATE-IT but not HEAVY-IT. Interval training had the same effect on endothelial function (no change) and arterial stiffness (reduced), regardless of exercise intensity.
Collapse
Affiliation(s)
- Gemma K Lyall
- School of Biomedical Sciences, Faculty of Biological Sciences and Multidisciplinary, Cardiovascular Research Centre, University of Leeds, Leeds, UK
| | - Gurpreet K Birk
- IVS Ltd, Vascular Ultrasound, Royal Oldham Hospital, Oldham, UK.,Vascular Ultrasound, Radiology, Leeds General Infirmary, Leeds, UK
| | - Emma Harris
- School of Human and Health Sciences, Centre for Applied Research in Health, University of Huddersfield, Huddersfield, UK
| | - Carrie Ferguson
- Institute of Respiratory Medicine and Exercise Physiology, Rehabilitation Clinical Trials Center, Division of Respiratory and Critical Care Physiology and Medicine, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, California, USA
| | | | - Mark T Kearney
- Leeds Institute of Cardiovascular and Metabolic Medicine & Multidisciplinary, Cardiovascular Research Centre, University of Leeds, Leeds, UK
| | - Karen E Porter
- Leeds Institute of Cardiovascular and Metabolic Medicine & Multidisciplinary, Cardiovascular Research Centre, University of Leeds, Leeds, UK
| | - Karen M Birch
- School of Biomedical Sciences, Faculty of Biological Sciences and Multidisciplinary, Cardiovascular Research Centre, University of Leeds, Leeds, UK
| |
Collapse
|
282
|
Salerno N, Salerno L, Marino F, Scalise M, Chiefalo A, Panuccio G, De Angelis A, Cianflone E, Urbanek K, Torella D. Myocardial regeneration protocols towards the routine clinical scenario: An unseemly path from bench to bedside. EClinicalMedicine 2022; 50:101530. [PMID: 35799845 PMCID: PMC9253597 DOI: 10.1016/j.eclinm.2022.101530] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 05/31/2022] [Accepted: 06/06/2022] [Indexed: 12/11/2022] Open
Abstract
UNLABELLED Heart failure secondary to cardiomyocyte loss and/or dysfunction is the number one killer worldwide. The field of myocardial regeneration with its far-reaching primary goal of cardiac remuscularization and its hard-to-accomplish translation from bench to bedside, has been filled with ups and downs, steps forward and steps backward, controversies galore and, unfortunately, scientific scandals. Despite the present morass in which cardiac remuscularization is stuck in, the search for clinically effective regenerative approaches remains keenly active. Starting with a concise overview of the still highly debated regenerative capacity of the adult mammalian heart, we focus on the main interventions, that have reached or are close to clinical use, critically discussing key findings, successes, and failures. Finally, some promising and innovative approaches for myocardial repair/regeneration still at the pre-clinical stage are discussed to offer a holistic view on the future of myocardial repair/regeneration for the prevention/management of heart failure in the clinical scenario. FUNDING This research was funded by Grants from the Ministry of University and Research PRIN2015 2015ZTT5KB_004; PRIN2017NKB2N4_005; PON-AIM - 1829805-2.
Collapse
Affiliation(s)
- Nadia Salerno
- Department of Medical and Surgical Sciences, Magna Graecia University, 88100, Catanzaro, Italy
| | - Luca Salerno
- Department of Experimental and Clinical Medicine, Magna Graecia University, 88100, Catanzaro, Italy
| | - Fabiola Marino
- Department of Experimental and Clinical Medicine, Magna Graecia University, 88100, Catanzaro, Italy
| | - Mariangela Scalise
- Department of Experimental and Clinical Medicine, Magna Graecia University, 88100, Catanzaro, Italy
| | - Antonio Chiefalo
- Department of Experimental and Clinical Medicine, Magna Graecia University, 88100, Catanzaro, Italy
| | - Giuseppe Panuccio
- Department of Medical and Surgical Sciences, Magna Graecia University, 88100, Catanzaro, Italy
| | - Antonella De Angelis
- Department of Experimental Medicine, University of Campania “L. Vanvitelli”, 80138 Naples, Italy
| | - Eleonora Cianflone
- Department of Medical and Surgical Sciences, Magna Graecia University, 88100, Catanzaro, Italy
| | - Konrad Urbanek
- Department of Experimental and Clinical Medicine, Magna Graecia University, 88100, Catanzaro, Italy
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples “Federico II”, 80125, Naples, Italy
| | - Daniele Torella
- Department of Experimental and Clinical Medicine, Magna Graecia University, 88100, Catanzaro, Italy
- Corresponding author.
