251
|
Nicholas SB, Hsueh WA. Reply from the Authors. Kidney Int 2005. [DOI: 10.1038/ki.2005.4496231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
252
|
de Gouville AC, Boullay V, Krysa G, Pilot J, Brusq JM, Loriolle F, Gauthier JM, Papworth SA, Laroze A, Gellibert F, Huet S. Inhibition of TGF-beta signaling by an ALK5 inhibitor protects rats from dimethylnitrosamine-induced liver fibrosis. Br J Pharmacol 2005; 145:166-77. [PMID: 15723089 PMCID: PMC1576127 DOI: 10.1038/sj.bjp.0706172] [Citation(s) in RCA: 137] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
1 Chronic liver disease is characterized by an exacerbated accumulation of matrix, causing progressive fibrosis, which may lead to cirrhosis. Transforming growth factor beta (TGF-beta), a well-known profibrotic cytokine, transduces its signal through the ALK5 ser/thr kinase receptor, and increases transcription of different genes including PAI-1 and collagens. The identification of GW6604 (2-phenyl-4-(3-pyridin-2-yl-1H-pyrazol-4-yl)pyridine), an ALK5 inhibitor, allowed us to evaluate the therapeutic potential of inhibiting TGF-beta pathway in different models of liver disease. 2 A cellular assay was used to identify GW6604 as a TGF-beta signaling pathway inhibitor. This ALK5 inhibitor was then tested in a model of liver hepatectomy in TGF-beta-overexpressing transgenic mice, in an acute model of liver disease and in a chronic model of dimethylnitrosamine (DMN)-induced liver fibrosis. 3 In vitro, GW6604 inhibited autophosphorylation of ALK5 with an IC(50) of 140 nM and in a cellular assay inhibited TGF-beta-induced transcription of PAI-1 (IC(50): 500 nM). In vivo, GW6604 (40 mg kg(-1) p.o.) increased liver regeneration in TGF-beta-overexpressing mice, which had undergone partial hepatectomy. In an acute model of liver disease, GW6604 reduced by 80% the expression of collagen IA1. In a chronic model of DMN-induced fibrosis where DMN was administered for 6 weeks and GW6604 dosed for the last 3 weeks (80 mg kg(-1) p.o., b.i.d.), mortality was prevented and DMN-induced elevations of mRNA encoding for collagen IA1, IA2, III, TIMP-1 and TGF-beta were reduced by 50-75%. Inhibition of matrix genes overexpression was accompanied by reduced matrix deposition and reduction in liver function deterioration, as assessed by bilirubin and liver enzyme levels. 4 Our results suggest that inhibition of ALK5 could be an attractive new approach to treatment of liver fibrotic diseases by both preventing matrix deposition and promoting hepatocyte regeneration.
Collapse
|
253
|
Wesselkamper SC, Case LM, Henning LN, Borchers MT, Tichelaar JW, Mason JM, Dragin N, Medvedovic M, Sartor MA, Tomlinson CR, Leikauf GD. Gene expression changes during the development of acute lung injury: role of transforming growth factor beta. Am J Respir Crit Care Med 2005; 172:1399-411. [PMID: 16100012 PMCID: PMC2718437 DOI: 10.1164/rccm.200502-286oc] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
RATIONALE Acute lung injury can occur from multiple causes, resulting in high mortality. The pathophysiology of nickel-induced acute lung injury in mice is remarkably complex, and the molecular mechanisms are uncertain. OBJECTIVES To integrate molecular pathways and investigate the role of transforming growth factor beta (TGF-beta) in acute lung injury in mice. METHODS cDNA microarray analyses were used to identify lung gene expression changes after nickel exposure. MAPPFinder analysis of the microarray data was used to determine significantly altered molecular pathways. TGF-beta1 protein in bronchoalveolar lavage fluid, as well as the effect of inhibition of TGF-beta, was assessed in nickel-exposed mice. The effect of TGF-beta on surfactant-associated protein B (Sftpb) promoter activity was measured in mouse lung epithelial cells. MEASUREMENTS AND MAIN RESULTS Genes that decreased the most after nickel exposure play important roles in lung fluid absorption or surfactant and phospholipid synthesis, and genes that increased the most were involved in TGF-beta signaling. MAPPFinder analysis further established TGF-beta signaling to be significantly altered. TGF-beta-inducible genes involved in the regulation of extracellular matrix function and fibrinolysis were significantly increased after nickel exposure, and TGF-beta1 protein was also increased in the lavage fluid. Pharmacologic inhibition of TGF-beta attenuated nickel-induced protein in bronchoalveolar lavage. In addition, treatment with TGF-beta1 dose-dependently repressed Sftpb promoter activity in vitro, and a novel TGF-beta-responsive region in the Sftpb promoter was identified. CONCLUSIONS These data suggest that TGF-beta acts as a central mediator of acute lung injury through the alteration of several different molecular pathways.
Collapse
Affiliation(s)
- Scott C Wesselkamper
- Department of Environmental Health, P.O. Box 670056, University of Cincinnati, Cincinnati, OH 45267-0056, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
254
|
Matsuo S, López-Guisa JM, Cai X, Okamura DM, Alpers CE, Bumgarner RE, Peters MA, Zhang G, Eddy AA. Multifunctionality of PAI-1 in fibrogenesis: evidence from obstructive nephropathy in PAI-1-overexpressing mice. Kidney Int 2005; 67:2221-38. [PMID: 15882265 DOI: 10.1111/j.1523-1755.2005.00327.x] [Citation(s) in RCA: 108] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
BACKGROUND Plasminogen activator inhibitor-1 (PAI-1) has been implicated in the pathogenesis of chronic kidney disease based on its up-regulated expression and on the beneficial effects of PAI-1 inhibition or depletion in experimental models. PAI-1 is a multifunctional protein and the mechanisms that account for its profibrotic effects have not been fully elucidated. METHODS The present study was designed to investigate PAI-1-dependent fibrogenic pathways by comparing the unilateral ureteral obstruction model (UUO) (days 3, 7, and 14) in PAI-1-overexpressing mice (PAI-1 tg) to wild-type mice, both on a C57BL6 background. RESULTS Following UUO, total kidney PAI-1 mRNA and/or protein levels were significantly higher in the PAI-1 tg mice (N= 6 to 8/group) and fibrosis severity was significantly worse (days 3, 7, and 14), measured both as Sirius red-positive interstitial area (e.g., 10 +/- 3.2% vs. 4.5 +/- 1.0%) (day 14) and total kidney collagen (e.g., 11.1 +/- 1.7 vs. 6.2 +/- 1.3 microg/mg) (day 14). By day 14, the expression of two normal tubular proteins, E-cadherin and Ksp-cadherin, were significantly lower in the PAI-1 tg mice (3.2 +/- 0.5% vs. 11.7 +/- 5.9% and 2.6 +/- 1.6) vs. 6.2 +/- 0.8%, respectively), implying more extensive tubular damage. At least four fibrogenic pathways were differentially expressed in the PAI-1 tg mice. First, interstitial macrophage recruitment was more intense (P < 0.05 days 3 and 14). Second, interstitial myofibroblast density was greater (P < 0.05 days 3 and 7) despite similar numbers of proliferating tubulointerstitial cells. Third, transforming growth factor-beta1 (TGF-beta1) and collagen I mRNA were significantly higher. Finally, urokinase activity was significantly lower (P < 0.05 days 7 and 14) despite similar mRNA levels. Gene microarray studies documented that that the deletion of this single profibrotic gene had far-reaching consequences on renal cellular responses to chronic injury. CONCLUSION These data provide further evidence that PAI-1 is directly involved in interstitial fibrosis and tubular damage via two primary overlapping mechanisms: early effects on interstitial cell recruitment and late effects associated with decreased urokinase activity.
Collapse
Affiliation(s)
- Shunya Matsuo
- Children's Hospital and Regional Medical Center and Department of Pediatrics, University of Washington, Seattle, Washington 98105, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
255
|
Huang Y, Noble N. An unexpected role of plasminogen activator inhibitor-type 1 (PAI-1) in renal fibrosis. Kidney Int 2005; 67:2502-3. [PMID: 15882299 DOI: 10.1111/j.1523-1755.2005.00368.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
256
|
Abstract
One distinctive outcome of interstitial lung diseases in childhood is the abnormal accumulation of pulmonary extracellular matrix. The clinical consequence of such excessive connective tissue accumulation is known as pulmonary fibrosis. While numerous aspects of its pathogenesis have become familiar, many key events involved in its inception and progression still remain unclear. There is now compelling evidence that lung damage due to uncontrolled proteolysis may help drive critical processes that regulate fibrotic matrix remodeling. In this regard, a number of proteinases have been implicated in promoting both the initial lung injury and the fibroproliferative repair that follows. This review summarizes the knowledge of how different matrix-targeting enzymes may act to influence the development of pediatric pulmonary fibrosis. Understanding the scientific basis of this complex process may highlight opportunities to limit unwanted proteolysis and the intensity of its fibrotic sequelae.
Collapse
Affiliation(s)
- Felix Chua
- Centre for Respiratory Research, Royal Free and University College London Medical School, Rayne Institute, London, UK.
| | | | | |
Collapse
|
257
|
Renckens R, Roelofs JJTH, de Waard V, Florquin S, Lijnen HR, Carmeliet P, van der Poll T. The role of plasminogen activator inhibitor type 1 in the inflammatory response to local tissue injury. J Thromb Haemost 2005; 3:1018-25. [PMID: 15869599 DOI: 10.1111/j.1538-7836.2005.01311.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
BACKGROUND The plasma levels of the plasminogen activator-inhibitor type 1 (PAI-1) are consistently elevated in patients with sterile tissue injury, often accompanied by a systemic acute phase protein response. It remains unknown, however, whether and to what extent PAI-1 affects the host response to trauma. METHODS AND RESULTS By using the well-established murine model of turpentine-induced tissue injury we compared local and systemic inflammatory responses in PAI-1 gene-deficient (PAI-1-/-) and normal wild-type (Wt) mice. Subcutaneous turpentine injection elicited strong increases in PAI-1 protein concentration in plasma and at the site of injury, but not in liver. PAI-1 mRNA was locally increased and expressed mainly by macrophages and endothelial cells. PAI-1 deficiency greatly enhanced the early influx of neutrophils to the site of inflammation, which was associated with increased edema and necrosis at 8 h after injection. Furthermore, PAI-1-/- mice showed a reduced early interleukin (IL)-6 induction with subsequently lower acute phase protein levels and a much slower recovery of body weight loss. CONCLUSION These findings suggest that PAI-1 is not merely a marker of tissue injury but plays a functional role in the local and systemic host response to trauma.
