251
|
Alvarado AG, Tessema K, Muthukrishnan SD, Sober M, Kawaguchi R, Laks DR, Bhaduri A, Swarup V, Nathanson DA, Geschwind DH, Goldman SA, Kornblum HI. Pathway-based approach reveals differential sensitivity to E2F1 inhibition in glioblastoma. CANCER RESEARCH COMMUNICATIONS 2022; 2:1049-1060. [PMID: 36213002 PMCID: PMC9536135 DOI: 10.1158/2767-9764.crc-22-0003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 06/02/2022] [Accepted: 08/22/2022] [Indexed: 12/14/2022]
Abstract
Analysis of tumor gene expression is an important approach for the classification and identification of therapeutic vulnerabilities. However, targeting glioblastoma (GBM) based on molecular subtyping has not yet translated into successful therapies. Here, we present an integrative approach based on molecular pathways to expose new potentially actionable targets. We used gene set enrichment analysis (GSEA) to conduct an unsupervised clustering analysis to condense the gene expression data from bulk patient samples and patient-derived gliomasphere lines into new gene signatures. We identified key targets that are predicted to be differentially activated between tumors and were functionally validated in a library of gliomasphere cultures. Resultant cluster-specific gene signatures associated not only with hallmarks of cell cycle and stemness gene expression, but also with cell-type specific markers and different cellular states of GBM. Several upstream regulators, such as PIK3R1 and EBF1 were differentially enriched in cells bearing stem cell like signatures and bear further investigation. We identified the transcription factor E2F1 as a key regulator of tumor cell proliferation and self-renewal in only a subset of gliomasphere cultures predicted to be E2F1 signaling dependent. Our in vivo work also validated the functional significance of E2F1 in tumor formation capacity in the predicted samples. E2F1 inhibition also differentially sensitized E2F1-dependent gliomasphere cultures to radiation treatment. Our findings indicate that this novel approach exploring cancer pathways highlights key therapeutic vulnerabilities for targeting GBM.
Collapse
Affiliation(s)
- Alvaro G. Alvarado
- Department of Psychiatry and Biobehavioral Sciences, and Semel Institute for Neuroscience & Human Behavior, David Geffen School of Medicine, UCLA, Los Angeles, California
| | - Kaleab Tessema
- Department of Psychiatry and Biobehavioral Sciences, and Semel Institute for Neuroscience & Human Behavior, David Geffen School of Medicine, UCLA, Los Angeles, California
| | - Sree Deepthi Muthukrishnan
- Department of Psychiatry and Biobehavioral Sciences, and Semel Institute for Neuroscience & Human Behavior, David Geffen School of Medicine, UCLA, Los Angeles, California
| | - Mackenzie Sober
- Department of Psychiatry and Biobehavioral Sciences, and Semel Institute for Neuroscience & Human Behavior, David Geffen School of Medicine, UCLA, Los Angeles, California
| | - Riki Kawaguchi
- Department of Psychiatry and Biobehavioral Sciences, and Semel Institute for Neuroscience & Human Behavior, David Geffen School of Medicine, UCLA, Los Angeles, California
| | - Dan R. Laks
- Voyager Therapeutics, Cambridge, Massachusetts
| | - Aparna Bhaduri
- Department of Biological Chemistry, David Geffen School of Medicine, UCLA, Los Angeles, California
| | - Vivek Swarup
- Department of Neurobiology and Behavior, School of Biological Sciences, UCI, Irvine, California
| | - David A. Nathanson
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, UCLA, Los Angeles, California
| | - Daniel H. Geschwind
- Department of Psychiatry and Biobehavioral Sciences, and Semel Institute for Neuroscience & Human Behavior, David Geffen School of Medicine, UCLA, Los Angeles, California
- Department of Neurology, David Geffen School of Medicine, UCLA, Los Angeles, California
| | - Steven A. Goldman
- Department of Neurology and the Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, New York
- The University of Copenhagen, Copenhagen, Denmark
| | - Harley I. Kornblum
- Department of Psychiatry and Biobehavioral Sciences, and Semel Institute for Neuroscience & Human Behavior, David Geffen School of Medicine, UCLA, Los Angeles, California
- Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, California
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, UCLA, Los Angeles, California
| |
Collapse
|
252
|
Fu JM, Satterstrom FK, Peng M, Brand H, Collins RL, Dong S, Wamsley B, Klei L, Wang L, Hao SP, Stevens CR, Cusick C, Babadi M, Banks E, Collins B, Dodge S, Gabriel SB, Gauthier L, Lee SK, Liang L, Ljungdahl A, Mahjani B, Sloofman L, Smirnov AN, Barbosa M, Betancur C, Brusco A, Chung BHY, Cook EH, Cuccaro ML, Domenici E, Ferrero GB, Gargus JJ, Herman GE, Hertz-Picciotto I, Maciel P, Manoach DS, Passos-Bueno MR, Persico AM, Renieri A, Sutcliffe JS, Tassone F, Trabetti E, Campos G, Cardaropoli S, Carli D, Chan MCY, Fallerini C, Giorgio E, Girardi AC, Hansen-Kiss E, Lee SL, Lintas C, Ludena Y, Nguyen R, Pavinato L, Pericak-Vance M, Pessah IN, Schmidt RJ, Smith M, Costa CIS, Trajkova S, Wang JYT, Yu MHC, Cutler DJ, De Rubeis S, Buxbaum JD, Daly MJ, Devlin B, Roeder K, Sanders SJ, Talkowski ME. Rare coding variation provides insight into the genetic architecture and phenotypic context of autism. Nat Genet 2022; 54:1320-1331. [PMID: 35982160 PMCID: PMC9653013 DOI: 10.1038/s41588-022-01104-0] [Citation(s) in RCA: 305] [Impact Index Per Article: 101.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 05/24/2022] [Indexed: 01/11/2023]
Abstract
Some individuals with autism spectrum disorder (ASD) carry functional mutations rarely observed in the general population. We explored the genes disrupted by these variants from joint analysis of protein-truncating variants (PTVs), missense variants and copy number variants (CNVs) in a cohort of 63,237 individuals. We discovered 72 genes associated with ASD at false discovery rate (FDR) ≤ 0.001 (185 at FDR ≤ 0.05). De novo PTVs, damaging missense variants and CNVs represented 57.5%, 21.1% and 8.44% of association evidence, while CNVs conferred greatest relative risk. Meta-analysis with cohorts ascertained for developmental delay (DD) (n = 91,605) yielded 373 genes associated with ASD/DD at FDR ≤ 0.001 (664 at FDR ≤ 0.05), some of which differed in relative frequency of mutation between ASD and DD cohorts. The DD-associated genes were enriched in transcriptomes of progenitor and immature neuronal cells, whereas genes showing stronger evidence in ASD were more enriched in maturing neurons and overlapped with schizophrenia-associated genes, emphasizing that these neuropsychiatric disorders may share common pathways to risk.
Collapse
Affiliation(s)
- Jack M Fu
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - F Kyle Satterstrom
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Analytic and Translational Genetics Unit, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Minshi Peng
- Department of Statistics and Data Science, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Harrison Brand
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Pediatric Surgical Research Laboratories, Department of Surgery, Massachusetts General Hospital, Boston, MA, USA
| | - Ryan L Collins
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Program in Bioinformatics and Integrative Genomics, Harvard Medical School, Boston, MA, USA
| | - Shan Dong
- Department of Psychiatry, UCSF Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA
| | - Brie Wamsley
- Program in Neurogenetics, Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Lambertus Klei
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Lily Wang
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Program in Bioinformatics and Integrative Genomics, Harvard Medical School, Boston, MA, USA
| | - Stephanie P Hao
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Pediatric Surgical Research Laboratories, Department of Surgery, Massachusetts General Hospital, Boston, MA, USA
| | - Christine R Stevens
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Analytic and Translational Genetics Unit, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Caroline Cusick
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Mehrtash Babadi
- Data Sciences Platform, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Eric Banks
- Data Sciences Platform, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Brett Collins
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Sheila Dodge
- Genomics Platform, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Stacey B Gabriel
- Genomics Platform, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Laura Gauthier
- Data Sciences Platform, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Samuel K Lee
- Data Sciences Platform, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Lindsay Liang
- Department of Psychiatry, UCSF Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA
| | - Alicia Ljungdahl
- Department of Psychiatry, UCSF Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA
| | - Behrang Mahjani
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Laura Sloofman
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Andrey N Smirnov
- Data Sciences Platform, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Mafalda Barbosa
- The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Catalina Betancur
- Sorbonne Université, INSERM, CNRS, Neuroscience Paris Seine, Institut de Biologie Paris Seine, Paris, France
| | - Alfredo Brusco
- Department of Medical Sciences, University of Torino, Turin, Italy
- Medical Genetics Unit, 'Città della Salute e della Scienza' University Hospital, Turin, Italy
| | - Brian H Y Chung
- Department of Pediatrics and Adolescent Medicine, Duchess of Kent Children's Hospital, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Edwin H Cook
- Institute for Juvenile Research, Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, USA
| | - Michael L Cuccaro
- The John P Hussman Institute for Human Genomics, The University of Miami Miller School of Medicine, Miami, FL, USA
| | - Enrico Domenici
- Department of Cellular, Computational and Integrative Biology, , University of Trento, Trento, Italy
| | | | - J Jay Gargus
- Center for Autism Research and Translation, University of California Irvine, Irvine, CA, USA
| | - Gail E Herman
- The Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Irva Hertz-Picciotto
- MIND (Medical Investigation of Neurodevelopmental Disorders) Institute, University of California Davis, Davis, CA, USA
| | - Patricia Maciel
- Life and Health Sciences Research Institute, School of Medicine, University of Minho, Braga, Portugal
| | - Dara S Manoach
- Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Maria Rita Passos-Bueno
- Centro de Pesquisas sobre o Genoma Humano e Células tronco, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
| | - Antonio M Persico
- Interdepartmental Program 'Autism 0-90', 'Gaetano Martino' University Hospital, University of Messina, Messina, Italy
| | - Alessandra Renieri
- Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, Siena, Italy
- Medical Genetics, , University of Siena, Siena, Italy
- Genetica Medica, Azienda Ospedaliera Universitaria Senese, Siena, Italy
| | - James S Sutcliffe
- Department of Molecular Physiology & Biophysics and Psychiatry, Vanderbilt University School of Medicine, Nashville, TN, USA
- Vanderbilt Genetics Institute, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Flora Tassone
- MIND (Medical Investigation of Neurodevelopmental Disorders) Institute, University of California Davis, Davis, CA, USA
- Department of Biochemistry and Molecular Medicine, University of California Davis, School of Medicine, Sacramento, CA, USA
| | - Elisabetta Trabetti
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biology and Genetics, University of Verona, Verona, Italy
| | - Gabriele Campos
- Centro de Pesquisas sobre o Genoma Humano e Células tronco, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
| | - Simona Cardaropoli
- Department of Public Health and Pediatrics, University of Torino, Turin, Italy
| | - Diana Carli
- Department of Public Health and Pediatrics, University of Torino, Turin, Italy
| | - Marcus C Y Chan
- Department of Pediatrics and Adolescent Medicine, Duchess of Kent Children's Hospital, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Chiara Fallerini
- Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, Siena, Italy
- Medical Genetics, , University of Siena, Siena, Italy
| | - Elisa Giorgio
- Department of Medical Sciences, University of Torino, Turin, Italy
| | - Ana Cristina Girardi
- Centro de Pesquisas sobre o Genoma Humano e Células tronco, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
| | - Emily Hansen-Kiss
- Department of Diagnostic and Biomedical Sciences, University of Texas Health Science Center at Houston, School of Dentistry, Houston, TX, USA
| | - So Lun Lee
- Department of Pediatrics and Adolescent Medicine, Duchess of Kent Children's Hospital, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Carla Lintas
- Service for Neurodevelopmental Disorders, University Campus Bio-medico of Rome, Rome, Italy
| | - Yunin Ludena
- MIND (Medical Investigation of Neurodevelopmental Disorders) Institute, University of California Davis, Davis, CA, USA
| | - Rachel Nguyen
- Center for Autism Research and Translation, University of California Irvine, Irvine, CA, USA
| | - Lisa Pavinato
- Department of Medical Sciences, University of Torino, Turin, Italy
| | - Margaret Pericak-Vance
- The John P Hussman Institute for Human Genomics, The University of Miami Miller School of Medicine, Miami, FL, USA
| | - Isaac N Pessah
- MIND (Medical Investigation of Neurodevelopmental Disorders) Institute, University of California Davis, Davis, CA, USA
- Department of Molecular Biosciences, University of California Davis, School of Veterinary Medicine, Davis, CA, USA
| | - Rebecca J Schmidt
- MIND (Medical Investigation of Neurodevelopmental Disorders) Institute, University of California Davis, Davis, CA, USA
| | - Moyra Smith
- Center for Autism Research and Translation, University of California Irvine, Irvine, CA, USA
| | - Claudia I S Costa
- Centro de Pesquisas sobre o Genoma Humano e Células tronco, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
| | - Slavica Trajkova
- Department of Medical Sciences, University of Torino, Turin, Italy
| | - Jaqueline Y T Wang
- Centro de Pesquisas sobre o Genoma Humano e Células tronco, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
| | - Mullin H C Yu
- Department of Pediatrics and Adolescent Medicine, Duchess of Kent Children's Hospital, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - David J Cutler
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA
| | - Silvia De Rubeis
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Joseph D Buxbaum
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Mark J Daly
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA.
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Analytic and Translational Genetics Unit, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA.
- Harvard Medical School, Boston, MA, USA.
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland.
| | - Bernie Devlin
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| | - Kathryn Roeder
- Department of Statistics and Data Science, Carnegie Mellon University, Pittsburgh, PA, USA.
- Computational Biology Department, Carnegie Mellon University, Pittsburgh, PA, USA.
| | - Stephan J Sanders
- Department of Psychiatry, UCSF Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA.
| | - Michael E Talkowski
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA.
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Program in Bioinformatics and Integrative Genomics, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
253
|
Shao Y, Ge Q, Yang J, Wang M, Zhou Y, Guo JX, Zhu M, Shi J, Hu Y, Shen L, Chen Z, Li XM, Zhu JM, Zhang J, Duan S, Chen J. Pathological Networks Involving Dysmorphic Neurons in Type II Focal Cortical Dysplasia. Neurosci Bull 2022; 38:1007-1024. [PMID: 35235180 PMCID: PMC9468210 DOI: 10.1007/s12264-022-00828-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 12/24/2021] [Indexed: 10/19/2022] Open
Abstract
Focal cortical dysplasia (FCD) is one of the most common causes of drug-resistant epilepsy. Dysmorphic neurons are the major histopathological feature of type II FCD, but their role in seizure genesis in FCD is unclear. Here we performed whole-cell patch-clamp recording and morphological reconstruction of cortical principal neurons in postsurgical brain tissue from drug-resistant epilepsy patients. Quantitative analyses revealed distinct morphological and electrophysiological characteristics of the upper layer dysmorphic neurons in type II FCD, including an enlarged soma, aberrant dendritic arbors, increased current injection for rheobase action potential firing, and reduced action potential firing frequency. Intriguingly, the upper layer dysmorphic neurons received decreased glutamatergic and increased GABAergic synaptic inputs that were coupled with upregulation of the Na+-K+-Cl- cotransporter. In addition, we found a depolarizing shift of the GABA reversal potential in the CamKII-cre::PTENflox/flox mouse model of drug-resistant epilepsy, suggesting that enhanced GABAergic inputs might depolarize dysmorphic neurons. Thus, imbalance of synaptic excitation and inhibition of dysmorphic neurons may contribute to seizure genesis in type II FCD.
Collapse
Affiliation(s)
- Yijie Shao
- Center for Neuroscience and Department of Neurosurgery of the Second Affiliated Hospital, NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Department of Neurosurgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China
| | - Qianqian Ge
- Center for Neuroscience and Department of Neurosurgery of the Second Affiliated Hospital, NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Jiachao Yang
- Center for Neuroscience and Department of Neurosurgery of the Second Affiliated Hospital, NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Mi Wang
- Center for Neuroscience and Department of Neurosurgery of the Second Affiliated Hospital, NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Yu Zhou
- Center for Neuroscience and Department of Neurosurgery of the Second Affiliated Hospital, NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Jin-Xin Guo
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, 310058, China
| | - Mengyue Zhu
- Center for Neuroscience and Department of Neurosurgery of the Second Affiliated Hospital, NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Jiachen Shi
- Center for Neuroscience and Department of Neurosurgery of the Second Affiliated Hospital, NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Yiqi Hu
- Center for Neuroscience and Department of Neurosurgery of the Second Affiliated Hospital, NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Li Shen
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, 310058, China
- Department of Orthopedic Surgery, School of Medicine, the Second Affiliated Hospital, Zhejiang University, Hangzhou, 310009, China
- Hangzhou Innovation Center, Zhejiang University, Hangzhou, 310058, China
| | - Zhong Chen
- Institute of Pharmacology & Toxicology, NHC and CAMS Key Laboratory of Medical Neurobiology, College of Pharmaceutical Sciences, School of Basic Medical Sciences, Zhejiang University, Hangzhou, 310058, China
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310058, China
| | - Xiao-Ming Li
- Center for Neuroscience and Department of Neurology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, Center for Brain Science and Brain-Inspired Intelligence, Joint Institute for Genetics and Genome Medicine between, Guangdong Hong Kong Macao Greater Bay Area, Zhejiang University and the University of Toronto, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Jun-Ming Zhu
- Department of Neurosurgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China
| | - Jianmin Zhang
- Department of Neurosurgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China.
| | - Shumin Duan
- Center for Neuroscience and Department of Neurosurgery of the Second Affiliated Hospital, NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, China.
| | - Jiadong Chen
- Center for Neuroscience and Department of Neurosurgery of the Second Affiliated Hospital, NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, China.
| |
Collapse
|
254
|
Human Brain Organoid: A Versatile Tool for Modeling Neurodegeneration Diseases and for Drug Screening. Stem Cells Int 2022; 2022:2150680. [PMID: 36061149 PMCID: PMC9436613 DOI: 10.1155/2022/2150680] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 05/28/2022] [Accepted: 06/18/2022] [Indexed: 11/17/2022] Open
Abstract
Clinical trials serve as the fundamental prerequisite for clinical therapy of human disease, which is primarily based on biomedical studies in animal models. Undoubtedly, animal models have made a significant contribution to gaining insight into the developmental and pathophysiological understanding of human diseases. However, none of the existing animal models could efficiently simulate the development of human organs and systems due to a lack of spatial information; the discrepancy in genetic, anatomic, and physiological basis between animals and humans limits detailed investigation. Therefore, the translational efficiency of the research outcomes in clinical applications was significantly weakened, especially for some complex, chronic, and intractable diseases. For example, the clinical trials for human fragile X syndrome (FXS) solely based on animal models have failed such as mGluR5 antagonists. To mimic the development of human organs more faithfully and efficiently translate in vitro biomedical studies to clinical trials, extensive attention to organoids derived from stem cells contributes to a deeper understanding of this research. The organoids are a miniaturized version of an organ generated in vitro, partially recapitulating key features of human organ development. As such, the organoids open a novel avenue for in vitro models of human disease, advantageous over the existing animal models. The invention of organoids has brought an innovative breakthrough in regeneration medicine. The organoid-derived human tissues or organs could potentially function as invaluable platforms for biomedical studies, pathological investigation of human diseases, and drug screening. Importantly, the study of regeneration medicine and the development of therapeutic strategies for human diseases could be conducted in a dish, facilitating in vitro analysis and experimentation. Thus far, the pilot breakthrough has been made in the generation of numerous types of organoids representing different human organs. Most of these human organoids have been employed for in vitro biomedical study and drug screening. However, the efficiency and quality of the organoids in recapitulating the development of human organs have been hindered by engineering and conceptual challenges. The efficiency and quality of the organoids are essential for downstream applications. In this article, we highlight the application in the modeling of human neurodegenerative diseases (NDDs) such as FXS, Alzheimer's disease (AD), Parkinson's disease (PD), and autistic spectrum disorders (ASD), and organoid-based drug screening. Additionally, challenges and weaknesses especially for limits of the brain organoid models in modeling late onset NDDs such as AD and PD., and future perspectives regarding human brain organoids are addressed.
Collapse
|
255
|
Diverse mutations in autism-related genes and their expression in the developing brain. Nat Genet 2022; 54:1263-1264. [PMID: 35982158 DOI: 10.1038/s41588-022-01114-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
256
|
Coy S, Wang S, Stopka SA, Lin JR, Yapp C, Ritch CC, Salhi L, Baker GJ, Rashid R, Baquer G, Regan M, Khadka P, Cole KA, Hwang J, Wen PY, Bandopadhayay P, Santi M, De Raedt T, Ligon KL, Agar NYR, Sorger PK, Touat M, Santagata S. Single cell spatial analysis reveals the topology of immunomodulatory purinergic signaling in glioblastoma. Nat Commun 2022; 13:4814. [PMID: 35973991 PMCID: PMC9381513 DOI: 10.1038/s41467-022-32430-w] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 07/29/2022] [Indexed: 12/11/2022] Open
Abstract
How the glioma immune microenvironment fosters tumorigenesis remains incompletely defined. Here, we use single-cell RNA-sequencing and multiplexed tissue-imaging to characterize the composition, spatial organization, and clinical significance of extracellular purinergic signaling in glioma. We show that microglia are the predominant source of CD39, while tumor cells principally express CD73. In glioblastoma, CD73 is associated with EGFR amplification, astrocyte-like differentiation, and increased adenosine, and is linked to hypoxia. Glioblastomas enriched for CD73 exhibit inflammatory microenvironments, suggesting that purinergic signaling regulates immune adaptation. Spatially-resolved single-cell analyses demonstrate a strong spatial correlation between tumor-CD73 and microglial-CD39, with proximity associated with poor outcomes. Similar spatial organization is present in pediatric high-grade gliomas including H3K27M-mutant diffuse midline glioma. These data reveal that purinergic signaling in gliomas is shaped by genotype, lineage, and functional state, and that core enzymes expressed by tumor and myeloid cells are organized to promote adenosine-rich microenvironments potentially amenable to therapeutic targeting.
