251
|
Jairaman A, McQuade A, Granzotto A, Kang YJ, Chadarevian JP, Gandhi S, Parker I, Smith I, Cho H, Sensi SL, Othy S, Blurton-Jones M, Cahalan MD. TREM2 regulates purinergic receptor-mediated calcium signaling and motility in human iPSC-derived microglia. eLife 2022; 11:e73021. [PMID: 35191835 PMCID: PMC8906810 DOI: 10.7554/elife.73021] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 02/18/2022] [Indexed: 01/07/2023] Open
Abstract
The membrane protein TREM2 (Triggering Receptor Expressed on Myeloid cells 2) regulates key microglial functions including phagocytosis and chemotaxis. Loss-of-function variants of TREM2 are associated with increased risk of Alzheimer's disease (AD). Because abnormalities in Ca2+ signaling have been observed in several AD models, we investigated TREM2 regulation of Ca2+ signaling in human induced pluripotent stem cell-derived microglia (iPSC-microglia) with genetic deletion of TREM2. We found that iPSC-microglia lacking TREM2 (TREM2 KO) show exaggerated Ca2+ signals in response to purinergic agonists, such as ADP, that shape microglial injury responses. This ADP hypersensitivity, driven by increased expression of P2Y12 and P2Y13 receptors, results in greater release of Ca2+ from the endoplasmic reticulum stores, which triggers sustained Ca2+ influx through Orai channels and alters cell motility in TREM2 KO microglia. Using iPSC-microglia expressing the genetically encoded Ca2+ probe, Salsa6f, we found that cytosolic Ca2+ tunes motility to a greater extent in TREM2 KO microglia. Despite showing greater overall displacement, TREM2 KO microglia exhibit reduced directional chemotaxis along ADP gradients. Accordingly, the chemotactic defect in TREM2 KO microglia was rescued by reducing cytosolic Ca2+ using a P2Y12 receptor antagonist. Our results show that loss of TREM2 confers a defect in microglial Ca2+ response to purinergic signals, suggesting a window of Ca2+ signaling for optimal microglial motility.
Collapse
Affiliation(s)
- Amit Jairaman
- Department of Physiology and Biophysics, University of California, IrvineIrvineUnited States
| | - Amanda McQuade
- Department of Neurobiology and Behavior, University of California, IrvineIrvineUnited States
- Sue and Bill Gross Stem Cell Research Center, University of California, IrvineIrvineUnited States
- UCI Institute for Memory Impairments and Neurological Disorders, University of CaliforniaIrvineUnited States
- Institute for Neurodegenerative Diseases, University of California, San FranciscoSan FranciscoUnited States
| | - Alberto Granzotto
- Department of Neurobiology and Behavior, University of California, IrvineIrvineUnited States
- Center for Advanced Sciences and Technology (CAST), University "G. d'Annunzio" of Chieti-PescaraChietiItaly
- Department of Neuroscience, Imaging and Clinical Sciences, University G d'Annunzio of Chieti-PescaraChietiItaly
| | - You Jung Kang
- Department of Mechanical Engineering and Engineering Science, University of North CarolinaCharlotteUnited States
| | - Jean Paul Chadarevian
- Department of Neurobiology and Behavior, University of California, IrvineIrvineUnited States
| | - Sunil Gandhi
- Department of Neurobiology and Behavior, University of California, IrvineIrvineUnited States
| | - Ian Parker
- Department of Physiology and Biophysics, University of California, IrvineIrvineUnited States
- Department of Neurobiology and Behavior, University of California, IrvineIrvineUnited States
| | - Ian Smith
- Department of Neurobiology and Behavior, University of California, IrvineIrvineUnited States
| | - Hansang Cho
- Institute of Quantum Biophysics, Department of Biophysics, Dept of Intelligent Precision Healthcare Convergence, Sungkyunkwan UniversityGyeonggi-doRepublic of Korea
| | - Stefano L Sensi
- Center for Advanced Sciences and Technology (CAST), University "G. d'Annunzio" of Chieti-PescaraChietiItaly
- Department of Neuroscience, Imaging and Clinical Sciences, University G d'Annunzio of Chieti-PescaraChietiItaly
| | - Shivashankar Othy
- Department of Physiology and Biophysics, University of California, IrvineIrvineUnited States
- Institute for Immunology, University of California, IrvineIrvineUnited States
| | - Mathew Blurton-Jones
- Department of Neurobiology and Behavior, University of California, IrvineIrvineUnited States
- Sue and Bill Gross Stem Cell Research Center, University of California, IrvineIrvineUnited States
- UCI Institute for Memory Impairments and Neurological Disorders, University of CaliforniaIrvineUnited States
- Institute for Immunology, University of California, IrvineIrvineUnited States
| | - Michael D Cahalan
- Department of Physiology and Biophysics, University of California, IrvineIrvineUnited States
- Institute for Immunology, University of California, IrvineIrvineUnited States
| |
Collapse
|
252
|
Cook JR, Gray AL, Lemarchand E, Schiessl I, Green JP, Newland MC, Dyer DP, Brough D, Lawrence CB. LRRC8A is dispensable for a variety of microglial functions and response to acute stroke. Glia 2022; 70:1068-1083. [PMID: 35150591 PMCID: PMC9304177 DOI: 10.1002/glia.24156] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 01/25/2022] [Accepted: 01/27/2022] [Indexed: 11/11/2022]
Abstract
Microglia, resident brain immune cells, are critical in orchestrating responses to central nervous system (CNS) injury. Many microglial functions, such as phagocytosis, motility and chemotaxis, are suggested to rely on chloride channels, including the volume‐regulated anion channel (VRAC), but studies to date have relied on the use of pharmacological tools with limited specificity. VRAC has also been proposed as a drug target for acute CNS injury, and its role in microglial function is of considerable interest for developing CNS therapeutics. This study aimed to definitively confirm the contribution of VRAC in microglia function by using conditional LRRC8A‐knockout mice, which lacked the essential VRAC subunit LRRC8A in microglia. We demonstrated that while VRAC contributed to cell volume regulation, it had no effect on phagocytic activity, cell migration or P2YR12‐dependent chemotaxis. Moreover, loss of microglial VRAC did not affect microglial morphology or the extent of ischemic damage following stroke. We conclude that VRAC does not critically regulate microglial responses to brain injury and could be targetable in other CNS cell types (e.g., astrocytes) without impeding microglial function. Our results also demonstrate a role for VRAC in cell volume regulation but show that VRAC is not involved in several major cellular functions that it was previously thought to regulate, and point to other, alternative mechanisms of chloride transport in innate immunity.
Collapse
Affiliation(s)
- James R Cook
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance NHS Group, University of Manchester, Manchester, UK.,Division of Neuroscience and Experimental Psychology, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Anna L Gray
- Wellcome Centre for Cell-Matrix Research, Lydia Becker Institute of Immunology and Inflammation, Division of Infection, Immunity and Respiratory Medicine, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Eloise Lemarchand
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance NHS Group, University of Manchester, Manchester, UK.,Division of Neuroscience and Experimental Psychology, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Ingo Schiessl
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance NHS Group, University of Manchester, Manchester, UK.,Division of Neuroscience and Experimental Psychology, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Jack P Green
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance NHS Group, University of Manchester, Manchester, UK.,Division of Neuroscience and Experimental Psychology, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Mary C Newland
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance NHS Group, University of Manchester, Manchester, UK.,Division of Neuroscience and Experimental Psychology, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Douglas P Dyer
- Wellcome Centre for Cell-Matrix Research, Lydia Becker Institute of Immunology and Inflammation, Division of Infection, Immunity and Respiratory Medicine, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - David Brough
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance NHS Group, University of Manchester, Manchester, UK.,Division of Neuroscience and Experimental Psychology, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Catherine B Lawrence
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance NHS Group, University of Manchester, Manchester, UK.,Division of Neuroscience and Experimental Psychology, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| |
Collapse
|
253
|
Chen Y, Zhou Y, Li XC, Ma X, Mi WL, Chu YX, Wang YQ, Mao-Ying QL. Neuronal GRK2 regulates microglial activation and contributes to electroacupuncture analgesia on inflammatory pain in mice. Biol Res 2022; 55:5. [PMID: 35115050 PMCID: PMC8812183 DOI: 10.1186/s40659-022-00374-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 01/22/2022] [Indexed: 12/30/2022] Open
Abstract
Background G protein coupled receptor kinase 2 (GRK2) has been demonstrated to play a crucial role in the development of chronic pain. Acupuncture is an alternative therapy widely used for pain management. In this study, we investigated the role of spinal neuronal GRK2 in electroacupuncture (EA) analgesia. Methods The mice model of inflammatory pain was built by subcutaneous injection of Complete Freund’s Adjuvant (CFA) into the plantar surface of the hind paws. The mechanical allodynia of mice was examined by von Frey test. The mice were subjected to EA treatment (BL60 and ST36 acupuncture points) for 1 week. Overexpression and downregulation of spinal neuronal GRK2 were achieved by intraspinal injection of adeno associated virus (AAV) containing neuron-specific promoters, and microglial activation and neuroinflammation were evaluated by real-time PCR. Results Intraplantar injection with CFA in mice induced the decrease of GRK2 and microglial activation along with neuroinflammation in spinal cord. EA treatment increased the spinal GRK2, reduced neuroinflammation, and significantly decreased CFA-induced mechanical allodynia. The effects of EA were markedly weakened by non-cell-specific downregulation of spinal GRK2. Further, intraspinal injection of AAV containing neuron-specific promoters specifically downregulated neuronal GRK2, and weakened the regulatory effect of EA on CFA-induced mechanical allodynia and microglial activation. Meanwhile, overexpression of spinal neuronal GRK2 decreased mechanical allodynia. All these indicated that the neuronal GRK2 mediated microglial activation and neuroinflammation, and subsequently contributed to CFA-induced inflammatory pain. Conclusion The restoration of the spinal GRK2 and subsequent suppression of microglial activation and neuroinflammation might be an important mechanism for EA analgesia. Our findings further suggested that the spinal GRK2, especially neuronal GRK2, might be the potential target for EA analgesia and pain management, and we provided a new experimental basis for the EA treatment of pain. Supplementary Information The online version contains supplementary material available at 10.1186/s40659-022-00374-6.
Collapse
Affiliation(s)
- Yu Chen
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, Shanghai Medical College, Institute of Acupuncture Research, Institutes of Integrative Medicine, Fudan University, Shanghai, 200032, People's Republic of China
| | - Yang Zhou
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, 200032, People's Republic of China
| | - Xiao-Chen Li
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, Shanghai Medical College, Institute of Acupuncture Research, Institutes of Integrative Medicine, Fudan University, Shanghai, 200032, People's Republic of China
| | - Xue Ma
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, Shanghai Medical College, Institute of Acupuncture Research, Institutes of Integrative Medicine, Fudan University, Shanghai, 200032, People's Republic of China
| | - Wen-Li Mi
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, Shanghai Medical College, Institute of Acupuncture Research, Institutes of Integrative Medicine, Fudan University, Shanghai, 200032, People's Republic of China
| | - Yu-Xia Chu
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, Shanghai Medical College, Institute of Acupuncture Research, Institutes of Integrative Medicine, Fudan University, Shanghai, 200032, People's Republic of China
| | - Yan-Qing Wang
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, Shanghai Medical College, Institute of Acupuncture Research, Institutes of Integrative Medicine, Fudan University, Shanghai, 200032, People's Republic of China.,State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, 200032, People's Republic of China.,Shanghai Key Laboratory of Acupuncture Mechanism and Acupoint Function, Fudan University, Shanghai, 200433, People's Republic of China
| | - Qi-Liang Mao-Ying
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, Shanghai Medical College, Institute of Acupuncture Research, Institutes of Integrative Medicine, Fudan University, Shanghai, 200032, People's Republic of China. .,Shanghai Key Laboratory of Acupuncture Mechanism and Acupoint Function, Fudan University, Shanghai, 200433, People's Republic of China.
| |
Collapse
|
254
|
Xu L, Wang J, Ding Y, Wang L, Zhu YJ. Current Knowledge of Microglia in Traumatic Spinal Cord Injury. Front Neurol 2022; 12:796704. [PMID: 35087472 PMCID: PMC8787368 DOI: 10.3389/fneur.2021.796704] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Accepted: 12/07/2021] [Indexed: 12/12/2022] Open
Abstract
Microglia are the resident immune cells in the central nervous system (CNS). After traumatic spinal cord injury (SCI), microglia undergo activation, proliferation, and changes in gene and protein expression and morphology, with detrimental and beneficial effects. Activated microglia cause secondary neuronal injury via the production of proinflammatory cytokines, reactive oxygen species, and proteases. However, activated microglia also promote neuronal repair through the secretion of anti-inflammatory growth factors and cytokines. Proinflammatory cytokines increase endothelial permeability, promote A1 astrocyte activation and axonal demyelination, and reduce neural stem/progenitor cells (NSPCs), leading to the exacerbation of neuronal injury. In contrast, anti-inflammatory factors facilitate angiogenesis, reduce reactive astrocytes, and promote axonal remyelination and the propagation of NSPCs, contributing to tissue repair and locomotor recovery. Due to its limited regenerative capacity, the CNS requires beneficial microglia for continuous protection against injury. Understanding and regulating microglial activation status are beneficial to reducing detrimental effects and promoting repair behaviors and to obtain more information on efficient therapies for traumatic SCI. This review discusses microglial activation and the differences between microglia and similar immune cells, microglial interactions with other cells in the spinal cord, and the progress in the development of therapies targeting microglia in SCI.
Collapse
Affiliation(s)
- Lintao Xu
- Department of Neurosurgery, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Jingyu Wang
- Department of Neurosurgery, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Yueming Ding
- School of Medicine, Zhejiang University City College, Hangzhou, China
| | - Linlin Wang
- Department of Basic Medicine Sciences, and Department of Orthopaedics of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yong-Jian Zhu
- Department of Neurosurgery, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
255
|
Paasila PJ, Aramideh JA, Sutherland GT, Graeber MB. Synapses, Microglia, and Lipids in Alzheimer's Disease. Front Neurosci 2022; 15:778822. [PMID: 35095394 PMCID: PMC8789683 DOI: 10.3389/fnins.2021.778822] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 12/06/2021] [Indexed: 12/17/2022] Open
Abstract
Alzheimer's disease (AD) is characterised by synaptic dysfunction accompanied by the microscopically visible accumulation of pathological protein deposits and cellular dystrophy involving both neurons and glia. Late-stage AD shows pronounced loss of synapses and neurons across several differentially affected brain regions. Recent studies of advanced AD using post-mortem brain samples have demonstrated the direct involvement of microglia in synaptic changes. Variants of the Apolipoprotein E and Triggering Receptors Expressed on Myeloid Cells gene represent important determinants of microglial activity but also of lipid metabolism in cells of the central nervous system. Here we review evidence that may help to explain how abnormal lipid metabolism, microglial activation, and synaptic pathophysiology are inter-related in AD.