Collapse
Affiliation(s)
- R Renckens
- Laboratory of Experimental Internal Medicine, Academic Medical Center, University of Amsterdam, Netherlands.
| | | | | | | | | | | | | |
Collapse
|
258
|
Matsushita M, Yamamoto T, Nishioka K. Plasminogen activator inhibitor-1 is elevated, but not essential, in the development of bleomycin-induced murine scleroderma. Clin Exp Immunol 2005; 139:429-38. [PMID: 15730388 PMCID: PMC1809321 DOI: 10.1111/j.1365-2249.2005.02718.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Accumulative data have demonstrated that plasminogen activator inhibitor-1 (PAI-1) plays an important role in the extracellular matrix metabolism; however, the involvement of PAI-1 in scleroderma has not been fully elucidated. In this study, we investigated the role of PAI-1 in bleomycin-induced murine scleroderma. 100 microg of bleomycin was injected subcutaneously to the back skin of C3H/HeJ mice on alternate day for 4 weeks. Histopathological findings revealed that PAI-1 was positive in macrophage-like cells and fibroblastic cells in the dermis, in parallel with the induction of dermal sclerosis. PAI-1 mRNA expression in the whole skin was up-regulated at 1 and 4 weeks. The production of active PAI-1 protein in the lesional skin was significantly increased 3 and 4 weeks after bleomycin treatment. Next, we examined whether dermal sclerosis is induced by bleomycin in PAI-1-deficient (PAI-1-/-) mice. 10 microg of bleomycin was subcutaneously injected to PAI-1-/- and wild type (WT) mice 5 days per week for 4 weeks. Histological examination revealed that dermal sclerosis was similarly induced even in PAI-1-/- as well as WT mice. Dermal thickness and collagen contents in the skin were significantly increased by bleomycin injection in both PAI-1-/- and WT mice, and the rate of increase was similar. These data suggest that PAI-1 plays an important role, possibly via TGF-beta pathway activation. However, the fact that PAI-1 deficiency did not ameliorate skin sclerosis suggest that PAI-1 is not the essential factor in the development of bleomycin-induced scleroderma, and more complex biochemical effects other than PA/plasmin system are greatly suspected.
Collapse
Affiliation(s)
- M Matsushita
- Department of Dermatology, Tokyo Medical and Dental University, School of Medicine, Tokyo, Japan.
| | | | | |
Collapse
|
259
|
Yamamoto T, Nishioka K. Cellular and molecular mechanisms of bleomycin-induced murine scleroderma: current update and future perspective. Exp Dermatol 2005; 14:81-95. [PMID: 15679577 DOI: 10.1111/j.0906-6705.2005.00280.x] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Scleroderma is a fibrotic condition characterized by immunologic abnormalities, vascular injury and increased accumulation of matrix proteins in the skin. Although the aetiology of scleroderma is not fully elucidated, a growing body of evidence suggests that extracellular matrix overproduction by activated fibroblasts results from complex interactions among endothelial cells, lymphocytes, macrophages and fibroblasts, via a number of mediators. Cytokines, chemokines and growth factors secreted by inflammatory cells and mesenchymal cells (fibroblasts and myofibroblasts) play an important role in the fibrotic process of scleroderma. Recently, we established a murine model of scleroderma by repeated local injections of bleomycin. Dermal sclerosis was induced in various mouse strains, although the intensity of dermal sclerosis varied among various strains. Histopathological and biochemical analysis demonstrated that this experimental murine scleroderma reflected a number of aspects of human scleroderma. Further investigation of the cellular and molecular mechanisms of inflammatory reaction, fibroblast activation and extracellular matrix deposition following dermal injury by bleomycin treatment will lead to the better understanding of the pathophysiology and the exploration of effective treatment against scleroderma. This review summarizes recent progress of the cellular and molecular events in the pathogenesis of bleomycin-induced scleroderma; moreover, further perspective by using this mouse model has been discussed.
Collapse
Affiliation(s)
- Toshiyuki Yamamoto
- Department of Dermatology, Tokyo Medical and Dental University, School of Medicine, Tokyo, Japan.
| | | |
Collapse
|
260
|
Weisberg AD, Albornoz F, Griffin JP, Crandall DL, Elokdah H, Fogo AB, Vaughan DE, Brown NJ. Pharmacological Inhibition and Genetic Deficiency of Plasminogen Activator Inhibitor-1 Attenuates Angiotensin II/Salt-Induced Aortic Remodeling. Arterioscler Thromb Vasc Biol 2005; 25:365-71. [PMID: 15576638 DOI: 10.1161/01.atv.0000152356.85791.52] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE To test the hypothesis that pharmacological plasminogen activator inhibitor (PAI)-1 inhibition protects against renin-angiotensin-aldosterone system-induced cardiovascular injury, the effect of a novel orally active small-molecule PAI-1 inhibitor, PAI-039, was examined in a mouse model of angiotensin (Ang) II-induced vascular remodeling and cardiac fibrosis. METHODS AND RESULTS Uninephrectomized male C57BL/6J mice were randomized to vehicle subcutaneus, Ang II (1 mug/h) subcutaneous, vehicle+PAI-039 (1 mg/g chow), or Ang II+PAI-039 during high-salt intake for 8 weeks. Ang II caused significant medial, adventitial, and aortic wall thickening compared with vehicle. PAI-039 attenuated Ang II-induced aortic remodeling without altering the pressor response to Ang II. Ang II increased heart/body weight ratio and cardiac fibrosis. PAI-039 did not attenuate the effect of Ang II on cardiac hypertrophy and increased fibrosis. The effect of PAI-039 on Ang II/salt-induced aortic remodeling and cardiac fibrosis was comparable to the effect of genetic PAI-1 deficiency. Ang II increased aortic mRNA expression of PAI-1, collagen I, collagen III, fibronectin, osteopontin, monocyte chemoattractant protein-1, and F4/80; PAI-039 significantly decreased the Ang II-induced increase in aortic osteopontin expression at 8 weeks. CONCLUSIONS This study demonstrates that pharmacological inhibition of PAI-1 protects against Ang II-induced aortic remodeling. Future studies are needed to determine whether the interactive effect of Ang II/salt and reduced PAI-1 activity on cardiac fibrosis is species-specific. In this study, the effect of pharmacological PAI-1 inhibition in a mouse model of Ang II-induced vascular remodeling and cardiac fibrosis was examined. PAI-1 inhibition significantly attenuated Ang II-induced aortic medial and wall thickening, but not cardiac hypertrophy, and enhanced Ang II/salt-induced cardiac fibrosis.
Collapse
MESH Headings
- Acetates/pharmacology
- Acetates/therapeutic use
- Administration, Oral
- Angiotensin II/toxicity
- Animals
- Antigens, Differentiation/biosynthesis
- Antigens, Differentiation/genetics
- Aorta/drug effects
- Aorta/metabolism
- Aorta/pathology
- Aortic Diseases/chemically induced
- Aortic Diseases/pathology
- Aortic Diseases/prevention & control
- Blood Pressure/drug effects
- Chemokine CCL2/biosynthesis
- Chemokine CCL2/genetics
- Collagen Type I/biosynthesis
- Collagen Type I/genetics
- Collagen Type III/biosynthesis
- Collagen Type III/genetics
- Drug Evaluation, Preclinical
- Fibronectins/biosynthesis
- Fibronectins/genetics
- Fibrosis
- Gene Expression Regulation/drug effects
- Glomerulosclerosis, Focal Segmental/chemically induced
- Glomerulosclerosis, Focal Segmental/pathology
- Glomerulosclerosis, Focal Segmental/prevention & control
- Heart/drug effects
- Hypertrophy, Left Ventricular/chemically induced
- Hypertrophy, Left Ventricular/pathology
- Hypertrophy, Left Ventricular/prevention & control
- Indoleacetic Acids
- Indoles/pharmacology
- Indoles/therapeutic use
- Kidney/drug effects
- Kidney/pathology
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Myocardium/metabolism
- Myocardium/pathology
- Nephrectomy
- Osteopontin
- Plasminogen Activator Inhibitor 1/deficiency
- Plasminogen Activator Inhibitor 1/genetics
- Plasminogen Activator Inhibitor 1/physiology
- RNA, Messenger/biosynthesis
- Random Allocation
- Sialoglycoproteins/biosynthesis
- Sialoglycoproteins/genetics
- Single-Blind Method
- Sodium Chloride, Dietary/toxicity
Collapse
Affiliation(s)
- Alec D Weisberg
- Department of Medicine, Divisions of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232-6602, USA
| | | | | | | | | | | | | | | |
Collapse
|
261
|
Brown KK, Raghu G. Medical treatment for pulmonary fibrosis: current trends, concepts, and prospects. Clin Chest Med 2005; 25:759-72, vii. [PMID: 15564021 DOI: 10.1016/j.ccm.2004.08.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
A diagnosis of idiopathic pulmonary fibrosis (IPF) carries a poor prognosis, with our currently available therapies offering little clinical benefit. Unfortunately, recent major advances in our understanding of the clinical and biologic features of this disease have not been matched by similar advances in treatment. This is likely because of the complex cascade of biologic and pathobiologic events that occurs in IPF. The necessary, and desperately needed, next generation of therapies, focused on specific molecular targets thought to play pivotal roles in the development and progression of fibrosis, are under active investigation.