| |
Collapse
|
283
|
Liver Regeneration by Hematopoietic Stem Cells: Have We Reached the End of the Road? Cells 2022; 11:cells11152312. [PMID: 35954155 PMCID: PMC9367594 DOI: 10.3390/cells11152312] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/22/2022] [Accepted: 07/22/2022] [Indexed: 02/01/2023] Open
Abstract
The liver is the organ with the highest regenerative capacity in the human body. However, various insults, including viral infections, alcohol or drug abuse, and metabolic overload, may cause chronic inflammation and fibrosis, leading to irreversible liver dysfunction. Despite advances in surgery and pharmacological treatments, liver diseases remain a leading cause of death worldwide. To address the shortage of donor liver organs for orthotopic liver transplantation, cell therapy in liver disease has emerged as a promising regenerative treatment. Sources include primary hepatocytes or functional hepatocytes generated from the reprogramming of induced pluripotent stem cells (iPSC). Different types of stem cells have also been employed for transplantation to trigger regeneration, including hematopoietic stem cells (HSCs), mesenchymal stromal cells (MSCs), endothelial progenitor cells (EPCs) as well as adult and fetal liver progenitor cells. HSCs, usually defined by the expression of CD34 and CD133, and MSCs, defined by the expression of CD105, CD73, and CD90, are attractive sources due to their autologous nature, ease of isolation and cryopreservation. The present review focuses on the use of bone marrow HSCs for liver regeneration, presenting evidence for an ongoing crosstalk between the hematopoietic and the hepatic system. This relationship commences during embryogenesis when the fetal liver emerges as the crossroads between the two systems converging the presence of different origins of cells (mesoderm and endoderm) in the same organ. Ample evidence indicates that the fetal liver supports the maturation and expansion of HSCs during development but also later on in life. Moreover, the fact that the adult liver remains one of the few sites for extramedullary hematopoiesis—albeit pathological—suggests that this relationship between the two systems is ongoing. Can, however, the hematopoietic system offer similar support to the liver? The majority of clinical studies using hematopoietic cell transplantation in patients with liver disease report favourable observations. The underlying mechanism—whether paracrine, fusion or transdifferentiation or a combination of the three—remains to be confirmed.
Collapse
|
284
|
Identification of protective biologic factors in patients with high cardiovascular risk, but normal coronary arteries (NormCorn). Coron Artery Dis 2022; 33:540-546. [PMID: 35866511 DOI: 10.1097/mca.0000000000001174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND Endothelial progenitor cells (EPCs) have an important role in repair following vascular injury. Telomere length has been shown to be correlated with genome stability and overall cell health. We hypothesized that both EPCs and telomere size are related to protective mechanisms against coronary artery disease. Our aim was to evaluate the level and function of circulating EPCs and telomere length in patients with multiple cardiovascular risk factors and anatomically normal coronary arteries vs. matched controls. METHODS We included 24 patients, with coronary CTA demonstrating normal coronaries and a high risk of CAD of >10% by ASCVD risk estimator. Control groups included 17 patients with similar cardiovascular profiles but with established CAD and a group of 20 healthy volunteers. Circulating EPCs levels were assessed by flow cytometry for expression of vascular endothelial growth factor receptor 2, CD34 and CD133. The capacity of the cells to form colony forming units (CFUs) was quantified after 1 week of culture. Telomere length was determined by the southern blotting technique. RESULTS Patients with high risk for CVD and normal coronaries had augmented EPCs function, compared with the CAD group (1.1 vs. 0.22 CFU/f; P = 0.04) and longer telomeres compared with the CAD group (10.7 kb vs. 2.8 kb P = 0.015). These patients displayed a similar profile to the healthy group. CONCLUSION Patients with a high risk for CAD, but normal coronary arteries have EPCs function and telomere length which resemble healthy volunteers, and augmented compared with patients with established CAD, which could serve as a protective mechanism against atherosclerosis development in these high-risk patients.
Collapse
|
285
|
Yang H, He C, Bi Y, Zhu X, Deng D, Ran T, Ji X. Synergistic effect of VEGF and SDF-1α in endothelial progenitor cells and vascular smooth muscle cells. Front Pharmacol 2022; 13:914347. [PMID: 35910392 PMCID: PMC9335858 DOI: 10.3389/fphar.2022.914347] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 06/27/2022] [Indexed: 11/13/2022] Open
Abstract
Vascular endothelial growth factor (VEGF) is a potent agonist of angiogenesis that induces proliferation and differentiation of endothelial progenitor cells (EPCs) after vascular injury. Previous studies have suggested that stromal cell-derived factor 1-alpha (SDF-1α) and VEGF have a synergistic effect on vascular stenosis. The aim of the present study was to investigate whether VEGF and SDF-1α act synergistically in EPCs and vascular smooth muscle cells (VSMCs). In this study, EPCs were isolated from rat bone marrow and their morphology and function were studied. Subsequently, VEGF was delivered into EPCs using an adenoviral vector. Tube formation, migration, proliferation, and apoptosis of VEGF-overexpressing EPCs was analyzed. Then, EPCs were co-cultured with VSMCs in the presence or absence of SDF-1α, the migration, proliferation, apoptosis, and differentiation capacity of EPCs and VSMCs were analyzed respectively. The isolated EPCs showed typical morphological features, phagocytic capacity, and expressed surface proteins. While stable expression of VEGF remarkably enhanced tube formation, migration, and proliferation capacity of EPCs, apoptosis was decreased. Moreover, the proliferation, migration, and differentiation capacity of EPCs in the co-cultured model was enhanced in the presence of SDF-1α, and apoptosis was decreased. However, these effects were reversed in VSMCs. Therefore, our results showed that VEGF and SDF-1α synergistically increased the migration, differentiation, and proliferation capabilities of EPCs, but not VSMCs. This study suggests a promising strategy to prevent vascular stenosis.
