251
|
Okada M, Tominaga Y, Sato T, Tomosugi T, Futamura K, Hiramitsu T, Ichimori T, Goto N, Narumi S, Kobayashi T, Uchida K, Watarai Y. Elevated parathyroid hormone one year after kidney transplantation is an independent risk factor for graft loss even without hypercalcemia. BMC Nephrol 2022; 23:212. [PMID: 35710357 PMCID: PMC9205154 DOI: 10.1186/s12882-022-02840-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 06/06/2022] [Indexed: 12/02/2022] Open
Abstract
Background Hypercalcemic hyperparathyroidism has been associated with poor outcomes after kidney transplantation (KTx). However, the clinical implications of normocalcemic hyperparathyroidism after KTx are unclear. This retrospective cohort study attempted to identify these implications. Methods Normocalcemic recipients who underwent KTx between 2000 and 2016 without a history of parathyroidectomy were included in the study. Those who lost their graft within 1 year posttransplant were excluded. Normocalcemia was defined as total serum calcium levels of 8.5–10.5 mg/dL, while hyperparathyroidism was defined as when intact parathyroid hormone levels exceeded 80 pg/mL. The patients were divided into two groups based on the presence of hyperparathyroidism 1 year after KTx. The primary outcome was the risk of graft loss. Results Among the 892 consecutive patients, 493 did not have hyperparathyroidism (HPT-free group), and 399 had normocalcemic hyperparathyroidism (NC-HPT group). Ninety-five patients lost their grafts. Death-censored graft survival after KTx was significantly lower in the NC-HPT group than in the HPT-free group (96.7% vs. 99.6% after 5 years, respectively, P < 0.001). Cox hazard analysis revealed that normocalcemic hyperparathyroidism was an independent risk factor for graft loss (P = 0.002; hazard ratio, 1.94; 95% confidence interval, 1.27–2.98). Conclusions Normocalcemic hyperparathyroidism 1 year after KTx was an independent risk factor for death-censored graft loss. Early intervention of elevated parathyroid hormone levels may lead to better graft outcomes, even without overt hypercalcemia. Supplementary Information The online version contains supplementary material available at 10.1186/s12882-022-02840-5.
Collapse
Affiliation(s)
- Manabu Okada
- Department of Transplant and Endocrine Surgery, Japanese Red Cross Nagoya Daini Hospital, 2-9 Myoken-cho, Showa-ku, Nagoya, Aichi, 4668650, Japan.
| | - Yoshihiro Tominaga
- Department of Transplant and Endocrine Surgery, Japanese Red Cross Nagoya Daini Hospital, 2-9 Myoken-cho, Showa-ku, Nagoya, Aichi, 4668650, Japan
| | - Tetsuhiko Sato
- Department of Diabetes and Endocrinology, Japanese Red Cross Nagoya Daini Hospital, Showa-ku, Nagoya, Aichi, Japan
| | - Toshihide Tomosugi
- Department of Transplant and Endocrine Surgery, Japanese Red Cross Nagoya Daini Hospital, 2-9 Myoken-cho, Showa-ku, Nagoya, Aichi, 4668650, Japan
| | - Kenta Futamura
- Department of Transplant and Endocrine Surgery, Japanese Red Cross Nagoya Daini Hospital, 2-9 Myoken-cho, Showa-ku, Nagoya, Aichi, 4668650, Japan
| | - Takahisa Hiramitsu
- Department of Transplant and Endocrine Surgery, Japanese Red Cross Nagoya Daini Hospital, 2-9 Myoken-cho, Showa-ku, Nagoya, Aichi, 4668650, Japan
| | - Toshihiro Ichimori
- Department of Transplant and Endocrine Surgery, Japanese Red Cross Nagoya Daini Hospital, 2-9 Myoken-cho, Showa-ku, Nagoya, Aichi, 4668650, Japan
| | - Norihiko Goto
- Department of Transplant and Endocrine Surgery, Japanese Red Cross Nagoya Daini Hospital, 2-9 Myoken-cho, Showa-ku, Nagoya, Aichi, 4668650, Japan
| | - Shunji Narumi
- Department of Transplant and Endocrine Surgery, Japanese Red Cross Nagoya Daini Hospital, 2-9 Myoken-cho, Showa-ku, Nagoya, Aichi, 4668650, Japan
| | - Takaaki Kobayashi
- Department of Renal Transplant Surgery, Aichi Medical University School of Medicine, Nagakute, Aichi, Japan
| | - Kazuharu Uchida
- Department of Renal Transplant Surgery, Masuko Memorial Hospital, Nakamura-ku, Nagoya, Aichi, Japan
| | - Yoshihiko Watarai
- Department of Transplant and Endocrine Surgery, Japanese Red Cross Nagoya Daini Hospital, 2-9 Myoken-cho, Showa-ku, Nagoya, Aichi, 4668650, Japan
| |
Collapse
|
252
|
Komaba H, Hamano T, Fujii N, Moriwaki K, Wada A, Masakane I, Nitta K, Fukagawa M. Parathyroidectomy vs Cinacalcet Among Patients Undergoing Hemodialysis. J Clin Endocrinol Metab 2022; 107:2016-2025. [PMID: 35277957 DOI: 10.1210/clinem/dgac142] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Indexed: 11/19/2022]
Abstract
CONTEXT Parathyroidectomy (PTx) and cinacalcet are both effective treatments for secondary hyperparathyroidism in hemodialysis patients, but limited data exist comparing the long-term outcomes of these interventions. OBJECTIVE We aimed to compare the risk of mortality among hemodialysis patients who underwent PTx and those who started treatment with cinacalcet. METHODS In this prospective cohort study, comprising patients from the Japanese Society for Dialysis Therapy Renal Data Registry, patients who had intact parathyroid hormone (PTH) levels ≥ 300 pg/mL in late 2007 and underwent PTx or started treatment with cinacalcet in 2008 to 2009 were matched by propensity score at 1:3. PTx and cinacalcet were compared for all-cause mortality within 6 years. RESULTS Among eligible patients, 894 patients who underwent PTx were matched with 2682 patients who started treatment with cinacalcet. The median baseline intact PTH levels were 588 pg/mL and 566 pg/mL in the PTx and cinacalcet groups, respectively. PTx resulted in greater reductions in intact PTH, calcium, and phosphorus levels compared with cinacalcet. During the 6-year follow-up period, 201 patients (22.5%) in the PTx group and 736 patients (27.4%) in the cinacalcet group died. PTx was associated with a lower risk of mortality compared with cinacalcet (hazard ratio, 0.78 [95% CI, 0.67-0.91]; P = 0.002). This association was more pronounced in patients with intact PTH levels ≥ 500 pg/mL and in patients with serum calcium levels ≥ 10.0 mg/dL (both P for interaction < 0.001). CONCLUSION PTx compared with cinacalcet is associated with a lower risk of mortality, particularly among patients with severe secondary hyperparathyroidism.
Collapse
Affiliation(s)
- Hirotaka Komaba
- Committee of Renal Data Registry, Japanese Society for Dialysis Therapy, Tokyo, Japan
- Division of Nephrology, Endocrinology and Metabolism, Tokai University School of Medicine, Isehara, Japan
- The Institute of Medical Sciences, Tokai University, Isehara, Japan
| | - Takayuki Hamano
- Committee of Renal Data Registry, Japanese Society for Dialysis Therapy, Tokyo, Japan
- Department of Nephrology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
- Department of Nephrology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Naohiko Fujii
- Committee of Renal Data Registry, Japanese Society for Dialysis Therapy, Tokyo, Japan
- Department of Nephrology, Hyogo Prefectural Nishinomiya Hospital, Nishinomiya, Japan
| | - Kensuke Moriwaki
- Comprehensive Unit for Health Economic Evidence Review and Decision Support (CHEERS), Research Organization of Science and Technology, Ritsumeikan University, Kyoto, Japan
| | - Atsushi Wada
- Committee of Renal Data Registry, Japanese Society for Dialysis Therapy, Tokyo, Japan
- Department of Nephrology, Kitasaito Hospital, Asahikawa, Japan
| | - Ikuto Masakane
- Committee of Renal Data Registry, Japanese Society for Dialysis Therapy, Tokyo, Japan
- Department of Nephrology, Yabuki Hospital, Yamagata, Japan
| | - Kosaku Nitta
- Committee of Renal Data Registry, Japanese Society for Dialysis Therapy, Tokyo, Japan
- Department of Medicine, Kidney Center, Tokyo Women's Medical University, Tokyo, Japan
| | - Masafumi Fukagawa
- Division of Nephrology, Endocrinology and Metabolism, Tokai University School of Medicine, Isehara, Japan
| |
Collapse
|
253
|
Muzafarova T, Motovska Z. Laboratory Predictors of Prognosis in Cardiogenic Shock Complicating Acute Myocardial Infarction. Biomedicines 2022; 10:1328. [PMID: 35740350 PMCID: PMC9220203 DOI: 10.3390/biomedicines10061328] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 05/29/2022] [Accepted: 06/01/2022] [Indexed: 12/02/2022] Open
Abstract
Cardiogenic shock is a state of reduced cardiac output leading to hypotension, pulmonary congestion, and hypoperfusion of tissues and vital organs. Despite the advances in intensive care over the last years, the morbidity and mortality of patients remain high. The available studies of patients with cardiogenic shock suggest a connection between clinical variables, the level of biomarkers, the results of imaging investigations, strategies of management and the outcome of this group of patients. The management of patients with cardiogenic shock initially complicating acute myocardial infarction is challenging, and the number of studies in this area is growing fast. The purpose of this review is to summarize the currently available evidence on cardiogenic shock initially complicating acute myocardial infarction with particular attention to predictors of prognosis, focusing on laboratory variables (established and new), and to discuss the practical implementation. Currently available scoring systems developed during the past few decades predict the clinical outcome of this group of patients using some of the established biomarkers among other variables. With the new laboratory biomarkers that have shown their predictive value in cardiogenic shock outcomes, a new design of scoring systems would be of interest. Identifying high-risk patients offers the opportunity for early decision-making.
Collapse
Affiliation(s)
| | - Zuzana Motovska
- Cardiocenter, Third Faculty of Medicine Charles University and University Hospital Kralovske Vinohrady, 10034 Prague, Czech Republic;
| |
Collapse
|
254
|
Ishigami J, Honda Y, Karger AB, Coresh J, Selvin E, Lutsey PL, Matsushita K. Changes in Serum Intact Fibroblast Growth Factor 23 Concentrations From Midlife to Late Life and Their Predictors in the Community: The ARIC Study. Mayo Clin Proc Innov Qual Outcomes 2022; 6:209-217. [PMID: 35517245 PMCID: PMC9062741 DOI: 10.1016/j.mayocpiqo.2022.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Objective To investigate longitudinal changes in the blood concentration of fibroblast growth factor 23 (FGF23) from midlife to late life and their major predictors in the general population. Patients and Methods In 14,444 participants of the Atherosclerosis Risk in Communities Study, we analyzed the association of 31,095 measurements of serum intact FGF23 with age using data from 3 visits (visit 2 [N=13,460; mean age, 57 years]; visit 3 [N=12,323; mean age, 60 years]; and visit 5 [N=6122; mean age, 76 years]) and a linear mixed-effects model. Among 5804 participants who had FGF23 measurements at both visits 3 and 5, we explored predictors of FGF23 change from midlife to late life using linear regression models. Prespecified risk factors were estimated glomerular filtration rate, body mass index, ever smoking, ever drinker, diabetes, hypertension, history of cardiovascular disease, total cholesterol, and high-density lipoprotein cholesterol. Results Median FGF23 concentrations were 41.9 pg/mL (interquartile interval [IQI], 33.9 to 51.8 pg/mL) at visit 2, 38.3 pg/mL (IQI, 30.6 to 48.3 pg/mL) at visit 3, and 55.0 pg/mL (IQI, 44.4 to 70.3 pg/mL) at visit 5. A linear mixed-effects model showed that the association of FGF23 with age was nonlinear, with a slight decline or no change in age 45-60 years and a monotonic increase in age greater than or equal to 65 years (FGF23, +10 to 15 pg/mL per 10 years of age). In a multivariable linear regression model, significantly greater increases in FGF23 were noted, with midlife estimated glomerular filtration rate less than 60 mL/min per 1.73 m2 vs more than or equal to 60 mL/min per 1.73 m2 (ΔFGF23, +4.4 pg/mL [95% CI, 0.9 to 8.0]), diabetes vs no diabetes (ΔFGF23, +6.2 pg/mL [95% CI, 4.1 to 8.3]), and hypertension vs no hypertension (ΔFGF23, +4.1 pg/mL [95% CI, 2.7 to 5.4]). Conclusion FGF23 did not show any major changes in midlife but increased linearly in late life. Reduced kidney function, diabetes, and hypertension were robustly associated with a greater increase in FGF23. Further investigations are needed to understand the potential mechanisms linking these conditions to an increase in FGF23 concentrations.