Collapse
Affiliation(s)
- Shannon Coy
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Laboratory of Systems Pharmacology, Harvard Program in Therapeutic Science, Boston, MA, USA
- Ludwig Center at Harvard, Harvard Medical School, Boston, MA, USA
| | - Shu Wang
- Laboratory of Systems Pharmacology, Harvard Program in Therapeutic Science, Boston, MA, USA
- Ludwig Center at Harvard, Harvard Medical School, Boston, MA, USA
- Harvard Graduate Program in Biophysics, Harvard University, Boston, MA, USA
| | - Sylwia A Stopka
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Jia-Ren Lin
- Laboratory of Systems Pharmacology, Harvard Program in Therapeutic Science, Boston, MA, USA
- Ludwig Center at Harvard, Harvard Medical School, Boston, MA, USA
| | - Clarence Yapp
- Laboratory of Systems Pharmacology, Harvard Program in Therapeutic Science, Boston, MA, USA
- Ludwig Center at Harvard, Harvard Medical School, Boston, MA, USA
| | - Cecily C Ritch
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Laboratory of Systems Pharmacology, Harvard Program in Therapeutic Science, Boston, MA, USA
| | - Lisa Salhi
- Sorbonne Université, Inserm, CNRS, UMR S 1127, Institut du Cerveau et de la Moelle Epinière, and AP-HP Hôpitaux Universitaires La Pitié Salpêtrière - Charles Foix, Service de Neurologie 2-Mazarin, Paris, France
| | - Gregory J Baker
- Laboratory of Systems Pharmacology, Harvard Program in Therapeutic Science, Boston, MA, USA
- Ludwig Center at Harvard, Harvard Medical School, Boston, MA, USA
| | - Rumana Rashid
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Laboratory of Systems Pharmacology, Harvard Program in Therapeutic Science, Boston, MA, USA
- Pitt-CMU Medical Scientist Training Program, University of Pittsburgh-Carnegie Mellon, Pittsburgh, PA, USA
| | - Gerard Baquer
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Michael Regan
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Prasidda Khadka
- Department of Pediatric Oncology, Dana-Farber Boston Children's Cancer and Blood Disorders Center, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Kristina A Cole
- Children's Hospital of Philadelphia, University of Pennsylvania, Pennsylvania, PA, USA
| | - Jaeho Hwang
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Patrick Y Wen
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Center for Neuro-Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Pratiti Bandopadhayay
- Department of Pediatric Oncology, Dana-Farber Boston Children's Cancer and Blood Disorders Center, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Mariarita Santi
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Thomas De Raedt
- Children's Hospital of Philadelphia, University of Pennsylvania, Pennsylvania, PA, USA
| | - Keith L Ligon
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Pediatric Oncology, Dana-Farber Boston Children's Cancer and Blood Disorders Center, Boston, MA, USA
- Department of Pathology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Pathology, Boston Children's Hospital, Boston, MA, USA
| | - Nathalie Y R Agar
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Peter K Sorger
- Laboratory of Systems Pharmacology, Harvard Program in Therapeutic Science, Boston, MA, USA
- Ludwig Center at Harvard, Harvard Medical School, Boston, MA, USA
| | - Mehdi Touat
- Sorbonne Université, Inserm, CNRS, UMR S 1127, Institut du Cerveau et de la Moelle Epinière, and AP-HP Hôpitaux Universitaires La Pitié Salpêtrière - Charles Foix, Service de Neurologie 2-Mazarin, Paris, France.
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| | - Sandro Santagata
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
- Laboratory of Systems Pharmacology, Harvard Program in Therapeutic Science, Boston, MA, USA.
- Ludwig Center at Harvard, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
257
|
Postmitotic accumulation of histone variant H3.3 in new cortical neurons establishes neuronal chromatin, transcriptome, and identity. Proc Natl Acad Sci U S A 2022; 119:e2116956119. [PMID: 35930666 PMCID: PMC9371731 DOI: 10.1073/pnas.2116956119] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Histone variants, which can be expressed outside of S-phase and deposited DNA synthesis-independently, provide long-term histone replacement in postmitotic cells, including neurons. Beyond replenishment, histone variants also play active roles in gene regulation by modulating chromatin states or enabling nucleosome turnover. Here, we uncover crucial roles for the histone H3 variant H3.3 in neuronal development. We find that newborn cortical excitatory neurons, which have only just completed replication-coupled deposition of canonical H3.1 and H3.2, substantially accumulate H3.3 immediately postmitosis. Codeletion of H3.3-encoding genes H3f3a and H3f3b from newly postmitotic neurons abrogates H3.3 accumulation, markedly alters the histone posttranslational modification landscape, and causes widespread disruptions to the establishment of the neuronal transcriptome. These changes coincide with developmental phenotypes in neuronal identities and axon projections. Thus, preexisting, replication-dependent histones are insufficient for establishing neuronal chromatin and transcriptome; de novo H3.3 is required. Stage-dependent deletion of H3f3a and H3f3b from 1) cycling neural progenitor cells, 2) neurons immediately postmitosis, or 3) several days later, reveals the first postmitotic days to be a critical window for de novo H3.3. After H3.3 accumulation within this developmental window, codeletion of H3f3a and H3f3b does not lead to immediate H3.3 loss, but causes progressive H3.3 depletion over several months without widespread transcriptional disruptions or cellular phenotypes. Our study thus uncovers key developmental roles for de novo H3.3 in establishing neuronal chromatin, transcriptome, identity, and connectivity immediately postmitosis that are distinct from its role in maintaining total histone H3 levels over the neuronal lifespan.
Collapse
|
258
|
Vértesy Á, Eichmüller OL, Naas J, Novatchkova M, Esk C, Balmaña M, Ladstaetter S, Bock C, von Haeseler A, Knoblich JA. Gruffi: an algorithm for computational removal of stressed cells from brain organoid transcriptomic datasets. EMBO J 2022; 41:e111118. [PMID: 35919947 PMCID: PMC9433936 DOI: 10.15252/embj.2022111118] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 06/30/2022] [Accepted: 07/04/2022] [Indexed: 12/11/2022] Open
Abstract
Organoids enable in vitro modeling of complex developmental processes and disease pathologies. Like most 3D cultures, organoids lack sufficient oxygen supply and therefore experience cellular stress. These negative effects are particularly prominent in complex models, such as brain organoids, and can affect lineage commitment. Here, we analyze brain organoid and fetal single‐cell RNA sequencing (scRNAseq) data from published and new datasets, totaling about 190,000 cells. We identify a unique stress signature in the data from all organoid samples, but not in fetal samples. We demonstrate that cell stress is limited to a defined subpopulation of cells that is unique to organoids and does not affect neuronal specification or maturation. We have developed a computational algorithm, Gruffi, which uses granular functional filtering to identify and remove stressed cells from any organoid scRNAseq dataset in an unbiased manner. We validated our method using six additional datasets from different organoid protocols and early brains, and show its usefulness to other organoid systems including retinal organoids. Our data show that the adverse effects of cell stress can be corrected by bioinformatic analysis for improved delineation of developmental trajectories and resemblance to in vivo data.
Collapse
Affiliation(s)
- Ábel Vértesy
- Institute of Molecular Biotechnology (IMBA), Austrian Academy of Sciences, Vienna Biocenter, Vienna, Austria
| | - Oliver L Eichmüller
- Institute of Molecular Biotechnology (IMBA), Austrian Academy of Sciences, Vienna Biocenter, Vienna, Austria
| | - Julia Naas
- Max Perutz Labs, Center for Integrative Bioinformatics Vienna (CIBIV), University of Vienna, Vienna, Austria.,Medical University of Vienna, Vienna Biocenter, Vienna, Austria.,Vienna Biocenter PhD Program, A Doctoral School of the University of Vienna and Medical University of Vienna, Vienna, Austria
| | | | - Christopher Esk
- Institute of Molecular Biotechnology (IMBA), Austrian Academy of Sciences, Vienna Biocenter, Vienna, Austria
| | - Meritxell Balmaña
- Institute of Molecular Biotechnology (IMBA), Austrian Academy of Sciences, Vienna Biocenter, Vienna, Austria
| | - Sabrina Ladstaetter
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Christoph Bock
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Arndt von Haeseler
- Max Perutz Labs, Center for Integrative Bioinformatics Vienna (CIBIV), University of Vienna, Vienna, Austria.,Bioinformatics and Computational Biology, Faculty of Computer Science, University of Vienna, Vienna, Austria
| | - Juergen A Knoblich
- Institute of Molecular Biotechnology (IMBA), Austrian Academy of Sciences, Vienna Biocenter, Vienna, Austria.,Department of Neurology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
259
|
Andrews MG, Mukhtar T, Eze UC, Simoneau CR, Ross J, Parikshak N, Wang S, Zhou L, Koontz M, Velmeshev D, Siebert CV, Gemenes KM, Tabata T, Perez Y, Wang L, Mostajo-Radji MA, de Majo M, Donohue KC, Shin D, Salma J, Pollen AA, Nowakowski TJ, Ullian E, Kumar GR, Winkler EA, Crouch EE, Ott M, Kriegstein AR. Tropism of SARS-CoV-2 for human cortical astrocytes. Proc Natl Acad Sci U S A 2022; 119:e2122236119. [PMID: 35858406 PMCID: PMC9335272 DOI: 10.1073/pnas.2122236119] [Citation(s) in RCA: 94] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 05/12/2022] [Indexed: 02/06/2023] Open
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) readily infects a variety of cell types impacting the function of vital organ systems, with particularly severe impact on respiratory function. Neurological symptoms, which range in severity, accompany as many as one-third of COVID-19 cases, indicating a potential vulnerability of neural cell types. To assess whether human cortical cells can be directly infected by SARS-CoV-2, we utilized stem-cell-derived cortical organoids as well as primary human cortical tissue, both from developmental and adult stages. We find significant and predominant infection in cortical astrocytes in both primary tissue and organoid cultures, with minimal infection of other cortical populations. Infected and bystander astrocytes have a corresponding increase in inflammatory gene expression, reactivity characteristics, increased cytokine and growth factor signaling, and cellular stress. Although human cortical cells, particularly astrocytes, have no observable ACE2 expression, we find high levels of coronavirus coreceptors in infected astrocytes, including CD147 and DPP4. Decreasing coreceptor abundance and activity reduces overall infection rate, and increasing expression is sufficient to promote infection. Thus, we find tropism of SARS-CoV-2 for human astrocytes resulting in inflammatory gliosis-type injury that is dependent on coronavirus coreceptors.
Collapse
Affiliation(s)
- Madeline G. Andrews
- Department of Neurology, University of California, San Francisco, CA 94143
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, CA 94143
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ 85281
| | - Tanzila Mukhtar
- Department of Neurology, University of California, San Francisco, CA 94143
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, CA 94143
| | - Ugomma C. Eze
- Department of Neurology, University of California, San Francisco, CA 94143
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, CA 94143
| | - Camille R. Simoneau
- Gladstone Institutes, San Francisco, CA 94158
- Department of Medicine, University of California, San Francisco, CA 94143
- University of California, San Francisco Biomedical Sciences Graduate Program, San Francisco, CA 94143
| | - Jayden Ross
- Department of Neurology, University of California, San Francisco, CA 94143
- Department of Anatomy, University of California, San Francisco, CA 94143
| | - Neelroop Parikshak
- Department of Neurology, University of California, San Francisco, CA 94143
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, CA 94143
| | - Shaohui Wang
- Department of Neurology, University of California, San Francisco, CA 94143
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, CA 94143
| | - Li Zhou
- Department of Neurology, University of California, San Francisco, CA 94143
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, CA 94143
| | - Mark Koontz
- Department of Ophthalmology, University of California, San Francisco, CA 94143
| | - Dmitry Velmeshev
- Department of Neurology, University of California, San Francisco, CA 94143
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, CA 94143
| | - Clara-Vita Siebert
- Department of Neurology, University of California, San Francisco, CA 94143
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, CA 94143
| | - Kaila M. Gemenes
- Department of Neurology, University of California, San Francisco, CA 94143
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, CA 94143
| | - Takako Tabata
- Gladstone Institutes, San Francisco, CA 94158
- Department of Medicine, University of California, San Francisco, CA 94143
| | - Yonatan Perez
- Department of Neurology, University of California, San Francisco, CA 94143
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, CA 94143
| | - Li Wang
- Department of Neurology, University of California, San Francisco, CA 94143
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, CA 94143
| | - Mohammed A. Mostajo-Radji
- Department of Neurology, University of California, San Francisco, CA 94143
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, CA 94143
| | - Martina de Majo
- Department of Ophthalmology, University of California, San Francisco, CA 94143
| | - Kevin C. Donohue
- Department of Anatomy, University of California, San Francisco, CA 94143
| | - David Shin
- Department of Neurology, University of California, San Francisco, CA 94143
- Department of Anatomy, University of California, San Francisco, CA 94143
| | - Jahan Salma
- Center for Regenerative Medicine and Stem Cell Research, The Aga Khan University, Karachi, 74800, Pakistan
| | - Alex A. Pollen
- Department of Neurology, University of California, San Francisco, CA 94143
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, CA 94143
| | - Tomasz J. Nowakowski
- Department of Neurology, University of California, San Francisco, CA 94143
- Department of Anatomy, University of California, San Francisco, CA 94143
| | - Erik Ullian
- Department of Ophthalmology, University of California, San Francisco, CA 94143
| | - G. Renuka Kumar
- Gladstone Institutes, San Francisco, CA 94158
- Department of Medicine, University of California, San Francisco, CA 94143
| | - Ethan A. Winkler
- Department of Neurological Surgery, University of California, San Francisco, CA 94143
| | - Elizabeth E. Crouch
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, CA 94143
- Department of Pediatrics, University of California, San Francisco, CA 94143
| | - Melanie Ott
- Gladstone Institutes, San Francisco, CA 94158
- Department of Medicine, University of California, San Francisco, CA 94143
| | - Arnold R. Kriegstein
- Department of Neurology, University of California, San Francisco, CA 94143
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, CA 94143
| |
Collapse
|
260
|
Hamed AA, Kunz DJ, El-Hamamy I, Trinh QM, Subedar OD, Richards LM, Foltz W, Bullivant G, Ware M, Vladoiu MC, Zhang J, Raj AM, Pugh TJ, Taylor MD, Teichmann SA, Stein LD, Simons BD, Dirks PB. A brain precursor atlas reveals the acquisition of developmental-like states in adult cerebral tumours. Nat Commun 2022; 13:4178. [PMID: 35853870 PMCID: PMC9296666 DOI: 10.1038/s41467-022-31408-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 06/16/2022] [Indexed: 01/01/2023] Open
Abstract
Human cerebral cancers are known to contain cell types resembling the varying stages of neural development. However, the basis of this association remains unclear. Here, we map the development of mouse cerebrum across the developmental time-course, from embryonic day 12.5 to postnatal day 365, performing single-cell transcriptomics on >100,000 cells. By comparing this reference atlas to single-cell data from >100 glial tumours of the adult and paediatric human cerebrum, we find that tumour cells have an expression signature that overlaps with temporally restricted, embryonic radial glial precursors (RGPs) and their immediate sublineages. Further, we demonstrate that prenatal transformation of RGPs in a genetic mouse model gives rise to adult cerebral tumours that show an embryonic/juvenile RGP identity. Together, these findings implicate the acquisition of embryonic-like states in the genesis of adult glioma, providing insight into the origins of human glioma, and identifying specific developmental cell types for therapeutic targeting.
Collapse
Affiliation(s)
- Akram A Hamed
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON, Canada
- Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, Canada
| | - Daniel J Kunz
- The Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge, UK
- Cavendish Laboratory, Department of Physics, JJ Thomson Avenue, Cambridge, UK
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - Ibrahim El-Hamamy
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
- Ontario Institute for Cancer Research, Toronto, ON, Canada
| | - Quang M Trinh
- Ontario Institute for Cancer Research, Toronto, ON, Canada
| | - Omar D Subedar
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON, Canada
| | - Laura M Richards
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Warren Foltz
- STTARR Innovation Centre, Department of Radiation Oncology, University Health Network, Toronto, ON, Canada
| | - Garrett Bullivant
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON, Canada
- Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, Canada
| | - Matthaeus Ware
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON, Canada
- Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, Canada
| | - Maria C Vladoiu
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON, Canada
- Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Jiao Zhang
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON, Canada
- Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, Canada
| | - Antony M Raj
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON, Canada
- Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, Canada
| | - Trevor J Pugh
- Ontario Institute for Cancer Research, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Michael D Taylor
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON, Canada
- Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
- Division of Neurosurgery, University of Toronto, Toronto, ON, Canada
- Department of Surgery and Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Sarah A Teichmann
- Cavendish Laboratory, Department of Physics, JJ Thomson Avenue, Cambridge, UK
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - Lincoln D Stein
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada.
- Ontario Institute for Cancer Research, Toronto, ON, Canada.
| | - Benjamin D Simons
- Cavendish Laboratory, Department of Physics, JJ Thomson Avenue, Cambridge, UK.
- Department of Applied Mathematics and Theoretical Physics, Centre for Mathematical Sciences, Wilberforce Road, Cambridge, UK.
- Wellcome Trust-Medical Research Council Stem Cell Institute, University of Cambridge, Cambridge, UK.
| | - Peter B Dirks
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada.
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON, Canada.
- Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, Canada.
- Division of Neurosurgery, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
261
|
Nano PR, Bhaduri A. Evaluation of advances in cortical development using model systems. Dev Neurobiol 2022; 82:408-427. [PMID: 35644985 PMCID: PMC10924780 DOI: 10.1002/dneu.22879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 04/26/2022] [Accepted: 04/30/2022] [Indexed: 11/11/2022]
Abstract
Compared with that of even the closest primates, the human cortex displays a high degree of specialization and expansion that largely emerges developmentally. Although decades of research in the mouse and other model systems has revealed core tenets of cortical development that are well preserved across mammalian species, small deviations in transcription factor expression, novel cell types in primates and/or humans, and unique cortical architecture distinguish the human cortex. Importantly, many of the genes and signaling pathways thought to drive human-specific cortical expansion also leave the brain vulnerable to disease, as the misregulation of these factors is highly correlated with neurodevelopmental and neuropsychiatric disorders. However, creating a comprehensive understanding of human-specific cognition and disease remains challenging. Here, we review key stages of cortical development and highlight known or possible differences between model systems and the developing human brain. By identifying the developmental trajectories that may facilitate uniquely human traits, we highlight open questions in need of approaches to examine these processes in a human context and reveal translatable insights into human developmental disorders.
Collapse
Affiliation(s)
- Patricia R Nano
- Department of Biological Chemistry, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, USA
| | - Aparna Bhaduri
- Department of Biological Chemistry, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, USA
| |
Collapse
|
262
|
Winkler EA, Pacult MA, Catapano JS, Scherschinski L, Srinivasan VM, Graffeo CS, Oh SP, Lawton MT. Emerging pathogenic mechanisms in human brain arteriovenous malformations: a contemporary review in the multiomics era. Neurosurg Focus 2022; 53:E2. [DOI: 10.3171/2022.4.focus2291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 04/18/2022] [Indexed: 11/06/2022]
Abstract
A variety of pathogenic mechanisms have been described in the formation, maturation, and rupture of brain arteriovenous malformations (bAVMs). While the understanding of bAVMs has largely been formulated based on animal models of rare hereditary diseases in which AVMs form, a new era of “omics” has permitted large-scale examinations of contributory genetic variations in human sporadic bAVMs. New findings regarding the pathogenesis of bAVMs implicate changes to endothelial and mural cells that result in increased angiogenesis, proinflammatory recruitment, and breakdown of vascular barrier properties that may result in hemorrhage; a greater diversity of cell populations that compose the bAVM microenvironment may also be implicated and complicate traditional models. Genomic sequencing of human bAVMs has uncovered inherited, de novo, and somatic activating mutations, such as KRAS, which contribute to the pathogenesis of bAVMs. New droplet-based, single-cell sequencing technologies have generated atlases of cell-specific molecular derangements. Herein, the authors review emerging genomic and transcriptomic findings underlying pathologic cell transformations in bAVMs derived from human tissues. The application of multiple sequencing modalities to bAVM tissues is a natural next step for researchers, although the potential therapeutic benefits or clinical applications remain unknown.