Collapse
Affiliation(s)
- Kevin K Brown
- Interstitial Lung Disease Program, National Jewish Medical and Research Center, Denver, CO, USA.
| | | |
Collapse
|
262
|
Abstract
Plasminogen activator inhibitor-1 (PAI-1), a 45-kDa serine proteinase inhibitor with reactive site peptide bond Arg345-Met346, is the main physiological plasminogen activator inhibitor. It occurs in human plasma at an antigen concentration of about 20 ng mL(-1). Besides the active inhibitory form of PAI-1 that spontaneously converts to a latent form, also a substrate form exists that is cleaved at the P1-P1' site by its target enzymes, but does not form stable complexes. Besides its role in regulating hemostasis, PAI-1 plays a role in several biological processes dependent on plasminogen activator or plasmin activity. Studies with transgenic mice have revealed a functional role for PAI-1 in wound healing, atherosclerosis, metabolic disturbances such as obesity and insulin resistance, tumor angiogenesis, chronic stress, bone remodeling, asthma, rheumatoid arthritis, fibrosis, glomerulonephritis and sepsis. It is not always clear if these functions depend on the antiproteolytic activity of PAI-1, on its binding to vitronectin or on its intereference with cellular migration or matrix binding.
Collapse
Affiliation(s)
- H R Lijnen
- Center for Molecular and Vascular Biology, KU, Leuven, Belgium.
| |
Collapse
|
263
|
Kelly MM, Leigh R, Bonniaud P, Ellis R, Wattie J, Smith MJ, Martin G, Panju M, Inman MD, Gauldie J. Epithelial expression of profibrotic mediators in a model of allergen-induced airway remodeling. Am J Respir Cell Mol Biol 2004; 32:99-107. [PMID: 15563691 DOI: 10.1165/rcmb.2004-0190oc] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Airway remodeling, including subepithelial fibrosis, is a characteristic feature of asthma and likely contributes to the pathogenesis of airway hyperresponsiveness. We examined expression of genes related to airway wall fibrosis in a model of chronic allergen-induced airway dysfunction using laser capture microdissection and quantitative real-time PCR. BALB/c mice were sensitized and subjected to chronic ovalbumin exposure over a 12-wk period, after which they were rested and then harvested 2 and 8 wk after the last exposure. Chronic allergen-exposed mice had significantly increased indices of airway remodeling and airway hyperreactivity at all time points, although no difference in expression of fibrosis-related genes was found when mRNA extracted from whole lung was examined. In contrast, fibrosis-related gene expression was significantly upregulated in mRNA obtained from microdissected bronchial wall at 2 wk after chronic allergen exposure. In addition, when bronchial wall epithelium and smooth muscle were separately microdissected, gene expression of transforming growth factor-beta1 and plasminogen activating inhibitor-1 were significantly upregulated only in the airway epithelium. These data suggest that transforming growth factor-beta1 and other profibrotic mediators produced by airway wall, and specifically, airway epithelium, play an important role in the pathophysiology of airway remodeling.
Collapse
Affiliation(s)
- Margaret M Kelly
- Department of Pathology and Molecular Medicine, Centre for Gene Therapeutics, MDCL-4017, McMaster University, 1200 Main Street West, Hamilton, ON L8N 3Z5, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
264
|
Hertig A, Rondeau E. Plasminogen activator inhibitor type 1: the two faces of the same coin. Curr Opin Nephrol Hypertens 2004; 13:39-44. [PMID: 15090858 DOI: 10.1097/00041552-200401000-00006] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW Plasminogen activator inhibitor type 1 is the primary inhibitor of plasminogen activators. It is often bound to vitronectin, an abundant component of extracellular matrix in many tissues. The aim of this review is to discuss the contradictory results reported concerning the impact of plasminogen activator inhibitor type 1 expression in the kidney and in the vessel wall during pathological conditions. RECENT FINDINGS First described as a 'bad guy' promoting the persistence of fibrin deposition and the evolution towards organ fibrosis, plasminogen activator inhibitor type 1 was recently reported to serve an unexpected protective role during fibrin-dependent diseases, such as experimental glomerulonephritis, and during aortic atherosclerosis. SUMMARY Plasminogen activator inhibitor type 1 is not only an inhibitor of plasmin generation. Recent data suggest that plasminogen activator inhibitor type 1 is required for the regulation of plasminogen activator-dependent, plasmin-independent processes, and that its expression in vivo critically modulates inflammation, potentially by its capacity to occupy vitronectin binding sites.
Collapse
|
265
|
Kipnis E, Guery BP, Tournoys A, Leroy X, Robriquet L, Fialdes P, Neviere R, Fourrier F. Massive alveolar thrombin activation in Pseudomonas aeruginosa-induced acute lung injury. Shock 2004; 21:444-51. [PMID: 15087821 DOI: 10.1097/00024382-200405000-00008] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
In acute lung injury (ALI), a coagulation/fibrinolysis imbalance leads to fibrin deposition, persistence of which contributes to fibrotic evolution. Our study evaluated the effects of early inhibition of coagulation in Pseudomonas aeruginosa (Pa)-induced ALI through the use of recombinant human antithrombin (rhAT). The study was conducted in vivo on a murine model of Pa-induced ALI. Intravenous rhAT was administered simultaneously with intratracheal Pa. Four experimental groups were compared: CTR, intratracheal saline (0.5 mL/kg)/intravenous saline (1 mL); PNP, intratracheal Pa (0.5 mL/kg of 2 x 10(9) cfu)/intravenous saline; AT, intratracheal saline/intravenous rhAT (500 IU/kg); ATPNP, intratracheal Pa/intravenous rhAT. Epithelial and endothelial permeabilities were evaluated with radiolabeled albumin flux across the alveolar barrier (125I- and 131I-labeled albumin). Thrombin-antithrombin (TAT) complexes levels were used as markers of coagulation activation in blood samples and in BAL fluid. Epithelial and endothelial protein permeability were increased in Pa-induced ALI versus control. Intravenous rhAT administration led to further permeability disorders. Administration of rhAT in Pa ALI led to a rise in TAT complexes in ATPNP blood serum and BAL fluids compared with the other groups. In Pa-induced ALI the administration intravenous rhAT leads to major histologic damage, alveolar capillary barrier injury, and permeability increase. Such effects of the inhibition of thrombin activation by rhAT lead to the hypothesis of a probable beneficial role of early coagulation activation in ALI as a factor limiting both the extent of injury and permeability disorders. Our study suggests that inhibition of this initial procoagulative imbalance is potentially dangerous.
Collapse
|
266
|
Abstract
Intravascular fibrin deposition is believed to play an important role in the development of intimal hyperplasia, which is a hallmark of several human vascular disorders, including atherosclerosis and restenosis after balloon angioplasty. Plasminogen activator inhibitor-1 (PAI-1), the primary inhibitor or tissue- and urinary-type plasminogen activator, plays a key role in fibrin homeostasis by controlling plasmin formation. PAI-1 may also modulate vascular pathology via alternative pathways, such as inhibiting activated protein C and altering interactions between vascular smooth muscle cells and the extracellular matrix. The diverse functional profile of PAI-1 likely accounts for the variation observed in its impact on intimal hyperplasia in different disease models. This review examines recent studies addressing the vascular function of PAI-1, and those assessing the role of fibrin as a downstream mediator of PAI-1's effects.
Collapse
Affiliation(s)
- William P Fay
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan, USA.
| |
Collapse
|
267
|
Repine T, Osswald M. Menorrhagia due to a qualitative deficiency of plasminogen activator inhibitor-1: case report and literature review. Clin Appl Thromb Hemost 2004; 10:293-6. [PMID: 15247991 DOI: 10.1177/107602960401000316] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
A case is presented of a 26-year-old woman who was referred to the hematology clinic because of her report of a family history of plasminogen activator inhibitor-1 (PAI-1) deficiency. Since menarche, she had suffered from severe menorrhagia, but she had assumed that this was unrelated to her mother's history of repeated life-threatening bleeding. Her menorraghia was evident by using greater than 100 pads per period, bleeding as long as 4 continuous months, and even bleeding through her clothes despite using both tampons and pads. Evaluation with pelvic examination, endometrial biopsy, and pelvic ultrasound was unremarkable. Medroxyprogesterone acetate treatment for her dysfunctional uterine bleeding was unsuccessful. Laboratory evaluation revealed iron deficiency anemia but otherwise normal platelets, bleeding time, prothrombin time, activated partial thromboplastin time, and vonWillebrand's studies. Despite any preconceptions, examination for a fibrinolytic defect ultimately demonstrated a PAI-1 antigen level of 11.4 ng/mL (4.0-43 ng/mL) and PAI-1 activity less than 5 AU/mL (5-37 AU/mL) and clinically supported a diagnosis of a hereditary, qualitative PAI-1 defect. She was treated with aminocaproic acid with return to relatively normal menses. Future treatment should also prevent excessive bleeding during trauma, surgery, or childbirth. Further evaluation of this patient and her family is planned and may help elucidate the important role of PAI-1 in the complicated balance between hemostasis and hemorrhage.