Collapse
Affiliation(s)
- Junichi Ishigami
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD
| | - Yasuyuki Honda
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD
| | - Amy B. Karger
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis
| | - Josef Coresh
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD
| | - Elizabeth Selvin
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD
| | - Pamela L. Lutsey
- Division of Epidemiology and Community Health, University of Minnesota, Minneapolis
| | - Kunihiro Matsushita
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD
| |
Collapse
|
255
|
Liesen MP, Noonan ML, Ni P, Agoro R, Hum JM, Clinkenbeard EL, Damrath JG, Wallace JM, Swallow EA, Allen MR, White KE. Segregating the effects of ferric citrate-mediated iron utilization and FGF23 in a mouse model of CKD. Physiol Rep 2022; 10:e15307. [PMID: 35656701 PMCID: PMC9163801 DOI: 10.14814/phy2.15307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 05/03/2022] [Indexed: 11/24/2022] Open
Abstract
Ferric citrate (FC) is an approved therapy for chronic kidney disease (CKD) patients as a phosphate (Pi) binder for dialysis-dependent CKD, and for iron deficiency anemia (IDA) in non-dialysis CKD. Elevated Pi and IDA both lead to increased FGF23, however, the roles of iron and FGF23 during CKD remain unclear. To this end, iron and Pi metabolism were tested in a mouse model of CKD (0.2% adenine) ± 0.5% FC for 6 weeks, with and without osteocyte deletion of Fgf23 (flox-Fgf23/Dmp1-Cre). Intact FGF23 (iFGF23) increased in all CKD mice but was lower in Cre+ mice with or without FC, thus the Dmp1-Cre effectively reduced FGF23. Cre+ mice fed AD-only had higher serum Pi than Cre- pre- and post-diet, and the Cre+ mice had higher BUN regardless of FC treatment. Total serum iron was higher in all mice receiving FC, and liver Tfrc, Bmp6, and hepcidin mRNAs were increased regardless of genotype; liver IL-6 showed decreased mRNA in FC-fed mice. The renal 1,25-dihydroxyvitamin D (1,25D) anabolic enzyme Cyp27b1 had higher mRNA and the catabolic Cyp24a1 showed lower mRNA in FC-fed mice. Finally, mice with loss of FGF23 had higher bone cortical porosity, whereas Raman spectroscopy showed no changes in matrix mineral parameters. Thus, FC- and FGF23-dependent and -independent actions were identified in CKD; loss of FGF23 was associated with higher serum Pi and BUN, demonstrating that FGF23 was protective of mineral metabolism. In contrast, FC maintained serum iron and corrected inflammation mediators, potentially providing ancillary benefit.
Collapse
Affiliation(s)
- Michael P. Liesen
- Department of Medical & Molecular GeneticsIndiana University School of MedicineIndianapolisIndianaUSA
- Department of PhysiologyMarian UniversityIndianapolisIndianaUSA
| | - Megan L. Noonan
- Department of Medical & Molecular GeneticsIndiana University School of MedicineIndianapolisIndianaUSA
| | - Pu Ni
- Department of Medical & Molecular GeneticsIndiana University School of MedicineIndianapolisIndianaUSA
| | - Rafiou Agoro
- Department of Medical & Molecular GeneticsIndiana University School of MedicineIndianapolisIndianaUSA
| | - Julia M. Hum
- Department of PhysiologyMarian UniversityIndianapolisIndianaUSA
| | - Erica L. Clinkenbeard
- Department of Medical & Molecular GeneticsIndiana University School of MedicineIndianapolisIndianaUSA
| | - John G. Damrath
- Purdue University Weldon School of Biomedical EngineeringWest LafayetteIndianaUSA
| | - Joseph M. Wallace
- Department of Biomedical EngineeringIndiana University‐Purdue University at IndianapolisIndianapolisIndianaUSA
| | - Elizabeth A. Swallow
- Department of Anatomy, Cell Biology, and PhysiologyIndiana University School of MedicineIndianapolisIndianaUSA
| | - Matthew R. Allen
- Department of Biomedical EngineeringIndiana University‐Purdue University at IndianapolisIndianapolisIndianaUSA
- Department of Anatomy, Cell Biology, and PhysiologyIndiana University School of MedicineIndianapolisIndianaUSA
- Department of MedicineDivision of NephrologyIndiana University School of MedicineIndianapolisIndianaUSA
| | - Kenneth E. White
- Department of Medical & Molecular GeneticsIndiana University School of MedicineIndianapolisIndianaUSA
- Department of MedicineDivision of NephrologyIndiana University School of MedicineIndianapolisIndianaUSA
| |
Collapse
|
256
|
Sharma S, Katz R, Ginsberg C, Bullen A, Vallon V, Thomson S, Moe OW, Hoofnagle AN, de Leeuw PW, Kroon AA, Houben AJHM, Ix JH. Renal Clearance of Fibroblast Growth Factor-23 (FGF23) and its Fragments in Humans. J Bone Miner Res 2022; 37:1170-1178. [PMID: 35373859 PMCID: PMC9177785 DOI: 10.1002/jbmr.4553] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 03/08/2022] [Accepted: 03/28/2022] [Indexed: 11/06/2022]
Abstract
Relative abundance of fibroblast growth factor-23 (FGF23) measured by the C-terminal (cFGF23, which measures both intact FGF23 and C-terminal fragments) versus intact (iFGF23, measures only intact hormone) assays varies by kidney function in humans. Differential kidney clearance may explain this finding. We measured cFGF23 and iFGF23 in the aorta and bilateral renal veins of 162 patients with essential hypertension undergoing renal angiography. Using multivariable linear regression, we examined factors associated with aorta to renal vein reduction of FGF23 using both assays. Similar parameters and with addition of urine concentrations of cFGF23 and iFGF23 were measured in six Wistar rats. Mean ± standard deviation (SD) age was 54 ± 12 years, 54% were women, and mean creatinine clearance was 72 ± 48 mL/min/100 g. The human kidney reduced the concentrations of both cFGF23 (16% ± 12%) and iFGF23 (21% ± 16%), but reduction was higher for iFGF23. Greater kidney creatinine and PTH reductions were each independently associated with greater reductions of both cFGF23 and iFGF23. The greater kidney reduction of iFGF23 compared to cFGF23 appeared stable and consistent across the range of creatinine clearance evaluated. Kidney clearance was similar, and urine concentrations of both assays were low in the rat models, suggesting kidney metabolism of both cFGF23 and iFGF23. Renal reduction of iFGF23 is higher than that of creatinine and cFGF23. Our data suggest that FGF23 is metabolized by the kidney. However, the major cell types involved in metabolization of FGF23 requires future study. Kidney clearance of FGF23 does not explain differences in C-terminal and intact moieties across the range of kidney function. © 2022 American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Shilpa Sharma
- Division of Nephrology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA.,Nephrology Section, Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, CA, USA
| | - Ronit Katz
- University of Washington, Seattle, WA, USA
| | - Charles Ginsberg
- Division of Nephrology-Hypertension, Department of Medicine, University of California San Diego, San Diego, CA, USA
| | - Alexander Bullen
- Division of Nephrology-Hypertension, Department of Medicine, University of California San Diego, San Diego, CA, USA.,Nephrology Section, Veterans Affairs San Diego Healthcare System, La Jolla, CA, USA
| | - Volker Vallon
- Division of Nephrology-Hypertension, Department of Medicine, University of California San Diego, San Diego, CA, USA.,Nephrology Section, Veterans Affairs San Diego Healthcare System, La Jolla, CA, USA.,Department of Pharmacology, University of California-San Diego, La Jolla, CA, USA
| | - Scott Thomson
- Division of Nephrology-Hypertension, Department of Medicine, University of California San Diego, San Diego, CA, USA.,Nephrology Section, Veterans Affairs San Diego Healthcare System, La Jolla, CA, USA.,Department of Pharmacology, University of California-San Diego, La Jolla, CA, USA
| | - Orson W Moe
- Charles and Jane Pak Center of Mineral Metabolism and Clinical Research, University of Texas Southwestern Medical Center, Dallas, TX, USA.,Departments of Internal Medicine and Physiology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | | | - Peter W de Leeuw
- Department of Internal Medicine and CARIM School for Cardiovascular Diseases, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Abraham A Kroon
- Department of Internal Medicine and CARIM School for Cardiovascular Diseases, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Alfons J H M Houben
- Department of Internal Medicine and CARIM School for Cardiovascular Diseases, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Joachim H Ix
- Division of Nephrology-Hypertension, Department of Medicine, University of California San Diego, San Diego, CA, USA.,Nephrology Section, Veterans Affairs San Diego Healthcare System, La Jolla, CA, USA
| |
Collapse
|
257
|
Abdulazim DO, Husein SA, Saraya ME, ElSharkawy MM, Fayed A, Sharaf El Din UA, Eesa NN. Fibroblast growth factor-23 in systemic lupus erythematosus patients: Is there a correlation with interleukin-6 and left ventricular mass? THE EGYPTIAN RHEUMATOLOGIST 2022; 44:233-237. [DOI: 10.1016/j.ejr.2021.12.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
|
258
|
Gabbin B, Meraviglia V, Mummery CL, Rabelink TJ, van Meer BJ, van den Berg CW, Bellin M. Toward Human Models of Cardiorenal Syndrome in vitro. Front Cardiovasc Med 2022; 9:889553. [PMID: 35694669 PMCID: PMC9177996 DOI: 10.3389/fcvm.2022.889553] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 05/09/2022] [Indexed: 11/13/2022] Open
Abstract
Heart and kidney diseases cause high morbidity and mortality. Heart and kidneys have vital functions in the human body and, interestingly, reciprocally influence each other’s behavior: pathological changes in one organ can damage the other. Cardiorenal syndrome (CRS) is a group of disorders in which there is combined dysfunction of both heart and kidney, but its underlying biological mechanisms are not fully understood. This is because complex, multifactorial, and dynamic mechanisms are likely involved. Effective treatments are currently unavailable, but this may be resolved if more was known about how the disease develops and progresses. To date, CRS has actually only been modeled in mice and rats in vivo. Even though these models can capture cardiorenal interaction, they are difficult to manipulate and control. Moreover, interspecies differences may limit extrapolation to patients. The questions we address here are what would it take to model CRS in vitro and how far are we? There are already multiple independent in vitro (human) models of heart and kidney, but none have so far captured their dynamic organ-organ crosstalk. Advanced in vitro human models can provide an insight in disease mechanisms and offer a platform for therapy development. CRS represents an exemplary disease illustrating the need to develop more complex models to study organ-organ interaction in-a-dish. Human induced pluripotent stem cells in combination with microfluidic chips are one powerful tool with potential to recapitulate the characteristics of CRS in vitro. In this review, we provide an overview of the existing in vivo and in vitro models to study CRS, their limitations and new perspectives on how heart-kidney physiological and pathological interaction could be investigated in vitro for future applications.