Collapse
Affiliation(s)
- Haiyan Yang
- Department of Ultrasound, Chongqing General Hospital, Chongqing, China
- Department of Macromolecular Science, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, China
| | - Cancan He
- Department of Pediatrics, The Affiliated Hospital of Zunyi Medical University, Guizhou Children’s Hospital, Zunyi, GZ, China
| | - Yang Bi
- Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical and Research Center of Child Health and Disorders, Chongqing Engineering Research Center of Stem Cell Therapy, Department of Ultrasound, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children’s Hospital of Chongqing Medical University, Chongqing, China
| | - Xu Zhu
- Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical and Research Center of Child Health and Disorders, Chongqing Engineering Research Center of Stem Cell Therapy, Department of Ultrasound, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children’s Hospital of Chongqing Medical University, Chongqing, China
| | - Dan Deng
- School of Medical Imaging, Changsha Medical University, Changsha, China
| | - Tingting Ran
- Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical and Research Center of Child Health and Disorders, Chongqing Engineering Research Center of Stem Cell Therapy, Department of Ultrasound, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children’s Hospital of Chongqing Medical University, Chongqing, China
| | - Xiaojuan Ji
- Department of Ultrasound, Chongqing General Hospital, Chongqing, China
- *Correspondence: Xiaojuan Ji,
| |
Collapse
|
286
|
Characterization of Endothelial Progenitor Cell: Past, Present, and Future. Int J Mol Sci 2022; 23:ijms23147697. [PMID: 35887039 PMCID: PMC9318195 DOI: 10.3390/ijms23147697] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/04/2022] [Accepted: 07/09/2022] [Indexed: 02/05/2023] Open
Abstract
Endothelial progenitor cells (EPCs) are currently being studied as candidate cell sources for revascularization strategies. Despite these promising results, widespread clinical acceptance of EPCs for clinical therapies remains hampered by several challenges. The challenges and issues surrounding the use of EPCs and the current paradigm being developed to improve the harvest efficiency and functionality of EPCs for application in regenerative medicine are discussed. It has been observed that controversies have emerged regarding the isolation techniques and classification and origin of EPCs. This manuscript attempts to highlight the concept of EPCs in a sequential manner, from the initial discovery to the present (origin, sources of EPCs, isolation, and identification techniques). Human and murine EPC marker diversity is also discussed. Additionally, this manuscript is aimed at summarizing our current and future prospects regarding the crosstalk of EPCs with the biology of hematopoietic cells and culture techniques in the context of regeneration-associated cells (RACs).
Collapse
|
287
|
Liu R, Dong R, Chang M, Liang X, Wang HC. Adipose-Derived Stem Cells for the Treatment of Diabetic Wound: From Basic Study to Clinical Application. Front Endocrinol (Lausanne) 2022; 13:882469. [PMID: 35898452 PMCID: PMC9309392 DOI: 10.3389/fendo.2022.882469] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 05/19/2022] [Indexed: 12/27/2022] Open
Abstract
Diabetic wounds significantly affect the life quality of patients and may cause amputation and mortality if poorly managed. Recently, a wide range of cell-based methods has emerged as novel therapeutic methods in treating diabetic wounds. Adipose-derived stem cells (ASCs) are considered to have the potential for widespread clinical application of diabetic wounds treatment in the future. This review summarized the mechanisms of ASCs to promote diabetic wound healing, including the promotion of immunomodulation, neovascularization, and fibro synthesis. We also review the current progress and limitations of clinical studies using ASCs to intervene in diabetic wound healing. New methods of ASC delivery have been raised in recent years to provide a standardized and convenient use of ASCs.
Collapse
Affiliation(s)
- Runzhu Liu
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Ruijia Dong
- Department of Plastic Surgery, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
| | - Mengling Chang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Xiao Liang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Hayson Chenyu Wang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| |
Collapse
|
288
|
Kourek C, Briasoulis A, Zouganeli V, Karatzanos E, Nanas S, Dimopoulos S. Exercise Training Effects on Circulating Endothelial and Progenitor Cells in Heart Failure. J Cardiovasc Dev Dis 2022; 9:222. [PMID: 35877584 PMCID: PMC9322098 DOI: 10.3390/jcdd9070222] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 06/29/2022] [Accepted: 07/07/2022] [Indexed: 02/06/2023] Open
Abstract
Heart failure (HF) is a major public health issue worldwide with increased prevalence and a high number of hospitalizations. Patients with chronic HF and either reduced ejection fraction (HFrEF) or mildly reduced ejection fraction (HFmrEF) present vascular endothelial dysfunction and significantly decreased circulating levels of endothelial progenitor cells (EPCs). EPCs are bone marrow-derived cells involved in endothelium regeneration, homeostasis, and neovascularization. One of the unsolved issues in the field of EPCs is the lack of an established method of identification. The most widely approved method is the use of monoclonal antibodies and fluorescence-activated cell sorting (FACS) analysis via flow cytometry. The most frequently used markers are CD34, VEGFR-2, CD45, CD31, CD144, and CD146. Exercise training has demonstrated beneficial effects on EPCs by increasing their number in peripheral circulation and improving their functional capacities in patients with HFrEF or HFmrEF. There are two potential mechanisms of EPCs mobilization: shear stress and the hypoxic/ischemic stimulus. The combination of both leads to the release of EPCs in circulation promoting their repairment properties on the vascular endothelium barrier. EPCs are important therapeutic targets and one of the most promising fields in heart failure and, therefore, individualized exercise training programs should be developed in rehabilitation centers.
Collapse
Affiliation(s)
- Christos Kourek
- Clinical Ergospirometry, Exercise & Rehabilitation Laboratory, 1st Critical Care Medicine Department, Evangelismos Hospital, National and Kapodistrian University of Athens, 10676 Athens, Greece; (C.K.); (E.K.); (S.N.)