Collapse
Affiliation(s)
- Thomas Repine
- Department of Hematology/Oncology at Brooke Army Medical Center, San Antonio, Texas 78234, USA.
| | | |
Collapse
|
268
|
Pagnin E, Davis PA, Sartori M, Semplicini A, Pessina AC, Calò LA. Rho kinase and PAI-1 in Bartter's/Gitelman's syndromes. J Hypertens 2004; 22:1963-9. [PMID: 15361768 DOI: 10.1097/00004872-200410000-00019] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
OBJECTIVE Angiotensin II (Ang II)-mediated activation of Rho kinase (ROK) is involved in the pathophysiology of hypertension and cardiovascular remodeling. ROK also controls plasminogen activator inhibitor-1 (PAI-1) which promotes vascular fibrosis contributing to atherogenesis. Bartter's and Gitelman's syndromes (BS/GS) are useful models to investigate abnormalities of vascular tone regulation, due to their reduced short- and long-term signaling pathways of Ang II. This study evaluated, using BS/GS as a model, ROK and PAI-1 gene and protein expression and the effect of Ang II co-incubation on ROK and PAI-1 gene and protein expression. DESIGN, METHODS AND RESULTS We measured ROK and PAI-1 gene and protein expression [reverse transcription-polymerase chain reaction (RT-PCR) and Western blot] in mononuclear cells (PBM) from one BS and eight GS patients. The effect of Ang II on ROK and PAI-1 gene and protein expression was also evaluated and compared with 10 controls. ROK gene and protein expression was reduced in BS/GS [0.47 +/- 0.11 densitometric units (d.u.) versus 0.70 +/- 0.04 d.u., P = 0.0038 and 0.39 +/- 0.07 d.u. versus 0.55 +/- 0.07 d.u., P = 0.0026, respectively]. The basal level of PAI-1 gene and protein expression did not differ (0.40 +/- 0.03 d.u. versus 0.39 +/- 0.02 d.u. and 0.81 +/- 0.02 d.u. versus 0.83 +/- 0.02 d.u., respectively). Ang II increased ROK and PAI-1 gene and protein expression only in controls: from 0.70 +/- 0.04 to 0.90 +/- 0.06 d.u., P = 0.007 (ROK mRNA); from 0.55 +/- 0.07 to 0.86 +/- 0.07 d.u., P = 0.0005 (ROK protein); from 0.40 +/- 0.02 to 0.63 +/- 0.03 d.u., P = 0.001 (PAI-1 mRNA); and from 0.83 +/- 0.02 to 1.34 +/- 0.16 d.u., P = 0.0023 (PAI-1 protein). CONCLUSIONS This study confirms BS/GS as a human model to investigate interrelated systems involved in the pathophysiology of hypertension and throws more light on the cellular mechanisms of BS/GS reduced Ang II short- and long-term signaling pathways.
Collapse
Affiliation(s)
- Elisa Pagnin
- Department of Clinical and Experimental Medicine, Clinica Medica 4, University of Padova, Italy
| | | | | | | | | | | |
Collapse
|
269
|
Fujisawa G, Okada K, Muto S, Fujita N, Itabashi N, Kusano E, Ishibashi S. Spironolactone prevents early renal injury in streptozotocin-induced diabetic rats. Kidney Int 2004; 66:1493-502. [PMID: 15458443 DOI: 10.1111/j.1523-1755.2004.00913.x] [Citation(s) in RCA: 133] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
BACKGROUND Glomerular and tubulointerstitial injury leads to chronic impairment of renal function, and thus, reversal of the injury may improve renal function and survival. The present study investigated whether and how mineralocorticoid receptor antagonist spironolactone ameliorates early renal injury in streptozotocin-induced diabetic rats. METHODS Streptozotocin (65 mg/kg, single intraperitoneal injection)- or vehicle-administered rats were used as diabetic or control rats, respectively. The streptozotocin-administered rats were treated with spironolactone (50 mg/kg/day sc) for 3 weeks. Among the 3 groups of rats, we compared renal fibrosis and renal hypertrophy, using picro-sirius red staining and immunohistochemistry of ED-1 macrophage marker, plasminogen activator inhibitor-1 (PAI-1), and transforming growth factor (TGF)-beta1. RESULTS Three weeks after administration of streptozotocin, rats exhibited increased collagen deposition in glomerular, tubulointerstitial, and perivascular areas in the kidney, which was completely attenuated by spironolactone treatment. In rats given streptozotocin alone, there were increases in ED-1-positive cell, PAI-1 expression, and TGF-beta1 expression in glomeruli and tubulointerstitiums, which were also suppressed by spironolactone treatment. Maximal glomerular and proximal tubular areas were not significantly different among the 3 groups. Rats given streptozotocin alone revealed an increase in proximal tubule wall-to-lumen ratio that was not influenced by treatment with spironolactone. CONCLUSION Streptozotocin-induced renal fibrosis, PAI-1 expression, TGF-beta1 expression, and macrophage infiltration occur via mineralocorticoid receptor, and spironolactone ameliorates renal fibrosis presumably via the inhibition of macrophage infiltration, PAI-1 expression, and TGF-beta1 expression in streptozotocin-induced early diabetic injury.
Collapse
Affiliation(s)
- Genro Fujisawa
- Divisions of Endocrinology, Department of Internal Medicine, Jichi Medical School, Minamikawachi, Tochigi, Japan.
| | | | | | | | | | | | | |
Collapse
|
270
|
Moriwaki H, Stempien-Otero A, Kremen M, Cozen AE, Dichek DA. Overexpression of Urokinase by Macrophages or Deficiency of Plasminogen Activator Inhibitor Type 1 Causes Cardiac Fibrosis in Mice. Circ Res 2004; 95:637-44. [PMID: 15297377 DOI: 10.1161/01.res.0000141427.61023.f4] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Several studies implicate elevated matrix metalloproteinase activity as a cause of cardiac fibrosis. However, it is unknown whether other proteases can also initiate cardiac fibrosis. Because absence of urokinase plasminogen activator (uPA) prevents development of cardiac fibrosis after experimental myocardial infarction in mice, we hypothesized that elevated activity of uPA or deficiency of the uPA inhibitor plasminogen activator inhibitor-1 (PAI-1) might cause cardiac fibrosis. We used mice with scavenger-receptor (SR)-directed, macrophage-targeted uPA overexpression (SR-uPA+/0 mice) and PAI-1 null mice to test these hypotheses. Our studies revealed that SR-uPA+/0 mice developed cardiac fibrosis beginning between 5 and 10 weeks of age. Fibrosis was preceded by cardiac macrophage accumulation, implicating uPA-secreting macrophages as important contributors to development of fibrosis. A key role for uPA-secreting macrophages in development of cardiac fibrosis was supported by experiments in which recipients of bone marrow transplants from SR-uPA+/0 donors but not nontransgenic donors developed cardiac macrophage accumulation and fibrosis. SR-uPA+/0 mice and recipients of SR-uPA+/0 bone marrow had neither macrophage accumulation nor fibrosis in other major organs despite the presence of higher levels of uPA in these organs than in hearts. PAI-1 null mice but not congenic, age-matched controls also developed macrophage accumulation and fibrosis in hearts but not in other organs. We conclude: (1) either elevated macrophage uPA expression or PAI-1 deficiency is sufficient to cause cardiac macrophage accumulation and fibrosis; (2) macrophages are important contributors to the development of cardiac fibrosis; and (3) the heart is particularly sensitive to the effects of excess uPA activity.
Collapse
Affiliation(s)
- Hideaki Moriwaki
- Department of Medicine, University of Washington, Seattle, WA 98195-7710, USA
| | | | | | | | | |
Collapse
|
271
|
Lazar MH, Christensen PJ, Du M, Yu B, Subbotina NM, Hanson KE, Hansen JM, White ES, Simon RH, Sisson TH. Plasminogen activator inhibitor-1 impairs alveolar epithelial repair by binding to vitronectin. Am J Respir Cell Mol Biol 2004; 31:672-8. [PMID: 15308506 DOI: 10.1165/rcmb.2004-0025oc] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The pathogenesis of pulmonary fibrosis is thought to involve alveolar epithelial injury that, when successfully repaired, can limit subsequent scarring. The plasminogen system participates in this process with the balance between urokinase-type plasminogen activator (uPA) and plasminogen activator inhibitor-1 (PAI-1) being a critical determinant of the extent of collagen accumulation that follows lung injury. Because the plasminogen system is known to influence the rate of migration of epithelial cells, including keratinocytes and bronchial epithelial cells, we hypothesized that the balance of uPA and PAI-1 would affect the efficiency of alveolar epithelial cell (AEC) wound repair. Using an in vitro model of AEC wounding, we show that the efficiency of repair is adversely affected by a deficiency in uPA or by the exogenous administration of PAI-1. By using PAI-1 variants and AEC from mice transgenically deficient in vitronectin (Vn), we demonstrate that the PAI-1 effect requires its Vn-binding activity. Furthermore, we have found that cell motility is enhanced by the availability of Vn in the matrix and that the AEC-Vn interaction is mediated, in part, by the alpha(v)beta(1) integrin. The significant effect of uPA and PAI-1 on epithelial repair suggests a mechanism by which the plasminogen system may modulate pulmonary fibrosis.
Collapse
Affiliation(s)
- Michael H Lazar
- Department of Internal Medicine, University of Michigan Medical Center, 1150 West Medical Center Drive, 6301 MSRB III, Ann Arbor, MI 48109-0642, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
272
|
Elokdah H, Abou-Gharbia M, Hennan JK, McFarlane G, Mugford CP, Krishnamurthy G, Crandall DL. Tiplaxtinin, a novel, orally efficacious inhibitor of plasminogen activator inhibitor-1: design, synthesis, and preclinical characterization. J Med Chem 2004; 47:3491-4. [PMID: 15214776 DOI: 10.1021/jm049766q] [Citation(s) in RCA: 125] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Indole oxoacetic acid derivatives were prepared and evaluated for in vitro binding to and inactivation of human plasminogen activator inhibitor-1 (PAI-1). SAR based on biochemical, physiological, and pharmacokinetic attributes led to identification of tiplaxtinin as the optimal selective PAI-1 inhibitor. Tiplaxtinin exhibited in vivo oral efficacy in two different models of acute arterial thrombosis. The remarkable preclinical safety and metabolic stability profiles of tiplaxtinin led to advancing the compound to clinical trials.
Collapse
Affiliation(s)
- Hassan Elokdah
- Chemical and Screening Sciences, Wyeth Research, CN 8000, Princeton, NJ 08543, USA.
| | | | | | | | | | | | | |
Collapse
|
273
|
Nishiuma T, Sisson TH, Subbotina N, Simon RH. Localization of plasminogen activator activity within normal and injured lungs by in situ zymography. Am J Respir Cell Mol Biol 2004; 31:552-8. [PMID: 15284078 DOI: 10.1165/rcmb.2004-0162oc] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
During inflammatory lung injury, the fibrinolytic activity that is normally present within bronchoalveolar lavage (BAL) fluid (BALF) is often suppressed due to increased levels of inhibitors, including plasminogen activator inhibitor (PAI)-1. Despite this suppression, BALF frequently contains fibrin degradation products, indicating persistence of fibrinolytic activity within the lung. To address this discrepancy and determine the sites where plasminogen activation is occurring, we developed an in situ zymographic technique for frozen sections of lung tissue that localizes plasminogen activator activity at the cellular level. After validating the method using enzyme inhibitors and mice with genetic manipulations of their plasminogen system genes, we applied the technique to lungs of normal and bleomycin-exposed mice. In normal mice, plasminogen activator activity was localized to bronchial epithelial cells, cells of the alveolar walls, and alveolar macrophages. After bleomycin exposure, in situ zymography showed that, despite loss of fibrinolytic activity within BALF, abundant enzymatic activity was associated with aggregates of inflammatory cells. PAI-1-deficient mice that are protected from bleomycin-induced fibrosis had preserved plasminogen activator activity in BALF and increased tissue activity, as determined by in situ zymography. We conclude that analysis of BALF does not adequately reflect the fibrinolytic activity that persists within microenvironments of the lung during inflammation.