Collapse
Affiliation(s)
- Beatrice Gabbin
- Department of Anatomy and Embryology, Leiden University Medical Center, Leiden, Netherlands
| | - Viviana Meraviglia
- Department of Anatomy and Embryology, Leiden University Medical Center, Leiden, Netherlands
| | - Christine L. Mummery
- Department of Anatomy and Embryology, Leiden University Medical Center, Leiden, Netherlands
- Department of Applied Stem Cell Technologies, University of Twente, Enschede, Netherlands
| | - Ton J. Rabelink
- Department of Internal Medicine-Nephrology, Leiden University Medical Center, Leiden, Netherlands
- Einthoven Laboratory of Vascular and Regenerative Medicine, Leiden University Medical Center, Leiden, Netherlands
| | - Berend J. van Meer
- Department of Anatomy and Embryology, Leiden University Medical Center, Leiden, Netherlands
| | - Cathelijne W. van den Berg
- Department of Internal Medicine-Nephrology, Leiden University Medical Center, Leiden, Netherlands
- Einthoven Laboratory of Vascular and Regenerative Medicine, Leiden University Medical Center, Leiden, Netherlands
| | - Milena Bellin
- Department of Anatomy and Embryology, Leiden University Medical Center, Leiden, Netherlands
- Department of Biology, University of Padua, Padua, Italy
- Veneto Institute of Molecular Medicine, Padua, Italy
- *Correspondence: Milena Bellin, ,
| |
Collapse
|
259
|
Ogunmoroti O, Osibogun O, Zhao D, Mehta RC, Ouyang P, Lutsey PL, Robinson-Cohen C, Michos ED. Associations between endogenous sex hormones and FGF-23 among women and men in the Multi-Ethnic Study of Atherosclerosis. PLoS One 2022; 17:e0268759. [PMID: 35613118 PMCID: PMC9132299 DOI: 10.1371/journal.pone.0268759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 05/06/2022] [Indexed: 11/18/2022] Open
Abstract
Elevated levels of testosterone and fibroblast growth factor 23 (FGF-23) are both independently associated with a higher risk of cardiovascular disease (CVD). However, the relationship between sex hormones and FGF-23 is not well established. We explored the association between sex hormones and FGF-23 among middle-aged to older men and women in MESA. We studied 3,052 men and 2,868 postmenopausal women free of CVD at the time of enrollment with baseline serum sex hormones [total testosterone (T), free T, estradiol (E2) and sex hormone binding globulin (SHBG)] and intact FGF-23. In sex-stratified analyses, we examined the cross-sectional associations between log-transformed sex hormones (per 1 SD) and log-transformed FGF-23 using multiple linear regression adjusted for socio-demographics, CVD risk factors, estimated glomerular filtration rate and mineral metabolites (25-hydroxyvitamin D, calcium, phosphorus and parathyroid hormone). The mean (SD) age of study participants was 64 (10) years. The median (IQR) of FGF-23 was similar in women and men [38 (30-46) vs 38 (31-47) pg/mL]. In adjusted analyses, among women, 1 SD increment in free T was associated with 3% higher FGF-23 while SHBG was associated with 2% lower FGF-23. In men, 1 SD increment in E2 was associated with 6% higher FGF-23 whereas total T/E2 ratio was associated with 7% lower FGF-23. In conclusion, this exploratory analysis found that a more androgenic sex hormone profile was directly associated with FGF-23 in women and inversely associated with FGF-23 in men. Longitudinal studies are required to determine whether FGF-23 mediates the relationship between sex hormones and CVD risk.
Collapse
Affiliation(s)
- Oluseye Ogunmoroti
- Ciccarone Center for the Prevention of Cardiovascular Disease, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Division of Cardiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Olatokunbo Osibogun
- Department of Epidemiology, Robert Stempel College of Public Health and Social Work, Florida International University, Miami, Florida, United States of America
| | - Di Zhao
- Department of Epidemiology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - Rupal C. Mehta
- Division of Nephrology and Hypertension, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States of America
- The Jesse Brown Veterans Administration Medical Center, Chicago, Illinois, United States of America
| | - Pamela Ouyang
- Division of Cardiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Pamela L. Lutsey
- Division of Epidemiology and Community Health, University of Minnesota School of Public Health, Minneapolis, Minnesota, United States of America
| | - Cassianne Robinson-Cohen
- Division of Nephrology, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Erin D. Michos
- Ciccarone Center for the Prevention of Cardiovascular Disease, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Division of Cardiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| |
Collapse
|
260
|
Low-Dose Propranolol Prevents Functional Decline in Catecholamine-Induced Acute Heart Failure in Rats. TOXICS 2022; 10:toxics10050238. [PMID: 35622651 PMCID: PMC9148026 DOI: 10.3390/toxics10050238] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 05/02/2022] [Accepted: 05/05/2022] [Indexed: 11/25/2022]
Abstract
Severe hyper-catecholaminergic states likely cause heart failure and cardiac fibrosis. While previous studies demonstrated the effects of beta-blockade in experimental models of single-catecholamine excess states, the detailed benefits of beta-blockade in more realistic models of hyper-adrenergic states are less clearly understood. In this study, we examined different therapeutic dosages and the effects of propranolol in rats with hyper-acute catecholamine-induced heart failure, and subsequent cardiopulmonary changes. Rats (n = 41) underwent a 6 h infusion of epinephrine and norepinephrine alone, with additional low-dose (1 mg/kg) or high-dose propranolol (10 mg/kg) at hour 1. Cardiac and pulmonary tissues were examined after 6 h. Catecholamine-only groups had the lowest survival rate. Higher doses of propranolol (15 mg/kg) caused similarly low survival rates and were not further analyzed. All low-dose propranolol rats survived, with a modest survival improvement in the high-dose propranolol groups. Left ventricular (LV) systolic pressure and LV end-diastolic pressure improved maximally with low-dose propranolol. Cardiac immunohistochemistry revealed an LV upregulation of FGF-23 in the catecholamine groups, and this improved in low-dose propranolol groups. These results suggest catecholamine-induced heart failure initiates early pre-fibrotic pathways through FGF-23 upregulation. Low-dose propranolol exerted cardio-preventative effects through FGF-23 downregulation and hemodynamic-parameter improvement in our model of hyper-acute catecholamine-induced heart failure.
Collapse
|
261
|
Gupta M, Orozco G, Rao M, Gedaly R, Malluche HH, Neyra JA. The Role of Alterations in Alpha-Klotho and FGF-23 in Kidney Transplantation and Kidney Donation. Front Med (Lausanne) 2022; 9:803016. [PMID: 35602513 PMCID: PMC9121872 DOI: 10.3389/fmed.2022.803016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 02/03/2022] [Indexed: 12/12/2022] Open
Abstract
Cardiovascular disease and mineral bone disorders are major contributors to morbidity and mortality among patients with chronic kidney disease and often persist after renal transplantation. Ongoing hormonal imbalances after kidney transplant (KT) are associated with loss of graft function and poor outcomes. Fibroblast growth factor 23 (FGF-23) and its co-receptor, α-Klotho, are key factors in the underlying mechanisms that integrate accelerated atherosclerosis, vascular calcification, mineral disorders, and osteodystrophy. On the other hand, kidney donation is also associated with endocrine and metabolic adaptations that include transient increases in circulating FGF-23 and decreases in α-Klotho levels. However, the long-term impact of these alterations and their clinical relevance have not yet been determined. This manuscript aims to review and summarize current data on the role of FGF-23 and α-Klotho in the endocrine response to KT and living kidney donation, and importantly, underscore specific areas of research that may enhance diagnostics and therapeutics in the growing population of KT recipients and kidney donors.
Collapse
Affiliation(s)
- Meera Gupta
- Department of Surgery - Transplant Division, University of Kentucky, College of Medicine, Lexington, KY, United States
- Department of Surgery, University of Kentucky, Lexington, KY, United States
- *Correspondence: Meera Gupta
| | - Gabriel Orozco
- Department of Surgery - Transplant Division, University of Kentucky, College of Medicine, Lexington, KY, United States
- Department of Surgery, University of Kentucky, Lexington, KY, United States
| | - Madhumati Rao
- Department of Internal Medicine - Nephrology, Bone and Mineral Metabolism Division, University of Kentucky, College of Medicine, Lexington, KY, United States
| | - Roberto Gedaly
- Department of Surgery - Transplant Division, University of Kentucky, College of Medicine, Lexington, KY, United States
- Department of Surgery, University of Kentucky, Lexington, KY, United States
| | - Hartmut H. Malluche
- Department of Internal Medicine - Nephrology, Bone and Mineral Metabolism Division, University of Kentucky, College of Medicine, Lexington, KY, United States
| | - Javier A. Neyra
- Department of Internal Medicine - Nephrology, Bone and Mineral Metabolism Division, University of Kentucky, College of Medicine, Lexington, KY, United States
- Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
- Javier A. Neyra
| |
Collapse
|
262
|
Yanucil C, Kentrup D, Li X, Grabner A, Schramm K, Martinez EC, Li J, Campos I, Czaya B, Heitman K, Westbrook D, Wende AR, Sloan A, Roche JM, Fornoni A, Kapiloff MS, Faul C. FGF21-FGFR4 signaling in cardiac myocytes promotes concentric cardiac hypertrophy in mouse models of diabetes. Sci Rep 2022; 12:7326. [PMID: 35513431 PMCID: PMC9072546 DOI: 10.1038/s41598-022-11033-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 04/18/2022] [Indexed: 12/13/2022] Open
Abstract
Fibroblast growth factor (FGF) 21, a hormone that increases insulin sensitivity, has shown promise as a therapeutic agent to improve metabolic dysregulation. Here we report that FGF21 directly targets cardiac myocytes by binding β-klotho and FGF receptor (FGFR) 4. In combination with high glucose, FGF21 induces cardiac myocyte growth in width mediated by extracellular signal-regulated kinase 1/2 (ERK1/2) signaling. While short-term FGF21 elevation can be cardio-protective, we find that in type 2 diabetes (T2D) in mice, where serum FGF21 levels are elevated, FGFR4 activation induces concentric cardiac hypertrophy. As T2D patients are at risk for heart failure with preserved ejection fraction (HFpEF), we propose that induction of concentric hypertrophy by elevated FGF21-FGFR4 signaling may constitute a novel mechanism promoting T2D-associated HFpEF such that FGFR4 blockade might serve as a cardio-protective therapy in T2D. In addition, potential adverse cardiac effects of FGF21 mimetics currently in clinical trials should be investigated.
Collapse
Affiliation(s)
- Christopher Yanucil
- Division of Nephrology, Department of Medicine, The University of Alabama at Birmingham, Tinsley Harrison Tower 611L, 1720 2nd Avenue South, Birmingham, AL, 35294, USA
- Katz Family Drug Discovery Center and Division of Nephrology and Hypertension, Department of Medicine, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Dominik Kentrup
- Division of Nephrology, Department of Medicine, The University of Alabama at Birmingham, Tinsley Harrison Tower 611L, 1720 2nd Avenue South, Birmingham, AL, 35294, USA
- Division of Nephrology and Hypertension, Center for Translational Metabolism and Health, Feinberg Cardiovascular and Renal Research Institute, Northwestern University, Chicago, IL, USA
| | - Xueyi Li
- Departments of Ophthalmology and Medicine, Stanford Cardiovascular Institute, Stanford University, 1651 Page Mill Road, Mail Code 5356, Palo Alto, CA, USA
| | - Alexander Grabner
- Katz Family Drug Discovery Center and Division of Nephrology and Hypertension, Department of Medicine, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, USA
- Division of Nephrology, Department of Medicine, Duke University School of Medicine, Durham, NC, USA
| | - Karla Schramm
- Katz Family Drug Discovery Center and Division of Nephrology and Hypertension, Department of Medicine, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Eliana C Martinez
- Department of Pediatrics and Interdisciplinary Stem Cell Institute, Leonard M. Miller School of Medicine, University of Miami, FL, Miami, USA
| | - Jinliang Li
- Departments of Ophthalmology and Medicine, Stanford Cardiovascular Institute, Stanford University, 1651 Page Mill Road, Mail Code 5356, Palo Alto, CA, USA
- Department of Pediatrics and Interdisciplinary Stem Cell Institute, Leonard M. Miller School of Medicine, University of Miami, FL, Miami, USA
| | - Isaac Campos
- Division of Nephrology, Department of Medicine, The University of Alabama at Birmingham, Tinsley Harrison Tower 611L, 1720 2nd Avenue South, Birmingham, AL, 35294, USA
| | - Brian Czaya
- Division of Nephrology, Department of Medicine, The University of Alabama at Birmingham, Tinsley Harrison Tower 611L, 1720 2nd Avenue South, Birmingham, AL, 35294, USA
- Katz Family Drug Discovery Center and Division of Nephrology and Hypertension, Department of Medicine, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Kylie Heitman
- Division of Nephrology, Department of Medicine, The University of Alabama at Birmingham, Tinsley Harrison Tower 611L, 1720 2nd Avenue South, Birmingham, AL, 35294, USA
| | - David Westbrook
- Division of Nephrology, Department of Medicine, The University of Alabama at Birmingham, Tinsley Harrison Tower 611L, 1720 2nd Avenue South, Birmingham, AL, 35294, USA
| | - Adam R Wende
- Division of Molecular & Cellular Pathology, Department of Pathology, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Alexis Sloan
- Katz Family Drug Discovery Center and Division of Nephrology and Hypertension, Department of Medicine, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Johanna M Roche
- Katz Family Drug Discovery Center and Division of Nephrology and Hypertension, Department of Medicine, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Alessia Fornoni
- Katz Family Drug Discovery Center and Division of Nephrology and Hypertension, Department of Medicine, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Michael S Kapiloff
- Departments of Ophthalmology and Medicine, Stanford Cardiovascular Institute, Stanford University, 1651 Page Mill Road, Mail Code 5356, Palo Alto, CA, USA.