- Department of Cardiology, 417 Army Share Fund Hospital of Athens (NIMTS), 11521 Athens, Greece
| | - Alexandros Briasoulis
- Department of Clinical Therapeutics, Alexandra Hospital, Faculty of Medicine, National and Kapodistrian University of Athens, 11528 Athens, Greece;
- Division of Cardiovascular Medicine, Section of Heart Failure and Transplantation, University of Iowa Hospitals and Clinics, Iowa City, IA 52242, USA
| | - Virginia Zouganeli
- Second Cardiology Department, Attikon University Hospital, Medical School, National and Kapodistrian University of Athens, 12462 Athens, Greece;
| | - Eleftherios Karatzanos
- Clinical Ergospirometry, Exercise & Rehabilitation Laboratory, 1st Critical Care Medicine Department, Evangelismos Hospital, National and Kapodistrian University of Athens, 10676 Athens, Greece; (C.K.); (E.K.); (S.N.)
| | - Serafim Nanas
- Clinical Ergospirometry, Exercise & Rehabilitation Laboratory, 1st Critical Care Medicine Department, Evangelismos Hospital, National and Kapodistrian University of Athens, 10676 Athens, Greece; (C.K.); (E.K.); (S.N.)
| | - Stavros Dimopoulos
- Clinical Ergospirometry, Exercise & Rehabilitation Laboratory, 1st Critical Care Medicine Department, Evangelismos Hospital, National and Kapodistrian University of Athens, 10676 Athens, Greece; (C.K.); (E.K.); (S.N.)
- Cardiac Surgery Intensive Care Unit, Onassis Cardiac Surgery Center, 17674 Athens, Greece
| |
Collapse
|
289
|
Tullie L, Jones BC, De Coppi P, Li VSW. Building gut from scratch - progress and update of intestinal tissue engineering. Nat Rev Gastroenterol Hepatol 2022; 19:417-431. [PMID: 35241800 DOI: 10.1038/s41575-022-00586-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/31/2022] [Indexed: 12/18/2022]
Abstract
Short bowel syndrome (SBS), a condition defined by insufficient absorptive intestinal epithelium, is a rare disease, with an estimated prevalence up to 0.4 in 10,000 people. However, it has substantial morbidity and mortality for affected patients. The mainstay of treatment in SBS is supportive, in the form of intravenous parenteral nutrition, with the aim of achieving intestinal autonomy. The lack of a definitive curative therapy has led to attempts to harness innate developmental and regenerative mechanisms to engineer neo-intestine as an alternative approach to addressing this unmet clinical need. Exciting advances have been made in the field of intestinal tissue engineering (ITE) over the past decade, making a review in this field timely. In this Review, we discuss the latest advances in the components required to engineer intestinal grafts and summarize the progress of ITE. We also explore some key factors to consider and challenges to overcome when transitioning tissue-engineered intestine towards clinical translation, and provide the future outlook of ITE in therapeutic applications and beyond.
Collapse
Affiliation(s)
- Lucinda Tullie
- Stem Cell and Cancer Biology Laboratory, The Francis Crick Institute, London, UK.,Stem Cell and Regenerative Medicine Section, DBC, Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Brendan C Jones
- Stem Cell and Regenerative Medicine Section, DBC, Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Paolo De Coppi
- Stem Cell and Regenerative Medicine Section, DBC, Great Ormond Street Institute of Child Health, University College London, London, UK. .,Specialist Neonatal and Paediatric Surgery Unit, Great Ormond Street Hospital, London, UK.
| | - Vivian S W Li
- Stem Cell and Cancer Biology Laboratory, The Francis Crick Institute, London, UK.
| |
Collapse
|
290
|
Maslov PZ, Sabharwal B, Ahmadi A, Baliga R, Narula J. Religious Fasting and the Vascular Health. Indian Heart J 2022; 74:270-274. [PMID: 35917971 PMCID: PMC9453020 DOI: 10.1016/j.ihj.2022.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
291
|
Cao L, Dong Y, Sun K, Li D, Wang H, Li H, Yang B. Experimental Animal Models for Moyamoya Disease: A Species-Oriented Scoping Review. Front Surg 2022; 9:929871. [PMID: 35846951 PMCID: PMC9283787 DOI: 10.3389/fsurg.2022.929871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 05/31/2022] [Indexed: 11/13/2022] Open
Abstract
Moyamoya disease (MMD) is a rare cerebrovascular disease characterized by progressive stenosis of large intracranial arteries and a hazy network of basal collaterals called moyamoya vessels. The etiology and pathogenesis of MMD are still obscure. The biggest obstacles in the basic research of MMD are difficulty in obtaining specimens and the lack of an animal model. It is necessary to use appropriate and rationally designed animal models for the correct evaluation. Several animal models and methods have been developed to produce an effective MMD model, such as zebrafish, mice and rats, rabbits, primates, felines, canines, and peripheral blood cells, each with advantages and disadvantages. There are three mechanisms for developing animal models, including genetic, immunological/inflammatory, and ischemic animal models. This review aims to analyze the characteristics of currently available models, providing an overview of the animal models framework and the convenience of selecting model types for MMD research. It will be a great benefit to identify strategies for future model generations.