Collapse
Affiliation(s)
- Teruaki Nishiuma
- Pulmonary and Critical Care Medicine Division, Department of Internal Medicine, University of Michigan School of Medicine, Ann Arbor, Michigan 48109, USA.
| | | | | | | |
Collapse
|
274
|
Kucharewicz I, Kowal K, Buczko W, Bodzenta-Łukaszyk A. The plasmin system in airway remodeling. Thromb Res 2004; 112:1-7. [PMID: 15013265 DOI: 10.1016/j.thromres.2003.10.011] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2003] [Revised: 10/14/2003] [Accepted: 10/15/2003] [Indexed: 11/22/2022]
Abstract
Recent studies suggest that the plasmin system plays an active role in tissue remodeling. Plasmin degrades the extracellular matrix (ECM), either directly removing glycoproteins from ECM or by activating matrix metalloproteinases (MMPs). PAI-1 blocking MMPs may prevent ECM degradation, but inhibiting fibrinolysis leads to fibrin accumulation and fibrosis. Components of the plasmin system including tissue plasminogen activator (t-PA), urokinase plasminogen activator (u-PA), and plasminogen activator inhibitors PAI-1 and PAI-2 are synthesised by airway cells, and inflammatory mediators affect their expression. The plasmin system, in turn, actively influences the production of inflammatory mediators and growth factors, extending pathological structural changes in the airway. Modulation of the plasmin system might be a new pharmacological strategy that could inhibit the development of airway remodeling.
Collapse
Affiliation(s)
- Iwona Kucharewicz
- Department of Allergology and Internal Diseases, Medical University of Bialystok, M. Sklodowska-Curie Street 24a, 15-276 Bialystok, Poland.
| | | | | | | |
Collapse
|
275
|
Abstract
Tissue injury evokes highly conserved, tightly regulated inflammatory responses and less well-understood host repair responses. Both inflammation and repair involve the recruitment, activation, apoptosis, and eventual clearance of key effector cells. In this review, we propose the concept of pulmonary fibrosis as a dysregulated repair process that is perpetually "turned on" even though classical inflammatory pathways may be dampened or "switched off." Significant regional heterogeneity, with varied histopathological patterns of inflammation and fibrosis, has been observed in individual patients with idiopathic pulmonary fibrosis. We discuss environmental factors and host response factors, such as genetic susceptibility and age, that may influence these varied manifestations. Better understanding of the mechanisms of lung repair, which include alveolar reepithelialization, myofibroblast differentiation/activation, and apoptosis, should offer more effective therapeutic options for progressive pulmonary fibrosis.
Collapse
Affiliation(s)
- Victor J Thannickal
- Division of Pulmonary and Critical Care Medicine, University of Michigan Medical Center, Ann Arbor, Michigan 48109, USA.
| | | | | | | | | |
Collapse
|
276
|
Wagenaar GTM, ter Horst SAJ, van Gastelen MA, Leijser LM, Mauad T, van der Velden PA, de Heer E, Hiemstra PS, Poorthuis BJHM, Walther FJ. Gene expression profile and histopathology of experimental bronchopulmonary dysplasia induced by prolonged oxidative stress. Free Radic Biol Med 2004; 36:782-801. [PMID: 14990357 DOI: 10.1016/j.freeradbiomed.2003.12.007] [Citation(s) in RCA: 113] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2003] [Revised: 10/15/2003] [Accepted: 12/05/2003] [Indexed: 11/26/2022]
Abstract
Oxidative stress is an important factor in the pathogenesis of bronchopulmonary dysplasia (BPD), a chronic lung disease of premature infants characterized by arrested alveolar and vascular development of the immature lung. We investigated differential gene expression with DNA microarray analysis in premature rat lungs exposed to prolonged hyperoxia during the saccular stage of development, which closely resembles the development of the lungs of premature infants receiving neonatal intensive care. Expression profiles were largely confirmed by real-time RT-PCR (27 genes) and in line with histopathology and fibrin deposition studied by Western blotting. Oxidative stress affected a complex orchestra of genes involved in inflammation, coagulation, fibrinolysis, extracellular matrix turnover, cell cycle, signal transduction, and alveolar enlargement and explains, at least in part, the pathological alterations that occur in lungs developing BPD. Exciting findings were the magnitude of fibrin deposition; the upregulation of chemokine-induced neutrophilic chemoattractant-1 (CINC-1), monocyte chemoattractant protein-1 (MCP-1), amphiregulin, plasminogen activator inhibitor-1 (PAI-1), secretory leukocyte proteinase inhibitor (SLPI), matrix metalloproteinase-12 (MMP12), p21, metallothionein, and heme oxygenase (HO); and the downregulation of fibroblast growth factor receptor-4 (FGFR4) and vascular endothelial growth factor (VEGF) receptor-2 (Flk-1). These findings are not only of fundamental importance in the understanding of the pathophysiology of BPD, but also essential for the development of new therapeutic strategies.
Collapse
Affiliation(s)
- Gerry T M Wagenaar
- Department of Pediatrics, Division of Neonatology, Leiden University Medical Center, Leiden, Netherlands.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
277
|
Cho SH, Ryu CH, Oh CK. Plasminogen activator inhibitor-1 in the pathogenesis of asthma. Exp Biol Med (Maywood) 2004; 229:138-46. [PMID: 14734792 DOI: 10.1177/153537020422900202] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Plasminogen activator inhibitor (PAI)-1 is the main inhibitor of the fibrinolytic system and is known to play an essential role in tissue remodeling. Recent evidence indicates that chronic asthma may lead to tissue remodeling such as subepithelial fibrosis and extracellular matrix (ECM) deposition in the airways. However, the role of PAI-1 in asthma is unknown. Recently the mast cell (MC), which plays a major role in asthma, was found as a novel source of PAI-1, and a large number of MCs expressing PAI-1 are infiltrated in the airways of patients with severe asthma. Furthermore, PAI-1-deficient mice show reduced ECM deposition in the airways of a murine model of chronic asthma by inhibiting MMP-9 activity and fibrinolysis. In a human study, the 4G allele frequency was significantly higher in the asthmatic patients than in the control group. In view of the findings that the 4G allele is associated with elevated plasma PAI-1 level, elevated PAI-1 level in the lung may contribute to the development of asthma. In summary, PAI-1 may play an important role in the pathogenesis of asthma and further studies evaluating the mechanisms of PAI-1 action may lead to the development of a novel therapeutic target for the treatment and prevention of asthma.
Collapse
Affiliation(s)
- Seong H Cho
- Division of Allergy and Immunology, Department of Pediatrics, University of California, Los Angeles School of Medicine, Harbor-UCLA Medical Center, Torrance, California 90509, USA
| | | | | |
Collapse
|
278
|
Hattori N, Mizuno S, Yoshida Y, Chin K, Mishima M, Sisson TH, Simon RH, Nakamura T, Miyake M. The plasminogen activation system reduces fibrosis in the lung by a hepatocyte growth factor-dependent mechanism. THE AMERICAN JOURNAL OF PATHOLOGY 2004; 164:1091-8. [PMID: 14982862 PMCID: PMC1614722 DOI: 10.1016/s0002-9440(10)63196-3] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 11/12/2003] [Indexed: 02/06/2023]
Abstract
Mice deficient in the plasminogen activator inhibitor-1 gene (PAI-1-/- mice) are relatively protected from developing pulmonary fibrosis from bleomycin administration. We hypothesized that one of the protective mechanisms may be the ability of the plasminogen system to enhance hepatocyte growth factor (HGF) effects, which have been reported to be anti-fibrotic in the lung. HGF is known to be sequestered in tissues by binding to extracellular matrix components. Following bleomycin administration, we found that HGF protein levels were higher in bronchoalveolar lavage fluid from PAI-1-/- mice compared to wild-type (PAI-1+/+) mice. This increase could be suppressed by administering tranexamic acid, which inhibits plasmin activity. Conversely, intratracheal instillation of urokinase into bleomycin-injured PAI-1+/+ mice to activate plasminogen caused a significant increase in HGF within bronchoalveolar lavage and caused less collagen accumulation in the lungs. Administration of an anti-HGF neutralizing antibody markedly increased collagen accumulation in the lungs of bleomycin-injured PAI-1-/- mice. These results support the hypothesis that increasing the availability of HGF, possibly by enhancing its release from extracellular matrix by a plasmin-dependent mechanism, is an important means by which activation of the plasminogen system can limit pulmonary fibrosis.