Collapse
Affiliation(s)
- Patrick J. Paasila
- Charles Perkins Centre, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, Australia
- School of Medicine, Western Sydney University, Campbelltown, NSW, Australia
| | - Jason A. Aramideh
- Brain and Mind Centre, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, Australia
| | - Greg T. Sutherland
- Charles Perkins Centre, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, Australia
| | - Manuel B. Graeber
- Brain and Mind Centre, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, Australia
| |
Collapse
|
256
|
Prelic S, Pal Mahadevan V, Venkateswaran V, Lavista-Llanos S, Hansson BS, Wicher D. Functional Interaction Between Drosophila Olfactory Sensory Neurons and Their Support Cells. Front Cell Neurosci 2022; 15:789086. [PMID: 35069116 PMCID: PMC8777253 DOI: 10.3389/fncel.2021.789086] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 12/15/2021] [Indexed: 01/14/2023] Open
Abstract
Insects detect volatile chemicals using antennae, which house a vast variety of olfactory sensory neurons (OSNs) that innervate hair-like structures called sensilla where odor detection takes place. In addition to OSNs, the antenna also hosts various support cell types. These include the triad of trichogen, tormogen, and thecogen support cells that lie adjacent to their respective OSNs. The arrangement of OSN supporting cells occurs stereotypically for all sensilla and is widely conserved in evolution. While insect chemosensory neurons have received considerable attention, little is known about the functional significance of the cells that support them. For instance, it remains unknown whether support cells play an active role in odor detection, or only passively contribute to homeostasis, e.g., by maintaining sensillum lymph composition. To investigate the functional interaction between OSNs and support cells, we used optical and electrophysiological approaches in Drosophila. First, we characterized the distribution of various supporting cells using genetic markers. By means of an ex vivo antennal preparation and genetically-encoded Ca2+ and K+ indicators, we then studied the activation of these auxiliary cells during odor presentation in adult flies. We observed acute responses and distinct differences in Ca2+ and K+ fluxes between support cell types. Finally, we observed alterations in OSN responses upon thecogen cell ablation in mature adults. Upon inducible ablation of thecogen cells, we notice a gain in mechanical responsiveness to mechanical stimulations during single-sensillum recording, but a lack of change to the neuronal resting activity. Taken together, these results demonstrate that support cells play a more active and responsive role during odor processing than previously thought. Our observations thus reveal that support cells functionally interact with OSNs and may be important for the extraordinary ability of insect olfactory systems to dynamically and sensitively discriminate between odors in the turbulent sensory landscape of insect flight.
Collapse
Affiliation(s)
- Sinisa Prelic
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Venkatesh Pal Mahadevan
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Vignesh Venkateswaran
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Sofia Lavista-Llanos
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, Jena, Germany
- CIFASIS-CONICET Franco-Argentine International Center for Information and Systems Sciences—National Council for Scientific and Technical Research, Rosario, Argentina
| | - Bill S. Hansson
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Dieter Wicher
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, Jena, Germany
- *Correspondence: Dieter Wicher
| |
Collapse
|
257
|
Šimončičová E, Gonçalves de Andrade E, Vecchiarelli HA, Awogbindin IO, Delage CI, Tremblay MÈ. Present and future of microglial pharmacology. Trends Pharmacol Sci 2022; 43:669-685. [PMID: 35031144 DOI: 10.1016/j.tips.2021.11.006] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 10/28/2021] [Accepted: 11/09/2021] [Indexed: 12/14/2022]
Abstract
Microglia, brain resident immune cells, modulate development, activity, and plasticity of the central nervous system. Mechanistically implicated in numerous neurological pathologies, microglia emerge as strong contenders for novel neurotherapies. Shifting away from merely an attenuation of excessive microglial inflammatory and phagocytic activities, current therapies aim toward targeting the complex context-dependent microglial heterogeneity, unveiled by large-scale genetic studies and emerging single-cell analyses. Although lacking the necessary selectivity, initial therapies attempting to target specific state-associated microglial properties and functions (e.g., inflammatory activity, phagocytosis, proliferation, metabolism, or surveillance) are currently under pre- or even clinical (Phase I-IV) investigation. Here, we provide an update on current microglial therapeutic research and discuss what the future in the field might look like.
Collapse
Affiliation(s)
- Eva Šimončičová
- Neuroscience Graduate Program, University of Victoria, Victoria, BC, Canada; Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
| | - Elisa Gonçalves de Andrade
- Neuroscience Graduate Program, University of Victoria, Victoria, BC, Canada; Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
| | | | - Ifeoluwa O Awogbindin
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada; Neuroimmunology Group, Molecular Drug Metabolism and Toxicology Laboratory, Department of Biochemistry, University of Ibadan, Ibadan, Nigeria
| | - Charlotte I Delage
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
| | - Marie-Ève Tremblay
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada; Axe Neurosciences, Centre de Recherche du CHU de Québec, Université Laval, Québec City, QC, Canada; Neurology and Neurosurgery Department, McGill University, Montréal, QC, Canada; Department of Molecular Medicine, Université Laval, Québec City, QC, Canada; Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada; Centre for Advanced Materials and Related Technology (CAMTEC), University of Victoria, Victoria, BC, Canada.
| |
Collapse
|
258
|
Francelle L, Mazzulli JR. Neuroinflammation in aucher disease, neuronal ceroid lipofuscinosis, and commonalities with Parkinson’s disease. Brain Res 2022; 1780:147798. [PMID: 35063468 PMCID: PMC9126024 DOI: 10.1016/j.brainres.2022.147798] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 01/05/2022] [Accepted: 01/13/2022] [Indexed: 12/13/2022]
Abstract
Lysosomal storage diseases (LSDs) are rare genetic disorders caused by a disruption in cellular clearance, resulting in pathological storage of undegraded lysosomal substrates. Recent clinical and genetic studies have uncovered links between multiple LSDs and common neurodegenerative diseases such as Parkinson's disease (PD). Here, we review recent literature describing the role of glia cells and neuroinflammation in PD and LSDs, including Gaucher disease (GD) and neuronal ceroid lipofuscinosis (NCL), and highlight converging inflammation pathways that lead to neuron loss. Recent data indicates that lysosomal dysfunction and accumulation of storage materials can initiate the activation of glial cells, through interaction with cell surface or cytosolic pattern recognition receptors that detect pathogenic aggregates of cellular debris. Activated glia cells could act to protect neurons through the elimination of toxic protein or lipid aggregates early in the disease process. However prolonged glial activation that occurs over several decades in chronic-age related neurodegeneration could induce the inappropriate elimination of synapses, leading to neuron loss. These studies provide mechanistic insight into the relationship between lysosomal dysfunction and glial activation, and offer novel therapeutic pathways for the treatment of PD and LSDs focused on reducing neuroinflammation and mitigating cell loss.
Collapse
|
259
|
Chidambaram H, Das R, Chinnathambi S. G-Protein coupled Purinergic P2Y12 receptor interacts and internalizes TauRD-mediated by membrane-associated actin cytoskeleton remodelling in microglia. Eur J Cell Biol 2022; 101:151201. [DOI: 10.1016/j.ejcb.2022.151201] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 01/20/2022] [Accepted: 01/20/2022] [Indexed: 12/11/2022] Open
|
260
|
Xie M, Zhao S, Bosco DB, Nguyen A, Wu LJ. Microglial TREM2 in amyotrophic lateral sclerosis. Dev Neurobiol 2022; 82:125-137. [PMID: 34874625 PMCID: PMC8898078 DOI: 10.1002/dneu.22864] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 11/12/2021] [Accepted: 12/01/2021] [Indexed: 12/12/2022]
Abstract
Amyotrophic lateral sclerosis (ALS), also known as Lou Gehrig's disease, is an aggressive motor neuron degenerative disease characterized by selective loss of both upper and lower motor neurons. The mechanisms underlying disease initiation and progression are poorly understood. The involvement of nonmotor neuraxis emphasizes the contribution of glial cells in disease progress. Microglia comprise a unique subset of glial cells and are the principal immune cells in the central nervous system (CNS). Triggering receptor expressed on myeloid cell 2 (TREM2) is a surface receptor that, within the CNS, is exclusively expressed on microglia and plays crucial roles in microglial proliferation, migration, activation, metabolism, and phagocytosis. Genetic evidence has linked TREM2 to neurodegenerative diseases including ALS, but its function in ALS pathogenesis is largely unknown. In this review, we summarize how microglial activation, with a specific focus on TREM2 function, affects ALS progression clinically and experimentally. Understanding microglial TREM2 function will help pinpoint the molecular target for ALS treatment.
Collapse
Affiliation(s)
- Manling Xie
- Department of Neurology, Mayo Clinic, Rochester, MN 55905
- Mayo Clinic Graduate School of Biomedical Sciences, Rochester, MN, 55905
| | - Shunyi Zhao
- Department of Neurology, Mayo Clinic, Rochester, MN 55905
| | - Dale B. Bosco
- Department of Neurology, Mayo Clinic, Rochester, MN 55905
| | - Aivi Nguyen
- Department of Laboratory Medicine and Pathology, Mayo Cinic, Rochester, MN 55905
| | - Long-Jun Wu
- Department of Neurology, Mayo Clinic, Rochester, MN 55905
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224
- Department of Immunology, Mayo Clinic, Rochester, MN 55905
| |
Collapse
|
261
|
Berdowski WM, van der Linde HC, Breur M, Oosterhof N, Beerepoot S, Sanderson L, Wijnands LI, de Jong P, Tsai-Meu-Chong E, de Valk W, de Witte M, van IJcken WFJ, Demmers J, van der Knaap MS, Bugiani M, Wolf NI, van Ham TJ. Dominant-acting CSF1R variants cause microglial depletion and altered astrocytic phenotype in zebrafish and adult-onset leukodystrophy. Acta Neuropathol 2022; 144:211-239. [PMID: 35713703 PMCID: PMC9288387 DOI: 10.1007/s00401-022-02440-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 05/16/2022] [Accepted: 05/16/2022] [Indexed: 11/26/2022]
Abstract
Tissue-resident macrophages of the brain, including microglia, are implicated in the pathogenesis of various CNS disorders and are possible therapeutic targets by their chemical depletion or replenishment by hematopoietic stem cell therapy. Nevertheless, a comprehensive understanding of microglial function and the consequences of microglial depletion in the human brain is lacking. In human disease, heterozygous variants in CSF1R, encoding the Colony-stimulating factor 1 receptor, can lead to adult-onset leukoencephalopathy with axonal spheroids and pigmented glia (ALSP) possibly caused by microglial depletion. Here, we investigate the effects of ALSP-causing CSF1R variants on microglia and explore the consequences of microglial depletion in the brain. In intermediate- and late-stage ALSP post-mortem brain, we establish that there is an overall loss of homeostatic microglia and that this is predominantly seen in the white matter. By introducing ALSP-causing missense variants into the zebrafish genomic csf1ra locus, we show that these variants act dominant negatively on the number of microglia in vertebrate brain development. Transcriptomics and proteomics on relatively spared ALSP brain tissue validated a downregulation of microglia-associated genes and revealed elevated astrocytic proteins, possibly suggesting involvement of astrocytes in early pathogenesis. Indeed, neuropathological analysis and in vivo imaging of csf1r zebrafish models showed an astrocytic phenotype associated with enhanced, possibly compensatory, endocytosis. Together, our findings indicate that microglial depletion in zebrafish and human disease, likely as a consequence of dominant-acting pathogenic CSF1R variants, correlates with altered astrocytes. These findings underscore the unique opportunity CSF1R variants provide to gain insight into the roles of microglia in the human brain, and the need to further investigate how microglia, astrocytes, and their interactions contribute to white matter homeostasis.
Collapse
Affiliation(s)
- Woutje M. Berdowski
- grid.5645.2000000040459992XDepartment of Clinical Genetics, Erasmus MC, University Medical Center Rotterdam, PO Box 2040, 3000 CA Rotterdam, The Netherlands
| | - Herma C. van der Linde
- grid.5645.2000000040459992XDepartment of Clinical Genetics, Erasmus MC, University Medical Center Rotterdam, PO Box 2040, 3000 CA Rotterdam, The Netherlands
| | - Marjolein Breur
- grid.12380.380000 0004 1754 9227Department of Child Neurology, Amsterdam Leukodystrophy Center, Emma Children’s Hospital, Amsterdam University Medical Centers, Vrije Universiteit, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands ,grid.12380.380000 0004 1754 9227Amsterdam Neuroscience, Amsterdam University Medical Centers, Vrije Universiteit, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands ,grid.484519.5Department of Pathology, Neuroscience Campus Amsterdam, VU University Medical Center, Amsterdam, The Netherlands
| | - Nynke Oosterhof
- grid.4494.d0000 0000 9558 4598European Research Institute for the Biology of Ageing (ERIBA), University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Shanice Beerepoot
- grid.12380.380000 0004 1754 9227Department of Child Neurology, Amsterdam Leukodystrophy Center, Emma Children’s Hospital, Amsterdam University Medical Centers, Vrije Universiteit, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands ,grid.12380.380000 0004 1754 9227Amsterdam Neuroscience, Amsterdam University Medical Centers, Vrije Universiteit, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands
| | - Leslie Sanderson
- grid.5645.2000000040459992XDepartment of Clinical Genetics, Erasmus MC, University Medical Center Rotterdam, PO Box 2040, 3000 CA Rotterdam, The Netherlands
| | - Lieve I. Wijnands
- grid.5645.2000000040459992XDepartment of Clinical Genetics, Erasmus MC, University Medical Center Rotterdam, PO Box 2040, 3000 CA Rotterdam, The Netherlands
| | - Patrick de Jong
- grid.5645.2000000040459992XDepartment of Clinical Genetics, Erasmus MC, University Medical Center Rotterdam, PO Box 2040, 3000 CA Rotterdam, The Netherlands
| | - Elisa Tsai-Meu-Chong
- grid.5645.2000000040459992XDepartment of Clinical Genetics, Erasmus MC, University Medical Center Rotterdam, PO Box 2040, 3000 CA Rotterdam, The Netherlands
| | - Walter de Valk
- grid.5645.2000000040459992XDepartment of Clinical Genetics, Erasmus MC, University Medical Center Rotterdam, PO Box 2040, 3000 CA Rotterdam, The Netherlands
| | - Moniek de Witte
- grid.7692.a0000000090126352Hematology Department, University Medical Center, Utrecht, The Netherlands
| | - Wilfred F. J. van IJcken
- grid.5645.2000000040459992XCenter for Biomics, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Jeroen Demmers
- grid.5645.2000000040459992XProteomics Center, Erasmus University Medical Center, Wytemaweg 80, 3015 CN Rotterdam, The Netherlands
| | - Marjo S. van der Knaap
- grid.12380.380000 0004 1754 9227Department of Child Neurology, Amsterdam Leukodystrophy Center, Emma Children’s Hospital, Amsterdam University Medical Centers, Vrije Universiteit, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands ,grid.12380.380000 0004 1754 9227Amsterdam Neuroscience, Amsterdam University Medical Centers, Vrije Universiteit, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands
| | - Marianna Bugiani
- grid.12380.380000 0004 1754 9227Department of Child Neurology, Amsterdam Leukodystrophy Center, Emma Children’s Hospital, Amsterdam University Medical Centers, Vrije Universiteit, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands ,grid.12380.380000 0004 1754 9227Amsterdam Neuroscience, Amsterdam University Medical Centers, Vrije Universiteit, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands ,grid.484519.5Department of Pathology, Neuroscience Campus Amsterdam, VU University Medical Center, Amsterdam, The Netherlands
| | - Nicole I. Wolf
- grid.12380.380000 0004 1754 9227Department of Child Neurology, Amsterdam Leukodystrophy Center, Emma Children’s Hospital, Amsterdam University Medical Centers, Vrije Universiteit, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands ,grid.12380.380000 0004 1754 9227Amsterdam Neuroscience, Amsterdam University Medical Centers, Vrije Universiteit, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands
| | - Tjakko J. van Ham
- grid.5645.2000000040459992XDepartment of Clinical Genetics, Erasmus MC, University Medical Center Rotterdam, PO Box 2040, 3000 CA Rotterdam, The Netherlands
| |
Collapse
|
262
|
Tóth K, Lénárt N, Berki P, Fekete R, Szabadits E, Pósfai B, Cserép C, Alatshan A, Benkő S, Kiss D, Hübner CA, Gulyás A, Kaila K, Környei Z, Dénes Á. The NKCC1 ion transporter modulates microglial phenotype and inflammatory response to brain injury in a cell-autonomous manner. PLoS Biol 2022; 20:e3001526. [PMID: 35085235 PMCID: PMC8856735 DOI: 10.1371/journal.pbio.3001526] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 02/18/2022] [Accepted: 01/04/2022] [Indexed: 12/25/2022] Open
Abstract
The NKCC1 ion transporter contributes to the pathophysiology of common neurological disorders, but its function in microglia, the main inflammatory cells of the brain, has remained unclear to date. Therefore, we generated a novel transgenic mouse line in which microglial NKCC1 was deleted. We show that microglial NKCC1 shapes both baseline and reactive microglia morphology, process recruitment to the site of injury, and adaptation to changes in cellular volume in a cell-autonomous manner via regulating membrane conductance. In addition, microglial NKCC1 deficiency results in NLRP3 inflammasome priming and increased production of interleukin-1β (IL-1β), rendering microglia prone to exaggerated inflammatory responses. In line with this, central (intracortical) administration of the NKCC1 blocker, bumetanide, potentiated intracortical lipopolysaccharide (LPS)-induced cytokine levels. In contrast, systemic bumetanide application decreased inflammation in the brain. Microglial NKCC1 KO animals exposed to experimental stroke showed significantly increased brain injury, inflammation, cerebral edema and worse neurological outcome. Thus, NKCC1 emerges as an important player in controlling microglial ion homeostasis and inflammatory responses through which microglia modulate brain injury. The contribution of microglia to central NKCC1 actions is likely to be relevant for common neurological disorders.