Collapse
Affiliation(s)
- Ethan A. Winkler
- Department of Neurological Surgery, Barrow Neurological Institute, St. Joseph’s Hospital and Medical Center, Phoenix; and
| | - Mark A. Pacult
- Department of Neurological Surgery, Barrow Neurological Institute, St. Joseph’s Hospital and Medical Center, Phoenix; and
| | - Joshua S. Catapano
- Department of Neurological Surgery, Barrow Neurological Institute, St. Joseph’s Hospital and Medical Center, Phoenix; and
| | - Lea Scherschinski
- Department of Neurological Surgery, Barrow Neurological Institute, St. Joseph’s Hospital and Medical Center, Phoenix; and
| | - Visish M. Srinivasan
- Department of Neurological Surgery, Barrow Neurological Institute, St. Joseph’s Hospital and Medical Center, Phoenix; and
| | - Christopher S. Graffeo
- Department of Neurological Surgery, Barrow Neurological Institute, St. Joseph’s Hospital and Medical Center, Phoenix; and
| | - S. Paul Oh
- Department of Neurological Surgery, Barrow Neurological Institute, St. Joseph’s Hospital and Medical Center, Phoenix; and
- Barrow Aneurysm and AVM Research Center, Department of Translational Neuroscience, Barrow Neurological Institute, St. Joseph’s Hospital and Medical Center, Phoenix, Arizona
| | - Michael T. Lawton
- Department of Neurological Surgery, Barrow Neurological Institute, St. Joseph’s Hospital and Medical Center, Phoenix; and
| |
Collapse
|
263
|
Suzuki IK. Evolutionary innovations of human cerebral cortex viewed through the lens of high-throughput sequencing. Dev Neurobiol 2022; 82:476-494. [PMID: 35765158 DOI: 10.1002/dneu.22893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/26/2022] [Accepted: 05/24/2022] [Indexed: 11/10/2022]
Abstract
Humans had acquired a tremendously enlarged cerebral cortex containing a huge quantity and variety of cells during evolution. Such evolutionary uniqueness offers a neural basis of our cognitive innovation and human-specific features of neurodevelopmental and psychiatric disorders. Since human brain is hardly examined in vivo with experimental approaches commonly applied on animal models, the recent advancement of sequencing technologies offers an indispensable viewpoint of human brain anatomy and development. This review introduces the recent findings on the unique features in the adult and the characteristic developmental processes of the human cerebral cortex, based on high throughput DNA sequencing technologies. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Ikuo K Suzuki
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| |
Collapse
|
264
|
Transcriptome dynamics of hippocampal neurogenesis in macaques across the lifespan and aged humans. Cell Res 2022; 32:729-743. [PMID: 35750757 PMCID: PMC9343414 DOI: 10.1038/s41422-022-00678-y] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 05/26/2022] [Indexed: 01/06/2023] Open
Abstract
Whether adult hippocampal neurogenesis (AHN) persists in adult and aged humans continues to be extensively debated. A major question is whether the markers identified in rodents are reliable enough to reveal new neurons and the neurogenic trajectory in primates. Here, to provide a better understanding of AHN in primates and to reveal more novel markers for distinct cell types, droplet-based single-nucleus RNA sequencing (snRNA-seq) is used to investigate the cellular heterogeneity and molecular characteristics of the hippocampi in macaques across the lifespan and in aged humans. All of the major cell types in the hippocampus and their expression profiles were identified. The dynamics of the neurogenic lineage was revealed and the diversity of astrocytes and microglia was delineated. In the neurogenic lineage, the regulatory continuum from adult neural stem cells (NSCs) to immature and mature granule cells was investigated. A group of primate-specific markers were identified. We validated ETNPPL as a primate-specific NSC marker and verified STMN1 and STMN2 as immature neuron markers in primates. Furthermore, we illustrate a cluster of active astrocytes and microglia exhibiting proinflammatory responses in aged samples. The interaction analysis and the comparative investigation on published datasets and ours imply that astrocytes provide signals inducing the proliferation, quiescence and inflammation of adult NSCs at different stages and that the proinflammatory status of astrocytes probably contributes to the decrease and variability of AHN in adults and elderly individuals.
Collapse
|
265
|
Arpi MNT, Simpson TI. SFARI genes and where to find them; modelling Autism Spectrum Disorder specific gene expression dysregulation with RNA-seq data. Sci Rep 2022; 12:10158. [PMID: 35710789 PMCID: PMC9203566 DOI: 10.1038/s41598-022-14077-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Accepted: 06/01/2022] [Indexed: 11/09/2022] Open
Abstract
Autism Spectrum Disorders (ASD) have a strong, yet heterogeneous, genetic component. Among the various methods that are being developed to help reveal the underlying molecular aetiology of the disease one approach that is gaining popularity is the combination of gene expression and clinical genetic data, often using the SFARI-gene database, which comprises lists of curated genes considered to have causative roles in ASD when mutated in patients. We build a gene co-expression network to study the relationship between ASD-specific transcriptomic data and SFARI genes and then analyse it at different levels of granularity. No significant evidence is found of association between SFARI genes and differential gene expression patterns when comparing ASD samples to a control group, nor statistical enrichment of SFARI genes in gene co-expression network modules that have a strong correlation with ASD diagnosis. However, classification models that incorporate topological information from the whole ASD-specific gene co-expression network can predict novel SFARI candidate genes that share features of existing SFARI genes and have support for roles in ASD in the literature. A statistically significant association is also found between the absolute level of gene expression and SFARI's genes and Scores, which can confound the analysis if uncorrected. We propose a novel approach to correct for this that is general enough to be applied to other problems affected by continuous sources of bias. It was found that only co-expression network analyses that integrate information from the whole network are able to reveal signatures linked to ASD diagnosis and novel candidate genes for the study of ASD, which individual gene or module analyses fail to do. It was also found that the influence of SFARI genes permeates not only other ASD scoring systems, but also lists of genes believed to be involved in other neurodevelopmental disorders.
Collapse
Affiliation(s)
| | - T Ian Simpson
- School of Informatics, University of Edinburgh, 10 Crichton Street, Edinburgh, EH8 9AB, UK. .,Simons Initiative for the Developing Brain (SIDB), Centre for Brain Discovery Sciences, University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
266
|
Kaluthantrige Don F, Kalebic N. Forebrain Organoids to Model the Cell Biology of Basal Radial Glia in Neurodevelopmental Disorders and Brain Evolution. Front Cell Dev Biol 2022; 10:917166. [PMID: 35774229 PMCID: PMC9237216 DOI: 10.3389/fcell.2022.917166] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Accepted: 05/23/2022] [Indexed: 12/13/2022] Open
Abstract
The acquisition of higher intellectual abilities that distinguish humans from their closest relatives correlates greatly with the expansion of the cerebral cortex. This expansion is a consequence of an increase in neuronal cell production driven by the higher proliferative capacity of neural progenitor cells, in particular basal radial glia (bRG). Furthermore, when the proliferation of neural progenitor cells is impaired and the final neuronal output is altered, severe neurodevelopmental disorders can arise. To effectively study the cell biology of human bRG, genetically accessible human experimental models are needed. With the pioneering success to isolate and culture pluripotent stem cells in vitro, we can now routinely investigate the developing human cerebral cortex in a dish using three-dimensional multicellular structures called organoids. Here, we will review the molecular and cell biological features of bRG that have recently been elucidated using brain organoids. We will further focus on the application of this simple model system to study in a mechanistically actionable way the molecular and cellular events in bRG that can lead to the onset of various neurodevelopmental diseases.
Collapse
|
267
|
Dormant state of quiescent neural stem cells links Shank3 mutation to autism development. Mol Psychiatry 2022; 27:2751-2765. [PMID: 35444258 DOI: 10.1038/s41380-022-01563-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 03/25/2022] [Accepted: 04/04/2022] [Indexed: 12/13/2022]
Abstract
Autism spectrum disorders (ASDs) are common neurodevelopmental disorders characterized by deficits in social interactions and communication, restricted interests, and repetitive behaviors. Despite extensive study, the molecular targets that control ASD development remain largely unclear. Here, we report that the dormancy of quiescent neural stem cells (qNSCs) is a therapeutic target for controlling the development of ASD phenotypes driven by Shank3 deficiency. Using single-cell RNA sequencing (scRNA-seq) and transposase accessible chromatin profiling (ATAC-seq), we find that abnormal epigenetic features including H3K4me3 accumulation due to up-regulation of Kmt2a levels lead to increased dormancy of qNSCs in the absence of Shank3. This result in decreased active neurogenesis in the Shank3 deficient mouse brain. Remarkably, pharmacological and molecular inhibition of qNSC dormancy restored adult neurogenesis and ameliorated the social deficits observed in Shank3-deficient mice. Moreover, we confirmed restored human qNSC activity rescues abnormal neurogenesis and autism-like phenotypes in SHANK3-targeted human NSCs. Taken together, our results offer a novel strategy to control qNSC activity as a potential therapeutic target for the development of autism.
Collapse
|
268
|
Willsey HR, Willsey AJ, Wang B, State MW. Genomics, convergent neuroscience and progress in understanding autism spectrum disorder. Nat Rev Neurosci 2022; 23:323-341. [PMID: 35440779 PMCID: PMC10693992 DOI: 10.1038/s41583-022-00576-7] [Citation(s) in RCA: 110] [Impact Index Per Article: 36.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/18/2022] [Indexed: 12/31/2022]
Abstract
More than a hundred genes have been identified that, when disrupted, impart large risk for autism spectrum disorder (ASD). Current knowledge about the encoded proteins - although incomplete - points to a very wide range of developmentally dynamic and diverse biological processes. Moreover, the core symptoms of ASD involve distinctly human characteristics, presenting challenges to interpreting evolutionarily distant model systems. Indeed, despite a decade of striking progress in gene discovery, an actionable understanding of pathobiology remains elusive. Increasingly, convergent neuroscience approaches have been recognized as an important complement to traditional uses of genetics to illuminate the biology of human disorders. These methods seek to identify intersection among molecular-level, cellular-level and circuit-level functions across multiple risk genes and have highlighted developing excitatory neurons in the human mid-gestational prefrontal cortex as an important pathobiological nexus in ASD. In addition, neurogenesis, chromatin modification and synaptic function have emerged as key potential mediators of genetic vulnerability. The continued expansion of foundational 'omics' data sets, the application of higher-throughput model systems and incorporating developmental trajectories and sex differences into future analyses will refine and extend these results. Ultimately, a systems-level understanding of ASD genetic risk holds promise for clarifying pathobiology and advancing therapeutics.
Collapse
Affiliation(s)
- Helen Rankin Willsey
- Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - A Jeremy Willsey
- Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA.
- Quantitative Biosciences Institute, University of California, San Francisco, San Francisco, CA, USA.
| | - Belinda Wang
- Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
- Langley Porter Psychiatric Institute, University of California, San Francisco, San Francisco, CA, USA
| | - Matthew W State
- Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA.
- Quantitative Biosciences Institute, University of California, San Francisco, San Francisco, CA, USA.
- Langley Porter Psychiatric Institute, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
269
|
Kuijpers M. Keeping synapses in shape: degradation pathways in the healthy and aging brain. Neuronal Signal 2022; 6:NS20210063. [PMID: 35813265 PMCID: PMC9208270 DOI: 10.1042/ns20210063] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/30/2022] [Accepted: 05/31/2022] [Indexed: 11/17/2022] Open
Abstract
Synapses maintain their molecular composition, plasticity and function through the concerted action of protein synthesis and removal. The complex and polarized neuronal architecture poses specific challenges to the logistics of protein and organelle turnover since protein synthesis and degradation mainly happen in the cell soma. In addition, post-mitotic neurons accumulate damage over a lifetime, challenging neuronal degradative pathways and making them particularly susceptible to the effects of aging. This review will summarize the current knowledge on neuronal protein turnover mechanisms with a particular focus on the presynapse, including the proteasome, autophagy and the endolysosomal route and their roles in regulating presynaptic proteostasis and function. In addition, the author will discuss how physiological brain aging, which entails a progressive decline in cognitive functions, affects synapses and the degradative machinery.
Collapse
Affiliation(s)
- Marijn Kuijpers
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Robert-Rössle-Straße 10, 13125 Berlin, Germany
- Department of Molecular Neurobiology, Donders Institute for Brain, Cognition and Behaviour and Faculty of Science, Radboud University, Nijmegen, The Netherlands
| |
Collapse
|
270
|
Rosebrock D, Arora S, Mutukula N, Volkman R, Gralinska E, Balaskas A, Aragonés Hernández A, Buschow R, Brändl B, Müller FJ, Arndt PF, Vingron M, Elkabetz Y. Enhanced cortical neural stem cell identity through short SMAD and WNT inhibition in human cerebral organoids facilitates emergence of outer radial glial cells. Nat Cell Biol 2022; 24:981-995. [PMID: 35697781 PMCID: PMC9203281 DOI: 10.1038/s41556-022-00929-5] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 04/28/2022] [Indexed: 12/11/2022]
Abstract
Cerebral organoids exhibit broad regional heterogeneity accompanied by limited cortical cellular diversity despite the tremendous upsurge in derivation methods, suggesting inadequate patterning of early neural stem cells (NSCs). Here we show that a short and early Dual SMAD and WNT inhibition course is necessary and sufficient to establish robust and lasting cortical organoid NSC identity, efficiently suppressing non-cortical NSC fates, while other widely used methods are inconsistent in their cortical NSC-specification capacity. Accordingly, this method selectively enriches for outer radial glia NSCs, which cyto-architecturally demarcate well-defined outer sub-ventricular-like regions propagating from superiorly radially organized, apical cortical rosette NSCs. Finally, this method culminates in the emergence of molecularly distinct deep and upper cortical layer neurons, and reliably uncovers cortex-specific microcephaly defects. Thus, a short SMAD and WNT inhibition is critical for establishing a rich cortical cell repertoire that enables mirroring of fundamental molecular and cyto-architectural features of cortical development and meaningful disease modelling. Rosebrock, Arora et al. report a method to overcome limited cortical cellular diversity in human organoids, thus mirroring fundamental features of cortical development and offering a basis for organoid-based disease modelling.
Collapse
Affiliation(s)
- Daniel Rosebrock
- Department of Genome Regulation, Max Planck Institute for Molecular Genetics, Berlin, Germany.,Department of Computational Biology, Max Planck Institute for Molecular Genetics, Berlin, Germany.,Department of Mathematics and Computer Science, Freie Universität Berlin, Berlin, Germany
| | - Sneha Arora
- Department of Genome Regulation, Max Planck Institute for Molecular Genetics, Berlin, Germany.,Department of Cell and Developmental Biology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel.,Institute of Biology, Department of Biology, Chemistry, and Pharmacy, Freie Universität Berlin, Berlin, Germany
| | - Naresh Mutukula
- Department of Genome Regulation, Max Planck Institute for Molecular Genetics, Berlin, Germany.,Department of Cell and Developmental Biology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel.,Institute of Chemistry and Biochemistry, Department of Biology, Chemistry and Pharmacy, Freie Universität Berlin, Berlin, Germany
| | - Rotem Volkman
- Department of Cell and Developmental Biology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Elzbieta Gralinska
- Department of Computational Biology, Max Planck Institute for Molecular Genetics, Berlin, Germany.,Department of Mathematics and Computer Science, Freie Universität Berlin, Berlin, Germany
| | - Anastasios Balaskas
- Department of Genome Regulation, Max Planck Institute for Molecular Genetics, Berlin, Germany.,Institute of Chemistry and Biochemistry, Department of Biology, Chemistry and Pharmacy, Freie Universität Berlin, Berlin, Germany
| | - Amèlia Aragonés Hernández
- Department of Genome Regulation, Max Planck Institute for Molecular Genetics, Berlin, Germany.,Institute of Biology, Department of Biology, Chemistry, and Pharmacy, Freie Universität Berlin, Berlin, Germany
| | - René Buschow
- Microscopy and Cryo-Electron Microscopy, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Björn Brändl
- Department of Genome Regulation, Max Planck Institute for Molecular Genetics, Berlin, Germany.,Department of Psychiatry and Psychotherapy, University Hospital Schleswig Holstein, Kiel, Germany
| | - Franz-Josef Müller
- Department of Genome Regulation, Max Planck Institute for Molecular Genetics, Berlin, Germany.,Department of Psychiatry and Psychotherapy, University Hospital Schleswig Holstein, Kiel, Germany
| | - Peter F Arndt
- Department of Computational Biology, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Martin Vingron
- Department of Computational Biology, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Yechiel Elkabetz
- Department of Genome Regulation, Max Planck Institute for Molecular Genetics, Berlin, Germany. .,Department of Cell and Developmental Biology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
271
|
Vinsland E, Linnarsson S. Single-cell RNA-sequencing of mammalian brain development: insights and future directions. Development 2022; 149:275457. [DOI: 10.1242/dev.200180] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
ABSTRACT
Understanding human brain development is of fundamental interest but is also very challenging. Single-cell RNA-sequencing studies in mammals have revealed that brain development is a highly dynamic process with tremendous, previously concealed, cellular heterogeneity. This Spotlight discusses key insights from these studies and their implications for experimental models. We survey published single-cell RNA-sequencing studies of mouse and human brain development, organized by anatomical regions and developmental time points. We highlight remaining gaps in the field, predominantly concerning human brain development. We propose future directions to fill the remaining gaps, and necessary complementary techniques to create an atlas integrated in space and time of human brain development.
Collapse
Affiliation(s)
- Elin Vinsland
- Division of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Solnavägen 9, 171 65 Stockholm, Sweden
| | - Sten Linnarsson
- Division of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Solnavägen 9, 171 65 Stockholm, Sweden
| |
Collapse
|
272
|
Jabali A, Hoffrichter A, Uzquiano A, Marsoner F, Wilkens R, Siekmann M, Bohl B, Rossetti AC, Horschitz S, Koch P, Francis F, Ladewig J. Human cerebral organoids reveal progenitor pathology in EML1-linked cortical malformation. EMBO Rep 2022; 23:e54027. [PMID: 35289477 PMCID: PMC9066063 DOI: 10.15252/embr.202154027] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 02/11/2022] [Accepted: 02/17/2022] [Indexed: 12/26/2022] Open
Abstract
Malformations of human cortical development (MCD) can cause severe disabilities. The lack of human‐specific models hampers our understanding of the molecular underpinnings of the intricate processes leading to MCD. Here, we use cerebral organoids derived from patients and genome edited‐induced pluripotent stem cells to address pathophysiological changes associated with a complex MCD caused by mutations in the echinoderm microtubule‐associated protein‐like 1 (EML1) gene. EML1‐deficient organoids display ectopic neural rosettes at the basal side of the ventricular zone areas and clusters of heterotopic neurons. Single‐cell RNA sequencing shows an upregulation of basal radial glial (RG) markers and human‐specific extracellular matrix components in the ectopic cell population. Gene ontology and molecular analyses suggest that ectopic progenitor cells originate from perturbed apical RG cell behavior and yes‐associated protein 1 (YAP1)‐triggered expansion. Our data highlight a progenitor origin of EML1 mutation‐induced MCD and provide new mechanistic insight into the human disease pathology.
Collapse
Affiliation(s)
- Ammar Jabali
- Medical Faculty Mannheim, Central Institute of Mental Health, Heidelberg University, Mannheim, Germany.,Hector Institute for Translational Brain Research, Mannheim, Germany.,German Cancer Research Center, Heidelberg, Germany.,Institute of Reconstructive Neurobiology, School of Medicine & University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Anne Hoffrichter
- Medical Faculty Mannheim, Central Institute of Mental Health, Heidelberg University, Mannheim, Germany.,Hector Institute for Translational Brain Research, Mannheim, Germany.,German Cancer Research Center, Heidelberg, Germany
| | - Ana Uzquiano
- INSERM U 1270, Paris, France.,Sorbonne Université, UMR-S 1270, Paris, France.,Institut du Fer à Moulin, Paris, France
| | - Fabio Marsoner
- Medical Faculty Mannheim, Central Institute of Mental Health, Heidelberg University, Mannheim, Germany.,Hector Institute for Translational Brain Research, Mannheim, Germany.,German Cancer Research Center, Heidelberg, Germany
| | - Ruven Wilkens
- Medical Faculty Mannheim, Central Institute of Mental Health, Heidelberg University, Mannheim, Germany.,Hector Institute for Translational Brain Research, Mannheim, Germany.,German Cancer Research Center, Heidelberg, Germany
| | - Marco Siekmann
- Medical Faculty Mannheim, Central Institute of Mental Health, Heidelberg University, Mannheim, Germany.,Hector Institute for Translational Brain Research, Mannheim, Germany.,German Cancer Research Center, Heidelberg, Germany
| | - Bettina Bohl
- Medical Faculty Mannheim, Central Institute of Mental Health, Heidelberg University, Mannheim, Germany.,Hector Institute for Translational Brain Research, Mannheim, Germany.,German Cancer Research Center, Heidelberg, Germany
| | - Andrea C Rossetti
- Medical Faculty Mannheim, Central Institute of Mental Health, Heidelberg University, Mannheim, Germany.,Hector Institute for Translational Brain Research, Mannheim, Germany.,German Cancer Research Center, Heidelberg, Germany
| | - Sandra Horschitz
- Medical Faculty Mannheim, Central Institute of Mental Health, Heidelberg University, Mannheim, Germany.,Hector Institute for Translational Brain Research, Mannheim, Germany.,German Cancer Research Center, Heidelberg, Germany
| | - Philipp Koch
- Medical Faculty Mannheim, Central Institute of Mental Health, Heidelberg University, Mannheim, Germany.,Hector Institute for Translational Brain Research, Mannheim, Germany.,German Cancer Research Center, Heidelberg, Germany
| | - Fiona Francis
- INSERM U 1270, Paris, France.,Sorbonne Université, UMR-S 1270, Paris, France.,Institut du Fer à Moulin, Paris, France
| | - Julia Ladewig
- Medical Faculty Mannheim, Central Institute of Mental Health, Heidelberg University, Mannheim, Germany.,Hector Institute for Translational Brain Research, Mannheim, Germany.,German Cancer Research Center, Heidelberg, Germany.,Institute of Reconstructive Neurobiology, School of Medicine & University Hospital Bonn, University of Bonn, Bonn, Germany
| |
Collapse
|
273
|
van Bruggen D, Pohl F, Langseth CM, Kukanja P, Lee H, Albiach AM, Kabbe M, Meijer M, Linnarsson S, Hilscher MM, Nilsson M, Sundström E, Castelo-Branco G. Developmental landscape of human forebrain at a single-cell level identifies early waves of oligodendrogenesis. Dev Cell 2022; 57:1421-1436.e5. [PMID: 35523173 DOI: 10.1016/j.devcel.2022.04.016] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 03/20/2022] [Accepted: 04/14/2022] [Indexed: 01/06/2023]
Abstract
Oligodendrogenesis in the human central nervous system has been observed mainly at the second trimester of gestation, a much later developmental stage compared to oligodendrogenesis in mice. Here, we characterize the transcriptomic neural diversity in the human forebrain at post-conception weeks (PCW) 8-10. Using single-cell RNA sequencing, we find evidence of the emergence of a first wave of oligodendrocyte lineage cells as early as PCW 8, which we also confirm at the epigenomic level through the use of single-cell ATAC-seq. Using regulatory network inference, we predict key transcriptional events leading to the specification of oligodendrocyte precursor cells (OPCs). Moreover, by profiling the spatial expression of 50 key genes through the use of in situ sequencing (ISS), we identify regions in the human ventral fetal forebrain where oligodendrogenesis first occurs. Our results indicate evolutionary conservation of the first wave of oligodendrogenesis between mice and humans and describe regulatory mechanisms involved in human OPC specification.