Collapse
Affiliation(s)
| | | | | | | | | | - Hongwei Li
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Bo Yang
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
292
|
Short WD, Steen E, Kaul A, Wang X, Olutoye OO, Vangapandu HV, Templeman N, Blum AJ, Moles CM, Narmoneva DA, Crombleholme TM, Butte MJ, Bollyky PL, Keswani SG, Balaji S. IL-10 promotes endothelial progenitor cell infiltration and wound healing via STAT3. FASEB J 2022; 36:e22298. [PMID: 35670763 PMCID: PMC9796147 DOI: 10.1096/fj.201901024rr] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 03/08/2022] [Accepted: 03/23/2022] [Indexed: 01/02/2023]
Abstract
Endothelial progenitor cells (EPCs) contribute to de novo angiogenesis, tissue regeneration, and remodeling. Interleukin 10 (IL-10), an anti-inflammatory cytokine that primarily signals via STAT3, has been shown to drive EPC recruitment to injured tissues. Our previous work demonstrated that overexpression of IL-10 in dermal wounds promotes regenerative tissue repair via STAT3-dependent regulation of fibroblast-specific hyaluronan synthesis. However, IL-10's role and specific mode of action on EPC recruitment, particularly in dermal wound healing and neovascularization in both normal and diabetic wounds, remain to be defined. Therefore, inducible skin-specific STAT3 knockdown mice were studied to determine IL-10's impact on EPCs, dermal wound neovascularization and healing, and whether it is STAT3-dependent. We show that IL-10 overexpression significantly elevated EPC counts in the granulating wound bed, which was associated with robust capillary lumen density and enhanced re-epithelialization of both control and diabetic (db/db) wounds at day 7. We noted increased VEGF and high C-X-C motif chemokine 12 (CXCL12) levels in wounds and a favorable CXCL12 gradient at day 3 that may support EPC mobilization and infiltration from bone marrow to wounds, an effect that was abrogated in STAT3 knockdown wounds. These findings were supported in vitro. IL-10 promoted VEGF and CXCL12 synthesis in primary murine dermal fibroblasts, with blunted VEGF expression upon blocking CXCL12 in the media by antibody binding. IL-10-conditioned fibroblast media also significantly promoted endothelial sprouting and network formation. In conclusion, these studies demonstrate that overexpression of IL-10 in dermal wounds recruits EPCs and leads to increased vascular structures and faster re-epithelialization.
Collapse
Affiliation(s)
- Walker D. Short
- Division of Pediatric SurgeryDepartment of SurgeryTexas Children's Hospital and Baylor College of MedicineHoustonTexasUSA
| | - Emily Steen
- Division of Pediatric SurgeryDepartment of SurgeryTexas Children's Hospital and Baylor College of MedicineHoustonTexasUSA
| | - Aditya Kaul
- Division of Pediatric SurgeryDepartment of SurgeryTexas Children's Hospital and Baylor College of MedicineHoustonTexasUSA
| | - Xinyi Wang
- Division of Pediatric SurgeryDepartment of SurgeryTexas Children's Hospital and Baylor College of MedicineHoustonTexasUSA
| | - Oluyinka O. Olutoye
- Division of Pediatric SurgeryDepartment of SurgeryTexas Children's Hospital and Baylor College of MedicineHoustonTexasUSA
| | - Hima V. Vangapandu
- Division of Pediatric SurgeryDepartment of SurgeryTexas Children's Hospital and Baylor College of MedicineHoustonTexasUSA
| | - Natalie Templeman
- Division of Pediatric SurgeryDepartment of SurgeryTexas Children's Hospital and Baylor College of MedicineHoustonTexasUSA
| | - Alexander J. Blum
- Division of Pediatric SurgeryDepartment of SurgeryTexas Children's Hospital and Baylor College of MedicineHoustonTexasUSA
| | - Chad M. Moles
- Division of Pediatric SurgeryDepartment of SurgeryTexas Children's Hospital and Baylor College of MedicineHoustonTexasUSA
| | - Daria A. Narmoneva
- Biomedical EngineeringDepartment of Biomedical, Chemical and Environmental EngineeringCollege of Engineering and Applied SciencesUniversity of CincinnatiCincinnatiOhioUSA
| | - Timothy M. Crombleholme
- Division of Pediatric General Thoracic and Fetal SurgeryConnecticut Children’s HospitalUniversity of Connecticut School of MedicineFarmingtonConnecticutUSA,Fetal Care Center DallasDallasTexasUSA
| | - Manish J. Butte
- Division of ImmunologyAllergy, and RheumatologyDepartments of Pediatrics and Microbiology, Immunology, and Molecular GeneticsUniversity of California Los AngelesLos AngelesCaliforniaUSA
| | - Paul L. Bollyky
- Division of Infectious DiseasesDepartment of MedicineStanford University School of MedicineStanfordCaliforniaUSA
| | - Sundeep G. Keswani
- Division of Pediatric SurgeryDepartment of SurgeryTexas Children's Hospital and Baylor College of MedicineHoustonTexasUSA
| | - Swathi Balaji
- Division of Pediatric SurgeryDepartment of SurgeryTexas Children's Hospital and Baylor College of MedicineHoustonTexasUSA
| |
Collapse
|
293
|
Dynamics of endothelial progenitor cells in patients with advanced hepatocellular carcinoma. Dig Liver Dis 2022; 54:911-917. [PMID: 34876355 DOI: 10.1016/j.dld.2021.11.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 11/08/2021] [Accepted: 11/11/2021] [Indexed: 12/12/2022]
Abstract
BACKGROUND AND AIMS Circulating endothelial progenitor cells (EPC) predict tumor vascularization and disease progression, but limited information is available on their dynamics in hepatocellular carcinoma (HCC) undergoing systemic treatment. METHODS We prospectively analyzed different populations of EPC in 16 patients with advanced HCC receiving sorafenib. Patients were studied before therapy (T0, n = 16) and after two (T2, n = 12) and eight weeks (T8, n = 8), using high-performance flow-cytometry. The tumor response at T8 was categorized as progressive disease (PD) or clinical benefit (CB, all other responses). RESULTS At T0, higher levels of CD34+CD133+KDR+ and CD34+KDR+ were observed in patients with alpha-fetoprotein ≥400 ng/ml or non-viral liver disease, whereas CD34+CD133+KDR+ cells were virtually absent in patients with vascular invasion. CD34+KDR+ and CD34+CD133+KDR+ were directly correlated with platelet count. Frequencies of all populations of EPC declined in patients receiving sorafenib. Levels of CD34+CD133+ were higher at T0 in patients with CB compared to patients with PD. In patients belonging to the CB group CD34+KDR+ cells at T0 were directly correlated to platelet count. CONCLUSION In patients with advanced HCC, EPC are directly correlated with platelet count, suggesting a common activation of selected bone marrow pathways. Levels of a CD34+KDR+ are higher at baseline in patients responding to sorafenib.