- Department of Pediatrics and Interdisciplinary Stem Cell Institute, Leonard M. Miller School of Medicine, University of Miami, FL, Miami, USA.
| | - Christian Faul
- Division of Nephrology, Department of Medicine, The University of Alabama at Birmingham, Tinsley Harrison Tower 611L, 1720 2nd Avenue South, Birmingham, AL, 35294, USA.
- Katz Family Drug Discovery Center and Division of Nephrology and Hypertension, Department of Medicine, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, USA.
| |
Collapse
|
263
|
Kusumi K, Kremsdorf R, Kakajiwala A, Mahan JD. Pediatric Mineral and Bone Disorder of Chronic Kidney Disease and Cardiovascular Disease. Adv Chronic Kidney Dis 2022; 29:275-282. [PMID: 36084974 DOI: 10.1053/j.ackd.2022.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 03/29/2022] [Accepted: 04/05/2022] [Indexed: 11/11/2022]
Abstract
Chronic kidney disease is common and causes significant morbidity including shortened lifespans and decrease in quality of life for patients. The major cause of mortality in chronic kidney disease is cardiovascular disease. Cardiovascular disease within the chronic kidney disease population is closely tied with disordered calcium and phosphorus metabolism and driven in part by renal bone disease. The complex nature of renal, bone, and cardiovascular diseases was renamed as mineral and bone disorder of chronic kidney disease to encompass how bone disease drives vascular calcification and contributes to the development of long-term cardiovascular disease, and recent data suggest that managing bone disease well can augment and improve cardiovascular disease status. Pediatric nephrologists have additional obstacles in optimal mineral and bone disorder of chronic kidney disease management such as linear growth and skeletal maturation. In this article, we will discuss cardiovascular and bone diseases in chronic kidney disease and end-stage kidney disease patients with a focus on pediatric issues and concerns.
Collapse
Affiliation(s)
- Kirsten Kusumi
- Department of Pediatric Nephrology, Akron Children's Hospital, Akron, OH.
| | - Robin Kremsdorf
- Pediatric Nephrology and Hypertension, Hasbro Children's Hospital, Providence, RI
| | - Aadil Kakajiwala
- Departments of Pediatric Critical Care Medicine and Nephrology, Children's National Hospital, Washington, DC
| | - John D Mahan
- Division of Nephrology and Hypertension at Nationwide Children's Hospital, The Ohio State University College of Medicine, Columbus, OH
| |
Collapse
|
264
|
Interplay between mineral bone disorder and cardiac damage in acute kidney injury: from Ca 2+ mishandling and preventive role of Klotho in mice to its potential mortality prediction in human. Transl Res 2022; 243:60-77. [PMID: 35077866 DOI: 10.1016/j.trsl.2022.01.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 01/14/2022] [Accepted: 01/16/2022] [Indexed: 12/27/2022]
Abstract
Biomarkers of mineral bone disorders (MBD) including phosphorus, fibroblast growth factor (FGF)-23 and Klotho are strongly altered in patients with acute kidney injury (AKI) who have high cardiac outcomes and mortality rates. However, the crosslink between MBD and cardiac damage after an AKI episode still remains unclear. We tested MBD and cardiac biomarkers in an experimental AKI model after 24 or 72 hours of folic acid injection and we analyzed structural cardiac remodeling, intracellular calcium (Ca2+) dynamics in cardiomyocytes and cardiac rhythm. AKI mice presented high levels of FGF-23, phosphorus and cardiac troponin T and exhibited a cardiac hypertrophy phenotype accompanied by an increase in systolic Ca2+ release 24 hours after AKI. Ca2+ transients and contractile dysfunction were reduced 72 hours after AKI while diastolic sarcoplasmic reticulum Ca2+ leak, pro-arrhythmogenic Ca2+ events and ventricular arrhythmias were increased. These cardiac events were linked to the activation of the calcium/calmodulin-dependent kinase II pathway through the increased phosphorylation of ryanodine receptors and phospholamban specific sites after AKI. Cardiac hypertrophy and the altered intracellular Ca2+ dynamics were prevented in transgenic mice overexpressing Klotho after AKI induction. In a translational retrospective longitudinal clinical study, we determined that combining FGF-23 and phosphorus with cardiac troponin T levels achieved a better prediction of mortality in AKI patients at hospital admission. Thus, monitoring MBD and cardiac damage biomarkers could be crucial to prevent mortality in AKI patients. In this setting, Klotho might be considered as a new cardioprotective therapeutic tool to prevent deleterious cardiac events in AKI conditions.
Collapse
|
265
|
Quiroga B, Ortiz A, Navarro-González JF, Santamaría R, de Sequera P, Díez J. From cardiorenal syndromes to cardionephrology: a reflection by nephrologists on renocardiac syndromes. Clin Kidney J 2022; 16:19-29. [PMID: 36726435 PMCID: PMC9871856 DOI: 10.1093/ckj/sfac113] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Indexed: 02/04/2023] Open
Abstract
Cardiorenal syndromes (CRS) are broadly defined as disorders of the heart and kidneys whereby acute or chronic dysfunction in one organ may induce acute or chronic dysfunction of the other. CRS are currently classified into five categories, mostly based on disease-initiating events and their acuity or chronicity. CRS types 3 and 4 (also called renocardiac syndromes) refer to acute and chronic kidney dysfunction resulting in acute and chronic heart dysfunction, respectively. The notion of renocardiac syndromes has broadened interest in kidney-heart interactions but uncertainty remains in the nephrological community's understanding of the clinical diversity, pathophysiological mechanisms and optimal management approaches of these syndromes. This triple challenge that renocardiac syndromes (and likely other cardiorenal syndromes) pose to the nephrologist can only be faced through a specific and demanding training plan to enhance his/her cardiological scientific knowledge and through an appropriate clinical environment to develop his/her cardiological clinical skills. The first must be the objective of the subspecialty of cardionephrology (or nephrocardiology) and the second must be the result of collaboration with cardiologists (and other specialists) in cardiorenal care units. This review will first consider various aspects of the challenges that renocardiac syndromes pose to nephrologists and, then, will discuss those aspects of cardionephrology and cardiorenal units that can facilitate an effective response to the challenges.
Collapse
Affiliation(s)
| | | | - Juan F Navarro-González
- RICORS2040, Carlos III Institute of Health, Madrid, Spain,Division of Nephrology and Research Unit, University Hospital Nuestra Señora de Candelaria, and University Institute of Biomedical Technologies, University of La Laguna, Santa Cruz de Tenerife, Spain
| | - Rafael Santamaría
- RICORS2040, Carlos III Institute of Health, Madrid, Spain,Division of Nephrology, University Hospital Reina Sofia, Cordoba, Spain,Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Cordoba, Spain
| | - Patricia de Sequera
- Department of Nephrology, University Hospital Infanta Leonor, University Complutense of Madrid, Madrid, Spain
| | | |
Collapse
|
266
|
Bakke AM, Wood J, Salt C, Allaway D, Gilham M, Kuhlman G, Bierer T, Butterwick R, O'Flynn C. Responses in randomised groups of healthy, adult Labrador retrievers fed grain-free diets with high legume inclusion for 30 days display commonalities with dogs with suspected dilated cardiomyopathy. BMC Vet Res 2022; 18:157. [PMID: 35484585 PMCID: PMC9047289 DOI: 10.1186/s12917-022-03264-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 04/12/2022] [Indexed: 11/21/2022] Open
Abstract
Early responses in healthy adult dogs fed grain-free diets with high inclusion of split peas (20%) and lentils (40%) that may lead to canine diet-induced dilated cardiomyopathy (DCM) were investigated. To help understand the clinical relevance of the findings, a survey of electronic health records (EHR) was conducted of dogs with and without suspected DCM for comparison. Control and Test diets were fed to Labrador retriever dogs for 30 days (n = 5 and 6, respectively). Blood and urine samples collected at baseline and days 3, 14 and 28/30 were analyzed for hematology, clinical biochemistry and taurine concentrations. The EHRs of dogs at Banfield® Pet Hospitals in the 2-year period 2018-2019 were surveyed, revealing 420 dogs diagnosed with DCM, which were compared with 420 breed, gender and age-matched healthy control dogs. Compared to baseline values, feeding the Test diet for 28 days caused progressive, significant (p < 0.001) decreases in red blood cell counts (RBC), hematocrit and total hemoglobin by 7.7, 8.3 and 6.3%, respectively, and a 41.8% increase in plasma inorganic phosphate. Commonalities in these parameters were observed in clinical DCM cases. Regarding taurine status, Test dogs transiently increased whole-blood (23.4%) and plasma (47.7%) concentrations on day 14, while taurine:creatinine ratio in fresh urine and taurine in pooled urine were reduced by 77 and 78%, respectively, on day 28/30. Thus grain-free, legume-rich Test diets caused reduced RBC and hyperphosphatemia, findings also indicated in dogs with suspected DCM. Changes in taurine metabolism were indicated. The data will aid in generating hypotheses for future studies.
Collapse
Affiliation(s)
- Anne Marie Bakke
- Waltham Petcare Science Institute, Mars Petcare UK, Freeby Lane, Waltham-on-the-Wolds, Melton Mowbray, Leicestershire, LE14 4RT, UK.
| | - Joshua Wood
- Waltham Petcare Science Institute, Mars Petcare UK, Freeby Lane, Waltham-on-the-Wolds, Melton Mowbray, Leicestershire, LE14 4RT, UK
| | - Carina Salt
- Waltham Petcare Science Institute, Mars Petcare UK, Freeby Lane, Waltham-on-the-Wolds, Melton Mowbray, Leicestershire, LE14 4RT, UK
| | - David Allaway
- Waltham Petcare Science Institute, Mars Petcare UK, Freeby Lane, Waltham-on-the-Wolds, Melton Mowbray, Leicestershire, LE14 4RT, UK
| | - Matt Gilham
- Waltham Petcare Science Institute, Mars Petcare UK, Freeby Lane, Waltham-on-the-Wolds, Melton Mowbray, Leicestershire, LE14 4RT, UK
| | | | | | - Richard Butterwick
- Waltham Petcare Science Institute, Mars Petcare UK, Freeby Lane, Waltham-on-the-Wolds, Melton Mowbray, Leicestershire, LE14 4RT, UK
| | - Ciaran O'Flynn
- Waltham Petcare Science Institute, Mars Petcare UK, Freeby Lane, Waltham-on-the-Wolds, Melton Mowbray, Leicestershire, LE14 4RT, UK
| |
Collapse
|
267
|
Carrasco-Ruiz MF, Ruiz-Rivera A, Soriano-Ursúa MA, Martinez-Hernandez C, Manuel-Apolinar L, Castillo-Hernandez C, Guevara-Balcazar G, Farfán-García ED, Mejia-Ruiz A, Rubio-Gayosso I, Perez-Capistran T. Global longitudinal strain is superior to ejection fraction for detecting myocardial dysfunction in end-stage renal disease with hyperparathyroidism. World J Cardiol 2022; 14:239-249. [PMID: 35582470 PMCID: PMC9048274 DOI: 10.4330/wjc.v14.i4.239] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 01/07/2022] [Accepted: 04/04/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The estimation of left ventricular ejection fraction (LVEF) by 2D echocardiography (2D-ECHO) is the most used tool to assess LV systolic function (LVSF). Global longitudinal strain (GLS) has recently been suggested as a superior method for several evaluations. This study explored the association and prevalence of LV systolic dysfunction (LVSD) by using these methods in patients with end-stage renal disease (ESRD) and severe hyperparathyroidism (SHPTH); both associated with cardiovascular events (CEs). AIM To evaluate the myocardial function in patients with ESRD and SHPTH by using the GLS and LVEF measured through conventional 2D-ECHO. METHODS In 62 patients with ESRD and SHPTH, asymptomatic, and without a history of CEs, LVSF was evaluated by 2D-ECHO, obtaining the EF, by the Simpson biplane method, and GLS by speckle tracking. RESULTS The total patients with ESRD had a preserved LVEF (> 50%) but abnormal GLS (< 13.55%). Additionally, multivariate analysis showed an independent association of GLS and serum parathyroid hormone (PTH), LV mass index, and hemoglobin. Also, PTH was independently associated with lateral e' wave and tricuspid regurgitation velocity. CONCLUSION In patients with SHPTH linked to ESRD, the use of GLS by 2D-ECHO is a more sensitive tool than LVEF for detecting LVSD.