Collapse
Affiliation(s)
- David van Bruggen
- Laboratory of Molecular Neurobiology, Department Medical Biochemistry and Biophysics, Karolinska Institutet, Biomedicum, 17177 Stockholm, Sweden
| | - Fabio Pohl
- Laboratory of Molecular Neurobiology, Department Medical Biochemistry and Biophysics, Karolinska Institutet, Biomedicum, 17177 Stockholm, Sweden
| | | | - Petra Kukanja
- Laboratory of Molecular Neurobiology, Department Medical Biochemistry and Biophysics, Karolinska Institutet, Biomedicum, 17177 Stockholm, Sweden
| | - Hower Lee
- Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, 171 65, Solna, Sweden
| | - Alejandro Mossi Albiach
- Laboratory of Molecular Neurobiology, Department Medical Biochemistry and Biophysics, Karolinska Institutet, Biomedicum, 17177 Stockholm, Sweden
| | - Mukund Kabbe
- Laboratory of Molecular Neurobiology, Department Medical Biochemistry and Biophysics, Karolinska Institutet, Biomedicum, 17177 Stockholm, Sweden
| | - Mandy Meijer
- Laboratory of Molecular Neurobiology, Department Medical Biochemistry and Biophysics, Karolinska Institutet, Biomedicum, 17177 Stockholm, Sweden
| | - Sten Linnarsson
- Laboratory of Molecular Neurobiology, Department Medical Biochemistry and Biophysics, Karolinska Institutet, Biomedicum, 17177 Stockholm, Sweden
| | - Markus M Hilscher
- Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, 171 65, Solna, Sweden
| | - Mats Nilsson
- Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, 171 65, Solna, Sweden
| | - Erik Sundström
- Division of Neurogeriatrics, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, BioClinicum, Solna, Sweden
| | - Gonçalo Castelo-Branco
- Laboratory of Molecular Neurobiology, Department Medical Biochemistry and Biophysics, Karolinska Institutet, Biomedicum, 17177 Stockholm, Sweden; Ming Wai Lau Centre for Reparative Medicine, Stockholm node, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
274
|
Cruceanu C, Dony L, Krontira AC, Fischer DS, Roeh S, Di Giaimo R, Kyrousi C, Kaspar L, Arloth J, Czamara D, Gerstner N, Martinelli S, Wehner S, Breen MS, Koedel M, Sauer S, Sportelli V, Rex-Haffner M, Cappello S, Theis FJ, Binder EB. Cell-Type-Specific Impact of Glucocorticoid Receptor Activation on the Developing Brain: A Cerebral Organoid Study. Am J Psychiatry 2022; 179:375-387. [PMID: 34698522 DOI: 10.1176/appi.ajp.2021.21010095] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
OBJECTIVE A fine-tuned balance of glucocorticoid receptor (GR) activation is essential for organ formation, with disturbances influencing many health outcomes. In utero, glucocorticoids have been linked to brain-related negative outcomes, with unclear underlying mechanisms, especially regarding cell-type-specific effects. An in vitro model of fetal human brain development, induced human pluripotent stem cell (hiPSC)-derived cerebral organoids, was used to test whether cerebral organoids are suitable for studying the impact of prenatal glucocorticoid exposure on the developing brain. METHODS The GR was activated with the synthetic glucocorticoid dexamethasone, and the effects were mapped using single-cell transcriptomics across development. RESULTS The GR was expressed in all cell types, with increasing expression levels through development. Not only did its activation elicit translocation to the nucleus and the expected effects on known GR-regulated pathways, but also neurons and progenitor cells showed targeted regulation of differentiation- and maturation-related transcripts. Uniquely in neurons, differentially expressed transcripts were significantly enriched for genes associated with behavior-related phenotypes and disorders. This human neuronal glucocorticoid response profile was validated across organoids from three independent hiPSC lines reprogrammed from different source tissues from both male and female donors. CONCLUSIONS These findings suggest that excessive glucocorticoid exposure could interfere with neuronal maturation in utero, leading to increased disease susceptibility through neurodevelopmental processes at the interface of genetic susceptibility and environmental exposure. Cerebral organoids are a valuable translational resource for exploring the effects of glucocorticoids on early human brain development.
Collapse
Affiliation(s)
- Cristiana Cruceanu
- Department of Translational Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany (Cruceanu, Dony, Krontira, Roeh, Kaspar, Arloth, Czamara, Gerstner, Martinelli, Wehner, Koedel, Sauer, Sportelli, Rex-Haffner, Binder);International Max Planck Research School for Translational Psychiatry, Max Planck Institute of Psychiatry, Munich (Dony, Krontira, Kaspar, Gerstner);Institute of Computational Biology, Helmholtz Zentrum München, Neuherberg, Germany (Dony, Fischer, Arloth, Theis);TUM School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany (Fischer);Max Planck Institute of Psychiatry, Munich (Di Giaimo, Kyrousi, Cappello);Department of Biology, University of Naples Federico II, Naples, Italy (Di Giaimo);First Department of Psychiatry, Medical School, National and Kapodistrian University of Athens, and University Mental Health, Neurosciences, and Precision Medicine Research Institute "Costas Stefanis," Athens, Greece (Kyrousi);Department of Psychiatry, Department of Genetics and Genomic Sciences, Seaver Autism Center for Research and Treatment, and Pamela Sklar Division of Psychiatric Genomics, Icahn School of Medicine at Mount Sinai, New York (Breen);School of Life Sciences Weihenstephan and Department of Mathematics, Technical University of Munich, Munich (Theis);Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta (Binder)
| | - Leander Dony
- Department of Translational Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany (Cruceanu, Dony, Krontira, Roeh, Kaspar, Arloth, Czamara, Gerstner, Martinelli, Wehner, Koedel, Sauer, Sportelli, Rex-Haffner, Binder);International Max Planck Research School for Translational Psychiatry, Max Planck Institute of Psychiatry, Munich (Dony, Krontira, Kaspar, Gerstner);Institute of Computational Biology, Helmholtz Zentrum München, Neuherberg, Germany (Dony, Fischer, Arloth, Theis);TUM School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany (Fischer);Max Planck Institute of Psychiatry, Munich (Di Giaimo, Kyrousi, Cappello);Department of Biology, University of Naples Federico II, Naples, Italy (Di Giaimo);First Department of Psychiatry, Medical School, National and Kapodistrian University of Athens, and University Mental Health, Neurosciences, and Precision Medicine Research Institute "Costas Stefanis," Athens, Greece (Kyrousi);Department of Psychiatry, Department of Genetics and Genomic Sciences, Seaver Autism Center for Research and Treatment, and Pamela Sklar Division of Psychiatric Genomics, Icahn School of Medicine at Mount Sinai, New York (Breen);School of Life Sciences Weihenstephan and Department of Mathematics, Technical University of Munich, Munich (Theis);Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta (Binder)
| | - Anthi C Krontira
- Department of Translational Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany (Cruceanu, Dony, Krontira, Roeh, Kaspar, Arloth, Czamara, Gerstner, Martinelli, Wehner, Koedel, Sauer, Sportelli, Rex-Haffner, Binder);International Max Planck Research School for Translational Psychiatry, Max Planck Institute of Psychiatry, Munich (Dony, Krontira, Kaspar, Gerstner);Institute of Computational Biology, Helmholtz Zentrum München, Neuherberg, Germany (Dony, Fischer, Arloth, Theis);TUM School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany (Fischer);Max Planck Institute of Psychiatry, Munich (Di Giaimo, Kyrousi, Cappello);Department of Biology, University of Naples Federico II, Naples, Italy (Di Giaimo);First Department of Psychiatry, Medical School, National and Kapodistrian University of Athens, and University Mental Health, Neurosciences, and Precision Medicine Research Institute "Costas Stefanis," Athens, Greece (Kyrousi);Department of Psychiatry, Department of Genetics and Genomic Sciences, Seaver Autism Center for Research and Treatment, and Pamela Sklar Division of Psychiatric Genomics, Icahn School of Medicine at Mount Sinai, New York (Breen);School of Life Sciences Weihenstephan and Department of Mathematics, Technical University of Munich, Munich (Theis);Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta (Binder)
| | - David S Fischer
- Department of Translational Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany (Cruceanu, Dony, Krontira, Roeh, Kaspar, Arloth, Czamara, Gerstner, Martinelli, Wehner, Koedel, Sauer, Sportelli, Rex-Haffner, Binder);International Max Planck Research School for Translational Psychiatry, Max Planck Institute of Psychiatry, Munich (Dony, Krontira, Kaspar, Gerstner);Institute of Computational Biology, Helmholtz Zentrum München, Neuherberg, Germany (Dony, Fischer, Arloth, Theis);TUM School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany (Fischer);Max Planck Institute of Psychiatry, Munich (Di Giaimo, Kyrousi, Cappello);Department of Biology, University of Naples Federico II, Naples, Italy (Di Giaimo);First Department of Psychiatry, Medical School, National and Kapodistrian University of Athens, and University Mental Health, Neurosciences, and Precision Medicine Research Institute "Costas Stefanis," Athens, Greece (Kyrousi);Department of Psychiatry, Department of Genetics and Genomic Sciences, Seaver Autism Center for Research and Treatment, and Pamela Sklar Division of Psychiatric Genomics, Icahn School of Medicine at Mount Sinai, New York (Breen);School of Life Sciences Weihenstephan and Department of Mathematics, Technical University of Munich, Munich (Theis);Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta (Binder)
| | - Simone Roeh
- Department of Translational Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany (Cruceanu, Dony, Krontira, Roeh, Kaspar, Arloth, Czamara, Gerstner, Martinelli, Wehner, Koedel, Sauer, Sportelli, Rex-Haffner, Binder);International Max Planck Research School for Translational Psychiatry, Max Planck Institute of Psychiatry, Munich (Dony, Krontira, Kaspar, Gerstner);Institute of Computational Biology, Helmholtz Zentrum München, Neuherberg, Germany (Dony, Fischer, Arloth, Theis);TUM School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany (Fischer);Max Planck Institute of Psychiatry, Munich (Di Giaimo, Kyrousi, Cappello);Department of Biology, University of Naples Federico II, Naples, Italy (Di Giaimo);First Department of Psychiatry, Medical School, National and Kapodistrian University of Athens, and University Mental Health, Neurosciences, and Precision Medicine Research Institute "Costas Stefanis," Athens, Greece (Kyrousi);Department of Psychiatry, Department of Genetics and Genomic Sciences, Seaver Autism Center for Research and Treatment, and Pamela Sklar Division of Psychiatric Genomics, Icahn School of Medicine at Mount Sinai, New York (Breen);School of Life Sciences Weihenstephan and Department of Mathematics, Technical University of Munich, Munich (Theis);Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta (Binder)
| | - Rossella Di Giaimo
- Department of Translational Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany (Cruceanu, Dony, Krontira, Roeh, Kaspar, Arloth, Czamara, Gerstner, Martinelli, Wehner, Koedel, Sauer, Sportelli, Rex-Haffner, Binder);International Max Planck Research School for Translational Psychiatry, Max Planck Institute of Psychiatry, Munich (Dony, Krontira, Kaspar, Gerstner);Institute of Computational Biology, Helmholtz Zentrum München, Neuherberg, Germany (Dony, Fischer, Arloth, Theis);TUM School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany (Fischer);Max Planck Institute of Psychiatry, Munich (Di Giaimo, Kyrousi, Cappello);Department of Biology, University of Naples Federico II, Naples, Italy (Di Giaimo);First Department of Psychiatry, Medical School, National and Kapodistrian University of Athens, and University Mental Health, Neurosciences, and Precision Medicine Research Institute "Costas Stefanis," Athens, Greece (Kyrousi);Department of Psychiatry, Department of Genetics and Genomic Sciences, Seaver Autism Center for Research and Treatment, and Pamela Sklar Division of Psychiatric Genomics, Icahn School of Medicine at Mount Sinai, New York (Breen);School of Life Sciences Weihenstephan and Department of Mathematics, Technical University of Munich, Munich (Theis);Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta (Binder)
| | - Christina Kyrousi
- Department of Translational Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany (Cruceanu, Dony, Krontira, Roeh, Kaspar, Arloth, Czamara, Gerstner, Martinelli, Wehner, Koedel, Sauer, Sportelli, Rex-Haffner, Binder);International Max Planck Research School for Translational Psychiatry, Max Planck Institute of Psychiatry, Munich (Dony, Krontira, Kaspar, Gerstner);Institute of Computational Biology, Helmholtz Zentrum München, Neuherberg, Germany (Dony, Fischer, Arloth, Theis);TUM School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany (Fischer);Max Planck Institute of Psychiatry, Munich (Di Giaimo, Kyrousi, Cappello);Department of Biology, University of Naples Federico II, Naples, Italy (Di Giaimo);First Department of Psychiatry, Medical School, National and Kapodistrian University of Athens, and University Mental Health, Neurosciences, and Precision Medicine Research Institute "Costas Stefanis," Athens, Greece (Kyrousi);Department of Psychiatry, Department of Genetics and Genomic Sciences, Seaver Autism Center for Research and Treatment, and Pamela Sklar Division of Psychiatric Genomics, Icahn School of Medicine at Mount Sinai, New York (Breen);School of Life Sciences Weihenstephan and Department of Mathematics, Technical University of Munich, Munich (Theis);Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta (Binder)
| | - Lea Kaspar
- Department of Translational Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany (Cruceanu, Dony, Krontira, Roeh, Kaspar, Arloth, Czamara, Gerstner, Martinelli, Wehner, Koedel, Sauer, Sportelli, Rex-Haffner, Binder);International Max Planck Research School for Translational Psychiatry, Max Planck Institute of Psychiatry, Munich (Dony, Krontira, Kaspar, Gerstner);Institute of Computational Biology, Helmholtz Zentrum München, Neuherberg, Germany (Dony, Fischer, Arloth, Theis);TUM School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany (Fischer);Max Planck Institute of Psychiatry, Munich (Di Giaimo, Kyrousi, Cappello);Department of Biology, University of Naples Federico II, Naples, Italy (Di Giaimo);First Department of Psychiatry, Medical School, National and Kapodistrian University of Athens, and University Mental Health, Neurosciences, and Precision Medicine Research Institute "Costas Stefanis," Athens, Greece (Kyrousi);Department of Psychiatry, Department of Genetics and Genomic Sciences, Seaver Autism Center for Research and Treatment, and Pamela Sklar Division of Psychiatric Genomics, Icahn School of Medicine at Mount Sinai, New York (Breen);School of Life Sciences Weihenstephan and Department of Mathematics, Technical University of Munich, Munich (Theis);Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta (Binder)
| | - Janine Arloth
- Department of Translational Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany (Cruceanu, Dony, Krontira, Roeh, Kaspar, Arloth, Czamara, Gerstner, Martinelli, Wehner, Koedel, Sauer, Sportelli, Rex-Haffner, Binder);International Max Planck Research School for Translational Psychiatry, Max Planck Institute of Psychiatry, Munich (Dony, Krontira, Kaspar, Gerstner);Institute of Computational Biology, Helmholtz Zentrum München, Neuherberg, Germany (Dony, Fischer, Arloth, Theis);TUM School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany (Fischer);Max Planck Institute of Psychiatry, Munich (Di Giaimo, Kyrousi, Cappello);Department of Biology, University of Naples Federico II, Naples, Italy (Di Giaimo);First Department of Psychiatry, Medical School, National and Kapodistrian University of Athens, and University Mental Health, Neurosciences, and Precision Medicine Research Institute "Costas Stefanis," Athens, Greece (Kyrousi);Department of Psychiatry, Department of Genetics and Genomic Sciences, Seaver Autism Center for Research and Treatment, and Pamela Sklar Division of Psychiatric Genomics, Icahn School of Medicine at Mount Sinai, New York (Breen);School of Life Sciences Weihenstephan and Department of Mathematics, Technical University of Munich, Munich (Theis);Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta (Binder)
| | - Darina Czamara
- Department of Translational Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany (Cruceanu, Dony, Krontira, Roeh, Kaspar, Arloth, Czamara, Gerstner, Martinelli, Wehner, Koedel, Sauer, Sportelli, Rex-Haffner, Binder);International Max Planck Research School for Translational Psychiatry, Max Planck Institute of Psychiatry, Munich (Dony, Krontira, Kaspar, Gerstner);Institute of Computational Biology, Helmholtz Zentrum München, Neuherberg, Germany (Dony, Fischer, Arloth, Theis);TUM School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany (Fischer);Max Planck Institute of Psychiatry, Munich (Di Giaimo, Kyrousi, Cappello);Department of Biology, University of Naples Federico II, Naples, Italy (Di Giaimo);First Department of Psychiatry, Medical School, National and Kapodistrian University of Athens, and University Mental Health, Neurosciences, and Precision Medicine Research Institute "Costas Stefanis," Athens, Greece (Kyrousi);Department of Psychiatry, Department of Genetics and Genomic Sciences, Seaver Autism Center for Research and Treatment, and Pamela Sklar Division of Psychiatric Genomics, Icahn School of Medicine at Mount Sinai, New York (Breen);School of Life Sciences Weihenstephan and Department of Mathematics, Technical University of Munich, Munich (Theis);Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta (Binder)
| | - Nathalie Gerstner
- Department of Translational Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany (Cruceanu, Dony, Krontira, Roeh, Kaspar, Arloth, Czamara, Gerstner, Martinelli, Wehner, Koedel, Sauer, Sportelli, Rex-Haffner, Binder);International Max Planck Research School for Translational Psychiatry, Max Planck Institute of Psychiatry, Munich (Dony, Krontira, Kaspar, Gerstner);Institute of Computational Biology, Helmholtz Zentrum München, Neuherberg, Germany (Dony, Fischer, Arloth, Theis);TUM School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany (Fischer);Max Planck Institute of Psychiatry, Munich (Di Giaimo, Kyrousi, Cappello);Department of Biology, University of Naples Federico II, Naples, Italy (Di Giaimo);First Department of Psychiatry, Medical School, National and Kapodistrian University of Athens, and University Mental Health, Neurosciences, and Precision Medicine Research Institute "Costas Stefanis," Athens, Greece (Kyrousi);Department of Psychiatry, Department of Genetics and Genomic Sciences, Seaver Autism Center for Research and Treatment, and Pamela Sklar Division of Psychiatric Genomics, Icahn School of Medicine at Mount Sinai, New York (Breen);School of Life Sciences Weihenstephan and Department of Mathematics, Technical University of Munich, Munich (Theis);Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta (Binder)
| | - Silvia Martinelli
- Department of Translational Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany (Cruceanu, Dony, Krontira, Roeh, Kaspar, Arloth, Czamara, Gerstner, Martinelli, Wehner, Koedel, Sauer, Sportelli, Rex-Haffner, Binder);International Max Planck Research School for Translational Psychiatry, Max Planck Institute of Psychiatry, Munich (Dony, Krontira, Kaspar, Gerstner);Institute of Computational Biology, Helmholtz Zentrum München, Neuherberg, Germany (Dony, Fischer, Arloth, Theis);TUM School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany (Fischer);Max Planck Institute of Psychiatry, Munich (Di Giaimo, Kyrousi, Cappello);Department of Biology, University of Naples Federico II, Naples, Italy (Di Giaimo);First Department of Psychiatry, Medical School, National and Kapodistrian University of Athens, and University Mental Health, Neurosciences, and Precision Medicine Research Institute "Costas Stefanis," Athens, Greece (Kyrousi);Department of Psychiatry, Department of Genetics and Genomic Sciences, Seaver Autism Center for Research and Treatment, and Pamela Sklar Division of Psychiatric Genomics, Icahn School of Medicine at Mount Sinai, New York (Breen);School of Life Sciences Weihenstephan and Department of Mathematics, Technical University of Munich, Munich (Theis);Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta (Binder)
| | - Stefanie Wehner
- Department of Translational Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany (Cruceanu, Dony, Krontira, Roeh, Kaspar, Arloth, Czamara, Gerstner, Martinelli, Wehner, Koedel, Sauer, Sportelli, Rex-Haffner, Binder);International Max Planck Research School for Translational Psychiatry, Max Planck Institute of Psychiatry, Munich (Dony, Krontira, Kaspar, Gerstner);Institute of Computational Biology, Helmholtz Zentrum München, Neuherberg, Germany (Dony, Fischer, Arloth, Theis);TUM School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany (Fischer);Max Planck Institute of Psychiatry, Munich (Di Giaimo, Kyrousi, Cappello);Department of Biology, University of Naples Federico II, Naples, Italy (Di Giaimo);First Department of Psychiatry, Medical School, National and Kapodistrian University of Athens, and University Mental Health, Neurosciences, and Precision Medicine Research Institute "Costas Stefanis," Athens, Greece (Kyrousi);Department of Psychiatry, Department of Genetics and Genomic Sciences, Seaver Autism Center for Research and Treatment, and Pamela Sklar Division of Psychiatric Genomics, Icahn School of Medicine at Mount Sinai, New York (Breen);School of Life Sciences Weihenstephan and Department of Mathematics, Technical University of Munich, Munich (Theis);Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta (Binder)
| | - Michael S Breen
- Department of Translational Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany (Cruceanu, Dony, Krontira, Roeh, Kaspar, Arloth, Czamara, Gerstner, Martinelli, Wehner, Koedel, Sauer, Sportelli, Rex-Haffner, Binder);International Max Planck Research School for Translational Psychiatry, Max Planck Institute of Psychiatry, Munich (Dony, Krontira, Kaspar, Gerstner);Institute of Computational Biology, Helmholtz Zentrum München, Neuherberg, Germany (Dony, Fischer, Arloth, Theis);TUM School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany (Fischer);Max Planck Institute of Psychiatry, Munich (Di Giaimo, Kyrousi, Cappello);Department of Biology, University of Naples Federico II, Naples, Italy (Di Giaimo);First Department of Psychiatry, Medical School, National and Kapodistrian University of Athens, and University Mental Health, Neurosciences, and Precision Medicine Research Institute "Costas Stefanis," Athens, Greece (Kyrousi);Department of Psychiatry, Department of Genetics and Genomic Sciences, Seaver Autism Center for Research and Treatment, and Pamela Sklar Division of Psychiatric Genomics, Icahn School of Medicine at Mount Sinai, New York (Breen);School of Life Sciences Weihenstephan and Department of Mathematics, Technical University of Munich, Munich (Theis);Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta (Binder)
| | - Maik Koedel