Collapse
|
294
|
Yang J, Yang C, Yang Y, Jia N, Sun Q, Ji S. Endothelial Protection of Vasoactive Intestinal Peptide Enhances Angiogenesis Mediated by eNOS Pathway Following Focal Cerebral Ischemia in Rats. Int J Pept Res Ther 2022. [DOI: 10.1007/s10989-022-10434-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
295
|
Gori T. Restenosis after Coronary Stent Implantation: Cellular Mechanisms and Potential of Endothelial Progenitor Cells (A Short Guide for the Interventional Cardiologist). Cells 2022; 11:cells11132094. [PMID: 35805178 PMCID: PMC9265311 DOI: 10.3390/cells11132094] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/26/2022] [Accepted: 06/28/2022] [Indexed: 02/05/2023] Open
Abstract
Coronary stents are among the most common therapies worldwide. Despite significant improvements in the biocompatibility of these devices throughout the last decades, they are prone, in as many as 10–20% of cases, to short- or long-term failure. In-stent restenosis is a multifactorial process with a complex and incompletely understood pathophysiology in which inflammatory reactions are of central importance. This review provides a short overview for the clinician on the cellular types responsible for restenosis with a focus on the role of endothelial progenitor cells. The mechanisms of restenosis are described, along with the cell-based attempts made to prevent it. While the focus of this review is principally clinical, experimental evidence provides some insight into the potential implications for prevention and therapy of coronary stent restenosis.
Collapse
Affiliation(s)
- Tommaso Gori
- German Center for Cardiac and Vascular Research (DZHK) Standort Rhein-Main, Department of Cardiology, University Medical Center Mainz, 55131 Mainz, Germany
| |
Collapse
|
296
|
Han J, Luo L, Marcelina O, Kasim V, Wu S. Therapeutic angiogenesis-based strategy for peripheral artery disease. Theranostics 2022; 12:5015-5033. [PMID: 35836800 PMCID: PMC9274744 DOI: 10.7150/thno.74785] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 06/14/2022] [Indexed: 01/12/2023] Open
Abstract
Peripheral artery disease (PAD) poses a great challenge to society, with a growing prevalence in the upcoming years. Patients in the severe stages of PAD are prone to amputation and death, leading to poor quality of life and a great socioeconomic burden. Furthermore, PAD is one of the major complications of diabetic patients, who have higher risk to develop critical limb ischemia, the most severe manifestation of PAD, and thus have a poor prognosis. Hence, there is an urgent need to develop an effective therapeutic strategy to treat this disease. Therapeutic angiogenesis has raised concerns for more than two decades as a potential strategy for treating PAD, especially in patients without option for surgery-based therapies. Since the discovery of gene-based therapy for therapeutic angiogenesis, several approaches have been developed, including cell-, protein-, and small molecule drug-based therapeutic strategies, some of which have progressed into the clinical trial phase. Despite its promising potential, efforts are still needed to improve the efficacy of this strategy, reduce its cost, and promote its worldwide application. In this review, we highlight the current progress of therapeutic angiogenesis and the issues that need to be overcome prior to its clinical application.