Collapse
Affiliation(s)
- Krisztina Tóth
- Momentum Laboratory of Neuroimmunology, Institute of Experimental Medicine, Budapest, Hungary
- János Szentágothai Doctoral School of Neurosciences, Semmelweis University, Budapest, Hungary
| | - Nikolett Lénárt
- Momentum Laboratory of Neuroimmunology, Institute of Experimental Medicine, Budapest, Hungary
| | - Péter Berki
- János Szentágothai Doctoral School of Neurosciences, Semmelweis University, Budapest, Hungary
- Laboratory of Cerebral Cortex Research, Institute of Experimental Medicine, Budapest, Hungary
| | - Rebeka Fekete
- Momentum Laboratory of Neuroimmunology, Institute of Experimental Medicine, Budapest, Hungary
| | - Eszter Szabadits
- Momentum Laboratory of Neuroimmunology, Institute of Experimental Medicine, Budapest, Hungary
| | - Balázs Pósfai
- Momentum Laboratory of Neuroimmunology, Institute of Experimental Medicine, Budapest, Hungary
- János Szentágothai Doctoral School of Neurosciences, Semmelweis University, Budapest, Hungary
| | - Csaba Cserép
- Momentum Laboratory of Neuroimmunology, Institute of Experimental Medicine, Budapest, Hungary
| | - Ahmad Alatshan
- Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- Doctoral School of Molecular Cellular and Immune Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Szilvia Benkő
- Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- Doctoral School of Molecular Cellular and Immune Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Dániel Kiss
- Software Engineering Institute, John von Neumann Faculty of Informatics, Óbuda University, Budapest, Hungary
| | | | - Attila Gulyás
- Laboratory of Cerebral Cortex Research, Institute of Experimental Medicine, Budapest, Hungary
| | - Kai Kaila
- Molecular and Integrative Biosciences and Neuroscience Center (HiLIFE), University of Helsinki, Helsinki, Finland
| | - Zsuzsanna Környei
- Momentum Laboratory of Neuroimmunology, Institute of Experimental Medicine, Budapest, Hungary
| | - Ádám Dénes
- Momentum Laboratory of Neuroimmunology, Institute of Experimental Medicine, Budapest, Hungary
- * E-mail:
| |
Collapse
|
263
|
Haidar MA, Ibeh S, Shakkour Z, Reslan MA, Nwaiwu J, Moqidem YA, Sader G, Nickles RG, Babale I, Jaffa AA, Salama M, Shaito A, Kobeissy F. Crosstalk between Microglia and Neurons in Neurotrauma: An Overview of the Underlying Mechanisms. Curr Neuropharmacol 2022; 20:2050-2065. [PMID: 34856905 PMCID: PMC9886840 DOI: 10.2174/1570159x19666211202123322] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 11/12/2021] [Accepted: 11/18/2021] [Indexed: 11/22/2022] Open
Abstract
Microglia are the resident immune cells of the brain and play a crucial role in housekeeping and maintaining homeostasis of the brain microenvironment. Upon injury or disease, microglial cells become activated, at least partly, via signals initiated by injured neurons. Activated microglia, thereby, contribute to both neuroprotection and neuroinflammation. However, sustained microglial activation initiates a chronic neuroinflammatory response which can disturb neuronal health and disrupt communications between neurons and microglia. Thus, microglia-neuron crosstalk is critical in a healthy brain as well as during states of injury or disease. As most studies focus on how neurons and microglia act in isolation during neurotrauma, there is a need to understand the interplay between these cells in brain pathophysiology. This review highlights how neurons and microglia reciprocally communicate under physiological conditions and during brain injury and disease. Furthermore, the modes of microglia-neuron communication are exposed, focusing on cell-contact dependent signaling and communication by the secretion of soluble factors like cytokines and growth factors. In addition, it has been discussed that how microglia-neuron interactions could exert either beneficial neurotrophic effects or pathologic proinflammatory responses. We further explore how aberrations in microglia-neuron crosstalk may be involved in central nervous system (CNS) anomalies, namely traumatic brain injury (TBI), neurodegeneration, and ischemic stroke. A clear understanding of how the microglia-neuron crosstalk contributes to the pathogenesis of brain pathologies may offer novel therapeutic avenues of brain trauma treatment.
Collapse
Affiliation(s)
- Muhammad Ali Haidar
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Stanley Ibeh
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Zaynab Shakkour
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Mohammad Amine Reslan
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Judith Nwaiwu
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Yomna Adel Moqidem
- Biotechnology Program, School of Science and Engineering, The American University in Cairo, Cairo, Egypt
| | - Georgio Sader
- Faculty of Medicine, University of Balamand, Balamand, Lebanon
| | - Rachel G. Nickles
- Program for Neurotrauma, Neuroproteomics & Biomarkers Research, Departments of Emergency Medicine, University of Florida, Gainesville, FL 32611, USA
| | - Ismail Babale
- Department of Biomedical Engineering, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Aneese A. Jaffa
- Department of Biology, Faculty of Arts and Sciences, American University of Beirut, Beirut, Lebanon
| | - Mohamed Salama
- Institute of Global Health and Human Ecology (I-GHHE), The American University in Cairo, New Cairo 11835, Egypt
- Global Brain Health Institute (GBHI), Trinity College Dublin, Dublin, Ireland
| | - Abdullah Shaito
- Biomedical Research Center, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Firas Kobeissy
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
- Department of Biomedical Engineering, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| |
Collapse
|
264
|
Puigdellívol M, Milde S, Vilalta A, Cockram TOJ, Allendorf DH, Lee JY, Dundee JM, Pampuščenko K, Borutaite V, Nuthall HN, Brelstaff JH, Spillantini MG, Brown GC. The microglial P2Y 6 receptor mediates neuronal loss and memory deficits in neurodegeneration. Cell Rep 2021; 37:110148. [PMID: 34965424 PMCID: PMC8733854 DOI: 10.1016/j.celrep.2021.110148] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 10/01/2021] [Accepted: 11/29/2021] [Indexed: 12/29/2022] Open
Abstract
Microglia are implicated in neurodegeneration, potentially by phagocytosing neurons, but it is unclear how to block the detrimental effects of microglia while preserving their beneficial roles. The microglial P2Y6 receptor (P2Y6R) - activated by extracellular UDP released by stressed neurons - is required for microglial phagocytosis of neurons. We show here that injection of amyloid beta (Aβ) into mouse brain induces microglial phagocytosis of neurons, followed by neuronal and memory loss, and this is all prevented by knockout of P2Y6R. In a chronic tau model of neurodegeneration (P301S TAU mice), P2Y6R knockout prevented TAU-induced neuronal and memory loss. In vitro, P2Y6R knockout blocked microglial phagocytosis of live but not dead targets and reduced tau-, Aβ-, and UDP-induced neuronal loss in glial-neuronal cultures. Thus, the P2Y6 receptor appears to mediate Aβ- and tau-induced neuronal and memory loss via microglial phagocytosis of neurons, suggesting that blocking this receptor may be beneficial in the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Mar Puigdellívol
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, UK; Department of Biomedicine, School of Medicine, Institute of Neuroscience, University of Barcelona, 08036 Barcelona, Spain
| | - Stefan Milde
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, UK
| | - Anna Vilalta
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, UK
| | - Tom O J Cockram
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, UK
| | - David H Allendorf
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, UK
| | - Jeffrey Y Lee
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, UK
| | - Jacob M Dundee
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, UK
| | - Katryna Pampuščenko
- Neuroscience Institute, Lithuanian University of Health Sciences, 50009 Kaunas, Lithuania
| | - Vilmante Borutaite
- Neuroscience Institute, Lithuanian University of Health Sciences, 50009 Kaunas, Lithuania
| | - Hugh N Nuthall
- Neuroscience, Eli Lilly Research & Development, Windlesham, Surrey GU20 6PH, UK
| | - Jack H Brelstaff
- Clinical Neurosciences, University of Cambridge, Cambridge CB2 0QQ, UK
| | | | - Guy C Brown
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, UK.
| |
Collapse
|
265
|
Timmerman R, Zuiderwijk-Sick EA, Oosterhof N, 't Jong AEJ, Veth J, Burm SM, van Ham TJ, Bajramovic JJ. Transcriptome analysis reveals the contribution of oligodendrocyte and radial glia-derived cues for maintenance of microglia identity. Glia 2021; 70:728-747. [PMID: 34961968 DOI: 10.1002/glia.24136] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 11/26/2021] [Accepted: 12/17/2021] [Indexed: 12/13/2022]
Abstract
Microglia are increasingly being recognized as druggable targets in neurodegenerative disorders, and good in vitro models are crucial to address cell biological questions. Major challenges are to recapitulate the complex microglial morphology and their in vivo transcriptome. We have therefore exposed primary microglia from adult rhesus macaques to a variety of different culture conditions including exposure to soluble factors as M-CSF, IL-34, and TGF-β as well as serum replacement approaches, and compared their morphologies and transcriptomes to those of mature, homeostatic in vivo microglia. This enabled us to develop a new, partially serum-free, monoculture protocol, that yields high numbers of ramified cells. We also demonstrate that exposure of adult microglia to M-CSF or IL-34 induces similar transcriptomes, and that exposure to TGF-β has much less pronounced effects than it does on rodent microglia. However, regardless of culture conditions, the transcriptomes of in vitro and in vivo microglia remained substantially different. Analysis of differentially expressed genes inspired us to perform 3D-spherical coculture experiments of microglia with oligodendrocytes and radial glia. In such spheres, microglia signature genes were strongly induced, even in the absence of neurons and astrocytes. These data reveal a novel role for oligodendrocyte and radial glia-derived cues in the maintenance of microglial identity, providing new anchor points to study microglia in health and disease.
Collapse
Affiliation(s)
- Raissa Timmerman
- Alternatives Unit, Biomedical Primate Research Centre, Rijswijk, The Netherlands
| | | | - Nynke Oosterhof
- Department of Clinical Genetics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands.,European Research Institute for the Biology of Ageing, University Medical Center Groningen, Groningen, The Netherlands
| | - Anke E J 't Jong
- Alternatives Unit, Biomedical Primate Research Centre, Rijswijk, The Netherlands
| | - Jennifer Veth
- Alternatives Unit, Biomedical Primate Research Centre, Rijswijk, The Netherlands
| | - Saskia M Burm
- Alternatives Unit, Biomedical Primate Research Centre, Rijswijk, The Netherlands
| | - Tjakko J van Ham
- Department of Clinical Genetics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Jeffrey J Bajramovic
- Alternatives Unit, Biomedical Primate Research Centre, Rijswijk, The Netherlands
| |
Collapse
|
266
|
Sierra A, Paolicelli RC. Editorial: Assessing Microglial Function and Identity. Front Immunol 2021; 12:824866. [PMID: 34987527 PMCID: PMC8720871 DOI: 10.3389/fimmu.2021.824866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 11/30/2021] [Indexed: 12/02/2022] Open
Affiliation(s)
- Amanda Sierra
- Achucarro Basque Center for Neuroscience, Glial Cell Biology Lab, Leioa, Spain
- Department of Neuroscience, University of the Basque Country EHU/UPV, Leioa, Spain
- Ikerbasque Foundation, Bilbao, Spain
- *Correspondence: Amanda Sierra, ; Rosa Chiara Paolicelli,
| | - Rosa Chiara Paolicelli
- Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland
- *Correspondence: Amanda Sierra, ; Rosa Chiara Paolicelli,
| |
Collapse
|
267
|
Gervais É, Iloun P, Martianova E, Gonçalves Bessa AC, Rivest S, Topolnik L. Structural analysis of the microglia-interneuron interactions in the CA1 hippocampal area of the APP/PS1 mouse model of Alzheimer's disease. J Comp Neurol 2021; 530:1423-1437. [PMID: 34919273 DOI: 10.1002/cne.25289] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 12/07/2021] [Accepted: 12/10/2021] [Indexed: 11/07/2022]
Abstract
Microglia can interact with glutamatergic neurons and, through control of synaptic elements, regulate their physiological function. Much less is known about the partnership between microglia and GABAergic inhibitory interneurons. Here, we compared the interactions between microglia and parvalbumin (PV+) and somatostatin (SOM+) expressing interneurons in the CA1 hippocampal area of APP/PS1 transgenic mice that mimic certain aspects of the Alzheimer's disease (AD). We first uncovered a high level of interactions between microglia and two types of interneurons, with 98% of SOM+ and 90% of PV+ cells receiving different types of putative microglial contacts. The latter included the microglia soma to the interneuron soma (SomaMG -to-SomaIN ), the microglia process to the interneuron soma (ProcessMG -to-SomaIN ) and the microglia process to the interneuron dendrite (ProcessMG -to-DendIN ) interactions. Moreover, we found significantly larger areas of interaction for the SomaMG -to-SomaIN and the ProcessMG -to-DendIN type of contacts between microglia and SOM+ cells. In contrast, PV+ cells exhibited larger areas for the ProcessMG -to-SomaIN interactions. Second, in APP/PS1 mice, although the overall microglia interactions with interneurons remained preserved, the fraction of interneurons receiving putative microglia contacts on their dendrites was reduced, and larger areas of interactions were observed for somatic contacts, suggesting a stronger modulation of the interneuron output by microglia in AD. In summary, these results reveal microglia as important partners of hippocampal PV+ and SOM+ GABAergic cells, with interneuron type-specific pattern of interactions. Thus, microglia may play an essential role in the operation of interneurons under normal conditions and their dysfunction in disease.
Collapse
Affiliation(s)
- Étienne Gervais
- Department of Biochemistry, Microbiology and Bio-informatics, Laval University, Québec, Canada.,Neuroscience Axis, CHU de Québec Research Center of Laval University (CRCHUQ-UL), Québec, Canada
| | - Parisa Iloun
- Department of Biochemistry, Microbiology and Bio-informatics, Laval University, Québec, Canada.,Neuroscience Axis, CHU de Québec Research Center of Laval University (CRCHUQ-UL), Québec, Canada
| | - Ekaterina Martianova
- Department of Biochemistry, Microbiology and Bio-informatics, Laval University, Québec, Canada.,Neuroscience Axis, CHU de Québec Research Center of Laval University (CRCHUQ-UL), Québec, Canada
| | - Ana Claudia Gonçalves Bessa
- Department of Biochemistry, Microbiology and Bio-informatics, Laval University, Québec, Canada.,Neuroscience Axis, CHU de Québec Research Center of Laval University (CRCHUQ-UL), Québec, Canada
| | - Serge Rivest
- Neuroscience Axis, CHU de Québec Research Center of Laval University (CRCHUQ-UL), Québec, Canada.,Department of Molecular Medicine, Faculty of Medicine, Laval University, Québec, Canada
| | - Lisa Topolnik
- Department of Biochemistry, Microbiology and Bio-informatics, Laval University, Québec, Canada.,Neuroscience Axis, CHU de Québec Research Center of Laval University (CRCHUQ-UL), Québec, Canada
| |
Collapse
|
268
|
Chen K, Stieger KC, Kozai TD. Challenges and opportunities of advanced gliomodulation technologies for excitation-inhibition balance of brain networks. Curr Opin Biotechnol 2021; 72:112-120. [PMID: 34773740 PMCID: PMC8671375 DOI: 10.1016/j.copbio.2021.10.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 10/02/2021] [Accepted: 10/16/2021] [Indexed: 12/13/2022]
Abstract
Recent neuroscience studies have highlighted the critical role of glial cells in information processing. This has increased the demand for technologies that selectively modulate glial cells that regulate the excitation-inhibition balance of neural network function. Engineered technologies that modulate glial activity may be necessary for precise tuning of neural network activity in higher-order brain function. This perspective summarizes how glial cells regulate excitation and inhibition of neural circuits, highlights available technologies for glial modulation, and discusses current challenges and potential opportunities for glial engineering technologies.