Collapse
Affiliation(s)
- Maria Fernanda Carrasco-Ruiz
- Department of Physiology, Escuela Superior de Medicina, Instituto Politécnico Nacional, Ciudad de México 11340, Mexico
| | - Antonio Ruiz-Rivera
- Department of Cardiology, Instituto Mexicano del Seguro Social, Ciudad de México 06720, Mexico
| | - Marvin A Soriano-Ursúa
- Department of Physiology, Escuela Superior de Medicina, Instituto Politécnico Nacional, Ciudad de México 11340, Mexico
| | | | - Leticia Manuel-Apolinar
- Endocrine Research Unit, Instituto Mexicano del Seguro Social, Ciudad de México 06720, Mexico
| | - Carmen Castillo-Hernandez
- Department of Cardiovascular Pharmacology, Instituto Politécnico Nacional, Ciudad de México 11340, Mexico
| | - Gustavo Guevara-Balcazar
- Department of Cardiovascular Pharmacology, Instituto Politécnico Nacional, Ciudad de México 11340, Mexico
| | - Eunice D Farfán-García
- Department of Biochemistry, Escuela Superior de Medicina, Instituto Politécnico Nacional, Ciudad de México 11340, Mexico
| | - Ana Mejia-Ruiz
- Education Research, Comisión Nacional Para la Mejora Continua de la Educación, Ciudad de México 03900, Mexico
| | - Ivan Rubio-Gayosso
- Postgraduate Studies and Research Section,Escuela Superior de Medicina, Instituto Politécnico Nacional, Ciudad de México 11340, Mexico
| | - Teresa Perez-Capistran
- Department of Physiology, Escuela Superior de Medicina, Instituto Politécnico Nacional, Ciudad de México 11340, Mexico
- Department of Physiology, Instituto Politécnico Nacional, Mexico City 11340, Ciudad de México, Mexico.
| |
Collapse
|
268
|
Candelino M, Tagi VM, Chiarelli F. Cardiovascular risk in children: a burden for future generations. Ital J Pediatr 2022; 48:57. [PMID: 35410281 PMCID: PMC8996670 DOI: 10.1186/s13052-022-01250-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 03/27/2022] [Indexed: 11/30/2022] Open
Abstract
Cardiovascular diseases are the main causes of death and health costs in developed countries. Although cardiovascular diseases are thought to affect only adulthood, the underlying process of atherosclerosis begins in the first decade of life. Epidemiological studies show that severity of atherosclerosis depends both on the number and intensity of risk factors. Early detection of cardiovascular risk in childhood is the most powerful tool to prevent cardiovascular accidents in adulthood and possibly reduce its consequent burden for the future. A large amount of cardiovascular risk factors is already detectable in childhood and include non-modifiable elements, among which genetic factors and congenital heart diseases, and modifiable elements, which depend on environmental effects (e.g. lifestyle and nutrition). Regardless of the possibility to intervene on these factors, an early diagnosis is fundamental to ensure an optimal life expectancy in adulthood. The most important cardiovascular risk factors in the paediatric age and adolescence are excess weight, arterial hypertension, glucose metabolism and lipid metabolism alterations. In this review we will discuss the main risk factors strictly correlated with cardiac and vessels diseases, focusing on their pathogenesis, diagnosis, and treatments.
Collapse
|
269
|
Afsar B, Kanbay M, Afsar RE. Interconnections of fibroblast growth factor 23 and klotho with erythropoietin and hypoxia-inducible factor. Mol Cell Biochem 2022; 477:1973-1985. [PMID: 35381946 DOI: 10.1007/s11010-022-04422-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 03/22/2022] [Indexed: 12/01/2022]
Abstract
Bone marrow (BM) hematopoiesis is tightly regulated process and bone components such as osteoblasts, extracellular matrix, and minerals influence hematopoiesis via regulation of hematopoietic stem cell function. Erythropoietin (EPO) secreted mostly by renal EPO producing (REP) cells which employ the hypoxia-inducible factor (HIF) pathway. When tissue hypoxia occurs, HIFs bind to hypoxia response element in the EPO promoter and induce EPO production. EPO binds to the EPO receptor on red cell progenitors in the BM and triggers expansion of red cell mass. Fibroblast growth factor-23 (FGF23) which is secreted mostly by osteoblasts and less by BM impacts hematopoiesis by influencing EPO production. Reciprocally, increases of EPO (acute or chronic) influence both FG23 production and cleavage resulting in variation of c fragment FGF23 (cFGF23) and intact FGF23 (iFGF23) ratios. As HIFs stimulate EPO production, they indirectly affect FGF23. Direct stimulation of FGF23 synthesis by binding of HIF on FGF23 promoter is also suggested. FGF23 cleavage by furin is another potential mechanism affecting FGF23 levels. Klotho is present in membrane-bound (transmembrane) and free (circulating) forms. Transmembrane klotho is the co-receptor of FGF23 and forms complexes with FGF23 receptors in the membrane surface and required for FGF23 actions. Recent evidence showed that klotho is also associated with EPO and HIF production suggesting a complex relationship between FGF23, klotho, EPO, and HIF. In this review, we have summarized the connections between FGF23, klotho, HIF, and EPO and their reflections to hematopoiesis.
Collapse
Affiliation(s)
- Baris Afsar
- Department of Nephrology, School of Medicine, Suleyman Demirel University, Isparta, Turkey.
| | - Mehmet Kanbay
- Department of Nephrology, School of Medicine, Koc University, Istanbul, Turkey
| | - Rengin Elsurer Afsar
- Department of Nephrology, School of Medicine, Suleyman Demirel University, Isparta, Turkey
| |
Collapse
|
270
|
Chávez-Iñiguez JS, Sánchez-Villaseca SJ, García-Macías LA. Cardiorenal syndrome: classification, pathophysiology, diagnosis and management. Literature review. ARCHIVOS DE CARDIOLOGIA DE MEXICO 2022; 92:253-263. [PMID: 34261129 PMCID: PMC9005172 DOI: 10.24875/acm.20000183] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Accepted: 06/03/2021] [Indexed: 12/02/2022] Open
Abstract
The cardiorenal syndrome is a complex entity in which a primary heart dysfunction causes kidney injury (Types 1 and 2) and vice versa (Types 3 and 4), being either acute or chronic events, or maybe the result of a systemic disease that involves both organs (Type 5). Approximately 49% of heart failure cases present some grade of kidney dysfunction, significantly increasing morbidity and mortality rates. Its pathogenesis involves a variety of hemodynamic, hormonal and immunological factors that in the majority of cases produce fluid overload; the diagnosis and treatment of such constitutes the disease’s management basis. Currently, a clinical based diagnosis is insufficient and the use of biochemical markers, such as natriuretic peptides, or lung and heart ultrasound is required. These tools, along with urinary sodium levels, allow the evaluation of therapy effectiveness. The preferred initial decongestive strategy is based on a continuous infusion of a loop diuretic with a step-up dosing regimen, aiming for a minimal daily urine volume of 3 liters, with the possibility to sequentially add potassium sparing diuretics, thiazide diuretics and carbonic anhydrase inhibitors to reach the diuresis goal, leaving ultrafiltration as a last resource due to its higher rate of complications. Finally, evidence-based therapy should be given to improve quality of life, decrease mortality, and delay the deterioration of kidney and heart function over the long term.
Collapse
Affiliation(s)
- Jonathan S Chávez-Iñiguez
- Servicio de Nefrología, Hospital Civil Fray Antonio Alcalde, Universidad de Guadalajara, Guadalajara, Jalisco, México
| | - Sergio J Sánchez-Villaseca
- Servicio de Nefrología, Hospital Civil Fray Antonio Alcalde, Universidad de Guadalajara, Guadalajara, Jalisco, México
| | - Luz A García-Macías
- Universidad de Guadalajara, Centro Universitario de Ciencias de la Salud. Guadalajara, Jalisco, México
| |
Collapse
|
271
|
Multiparametric CMR imaging of myocardial structure and function changes in diabetic mini-pigs with preserved LV function: a preliminary study. BMC Cardiovasc Disord 2022; 22:143. [PMID: 35366800 PMCID: PMC8976391 DOI: 10.1186/s12872-022-02597-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Accepted: 03/29/2022] [Indexed: 11/10/2022] Open
Abstract
Background The purpose of this study is to dynamically monitor the myocardial structure and function changes in diabetic mini-pigs by 1.5 T cardiac magnetic resonance. Methods Three male mini-pigs underwent cardiac magnet resonance (CMR) imaging, and histologic examination. T1-mapping was acquired at basal, mid and apical segments. CMR feature-tracking (CMR-FT) is used to quantify left ventricle global longitudinal (LVGLS), circumferential (LVGCS) and radial strain (LVGRS). Epicardial adipose tissue (EAT) was evaluated using a commercially available software. Results Left ventricular mass (LVM), myocardial native T1 value, extracellular volume (ECV) value and EAT were increased gradually after 6 months of modeling, while LVGLS decreased gradually after 6 months of modeling (LVM: 24.5 (23.4, 26.7) vs. 42.7 (41.4, 44.6) g/m2, p < 0.001; Native T1: 1005.5 (992.6, 1010.7) vs. 1028.7 (1015.5, 1035.6) ms, p = 0.041; EAT: 16.1 (14.5, 18.2) vs. 24.6 (20.8, 26.9) mL, p = 0.020; ECV: 21.4 (20.2, 23.9) vs. 28.9 (26.7, 30.3) %, p = 0.011; LVGLS: − 22.8 (− 21.4, − 23.9) vs. − 17.4 (− 17.2, − 19.2)%, p = 0.008). The diffuse myocardial interstitial fibrosis was found in histology samples. Conclusion The progressive impairments in LV structure and myocardial deformation occurs in diabetic mini-pigs. T1 mapping and CMR-FT technology are promising to monitor abnormal changes of diabetic myocardium in the early stage of diabetic cardiomyopathy.
Collapse
|
272
|
Suksridechacin N, Thongon N. Fibroblast growth factor-23 and parathyroid hormone suppress small intestinal magnesium absorption. Physiol Rep 2022; 10:e15247. [PMID: 35385223 PMCID: PMC8985197 DOI: 10.14814/phy2.15247] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 02/22/2022] [Accepted: 03/15/2022] [Indexed: 04/12/2023] Open
Abstract
In the present study, we examined the systemic and direct effects of parathyroid hormone (PTH) and fibroblast growth factor-23 (FGF-23) on duodenal, jejunal, and ileal Mg2+ absorption. The rats were injected with FGF-23 or PTH for 5 h before collecting the duodenum, jejunum, and ileum for Mg2+ transport analysis in Ussing chambers. The duodenum, jejunum, and ileum were directly exposed to FGF-23, PTH, or FGF-23 plus PTH with or without cell signaling inhibitors for 150 min in Ussing chambers prior to performing the Mg2+ transport study. The small intestinal tissues were also subjected to western blot analyses for FGF receptor (FGFR), PTH receptor (PTHR), Klotho, transient receptor potential melastatin 6 (TRPM6), and cyclin as well as the cystathionine β-synthase domain divalent metal cation transport mediator 4 (CNNM4) expression. The small intestine abundantly expressed FGFR and PTHR proteins, whereas, Klotho was not expressed in rat small intestine. Systemic PTH or FGF-23 injection significantly suppressed transcellular Mg2+ transport in the duodenum and jejunum. Direct FGF-23-, PTH-, or FGF-23 plus PTH exposure also suppressed transcellular Mg2+ absorption in the duodenum and jejunum. There was no additional inhibitory effect of PTH and FGF-23 on intestinal Mg2+ absorption. The inhibitory effect of PTH, FGF-23, or FGF-23 plus PTH was abolished by Gö 6850. Systemic PTH- or FGF-23-injection significantly decreased membranous TRPM6 expression, but increased cytosolic CNNM4 expression in the duodenum, jejunum, and ileum. In the present study, we propose a novel magnesiotropic action of PTH and FGF-23 by modulating small intestinal Mg2+ absorption.