Collapse
Affiliation(s)
- Jingxuan Han
- The Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China.,State and Local Joint Engineering Laboratory for Vascular Implants, Chongqing 400044, China
| | - Lailiu Luo
- The Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China.,State and Local Joint Engineering Laboratory for Vascular Implants, Chongqing 400044, China
| | - Olivia Marcelina
- The Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China.,State and Local Joint Engineering Laboratory for Vascular Implants, Chongqing 400044, China
| | - Vivi Kasim
- The Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China.,State and Local Joint Engineering Laboratory for Vascular Implants, Chongqing 400044, China.,The 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing 400044, China.,✉ Corresponding authors: Vivi Kasim, College of Bioengineering, Chongqing University, Chongqing, China; Phone: +86-23-65112672, Fax: +86-23-65111802, ; Shourong Wu, College of Bioengineering, Chongqing University, Chongqing, China; Phone: +86-23-65111632, Fax: +86-23-65111802,
| | - Shourong Wu
- The Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China.,State and Local Joint Engineering Laboratory for Vascular Implants, Chongqing 400044, China.,The 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing 400044, China.,✉ Corresponding authors: Vivi Kasim, College of Bioengineering, Chongqing University, Chongqing, China; Phone: +86-23-65112672, Fax: +86-23-65111802, ; Shourong Wu, College of Bioengineering, Chongqing University, Chongqing, China; Phone: +86-23-65111632, Fax: +86-23-65111802,
| |
Collapse
|
297
|
Yu Y, Li X, Li Y, Wei R, Li H, Liu Z, Zhang Y. Derivation and Characterization of Endothelial Cells from Porcine Induced Pluripotent Stem Cells. Int J Mol Sci 2022; 23:ijms23137029. [PMID: 35806048 PMCID: PMC9266935 DOI: 10.3390/ijms23137029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 06/22/2022] [Accepted: 06/22/2022] [Indexed: 11/16/2022] Open
Abstract
Although the study on the regulatory mechanism of endothelial differentiation from the perspective of development provides references for endothelial cell (EC) derivation from pluripotent stem cells, incomplete reprogramming and donor-specific epigenetic memory are still thought to be the obstacles of iPSCs for clinical application. Thus, it is necessary to establish a stable iPSC-EC induction system and investigate the regulatory mechanism of endothelial differentiation. Based on a single-layer culture system, we successfully obtained ECs from porcine iPSCs (piPSCs). In vitro, the derived piPSC-ECs formed microvessel-like structures along 3D gelatin scaffolds. Under pathological conditions, the piPSC-ECs functioned on hindlimb ischemia repair by promoting blood vessel formation. To elucidate the molecular events essential for endothelial differentiation in our model, genome-wide transcriptional profile analysis was conducted, and we found that during piPSC-EC derivation, the synthesis and secretion level of TGF-β as well as the phosphorylation level of Smad2/3 changed dynamically. TGF-β-Smad2/3 signaling activation promoted mesoderm formation and prevented endothelial differentiation. Understanding the regulatory mechanism of iPSC-EC derivation not only paves the way for further optimization, but also provides reference for establishing a cardiovascular drug screening platform and revealing the molecular mechanism of endothelial dysfunction.
Collapse
Affiliation(s)
- Yang Yu
- College of Life Science, Northeast Agricultural University, Harbin 150030, China; (Y.Y.); (X.L.); (Y.L.); (R.W.)
| | - Xuechun Li
- College of Life Science, Northeast Agricultural University, Harbin 150030, China; (Y.Y.); (X.L.); (Y.L.); (R.W.)
| | - Yimei Li
- College of Life Science, Northeast Agricultural University, Harbin 150030, China; (Y.Y.); (X.L.); (Y.L.); (R.W.)
| | - Renyue Wei
- College of Life Science, Northeast Agricultural University, Harbin 150030, China; (Y.Y.); (X.L.); (Y.L.); (R.W.)
| | - Hai Li
- School of Basic Medical Sciences, Xi’an Jiaotong University, Xi’an 710061, China;
| | - Zhonghua Liu
- College of Life Science, Northeast Agricultural University, Harbin 150030, China; (Y.Y.); (X.L.); (Y.L.); (R.W.)
- Correspondence: (Z.L.); (Y.Z.)
| | - Yu Zhang
- College of Life Science, Northeast Agricultural University, Harbin 150030, China; (Y.Y.); (X.L.); (Y.L.); (R.W.)
- School of Basic Medical Sciences, Xi’an Jiaotong University, Xi’an 710061, China;
- Correspondence: (Z.L.); (Y.Z.)
| |
Collapse
|
298
|
Kraus X, van de Flierdt E, Renzelmann J, Thoms S, Witt M, Scheper T, Blume C. Peripheral blood derived endothelial colony forming cells as suitable cell source for pre-endothelialization of arterial vascular grafts under dynamic flow conditions. Microvasc Res 2022; 143:104402. [PMID: 35753506 DOI: 10.1016/j.mvr.2022.104402] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 05/11/2022] [Accepted: 06/14/2022] [Indexed: 11/26/2022]
Abstract
In regenerative medicine, autologous peripheral blood derived endothelial colony forming cells (PB-derived ECFC) represent a promising source of endothelial cells (EC) for pre-endothelialization of arterial tissue engineered vascular grafts (TEVG) since they are readily attainable, can easily be isolated and possess a high proliferation potential. The aim of this study was to compare the phenotype of PB-derived ECFC with arterial and venous model cells such as human aortic endothelial cells (HAEC) and human umbilical vein endothelial cells (HUVEC) under dynamic cell culture conditions to find a suitable cell source of EC for pre-endothelialization. In this study PB-derived ECFC were cultivated over 24 h under a high pulsatile shear stress (20 dyn/cm2, 1 Hz) and subsequently analyzed. ECFC oriented and elongated in the direction of flow and expressed similar anti-thrombotic and endothelial differentiation markers compared to HAEC. There were significant differences observable in gene expression levels of CD31, CD34 and NOTCH4 between ECFC and HUVEC. These results therefore suggest an arterial phenotype for PB-derived ECFC both under static and flow conditions, and this was supported by NOTCH4 protein expression profiles. ECFC also significantly up-regulated gene expression levels of anti-thrombotic genes such as krueppel-like factor 2, endothelial nitric oxide synthase 3 and thrombomodulin under shear stress cultivation as compared to static conditions. Dynamically cultured PB-derived ECFC therefore may be a promising cell source for pre-endothelialization of arterial TEVGs.