Collapse
Affiliation(s)
- Keying Chen
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA; Center for Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA, USA
| | - Kevin C Stieger
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA; Center for Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA, USA
| | - Takashi Dy Kozai
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA; Center for Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA, USA; Center for Neuroscience, University of Pittsburgh, University of Pittsburgh, Pittsburgh, PA, USA; McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA; NeuroTech Center, University of Pittsburgh Brain Institute, Pittsburgh, PA, USA.
| |
Collapse
|
269
|
Zhang N, Lin J, Chew SY. Neural Cell Membrane-Coated Nanoparticles for Targeted and Enhanced Uptake by Central Nervous System Cells. ACS APPLIED MATERIALS & INTERFACES 2021; 13:55840-55850. [PMID: 34792341 DOI: 10.1021/acsami.1c16543] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Targeted drug delivery to specific neural cells within the central nervous system (CNS) plays important roles in treating neurological disorders, such as neurodegenerative (e.g., targeting neurons) and demyelinating diseases [e.g., targeting oligodendrocytes (OLs)]. However, the presence of many other cell types within the CNS, such as microglial and astrocytes, may lead to nonspecific uptake and subsequent side effects. As such, exploring an effective and targeted drug delivery system is of great necessity. Synthetic micro-/nanoparticles that have been coated with biologically derived cellular membranes have emerged as a new class of drug delivery vehicles. However, the use of neural cell-derived membrane coatings remains unexplored. Here, we utilized this technique and demonstrated the efficacy of targeted delivery by using four types of cell membranes that were derived from the CNS, namely, microglial, astrocytes, oligodendrocyte progenitor cells (OPCs), and cortical neurons. A successful cell membrane coating over poly(ε-caprolactone) nanoparticles (NPs) was confirmed using dynamic light scattering, zeta potential measurements, and transmission electron microscopy. Subsequently, an extensive screening of these cell membrane-coated NPs was carried out on various CNS cells. Results suggested that microglial and OLs were the most sensitive cell types toward cell membrane-coated NPs. Specifically, cell membrane-coated NPs significantly enhanced the uptake efficiency of OLs (p < 0.001). Additionally, a temporal uptake study indicated that the OLs took up microglial membrane-coated NPs (DPP-PCL-M Mem) most efficiently. Besides that, coating the NPs with four types of the CNS cell membrane did not result in obvious specific uptake in microglial but reduced the activation of microglial, especially for DPP-PCL-M Mem (p < 0.01). Taken together, DPP-PCL-M Mem were uptaken most efficiently in OLs and did not induce significant microglial activation and may be most suitable for CNS drug delivery applications.
Collapse
Affiliation(s)
- Na Zhang
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637459, Singapore
| | - Junquan Lin
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637459, Singapore
| | - Sing Yian Chew
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637459, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore
| |
Collapse
|
270
|
Ohgomori T, Jinno S. Potential Involvement of Keratan Sulfate in the Heterogeneity of Microglia. TRENDS GLYCOSCI GLYC 2021. [DOI: 10.4052/tigg.2038.1j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- Tomohiro Ohgomori
- Department of Rehabilitation, Osaka Kawasaki Rehabilitation University
| | - Shozo Jinno
- Department of Anatomy and Neuroscience, Graduate School of Medical Sciences, Kyushu University
| |
Collapse
|
271
|
Ohgomori T, Jinno S. Potential Involvement of Keratan Sulfate in the Heterogeneity of Microglia. TRENDS GLYCOSCI GLYC 2021. [DOI: 10.4052/tigg.2038.1e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- Tomohiro Ohgomori
- Department of Anatomy and Neuroscience, Graduate School of Medical Sciences, Kyushu University
| | - Shozo Jinno
- Department of Anatomy and Neuroscience, Graduate School of Medical Sciences, Kyushu University
| |
Collapse
|
272
|
Sobierajski E, Lauer G, Aktas M, Beemelmans C, Beemelmans C, Meyer G, Wahle P. Development of microglia in fetal and postnatal neocortex of the pig, the European wild boar (Sus scrofa). J Comp Neurol 2021; 530:1341-1362. [PMID: 34817865 DOI: 10.1002/cne.25280] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 11/16/2021] [Accepted: 11/19/2021] [Indexed: 01/01/2023]
Abstract
Knowledge on cortical development is based mainly on rodents besides primates and carnivores, all being altricial. Here, we analyzed a precocial animal, the pig, looking at dorsoparietal cortex from E45 to P90. At E45, most ionized calcium-binding adapter molecule 1-positive (Iba1+) cells had a macrophage-like morphology and resided in meninges and choroid plexus. Only a few cells were scattered in the ventricular and subventricular zone (VZ and SVZ). At E60/E70, all laminar compartments displayed microglia cells at a low-to-moderate density, being highest in VZ and SVZ followed by intermediate zone/white matter (IZ/WM). The cortical plate and marginal zone displayed only a few Iba1+ cells. Cells were intensely labeled, but still had poorly arborized somata and many resembled ameboid, macrophage-like microglia. Concurrent with a massive increase in cortical volume, microglia cell density increased until E85, and further until E100/E110 (birth at E114) to densities that resemble those seen postnatally. A fraction of microglia colabeled with Ki67 suggesting proliferation in all laminar compartments. Cell-to-cell distance decreased substantially during this time, and the fraction of microglia to all nuclei and to neurons increases in the laminar compartments. Eventually, of all cortical DAPI+ nuclei 7-12% were Iba1+ microglia. From E70 onwards, more and more cells with ramified processes were present in MZ down to IZ/WM, showing, for instance, a close association with NeuN+, NPY+, and GAD65/67+ somata and axon initial segments. These results suggested that the development of microglia cell density and morphology proceeds rapidly from mid-gestation onwards reaching near-adult status already before birth.
Collapse
Affiliation(s)
- Eric Sobierajski
- Department of Developmental Neurobiology, Faculty of Biology and Biotechnology, Ruhr University Bochum, Bochum, Germany
| | - German Lauer
- Department of Developmental Neurobiology, Faculty of Biology and Biotechnology, Ruhr University Bochum, Bochum, Germany
| | - Meriyem Aktas
- Department of Microbial Biology, Faculty of Biology and Biotechnology, Ruhr University Bochum, Bochum, Germany
| | | | | | - Gundela Meyer
- Department of Basic Medical Science, Faculty of Medicine, University of La Laguna, Tenerife, Spain
| | - Petra Wahle
- Department of Developmental Neurobiology, Faculty of Biology and Biotechnology, Ruhr University Bochum, Bochum, Germany
| |
Collapse
|
273
|
Carrier M, Šimončičová E, St-Pierre MK, McKee C, Tremblay MÈ. Psychological Stress as a Risk Factor for Accelerated Cellular Aging and Cognitive Decline: The Involvement of Microglia-Neuron Crosstalk. Front Mol Neurosci 2021; 14:749737. [PMID: 34803607 PMCID: PMC8599581 DOI: 10.3389/fnmol.2021.749737] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 09/16/2021] [Indexed: 12/22/2022] Open
Abstract
The relationship between the central nervous system (CNS) and microglia is lifelong. Microglia originate in the embryonic yolk sac during development and populate the CNS before the blood-brain barrier forms. In the CNS, they constitute a self-renewing population. Although they represent up to 10% of all brain cells, we are only beginning to understand how much brain homeostasis relies on their physiological functions. Often compared to a double-edged sword, microglia hold the potential to exert neuroprotective roles that can also exacerbate neurodegeneration once compromised. Microglia can promote synaptic growth in addition to eliminating synapses that are less active. Synaptic loss, which is considered one of the best pathological correlates of cognitive decline, is a distinctive feature of major depressive disorder (MDD) and cognitive aging. Long-term psychological stress accelerates cellular aging and predisposes to various diseases, including MDD, and cognitive decline. Among the underlying mechanisms, stress-induced neuroinflammation alters microglial interactions with the surrounding parenchymal cells and exacerbates oxidative burden and cellular damage, hence inducing changes in microglia and neurons typical of cognitive aging. Focusing on microglial interactions with neurons and their synapses, this review discusses the disrupted communication between these cells, notably involving fractalkine signaling and the triggering receptor expressed on myeloid cells (TREM). Overall, chronic stress emerges as a key player in cellular aging by altering the microglial sensome, notably via fractalkine signaling deficiency. To study cellular aging, novel positron emission tomography radiotracers for TREM and the purinergic family of receptors show interest for human study.
Collapse
Affiliation(s)
- Micaël Carrier
- Axe Neurosciences, Centre de Recherche du CHU de Québec, Université Laval, Québec City, QC, Canada.,Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
| | - Eva Šimončičová
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
| | - Marie-Kim St-Pierre
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada.,Department of Molecular Medicine, Université Laval, Québec City, QC, Canada
| | - Chloe McKee
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada.,Department of Biology, University of Victoria, Victoria, BC, Canada
| | - Marie-Ève Tremblay
- Axe Neurosciences, Centre de Recherche du CHU de Québec, Université Laval, Québec City, QC, Canada.,Division of Medical Sciences, University of Victoria, Victoria, BC, Canada.,Department of Molecular Medicine, Université Laval, Québec City, QC, Canada.,Neurology and Neurosurgery Department, McGill University, Montreal, QC, Canada.,Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
274
|
Van Acker ZP, Perdok A, Bretou M, Annaert W. The microglial lysosomal system in Alzheimer's disease: Guardian against proteinopathy. Ageing Res Rev 2021; 71:101444. [PMID: 34391945 DOI: 10.1016/j.arr.2021.101444] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 07/14/2021] [Accepted: 08/08/2021] [Indexed: 12/12/2022]
Abstract
Microglia, the brain-resident immune cells, play an essential role in the upkeep of brain homeostasis. They actively adapt into specific activation states based on cues from the microenvironment. One of these encompasses the activated response microglia (ARMs) phenotype. It arises along a healthy aging process and in a range of neurodegenerative diseases, including Alzheimer's disease (AD). As the phenotype is characterized by an increased lipid metabolism, phagocytosis rate, lysosomal protease content and secretion of neuroprotective agents, it leaves to reason that the phenotype is adapted in an attempt to restore homeostasis. This is important to the conundrum of inflammatory processes. Inflammation per se may not be deleterious; it is only when microglial reactions become chronic or the microglial subtype is made dysfunctional by (multiple) risk proteins with single-nucleotide polymorphisms that microglial involvement becomes deleterious instead of beneficial. Interestingly, the ARMs up- and downregulate many late-onset AD-associated risk factor genes, the products of which are particularly active in the endolysosomal system. Hence, in this review, we focus on how the endolysosomal system is placed at the crossroad of inflammation and microglial capacity to keep pace with degradation.
Collapse
|
275
|
Ahluwalia M, Kumar M, Ahluwalia P, Rahimi S, Vender JR, Raju RP, Hess DC, Baban B, Vale FL, Dhandapani KM, Vaibhav K. Rescuing mitochondria in traumatic brain injury and intracerebral hemorrhages - A potential therapeutic approach. Neurochem Int 2021; 150:105192. [PMID: 34560175 PMCID: PMC8542401 DOI: 10.1016/j.neuint.2021.105192] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 09/18/2021] [Accepted: 09/20/2021] [Indexed: 02/07/2023]
Abstract
Mitochondria are dynamic organelles responsible for cellular energy production. Besides, regulating energy homeostasis, mitochondria are responsible for calcium homeostasis, signal transmission, and the fate of cellular survival in case of injury and pathologies. Accumulating reports have suggested multiple roles of mitochondria in neuropathologies, neurodegeneration, and immune activation under physiological and pathological conditions. Mitochondrial dysfunction, which occurs at the initial phase of brain injury, involves oxidative stress, inflammation, deficits in mitochondrial bioenergetics, biogenesis, transport, and autophagy. Thus, development of targeted therapeutics to protect mitochondria may improve functional outcomes following traumatic brain injury (TBI) and intracerebral hemorrhages (ICH). In this review, we summarize mitochondrial dysfunction related to TBI and ICH, including the mechanisms involved, and discuss therapeutic approaches with special emphasis on past and current clinical trials.
Collapse
Affiliation(s)
- Meenakshi Ahluwalia
- Department of Neurosurgery, Medical College of Georgia, Augusta University, Augusta, GA, USA.
| | - Manish Kumar
- Department of Neurosurgery, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Pankaj Ahluwalia
- Department of Pathology, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Scott Rahimi
- Department of Neurosurgery, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - John R Vender
- Department of Neurosurgery, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Raghavan P Raju
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - David C Hess
- Department of Neurology, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Babak Baban
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, GA, USA
| | - Fernando L Vale
- Department of Neurosurgery, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Krishnan M Dhandapani
- Department of Neurosurgery, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Kumar Vaibhav
- Department of Neurosurgery, Medical College of Georgia, Augusta University, Augusta, GA, USA; Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, GA, USA.
| |
Collapse
|
276
|
Ding Z, Guo S, Luo L, Zheng Y, Gan S, Kang X, Wu X, Zhu S. Emerging Roles of Microglia in Neuro-vascular Unit: Implications of Microglia-Neurons Interactions. Front Cell Neurosci 2021; 15:706025. [PMID: 34712121 PMCID: PMC8546170 DOI: 10.3389/fncel.2021.706025] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 09/10/2021] [Indexed: 12/20/2022] Open
Abstract
Microglia, which serve as the defensive interface of the nervous system, are activated in many neurological diseases. Their role as immune responding cells has been extensively studied in the past few years. Recent studies have demonstrated that neuronal feedback can be shaped by the molecular signals received and sent by microglia. Altered neuronal activity or synaptic plasticity leads to the release of various communication messages from neurons, which in turn exert effects on microglia. Research on microglia-neuron communication has thus expanded from focusing only on neurons to the neurovascular unit (NVU). This approach can be used to explore the potential mechanism of neurovascular coupling across sophisticated receptor systems and signaling cascades in health and disease. However, it remains unclear how microglia-neuron communication happens in the brain. Here, we discuss the functional contribution of microglia to synapses, neuroimmune communication, and neuronal activity. Moreover, the current state of knowledge of bidirectional control mechanisms regarding interactions between neurons and microglia are reviewed, with a focus on purinergic regulatory systems including ATP-P2RY12R signaling, ATP-adenosine-A1Rs/A2ARs, and the ATP-pannexin 1 hemichannel. This review aims to organize recent studies to highlight the multifunctional roles of microglia within the neural communication network in health and disease.
Collapse
Affiliation(s)
- Zhe Ding
- Department of Anesthesiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Shaohui Guo
- Department of Anesthesiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Lihui Luo
- Department of Anesthesiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yueying Zheng
- Department of Anesthesiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Shuyuan Gan
- Department of Anesthesiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xianhui Kang
- Department of Anesthesiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaomin Wu
- Department of Anesthesiology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Shengmei Zhu
- Department of Anesthesiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
277
|
Korzhevskii DE, Tsyba DL, Kirik OV, Alekseeva OS. A Comparison of Microglia Detection in Mammals and Humans Using Purinergic Receptor P2Y12 Labeling. J EVOL BIOCHEM PHYS+ 2021. [DOI: 10.1134/s002209302105001x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
278
|
Synapse development is regulated by microglial THIK-1 K + channels. Proc Natl Acad Sci U S A 2021; 118:2106294118. [PMID: 34642249 PMCID: PMC8545484 DOI: 10.1073/pnas.2106294118] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/08/2021] [Indexed: 12/17/2022] Open
Abstract
Microglia are the brain’s resident immune cells, surveying the brain with motile processes, which can remove pathogens but also prune unnecessary junctions between the neurons (synapses). A potassium channel, THIK-1, in the microglial membrane allows efflux of potassium from these cells and thereby regulates their membrane voltage as well as their process motility and release of inflammatory mediators. Here, using THIK-1–blocking drugs and THIK-1–deficient mice, we demonstrate that THIK-1 controls removal of synaptic material by microglia, which reduces the number of functional synapses in the developing brain.