Collapse
Affiliation(s)
- Nasisorn Suksridechacin
- Division of PhysiologyDepartment of Biomedical SciencesFaculty of Allied Health SciencesBurapha UniversityChonburiThailand
- Biodiversity Research CentreThailand Institute of Scientific and Technological ResearchPathumthaniThailand
| | - Narongrit Thongon
- Division of PhysiologyDepartment of Biomedical SciencesFaculty of Allied Health SciencesBurapha UniversityChonburiThailand
| |
Collapse
|
273
|
Lv J, Li Y, Shi S, Liu S, xu X, Wu H, Zhang B, Song Q. Frontier and Hotspot Evolution in Cardiorenal Syndrome: a Bibliometric analysis from 2003 to 2022. Curr Probl Cardiol 2022:101238. [DOI: 10.1016/j.cpcardiol.2022.101238] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 04/24/2022] [Indexed: 11/03/2022]
|
274
|
Stremke ER, Trevino L, Doshi S, Moorthi RN, Hill Gallant KM, Moe SM. Postdialysis serum phosphate equilibrium in hemodialysis patients on a controlled diet and no binders. Hemodial Int 2022; 26:255-263. [PMID: 34964250 PMCID: PMC9096807 DOI: 10.1111/hdi.12999] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 12/13/2021] [Accepted: 12/14/2021] [Indexed: 11/27/2022]
Abstract
BACKGROUND Studies evaluating the change in serum phosphate post hemodialysis (HD) demonstrate an initial decline during dialysis but a rebound post dialysis. However, previous studies were done on usual diet and phosphate binders, with limited number of blood draws, confounding conclusions. We determined serum phosphate reduction, rebound, and equilibrium over 48 h in HD patients consuming a controlled, low phosphorus diet without binders. METHODS Serum phosphate (mg/dL) was analyzed before and after a HD treatment and frequently during the ensuing 48 h intradialytic period in the clinical research unit. Thirteen subjects were enrolled and had been off phosphate binders for 10 days and consumed a standardized low phosphate (900 mg/day) diet for 3 weeks prior to the assessments. Linear regression was used to determine relationships between the pre-HD serum phosphate, decline post-HD (post-HD drop); and a 48 h area under curve (AUC) using the trapezoidal method as a measure of overall phosphate levels from the end of dialysis to 48 h post dialysis. Repeated Measures ANOVA with Dunnett's posthoc test was used to determine rebound. RESULTS Five of 13 subjects returned to >90% of their pre-HD serum phosphate within the first 24 h post-HD, and serum phosphate was 94 ± 0.11% (range 63%-113%) by 48 h after the completion of HD. The 48 h AUC of serum phosphate during the interdialytic period was correlated with both pre dialysis phosphorus (r = 0.85; p = 0.0002) and the pre-post drop in serum phosphate during dialysis (r = 0.69; p = 0.0085). In contrast, the net ultrafiltration was not related to the 48 h AUC of serum phosphorus (r = 0.20; p = 0.51). CONCLUSIONS In hemodialysis patients on standard low phosphorus diet and no phosphate binders, the interdialytic serum phosphorus level, assessed as AUC, is determined by the pre dialysis phosphorus and net-change in serum phosphorus during the dialysis treatment, but not the ultrafiltration volume [Correction added on 25 January, after first online publication: In the last sentence of the Abstract, the word "potassium" has been replaced with "phosphorus" to improve accuracy.].
Collapse
Affiliation(s)
- Elizabeth R Stremke
- Department of Nutrition Science, Purdue University, West Lafayette, Indiana, USA
- Indiana Clinical and Translational Science Institute, Indiana University, Indianapolis, Indiana, USA
| | - Laurie Trevino
- Indiana Clinical and Translational Science Institute, Indiana University, Indianapolis, Indiana, USA
| | - Simit Doshi
- Department of Medicine/Division of Nephrology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Ranjani N Moorthi
- Department of Medicine/Division of Nephrology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Kathleen M Hill Gallant
- Department of Nutrition Science, Purdue University, West Lafayette, Indiana, USA
- Department of Food Science and Nutrition, University of Minnesota, Saint Paul, Minnesota, USA
| | - Sharon M Moe
- Indiana Clinical and Translational Science Institute, Indiana University, Indianapolis, Indiana, USA
- Department of Medicine/Division of Nephrology, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Roudebush Veterans Administration Medical Center, Indianapolis, Indiana, USA
| |
Collapse
|
275
|
Hasparyk UG, Vigil FMB, Bartolomei VS, Nunes VM, Simões e Silva AC. Chronic Kidney Disease-Mineral Bone Disease biomarkers in kidney transplant patients. Curr Med Chem 2022; 29:5230-5253. [DOI: 10.2174/0929867329666220318105856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 01/16/2022] [Accepted: 01/20/2022] [Indexed: 11/22/2022]
Abstract
Background:
Chronic Kidney Disease associated with Mineral Bone Disease (CKD-MBD) is frequent in kidney transplant patients. Post-transplantation bone disease is complex, especially in patients with pre-existing metabolic bone disorders that are further affected by immunosuppressive medications and changes in renal allograft function. Main biochemical abnormalities of mineral metabolism in kidney transplantation (KTx) include hypophosphatemia, hyperparathyroidism (HPTH), insufficiency or deficiency of vitamin D, and hypercalcemia.
Objective:
This review aimed to summarize the pathophysiology and main biomarkers of CKD-MBD in KTx.
Methods:
A comprehensive and non-systematic search in PubMed was independently made with an emphasis on biomarkers in mineral bone disease in KTx.
Results:
CKD-MBD can be associated with numerous factors including secondary HPTH, metabolic dysregulations before KTx, and glucocorticoids therapy in post-transplant subjects. Fibroblast growth factor 23 (FGF23) reaches normal levels after KTx with good allograft function, while calcium, vitamin D and phosphorus, ultimately, result in hypercalcemia, persistent vitamin D insufficiency, and hypophosphatemia respectively. As for PTH levels, there is an initial tendency of a significant decrease, followed by a raise due to secondary or tertiary HPTH. In regard to sclerostin levels, there is no consensus in the literature.
Conclusion:
KTx patients should be continuously evaluated for mineral homeostasis and bone status, both cases with successful kidney transplantation and those with reduced functionality. Additional research on CKD-MBD pathophysiology, diagnosis, and management is essential to guarantee long-term graft function, better prognosis, good quality of life, and reduced mortality for KTx patients.
Collapse
Affiliation(s)
- Ursula Gramiscelli Hasparyk
- Interdisciplinary Laboratory of Medical Investigation, Faculty of Medicine, Federal University of Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
| | - Flávia Maria Borges Vigil
- Interdisciplinary Laboratory of Medical Investigation, Faculty of Medicine, Federal University of Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
| | - Victória Soares Bartolomei
- Interdisciplinary Laboratory of Medical Investigation, Faculty of Medicine, Federal University of Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
| | - Vitor Moreira Nunes
- Interdisciplinary Laboratory of Medical Investigation, Faculty of Medicine, Federal University of Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
| | - Ana Cristina Simões e Silva
- Interdisciplinary Laboratory of Medical Investigation, Faculty of Medicine, Federal University of Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
| |
Collapse
|
276
|
Wang Y, Yang Y, He F. Insights into Concomitant Atrial Fibrillation and Chronic Kidney Disease. Rev Cardiovasc Med 2022; 23:105. [PMID: 35345272 DOI: 10.31083/j.rcm2303105] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 02/24/2022] [Accepted: 03/03/2022] [Indexed: 01/03/2025] Open
Abstract
Chronic kidney disease (CKD) shows a high prevalence and is characterized by progressive and irreversible loss of renal function. It is also associated with a high risk of cardiovascular disease. The CKD population often suffers from atrial fibrillation (AF), which is associated with cardiovascular and all-cause mortality. There is a pernicious bidirectional relationship between CKD and AF: renal dysfunction can help promote AF initiation and maintenance, while unmanageable AF often accelerates kidney function deterioration. Therefore, it is necessary to determine the interactive mechanisms between CKD and AF for optimal management of patients. However, due to renal function impairment and changes in the pharmacokinetics of anticoagulants, it is still elusive to formulate a normative therapeutic schedule for the AF population concomitant with CKD especially those with end-stage kidney failure. This review describes the possible molecular mechanisms linking CKD to AF and existing therapeutic options.
Collapse
Affiliation(s)
- Yanan Wang
- Department of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030 Wuhan, Hubei, China
| | - Yi Yang
- Department of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030 Wuhan, Hubei, China
| | - Fan He
- Department of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030 Wuhan, Hubei, China
| |
Collapse
|
277
|
Zhu Y, Prata LGL, Gerdes EOW, Netto JME, Pirtskhalava T, Giorgadze N, Tripathi U, Inman CL, Johnson KO, Xue A, Palmer AK, Chen T, Schaefer K, Justice JN, Nambiar AM, Musi N, Kritchevsky SB, Chen J, Khosla S, Jurk D, Schafer MJ, Tchkonia T, Kirkland JL. Orally-active, clinically-translatable senolytics restore α-Klotho in mice and humans. EBioMedicine 2022; 77:103912. [PMID: 35292270 PMCID: PMC9034457 DOI: 10.1016/j.ebiom.2022.103912] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 02/16/2022] [Accepted: 02/17/2022] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND α-Klotho is a geroprotective protein that can attenuate or alleviate deleterious changes with ageing and disease. Declines in α-Klotho play a role in the pathophysiology of multiple diseases and age-related phenotypes. Pre-clinical evidence suggests that boosting α-Klotho holds therapeutic potential. However, readily clinically-translatable, practical strategies for increasing α-Klotho are not at hand. Here, we report that orally-active, clinically-translatable senolytics can increase α-Klotho in mice and humans. METHODS We examined α-Klotho expression in three different human primary cell types co-cultured with conditioned medium (CM) from senescent or non-senescent cells with or without neutralizing antibodies. We assessed α-Klotho expression in aged, obese, and senescent cell-transplanted mice treated with vehicle or senolytics. We assayed urinary α-Klotho in patients with idiopathic pulmonary fibrosis (IPF) who were treated with the senolytic drug combination, Dasatinib plus Quercetin (D+Q). FINDINGS We found exposure to the senescent cell secretome reduces α-Klotho in multiple nonsenescent human cell types. This was partially prevented by neutralizing antibodies against the senescence-associated secretory phenotype (SASP) factors, activin A and Interleukin 1α (IL-1α). Consistent with senescent cells' being a cause of decreased α-Klotho, transplanting senescent cells into younger mice reduced brain and urine α-Klotho. Selectively removing senescent cells genetically or pharmacologically increased α-Klotho in urine, kidney, and brain of mice with increased senescent cell burden, including naturally-aged, diet-induced obese (DIO), or senescent cell-transplanted mice. D+Q increased α-Klotho in urine of patients with IPF, a disease linked to cellular senescence. INTERPRETATION Senescent cells cause reduced α-Klotho, partially due to their production of activin A and IL-1α. Targeting senescent cells boosts α-Klotho in mice and humans. Thus, clearing senescent cells restores α-Klotho, potentially opening a novel, translationally-feasible avenue for developing orally-active small molecule, α-Klotho-enhancing clinical interventions. Furthermore, urinary α-Klotho may prove to be a useful test for following treatments in senolytic clinical trials. FUNDING This work was supported by National Institute of Health grants AG013925 (J.L.K.), AG062413 (J.L.K., S.K.), AG044271 (N.M.), AG013319 (N.M.), and the Translational Geroscience Network (AG061456: J.L.K., T.T., N.M., S.B.K., S.K.), Robert and Arlene Kogod (J.L.K.), the Connor Group (J.L.K.), Robert J. and Theresa W. Ryan (J.L.K.), and the Noaber Foundation (J.L.K.). The previous IPF clinical trial was supported by the Claude D. Pepper Older Americans Independence Centers at WFSM (AG021332: J.N.J., S.B.K.), UTHSCA (AG044271: A.M.N.), and the Translational Geroscience Network.