Collapse
Affiliation(s)
- Noboru Hattori
- Tazuke Kofukai Medical Research Institute, Department V of Oncology, Kitano Hospital, Osaka, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
279
|
Horrevoets AJG. Plasminogen activator inhibitor 1 (PAI-1):in vitroactivities and clinical relevance. Br J Haematol 2004; 125:12-23. [PMID: 15015963 DOI: 10.1111/j.1365-2141.2004.04844.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Anton J G Horrevoets
- Department of Biochemistry K1-161, Academic Medical Centre, Meibergdreef, Amsterdam, The Netherlands.
| |
Collapse
|
280
|
Abstract
The adult respiratory distress syndrome (ARDS) is a form of acute lung injury that is characterized by florid extravascular fibrin deposition. Thrombosis in the pulmonary vasculature and disseminated intravascular coagulation have also been observed in association with ARDS. Fibrin deposition does not occur in the normal lung but is virtually universal in acute lung injury induced by disparate insults. A large body of basic and preclinical evidence further implicates abnormalities of pathways of fibrin turnover in the pathogenesis of acute inflammation and fibrotic repair. Coagulation is locally upregulated in the injured lung, while fibrinolytic activity is depressed. These abnormalities occur concurrently and favor alveolar fibrin deposition. The systemic derangements of fibrin turnover in sepsis are similar to those that occur in the injured lung. Recent clinical trials demonstrate that interventions using selective anticoagulation can provide a mortality advantage and that selective anticoagulants differ in their ability to provide clinical benefit. Preclinical trials in primates with sepsis-induced ARDS now indicate that anticoagulant interventions that block the extrinsic coagulation pathway can protect against the development of pulmonary fibrin deposition as well as lung dysfunction and acute inflammation. These observations provide proof of principle that key steps in the coagulation cascade are appropriate therapeutic targets to prevent the development of acute lung injury in ARDS. Ongoing studies and prior publications also support the hypothesis that reversal of the fibrinolytic defect in ARDS could protect against the development of acute lung injury. In all, these studies suggest that fibrin deposition in the injured lung as well as abnormalities of coagulation and fibrinolysis are integral to the pathogenesis of ARDS. The ability of selective anticoagulants to effectively and safely alter clinical outcome in ARDS remains to be determined.
Collapse
Affiliation(s)
- Steven Idell
- The University of Texas Health Center at Tyler, Tyler, Texas 75708, USA.
| |
Collapse
|
281
|
Abstract
A set of lung diseases share the tendency for the development of progressive fibrosis ultimately leading to respiratory failure. This review examines the common pathogenetic features of these disorders in light of recent observations in both humans and animal models of disease, which reveal important pathways of lung matrix remodeling.
Collapse
Affiliation(s)
- Harold A Chapman
- Department of Medicine and Cardiovascular Research Institute, University of California at San Francisco, San Francisco, California 94143-0130, USA.
| |
Collapse
|
282
|
Verbeke K, Gils A, Declerck PJ. Cloning and paratope analysis of an antibody fragment, a rational approach for the design of a PAI-1 inhibitor. J Thromb Haemost 2004; 2:289-97. [PMID: 14995992 DOI: 10.1111/j.1538-7933.2004.00582.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
This study reports the cloning, characterization and paratope analysis of the plasminogen activator inhibitor-1 (PAI-1) neutralizing single-chain variable fragment 56A7C10 (scFv-56A7C10). ScFv-56A7C10-wt exhibits a similar affinity (KA = 1.01 +/- 0.3 x 109 m-1) and PAI-1 inhibitory capacity (90 +/- 6% PAI-1 inhibition at a 16-fold molar excess and IC50 = 44 +/- 14 ng mL-1) as MA-56A7C10 (KA = 1.43 +/- 0.4 x 109 m-1, 90 +/- 2% PAI-1 inhibition at a 16-fold molar excess and IC50 = 122 +/- 26 ng mL-1). Subsequently, alanine scanning of the six complementarity determining regions (CDRs) was performed and the scFv-56A7C10-mutants (n = 26) were analyzed for their PAI-1 binding and PAI-1 inhibitory properties. Mutation of the residues Y32 and V33 in the CDR1 of the heavy chain (HCDR1) and the residues R98, H99, W100 or F100a (HCDR3) resulted in reduced PAI-1 inhibitory capacities (IC50 >/= 418 ng mL-1), confirmed by reduced affinities (14-, 17-, 7-, 9- and 16-fold reduced, respectively, vs. scFv-56A7C10-wt). In the light chain, mutation of the residues W50 (LCDR2), H91, Y92, D93, or W96 (LCDR3) resulted in reduced PAI-1 inhibitory properties (IC50 >/= 160 ng mL-1) and decreased affinities (i.e. 4-, 9-, 3-, 3- and 2-fold reduced affinity, respectively, vs. scFv-56A7C10-wt). Furthermore, an overlapping peptide scan confirmed the importance of the HCDR3 region. These data, combined with a three-dimensional model of scFv-56A7C10, reveal the molecular and structural properties of the paratope and contribute to the rational design of PAI-1 neutralizing compounds.
Collapse
Affiliation(s)
- K Verbeke
- Laboratory for Pharmaceutical Biology and Phytopharmacology, Faculty of Pharmaceutical Sciences, Katholieke Universiteit Leuven, Leuven, Belgium
| | | | | |
Collapse
|
283
|
White ES, Lazar MH, Thannickal VJ. Pathogenetic mechanisms in usual interstitial pneumonia/idiopathic pulmonary fibrosis. J Pathol 2004; 201:343-54. [PMID: 14595745 PMCID: PMC2810622 DOI: 10.1002/path.1446] [Citation(s) in RCA: 151] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive, usually fatal, form of interstitial lung disease characterized by failure of alveolar re-epithelialization, persistence of fibroblasts/myofibroblasts, deposition of extracellular matrix, and distortion of lung architecture which ultimately results in respiratory failure. Clinical IPF is associated with a histopathological pattern of usual interstitial pneumonia (UIP) on surgical lung biopsy. Therapy for this disease with glucocorticoids and other immunomodulatory agents is largely ineffective and recent trials of newer anti-fibrotic agents have been disappointing. While the inciting event(s) leading to the initiation of scar formation in UIP remain unknown, recent advances in our understanding of the mechanisms underlying both normal and aberrant wound healing have shed some light on pathogenetic mechanisms that may play significant roles in this disease. Unlike other fibrotic diseases of the lung, such as those associated with collagen vascular disease, occupational exposure, or chemotherapeutic agents, UIP is not associated with a significant inflammatory response; rather, dysregulated epithelial-mesenchymal interactions predominate. Identification of pathways crucial to fibrogenesis might offer potentially novel therapeutic targets to slow or halt the progression of IPF. This review focuses on evolving concepts of cellular and molecular mechanisms in the pathogenesis of UIP/IPF.
Collapse
Affiliation(s)
- Eric S White
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI 48109-0642, USA.
| | | | | |
Collapse
|
284
|
Lyon CJ, Hsueh WA. Effect of plasminogen activator inhibitor-1 in diabetes mellitus and cardiovascular disease. Am J Med 2003; 115 Suppl 8A:62S-68S. [PMID: 14678868 DOI: 10.1016/j.amjmed.2003.08.014] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Concentrations of plasminogen activator inhibitor-1 (PAI-1) are elevated beginning at the stage of impaired glucose tolerance and continuing through the development of diabetes mellitus and the metabolic syndrome. Evolving evidence of the central role of PAI-1 in mediating fibrosis and thrombosis increasingly supports the theory that it is a significant risk factor for macrovascular complications and cardiovascular disease, particularly in patients with diabetes. Several clinical studies have demonstrated a strong correlation between circulating PAI-1 levels and cardiovascular events and mortality. With the potentially severe effects of elevated PAI-1 levels becoming evident, there is increased interest in developing therapies targeted at reducing PAI-1 expression or circulating concentrations. Thus far, weight loss, inhibitors of the renin-angiotensin system, and insulin sensitization through use of thiazolidinediones (TZDs) appear to be the most promising strategies for managing elevated PAI-1 levels. Of these, TZD therapy is the only one that provides the benefits of both long-term glycemic control and improved cardiovascular risk profile. This article reviews the regulation of PAI-1, its activity in various disease states, and available treatment options.
Collapse
Affiliation(s)
- Christopher J Lyon
- Division of Endocrinology, Diabetes and Hypertension, University of California at Los Angeles, Los Angeles, California 90095, USA
| | | |
Collapse
|
285
|
|
286
|
Günther A, Lübke N, Ermert M, Schermuly RT, Weissmann N, Breithecker A, Markart P, Ruppert C, Quanz K, Ermert L, Grimminger F, Seeger W. Prevention of Bleomycin-induced Lung Fibrosis by Aerosolization of Heparin or Urokinase in Rabbits. Am J Respir Crit Care Med 2003; 168:1358-65. [PMID: 14644925 DOI: 10.1164/rccm.2201082] [Citation(s) in RCA: 118] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Bleomycin is a well known fibrogenic agent, provoking an initial adult respiratory distress syndrome-like injury with subsequent strong fibroproliferative response. Severe abnormalities of the alveolar surfactant system, which may be linked to the appearance of alveolar fibrin deposition, have been implicated in the pathogenetic sequence of events. Using a model of standardized aerosol delivery of 1.8 U bleomycin/kg body weight in rabbits, we investigated the influence of repetitive nebulization of heparin or urokinase-type plasminogen activator (u-PA) on the development of lung fibrosis. In an "early" (Days 2-12 postbleomycin) or "late" (Days 14-24 post-bleomycin) treatment protocol, approximately 3,500 U heparin or approximately 6,500 U u-PA was delivered to the bronchoalveolar space. Within four weeks, the bleomycin challenge provoked severe pulmonary fibrosis with reduction of lung compliance, marked increase in soluble collagen (bronchoalveolar lavage fluid) and hydroxyproline content (lung tissue), a typical reticular fibrosis pattern on high-resolution computed tomography, and typical histologic findings. Therapeutic intervention resulted in a far-reaching normalization of compliance, suppression of soluble collagen and hydroxyproline accumulation, and virtual abrogation of the computed tomography scan and histologic features of lung fibrosis, with most prominent effects seen in the early heparin and late u-PA administration. No bleeding complications occurred. These findings strongly support the concept that alveolar fibrin generation is an important event in the development of postbleomycin lung fibrosis. "Compartmentalized" anticoagulation and/or fibrinolysis via inhalational deposition of interventional agents in the alveolar compartment may thus offer a new therapeutic strategy for prevention of fibrosis.