Microglia are the resident immune cells of the central nervous system. They constantly survey the brain parenchyma for redundant synapses, debris, or dying cells, which they remove through phagocytosis. Microglial ramification, motility, and cytokine release are regulated by tonically active THIK-1 K+ channels on the microglial plasma membrane. Here, we examined whether these channels also play a role in phagocytosis. Using pharmacological blockers and THIK-1 knockout (KO) mice, we found that a lack of THIK-1 activity approximately halved both microglial phagocytosis and marker levels for the lysosomes that degrade phagocytically removed material. These changes may reflect a decrease of intracellular [Ca2+]i activity, which was observed when THIK-1 activity was reduced, since buffering [Ca2+]i reduced phagocytosis. Less phagocytosis is expected to result in impaired pruning of synapses. In the hippocampus, mice lacking THIK-1 expression had an increased number of anatomically and electrophysiologically defined glutamatergic synapses during development. This resulted from an increased number of presynaptic terminals, caused by impaired removal by THIK-1 KO microglia. The dependence of synapse number on THIK-1 K+ channels, which control microglial surveillance and phagocytic ability, implies that changes in the THIK-1 expression level in disease states may contribute to altering neural circuit function.
Collapse
|
279
|
Ghosh P, Singh R, Ganeshpurkar A, Pokle AV, Singh RB, Singh SK, Kumar A. Cellular and molecular influencers of neuroinflammation in Alzheimer's disease: Recent concepts & roles. Neurochem Int 2021; 151:105212. [PMID: 34656693 DOI: 10.1016/j.neuint.2021.105212] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 09/22/2021] [Accepted: 10/10/2021] [Indexed: 01/21/2023]
Abstract
Alzheimer's disease (AD), an extremely common neurodegenerative disorder of the older generation, is one of the leading causes of death globally. Besides the conventional hallmarks i.e. Amyloid-β (Aβ) plaques and neurofibrillary tangles (NFTs), neuroinflammation also serves as a major contributing factor in the pathogenesis of AD. There are mounting evidences to support the fundamental role of cellular (microglia, astrocytes, mast cells, and T-cells) and molecular (cytokines, chemokines, caspases, and complement proteins) influencers of neuroinflammation in producing/promoting neurodegeneration and dementia in AD. Genome-wide association studies (GWAS) have revealed the involvement of various single nucleotide polymorphisms (SNPs) of genes related to neuroinflammation with the risk of developing AD. Modulating the release of the neuroinflammatory molecules and targeting their relevant mechanisms may have beneficial effects on the onset, progress and severity of the disease. Here, we review the distinct role of various mediators and modulators of neuroinflammation that impact the pathogenesis and progression of AD as well as incite further research efforts for the treatment of AD through a neuroinflammatory approach.
Collapse
Affiliation(s)
- Powsali Ghosh
- Pharmaceutical Chemistry Research Laboratory 1, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, 221005, India
| | - Ravi Singh
- Pharmaceutical Chemistry Research Laboratory 1, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, 221005, India
| | - Ankit Ganeshpurkar
- Pharmaceutical Chemistry Research Laboratory 1, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, 221005, India
| | - Ankit Vyankatrao Pokle
- Pharmaceutical Chemistry Research Laboratory 1, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, 221005, India
| | - Ravi Bhushan Singh
- Institute of Pharmacy Harischandra PG College, Bawanbigha, Varanasi, India
| | - Sushil Kumar Singh
- Pharmaceutical Chemistry Research Laboratory 1, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, 221005, India
| | - Ashok Kumar
- Pharmaceutical Chemistry Research Laboratory 1, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, 221005, India.
| |
Collapse
|
280
|
Lezmy J, Arancibia-Carcamo L, Quintela-Lopez T, Sherman DL, Brophy PJ, Attwell D. Astrocyte Ca 2+-evoked ATP release regulates myelinated axon excitability and conduction speed. Science 2021; 374:eabh2858. [PMID: 34648330 PMCID: PMC7611967 DOI: 10.1126/science.abh2858] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In the brain’s gray matter, astrocytes regulate synapse properties, but their role is unclear for the white matter, where myelinated axons rapidly transmit information between gray matter areas. We found that in rodents, neuronal activity raised the intracellular calcium concentration ([Ca2+]i) in astrocyte processes located near action potential–generating sites in the axon initial segment (AIS) and nodes of Ranvier of myelinated axons. This released adenosine triphosphate, which was converted extracellularly to adenosine and thus, through A2a receptors, activated HCN2-containing cation channels that regulate two aspects of myelinated axon function: excitability of the AIS and speed of action potential propagation. Variations in astrocyte-derived adenosine level between wake and sleep states or during energy deprivation could thus control white matter information flow and neural circuit function.
Collapse
Affiliation(s)
- Jonathan Lezmy
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, WC1E 6BT, UK
| | - Lorena Arancibia-Carcamo
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, WC1E 6BT, UK
- Dementia Research Institute, Francis Crick Institute 1 Midland Rd, London, NW1 1AT, UK
| | - Tania Quintela-Lopez
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, WC1E 6BT, UK
| | - Diane L. Sherman
- Centre for Discovery Brain Sciences, University of Edinburgh, Chancellor’s Building, Edinburgh, EH16 4SB
| | - Peter J. Brophy
- Centre for Discovery Brain Sciences, University of Edinburgh, Chancellor’s Building, Edinburgh, EH16 4SB
| | - David Attwell
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, WC1E 6BT, UK
| |
Collapse
|
281
|
Iwai H, Ataka K, Suzuki H, Dhar A, Kuramoto E, Yamanaka A, Goto T. Tissue-resident M2 macrophages directly contact primary sensory neurons in the sensory ganglia after nerve injury. J Neuroinflammation 2021; 18:227. [PMID: 34645458 PMCID: PMC8513227 DOI: 10.1186/s12974-021-02283-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 09/27/2021] [Indexed: 05/13/2023] Open
Abstract
Background Macrophages in the peripheral nervous system are key players in the repair of nerve tissue and the development of neuropathic pain due to peripheral nerve injury. However, there is a lack of information on the origin and morphological features of macrophages in sensory ganglia after peripheral nerve injury, unlike those in the brain and spinal cord. We analyzed the origin and morphological features of sensory ganglionic macrophages after nerve ligation or transection using wild-type mice and mice with bone-marrow cell transplants. Methods After protecting the head of C57BL/6J mice with lead caps, they were irradiated and transplanted with bone-marrow-derived cells from GFP transgenic mice. The infraorbital nerve of a branch of the trigeminal nerve of wild-type mice was ligated or the infraorbital nerve of GFP-positive bone-marrow-cell-transplanted mice was transected. After immunostaining the trigeminal ganglion, the structures of the ganglionic macrophages, neurons, and satellite glial cells were analyzed using two-dimensional or three-dimensional images. Results The number of damaged neurons in the trigeminal ganglion increased from day 1 after infraorbital nerve ligation. Ganglionic macrophages proliferated from days 3 to 5. Furthermore, the numbers of macrophages increased from days 3 to 15. Bone-marrow-derived macrophages increased on day 7 after the infraorbital nerve was transected in the trigeminal ganglion of GFP-positive bone-marrow-cell-transplanted mice but most of the ganglionic macrophages were composed of tissue-resident cells. On day 7 after infraorbital nerve ligation, ganglionic macrophages increased in volume, extended their processes between the neurons and satellite glial cells, and contacted these neurons. Most of the ganglionic macrophages showed an M2 phenotype when contact was observed, and little neuronal cell death occurred. Conclusion Most of the macrophages that appear after a nerve injury are tissue-resident, and these make direct contact with damaged neurons that act in a tissue-protective manner in the M2 phenotype. These results imply that tissue-resident macrophages signal to neurons directly through physical contact. Supplementary Information The online version contains supplementary material available at 10.1186/s12974-021-02283-z.
Collapse
Affiliation(s)
- Haruki Iwai
- Department of Oral Anatomy and Cell Biology, Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima, Kagoshima, 890-8544, Japan.
| | - Koji Ataka
- Department of Psychosomatic Internal Medicine, Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima, Kagoshima, 890-8544, Japan.,Laboratory of Medical Biochemistry, Kobe Pharmaceutical University, 4-19-1 Motoyamakita-machi, Higashinada-ku, Kobe, 658-8558, Japan
| | - Hajime Suzuki
- Department of Oral and Maxillofacial Surgery, Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima, Kagoshima, 890-8544, Japan
| | - Ashis Dhar
- Department of Oral Anatomy and Cell Biology, Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima, Kagoshima, 890-8544, Japan
| | - Eriko Kuramoto
- Department of Oral Anatomy and Cell Biology, Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima, Kagoshima, 890-8544, Japan
| | - Atsushi Yamanaka
- Department of Oral Anatomy and Cell Biology, Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima, Kagoshima, 890-8544, Japan
| | - Tetsuya Goto
- Department of Oral Anatomy and Cell Biology, Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima, Kagoshima, 890-8544, Japan
| |
Collapse
|
282
|
Borst K, Dumas AA, Prinz M. Microglia: Immune and non-immune functions. Immunity 2021; 54:2194-2208. [PMID: 34644556 DOI: 10.1016/j.immuni.2021.09.014] [Citation(s) in RCA: 316] [Impact Index Per Article: 79.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 07/20/2021] [Accepted: 09/16/2021] [Indexed: 12/21/2022]
Abstract
As resident macrophages of the central nervous system (CNS), microglia are associated with diverse functions essential to the developing and adult brain during homeostasis and disease. They are aided in their tasks by intricate bidirectional communication with other brain cells under steady-state conditions as well as with infiltrating peripheral immune cells during perturbations. Harmonious cell-cell communication involving microglia are considered crucial to maintain the healthy state of the tissue environment and to overcome pathology such as neuroinflammation. Analyses of such intercellular pathways have contributed to our understanding of the heterogeneous but context-associated microglial responses to environmental cues across neuropathology, including inflammatory conditions such as infections and autoimmunity, as well as immunosuppressive states as seen in brain tumors. Here, we summarize the latest evidence demonstrating how these interactions drive microglia immune and non-immune functions, which coordinate the transition from homeostatic to disease-related cellular states.
Collapse
Affiliation(s)
- Katharina Borst
- Institute of Neuropathology, Medical Faculty, University of Freiburg, Freiburg, Germany.
| | - Anaelle Aurelie Dumas
- Institute of Neuropathology, Medical Faculty, University of Freiburg, Freiburg, Germany.
| | - Marco Prinz
- Institute of Neuropathology, Medical Faculty, University of Freiburg, Freiburg, Germany; Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany; Center for Basics in NeuroModulation (NeuroModulBasics), Faculty of Medicine, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
283
|
Emerging roles of dysregulated adenosine homeostasis in brain disorders with a specific focus on neurodegenerative diseases. J Biomed Sci 2021; 28:70. [PMID: 34635103 PMCID: PMC8507231 DOI: 10.1186/s12929-021-00766-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 10/04/2021] [Indexed: 02/07/2023] Open
Abstract
In modern societies, with an increase in the older population, age-related neurodegenerative diseases have progressively become greater socioeconomic burdens. To date, despite the tremendous effort devoted to understanding neurodegenerative diseases in recent decades, treatment to delay disease progression is largely ineffective and is in urgent demand. The development of new strategies targeting these pathological features is a timely topic. It is important to note that most degenerative diseases are associated with the accumulation of specific misfolded proteins, which is facilitated by several common features of neurodegenerative diseases (including poor energy homeostasis and mitochondrial dysfunction). Adenosine is a purine nucleoside and neuromodulator in the brain. It is also an essential component of energy production pathways, cellular metabolism, and gene regulation in brain cells. The levels of intracellular and extracellular adenosine are thus tightly controlled by a handful of proteins (including adenosine metabolic enzymes and transporters) to maintain proper adenosine homeostasis. Notably, disruption of adenosine homeostasis in the brain under various pathophysiological conditions has been documented. In the past two decades, adenosine receptors (particularly A1 and A2A adenosine receptors) have been actively investigated as important drug targets in major degenerative diseases. Unfortunately, except for an A2A antagonist (istradefylline) administered as an adjuvant treatment with levodopa for Parkinson's disease, no effective drug based on adenosine receptors has been developed for neurodegenerative diseases. In this review, we summarize the emerging findings on proteins involved in the control of adenosine homeostasis in the brain and discuss the challenges and future prospects for the development of new therapeutic treatments for neurodegenerative diseases and their associated disorders based on the understanding of adenosine homeostasis.
Collapse
|
284
|
Aubert A, Stüder F, Colombo BM, Mendoza-Parra MA. A Core Transcription Regulatory Circuitry Defining Microglia Cell Identity Inferred from the Reanalysis of Multiple Human Microglia Differentiation Protocols. Brain Sci 2021; 11:brainsci11101338. [PMID: 34679401 PMCID: PMC8533937 DOI: 10.3390/brainsci11101338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 09/28/2021] [Accepted: 10/04/2021] [Indexed: 11/16/2022] Open
Abstract
Microglia, the immune cells in the brain involved in both homeostasis and injury/infection control, play a predominant role in neurodegenerative diseases. In vivo studies on microglia are limited due to the requirement of surgical intervention, which can lead to the destruction of the tissues. Over the last few years, multiple protocols-presenting a variety of strategies-have described microglia differentiation issued from human pluripotent stem cells. Herein, we have reanalyzed the transcriptomes released on six different microglia differentiation protocols and revealed a consensus core of master transcription regulatory circuitry defining microglia identity. Furthermore, we have discussed the major divergencies among the studied protocols and have provided suggestions to further enhance microglia differentiation assays.
Collapse
|
285
|
Cordella F, Sanchini C, Rosito M, Ferrucci L, Pediconi N, Cortese B, Guerrieri F, Pascucci GR, Antonangeli F, Peruzzi G, Giubettini M, Basilico B, Pagani F, Grimaldi A, D’Alessandro G, Limatola C, Ragozzino D, Di Angelantonio S. Antibiotics Treatment Modulates Microglia-Synapses Interaction. Cells 2021; 10:cells10102648. [PMID: 34685628 PMCID: PMC8534187 DOI: 10.3390/cells10102648] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 09/30/2021] [Accepted: 10/01/2021] [Indexed: 12/12/2022] Open
Abstract
‘Dysbiosis’ of the adult gut microbiota, in response to challenges such as infection, altered diet, stress, and antibiotics treatment has been recently linked to pathological alteration of brain function and behavior. Moreover, gut microbiota composition constantly controls microglia maturation, as revealed by morphological observations and gene expression analysis. However, it is unclear whether microglia functional properties and crosstalk with neurons, known to shape and modulate synaptic development and function, are influenced by the gut microbiota. Here, we investigated how antibiotic-mediated alteration of the gut microbiota influences microglial and neuronal functions in adult mice hippocampus. Hippocampal microglia from adult mice treated with oral antibiotics exhibited increased microglia density, altered basal patrolling activity, and impaired process rearrangement in response to damage. Patch clamp recordings at CA3-CA1 synapses revealed that antibiotics treatment alters neuronal functions, reducing spontaneous postsynaptic glutamatergic currents and decreasing synaptic connectivity, without reducing dendritic spines density. Antibiotics treatment was unable to modulate synaptic function in CX3CR1-deficient mice, pointing to an involvement of microglia–neuron crosstalk through the CX3CL1/CX3CR1 axis in the effect of dysbiosis on neuronal functions. Together, our findings show that antibiotic alteration of gut microbiota impairs synaptic efficacy, suggesting that CX3CL1/CX3CR1 signaling supporting microglia is a major player in in the gut–brain axis, and in particular in the gut microbiota-to-neuron communication pathway.
Collapse
Affiliation(s)
- Federica Cordella
- Department of Physiology and Pharmacology “V. Erspamer”, Sapienza University, 00185 Rome, Italy; (F.C.); (C.S.); (L.F.); (B.B.); (G.D.); (D.R.)
- Center for Life Nano- & Neuro-Science, Fondazione Istituto Italiano di Tecnologia (IIT), 00161 Rome, Italy; (N.P.); (G.P.); (F.P.); (A.G.)
| | - Caterina Sanchini
- Department of Physiology and Pharmacology “V. Erspamer”, Sapienza University, 00185 Rome, Italy; (F.C.); (C.S.); (L.F.); (B.B.); (G.D.); (D.R.)