Collapse
Affiliation(s)
- Yi Zhu
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, 200 First St., S.W., Rochester, MN 55905, USA,Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA,Corresponding authors at: Robert and Arlene Kogod Center on Aging, Mayo Clinic, 200 First St., S.W., Rochester, MN 55905, USA.
| | | | - Erin O. Wissler Gerdes
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, 200 First St., S.W., Rochester, MN 55905, USA
| | | | - Tamar Pirtskhalava
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, 200 First St., S.W., Rochester, MN 55905, USA
| | - Nino Giorgadze
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, 200 First St., S.W., Rochester, MN 55905, USA
| | - Utkarsh Tripathi
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, 200 First St., S.W., Rochester, MN 55905, USA
| | - Christina L. Inman
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, 200 First St., S.W., Rochester, MN 55905, USA
| | - Kurt O. Johnson
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, 200 First St., S.W., Rochester, MN 55905, USA
| | - Ailing Xue
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, 200 First St., S.W., Rochester, MN 55905, USA
| | - Allyson K. Palmer
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, 200 First St., S.W., Rochester, MN 55905, USA
| | - Tingjun Chen
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
| | - Kalli Schaefer
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, 200 First St., S.W., Rochester, MN 55905, USA
| | - Jamie N. Justice
- Sticht Center for Healthy Aging and Alzheimer's Prevention, Internal Medicine, Gerontology and Geriatric Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| | - Anoop M. Nambiar
- Division of Pulmonary Diseases and Critical Care Medicine, Department of Internal Medicine, University of Texas Health Sciences Center at San Antonio and South Texas Veterans Health Care System, San Antonio, TX 78229, USA
| | - Nicolas Musi
- Barshop Institute for Longevity and Aging Studies, Center for Healthy Aging, University of Texas Health Sciences Center at San Antonio and Geriatric Research, Education, and Clinical Center, South Texas Veterans Health Care System, San Antonio, TX 78229, USA
| | - Stephen B. Kritchevsky
- Sticht Center for Healthy Aging and Alzheimer's Prevention, Internal Medicine, Gerontology and Geriatric Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| | - Jun Chen
- Division of Computational Biology, Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN 55905, USA
| | - Sundeep Khosla
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, 200 First St., S.W., Rochester, MN 55905, USA,Division of Endocrinology, Department of Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Diana Jurk
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, 200 First St., S.W., Rochester, MN 55905, USA,Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA,Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
| | - Marissa J. Schafer
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, 200 First St., S.W., Rochester, MN 55905, USA,Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA
| | - Tamar Tchkonia
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, 200 First St., S.W., Rochester, MN 55905, USA,Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA
| | - James L. Kirkland
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, 200 First St., S.W., Rochester, MN 55905, USA,Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA,Division of General Internal Medicine, Department of Medicine, Mayo Clinic, Rochester, MN 55905, USA,Corresponding authors at: Robert and Arlene Kogod Center on Aging, Mayo Clinic, 200 First St., S.W., Rochester, MN 55905, USA.
| |
Collapse
|
278
|
Choi JUA, Kijas AW, Lauko J, Rowan AE. The Mechanosensory Role of Osteocytes and Implications for Bone Health and Disease States. Front Cell Dev Biol 2022; 9:770143. [PMID: 35265628 PMCID: PMC8900535 DOI: 10.3389/fcell.2021.770143] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 12/13/2021] [Indexed: 12/14/2022] Open
Abstract
Bone homeostasis is a dynamic equilibrium between bone-forming osteoblasts and bone-resorbing osteoclasts. This process is primarily controlled by the most abundant and mechanosensitive bone cells, osteocytes, that reside individually, within chambers of porous hydroxyapatite bone matrix. Recent studies have unveiled additional functional roles for osteocytes in directly contributing to local matrix regulation as well as systemic roles through endocrine functions by communicating with distant organs such as the kidney. Osteocyte function is governed largely by both biochemical signaling and the mechanical stimuli exerted on bone. Mechanical stimulation is required to maintain bone health whilst aging and reduced level of loading are known to result in bone loss. To date, both in vivo and in vitro approaches have been established to answer important questions such as the effect of mechanical stimuli, the mechanosensors involved, and the mechanosensitive signaling pathways in osteocytes. However, our understanding of osteocyte mechanotransduction has been limited due to the technical challenges of working with these cells since they are individually embedded within the hard hydroxyapatite bone matrix. This review highlights the current knowledge of the osteocyte functional role in maintaining bone health and the key regulatory pathways of these mechanosensitive cells. Finally, we elaborate on the current therapeutic opportunities offered by existing treatments and the potential for targeting osteocyte-directed signaling.
Collapse
Affiliation(s)
- Jung Un Ally Choi
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, Australia
| | - Amanda W Kijas
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, Australia
| | - Jan Lauko
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, Australia
| | - Alan E Rowan
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
279
|
Ebeling PR, Nguyen HH, Aleksova J, Vincent AJ, Wong P, Milat F. Secondary Osteoporosis. Endocr Rev 2022; 43:240-313. [PMID: 34476488 DOI: 10.1210/endrev/bnab028] [Citation(s) in RCA: 155] [Impact Index Per Article: 51.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Indexed: 02/07/2023]
Abstract
Osteoporosis is a global public health problem, with fractures contributing to significant morbidity and mortality. Although postmenopausal osteoporosis is most common, up to 30% of postmenopausal women, > 50% of premenopausal women, and between 50% and 80% of men have secondary osteoporosis. Exclusion of secondary causes is important, as treatment of such patients often commences by treating the underlying condition. These are varied but often neglected, ranging from endocrine to chronic inflammatory and genetic conditions. General screening is recommended for all patients with osteoporosis, with advanced investigations reserved for premenopausal women and men aged < 50 years, for older patients in whom classical risk factors for osteoporosis are absent, and for all patients with the lowest bone mass (Z-score ≤ -2). The response of secondary osteoporosis to conventional anti-osteoporosis therapy may be inadequate if the underlying condition is unrecognized and untreated. Bone densitometry, using dual-energy x-ray absorptiometry, may underestimate fracture risk in some chronic diseases, including glucocorticoid-induced osteoporosis, type 2 diabetes, and obesity, and may overestimate fracture risk in others (eg, Turner syndrome). FRAX and trabecular bone score may provide additional information regarding fracture risk in secondary osteoporosis, but their use is limited to adults aged ≥ 40 years and ≥ 50 years, respectively. In addition, FRAX requires adjustment in some chronic conditions, such as glucocorticoid use, type 2 diabetes, and HIV. In most conditions, evidence for antiresorptive or anabolic therapy is limited to increases in bone mass. Current osteoporosis management guidelines also neglect secondary osteoporosis and these existing evidence gaps are discussed.
Collapse
Affiliation(s)
- Peter R Ebeling
- Department of Medicine, School of Clinical Sciences, Monash University, Clayton, Victoria 3168, Australia.,Department of Endocrinology, Monash Health, Clayton, Victoria 3168, Australia
| | - Hanh H Nguyen
- Department of Medicine, School of Clinical Sciences, Monash University, Clayton, Victoria 3168, Australia.,Department of Endocrinology, Monash Health, Clayton, Victoria 3168, Australia.,Department of Endocrinology and Diabetes, Western Health, Victoria 3011, Australia
| | - Jasna Aleksova
- Department of Endocrinology, Monash Health, Clayton, Victoria 3168, Australia.,Hudson Institute of Medical Research, Clayton, Victoria 3168, Australia
| | - Amanda J Vincent
- Department of Endocrinology, Monash Health, Clayton, Victoria 3168, Australia.,Monash Centre for Health Research and Implementation, School of Public Health and Preventative Medicine, Monash University, Clayton, Victoria 3168, Australia
| | - Phillip Wong
- Department of Medicine, School of Clinical Sciences, Monash University, Clayton, Victoria 3168, Australia.,Department of Endocrinology, Monash Health, Clayton, Victoria 3168, Australia.,Hudson Institute of Medical Research, Clayton, Victoria 3168, Australia
| | - Frances Milat
- Department of Medicine, School of Clinical Sciences, Monash University, Clayton, Victoria 3168, Australia.,Department of Endocrinology, Monash Health, Clayton, Victoria 3168, Australia.,Hudson Institute of Medical Research, Clayton, Victoria 3168, Australia
| |
Collapse
|
280
|
Fibroblast growth factor-23 and subclinical markers of cardiac dysfunction: The coronary artery risk development in young adults (CARDIA) study. Am Heart J 2022; 245:10-18. [PMID: 34861237 PMCID: PMC9310562 DOI: 10.1016/j.ahj.2021.11.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 11/04/2021] [Accepted: 11/16/2021] [Indexed: 01/06/2023]
Abstract
BACKGROUND Elevated Fibroblast Growth Factor-23 (FGF23) levels have been associated with greater left ventricular mass (LVM) and heart failure. Whether higher FGF23 is associated with higher LVH prevalence and longitudinal changes in LVM and myocardial strain in middle-aged adults without cardiovascular disease (CVD) or chronic kidney disease (CKD) is unknown. METHODS We studied 3,113 adults without CVD at baseline participating in the Year 25 (2010-2011) follow-up exam of the Coronary Artery Risk Development in Young Adults (CARDIA) study. We studied the association of Year 25 c-terminal FGF23 concentrations with indexed LVM (LVMI=LVM/height2.7), LVH and myocardial strain as assessed by speckle tracking strain echocardiography. Among the 2,758 (88.6%) participants who returned for the Year 30 examination, we also investigated the association of Year 25 FGF23 with 5 Year change in LVMI, strain parameters and incident LVH. RESULTS The mean age was 50.0 (±3.6) years, 56.8% were female, 45.7% were Black and 6.4% had CKD. There was 6.0% LVH prevalence at Year 25. Mean 5 Year change in LVMI was 5.3 (±7.7) grams/meter. In multivariable models, FGF23 in the highest quartile was associated with greater odds of LVH at Year 25 compared to lower quartiles. [Odds Ratio 95% CI: 1.81 (1.28, 2.58)] with similar findings after exclusion of participants with CKD. There was no interaction between FGF23 and race (P = .18) or sex (P = .80). There was no association between FGF23 and global longitudinal strain. There was no association between FGF23 and 5 Year change in LVMI. There was no association between higher FGF23 and 5 year incident LVH. CONCLUSIONS In a middle-aged adult population without known CVD or CKD, higher FGF23 was associated with greater odds of LVH, but not with greater increases in LVM over time. Further study is needed to elucidate whether FGF23 is a risk marker for underlying LVH or a mechanism for increased LVM over time in younger and middle-aged adult populations without CKD.
Collapse
|
281
|
Damrath JG, Chen NX, Metzger CE, Srinivasan S, O'Neill K, Biruete A, Avin KG, Wallace JM, Allen MR, Moe SM. Non-Additive Effects of Combined NOX1/4 Inhibition and Calcimimetic Treatment on a Rat Model of Chronic Kidney Disease-Mineral and Bone Disorder (CKD-MBD). JBMR Plus 2022; 6:e10600. [PMID: 35309859 PMCID: PMC8914155 DOI: 10.1002/jbm4.10600] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 12/20/2021] [Accepted: 12/28/2021] [Indexed: 11/07/2022] Open
Abstract
Chronic kidney disease-mineral and bone disorder (CKD-MBD) increases cardiovascular calcification and skeletal fragility in part by increasing systemic oxidative stress and disrupting mineral homeostasis through secondary hyperparathyroidism. We hypothesized that treatments to reduce reactive oxygen species formation and reduce parathyroid hormone (PTH) levels would have additive beneficial effects to prevent cardiovascular calcification and deleterious bone architecture and mechanics before end-stage kidney disease. To test this hypothesis, we treated a naturally progressive model of CKD-MBD, the Cy/+ rat, beginning early in CKD with the NADPH oxidase (NOX1/4) inhibitor GKT-137831 (GKT), the preclinical analogue of the calcimimetic etelcalcetide, KP-2326 (KP), and their combination. The results demonstrated that CKD animals had elevated blood urea nitrogen, PTH, fibroblast growth factor 23 (FGF23), and phosphorus. Treatment with KP reduced PTH levels compared with CKD animals, whereas GKT treatment increased C-terminal FGF23 levels without altering intact FGF23. GKT treatment alone reduced aortic calcification and NOX4 expression but did not alter the oxidative stress marker 8-OHdG in the serum or aorta. KP treatment reduced aortic 8-OHdG and inhibited the ability for GKT to reduce aortic calcification. Treatments did not alter heart calcification or left ventricular mass. In the skeleton, CKD animals had reduced trabecular bone volume fraction and trabecular number with increased trabecular spacing that were not improved with either treatment. The cortical bone was not altered by CKD or by treatments at this early stage of CKD. These results suggest that GKT reduces aortic calcification while KP reduces aortic oxidative stress and reduces PTH, but the combination was not additive. © 2022 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- John G Damrath
- Weldon School of Biomedical EngineeringPurdue UniversityWest LafayetteINUSA
| | - Neal X Chen
- Division of Nephrology, Department of MedicineIndiana University School of MedicineIndianapolisINUSA
| | - Corinne E Metzger
- Department of Anatomy and Cell BiologyIndiana University School of MedicineIndianapolisINUSA
| | - Shruthi Srinivasan
- Division of Nephrology, Department of MedicineIndiana University School of MedicineIndianapolisINUSA
| | - Kalisha O'Neill
- Division of Nephrology, Department of MedicineIndiana University School of MedicineIndianapolisINUSA
| | - Annabel Biruete
- Division of Nephrology, Department of MedicineIndiana University School of MedicineIndianapolisINUSA
| | - Keith G Avin
- Division of Nephrology, Department of MedicineIndiana University School of MedicineIndianapolisINUSA
- Department of Physical TherapyIndiana University School of Health and Rehabilitation SciencesIndianapolisINUSA
| | - Joseph M Wallace
- Department of Biomedical EngineeringIndiana University‐Purdue University at IndianapolisIndianapolisINUSA
| | - Matthew R Allen
- Division of Nephrology, Department of MedicineIndiana University School of MedicineIndianapolisINUSA
- Department of Anatomy and Cell BiologyIndiana University School of MedicineIndianapolisINUSA
| | - Sharon M Moe
- Division of Nephrology, Department of MedicineIndiana University School of MedicineIndianapolisINUSA
- Department of Anatomy and Cell BiologyIndiana University School of MedicineIndianapolisINUSA
- Department of MedicineRoudebush Veterans Administration Medical CenterIndianapolisINUSA
| |
Collapse
|
282
|
Wang H, Lin Y, Zhang R, Chen Y, Ji W, Li S, Wang L, Tan R, Yuan J. Programmed Exercise Attenuates Familial Hypertrophic Cardiomyopathy in Transgenic E22K Mice via Inhibition of PKC-α/NFAT Pathway. Front Cardiovasc Med 2022; 9:808163. [PMID: 35265680 PMCID: PMC8899095 DOI: 10.3389/fcvm.2022.808163] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 01/24/2022] [Indexed: 12/12/2022] Open
Abstract
Familial hypertrophic cardiomyopathy (FHCM), an autosomal dominant disease, is caused by mutations in genes encoding cardiac sarcomeric proteins. E22K, a mutation in the myosin regulatory light chain sarcomere gene, is associated with the development of FHCM. However, the molecular mechanisms by which E22K mutation promotes septal hypertrophy are still elusive. The hypertrophic markers, including beta-myosin heavy chain, atrial natriuretic peptide and B-type natriuretic peptide, were upregulated, as detected by fluorescence quantitative PCR. The gene expression profiles were greatly altered in the left ventricle of E22K mutant mice. Among these genes, nuclear factor of activated T cells (NFAT) and protein kinase C-alpha (PKC-α) were upregulated, and their protein expression levels were also verified to be elevated. The fibrosis markers, such as phosphorylated Smad and transforming growth factor beta receptor, were also elevated in transgenic E22K mice. After receiving 6 weeks of procedural exercise training, the expression levels of PKC-α and NFAT were reversed in E22K mouse hearts. In addition, the expression levels of several fibrosis-related genes such as transforming growth factor beta receptor 1, Smad4, and alpha smooth muscle actin in E22K mouse hearts were also reversed. Genes that associated with cardiac remodeling such as myocyte enhancer factor 2C, extracellular matrix protein 2 and fibroblast growth factor 12 were reduced after exercising. Taken together, our results indicate that exercise can improve hypertrophy and fibrosis-related indices in transgenic E22K mice via PKC-α/NFAT pathway, which provide new insight into the prevention and treatment of familial hypertrophic cardiomyopathy.