- Department of Translational Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany (Cruceanu, Dony, Krontira, Roeh, Kaspar, Arloth, Czamara, Gerstner, Martinelli, Wehner, Koedel, Sauer, Sportelli, Rex-Haffner, Binder);International Max Planck Research School for Translational Psychiatry, Max Planck Institute of Psychiatry, Munich (Dony, Krontira, Kaspar, Gerstner);Institute of Computational Biology, Helmholtz Zentrum München, Neuherberg, Germany (Dony, Fischer, Arloth, Theis);TUM School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany (Fischer);Max Planck Institute of Psychiatry, Munich (Di Giaimo, Kyrousi, Cappello);Department of Biology, University of Naples Federico II, Naples, Italy (Di Giaimo);First Department of Psychiatry, Medical School, National and Kapodistrian University of Athens, and University Mental Health, Neurosciences, and Precision Medicine Research Institute "Costas Stefanis," Athens, Greece (Kyrousi);Department of Psychiatry, Department of Genetics and Genomic Sciences, Seaver Autism Center for Research and Treatment, and Pamela Sklar Division of Psychiatric Genomics, Icahn School of Medicine at Mount Sinai, New York (Breen);School of Life Sciences Weihenstephan and Department of Mathematics, Technical University of Munich, Munich (Theis);Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta (Binder)
| | - Susann Sauer
- Department of Translational Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany (Cruceanu, Dony, Krontira, Roeh, Kaspar, Arloth, Czamara, Gerstner, Martinelli, Wehner, Koedel, Sauer, Sportelli, Rex-Haffner, Binder);International Max Planck Research School for Translational Psychiatry, Max Planck Institute of Psychiatry, Munich (Dony, Krontira, Kaspar, Gerstner);Institute of Computational Biology, Helmholtz Zentrum München, Neuherberg, Germany (Dony, Fischer, Arloth, Theis);TUM School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany (Fischer);Max Planck Institute of Psychiatry, Munich (Di Giaimo, Kyrousi, Cappello);Department of Biology, University of Naples Federico II, Naples, Italy (Di Giaimo);First Department of Psychiatry, Medical School, National and Kapodistrian University of Athens, and University Mental Health, Neurosciences, and Precision Medicine Research Institute "Costas Stefanis," Athens, Greece (Kyrousi);Department of Psychiatry, Department of Genetics and Genomic Sciences, Seaver Autism Center for Research and Treatment, and Pamela Sklar Division of Psychiatric Genomics, Icahn School of Medicine at Mount Sinai, New York (Breen);School of Life Sciences Weihenstephan and Department of Mathematics, Technical University of Munich, Munich (Theis);Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta (Binder)
| | - Vincenza Sportelli
- Department of Translational Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany (Cruceanu, Dony, Krontira, Roeh, Kaspar, Arloth, Czamara, Gerstner, Martinelli, Wehner, Koedel, Sauer, Sportelli, Rex-Haffner, Binder);International Max Planck Research School for Translational Psychiatry, Max Planck Institute of Psychiatry, Munich (Dony, Krontira, Kaspar, Gerstner);Institute of Computational Biology, Helmholtz Zentrum München, Neuherberg, Germany (Dony, Fischer, Arloth, Theis);TUM School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany (Fischer);Max Planck Institute of Psychiatry, Munich (Di Giaimo, Kyrousi, Cappello);Department of Biology, University of Naples Federico II, Naples, Italy (Di Giaimo);First Department of Psychiatry, Medical School, National and Kapodistrian University of Athens, and University Mental Health, Neurosciences, and Precision Medicine Research Institute "Costas Stefanis," Athens, Greece (Kyrousi);Department of Psychiatry, Department of Genetics and Genomic Sciences, Seaver Autism Center for Research and Treatment, and Pamela Sklar Division of Psychiatric Genomics, Icahn School of Medicine at Mount Sinai, New York (Breen);School of Life Sciences Weihenstephan and Department of Mathematics, Technical University of Munich, Munich (Theis);Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta (Binder)
| | - Monika Rex-Haffner
- Department of Translational Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany (Cruceanu, Dony, Krontira, Roeh, Kaspar, Arloth, Czamara, Gerstner, Martinelli, Wehner, Koedel, Sauer, Sportelli, Rex-Haffner, Binder);International Max Planck Research School for Translational Psychiatry, Max Planck Institute of Psychiatry, Munich (Dony, Krontira, Kaspar, Gerstner);Institute of Computational Biology, Helmholtz Zentrum München, Neuherberg, Germany (Dony, Fischer, Arloth, Theis);TUM School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany (Fischer);Max Planck Institute of Psychiatry, Munich (Di Giaimo, Kyrousi, Cappello);Department of Biology, University of Naples Federico II, Naples, Italy (Di Giaimo);First Department of Psychiatry, Medical School, National and Kapodistrian University of Athens, and University Mental Health, Neurosciences, and Precision Medicine Research Institute "Costas Stefanis," Athens, Greece (Kyrousi);Department of Psychiatry, Department of Genetics and Genomic Sciences, Seaver Autism Center for Research and Treatment, and Pamela Sklar Division of Psychiatric Genomics, Icahn School of Medicine at Mount Sinai, New York (Breen);School of Life Sciences Weihenstephan and Department of Mathematics, Technical University of Munich, Munich (Theis);Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta (Binder)
| | - Silvia Cappello
- Department of Translational Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany (Cruceanu, Dony, Krontira, Roeh, Kaspar, Arloth, Czamara, Gerstner, Martinelli, Wehner, Koedel, Sauer, Sportelli, Rex-Haffner, Binder);International Max Planck Research School for Translational Psychiatry, Max Planck Institute of Psychiatry, Munich (Dony, Krontira, Kaspar, Gerstner);Institute of Computational Biology, Helmholtz Zentrum München, Neuherberg, Germany (Dony, Fischer, Arloth, Theis);TUM School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany (Fischer);Max Planck Institute of Psychiatry, Munich (Di Giaimo, Kyrousi, Cappello);Department of Biology, University of Naples Federico II, Naples, Italy (Di Giaimo);First Department of Psychiatry, Medical School, National and Kapodistrian University of Athens, and University Mental Health, Neurosciences, and Precision Medicine Research Institute "Costas Stefanis," Athens, Greece (Kyrousi);Department of Psychiatry, Department of Genetics and Genomic Sciences, Seaver Autism Center for Research and Treatment, and Pamela Sklar Division of Psychiatric Genomics, Icahn School of Medicine at Mount Sinai, New York (Breen);School of Life Sciences Weihenstephan and Department of Mathematics, Technical University of Munich, Munich (Theis);Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta (Binder)
| | - Fabian J Theis
- Department of Translational Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany (Cruceanu, Dony, Krontira, Roeh, Kaspar, Arloth, Czamara, Gerstner, Martinelli, Wehner, Koedel, Sauer, Sportelli, Rex-Haffner, Binder);International Max Planck Research School for Translational Psychiatry, Max Planck Institute of Psychiatry, Munich (Dony, Krontira, Kaspar, Gerstner);Institute of Computational Biology, Helmholtz Zentrum München, Neuherberg, Germany (Dony, Fischer, Arloth, Theis);TUM School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany (Fischer);Max Planck Institute of Psychiatry, Munich (Di Giaimo, Kyrousi, Cappello);Department of Biology, University of Naples Federico II, Naples, Italy (Di Giaimo);First Department of Psychiatry, Medical School, National and Kapodistrian University of Athens, and University Mental Health, Neurosciences, and Precision Medicine Research Institute "Costas Stefanis," Athens, Greece (Kyrousi);Department of Psychiatry, Department of Genetics and Genomic Sciences, Seaver Autism Center for Research and Treatment, and Pamela Sklar Division of Psychiatric Genomics, Icahn School of Medicine at Mount Sinai, New York (Breen);School of Life Sciences Weihenstephan and Department of Mathematics, Technical University of Munich, Munich (Theis);Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta (Binder)
| | - Elisabeth B Binder
- Department of Translational Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany (Cruceanu, Dony, Krontira, Roeh, Kaspar, Arloth, Czamara, Gerstner, Martinelli, Wehner, Koedel, Sauer, Sportelli, Rex-Haffner, Binder);International Max Planck Research School for Translational Psychiatry, Max Planck Institute of Psychiatry, Munich (Dony, Krontira, Kaspar, Gerstner);Institute of Computational Biology, Helmholtz Zentrum München, Neuherberg, Germany (Dony, Fischer, Arloth, Theis);TUM School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany (Fischer);Max Planck Institute of Psychiatry, Munich (Di Giaimo, Kyrousi, Cappello);Department of Biology, University of Naples Federico II, Naples, Italy (Di Giaimo);First Department of Psychiatry, Medical School, National and Kapodistrian University of Athens, and University Mental Health, Neurosciences, and Precision Medicine Research Institute "Costas Stefanis," Athens, Greece (Kyrousi);Department of Psychiatry, Department of Genetics and Genomic Sciences, Seaver Autism Center for Research and Treatment, and Pamela Sklar Division of Psychiatric Genomics, Icahn School of Medicine at Mount Sinai, New York (Breen);School of Life Sciences Weihenstephan and Department of Mathematics, Technical University of Munich, Munich (Theis);Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta (Binder)
| |
Collapse
|
275
|
Romero-Morales AI, Gama V. Revealing the Impact of Mitochondrial Fitness During Early Neural Development Using Human Brain Organoids. Front Mol Neurosci 2022; 15:840265. [PMID: 35571368 PMCID: PMC9102998 DOI: 10.3389/fnmol.2022.840265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 04/04/2022] [Indexed: 11/13/2022] Open
Abstract
Mitochondrial homeostasis -including function, morphology, and inter-organelle communication- provides guidance to the intrinsic developmental programs of corticogenesis, while also being responsive to environmental and intercellular signals. Two- and three-dimensional platforms have become useful tools to interrogate the capacity of cells to generate neuronal and glia progeny in a background of metabolic dysregulation, but the mechanistic underpinnings underlying the role of mitochondria during human neurogenesis remain unexplored. Here we provide a concise overview of cortical development and the use of pluripotent stem cell models that have contributed to our understanding of mitochondrial and metabolic regulation of early human brain development. We finally discuss the effects of mitochondrial fitness dysregulation seen under stress conditions such as metabolic dysregulation, absence of developmental apoptosis, and hypoxia; and the avenues of research that can be explored with the use of brain organoids.
Collapse
Affiliation(s)
| | - Vivian Gama
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, United States
- Vanderbilt Center for Stem Cell Biology, Vanderbilt University, Nashville, TN, United States
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, United States
| |
Collapse
|
276
|
Subventricular zone adult mouse neural stem cells require insulin receptor for self-renewal. Stem Cell Reports 2022; 17:1411-1427. [PMID: 35523180 PMCID: PMC9213826 DOI: 10.1016/j.stemcr.2022.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Revised: 04/08/2022] [Accepted: 04/11/2022] [Indexed: 11/25/2022] Open
Abstract
The insulin receptor (INSR) is an evolutionarily conserved signaling protein that regulates development and cellular metabolism. INSR signaling promotes neurogenesis in Drosophila; however, a specific role for the INSR in maintaining adult neural stem cells (NSCs) in mammals has not been investigated. We show that conditionally deleting the Insr gene in adult mouse NSCs reduces subventricular zone NSCs by ∼70% accompanied by a corresponding increase in progenitors. Insr deletion also produced hyposmia caused by aberrant olfactory bulb neurogenesis. Interestingly, hippocampal neurogenesis and hippocampal-dependent behaviors were unperturbed. Highly aggressive proneural and mesenchymal glioblastomas had high INSR/insulin-like growth factor (IGF) pathway gene expression, and isolated glioma stem cells had an aberrantly high ratio of INSR:IGF type 1 receptor. Moreover, INSR knockdown inhibited GBM tumorsphere growth. Altogether, these data demonstrate that the INSR is essential for a subset of normal NSCs, as well as for brain tumor stem cell self-renewal. Insulin receptor (INSR) is essential for adult SVZ neural stem cell self-renewal INSR deletion causes hyposmia with increased olfactory bulb neurogenesis Hippocampal stem cells (and associated behaviors) do not require INSR Glioblastomas overexpress INSR pathway components required for tumorsphere growth
Collapse
|
277
|
Li S, Li J, Liu J, Wang J, Li X, Huo Y, Li Y, Liu Y, Li M, Xiao X, Luo XJ. Regulatory variants at 2q33.1 confer schizophrenia risk by modulating distal gene TYW5 expression. Brain 2022; 145:770-786. [PMID: 34581804 PMCID: PMC9014752 DOI: 10.1093/brain/awab357] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 08/05/2021] [Accepted: 08/13/2021] [Indexed: 11/13/2022] Open
Abstract
Genome-wide association studies have shown that genetic variants at 2q33.1 are strongly associated with schizophrenia. However, potential causal variants in this locus and their roles in schizophrenia remain unknown. Here, we identified two functional variants (rs796364 and rs281759) that disrupt CTCF, RAD21 and FOXP2 binding at 2q33.1. We systematically investigated the regulatory mechanisms of these two variants with serial experiments, including reporter gene assays and electrophoretic mobility shift assay. Intriguingly, these two single nucleotide polymorphisms physically interacted with TYW5 and showed the most significant associations with TYW5 expression in human brain. Consistently, CRISPR-Cas9-mediated genome editing confirmed the regulatory effect of the two single nucleotide polymorphisms on TYW5 expression. Additionally, expression analysis indicated that TYW5 was significantly upregulated in brains of schizophrenia cases compared with controls, suggesting that rs796364 and rs281759 might confer schizophrenia risk by modulating TYW5 expression. We over-expressed TYW5 in mouse neural stem cells and rat primary neurons to mimic its upregulation in schizophrenia and found significant alterations in the proliferation and differentiation of neural stem cells, as well as dendritic spine density following TYW5 overexpression, indicating its important roles in neurodevelopment and spine morphogenesis. Furthermore, we independently confirmed the association between rs796364 and schizophrenia in a Chinese cohort of 8202 subjects. Finally, transcriptome analysis revealed that TYW5 affected schizophrenia-associated pathways. These lines of evidence consistently revealed that rs796364 and rs281759 might contribute to schizophrenia risk by regulating the expression of TYW5, a gene whose expression dysregulation affects two important schizophrenia pathophysiological processes (i.e. neurodevelopment and dendritic spine formation).
Collapse
Affiliation(s)
- Shiwu Li
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan 650204, China
| | - Jiao Li
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan 650204, China
| | - Jiewei Liu
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Junyang Wang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan 650204, China
| | - Xiaoyan Li
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan 650204, China
| | - Yongxia Huo
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Yifan Li
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan 650204, China
| | - Yixing Liu
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan 650204, China
| | - Ming Li
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan 650204, China
- KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Xiao Xiao
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Xiong-Jian Luo
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan 650204, China
- KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| |
Collapse
|
278
|
Casingal CR, Descant KD, Anton ES. Coordinating cerebral cortical construction and connectivity: Unifying influence of radial progenitors. Neuron 2022; 110:1100-1115. [PMID: 35216663 PMCID: PMC8989671 DOI: 10.1016/j.neuron.2022.01.034] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 10/15/2021] [Accepted: 01/26/2022] [Indexed: 01/02/2023]
Abstract
Radial progenitor development and function lay the foundation for the construction of the cerebral cortex. Radial glial scaffold, through its functions as a source of neurogenic progenitors and neuronal migration guide, is thought to provide a template for the formation of the cerebral cortex. Emerging evidence is challenging this limited view. Intriguingly, radial glial scaffold may also play a role in axonal growth, guidance, and neuronal connectivity. Radial glial cells not only facilitate the generation, placement, and allocation of neurons in the cortex but also regulate how they wire up. The organization and function of radial glial cells may thus be a unifying feature of the developing cortex that helps to precisely coordinate the right patterns of neurogenesis, neuronal placement, and connectivity necessary for the emergence of a functional cerebral cortex. This perspective critically explores this emerging view and its impact in the context of human brain development and disorders.
Collapse
Affiliation(s)
- Cristine R Casingal
- UNC Neuroscience Center, the Department of Cell Biology and Physiology, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | - Katherine D Descant
- UNC Neuroscience Center, the Department of Cell Biology and Physiology, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | - E S Anton
- UNC Neuroscience Center, the Department of Cell Biology and Physiology, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA.
| |
Collapse
|
279
|
Villa CE, Cheroni C, Dotter CP, López-Tóbon A, Oliveira B, Sacco R, Yahya AÇ, Morandell J, Gabriele M, Tavakoli MR, Lyudchik J, Sommer C, Gabitto M, Danzl JG, Testa G, Novarino G. CHD8 haploinsufficiency links autism to transient alterations in excitatory and inhibitory trajectories. Cell Rep 2022; 39:110615. [PMID: 35385734 DOI: 10.1016/j.celrep.2022.110615] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 11/18/2021] [Accepted: 03/13/2022] [Indexed: 12/13/2022] Open
Abstract
Mutations in the chromodomain helicase DNA-binding 8 (CHD8) gene are a frequent cause of autism spectrum disorder (ASD). While its phenotypic spectrum often encompasses macrocephaly, implicating cortical abnormalities, how CHD8 haploinsufficiency affects neurodevelopmental is unclear. Here, employing human cerebral organoids, we find that CHD8 haploinsufficiency disrupted neurodevelopmental trajectories with an accelerated and delayed generation of, respectively, inhibitory and excitatory neurons that yields, at days 60 and 120, symmetrically opposite expansions in their proportions. This imbalance is consistent with an enlargement of cerebral organoids as an in vitro correlate of patients' macrocephaly. Through an isogenic design of patient-specific mutations and mosaic organoids, we define genotype-phenotype relationships and uncover their cell-autonomous nature. Our results define cell-type-specific CHD8-dependent molecular defects related to an abnormal program of proliferation and alternative splicing. By identifying cell-type-specific effects of CHD8 mutations, our study uncovers reproducible developmental alterations that may be employed for neurodevelopmental disease modeling.
Collapse
Affiliation(s)
- Carlo Emanuele Villa
- Department of Experimental Oncology, IEO, European Institute of Oncology, IRCCS, 20139 Milan, Italy; Human Technopole, Viale Rita Levi Montalcini 1, 20157 Milan, Italy
| | - Cristina Cheroni
- Department of Experimental Oncology, IEO, European Institute of Oncology, IRCCS, 20139 Milan, Italy; Human Technopole, Viale Rita Levi Montalcini 1, 20157 Milan, Italy; Department of Oncology and Hemato-oncology, University of Milan, 20122 Milan, Italy
| | - Christoph P Dotter
- Institute of Science and Technology (IST) Austria, 3400 Klosterneuburg, Austria
| | - Alejandro López-Tóbon
- Department of Experimental Oncology, IEO, European Institute of Oncology, IRCCS, 20139 Milan, Italy; Human Technopole, Viale Rita Levi Montalcini 1, 20157 Milan, Italy; Department of Oncology and Hemato-oncology, University of Milan, 20122 Milan, Italy
| | - Bárbara Oliveira
- Institute of Science and Technology (IST) Austria, 3400 Klosterneuburg, Austria
| | - Roberto Sacco
- Institute of Science and Technology (IST) Austria, 3400 Klosterneuburg, Austria
| | - Aysan Çerağ Yahya
- Institute of Science and Technology (IST) Austria, 3400 Klosterneuburg, Austria
| | - Jasmin Morandell
- Institute of Science and Technology (IST) Austria, 3400 Klosterneuburg, Austria
| | - Michele Gabriele
- Department of Experimental Oncology, IEO, European Institute of Oncology, IRCCS, 20139 Milan, Italy
| | - Mojtaba R Tavakoli
- Institute of Science and Technology (IST) Austria, 3400 Klosterneuburg, Austria
| | - Julia Lyudchik
- Institute of Science and Technology (IST) Austria, 3400 Klosterneuburg, Austria
| | - Christoph Sommer
- Institute of Science and Technology (IST) Austria, 3400 Klosterneuburg, Austria
| | | | - Johann G Danzl
- Institute of Science and Technology (IST) Austria, 3400 Klosterneuburg, Austria
| | - Giuseppe Testa
- Department of Experimental Oncology, IEO, European Institute of Oncology, IRCCS, 20139 Milan, Italy; Human Technopole, Viale Rita Levi Montalcini 1, 20157 Milan, Italy; Department of Oncology and Hemato-oncology, University of Milan, 20122 Milan, Italy.
| | - Gaia Novarino
- Institute of Science and Technology (IST) Austria, 3400 Klosterneuburg, Austria.
| |
Collapse
|
280
|
Duy PQ, Weise SC, Marini C, Li XJ, Liang D, Dahl PJ, Ma S, Spajic A, Dong W, Juusola J, Kiziltug E, Kundishora AJ, Koundal S, Pedram MZ, Torres-Fernández LA, Händler K, De Domenico E, Becker M, Ulas T, Juranek SA, Cuevas E, Hao LT, Jux B, Sousa AMM, Liu F, Kim SK, Li M, Yang Y, Takeo Y, Duque A, Nelson-Williams C, Ha Y, Selvaganesan K, Robert SM, Singh AK, Allington G, Furey CG, Timberlake AT, Reeves BC, Smith H, Dunbar A, DeSpenza T, Goto J, Marlier A, Moreno-De-Luca A, Yu X, Butler WE, Carter BS, Lake EMR, Constable RT, Rakic P, Lin H, Deniz E, Benveniste H, Malvankar NS, Estrada-Veras JI, Walsh CA, Alper SL, Schultze JL, Paeschke K, Doetzlhofer A, Wulczyn FG, Jin SC, Lifton RP, Sestan N, Kolanus W, Kahle KT. Impaired neurogenesis alters brain biomechanics in a neuroprogenitor-based genetic subtype of congenital hydrocephalus. Nat Neurosci 2022; 25:458-473. [PMID: 35379995 PMCID: PMC9664907 DOI: 10.1038/s41593-022-01043-3] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 02/28/2022] [Indexed: 01/16/2023]
Abstract
Hydrocephalus, characterized by cerebral ventricular dilatation, is routinely attributed to primary defects in cerebrospinal fluid (CSF) homeostasis. This fosters CSF shunting as the leading reason for brain surgery in children despite considerable disease heterogeneity. In this study, by integrating human brain transcriptomics with whole-exome sequencing of 483 patients with congenital hydrocephalus (CH), we found convergence of CH risk genes in embryonic neuroepithelial stem cells. Of all CH risk genes, TRIM71/lin-41 harbors the most de novo mutations and is most specifically expressed in neuroepithelial cells. Mice harboring neuroepithelial cell-specific Trim71 deletion or CH-specific Trim71 mutation exhibit prenatal hydrocephalus. CH mutations disrupt TRIM71 binding to its RNA targets, causing premature neuroepithelial cell differentiation and reduced neurogenesis. Cortical hypoplasia leads to a hypercompliant cortex and secondary ventricular enlargement without primary defects in CSF circulation. These data highlight the importance of precisely regulated neuroepithelial cell fate for normal brain-CSF biomechanics and support a clinically relevant neuroprogenitor-based paradigm of CH.