- Center for Life Nano- & Neuro-Science, Fondazione Istituto Italiano di Tecnologia (IIT), 00161 Rome, Italy; (N.P.); (G.P.); (F.P.); (A.G.)
| | - Maria Rosito
- Center for Life Nano- & Neuro-Science, Fondazione Istituto Italiano di Tecnologia (IIT), 00161 Rome, Italy; (N.P.); (G.P.); (F.P.); (A.G.)
- Correspondence: (M.R.); (S.D.A.)
| | - Laura Ferrucci
- Department of Physiology and Pharmacology “V. Erspamer”, Sapienza University, 00185 Rome, Italy; (F.C.); (C.S.); (L.F.); (B.B.); (G.D.); (D.R.)
| | - Natalia Pediconi
- Center for Life Nano- & Neuro-Science, Fondazione Istituto Italiano di Tecnologia (IIT), 00161 Rome, Italy; (N.P.); (G.P.); (F.P.); (A.G.)
| | - Barbara Cortese
- National Research Council-Nanotechnology Institute, 00185 Rome, Italy;
| | - Francesca Guerrieri
- Cancer Research Center of Lyon (CRCL), UMR Inserm U1052/CNRS 5286, 69373 Lyon, France; (F.G.); (G.R.P.)
| | - Giuseppe Rubens Pascucci
- Cancer Research Center of Lyon (CRCL), UMR Inserm U1052/CNRS 5286, 69373 Lyon, France; (F.G.); (G.R.P.)
| | - Fabrizio Antonangeli
- Department of Molecular Medicine, Laboratory Affiliated to Istituto Pasteur Italia, Sapienza University, 00185 Rome, Italy;
| | - Giovanna Peruzzi
- Center for Life Nano- & Neuro-Science, Fondazione Istituto Italiano di Tecnologia (IIT), 00161 Rome, Italy; (N.P.); (G.P.); (F.P.); (A.G.)
| | | | - Bernadette Basilico
- Department of Physiology and Pharmacology “V. Erspamer”, Sapienza University, 00185 Rome, Italy; (F.C.); (C.S.); (L.F.); (B.B.); (G.D.); (D.R.)
| | - Francesca Pagani
- Center for Life Nano- & Neuro-Science, Fondazione Istituto Italiano di Tecnologia (IIT), 00161 Rome, Italy; (N.P.); (G.P.); (F.P.); (A.G.)
- National Research Council-Nanotechnology Institute, 00185 Rome, Italy;
| | - Alfonso Grimaldi
- Center for Life Nano- & Neuro-Science, Fondazione Istituto Italiano di Tecnologia (IIT), 00161 Rome, Italy; (N.P.); (G.P.); (F.P.); (A.G.)
| | - Giuseppina D’Alessandro
- Department of Physiology and Pharmacology “V. Erspamer”, Sapienza University, 00185 Rome, Italy; (F.C.); (C.S.); (L.F.); (B.B.); (G.D.); (D.R.)
- Department of Physiology and Pharmacology, Laboratory Affiliated to Istituto Pasteur Italia, Sapienza University, 00185 Rome, Italy;
| | - Cristina Limatola
- Department of Physiology and Pharmacology, Laboratory Affiliated to Istituto Pasteur Italia, Sapienza University, 00185 Rome, Italy;
- IRCCS Neuromed, Via Atinese 18, 86077 Pozzilli, Italy
| | - Davide Ragozzino
- Department of Physiology and Pharmacology “V. Erspamer”, Sapienza University, 00185 Rome, Italy; (F.C.); (C.S.); (L.F.); (B.B.); (G.D.); (D.R.)
- Santa Lucia Foundation, European Center for Brain Research, 00143 Rome, Italy
| | - Silvia Di Angelantonio
- Department of Physiology and Pharmacology “V. Erspamer”, Sapienza University, 00185 Rome, Italy; (F.C.); (C.S.); (L.F.); (B.B.); (G.D.); (D.R.)
- Center for Life Nano- & Neuro-Science, Fondazione Istituto Italiano di Tecnologia (IIT), 00161 Rome, Italy; (N.P.); (G.P.); (F.P.); (A.G.)
- Correspondence: (M.R.); (S.D.A.)
| |
Collapse
|
286
|
Melbourne JK, Chandler CM, Van Doorn CE, Bardo MT, Pauly JR, Peng H, Nixon K. Primed for addiction: A critical review of the role of microglia in the neurodevelopmental consequences of adolescent alcohol drinking. Alcohol Clin Exp Res 2021; 45:1908-1926. [PMID: 34486128 PMCID: PMC8793635 DOI: 10.1111/acer.14694] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 07/22/2021] [Accepted: 08/03/2021] [Indexed: 12/15/2022]
Abstract
Alcohol is one of the most widely used recreational substances worldwide, with drinking frequently initiated during adolescence. The developmental state of the adolescent brain makes it vulnerable to initiating alcohol use, often in high doses, and particularly susceptible to alcohol-induced brain changes. Microglia, the brain parenchymal macrophages, have been implicated in mediating some of these effects, though the role that these cells play in the progression from alcohol drinking to dependence remains unclear. Microglia are uniquely positioned to sense and respond to central nervous system insult, and are now understood to exhibit innate immune memory, or "priming," altering their future functional responses based on prior exposures. In alcohol use disorders (AUDs), the role of microglia is debated. Whereas microglial activation can be pathogenic, contributing to neuroinflammation, tissue damage, and behavioral changes, or protective, it can also engage protective functions, providing support and mediating the resolution of damage. Understanding the role of microglia in adolescent AUDs is complicated by the fact that microglia are thought to be involved in developmental processes such as synaptic refinement and myelination, which underlie the functional maturation of multiple brain systems in adolescence. Thus, the role microglia play in the impact of alcohol use in adolescence is likely multifaceted. Long-term sequelae may be due to a failure to recover from EtOH-induced tissue damage, altered neurodevelopmental trajectories, and/or persistent changes to microglial responsivity and function. Here, we review critically the literature surrounding the effects of alcohol on microglia in models of adolescent alcohol misuse. We attempt to disentangle what is known about microglia from other neuroimmune effectors, to which we apply recent discoveries on the role of microglia in development and plasticity. Considered altogether, these studies challenge assumptions that proinflammatory microglia drive addiction. Alcohol priming microglia and thereby perturbing their homeostatic roles in neurodevelopment, especially during critical periods of plasticity such as adolescence, may have more serious implications for the neuropathogenesis of AUDs in adolescents.
Collapse
Affiliation(s)
- Jennifer K. Melbourne
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, Texas, USA
| | - Cassie M. Chandler
- Department of Psychology, University of Kentucky, Lexington, Kentucky, USA
| | | | - Michael T. Bardo
- Department of Psychology, University of Kentucky, Lexington, Kentucky, USA
| | - James R. Pauly
- Department of Pharmaceutical Sciences, University of Kentucky, Lexington, Kentucky, USA
| | - Hui Peng
- Department of Pharmaceutical Sciences, University of Kentucky, Lexington, Kentucky, USA
| | - Kimberly Nixon
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, Texas, USA
| |
Collapse
|
287
|
Temporomandibular disorders and traumatic brain injury: Two sides of the same coin. ADVANCES IN ORAL AND MAXILLOFACIAL SURGERY 2021. [DOI: 10.1016/j.adoms.2021.100193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
288
|
Brunialti E, Villa A, Mekhaeil M, Mornata F, Vegeto E, Maggi A, Di Monte DA, Ciana P. Inhibition of microglial β-glucocerebrosidase hampers the microglia-mediated antioxidant and protective response in neurons. J Neuroinflammation 2021; 18:220. [PMID: 34551802 PMCID: PMC8459568 DOI: 10.1186/s12974-021-02272-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 08/23/2021] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Homozygotic mutations in the GBA gene cause Gaucher's disease; moreover, both patients and heterozygotic carriers have been associated with 20- to 30-fold increased risk of developing Parkinson's disease. In homozygosis, these mutations impair the activity of β-glucocerebrosidase, the enzyme encoded by GBA, and generate a lysosomal disorder in macrophages, which changes morphology towards an engorged phenotype, considered the hallmark of Gaucher's disease. Notwithstanding the key role of macrophages in this disease, most of the effects in the brain have been attributed to the β-glucocerebrosidase deficit in neurons, while a microglial phenotype for these mutations has never been reported. METHODS We applied the bioluminescence imaging technology, immunohistochemistry and gene expression analysis to investigate the consequences of microglial β-glucocerebrosidase inhibition in the brain of reporter mice, in primary neuron/microglia cocultures and in cell lines. The use of primary cells from reporter mice allowed for the first time, to discriminate in cocultures neuronal from microglial responses consequent to the β-glucocerebrosidase inhibition; results were finally confirmed by pharmacological depletion of microglia from the brain of mice. RESULTS Our data demonstrate the existence of a novel neuroprotective mechanism mediated by a direct microglia-to-neuron contact supported by functional actin structures. This cellular contact stimulates the nuclear factor erythroid 2-related factor 2 activity in neurons, a key signal involved in drug detoxification, redox balance, metabolism, autophagy, lysosomal biogenesis, mitochondrial dysfunctions, and neuroinflammation. The central role played by microglia in this neuronal response in vivo was proven by depletion of the lineage in the brain of reporter mice. Pharmacological inhibition of microglial β-glucocerebrosidase was proven to induce morphological changes, to turn on an anti-inflammatory/repairing pathway, and to hinder the microglia ability to activate the nuclear factor erythroid 2-related factor 2 response, thus increasing the neuronal susceptibility to neurotoxins. CONCLUSION This mechanism provides a possible explanation for the increased risk of neurodegeneration observed in carriers of GBA mutations and suggest novel therapeutic strategies designed to revert the microglial phenotype associated with β-glucocerebrosidase inhibition, aimed at resetting the protective microglia-to-neuron communication.
Collapse
Affiliation(s)
| | - Alessandro Villa
- Department of Health Sciences, University of Milan, Milan, Italy.
| | | | - Federica Mornata
- Department of Pharmaceutical Sciences, University of Milan, Milan, Italy
| | - Elisabetta Vegeto
- Department of Pharmaceutical Sciences, University of Milan, Milan, Italy
| | - Adriana Maggi
- Department of Pharmaceutical Sciences, University of Milan, Milan, Italy
| | | | - Paolo Ciana
- Department of Health Sciences, University of Milan, Milan, Italy.
| |
Collapse
|
289
|
Augusto-Oliveira M, Arrifano GP, Delage CI, Tremblay MÈ, Crespo-Lopez ME, Verkhratsky A. Plasticity of microglia. Biol Rev Camb Philos Soc 2021; 97:217-250. [PMID: 34549510 DOI: 10.1111/brv.12797] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 09/02/2021] [Accepted: 09/06/2021] [Indexed: 02/06/2023]
Abstract
Microglial cells are the scions of foetal macrophages which invade the neural tube early during embryogenesis. The nervous tissue environment instigates the phenotypic metamorphosis of foetal macrophages into idiosyncratic surveilling microglia, which are generally characterised by a small cell body and highly ramified motile processes that constantly scan the nervous tissue for signs of changes in homeostasis and allow microglia to perform crucial homeostatic functions. The surveilling microglial phenotype is evolutionarily conserved from early invertebrates to humans. Despite this evolutionary conservation, microglia show substantial heterogeneity in their gene and protein expression, as well as morphological appearance. These differences are age, region and context specific and reflect a high degree of plasticity underlying the life-long adaptation of microglia, supporting the exceptional adaptive capacity of the central nervous system. Microgliocytes are essential elements of cellular network formation and refinement in the developing nervous tissue. Several distinct patrolling modes of microglial processes contribute to the formation, modification, and pruning of synapses; to the support and protection of neurones through microglial-somatic junctions; and to the control of neuronal and axonal excitability by specific microglia-axonal contacts. In pathology, microglia undergo proliferation and reactive remodelling known as microgliosis, which is context dependent, yet represents an evolutionarily conserved defence response. Microgliosis results in the emergence of multiple disease and context-specific reactive states; in addition, neuropathology is associated with the appearance of specific protective or recovery microglial forms. In summary, the plasticity of microglia supports the development and functional activity of healthy nervous tissue and provides highly sophisticated defences against disease.
Collapse
Affiliation(s)
- Marcus Augusto-Oliveira
- Laboratório de Farmacologia Molecular, Instituto de Ciências Biológicas, Universidade Federal do Pará, 66075-110, Belém, Brazil
| | - Gabriela P Arrifano
- Laboratório de Farmacologia Molecular, Instituto de Ciências Biológicas, Universidade Federal do Pará, 66075-110, Belém, Brazil
| | - Charlotte Isabelle Delage
- Division of Medical Sciences, Medical Sciences Building, University of Victoria, Victoria, BC, V8P 5C2, Canada
| | - Marie-Ève Tremblay
- Division of Medical Sciences, Medical Sciences Building, University of Victoria, Victoria, BC, V8P 5C2, Canada.,Axe Neurosciences, Centre de Recherche du CHU de Québec-Université Laval, 2705 Boulevard Laurier, Québec City, QC, G1V 4G2, Canada.,Neurology and Neurosurgery Department, McGill University, 3801 University Street, Montreal, QC, H3A 2B4, Canada.,Department of Molecular Medicine, Université Laval, Pavillon Ferdinand-Vandry, Bureau 4835, 1050 Avenue de la Médecine, Québec City, QC, G1V 0A6, Canada.,Department of Biochemistry and Molecular Biology, The University of British Columbia, Life Sciences Center, 2350 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada
| | - Maria Elena Crespo-Lopez
- Laboratório de Farmacologia Molecular, Instituto de Ciências Biológicas, Universidade Federal do Pará, 66075-110, Belém, Brazil
| | - Alexei Verkhratsky
- Faculty of Life Sciences, The University of Manchester, Oxford Road, Manchester, M13 9PT, U.K.,Achucarro Center for Neuroscience, IKERBASQUE, 48011, Bilbao, Spain.,Department of Stem Cell Biology, State Research Institute Centre for Innovative Medicine, LT-01102, Vilnius, Lithuania
| |
Collapse
|
290
|
Zhou R, Ji B, Kong Y, Qin L, Ren W, Guan Y, Ni R. PET Imaging of Neuroinflammation in Alzheimer's Disease. Front Immunol 2021; 12:739130. [PMID: 34603323 PMCID: PMC8481830 DOI: 10.3389/fimmu.2021.739130] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Accepted: 08/27/2021] [Indexed: 12/15/2022] Open
Abstract
Neuroinflammation play an important role in Alzheimer's disease pathogenesis. Advances in molecular imaging using positron emission tomography have provided insights into the time course of neuroinflammation and its relation with Alzheimer's disease central pathologies in patients and in animal disease models. Recent single-cell sequencing and transcriptomics indicate dynamic disease-associated microglia and astrocyte profiles in Alzheimer's disease. Mitochondrial 18-kDa translocator protein is the most widely investigated target for neuroinflammation imaging. New generation of translocator protein tracers with improved performance have been developed and evaluated along with tau and amyloid imaging for assessing the disease progression in Alzheimer's disease continuum. Given that translocator protein is not exclusively expressed in glia, alternative targets are under rapid development, such as monoamine oxidase B, matrix metalloproteinases, colony-stimulating factor 1 receptor, imidazoline-2 binding sites, cyclooxygenase, cannabinoid-2 receptor, purinergic P2X7 receptor, P2Y12 receptor, the fractalkine receptor, triggering receptor expressed on myeloid cells 2, and receptor for advanced glycation end products. Promising targets should demonstrate a higher specificity for cellular locations with exclusive expression in microglia or astrocyte and activation status (pro- or anti-inflammatory) with highly specific ligand to enable in vivo brain imaging. In this review, we summarised recent advances in the development of neuroinflammation imaging tracers and provided an outlook for promising targets in the future.