Collapse
Affiliation(s)
- Xenia Kraus
- Leibniz University Hannover, Institute of Technical Chemistry, Callinstr. 5, D-30167 Hannover, Germany; Lower Saxony Centre for Biomedical Engineering, Implant Research and Development (NIFE), 30625 Hannover, Germany.
| | - Edda van de Flierdt
- Leibniz University Hannover, Institute of Technical Chemistry, Callinstr. 5, D-30167 Hannover, Germany; Lower Saxony Centre for Biomedical Engineering, Implant Research and Development (NIFE), 30625 Hannover, Germany
| | - Jannis Renzelmann
- Leibniz University Hannover, Institute of Technical Chemistry, Callinstr. 5, D-30167 Hannover, Germany; Lower Saxony Centre for Biomedical Engineering, Implant Research and Development (NIFE), 30625 Hannover, Germany
| | - Stefanie Thoms
- Leibniz University Hannover, Institute of Technical Chemistry, Callinstr. 5, D-30167 Hannover, Germany; Lower Saxony Centre for Biomedical Engineering, Implant Research and Development (NIFE), 30625 Hannover, Germany
| | - Martin Witt
- Leibniz University Hannover, Institute of Technical Chemistry, Callinstr. 5, D-30167 Hannover, Germany; Lower Saxony Centre for Biomedical Engineering, Implant Research and Development (NIFE), 30625 Hannover, Germany
| | - Thomas Scheper
- Leibniz University Hannover, Institute of Technical Chemistry, Callinstr. 5, D-30167 Hannover, Germany; Lower Saxony Centre for Biomedical Engineering, Implant Research and Development (NIFE), 30625 Hannover, Germany
| | - Cornelia Blume
- Leibniz University Hannover, Institute of Technical Chemistry, Callinstr. 5, D-30167 Hannover, Germany; Lower Saxony Centre for Biomedical Engineering, Implant Research and Development (NIFE), 30625 Hannover, Germany
| |
Collapse
|
299
|
Costa A, Pasquinelli G. Air Pollution Exposure Induces Vascular Injury and Hampers Endothelial Repair by Altering Progenitor and Stem Cells Functionality. Front Cell Dev Biol 2022; 10:897831. [PMID: 35712669 PMCID: PMC9197257 DOI: 10.3389/fcell.2022.897831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 04/20/2022] [Indexed: 11/13/2022] Open
Abstract
Extensive evidence indicates an association of air pollution exposure with an increased risk of cardiovascular disease (CVD) development. Fine particulate matter (PM) represents one of the main components of urban pollution, but the mechanisms by which it exerts adverse effects on cardiovascular system remain partially unknown and under investigation. The alteration of endothelial functions and inflammation are among the earliest pathophysiological impacts of environmental exposure on the cardiovascular system and represent critical mediators of PM-induced injury. In this context, endothelial stem/progenitor cells (EPCs) play an important role in vascular homeostasis, endothelial reparative capacity, and vasomotor functionality modulation. Several studies indicate the impairment of EPCs' vascular reparative capacity due to PM exposure. Since a central source of EPCs is bone marrow (BM), their number and function could be related to the population and functional status of stem cells (SCs) of this district. In this review, we provide an overview of the potential mechanisms by which PM exposure hinders vascular repair by the alteration of progenitor and stem cells' functionality.
Collapse
Affiliation(s)
- Alice Costa
- Laboratory of Clinical Pathology, Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
| | - Gianandrea Pasquinelli
- Laboratory of Clinical Pathology, Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy.,IRCCS Azienda Ospedaliero Universitaria di Bologna, Bologna, Italy
| |
Collapse
|
300
|
Electrospinning-Generated Nanofiber Scaffolds Suitable for Integration of Primary Human Circulating Endothelial Progenitor Cells. Polymers (Basel) 2022; 14:polym14122448. [PMID: 35746031 PMCID: PMC9229005 DOI: 10.3390/polym14122448] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 06/07/2022] [Accepted: 06/10/2022] [Indexed: 02/05/2023] Open
Abstract
The extracellular matrix is fundamental in order to maintain normal function in many organs such as the blood vessels, heart, liver, or bones. When organs fail or experience injury, tissue engineering and regenerative medicine elicit the production of constructs resembling the native extracellular matrix, supporting organ restoration and function. In this regard, is it possible to optimize structural characteristics of nanofiber scaffolds obtained by the electrospinning technique? This study aimed to produce partially degraded collagen (gelatin) nanofiber scaffolds, using the electrospinning technique, with optimized parameters rendering different morphological characteristics of nanofibers, as well as assessing whether the resulting scaffolds are suitable to integrate primary human endothelial progenitor cells, obtained from peripheral blood with further in vitro cell expansion. After different assay conditions, the best nanofiber morphology was obtained with the following electrospinning parameters: 15 kV, 0.06 mL/h, 1000 rpm and 12 cm needle-to-collector distance, yielding an average nanofiber thickness of 333 ± 130 nm. Nanofiber scaffolds rendered through such electrospinning conditions were suitable for the integration and proliferation of human endothelial progenitor cells.
Collapse
|