Collapse
Affiliation(s)
- Phan Q Duy
- Department of Neuroscience and Kavli Institute for Neuroscience, Yale University School of Medicine, New Haven, CT, USA.,Department of Neurosurgery, Yale University School of Medicine, New Haven, CT, USA.,Medical Scientist Training Program, Yale University School of Medicine, New Haven, CT, USA
| | - Stefan C Weise
- Molecular Immunology and Cell Biology, Life & Medical Sciences Institute (LIMES), University of Bonn, Bonn, Germany
| | - Claudia Marini
- Institute for Cell Biology and Neurobiology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Xiao-Jun Li
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Center for Hearing and Balance, Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Dan Liang
- Department of Neuroscience and Kavli Institute for Neuroscience, Yale University School of Medicine, New Haven, CT, USA
| | - Peter J Dahl
- Microbial Sciences Institute, Yale University, West Haven, CT, USA.,Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| | - Shaojie Ma
- Department of Neuroscience and Kavli Institute for Neuroscience, Yale University School of Medicine, New Haven, CT, USA
| | - Ana Spajic
- Department of Neuroscience and Kavli Institute for Neuroscience, Yale University School of Medicine, New Haven, CT, USA
| | - Weilai Dong
- Laboratory of Human Genetics and Genomics, The Rockefeller University, New York, NY, USA
| | | | - Emre Kiziltug
- Department of Neurosurgery, Yale University School of Medicine, New Haven, CT, USA
| | - Adam J Kundishora
- Department of Neurosurgery, Yale University School of Medicine, New Haven, CT, USA
| | - Sunil Koundal
- Department of Anesthesiology, Yale University School of Medicine, New Haven, CT, USA
| | - Maysam Z Pedram
- Department of Anesthesiology, Yale University School of Medicine, New Haven, CT, USA
| | - Lucia A Torres-Fernández
- Molecular Immunology and Cell Biology, Life & Medical Sciences Institute (LIMES), University of Bonn, Bonn, Germany
| | - Kristian Händler
- Systems Medicine, Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Bonn, Germany.,Genomics and Immunoregulation, Life & Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany.,Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE). PRECISE Platform for Genomics and Epigenomics at DZNE and University of Bonn, Bonn, Germany
| | - Elena De Domenico
- Systems Medicine, Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Bonn, Germany.,Genomics and Immunoregulation, Life & Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany.,Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE). PRECISE Platform for Genomics and Epigenomics at DZNE and University of Bonn, Bonn, Germany
| | - Matthias Becker
- Systems Medicine, Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Bonn, Germany.,Genomics and Immunoregulation, Life & Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany.,Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE). PRECISE Platform for Genomics and Epigenomics at DZNE and University of Bonn, Bonn, Germany
| | - Thomas Ulas
- Systems Medicine, Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Bonn, Germany.,Genomics and Immunoregulation, Life & Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany.,Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE). PRECISE Platform for Genomics and Epigenomics at DZNE and University of Bonn, Bonn, Germany
| | - Stefan A Juranek
- Department of Oncology, Hematology and Rheumatology, University Hospital Bonn, Bonn, Germany
| | - Elisa Cuevas
- Stem Cells and Regenerative Medicine Section, University College London Great Ormond Street Institute of Child Health, London, UK
| | - Le Thi Hao
- Department of Neurosurgery, Yale University School of Medicine, New Haven, CT, USA
| | - Bettina Jux
- Molecular Immunology and Cell Biology, Life & Medical Sciences Institute (LIMES), University of Bonn, Bonn, Germany
| | - André M M Sousa
- Department of Neuroscience and Kavli Institute for Neuroscience, Yale University School of Medicine, New Haven, CT, USA
| | - Fuchen Liu
- Department of Neuroscience and Kavli Institute for Neuroscience, Yale University School of Medicine, New Haven, CT, USA
| | - Suel-Kee Kim
- Department of Neuroscience and Kavli Institute for Neuroscience, Yale University School of Medicine, New Haven, CT, USA
| | - Mingfeng Li
- Department of Neuroscience and Kavli Institute for Neuroscience, Yale University School of Medicine, New Haven, CT, USA
| | - Yiying Yang
- Yale Stem Cell Center, Yale University School of Medicine, New Haven, CT, USA
| | - Yutaka Takeo
- Department of Neurosurgery, Yale University School of Medicine, New Haven, CT, USA
| | - Alvaro Duque
- Department of Neuroscience and Kavli Institute for Neuroscience, Yale University School of Medicine, New Haven, CT, USA
| | | | - Yonghyun Ha
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT, USA
| | - Kartiga Selvaganesan
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT, USA
| | - Stephanie M Robert
- Department of Neurosurgery, Yale University School of Medicine, New Haven, CT, USA
| | - Amrita K Singh
- Department of Neurosurgery, Yale University School of Medicine, New Haven, CT, USA
| | - Garrett Allington
- Department of Neurosurgery, Yale University School of Medicine, New Haven, CT, USA
| | - Charuta G Furey
- Department of Neurosurgery, Yale University School of Medicine, New Haven, CT, USA
| | - Andrew T Timberlake
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
| | - Benjamin C Reeves
- Department of Neurosurgery, Yale University School of Medicine, New Haven, CT, USA
| | - Hannah Smith
- Department of Neurosurgery, Yale University School of Medicine, New Haven, CT, USA
| | - Ashley Dunbar
- Department of Neurosurgery, Yale University School of Medicine, New Haven, CT, USA
| | - Tyrone DeSpenza
- Department of Neurosurgery, Yale University School of Medicine, New Haven, CT, USA
| | - June Goto
- Division of Pediatric Neurosurgery, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Arnaud Marlier
- Department of Neurosurgery, Yale University School of Medicine, New Haven, CT, USA
| | - Andres Moreno-De-Luca
- Department of Radiology, Autism & Developmental Medicine Institute, Genomic Medicine Institute, Geisinger, Danville, PA, USA
| | - Xin Yu
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - William E Butler
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Bob S Carter
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Evelyn M R Lake
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT, USA
| | - R Todd Constable
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT, USA
| | - Pasko Rakic
- Department of Neuroscience and Kavli Institute for Neuroscience, Yale University School of Medicine, New Haven, CT, USA
| | - Haifan Lin
- Yale Stem Cell Center, Yale University School of Medicine, New Haven, CT, USA
| | - Engin Deniz
- Department of Pediatrics, Yale University School of Medicine, New Haven, CT, USA
| | - Helene Benveniste
- Department of Anesthesiology, Yale University School of Medicine, New Haven, CT, USA
| | - Nikhil S Malvankar
- Microbial Sciences Institute, Yale University, West Haven, CT, USA.,Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| | - Juvianee I Estrada-Veras
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA.,Pediatric Subspecialty Genetics Walter Reed National Military Medical Center, Bethesda, MD, USA.,Murtha Cancer Center/Research Program, Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Christopher A Walsh
- Division of Genetics and Genomics, Manton Center for Orphan Disease Research, Department of Pediatrics, and Howard Hughes Medical Institute, Boston Children's Hospital, Boston, MA, USA.,Departments of Pediatrics and Neurology, Harvard Medical School, Boston, MA, USA.,Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Seth L Alper
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.,Division of Nephrology and Vascular Biology Research Center, Beth Israel Deaconess Medical Center and Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Joachim L Schultze
- Systems Medicine, Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Bonn, Germany.,Genomics and Immunoregulation, Life & Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany.,Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE). PRECISE Platform for Genomics and Epigenomics at DZNE and University of Bonn, Bonn, Germany
| | - Katrin Paeschke
- Department of Oncology, Hematology and Rheumatology, University Hospital Bonn, Bonn, Germany
| | - Angelika Doetzlhofer
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Center for Hearing and Balance, Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - F Gregory Wulczyn
- Institute for Cell Biology and Neurobiology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Sheng Chih Jin
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA
| | - Richard P Lifton
- Laboratory of Human Genetics and Genomics, The Rockefeller University, New York, NY, USA
| | - Nenad Sestan
- Department of Neuroscience and Kavli Institute for Neuroscience, Yale University School of Medicine, New Haven, CT, USA
| | - Waldemar Kolanus
- Molecular Immunology and Cell Biology, Life & Medical Sciences Institute (LIMES), University of Bonn, Bonn, Germany
| | - Kristopher T Kahle
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA. .,Division of Genetics and Genomics, Manton Center for Orphan Disease Research, Department of Pediatrics, and Howard Hughes Medical Institute, Boston Children's Hospital, Boston, MA, USA. .,Broad Institute of MIT and Harvard, Cambridge, MA, USA. .,Harvard Center for Hydrocephalus and Neurodevelopmental Disorders, Massachusetts General Hospital, Boston, MA, USA.
| |
Collapse
|
281
|
Meng Q, Zhang W, Wang X, Jiao C, Xu S, Liu C, Tang B, Chen C. Human forebrain organoids reveal connections between valproic acid exposure and autism risk. Transl Psychiatry 2022; 12:130. [PMID: 35351869 PMCID: PMC8964691 DOI: 10.1038/s41398-022-01898-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 03/04/2022] [Accepted: 03/11/2022] [Indexed: 12/13/2022] Open
Abstract
Valproic acid (VPA) exposure as an environmental factor that confers risk of autism spectrum disorder (ASD), its functional mechanisms in the human brain remain unclear since relevant studies are currently restricted to two-dimensional cell cultures and animal models. To identify mechanisms by which VPA contribute to ASD risk in human, here we used human forebrain organoids (hFOs), in vitro derived three-dimensional cell cultures that recapitulate key human brain developmental features. We identified that VPA exposure in hFOs affected the expression of genes enriched in neural development, synaptic transmission, oxytocin signaling, calcium, and potassium signaling pathways, which have been implicated in ASD. Genes (e.g., CAMK4, CLCN4, DPP10, GABRB3, KCNB1, PRKCB, SCN1A, and SLC24A2) that affected by VPA were significantly overlapped with those dysregulated in brains or organoids derived from ASD patients, and known ASD risk genes, as well as genes in ASD risk-associated gene coexpression modules. Single-cell RNA sequencing analysis showed that VPA exposure affected the expression of genes in choroid plexus, excitatory neuron, immature neuron, and medial ganglionic eminence cells annotated in hFOs. Microelectrode array further identified that VPA exposure in hFOs disrupted synaptic transmission. Taken together, this study connects VPA exposure to ASD pathogenesis using hFOs, which is valuable for illuminating the etiology of ASD and screening for potential therapeutic targets.
Collapse
Affiliation(s)
- Qingtuan Meng
- The First Affiliated Hospital, Multi-Omics Research Center for Brain Disorders, Hengyang Medical School, University of South China, 421001, Hengyang, Hunan, China
| | - Wendiao Zhang
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, and Department of Psychiatry, The Second Xiangya Hospital, Central South University, 410008, Changsha, Hunan, China
| | - Xuan Wang
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, and Department of Psychiatry, The Second Xiangya Hospital, Central South University, 410008, Changsha, Hunan, China
| | - Chuan Jiao
- Department of Psychiatry, SUNY Upstate Medical University, Syracuse, NY, 13210, USA
| | - Sheng Xu
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, and Department of Psychiatry, The Second Xiangya Hospital, Central South University, 410008, Changsha, Hunan, China
| | - Chunyu Liu
- Department of Psychiatry, SUNY Upstate Medical University, Syracuse, NY, 13210, USA
| | - Beisha Tang
- The First Affiliated Hospital, Multi-Omics Research Center for Brain Disorders, Hengyang Medical School, University of South China, 421001, Hengyang, Hunan, China.
| | - Chao Chen
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, and Department of Psychiatry, The Second Xiangya Hospital, Central South University, 410008, Changsha, Hunan, China.
- Hunan Key Laboratory of Animal Models for Human Diseases, Central South University, 410008, Changsha, Hunan, China.
- Hunan Key Laboratory of Molecular Precision Medicine, Central South University, 410008, Changsha, Hunan, China.
| |
Collapse
|
282
|
Zhou H, Chen T. An integrated analysis of hypoxic-ischemic encephalopathy-related cell sequencing outcomes via genes network construction. IBRAIN 2022; 8:78-92. [PMID: 37786415 PMCID: PMC10529176 DOI: 10.1002/ibra.12025] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 02/04/2022] [Accepted: 02/06/2022] [Indexed: 10/04/2023]
Abstract
Hypoxic-ischemic encephalopathy (HIE) is one of the main causes of morbidity and severe neurological deficits in neonates. This study aimed to find core genes and their potential roles in HIE with the help of single-cell sequencing (SCS) technology and genes network construction. We collected and screened an HIE genes data set from the Pubmed database to analyze differential expression, and the differential values of genes were ≥3 or ≤-3 in gene expression. We constructed a protein-protein interaction (PPI) network by the string, which was also verified by Cytoscape 3.8.2. Functional enrichment analysis was performed to determine the characteristics and pathways of the core genes. We examined two meaningful papers and integrated all genes by SCS, which were classified into 12,093 genes without duplicates, 217 shared genes, and 11,876 distinct genes. Among 217 genes, the signal transducer and activator of transcription (STAT) family was the most targeted gene in the PPI network. Moreover, Gene Ontology and Kyoto encyclopedia of genes and genome analysis showed that the process in response to virus and the JAK-STAT signaling pathway play significant roles in HIE. We also found that 54 screened genes were highly expressed, while three genes (B2M, VIM, and MRPS30) were different in the heat map and differential genes expression exhibition. VIM, as an essential portion of the brain's cytoskeleton, is closely linked to STAT and neurologic development. From the findings of SCS and bioinformatics predictive analytics model, our outcomes provided a better understanding of the roles of STAT, the JAK-STAT signaling pathway, and VIM, which can pave an alternative avenue for further studies on HIE progression.
Collapse
Affiliation(s)
- Hong‐Su Zhou
- Department of Laboratory ZoologyKunming Medical UniversityKunmingYunnanChina
| | - Ting‐Bao Chen
- Department of Laboratory ZoologyKunming Medical UniversityKunmingYunnanChina
| |
Collapse
|
283
|
Przytycki PF, Pollard KS. CellWalkR: An R Package for integrating and visualizing single-cell and bulk data to resolve regulatory elements. Bioinformatics 2022; 38:2621-2623. [PMID: 35274675 PMCID: PMC9048661 DOI: 10.1093/bioinformatics/btac150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 01/11/2022] [Accepted: 03/08/2022] [Indexed: 11/30/2022] Open
Abstract
Summary CellWalkR is an R package that integrates single-cell open chromatin data with cell type labels and bulk epigenetic data to identify cell type-specific regulatory regions. A Graphics Processing Unit (GPU) implementation and downsampling strategies enable thousands of cells to be processed in seconds. CellWalkR’s user-friendly interface provides interactive analysis and visualization of cell labels and regulatory region mappings. Availability and implementation CellWalkR is freely available as an R package under a GNU GPL-2.0 License and can be accessed from https://github.com/PFPrzytycki/CellWalkR with an accompanying vignette. Supplementary information Supplementary data are available at Bioinformatics online.
Collapse
|
284
|
Shaker MR, Kahtan A, Prasad R, Lee JH, Pietrogrande G, Leeson HC, Sun W, Wolvetang EJ, Slonchak A. Neural Epidermal Growth Factor-Like Like Protein 2 Is Expressed in Human Oligodendroglial Cell Types. Front Cell Dev Biol 2022; 10:803061. [PMID: 35265611 PMCID: PMC8899196 DOI: 10.3389/fcell.2022.803061] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 01/06/2022] [Indexed: 01/14/2023] Open
Abstract
Neural epidermal growth factor-like like 2 (NELL2) is a cytoplasmic and secreted glycosylated protein with six epidermal growth factor-like domains. In animal models, NELL2 is predominantly expressed in neural tissues where it regulates neuronal differentiation, polarization, and axon guidance, but little is known about the role of NELL2 in human brain development. In this study, we show that rostral neural stem cells (rNSC) derived from human-induced pluripotent stem cell (hiPSC) exhibit particularly strong NELL2 expression and that NELL2 protein is enriched at the apical side of neural rosettes in hiPSC-derived brain organoids. Following differentiation of human rostral NSC into neurons, NELL2 remains robustly expressed but changes its subcellular localization from >20 small cytoplasmic foci in NSC to one–five large peri-nuclear puncta per neuron. Unexpectedly, we discovered that in human brain organoids, NELL2 is readily detectable in the oligodendroglia and that the number of NELL2 puncta increases as oligodendrocytes mature. Artificial intelligence-based machine learning further predicts a strong association of NELL2 with multiple human white matter diseases, suggesting that NELL2 may possess yet unexplored roles in regulating oligodendrogenesis and/or myelination during human cortical development and maturation.
Collapse
Affiliation(s)
- Mohammed R Shaker
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, Australia
| | - Amna Kahtan
- St Cloud Technical & Community College, St Cloud, MN, United States
| | - Renuka Prasad
- Department of Anatomy, Brain Korea 21 Plus Program for Biomedical Science, Korea University College of Medicine, Seoul, South Korea
| | - Ju-Hyun Lee
- Department of Anatomy, Brain Korea 21 Plus Program for Biomedical Science, Korea University College of Medicine, Seoul, South Korea
| | - Giovanni Pietrogrande
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, Australia
| | - Hannah C Leeson
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, Australia
| | - Woong Sun
- Department of Anatomy, Brain Korea 21 Plus Program for Biomedical Science, Korea University College of Medicine, Seoul, South Korea
| | - Ernst J Wolvetang
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, Australia
| | - Andrii Slonchak
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
285
|
Winkler EA, Kim CN, Ross JM, Garcia JH, Gil E, Oh I, Chen LQ, Wu D, Catapano JS, Raygor K, Narsinh K, Kim H, Weinsheimer S, Cooke DL, Walcott BP, Lawton MT, Gupta N, Zlokovic BV, Chang EF, Abla AA, Lim DA, Nowakowski TJ. A single-cell atlas of the normal and malformed human brain vasculature. Science 2022; 375:eabi7377. [PMID: 35084939 PMCID: PMC8995178 DOI: 10.1126/science.abi7377] [Citation(s) in RCA: 189] [Impact Index Per Article: 63.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Cerebrovascular diseases are a leading cause of death and neurologic disability. Further understanding of disease mechanisms and therapeutic strategies requires a deeper knowledge of cerebrovascular cells in humans. We profiled transcriptomes of 181,388 cells to define a cell atlas of the adult human cerebrovasculature, including endothelial cell molecular signatures with arteriovenous segmentation and expanded perivascular cell diversity. By leveraging this reference, we investigated cellular and molecular perturbations in brain arteriovenous malformations, which are a leading cause of stroke in young people, and identified pathologic endothelial transformations with abnormal vascular patterning and the ontology of vascularly derived inflammation. We illustrate the interplay between vascular and immune cells that contributes to brain hemorrhage and catalog opportunities for targeting angiogenic and inflammatory programs in vascular malformations.