Collapse
Affiliation(s)
- Rong Zhou
- Department of Nephrology, Yangpu Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Bin Ji
- Department of Radiopharmacy and Molecular Imaging, School of Pharmacy, Fudan University, Shanghai, China
| | - Yanyan Kong
- Positron Emission Tomography (PET) Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Limei Qin
- Inner Mongolia Baicaotang Qin Chinese Mongolia Hospital, Hohhot, China
| | - Wuwei Ren
- School of Information Science and Technology, Shanghaitech University, Shanghai, China
| | - Yihui Guan
- Positron Emission Tomography (PET) Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Ruiqing Ni
- Institute for Regenerative Medicine, University of Zurich, Zurich, Switzerland
- Institute for Biomedical Engineering, University of Zurich & Eidgenössische Technische Hochschule Zürich (ETH Zurich), Zurich, Switzerland
| |
Collapse
|
291
|
Niedzwiedz-Massey VM, Douglas JC, Rafferty T, Wight PA, Kane CJM, Drew PD. Ethanol modulation of hippocampal neuroinflammation, myelination, and neurodevelopment in a postnatal mouse model of fetal alcohol spectrum disorders. Neurotoxicol Teratol 2021; 87:107015. [PMID: 34256161 PMCID: PMC8440486 DOI: 10.1016/j.ntt.2021.107015] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 06/24/2021] [Accepted: 07/08/2021] [Indexed: 01/15/2023]
Abstract
Fetal alcohol spectrum disorders (FASD) are alarmingly common and result in significant personal and societal loss. Neuropathology of the hippocampus is common in FASD leading to aberrant cognitive function. In the current study, we evaluated the effects of ethanol on the expression of a targeted set of molecules involved in neuroinflammation, myelination, neurotransmission, and neuron function in the developing hippocampus in a postnatal model of FASD. Mice were treated with ethanol from P4-P9, hippocampi were isolated 24 h after the final treatment at P10, and mRNA levels were quantitated by qRT-PCR. We evaluated the effects of ethanol on both pro-inflammatory and anti-inflammatory molecules in the hippocampus and identified novel mechanisms by which ethanol induces neuroinflammation. We further demonstrated that ethanol decreased expression of molecules associated with mature oligodendrocytes and greatly diminished expression of a lacZ reporter driven by the first half of the myelin proteolipid protein (PLP) gene (PLP1). In addition, ethanol caused a decrease in genes expressed in oligodendrocyte progenitor cells (OPCs). Together, these studies suggest ethanol may modulate pathogenesis in the developing hippocampus through effects on cells of the oligodendrocyte lineage, resulting in altered oligodendrogenesis and myelination. We also observed differential expression of molecules important in synaptic plasticity, neurogenesis, and neurotransmission. Collectively, the molecules evaluated in these studies may play a role in ethanol-induced pathology in the developing hippocampus and contribute to cognitive impairment associated with FASD. A better understanding of these molecules and their effects on the developing hippocampus may lead to novel treatment strategies for FASD.
Collapse
Affiliation(s)
- Victoria M Niedzwiedz-Massey
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - James C Douglas
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Tonya Rafferty
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Patricia A Wight
- Department of Physiology and Cell Biology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Cynthia J M Kane
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Paul D Drew
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, USA; Department of Neurology, University of Arkansas for Medical Sciences, Little Rock, AR, USA.
| |
Collapse
|
292
|
Rayasam A, Fukuzaki Y, Vexler ZS. Microglia-leucocyte axis in cerebral ischaemia and inflammation in the developing brain. Acta Physiol (Oxf) 2021; 233:e13674. [PMID: 33991400 DOI: 10.1111/apha.13674] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 05/06/2021] [Accepted: 05/08/2021] [Indexed: 12/13/2022]
Abstract
Development of the Central Nervous System (CNS) is reliant on the proper function of numerous intricately orchestrated mechanisms that mature independently, including constant communication between the CNS and the peripheral immune system. This review summarizes experimental knowledge of how cerebral ischaemia in infants and children alters physiological communication between leucocytes, brain immune cells, microglia and the neurovascular unit (NVU)-the "microglia-leucocyte axis"-and contributes to acute and long-term brain injury. We outline physiological development of CNS barriers in relation to microglial and leucocyte maturation and the plethora of mechanisms by which microglia and peripheral leucocytes communicate during postnatal period, including receptor-mediated and intracellular inflammatory signalling, lipids, soluble factors and extracellular vesicles. We focus on the "microglia-leucocyte axis" in rodent models of most common ischaemic brain diseases in the at-term infants, hypoxic-ischaemic encephalopathy (HIE) and focal arterial stroke and discuss commonalities and distinctions of immune-neurovascular mechanisms in neonatal and childhood stroke compared to stroke in adults. Given that hypoxic and ischaemic brain damage involve Toll-like receptor (TLR) activation, we discuss the modulatory role of viral and bacterial TLR2/3/4-mediated infection in HIE, perinatal and childhood stroke. Furthermore, we provide perspective of the dynamics and contribution of the axis in cerebral ischaemia depending on the CNS maturational stage at the time of insult, and modulation independently and in consort by individual axis components and in a sex dependent ways. Improved understanding on how to modify crosstalk between microglia and leucocytes will aid in developing age-appropriate therapies for infants and children who suffered cerebral ischaemia.
Collapse
Affiliation(s)
- Aditya Rayasam
- Department of Neurology University of California San Francisco San Francisco CA USA
| | - Yumi Fukuzaki
- Department of Neurology University of California San Francisco San Francisco CA USA
| | - Zinaida S. Vexler
- Department of Neurology University of California San Francisco San Francisco CA USA
| |
Collapse
|
293
|
Chen J, Jin J, Zhang X, Yu H, Zhu X, Yu L, Chen Y, Liu P, Dong X, Cao X, Gu Y, Bao X, Xia S, Xu Y. Microglial lnc-U90926 facilitates neutrophil infiltration in ischemic stroke via MDH2/CXCL2 axis. Mol Ther 2021; 29:2873-2885. [PMID: 33895326 DOI: 10.1016/j.ymthe.2021.04.025] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 02/28/2021] [Accepted: 04/19/2021] [Indexed: 12/12/2022] Open
Abstract
Dysregulated long non-coding RNAs (lncRNAs) have been shown to contribute to the pathogenesis of ischemic stroke. However, the potential role of lncRNAs in post-stroke microglial activation remains largely unknown. Here, we uncovered that lncRNA-U90926 was significantly increased in microglia exposed to ischemia/reperfusion both in vivo and in vitro. In addition, adenovirus-associated virus (AAV)-mediated microglial U90926 silencing alleviated neurological deficits and reduced infarct volume in experimental stroke mice. Microglial U90926 knockdown could reduce the infiltration of neutrophils into ischemic lesion site, which might be attributed to the downregulation of C-X-C motif ligand 2 (CXCL2). Mechanistically, U90926 directly bound to malate dehydrogenase 2 (MDH2) and competitively inhibited the binding of MDH2 to the CXCL2 3' untranslated region (UTR), thus protecting against MDH2-mediated decay of CXCL2 mRNA. Taken together, our study demonstrated that microglial U90926 aggravated ischemic brain injury via facilitating neutrophil infiltration, suggesting that U90926 might be a potential biomarker and therapeutic target for ischemic stroke.
Collapse
Affiliation(s)
- Jian Chen
- Department of Neurology, Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, Jiangsu 210008, P.R. China; Institute of Brain Sciences, Nanjing University, Nanjing, Jiangsu 210093, P.R. China; Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, Jiangsu 210008, P.R. China; Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, Jiangsu 210008, P.R. China; Nanjing Neurology Clinic Medical Center, Nanjing, Jiangsu 210008, P.R. China
| | - Jiali Jin
- Department of Neurology, Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, Jiangsu 210008, P.R. China; Institute of Brain Sciences, Nanjing University, Nanjing, Jiangsu 210093, P.R. China; Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, Jiangsu 210008, P.R. China; Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, Jiangsu 210008, P.R. China; Nanjing Neurology Clinic Medical Center, Nanjing, Jiangsu 210008, P.R. China
| | - Xi Zhang
- Department of Neurology, Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, Jiangsu 210008, P.R. China; Institute of Brain Sciences, Nanjing University, Nanjing, Jiangsu 210093, P.R. China; Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, Jiangsu 210008, P.R. China; Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, Jiangsu 210008, P.R. China; Nanjing Neurology Clinic Medical Center, Nanjing, Jiangsu 210008, P.R. China
| | - Hailong Yu
- Department of Neurology, Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, Jiangsu 210008, P.R. China; Institute of Brain Sciences, Nanjing University, Nanjing, Jiangsu 210093, P.R. China; Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, Jiangsu 210008, P.R. China; Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, Jiangsu 210008, P.R. China; Nanjing Neurology Clinic Medical Center, Nanjing, Jiangsu 210008, P.R. China
| | - Xiaolei Zhu
- Department of Neurology, Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, Jiangsu 210008, P.R. China; Institute of Brain Sciences, Nanjing University, Nanjing, Jiangsu 210093, P.R. China; Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, Jiangsu 210008, P.R. China; Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, Jiangsu 210008, P.R. China; Nanjing Neurology Clinic Medical Center, Nanjing, Jiangsu 210008, P.R. China
| | - Linjie Yu
- Department of Neurology, Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, Jiangsu 210008, P.R. China; Institute of Brain Sciences, Nanjing University, Nanjing, Jiangsu 210093, P.R. China; Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, Jiangsu 210008, P.R. China; Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, Jiangsu 210008, P.R. China; Nanjing Neurology Clinic Medical Center, Nanjing, Jiangsu 210008, P.R. China
| | - Yanting Chen
- Department of Neurology, Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, Jiangsu 210008, P.R. China; Institute of Brain Sciences, Nanjing University, Nanjing, Jiangsu 210093, P.R. China; Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, Jiangsu 210008, P.R. China; Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, Jiangsu 210008, P.R. China; Nanjing Neurology Clinic Medical Center, Nanjing, Jiangsu 210008, P.R. China
| | - Pinyi Liu
- Department of Neurology, Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, Jiangsu 210008, P.R. China; Institute of Brain Sciences, Nanjing University, Nanjing, Jiangsu 210093, P.R. China; Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, Jiangsu 210008, P.R. China; Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, Jiangsu 210008, P.R. China; Nanjing Neurology Clinic Medical Center, Nanjing, Jiangsu 210008, P.R. China
| | - Xiaohong Dong
- Department of Neurology, Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, Jiangsu 210008, P.R. China; Institute of Brain Sciences, Nanjing University, Nanjing, Jiangsu 210093, P.R. China; Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, Jiangsu 210008, P.R. China; Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, Jiangsu 210008, P.R. China; Nanjing Neurology Clinic Medical Center, Nanjing, Jiangsu 210008, P.R. China
| | - Xiang Cao
- Department of Neurology, Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, Jiangsu 210008, P.R. China; Institute of Brain Sciences, Nanjing University, Nanjing, Jiangsu 210093, P.R. China; Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, Jiangsu 210008, P.R. China; Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, Jiangsu 210008, P.R. China; Nanjing Neurology Clinic Medical Center, Nanjing, Jiangsu 210008, P.R. China
| | - Yue Gu
- Department of Neurology, Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, Jiangsu 210008, P.R. China; Institute of Brain Sciences, Nanjing University, Nanjing, Jiangsu 210093, P.R. China; Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, Jiangsu 210008, P.R. China; Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, Jiangsu 210008, P.R. China; Nanjing Neurology Clinic Medical Center, Nanjing, Jiangsu 210008, P.R. China
| | - Xinyu Bao
- Department of Neurology, Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, Jiangsu 210008, P.R. China; Institute of Brain Sciences, Nanjing University, Nanjing, Jiangsu 210093, P.R. China; Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, Jiangsu 210008, P.R. China; Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, Jiangsu 210008, P.R. China; Nanjing Neurology Clinic Medical Center, Nanjing, Jiangsu 210008, P.R. China
| | - Shengnan Xia
- Department of Neurology, Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, Jiangsu 210008, P.R. China; Institute of Brain Sciences, Nanjing University, Nanjing, Jiangsu 210093, P.R. China; Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, Jiangsu 210008, P.R. China; Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, Jiangsu 210008, P.R. China; Nanjing Neurology Clinic Medical Center, Nanjing, Jiangsu 210008, P.R. China
| | - Yun Xu
- Department of Neurology, Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, Jiangsu 210008, P.R. China; Institute of Brain Sciences, Nanjing University, Nanjing, Jiangsu 210093, P.R. China; Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, Jiangsu 210008, P.R. China; Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, Jiangsu 210008, P.R. China; Nanjing Neurology Clinic Medical Center, Nanjing, Jiangsu 210008, P.R. China.
| |
Collapse
|
294
|
Ronzano R, Roux T, Thetiot M, Aigrot MS, Richard L, Lejeune FX, Mazuir E, Vallat JM, Lubetzki C, Desmazières A. Microglia-neuron interaction at nodes of Ranvier depends on neuronal activity through potassium release and contributes to remyelination. Nat Commun 2021; 12:5219. [PMID: 34471138 PMCID: PMC8410814 DOI: 10.1038/s41467-021-25486-7] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 08/11/2021] [Indexed: 12/19/2022] Open
Abstract
Microglia, the resident immune cells of the central nervous system, are key players in healthy brain homeostasis and plasticity. In neurological diseases, such as Multiple Sclerosis, activated microglia either promote tissue damage or favor neuroprotection and myelin regeneration. The mechanisms for microglia-neuron communication remain largely unkown. Here, we identify nodes of Ranvier as a direct site of interaction between microglia and axons, in both mouse and human tissues. Using dynamic imaging, we highlight the preferential interaction of microglial processes with nodes of Ranvier along myelinated fibers. We show that microglia-node interaction is modulated by neuronal activity and associated potassium release, with THIK-1 ensuring their microglial read-out. Altered axonal K+ flux following demyelination impairs the switch towards a pro-regenerative microglia phenotype and decreases remyelination rate. Taken together, these findings identify the node of Ranvier as a major site for microglia-neuron interaction, that may participate in microglia-neuron communication mediating pro-remyelinating effect of microglia after myelin injury. Microglia are important for brain homeostasis and plasticity. The mechanisms underlying microglia-neuron interactions are still unclear. Here, the authors show that microglia preferentially interact with the nodes of Ranvier along axons. This interaction is modulated by neuronal activity and contributes to remyelination in mice.
Collapse
Affiliation(s)
- R Ronzano
- Sorbonne Université, Paris Brain Institute (ICM), INSERM U1127, CNRS UMR 7225, Hopital Pitié-Salpétrière, Paris, France
| | - T Roux
- Sorbonne Université, Paris Brain Institute (ICM), INSERM U1127, CNRS UMR 7225, Hopital Pitié-Salpétrière, Paris, France.,Assistance Publique des Hôpitaux de Paris (APHP), Hopital Pitié-Salpétrière, Département de Neurologie, Paris, France
| | - M Thetiot
- Sorbonne Université, Paris Brain Institute (ICM), INSERM U1127, CNRS UMR 7225, Hopital Pitié-Salpétrière, Paris, France
| | - M S Aigrot
- Sorbonne Université, Paris Brain Institute (ICM), INSERM U1127, CNRS UMR 7225, Hopital Pitié-Salpétrière, Paris, France
| | - L Richard
- Centre de Référence National des Neuropathies Périphériques Rares et Département de Neurologie, Hopital Universitaire, Limoges, France
| | - F X Lejeune
- Sorbonne Université, Paris Brain Institute (ICM), INSERM U1127, CNRS UMR 7225, Hopital Pitié-Salpétrière, Paris, France.,Paris Brain Institute's Data and Analysis Core, University Hospital Pitié-Salpêtrière, Paris, France
| | - E Mazuir
- Sorbonne Université, Paris Brain Institute (ICM), INSERM U1127, CNRS UMR 7225, Hopital Pitié-Salpétrière, Paris, France
| | - J M Vallat
- Centre de Référence National des Neuropathies Périphériques Rares et Département de Neurologie, Hopital Universitaire, Limoges, France
| | - C Lubetzki
- Sorbonne Université, Paris Brain Institute (ICM), INSERM U1127, CNRS UMR 7225, Hopital Pitié-Salpétrière, Paris, France.,Assistance Publique des Hôpitaux de Paris (APHP), Hopital Pitié-Salpétrière, Département de Neurologie, Paris, France
| | - A Desmazières
- Sorbonne Université, Paris Brain Institute (ICM), INSERM U1127, CNRS UMR 7225, Hopital Pitié-Salpétrière, Paris, France.
| |
Collapse
|
295
|
Ren Y, Jiang J, Jiang W, Zhou X, Lu W, Wang J, Luo Y. Spata2 Knockdown Exacerbates Brain Inflammation via NF-κB/P38MAPK Signaling and NLRP3 Inflammasome Activation in Cerebral Ischemia/Reperfusion Rats. Neurochem Res 2021; 46:2262-2275. [PMID: 34075523 DOI: 10.1007/s11064-021-03360-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 05/13/2021] [Accepted: 05/21/2021] [Indexed: 12/27/2022]
Abstract
Brain inflammation induced by ischemic stroke is an important cause of secondary brain injury. The nuclear factor kappa B (NF-κB), mitogen-activated protein kinase (MAPK), and NLRP3 inflammasome signaling are believed to drive the progression of brain inflammation. Spermatogenesis-associated protein2 (SPATA2) functions as a partner protein that recruits CYLD, a negative regulator of NF-κB signaling, to signaling complexes. However, the role of SPATA2 in the central nervous system remains unclear and whether it is involved in regulating inflammatory responses remains controversial. Rats were subjected to transient middle cerebral artery occlusion followed by reperfusion (tMCAO/R) surgery. The expression and localization of SPATA2 in the brain were investigated. The lentivirus-mediated shRNA was employed to inhibit SPATA2 expression. The inflammatory responses and outcomes of Spata2 knockdown were investigated. SPATA2 was co-localized with CYLD in neurons. SPATA2 expression was reduced in tMCAO/R rats. Spata2 knockdown resulted in increased microglia, increased expression of Tnfa, Il-1β, and Il-18, decreased Garcia score, and increased infarct volume. Spata2 knockdown resulted in the activation of P38MAPK and NLRP3 inflammasome and the increased activation of NF-κB signaling. These results suggest that SPATA2 plays a protective role against brain inflammation induced by ischemia/reperfusion injury. Therefore, SPATA2 could be a potential therapeutic target for treating ischemic stroke.