Collapse
Affiliation(s)
- Andreas Günther
- Department of Internal Medicine, Justus-Liebig University, Giessen, Germany.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
287
|
Zhang Q, Wu Y, Ann DK, Messadi DV, Tuan TL, Kelly AP, Bertolami CN, Le AD. Mechanisms of Hypoxic Regulation of Plasminogen Activator Inhibitor-1 Gene Expression in Keloid Fibroblasts. J Invest Dermatol 2003; 121:1005-12. [PMID: 14708599 DOI: 10.1046/j.1523-1747.2003.12564.x] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Keloids are an excessive accumulation of extracellular matrix. Although numerous studies have shown elevated plasminogen activator inhibitor-1 (PAI-1) levels in keloid fibroblasts compared with those of normal skin. Their specific mechanisms involved in the differential expression of PAI-1 in these cell types. In this study, the upregulation of PAI-1 expression is demonstrated in keloid tissues and their derived dermal fibroblasts, attesting to the persistence, if any, of fundamental differences between in vivo and in vitro paradigms. We further examined the mechanisms involved in hypoxia-induced regulation of PAI-1 gene in dermal fibroblast derived from keloid lesions and associated clinically normal peripheral skins from the same patient. Primary cultures were exposed to an environmental hypoxia or desferroxamine. We found that the hypoxia-induced elevation of PAI-1 gene appears to be regulated at both transcriptional and post-transcriptional levels in keloid fibroblasts. Furthermore, our results showed a consistent elevation of HIF-1alpha protein level in keloid tissues compared with their normal peripheral skin controls, implying a potential role as a biomarker for local skin hypoxia. Treatment with antisense oligonucleotides against hypoxia-inducible factor 1alpha (HIF-1alpha) led to the downregulation of steady-state levels of PAI-1 mRNA under both normoxic and hypoxic conditions. Conceivably, our results suggest that HIF-1alpha may be a novel therapeutic target to modulate the scar fibrosis process.
Collapse
Affiliation(s)
- Qunzhou Zhang
- Department of Oral and Maxillofacial Surgery, Charles R. Drew University of Medicine and Science, Los Angeles, California 90059, USA
| | | | | | | | | | | | | | | |
Collapse
|
288
|
Hertig A, Berrou J, Allory Y, Breton L, Commo F, Costa De Beauregard MA, Carmeliet P, Rondeau E. Type 1 plasminogen activator inhibitor deficiency aggravates the course of experimental glomerulonephritis through overactivation of transforming growth factor beta. FASEB J 2003; 17:1904-6. [PMID: 12897066 DOI: 10.1096/fj.03-0084fje] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Type 1 plasminogen activator inhibitor (PAI-1) is the primary inhibitor of tissue-type plasminogen activator (tPA) and urokinase-type plasminogen activator (uPA). Whereas PAI-1 is not expressed in normal kidneys, it is strongly induced in glomerular diseases and thus could promote the local accumulation of fibrin. To study the role of PAI-1 in the development of inflammatory glomerular injury, passive antiglomerular basement membrane (GBM) glomerulonephritis (GN) was induced in PAI-1 knockout mice and in wild-type mice of the same genetic background. Unexpectedly, PAI-1 deficiency was associated with an early and severe exacerbation of glomerular injury: Infiltration by CD4 T cells, proportion of fibrinous crescents, and renal function impairment were significantly more pronounced in PAI-1 -/- mice. Interestingly, activation of transforming growth factor (TGF)- beta, which is known to be dependent on the PA/plasmin system in vitro, was dramatically enhanced in the kidneys in the absence of PAI-1. Moreover, administration of neutralizing antibodies against TGF-beta significantly attenuated the disease in PAI-1 -/- mice. This suggests that the poor outcome of GN in PAI-1 -/- mice is consecutive to an uncontrolled activation of TGF-beta and confers PAI-1 with a new, immunomodulatory role.
Collapse
Affiliation(s)
- Alexandre Hertig
- Institut National de la Santé et de la Recherche Médicale U489, Paris, France
| | | | | | | | | | | | | | | |
Collapse
|
289
|
Savov JD, Brass DM, Berman KG, McElvania E, Schwartz DA. Fibrinolysis in LPS-induced chronic airway disease. Am J Physiol Lung Cell Mol Physiol 2003; 285:L940-8. [PMID: 12818888 DOI: 10.1152/ajplung.00102.2003] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
To examine the role of the fibrinolytic system in LPS-induced airway disease, we compared the effect of a chronic LPS challenge in plasminogen activator inhibitor-deficient (C57BL/6JPAI-1-/-) mice and wild-type (WT) C57BL/6J mice. Physiological and biological assessments were performed, immediately after, and 4 wk after an 8-wk exposure to LPS or saline. Immediately after the LPS exposure, WT mice had increased estimates of airway reactivity to methacholine compared with C57BL/6JPAI-1-/- mice; however, airway inflammation was similar in both LPS-exposed groups. Significant increases in both active transforming growth factor (TGF)-beta1 and active matrix metalloproteinase (MMP)-9 was detected after LPS exposure in WT but not C57BL/6JPAI-1-/- mice. C57BL/6JPAI-1-/- mice showed significantly less TGF-beta1 in the lavage and higher MMP-9 in the lung tissue than WT mice at the end of exposure and 4 wk later. After LPS exposure, both WT and C57BL/6JPAI-1-/- mice had substantial expansion of the subepithelial area of the medium [diameter (d) = 90-129 microm]- and large (d > 129 microm)-size airways when compared with saline-exposed mice. Subepithelial fibrin deposition was prevalent in WT mice but diminished in C57BL/6JPAI-1-/-. PAI-1 expression by nonciliated bronchial epithelial cells was enhanced in LPS-exposed WT mice compared with the saline-exposed group. Four weeks after LPS inhalation, airway hyperreactivity and the expansion of the subepithelial area in the medium and large airways persisted in WT but not C57BL/6JPAI-1-/- mice. We conclude that an active fibrinolytic system can substantially alter the development and resolution of the postinflammatory airway remodeling observed after chronic LPS inhalation.
Collapse
Affiliation(s)
- Jordan D Savov
- Duke Univ. Medical Center, P. O. Box 2629, Durham, NC 27710, USA.
| | | | | | | | | |
Collapse
|
290
|
Chambers RC. Proteinase-activated receptors and the pathophysiology of pulmonary fibrosis. Drug Dev Res 2003. [DOI: 10.1002/ddr.10317] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
291
|
Meyer KC. Interferon gamma-1b therapy for idiopathic pulmonary fibrosis: is the cart before the horse? Mayo Clin Proc 2003; 78:1073-5. [PMID: 12962159 DOI: 10.4065/78.9.1073] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
292
|
Idiopathic Pulmonary Fibrosis. Proceedings of the 1st Annual Pittsburgh International Lung Conference. October 2002. Am J Respir Cell Mol Biol 2003; 29:S1-105. [PMID: 12936907 DOI: 10.1165/rcmb.2003-0159su] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
|
293
|
Marshall LJ, Ramdin LSP, Brooks T, DPhil PC, Shute JK. Plasminogen activator inhibitor-1 supports IL-8-mediated neutrophil transendothelial migration by inhibition of the constitutive shedding of endothelial IL-8/heparan sulfate/syndecan-1 complexes. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2003; 171:2057-65. [PMID: 12902511 DOI: 10.4049/jimmunol.171.4.2057] [Citation(s) in RCA: 108] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The endothelium is the primary barrier to leukocyte recruitment at sites of inflammation. Neutrophil recruitment is directed by transendothelial gradients of IL-8 that, in vivo, are bound to the endothelial cell surface. We have investigated the identity and function of the binding site(s) in an in vitro model of neutrophil transendothelial migration. In endothelial culture supernatants, IL-8 was detected in a trimolecular complex with heparan sulfate and syndecan-1. Constitutive shedding of IL-8 in this form was increased in the presence of a neutralizing Ab to plasminogen activator inhibitor-1 (PAI-1), indicating a role for endothelial plasminogen activator in the shedding of IL-8. Increased shedding of IL-8/heparan sulfate/syndecan-1 complexes was accompanied by inhibition of neutrophil transendothelial migration, and aprotinin, a potent plasmin inhibitor, reversed this inhibition. Platelets, added as an exogenous source of PAI-1, had no effect on shedding of the complexes or neutrophil migration. Our results indicate that IL-8 is immobilized on the endothelial cell surface through binding to syndecan-1 ectodomains, and that plasmin, generated by endothelial plasminogen activator, induces the shedding of this form of IL-8. PAI-1 appears to stabilize the chemoattractant form of IL-8 at the cell surface and may represent a therapeutic target for novel anti-inflammatory strategies.
Collapse
Affiliation(s)
- Lindsay J Marshall
- School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth, Hampshire, United Kingdom
| | | | | | | | | |
Collapse
|
294
|
Huang Y, Haraguchi M, Lawrence DA, Border WA, Yu L, Noble NA. A mutant, noninhibitory plasminogen activator inhibitor type 1 decreases matrix accumulation in experimental glomerulonephritis. J Clin Invest 2003. [DOI: 10.1172/jci200318038] [Citation(s) in RCA: 103] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
295
|
Grandaliano G, Pontrelli P, Cerullo G, Monno R, Ranieri E, Ursi M, Loverre A, Gesualdo L, Schena FP. Protease-activated receptor-2 expression in IgA nephropathy: a potential role in the pathogenesis of interstitial fibrosis. J Am Soc Nephrol 2003; 14:2072-83. [PMID: 12874461 DOI: 10.1097/01.asn.0000080315.37254.a1] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
An increasing body of evidence suggests that proteases may play a key role in the pathogenesis of tissue fibrosis. Protease-activated receptor-2 (PAR-2) is cleaved and activated by trypsin-like proteolytic enzymes, including tryptase and activated coagulation factor X (FXa). Both these soluble mediators have been demonstrated, directly or indirectly, at the interstitial level in progressive renal diseases, including IgA nephropathy (IgAN). PAR-2 mRNA and protein levels were investigated by RT-PCR and immunohistochemistry, respectively, in 17 biopsies from IgAN patients and 10 normal kidneys. PAR-2 expression was also evaluated, by RT-PCR and western blotting, in cultured human mesangial and proximal tubular cells. Finally, gene expression of plasminogen activator inhibitor-1 (PAI-1) and TGF-beta, two powerful fibrogenic factors, was evaluated in FXa-, trypsin-, and PAR-2 activating peptide-stimulated human proximal tubular cells by Northern blot. In normal kidneys, PAR-2 gene expression was barely detectable, whereas in IgAN biopsies the mRNA levels for this protease receptor were strikingly increased and directly correlated with the extent of interstitial fibrosis. Immunohistochemical staining demonstrated that PAR-2 protein expression in IgAN biopsies was mainly localized in the proximal tubuli and within the interstitial infiltrate. Proximal tubular cells in culture expressed PAR-2. Activation of this receptor by FXa in tubular cells induced a striking increase in intracellular calcium concentration. In addition, incubation of both cell lines with trypsin, FXa, or PAR-2 activating peptide caused a marked upregulation of PAI-1 gene expression that was not counterbalanced by an increased expression of plasminogen activators. Finally, PAR-2 activation induced a significant upregulation of TGF-beta gene and protein expression in both mesangial and tubular cells. On the basis of our data, we can suggest that PAR-2 expressed by renal resident cells and activated by either mast cell tryptase or FXa may induce extracellular matrix deposition modifying the PAI-1/PA balance and inducing TGF-beta expression. These molecular mechanisms may underlie interstitial fibrosis in IgAN.