Collapse
Affiliation(s)
- Ethan A Winkler
- Department of Neurological Surgery, University of California, San Francisco, CA, USA
- Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California, San Francisco, CA, USA
- Weill Institute for Neurosciences, University of California, San Francisco, CA, USA
- Department of Neurosurgery, Barrow Neurological Institute, Phoenix, AZ, USA
| | - Chang N Kim
- Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California, San Francisco, CA, USA
- Weill Institute for Neurosciences, University of California, San Francisco, CA, USA
- Department of Anatomy, University of California, San Francisco, CA, USA
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, CA, USA
| | - Jayden M Ross
- Department of Neurological Surgery, University of California, San Francisco, CA, USA
- Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California, San Francisco, CA, USA
- Weill Institute for Neurosciences, University of California, San Francisco, CA, USA
- Department of Anatomy, University of California, San Francisco, CA, USA
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, CA, USA
| | - Joseph H Garcia
- Department of Neurological Surgery, University of California, San Francisco, CA, USA
| | - Eugene Gil
- Department of Neurological Surgery, University of California, San Francisco, CA, USA
- Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California, San Francisco, CA, USA
| | - Irene Oh
- Rebus Biosystems, Santa Clara, CA, USA
| | | | - David Wu
- Department of Neurological Surgery, University of California, San Francisco, CA, USA
- Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California, San Francisco, CA, USA
| | - Joshua S Catapano
- Department of Neurosurgery, Barrow Neurological Institute, Phoenix, AZ, USA
| | - Kunal Raygor
- Department of Neurological Surgery, University of California, San Francisco, CA, USA
| | - Kazim Narsinh
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, USA
| | - Helen Kim
- Center for Cerebrovascular Research, Department of Anesthesia and Perioperative Care, University of California, San Francisco, CA, USA
| | - Shantel Weinsheimer
- Center for Cerebrovascular Research, Department of Anesthesia and Perioperative Care, University of California, San Francisco, CA, USA
| | - Daniel L Cooke
- Weill Institute for Neurosciences, University of California, San Francisco, CA, USA
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, USA
| | - Brian P Walcott
- Department of Neurosurgery, NorthShore University HealthSystem, Evanston, IL, USA
| | - Michael T Lawton
- Department of Neurosurgery, Barrow Neurological Institute, Phoenix, AZ, USA
| | - Nalin Gupta
- Department of Neurological Surgery, University of California, San Francisco, CA, USA
| | - Berislav V Zlokovic
- Department of Physiology and Neuroscience, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Edward F Chang
- Department of Neurological Surgery, University of California, San Francisco, CA, USA
- Weill Institute for Neurosciences, University of California, San Francisco, CA, USA
| | - Adib A Abla
- Department of Neurological Surgery, University of California, San Francisco, CA, USA
- Weill Institute for Neurosciences, University of California, San Francisco, CA, USA
| | - Daniel A Lim
- Department of Neurological Surgery, University of California, San Francisco, CA, USA
- Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California, San Francisco, CA, USA
- Weill Institute for Neurosciences, University of California, San Francisco, CA, USA
- San Francisco Veterans Affairs Medical Center, San Francisco, CA, USA
| | - Tomasz J Nowakowski
- Department of Neurological Surgery, University of California, San Francisco, CA, USA
- Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California, San Francisco, CA, USA
- Weill Institute for Neurosciences, University of California, San Francisco, CA, USA
- Department of Anatomy, University of California, San Francisco, CA, USA
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, CA, USA
- Chan Zuckerberg Biohub, San Francisco, CA, USA
| |
Collapse
|
286
|
Notaras M, Lodhi A, Dündar F, Collier P, Sayles NM, Tilgner H, Greening D, Colak D. Schizophrenia is defined by cell-specific neuropathology and multiple neurodevelopmental mechanisms in patient-derived cerebral organoids. Mol Psychiatry 2022; 27:1416-1434. [PMID: 34789849 PMCID: PMC9095467 DOI: 10.1038/s41380-021-01316-6] [Citation(s) in RCA: 74] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 08/03/2021] [Accepted: 09/22/2021] [Indexed: 01/02/2023]
Abstract
Due to an inability to ethically access developing human brain tissue as well as identify prospective cases, early-arising neurodevelopmental and cell-specific signatures of Schizophrenia (Scz) have remained unknown and thus undefined. To overcome these challenges, we utilized patient-derived induced pluripotent stem cells (iPSCs) to generate 3D cerebral organoids to model neuropathology of Scz during this critical period. We discovered that Scz organoids exhibited ventricular neuropathology resulting in altered progenitor survival and disrupted neurogenesis. This ultimately yielded fewer neurons within developing cortical fields of Scz organoids. Single-cell sequencing revealed that Scz progenitors were specifically depleted of neuronal programming factors leading to a remodeling of cell-lineages, altered differentiation trajectories, and distorted cortical cell-type diversity. While Scz organoids were similar in their macromolecular diversity to organoids generated from healthy controls (Ctrls), four GWAS factors (PTN, COMT, PLCL1, and PODXL) and peptide fragments belonging to the POU-domain transcription factor family (e.g., POU3F2/BRN2) were altered. This revealed that Scz organoids principally differed not in their proteomic diversity, but specifically in their total quantity of disease and neurodevelopmental factors at the molecular level. Single-cell sequencing subsequently identified cell-type specific alterations in neuronal programming factors as well as a developmental switch in neurotrophic growth factor expression, indicating that Scz neuropathology can be encoded on a cell-type-by-cell-type basis. Furthermore, single-cell sequencing also specifically replicated the depletion of BRN2 (POU3F2) and PTN in both Scz progenitors and neurons. Subsequently, in two mechanistic rescue experiments we identified that the transcription factor BRN2 and growth factor PTN operate as mechanistic substrates of neurogenesis and cellular survival, respectively, in Scz organoids. Collectively, our work suggests that multiple mechanisms of Scz exist in patient-derived organoids, and that these disparate mechanisms converge upon primordial brain developmental pathways such as neuronal differentiation, survival, and growth factor support, which may amalgamate to elevate intrinsic risk of Scz.
Collapse
Affiliation(s)
- Michael Notaras
- Center for Neurogenetics, Feil Family Brain and Mind Research Institute, Weill Cornell Medical College, Cornell University, New York, NY, USA
| | - Aiman Lodhi
- Center for Neurogenetics, Feil Family Brain and Mind Research Institute, Weill Cornell Medical College, Cornell University, New York, NY, USA
| | - Friederike Dündar
- Department of Physiology and Biophysics, Weill Cornell Medical College, Cornell University, New York, NY, USA
| | - Paul Collier
- Center for Neurogenetics, Feil Family Brain and Mind Research Institute, Weill Cornell Medical College, Cornell University, New York, NY, USA
| | - Nicole M Sayles
- Center for Neurogenetics, Feil Family Brain and Mind Research Institute, Weill Cornell Medical College, Cornell University, New York, NY, USA
| | - Hagen Tilgner
- Center for Neurogenetics, Feil Family Brain and Mind Research Institute, Weill Cornell Medical College, Cornell University, New York, NY, USA
| | - David Greening
- La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, Australia
- Central Clinical School, Monash University, Melbourne, VIC, Australia
- Baker Institute & Baker Department of Cardiometabolic Health, University of Melbourne, Melbourne, VIC, Australia
| | - Dilek Colak
- Center for Neurogenetics, Feil Family Brain and Mind Research Institute, Weill Cornell Medical College, Cornell University, New York, NY, USA.
- Gale and Ira Drukier Institute for Children's Health, Weill Cornell Medical College, Cornell University, New York, NY, USA.
| |
Collapse
|
287
|
Zibetti C. Deciphering the Retinal Epigenome during Development, Disease and Reprogramming: Advancements, Challenges and Perspectives. Cells 2022; 11:cells11050806. [PMID: 35269428 PMCID: PMC8908986 DOI: 10.3390/cells11050806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 02/15/2022] [Accepted: 02/18/2022] [Indexed: 02/01/2023] Open
Abstract
Retinal neurogenesis is driven by concerted actions of transcription factors, some of which are expressed in a continuum and across several cell subtypes throughout development. While seemingly redundant, many factors diversify their regulatory outcome on gene expression, by coordinating variations in chromatin landscapes to drive divergent retinal specification programs. Recent studies have furthered the understanding of the epigenetic contribution to the progression of age-related macular degeneration, a leading cause of blindness in the elderly. The knowledge of the epigenomic mechanisms that control the acquisition and stabilization of retinal cell fates and are evoked upon damage, holds the potential for the treatment of retinal degeneration. Herein, this review presents the state-of-the-art approaches to investigate the retinal epigenome during development, disease, and reprogramming. A pipeline is then reviewed to functionally interrogate the epigenetic and transcriptional networks underlying cell fate specification, relying on a truly unbiased screening of open chromatin states. The related work proposes an inferential model to identify gene regulatory networks, features the first footprinting analysis and the first tentative, systematic query of candidate pioneer factors in the retina ever conducted in any model organism, leading to the identification of previously uncharacterized master regulators of retinal cell identity, such as the nuclear factor I, NFI. This pipeline is virtually applicable to the study of genetic programs and candidate pioneer factors in any developmental context. Finally, challenges and limitations intrinsic to the current next-generation sequencing techniques are discussed, as well as recent advances in super-resolution imaging, enabling spatio-temporal resolution of the genome.
Collapse
Affiliation(s)
- Cristina Zibetti
- Department of Ophthalmology, Institute of Clinical Medicine, University of Oslo, Kirkeveien 166, Building 36, 0455 Oslo, Norway
| |
Collapse
|
288
|
Caporale N, Leemans M, Birgersson L, Germain PL, Cheroni C, Borbély G, Engdahl E, Lindh C, Bressan RB, Cavallo F, Chorev NE, D'Agostino GA, Pollard SM, Rigoli MT, Tenderini E, Tobon AL, Trattaro S, Troglio F, Zanella M, Bergman Å, Damdimopoulou P, Jönsson M, Kiess W, Kitraki E, Kiviranta H, Nånberg E, Öberg M, Rantakokko P, Rudén C, Söder O, Bornehag CG, Demeneix B, Fini JB, Gennings C, Rüegg J, Sturve J, Testa G. From cohorts to molecules: Adverse impacts of endocrine disrupting mixtures. Science 2022; 375:eabe8244. [PMID: 35175820 DOI: 10.1126/science.abe8244] [Citation(s) in RCA: 164] [Impact Index Per Article: 54.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Convergent evidence associates exposure to endocrine disrupting chemicals (EDCs) with major human diseases, even at regulation-compliant concentrations. This might be because humans are exposed to EDC mixtures, whereas chemical regulation is based on a risk assessment of individual compounds. Here, we developed a mixture-centered risk assessment strategy that integrates epidemiological and experimental evidence. We identified that exposure to an EDC mixture in early pregnancy is associated with language delay in offspring. At human-relevant concentrations, this mixture disrupted hormone-regulated and disease-relevant regulatory networks in human brain organoids and in the model organisms Xenopus leavis and Danio rerio, as well as behavioral responses. Reinterrogating epidemiological data, we found that up to 54% of the children had prenatal exposures above experimentally derived levels of concern, reaching, for the upper decile compared with the lowest decile of exposure, a 3.3 times higher risk of language delay.
Collapse
Affiliation(s)
- Nicolò Caporale
- High Definition Disease Modelling Lab, Stem Cell and Organoid Epigenetics, IEO, European Institute of Oncology, IRCCS, 20141 Milan, Italy.,Department of Oncology and Hemato-oncology, University of Milan, 20122 Milan, Italy.,Human Technopole, V.le Rita Levi-Montalcini, 1, 20157 Milan, Italy
| | - Michelle Leemans
- UMR 7221, Phyma, CNRS-Muséum National d'Histoire Naturelle, Sorbonne Université, 75005 Paris, France
| | - Lina Birgersson
- Department of Biological and Environmental Sciences, University of Gothenburg, 41463 Gothenburg, Sweden
| | - Pierre-Luc Germain
- High Definition Disease Modelling Lab, Stem Cell and Organoid Epigenetics, IEO, European Institute of Oncology, IRCCS, 20141 Milan, Italy
| | - Cristina Cheroni
- High Definition Disease Modelling Lab, Stem Cell and Organoid Epigenetics, IEO, European Institute of Oncology, IRCCS, 20141 Milan, Italy.,Department of Oncology and Hemato-oncology, University of Milan, 20122 Milan, Italy.,Human Technopole, V.le Rita Levi-Montalcini, 1, 20157 Milan, Italy
| | - Gábor Borbély
- Swedish Toxicology Sciences Research Center (SWETOX), Södertälje, Sweden
| | - Elin Engdahl
- Swedish Toxicology Sciences Research Center (SWETOX), Södertälje, Sweden.,Department of Organismal Biology, Environmental Toxicology, Uppsala University, SE-752 36 Uppsala, Sweden
| | - Christian Lindh
- Division of Occupational and Environmental Medicine, Department of Laboratory Medicine, Lund University, SE-221 85 Lund, Sweden
| | - Raul Bardini Bressan
- Medical Research Council Centre for Regenerative Medicine and Edinburgh Cancer Research UK Centre, University of Edinburgh, Edinburgh, UK
| | - Francesca Cavallo
- High Definition Disease Modelling Lab, Stem Cell and Organoid Epigenetics, IEO, European Institute of Oncology, IRCCS, 20141 Milan, Italy
| | - Nadav Even Chorev
- High Definition Disease Modelling Lab, Stem Cell and Organoid Epigenetics, IEO, European Institute of Oncology, IRCCS, 20141 Milan, Italy
| | - Giuseppe Alessandro D'Agostino
- High Definition Disease Modelling Lab, Stem Cell and Organoid Epigenetics, IEO, European Institute of Oncology, IRCCS, 20141 Milan, Italy
| | - Steven M Pollard
- Medical Research Council Centre for Regenerative Medicine and Edinburgh Cancer Research UK Centre, University of Edinburgh, Edinburgh, UK
| | - Marco Tullio Rigoli
- High Definition Disease Modelling Lab, Stem Cell and Organoid Epigenetics, IEO, European Institute of Oncology, IRCCS, 20141 Milan, Italy.,Department of Oncology and Hemato-oncology, University of Milan, 20122 Milan, Italy
| | - Erika Tenderini
- High Definition Disease Modelling Lab, Stem Cell and Organoid Epigenetics, IEO, European Institute of Oncology, IRCCS, 20141 Milan, Italy
| | - Alejandro Lopez Tobon
- High Definition Disease Modelling Lab, Stem Cell and Organoid Epigenetics, IEO, European Institute of Oncology, IRCCS, 20141 Milan, Italy
| | - Sebastiano Trattaro
- High Definition Disease Modelling Lab, Stem Cell and Organoid Epigenetics, IEO, European Institute of Oncology, IRCCS, 20141 Milan, Italy.,Department of Oncology and Hemato-oncology, University of Milan, 20122 Milan, Italy
| | - Flavia Troglio
- High Definition Disease Modelling Lab, Stem Cell and Organoid Epigenetics, IEO, European Institute of Oncology, IRCCS, 20141 Milan, Italy
| | - Matteo Zanella
- High Definition Disease Modelling Lab, Stem Cell and Organoid Epigenetics, IEO, European Institute of Oncology, IRCCS, 20141 Milan, Italy
| | - Åke Bergman
- Swedish Toxicology Sciences Research Center (SWETOX), Södertälje, Sweden.,Department of Environmental Science, Stockholm University, SE-10691 Stockholm, Sweden.,School of Science and Technology, Örebro University, SE-70182 Örebro, Sweden
| | - Pauliina Damdimopoulou
- Swedish Toxicology Sciences Research Center (SWETOX), Södertälje, Sweden.,Division of Obstetrics and Gynecology, Department of Clinical Science, Intervention and Technology, Karolinska Institutet and Karolinska University Hospital, 141 86 Stockholm, Sweden
| | - Maria Jönsson
- Department of Organismal Biology, Environmental Toxicology, Uppsala University, SE-752 36 Uppsala, Sweden
| | - Wieland Kiess
- Hospital for Children and Adolescents, Department of Women and Child Health, University Hospital, University of Leipzig, 04103 Leipzig, Germany
| | - Efthymia Kitraki
- Lab of Basic Sciences, Faculty of Dentistry, National and Kapodistrian University of Athens, 152 72 Athens, Greece
| | - Hannu Kiviranta
- Department of Health Security, Finnish Institute for Health and Welfare (THL), Kuopio 70210, Finland
| | - Eewa Nånberg
- School of Health Sciences, Örebro University, SE-70182 Örebro, Sweden
| | - Mattias Öberg
- Swedish Toxicology Sciences Research Center (SWETOX), Södertälje, Sweden.,Institute of Environmental Medicine, Karolinska Institutet, SE-17177 Stockholm, Sweden
| | - Panu Rantakokko
- Department of Health Security, Finnish Institute for Health and Welfare (THL), Kuopio 70210, Finland
| | - Christina Rudén
- Department of Environmental Science, Stockholm University, SE-10691 Stockholm, Sweden
| | - Olle Söder
- Department of Women's and Children's Health, Pediatric Endocrinology Division, Karolinska Institutet and University Hospital, SE-17176 Stockholm, Sweden
| | - Carl-Gustaf Bornehag
- Faculty of Health, Science and Technology, Department of Health Sciences, Karlstad University, SE- 651 88 Karlstad, Sweden.,Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Barbara Demeneix
- UMR 7221, Phyma, CNRS-Muséum National d'Histoire Naturelle, Sorbonne Université, 75005 Paris, France
| | - Jean-Baptiste Fini
- UMR 7221, Phyma, CNRS-Muséum National d'Histoire Naturelle, Sorbonne Université, 75005 Paris, France
| | - Chris Gennings
- Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Joëlle Rüegg
- Swedish Toxicology Sciences Research Center (SWETOX), Södertälje, Sweden.,Department of Organismal Biology, Environmental Toxicology, Uppsala University, SE-752 36 Uppsala, Sweden
| | - Joachim Sturve
- Department of Biological and Environmental Sciences, University of Gothenburg, 41463 Gothenburg, Sweden
| | - Giuseppe Testa
- High Definition Disease Modelling Lab, Stem Cell and Organoid Epigenetics, IEO, European Institute of Oncology, IRCCS, 20141 Milan, Italy.,Department of Oncology and Hemato-oncology, University of Milan, 20122 Milan, Italy.,Human Technopole, V.le Rita Levi-Montalcini, 1, 20157 Milan, Italy
| |
Collapse
|
289
|
Tomasello U, Klingler E, Niquille M, Mule N, Santinha AJ, de Vevey L, Prados J, Platt RJ, Borrell V, Jabaudon D, Dayer A. miR-137 and miR-122, two outer subventricular zone non-coding RNAs, regulate basal progenitor expansion and neuronal differentiation. Cell Rep 2022; 38:110381. [PMID: 35172154 PMCID: PMC8864305 DOI: 10.1016/j.celrep.2022.110381] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 04/22/2021] [Accepted: 01/24/2022] [Indexed: 12/29/2022] Open
Abstract
Cortical expansion in primate brains relies on enlargement of germinal zones during a prolonged developmental period. Although most mammals have two cortical germinal zones, the ventricular zone (VZ) and subventricular zone (SVZ), gyrencephalic species display an additional germinal zone, the outer subventricular zone (oSVZ), which increases the number and diversity of neurons generated during corticogenesis. How the oSVZ emerged during evolution is poorly understood, but recent studies suggest a role for non-coding RNAs, which allow tight genetic program regulation during development. Here, using in vivo functional genetics, single-cell RNA sequencing, live imaging, and electrophysiology to assess progenitor and neuronal properties in mice, we identify two oSVZ-expressed microRNAs (miRNAs), miR-137 and miR-122, which regulate key cellular features of cortical expansion. miR-137 promotes basal progenitor self-replication and superficial layer neuron fate, whereas miR-122 decreases the pace of neuronal differentiation. These findings support a cell-type-specific role of miRNA-mediated gene expression in cortical expansion. oSVZ-expressed microRNAs 137 and 122 promote superficial layer identity of neurons miR-137 promotes basal progenitor proliferation and layer 2/3 neuron generation miR-122 slows down neuronal differentiation pace
Collapse
Affiliation(s)
- Ugo Tomasello
- Department of Basic Neurosciences, University of Geneva, 1205 Geneva, Switzerland; Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas and Universidad Miguel Hernández, Sant Joan d'Alacant, 03550 Alacant, Spain
| | - Esther Klingler
- Department of Basic Neurosciences, University of Geneva, 1205 Geneva, Switzerland
| | - Mathieu Niquille
- Department of Basic Neurosciences, University of Geneva, 1205 Geneva, Switzerland; Department of Psychiatry, Geneva University Hospital, 1205 Geneva, Switzerland
| | - Nandkishor Mule
- Department of Basic Neurosciences, University of Geneva, 1205 Geneva, Switzerland
| | - Antonio J Santinha
- Department of Biosystems Science and Engineering, ETH Zurich, 4058 Basel, Switzerland
| | - Laura de Vevey
- Department of Basic Neurosciences, University of Geneva, 1205 Geneva, Switzerland
| | - Julien Prados
- Department of Psychiatry, Geneva University Hospital, 1205 Geneva, Switzerland
| | - Randall J Platt
- Department of Biosystems Science and Engineering, ETH Zurich, 4058 Basel, Switzerland
| | - Victor Borrell
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas and Universidad Miguel Hernández, Sant Joan d'Alacant, 03550 Alacant, Spain
| | - Denis Jabaudon
- Department of Basic Neurosciences, University of Geneva, 1205 Geneva, Switzerland; Clinic of Neurology, Geneva University Hospital, 1205 Geneva, Switzerland.
| | - Alexandre Dayer
- Department of Basic Neurosciences, University of Geneva, 1205 Geneva, Switzerland; Department of Psychiatry, Geneva University Hospital, 1205 Geneva, Switzerland
| |
Collapse
|
290
|
Methods to Improve Molecular Diagnosis in Genomic Cold Cases in Pediatric Neurology. Genes (Basel) 2022; 13:genes13020333. [PMID: 35205378 PMCID: PMC8871714 DOI: 10.3390/genes13020333] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 02/06/2022] [Accepted: 02/07/2022] [Indexed: 02/04/2023] Open
Abstract
During the last decade, genetic testing has emerged as an important etiological diagnostic tool for Mendelian diseases, including pediatric neurological conditions. A genetic diagnosis has a considerable impact on disease management and treatment; however, many cases remain undiagnosed after applying standard diagnostic sequencing techniques. This review discusses various methods to improve the molecular diagnostic rates in these genomic cold cases. We discuss extended analysis methods to consider, non-Mendelian inheritance models, mosaicism, dual/multiple diagnoses, periodic re-analysis, artificial intelligence tools, and deep phenotyping, in addition to integrating various omics methods to improve variant prioritization. Last, novel genomic technologies, including long-read sequencing, artificial long-read sequencing, and optical genome mapping are discussed. In conclusion, a more comprehensive molecular analysis and a timely re-analysis of unsolved cases are imperative to improve diagnostic rates. In addition, our current understanding of the human genome is still limited due to restrictions in technologies. Novel technologies are now available that improve upon some of these limitations and can capture all human genomic variation more accurately. Last, we recommend a more routine implementation of high molecular weight DNA extraction methods that is coherent with the ability to use and/or optimally benefit from these novel genomic methods.