Collapse
Affiliation(s)
- Yikun Ren
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
- Laboratory Research Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Jin Jiang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
- Laboratory Research Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Wenxia Jiang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
- Laboratory Research Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Xueling Zhou
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
- Laboratory Research Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Wenhao Lu
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
- Laboratory Research Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Jingwen Wang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
- Laboratory Research Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Yong Luo
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.
- Laboratory Research Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
296
|
P2X7-deficiency improves plasticity and cognitive abilities in a mouse model of Tauopathy. Prog Neurobiol 2021; 206:102139. [PMID: 34391810 DOI: 10.1016/j.pneurobio.2021.102139] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 07/06/2021] [Accepted: 08/06/2021] [Indexed: 12/29/2022]
Abstract
Alzheimer's disease is the most common form of dementia characterized by intracellular aggregates of hyperphosphorylated Tau protein and extracellular accumulation of amyloid β (Aβ) peptides. We previously demonstrated that the purinergic receptor P2X7 (P2X7) plays a major role in Aβ-mediated neurodegeneration but the relationship between P2X7 and Tau remained overlooked. Such a link was supported by cortical upregulation of P2X7 in patients with various type of frontotemporal lobar degeneration, including mutation in the Tau-coding gene, MAPT, as well as in the brain of a Tauopathy mouse model (THY-Tau22). Subsequent phenotype analysis of P2X7-deficient Tau mice revealed the instrumental impact of this purinergic receptor. Indeed, while P2X7-deficiency had a moderate effect on Tau pathology itself, we observed a significant reduction of microglia activation and of Tau-related inflammatory mediators, particularly CCL4. Importantly, P2X7 deletion ultimately rescued synaptic plasticity and memory impairments of Tau mice. Altogether, the present data support a contributory role of P2X7 dysregulation on processes governing Tau-induced brain anomalies. Due to the convergent role of P2X7 blockade in both Aβ and Tau background, P2X7 inhibitors might prove to be ideal candidate drugs to curb the devastating cognitive decline in Alzheimer's disease and Tauopathies.
Collapse
|
297
|
Manabe T, Rácz I, Schwartz S, Oberle L, Santarelli F, Emmrich JV, Neher JJ, Heneka MT. Systemic inflammation induced the delayed reduction of excitatory synapses in the CA3 during ageing. J Neurochem 2021; 159:525-542. [PMID: 34379806 DOI: 10.1111/jnc.15491] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 07/27/2021] [Accepted: 08/09/2021] [Indexed: 11/29/2022]
Abstract
Sepsis-associated encephalopathy (SAE) represents diverse cerebral dysfunctions in response to pathogen-induced systemic inflammation. Peripheral exposure to lipopolysaccharide (LPS), a component of the gram-negative bacterial cell wall, has been extensively used to model systemic inflammation. Our previous studies suggested that LPS led to hippocampal neuron death and synaptic destruction in vivo. However, the underlying roles of activated microglia in these neuronal changes remained unclear. Here, LPS from two different bacterial strains (Salmonella enterica or E. coli) were compared and injected in 14- to 16-month-old mice and evaluated for neuroinflammation and neuronal integrity in the hippocampus at 7 or 63 days post-injection (dpi). LPS injection resulted in persistent neuroinflammation lasting for seven days and a subsequent normalisation by 63 dpi. Of note, increases in proinflammatory cytokines, microglial morphology and microglial mean lysosome volume were more pronounced after E. coli LPS injection than Salmonella LPS at 7 dpi. While inhibitory synaptic puncta density remained normal, excitatory synaptic puncta were locally reduced in the CA3 region of the hippocampus at 63 dpi. Finally, we provide evidence that excitatory synapses coated with complement factor 3 (C3) decreased between 7 dpi and 63 dpi. Although we did not find an increase of synaptic pruning by microglia, it is plausible that microglia recognised and eliminated these C3-tagged synapses between the two time-points of investigation. Since a region-specific decline of CA3 synapses has previously been reported during normal ageing, we postulate that systemic inflammation may have accelerated or worsened the CA3 synaptic changes in the ageing brain.
Collapse
Affiliation(s)
- Tatsuya Manabe
- Department of Neurodegenerative Diseases and Geriatric Psychiatry, University of Bonn Medical Center, Venusberg-Campus 1, 53127, Bonn, Germany.,German Center for Neurodegenerative Diseases (DZNE), 53127, Bonn, Germany
| | - Ildikó Rácz
- Department of Neurodegenerative Diseases and Geriatric Psychiatry, University of Bonn Medical Center, Venusberg-Campus 1, 53127, Bonn, Germany.,German Center for Neurodegenerative Diseases (DZNE), 53127, Bonn, Germany
| | - Stephanie Schwartz
- Department of Neurodegenerative Diseases and Geriatric Psychiatry, University of Bonn Medical Center, Venusberg-Campus 1, 53127, Bonn, Germany.,German Center for Neurodegenerative Diseases (DZNE), 53127, Bonn, Germany
| | - Linda Oberle
- Department of Cellular Neurology, Hertie Institute for Clinical Brain Research, University of Tübingen, 72076, Tübingen, Germany
| | | | - Julius V Emmrich
- Department of Neurology and Department of Experimental Neurology, Freie Universität Berlin, Humboldt Universität zu Berlin, Berlin Institute of Health, Berlin, 10117, Germany
| | - Jonas J Neher
- Department of Cellular Neurology, Hertie Institute for Clinical Brain Research, University of Tübingen, 72076, Tübingen, Germany.,German Center for Neurodegenerative Diseases (DZNE), 72076, Tübingen, Germany
| | - Michael T Heneka
- Department of Neurodegenerative Diseases and Geriatric Psychiatry, University of Bonn Medical Center, Venusberg-Campus 1, 53127, Bonn, Germany.,German Center for Neurodegenerative Diseases (DZNE), 53127, Bonn, Germany.,Department of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester, Massachusetts, 01655, USA
| |
Collapse
|
298
|
Gölöncsér F, Baranyi M, Iring A, Hricisák L, Otrokocsi L, Benyó Z, Sperlágh B. Involvement of P2Y 12 receptors in an NTG-induced model of migraine in male mice. Br J Pharmacol 2021; 178:4626-4645. [PMID: 34363208 DOI: 10.1111/bph.15641] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 07/02/2021] [Accepted: 07/11/2021] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND AND PURPOSE P2Y12 receptors (P2Y12 Rs) are known to regulate different forms of pain and inflammation. In this study we investigated the participation of P2Y12 Rs in an animal model of migraine. EXPERIMENTAL APPROACH We tested the effect of the centrally administered selective P2Y12 R antagonist PSB-0739, and P2Y12 R gene deficiency in acute nitroglycerin (NTG)-treated mice. Additionally, platelet depletion was used to investigate the role of platelet P2Y12 Rs during migraine-like pain. KEY RESULTS NTG induced sensory hypersensitivity of C57BL/6 wild-type (P2ry12+/+ ) mice, accompanied by an increase in c-fos and CGRP expression in the upper cervical spinal cord (C1-C2) and trigeminal nucleus caudalis (TNC). Similar changes were also observed in P2Y12 R gene-deficient (P2ry12-/- ) mice. Prophylactic intrathecal application of PSB-0739 reversed thermal hyperalgesia and head grooming time in wild-type mice but had no effect in P2ry12-/- mice; furthermore, it was also effective when applied as a post-treatment. PSB-0739 administration suppressed the expression of c-fos in C1-C2 and TNC, and decrease C1-C2 levels of dopamine and serotonin in wild-type mice. NTG treatment itself did not change adenosine diphosphate (ADP)-induced platelet activation measured by CD62P upregulation in wild-type mice. Platelet depletion by anti-mouse CD41 antibody and clopidogrel attenuated NTG-induced thermal hypersensitivity and head grooming time in mice. CONCLUSION AND IMPLICATIONS Taken together, our findings show that acute inhibition of P2Y12 Rs alleviates migraine-like pain in mice, by modulating the expression of c-fos, and platelet P2Y12 Rs might contribute to this effect. Hence, it is suggested that the blockade of P2Y12 Rs may have therapeutic potential against migraine.
Collapse
Affiliation(s)
- Flóra Gölöncsér
- Laboratory of Molecular Pharmacology, Institute of Experimental Medicine, Budapest, Hungary
| | - Mária Baranyi
- Laboratory of Molecular Pharmacology, Institute of Experimental Medicine, Budapest, Hungary
| | - András Iring
- Laboratory of Molecular Pharmacology, Institute of Experimental Medicine, Budapest, Hungary
| | - László Hricisák
- Institute of Translational Medicine, Semmelweis University, Budapest, Hungary
| | - Lilla Otrokocsi
- Laboratory of Molecular Pharmacology, Institute of Experimental Medicine, Budapest, Hungary
| | - Zoltán Benyó
- Institute of Translational Medicine, Semmelweis University, Budapest, Hungary
| | - Beáta Sperlágh
- Laboratory of Molecular Pharmacology, Institute of Experimental Medicine, Budapest, Hungary
| |
Collapse
|
299
|
Heindl S, Ricci A, Carofiglio O, Zhou Q, Arzberger T, Lenart N, Franzmeier N, Hortobagyi T, Nelson PT, Stowe AM, Denes A, Edbauer D, Liesz A. Chronic T cell proliferation in brains after stroke could interfere with the efficacy of immunotherapies. J Exp Med 2021; 218:e20202411. [PMID: 34037669 PMCID: PMC8160576 DOI: 10.1084/jem.20202411] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 03/31/2021] [Accepted: 04/28/2021] [Indexed: 01/07/2023] Open
Abstract
Neuroinflammation is an emerging focus of translational stroke research. Preclinical studies have demonstrated a critical role for brain-invading lymphocytes in post-stroke pathophysiology. Reducing cerebral lymphocyte invasion by anti-CD49d antibodies consistently improves outcome in the acute phase after experimental stroke models. However, clinical trials testing this approach failed to show efficacy in stroke patients for the chronic outcome 3 mo after stroke. Here, we identify a potential mechanistic reason for this phenomenon by detecting chronic T cell accumulation-evading the systemic therapy-in the post-ischemic brain. We observed a persistent accumulation of T cells in mice and human autopsy samples for more than 1 mo after stroke. Cerebral T cell accumulation in the post-ischemic brain was driven by increased local T cell proliferation rather than by T cell invasion. This observation urges re-evaluation of current immunotherapeutic approaches, which target circulating lymphocytes for promoting recovery after stroke.
Collapse
Affiliation(s)
- Steffanie Heindl
- Institute for Stroke and Dementia Research, University Hospital, Ludwig Maximilians University Munich, Munich, Germany
| | - Alessio Ricci
- Institute for Stroke and Dementia Research, University Hospital, Ludwig Maximilians University Munich, Munich, Germany
| | - Olga Carofiglio
- Institute for Stroke and Dementia Research, University Hospital, Ludwig Maximilians University Munich, Munich, Germany
| | - Qihui Zhou
- German Center for Neurodegenerative Diseases, Munich, Germany
| | - Thomas Arzberger
- Department of Psychiatry and Psychotherapy, University Hospital, Ludwig Maximilians University Munich, Munich, Germany
- Center for Neuropathology and Prion Research, Ludwig Maximilians University Munich, Munich, Germany
| | - Nikolett Lenart
- Momentum Laboratory of Neuroimmunology, Institute of Experimental Medicine, Budapest, Hungary
| | - Nicolai Franzmeier
- Institute for Stroke and Dementia Research, University Hospital, Ludwig Maximilians University Munich, Munich, Germany
| | - Tibor Hortobagyi
- ELKH-DE Cerebrovascular and Neurodegenerative Research Group, Department of Neurology, University of Debrecen, Debrecen, Hungary
| | | | | | - Adam Denes
- Momentum Laboratory of Neuroimmunology, Institute of Experimental Medicine, Budapest, Hungary
| | - Dieter Edbauer
- German Center for Neurodegenerative Diseases, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Arthur Liesz
- Institute for Stroke and Dementia Research, University Hospital, Ludwig Maximilians University Munich, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| |
Collapse
|
300
|
Park J, Choi Y, Jung E, Lee S, Sohn J, Chung W. Microglial MERTK eliminates phosphatidylserine-displaying inhibitory post-synapses. EMBO J 2021; 40:e107121. [PMID: 34013588 PMCID: PMC8327958 DOI: 10.15252/embj.2020107121] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 04/09/2021] [Accepted: 04/16/2021] [Indexed: 01/11/2023] Open
Abstract
Glia contribute to synapse elimination through phagocytosis in the central nervous system. Despite the important roles of this process in development and neurological disorders, the identity and regulation of the "eat-me" signal that initiates glia-mediated phagocytosis of synapses has remained incompletely understood. Here, we generated conditional knockout mice with neuronal-specific deletion of the flippase chaperone Cdc50a, to induce stable exposure of phosphatidylserine, a well-known "eat-me" signal for apoptotic cells, on the neuronal outer membrane. Surprisingly, acute Cdc50a deletion in mature neurons causes preferential phosphatidylserine exposure in neuronal somas and specific loss of inhibitory post-synapses without effects on other synapses, resulting in abnormal excitability and seizures. Ablation of microglia or the deletion of microglial phagocytic receptor Mertk prevents the loss of inhibitory post-synapses and the seizure phenotype, indicating that microglial phagocytosis is responsible for inhibitory post-synapse elimination. Moreover, we found that phosphatidylserine is used for microglia-mediated pruning of inhibitory post-synapses in normal brains, suggesting that phosphatidylserine serves as a general "eat-me" signal for inhibitory post-synapse elimination.
Collapse
Affiliation(s)
- Jungjoo Park
- Department of Biological SciencesKorea Advanced Institute of Science and TechnologyDaejeonKorea
| | - Yeeun Choi
- Department of Biological SciencesKorea Advanced Institute of Science and TechnologyDaejeonKorea
| | - Eunji Jung
- Department of Biological SciencesKorea Advanced Institute of Science and TechnologyDaejeonKorea
| | - Seung‐Hee Lee
- Department of Biological SciencesKorea Advanced Institute of Science and TechnologyDaejeonKorea
| | - Jong‐Woo Sohn
- Department of Biological SciencesKorea Advanced Institute of Science and TechnologyDaejeonKorea
| | - Won‐Suk Chung
- Department of Biological SciencesKorea Advanced Institute of Science and TechnologyDaejeonKorea
| |
Collapse
|