Collapse
Affiliation(s)
- Giuseppe Grandaliano
- Division of Nephrology, Department of Emergency and Transplantation, University of Bari, Policlinico, Bari.
| | | | | | | | | | | | | | | | | |
Collapse
|
296
|
Chuang-Tsai S, Sisson TH, Hattori N, Tsai CG, Subbotina NM, Hanson KE, Simon RH. Reduction in fibrotic tissue formation in mice genetically deficient in plasminogen activator inhibitor-1. THE AMERICAN JOURNAL OF PATHOLOGY 2003; 163:445-52. [PMID: 12875966 PMCID: PMC1868204 DOI: 10.1016/s0002-9440(10)63674-7] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 04/16/2003] [Indexed: 01/07/2023]
Abstract
Mice with homozygous deletion of the plasminogen activator inhibitor-1 gene (PAI-1(-/-)) are relatively protected from bleomycin-induced pulmonary fibrosis. At least part of the protective effect appears to occur during the latter stages of the pathological process when fibrotic tissue is being deposited. To investigate the effect of PAI-1 deficiency on fibrosis, we studied the accumulation of fibrotic tissue within subcutaneously implanted polyvinyl alcohol sponges. Similar to the effect of PAI-1 deficiency on bleomycin-induced pulmonary fibrosis, the accumulation of fibrotic tissue within implanted sponges occurred more slowly in PAI-1(-/-) compared to wild-type mice. Another striking difference observed in the PAI-1(-/-) mice was the rapid removal of a fibrin-rich matrix that formed within the sponges by 1 day after implantation in both wild-type and PAI-1(-/-) mice. The pattern of connective tissue invasion also differed: cells in wild-type mice infiltrated as individually penetrating cells whereas in PAI-1(-/-) mice they did so as a well-demarcated advancing front. Providing an alternative provisional matrix by impregnating sponges with a low concentration of collagen before implantation corrected the changes induced by PAI-1 deficiency. In conclusion, PAI-1 deficiency appears to affect fibrotic tissue formation in part by altering the provisional matrix that forms soon after tissue injury.
Collapse
Affiliation(s)
- Sheila Chuang-Tsai
- Department of Internal Medicine, Pulmonary and Critical Care Medicine Division, University of Michigan Health Sciences Center, Ann Arbor, Michigan 48109, USA
| | | | | | | | | | | | | |
Collapse
|
297
|
Rijneveld AW, Florquin S, Bresser P, Levi M, De Waard V, Lijnen R, Van Der Zee JS, Speelman P, Carmeliet P, Van Der Poll T. Plasminogen activator inhibitor type-1 deficiency does not influence the outcome of murine pneumococcal pneumonia. Blood 2003; 102:934-9. [PMID: 12702502 DOI: 10.1182/blood-2003-01-0227] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Urokinase-type plasminogen activator (uPA) and its receptor uPAR are components of the fibrinolytic system and are important for an adequate immune response to respiratory tract infection, in part through their role in the migration of inflammatory cells. PA inhibitor-1 (PAI-1) is the predominant inhibitor of soluble and receptor-bound uPA. To determine the role of PAI-1 in host defense against pneumococcal pneumonia, the following studies were performed: (1) Patients with unilateral community-acquired pneumonia demonstrated elevated PAI-1 concentrations together with decreased PA activity in bronchoalveolar lavage fluid (BALF) obtained from the infected, but not from the contralateral, site. (2) Mice with Streptococcus pneumoniae pneumonia displayed elevated PAI-1 protein and mRNA levels in their lungs. (3) PAI-1 gene-deficient mice, however, had an unaltered immune response to pneumococcal pneumonia, as measured by cell recruitment into lungs, bacterial outgrowth, and survival. Furthermore, plasminogen-gene-deficient mice also had an unremarkable defense against pneumococcal pneumonia. These data indicate that pneumonia is associated with inhibition of the fibrinolytic system at the site of the infection secondary to increased production of PAI-1; an intact fibrinolytic response is not required for an adequate host response to respiratory tract infection, however, suggesting that the previously described role of uPA and uPAR are restricted to their function in cell migration.
Collapse
Affiliation(s)
- Anita W Rijneveld
- Academic Medical Center, University of Amsterdam, F4-222, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
298
|
Huang Y, Haraguchi M, Lawrence DA, Border WA, Yu L, Noble NA. A mutant, noninhibitory plasminogen activator inhibitor type 1 decreases matrix accumulation in experimental glomerulonephritis. J Clin Invest 2003; 112:379-88. [PMID: 12897205 PMCID: PMC166295 DOI: 10.1172/jci18038] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
In fibrotic renal disease, elevated TGF-beta and angiotensin II lead to increased plasminogen activator inhibitor type 1 (PAI-1). PAI-1 appears to reduce glomerular mesangial matrix turnover by inhibiting plasminogen activators, thereby decreasing plasmin generation and plasmin-mediated matrix degradation. We hypothesized that therapy with a mutant human PAI-1 (PAI-1R) that binds to matrix vitronectin but does not inhibit plasminogen activators, would enhance plasmin generation, increase matrix turnover, and decrease matrix accumulation in experimental glomerulonephritis. Three experimental groups included normal, untreated disease control, and PAI-1R-treated nephritic rats. Plasmin generation by isolated day 3 glomeruli was dramatically decreased by 69%, a decrease that was reversed 43% (P < 0.02) by in vivo PAI-1R treatment. At day 6, animals treated with PAI-1R showed significant reductions in proteinuria (48%, P < 0.02), glomerular staining for periodic acid-Schiff positive material (33%, P < 0.02), collagen I (28%, P < 0.01), collagen III (34%, P < 0.01), fibronectin (48%, P < 0.01), and laminin (41%, P < 0.01), and in collagen I (P < 0.01) and fibronectin mRNA levels (P < 0.02). Treatment did not alter overexpression of TGF-beta1 and PAI-1 mRNAs, although TGF-beta1 protein was significantly reduced. These observations strongly support our hypothesis that PAI-1R reduces glomerulosclerosis by competing with endogenous PAI-1, restoring plasmin generation, inhibiting inflammatory cell infiltration, decreasing local TGF-beta1 concentration, and reducing matrix accumulation.
Collapse
Affiliation(s)
- Yufeng Huang
- Division of Nephrology, University of Utah, Salt Lake City, Utah 84108, USA
| | | | | | | | | | | |
Collapse
|
299
|
Li WY, Chong SSN, Huang EY, Tuan TL. Plasminogen activator/plasmin system: a major player in wound healing? Wound Repair Regen 2003; 11:239-47. [PMID: 12846910 DOI: 10.1046/j.1524-475x.2003.11402.x] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The role of the plasminogen activator/plasmin system in fibrinolysis has been well established. Indeed, clinicians worldwide have successfully utilized recombinant tissue-type plasminogen activator as first-line treatment of acute myocardial infarction for almost 2 decades. Outside the field of cardiology, there has been increasing excitement regarding the possible contribution of this system in many other important biological processes, including cell adhesion, cell migration, cell-cell signaling, tumor invasion and metastasis, ovulation, and wound healing. In this review, we present evidence in the current literature that the plasminogen activator/plasmin system does have a role in wound healing, looking at both normal and abnormal healing. Furthermore, the invaluable insights provided by numerous transgenic animal experiments are summarized.
Collapse
Affiliation(s)
- Wai-Yee Li
- Department of Surgery, Childrens Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, California 90027, USA
| | | | | | | |
Collapse
|
300
|
Qiao R, Zhou B, Liebler JM, Li X, Crandall ED, Borok Z. Identification of three genes of known function expressed by alveolar epithelial type I cells. Am J Respir Cell Mol Biol 2003; 29:98-105. [PMID: 12600825 DOI: 10.1165/rcmb.2002-0196oc] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
To identify genes of known function expressed by type I (AT1) cells, changes in gene expression during transdifferentiation of alveolar epithelial cells (AEC) in primary culture from type II (AT2) to type I-like cell phenotype were evaluated. Total RNA from AEC on Day 0 or Day 8 was hybridized to a rat microarray for screening. Eight upregulated genes on Day 8 were selected for further investigation. Northern analysis confirmed upregulation of three of these genes, PAI-1, P2X4, and P15INK4B. The corresponding proteins were evaluated in cultured AEC and results correlated with expression in AT1 cells. In AEC monolayers, all three proteins increased between Day 1 and Day 8. In mixed populations of freshly isolated rat lung cells, concurrent labeling with the AT1 cell-specific antibody, VIIIB2, localized these proteins to AT1 cells. In whole lung, all three proteins were detected in alveolar epithelium in a location consistent with expression in AT1 cells. Identification of novel AT1 cell genes of known function suggests an active role for AT1 cells in alveolar homeostasis. Furthermore, expression of these gene products in AT1-like cells, in freshly isolated AT1 cells, and AT1 cells in whole lung indicates that AT1-like cells reflect many of the properties of AT1 cells in situ.
Collapse
Affiliation(s)
- Renli Qiao
- Division of Pulmonary and Critical Care Medicine, University of Southern California, Los Angeles, CA 90033, USA.
| | | | | | | | | | | |
Collapse
|