Collapse
|
291
|
Xi J, Xu Y, Guo Z, Li J, Wu Y, Sun Q, Wang Y, Chen M, Zhu S, Bian S, Kang J. LncRNA SOX1-OT V1 acts as a decoy of HDAC10 to promote SOX1-dependent hESC neuronal differentiation. EMBO Rep 2022; 23:e53015. [PMID: 34927789 PMCID: PMC8811645 DOI: 10.15252/embr.202153015] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 11/15/2021] [Accepted: 11/17/2021] [Indexed: 02/05/2023] Open
Abstract
Long noncoding RNAs (lncRNAs) are abundantly expressed in the nervous system, but their regulatory roles in neuronal differentiation are poorly understood. Using a human embryonic stem cell (hESC)-based 2D neural differentiation approach and a 3D cerebral organoid system, we show that SOX1-OT variant 1 (SOX1-OT V1), a SOX1 overlapping noncoding RNA, plays essential roles in both dorsal cortical neuron differentiation and ventral GABAergic neuron differentiation by facilitating SOX1 expression. SOX1-OT V1 physically interacts with HDAC10 through its 5' region, acts as a decoy to block HDAC10 binding to the SOX1 promoter, and thus maintains histone acetylation levels at the SOX1 promoter. SOX1 in turn activates ASCL1 expression and promotes neuronal differentiation. Taken together, we identify a SOX1-OT V1/HDAC10-SOX1-ASCL1 axis, which promotes neurogenesis, highlighting a role for lncRNAs in hESC neuronal differentiation.
Collapse
Affiliation(s)
- Jiajie Xi
- Clinical and Translational Research Center of Shanghai First Maternity and Infant HospitalShanghai Key Laboratory of Maternal Fetal MedicineShanghai Key Laboratory of Signaling and Disease ResearchFrontier Science Center for Stem Cell ResearchNational Stem Cell Translational Resource CenterSchool of Life Sciences and TechnologyTongji UniversityShanghaiChina
| | - Yanxin Xu
- Clinical and Translational Research Center of Shanghai First Maternity and Infant HospitalShanghai Key Laboratory of Maternal Fetal MedicineShanghai Key Laboratory of Signaling and Disease ResearchFrontier Science Center for Stem Cell ResearchNational Stem Cell Translational Resource CenterSchool of Life Sciences and TechnologyTongji UniversityShanghaiChina
| | - Zhenming Guo
- Institute for Regenerative MedicineShanghai East HospitalSchool of Life Sciences and TechnologyFrontier Science Center for Stem Cell ResearchTongji UniversityShanghaiChina
| | - Jianguo Li
- Clinical and Translational Research Center of Shanghai First Maternity and Infant HospitalShanghai Key Laboratory of Maternal Fetal MedicineShanghai Key Laboratory of Signaling and Disease ResearchFrontier Science Center for Stem Cell ResearchNational Stem Cell Translational Resource CenterSchool of Life Sciences and TechnologyTongji UniversityShanghaiChina
| | - Yukang Wu
- Clinical and Translational Research Center of Shanghai First Maternity and Infant HospitalShanghai Key Laboratory of Maternal Fetal MedicineShanghai Key Laboratory of Signaling and Disease ResearchFrontier Science Center for Stem Cell ResearchNational Stem Cell Translational Resource CenterSchool of Life Sciences and TechnologyTongji UniversityShanghaiChina
| | - Qiaoyi Sun
- Clinical and Translational Research Center of Shanghai First Maternity and Infant HospitalShanghai Key Laboratory of Maternal Fetal MedicineShanghai Key Laboratory of Signaling and Disease ResearchFrontier Science Center for Stem Cell ResearchNational Stem Cell Translational Resource CenterSchool of Life Sciences and TechnologyTongji UniversityShanghaiChina
| | - Yuxi Wang
- Clinical and Translational Research Center of Shanghai First Maternity and Infant HospitalShanghai Key Laboratory of Maternal Fetal MedicineShanghai Key Laboratory of Signaling and Disease ResearchFrontier Science Center for Stem Cell ResearchNational Stem Cell Translational Resource CenterSchool of Life Sciences and TechnologyTongji UniversityShanghaiChina
| | - Mengxia Chen
- Institute for Regenerative MedicineShanghai East HospitalSchool of Life Sciences and TechnologyFrontier Science Center for Stem Cell ResearchTongji UniversityShanghaiChina
| | - Songcheng Zhu
- Clinical and Translational Research Center of Shanghai First Maternity and Infant HospitalShanghai Key Laboratory of Maternal Fetal MedicineShanghai Key Laboratory of Signaling and Disease ResearchFrontier Science Center for Stem Cell ResearchNational Stem Cell Translational Resource CenterSchool of Life Sciences and TechnologyTongji UniversityShanghaiChina
| | - Shan Bian
- Institute for Regenerative MedicineShanghai East HospitalSchool of Life Sciences and TechnologyFrontier Science Center for Stem Cell ResearchTongji UniversityShanghaiChina
| | - Jiuhong Kang
- Clinical and Translational Research Center of Shanghai First Maternity and Infant HospitalShanghai Key Laboratory of Maternal Fetal MedicineShanghai Key Laboratory of Signaling and Disease ResearchFrontier Science Center for Stem Cell ResearchNational Stem Cell Translational Resource CenterSchool of Life Sciences and TechnologyTongji UniversityShanghaiChina
| |
Collapse
|
292
|
Abstract
In this issue of Neuron, Franjic et al. (2022) use a single-nuclei RNA sequencing approach that identified signatures of adult neurogenesis in mouse, pig, and macaque dentate gyrus, but not in humans, adding to a growing body of evidence that this process is likely lost in humans.
Collapse
Affiliation(s)
- Patricia R Nano
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Aparna Bhaduri
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
293
|
Ossola C, Kalebic N. Roots of the Malformations of Cortical Development in the Cell Biology of Neural Progenitor Cells. Front Neurosci 2022; 15:817218. [PMID: 35069108 PMCID: PMC8766818 DOI: 10.3389/fnins.2021.817218] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 12/14/2021] [Indexed: 12/13/2022] Open
Abstract
The cerebral cortex is a structure that underlies various brain functions, including cognition and language. Mammalian cerebral cortex starts developing during the embryonic period with the neural progenitor cells generating neurons. Newborn neurons migrate along progenitors’ radial processes from the site of their origin in the germinal zones to the cortical plate, where they mature and integrate in the forming circuitry. Cell biological features of neural progenitors, such as the location and timing of their mitoses, together with their characteristic morphologies, can directly or indirectly regulate the abundance and the identity of their neuronal progeny. Alterations in the complex and delicate process of cerebral cortex development can lead to malformations of cortical development (MCDs). They include various structural abnormalities that affect the size, thickness and/or folding pattern of the developing cortex. Their clinical manifestations can entail a neurodevelopmental disorder, such as epilepsy, developmental delay, intellectual disability, or autism spectrum disorder. The recent advancements of molecular and neuroimaging techniques, along with the development of appropriate in vitro and in vivo model systems, have enabled the assessment of the genetic and environmental causes of MCDs. Here we broadly review the cell biological characteristics of neural progenitor cells and focus on those features whose perturbations have been linked to MCDs.
Collapse
|
294
|
Panagiotakos G, Pasca SP. A matter of space and time: Emerging roles of disease-associated proteins in neural development. Neuron 2022; 110:195-208. [PMID: 34847355 PMCID: PMC8776599 DOI: 10.1016/j.neuron.2021.10.035] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 10/11/2021] [Accepted: 10/25/2021] [Indexed: 01/21/2023]
Abstract
Recent genetic studies of neurodevelopmental disorders point to synaptic proteins and ion channels as key contributors to disease pathogenesis. Although many of these proteins, such as the L-type calcium channel Cav1.2 or the postsynaptic scaffolding protein SHANK3, have well-studied functions in mature neurons, new evidence indicates that they may subserve novel, distinct roles in immature cells as the nervous system is assembled in prenatal development. Emerging tools and technologies, including single-cell sequencing and human cellular models of disease, are illuminating differential isoform utilization, spatiotemporal expression, and subcellular localization of ion channels and synaptic proteins in the developing brain compared with the adult, providing new insights into the regulation of developmental processes. We propose that it is essential to consider the temporally distinct and cell-specific roles of these proteins during development and maturity in our framework for understanding neuropsychiatric disorders.
Collapse
Affiliation(s)
- Georgia Panagiotakos
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA; Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, San Francisco, CA, USA; Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, USA.
| | - Sergiu P Pasca
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA; Stanford Brain Organogenesis, Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA.
| |
Collapse
|
295
|
Sanders B, D'Andrea D, Collins MO, Rees E, Steward TGJ, Zhu Y, Chapman G, Legge SE, Pardiñas AF, Harwood AJ, Gray WP, O'Donovan MC, Owen MJ, Errington AC, Blake DJ, Whitcomb DJ, Pocklington AJ, Shin E. Transcriptional programs regulating neuronal differentiation are disrupted in DLG2 knockout human embryonic stem cells and enriched for schizophrenia and related disorders risk variants. Nat Commun 2022; 13:27. [PMID: 35031607 PMCID: PMC8760302 DOI: 10.1038/s41467-021-27601-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 12/01/2021] [Indexed: 12/28/2022] Open
Abstract
Coordinated programs of gene expression drive brain development. It is unclear which transcriptional programs, in which cell-types, are affected in neuropsychiatric disorders such as schizophrenia. Here we integrate human genetics with transcriptomic data from differentiation of human embryonic stem cells into cortical excitatory neurons. We identify transcriptional programs expressed during early neurogenesis in vitro and in human foetal cortex that are down-regulated in DLG2−/− lines. Down-regulation impacted neuronal differentiation and maturation, impairing migration, morphology and action potential generation. Genetic variation in these programs is associated with neuropsychiatric disorders and cognitive function, with associated variants predominantly concentrated in loss-of-function intolerant genes. Neurogenic programs also overlap schizophrenia GWAS enrichment previously identified in mature excitatory neurons, suggesting that pathways active during prenatal cortical development may also be associated with mature neuronal dysfunction. Our data from human embryonic stem cells, when combined with analysis of available foetal cortical gene expression data, de novo rare variants and GWAS statistics for neuropsychiatric disorders and cognition, reveal a convergence on transcriptional programs regulating excitatory cortical neurogenesis. Coordinated programs of gene expression drive brain development. Here, the authors use human embryonic stem cells and foetal cortical tissue as well as available GWAS statistics and analysis of genetic variants associated with neuropsychiatric disorders and cognition revealing a convergence on transcriptional programs regulating excitatory cortical neurogenesis.
Collapse
Affiliation(s)
- Bret Sanders
- Neuroscience and Mental Health Research Institute, Cardiff University, Cardiff, CF24 4HQ, UK
| | - Daniel D'Andrea
- MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, CF24 4HQ, UK
| | - Mark O Collins
- Department of Biomedical Science, University of Sheffield, Sheffield, S10 2TN, UK
| | - Elliott Rees
- MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, CF24 4HQ, UK
| | - Tom G J Steward
- Bristol Medical School, University of Bristol, Bristol, BS1 3NY, UK
| | - Ying Zhu
- Neuroscience and Mental Health Research Institute, Cardiff University, Cardiff, CF24 4HQ, UK
| | - Gareth Chapman
- Neuroscience and Mental Health Research Institute, Cardiff University, Cardiff, CF24 4HQ, UK
| | - Sophie E Legge
- MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, CF24 4HQ, UK
| | - Antonio F Pardiñas
- MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, CF24 4HQ, UK
| | - Adrian J Harwood
- Neuroscience and Mental Health Research Institute, Cardiff University, Cardiff, CF24 4HQ, UK
| | - William P Gray
- Neuroscience and Mental Health Research Institute, Cardiff University, Cardiff, CF24 4HQ, UK
| | - Michael C O'Donovan
- MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, CF24 4HQ, UK
| | - Michael J Owen
- Neuroscience and Mental Health Research Institute, Cardiff University, Cardiff, CF24 4HQ, UK.,MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, CF24 4HQ, UK
| | - Adam C Errington
- Neuroscience and Mental Health Research Institute, Cardiff University, Cardiff, CF24 4HQ, UK
| | - Derek J Blake
- MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, CF24 4HQ, UK
| | | | - Andrew J Pocklington
- MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, CF24 4HQ, UK.
| | - Eunju Shin
- Neuroscience and Mental Health Research Institute, Cardiff University, Cardiff, CF24 4HQ, UK. .,School of Life Sciences, Keele University, Keele, ST5 5BG, UK.
| |
Collapse
|
296
|
Abstract
During evolution, the cerebral cortex advances by increasing in surface and the introduction of new cytoarchitectonic areas among which the prefrontal cortex (PFC) is considered to be the substrate of highest cognitive functions. Although neurons of the PFC are generated before birth, the differentiation of its neurons and development of synaptic connections in humans extend to the 3rd decade of life. During this period, synapses as well as neurotransmitter systems including their receptors and transporters, are initially overproduced followed by selective elimination. Advanced methods applied to human and animal models, enable investigation of the cellular mechanisms and role of specific genes, non-coding regulatory elements and signaling molecules in control of prefrontal neuronal production and phenotypic fate, as well as neuronal migration to establish layering of the PFC. Likewise, various genetic approaches in combination with functional assays and immunohistochemical and imaging methods reveal roles of neurotransmitter systems during maturation of the PFC. Disruption, or even a slight slowing of the rate of neuronal production, migration and synaptogenesis by genetic or environmental factors, can induce gross as well as subtle changes that eventually can lead to cognitive impairment. An understanding of the development and evolution of the PFC provide insight into the pathogenesis and treatment of congenital neuropsychiatric diseases as well as idiopathic developmental disorders that cause intellectual disabilities.
Collapse
Affiliation(s)
- Sharon M Kolk
- Department of Molecular Neurobiology, Donders Institute for Brain, Cognition and Behaviour and Faculty of Science, Radboud University, Nijmegen, The Netherlands.
| | - Pasko Rakic
- Department of Neuroscience and Kavli Institute for Neuroscience, Yale University, New Haven, Connecticut, USA.
| |
Collapse
|
297
|
Single-cell delineation of lineage and genetic identity in the mouse brain. Nature 2022; 601:404-409. [PMID: 34912118 PMCID: PMC8770128 DOI: 10.1038/s41586-021-04237-0] [Citation(s) in RCA: 103] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 11/12/2021] [Indexed: 01/25/2023]
Abstract
During neurogenesis, mitotic progenitor cells lining the ventricles of the embryonic mouse brain undergo their final rounds of cell division, giving rise to a wide spectrum of postmitotic neurons and glia1,2. The link between developmental lineage and cell-type diversity remains an open question. Here we used massively parallel tagging of progenitors to track clonal relationships and transcriptomic signatures during mouse forebrain development. We quantified clonal divergence and convergence across all major cell classes postnatally, and found diverse types of GABAergic neuron that share a common lineage. Divergence of GABAergic clones occurred during embryogenesis upon cell-cycle exit, suggesting that differentiation into subtypes is initiated as a lineage-dependent process at the progenitor cell level.
Collapse
|
298
|
Salama SR. The Complexity of the Mammalian Transcriptome. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1363:11-22. [PMID: 35220563 DOI: 10.1007/978-3-030-92034-0_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Draft genome assemblies for multiple mammalian species combined with new technologies to map transcripts from diverse RNA samples to these genomes developed in the early 2000s revealed that the mammalian transcriptome was vastly larger and more complex than previously anticipated. Efforts to comprehensively catalog the identity and features of transcripts present in a variety of species, tissues and cell lines revealed that a large fraction of the mammalian genome is transcribed in at least some settings. A large number of these transcripts encode long non-coding RNAs (lncRNAs). Many lncRNAs overlap or are anti-sense to protein coding genes and others overlap small RNAs. However, a large number are independent of any previously known mRNA or small RNA. While the functions of a majority of these lncRNAs are unknown, many appear to play roles in gene regulation. Many lncRNAs have species-specific and cell type specific expression patterns and their evolutionary origins are varied. While technological challenges have hindered getting a full picture of the diversity and transcript structure of all of the transcripts arising from lncRNA loci, new technologies including single molecule nanopore sequencing and single cell RNA sequencing promise to generate a comprehensive picture of the mammalian transcriptome.
Collapse
Affiliation(s)
- Sofie R Salama
- UC Santa Cruz Genomics Institute, Department of Biomolecular Engineering and Howard Hughes Medical Institute, University of California, Santa Cruz, Santa Cruz, CA, USA.
| |
Collapse
|
299
|
Melliou S, Sangster KT, Djuric U, Diamandis P. The promise of organoids for unraveling the proteomic landscape of the developing human brain. Mol Psychiatry 2022; 27:73-80. [PMID: 34703024 DOI: 10.1038/s41380-021-01354-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 10/04/2021] [Accepted: 10/05/2021] [Indexed: 12/13/2022]
Abstract
Cerebral organoids offer an opportunity to bioengineer experimental avatars of the developing human brain and have already begun garnering relevant insights into complex neurobiological processes and disease. Thus far, investigations into their heterogeneous cellular composition and developmental trajectories have been largely limited to transcriptional readouts. Recent advances in global proteomic technologies have enabled a new range of techniques to explore dynamic and non-overlapping spatiotemporal protein-level programs operational in these humanoid neural structures. Here we discuss these early protein-based studies and their potentially essential role for unraveling critical secreted paracrine signals, processes with poor proteogenomic correlations, or neurodevelopmental proteins requiring post-translational modification for biological activity. Integrating emerging proteomic tools with these faithful human-derived neurodevelopmental models could transform our understanding of complex neural cell phenotypes and neurobiological processes, not exclusively driven by transcriptional regulation. These insights, less accessible by exclusive RNA-based approaches, could reveal new knowledge into human brain development and guide improvements in neural regenerative medicine efforts.
Collapse
Affiliation(s)
- Sofia Melliou
- Princess Margaret Cancer Centre, 101 College Street, Toronto, ON, M5G 1L7, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Kevin T Sangster
- Princess Margaret Cancer Centre, 101 College Street, Toronto, ON, M5G 1L7, Canada
| | - Ugljesa Djuric
- Princess Margaret Cancer Centre, 101 College Street, Toronto, ON, M5G 1L7, Canada
| | - Phedias Diamandis
- Princess Margaret Cancer Centre, 101 College Street, Toronto, ON, M5G 1L7, Canada. .,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, M5S 1A8, Canada. .,Laboratory Medicine Program, University Health Network, 200 Elizabeth Street, Toronto, ON, M5G 2C4, Canada. .,Department of Medical Biophysics, University of Toronto, Toronto, ON, M5S 1A8, Canada.
| |
Collapse
|
300
|
Moussa AJ, Wester JC. Cell-type specific transcriptomic signatures of neocortical circuit organization and their relevance to autism. Front Neural Circuits 2022; 16:982721. [PMID: 36213201 PMCID: PMC9545608 DOI: 10.3389/fncir.2022.982721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 08/29/2022] [Indexed: 11/17/2022] Open
Abstract
A prevailing challenge in neuroscience is understanding how diverse neuronal cell types select their synaptic partners to form circuits. In the neocortex, major classes of excitatory projection neurons and inhibitory interneurons are conserved across functionally distinct regions. There is evidence these classes form canonical circuit motifs that depend primarily on their identity; however, regional cues likely also influence their choice of synaptic partners. We mined the Allen Institute's single-cell RNA-sequencing database of mouse cortical neurons to study the expression of genes necessary for synaptic connectivity and physiology in two regions: the anterior lateral motor cortex (ALM) and the primary visual cortex (VISp). We used the Allen's metadata to parse cells by clusters representing major excitatory and inhibitory classes that are common to both ALM and VISp. We then performed two types of pairwise differential gene expression analysis: (1) between different neuronal classes within the same brain region (ALM or VISp), and (2) between the same neuronal class in ALM and VISp. We filtered our results for differentially expressed genes related to circuit connectivity and developed a novel bioinformatic approach to determine the sets uniquely enriched in each neuronal class in ALM, VISp, or both. This analysis provides an organized set of genes that may regulate synaptic connectivity and physiology in a cell-type-specific manner. Furthermore, it identifies candidate mechanisms for circuit organization that are conserved across functionally distinct cortical regions or that are region dependent. Finally, we used the SFARI Human Gene Module to identify genes from this analysis that are related to risk for autism spectrum disorder (ASD). Our analysis provides clear molecular targets for future studies to understand neocortical circuit organization and abnormalities that underlie autistic phenotypes.
Collapse
Affiliation(s)
- Anthony J Moussa
- Department of Neuroscience, The Ohio State University College of Medicine, Columbus, OH, United States
| | - Jason C Wester
- Department of Neuroscience, The Ohio State University College of Medicine, Columbus, OH, United States
| |
Collapse
|