Collapse
Affiliation(s)
- Haiying Wang
- Department of Physiology, Institute of Basic Medical College, Jining Medical University, Jining, China
| | - Yuedong Lin
- Cardiac Emergency Department, Affiliated Hospital of Jining Medical University, Jining, China
| | - Ran Zhang
- Institute of Basic Medical College, Jining Medical University, Jining, China
| | - Yafen Chen
- Institute of Basic Medical College, Jining Medical University, Jining, China
| | - Wei Ji
- Institute of Basic Medical College, Jining Medical University, Jining, China
| | - Shenwei Li
- Institute of Basic Medical College, Jining Medical University, Jining, China
| | - Li Wang
- School of Nursing, Medical College, Soochow University, Suzhou, China
- *Correspondence: Li Wang
| | - Rubin Tan
- Department of Physiology, Basic Medical School, Xuzhou Medical University, Xuzhou, China
- Rubin Tan
| | - Jinxiang Yuan
- The Collaborative Innovation Center, Jining Medical University, Jining, China
- Jinxiang Yuan
| |
Collapse
|
283
|
Takashi Y, Kawanami D. The Role of Bone-Derived Hormones in Glucose Metabolism, Diabetic Kidney Disease, and Cardiovascular Disorders. Int J Mol Sci 2022; 23:ijms23042376. [PMID: 35216490 PMCID: PMC8879859 DOI: 10.3390/ijms23042376] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 02/16/2022] [Accepted: 02/19/2022] [Indexed: 12/19/2022] Open
Abstract
Bone contributes to supporting the body, protecting the central nervous system and other organs, hematopoiesis, the regulation of mineral metabolism (mainly calcium and phosphate), and assists in respiration. Bone has many functions in the body. Recently, it was revealed that bone also works as an endocrine organ and secretes several systemic humoral factors, including fibroblast growth factor 23 (FGF23), osteocalcin (OC), sclerostin, and lipocalin 2. Bone can communicate with other organs via these hormones. In particular, it has been reported that these bone-derived hormones are involved in glucose metabolism and diabetic complications. Some functions of these bone-derived hormones can become useful biomarkers that predict the incidence of diabetes and the progression of diabetic complications. Furthermore, other functions are considered to be targets for the prevention or treatment of diabetes and its complications. As is well known, diabetes is now a worldwide health problem, and many efforts have been made to treat diabetes. Thus, further investigations of the endocrine system through bone-derived hormones may provide us with new perspectives on the prediction, prevention, and treatment of diabetes. In this review, we summarize the role of bone-derived hormones in glucose metabolism, diabetic kidney disease, and cardiovascular disorders.
Collapse
|
284
|
Yandrapalli S, Christy J, Malik A, Wats K, Harikrishnan P, Aronow W, Frishman W. Impact of Acute and Chronic Kidney Disease on Heart Failure Hospitalizations After Acute Myocardial Infarction. Am J Cardiol 2022; 165:1-11. [PMID: 34893301 DOI: 10.1016/j.amjcard.2021.10.041] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 10/15/2021] [Accepted: 10/19/2021] [Indexed: 11/28/2022]
Abstract
Very few studies evaluated the impact of acute kidney injury (AKI) and chronic kidney disease (CKD) on heart failure (HF) hospitalization risk following an acute myocardial infarction (AMI). For this retrospective cohort analysis, we identified adult AMI survivors from January to June 2014 from the United States Nationwide Readmissions Database. Outcomes were a 6-month HF, fatal HF, composite of HF during the AMI or a 6-month HF, and a composite of 6-month HF or death during a non-HF-related admission. We analyzed differences in outcomes across categories of patients without renal injury, AKI without CKD, stable CKD, AKI on CKD, and end-stage renal disease (ESRD). Of 237,549 AMI survivors, AKI was present in 13.8%, CKD in 16.5%, ESRD in 3.4%, and AKI on CKD in 7.7%. Patients with renal failure had lower coronary revascularization rates and higher in-hospital HF. A 6-month HF hospitalization occurred in 12,934 patients (5.4%). Compared with patients without renal failure (3.3%), 6-month HF admission rate was higher in patients with AKI on CKD (14.6%; odds ratio [OR] 1.99; 95% confidence interval [CI] 1.81 to 2.19), ESRD (11.2%; OR 1.57; 95% CI 1.36 to 1.81), stable CKD (10.7%; OR 1.72; 95% CI 1.56 to 1.88), and AKI (8.6%; OR 1.52; 95% CI 1.36 to 1.70). Results were generally homogenous in prespecified subgroups and for the other outcomes. In conclusion, 1 in 4 AMI survivors had either acute or chronic renal failure. The presence of any form of renal failure was associated with a substantially increased risk of 6-month HF hospitalizations and associated mortality with the highest risk associated with AKI on CKD.
Collapse
Affiliation(s)
- Srikanth Yandrapalli
- Division of Cardiology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts.
| | - John Christy
- Department of Internal Medicine, Kent Memorial Hospital and Warren Alpert Medical School of Brown University, Warwick, Rhode Island
| | - Aaqib Malik
- Department of Cardiology, Westchester Medical Center, Valhalla, NY
| | - Karan Wats
- Department of Cardiology, Westchester Medical Center, Valhalla, NY
| | | | - Wilbert Aronow
- Department of Cardiology, Westchester Medical Center, Valhalla, NY
| | - William Frishman
- Department of Medicine, Westchester Medical Center and New York Medical College, Valhalla, New York
| |
Collapse
|
285
|
Abstract
Almost 200 years ago, the first evidence described by Robert Bright (1836) showed the strong interaction between the kidneys and heart and, since then, the scientific community has dedicated itself to better understanding the mechanisms involved in the kidney-heart relationship, known in recent decades as cardiorenal syndrome (CRS). This syndrome includes a wide clinical variety that affects the kidneys and heart, in an acute or chronic manner. Moreover, it is well established in the literature that the immune system, the sympathetic nervous system, the renin-angiotensin-aldosterone, and the oxidative stress actively play a strong role in the cellular and molecular processes present in CRS. More recently, uremic molecules and epigenetic factors have been also shown to be key mediators in the development of syndrome. The present review intends to present the state of the art regarding CRS and to show the paths known, until now, in the long road between the kidneys and heart.
Collapse
|
286
|
Xue J, Thomas L, Murali SK, Levi M, Fenton RA, Dominguez Rieg JA, Rieg T. Enhanced phosphate absorption in intestinal epithelial cell-specific NHE3 knockout mice. Acta Physiol (Oxf) 2022; 234:e13756. [PMID: 34978760 PMCID: PMC9286053 DOI: 10.1111/apha.13756] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 11/16/2021] [Accepted: 01/01/2022] [Indexed: 12/11/2022]
Abstract
Aims The kidneys play a major role in maintaining Pi homeostasis. Patients in later stages of CKD develop hyperphosphatemia. One novel treatment option is tenapanor, an intestinal‐specific NHE3 inhibitor. To gain mechanistic insight into the role of intestinal NHE3 in Pi homeostasis, we studied tamoxifen‐inducible intestinal epithelial cell‐specific NHE3 knockout (NHE3IEC‐KO) mice. Methods Mice underwent dietary Pi challenges, and hormones as well as urinary/plasma Pi were determined. Intestinal 33P uptake studies were conducted in vivo to compare the effects of tenapanor and NHE3IEC‐KO. Ex vivo Pi transport was measured in everted gut sacs and brush border membrane vesicles. Intestinal and renal protein expression of Pi transporters were determined. Results On the control diet, NHE3IEC‐KO mice had similar Pi homeostasis, but a ~25% reduction in FGF23 compared with control mice. Everted gut sacs and brush border membrane vesicles showed enhanced Pi uptake associated with increased Npt2b expression in NHE3IEC‐KO mice. Acute oral Pi loading resulted in higher plasma Pi in NHE3IEC‐KO mice. Tenapanor inhibited intestinal 33P uptake acutely but then led to hyper‐absorption at later time points compared to vehicle. In response to high dietary Pi, plasma Pi and FGF23 increased to higher levels in NHE3IEC‐KO mice which was associated with greater Npt2b expression. Reduced renal Npt2c and a trend for reduced Npt2a expression were unable to correct for higher plasma Pi. Conclusion Intestinal NHE3 has a significant contribution to Pi homeostasis. In contrast to effects described for tenapanor on Pi homeostasis, NHE3IEC‐KO mice show enhanced, rather than reduced, intestinal Pi uptake.
Collapse
Affiliation(s)
- Jianxiang Xue
- Department of Molecular Pharmacology and Physiology Morsani College of Medicine University of South Florida Tampa Florida USA
| | - Linto Thomas
- Department of Molecular Pharmacology and Physiology Morsani College of Medicine University of South Florida Tampa Florida USA
| | | | - Moshe Levi
- Department of Biochemistry and Molecular & Cellular Biology Georgetown University Washington District of Columbia USA
| | | | - Jessica A. Dominguez Rieg
- Department of Molecular Pharmacology and Physiology Morsani College of Medicine University of South Florida Tampa Florida USA
- James A. Haley Veterans' Hospital Tampa Florida USA
| | - Timo Rieg
- Department of Molecular Pharmacology and Physiology Morsani College of Medicine University of South Florida Tampa Florida USA
- James A. Haley Veterans' Hospital Tampa Florida USA
| |
Collapse
|
287
|
Ferreira AC, Cotovio P, Aires I, Mendes M, Navarro D, Silva C, Caeiro F, Salvador R, Correia B, Cabral G, Nolasco F, Ferreira A. The Role of Bone Volume, FGF23 and Sclerostin in Calcifications and Mortality; a Cohort Study in CKD Stage 5 Patients. Calcif Tissue Int 2022; 110:215-224. [PMID: 34477944 DOI: 10.1007/s00223-021-00910-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 08/25/2021] [Indexed: 10/20/2022]
Abstract
Chronic kidney disease-mineral and bone disorder has been associated with increasing morbid-mortality. The aim of this study was to determine the prevalence and phenotype of bone disease before transplantation and to correlate FGF23 and sclerostin levels with bone histomorphometry, and study possible associations between FGF23, sclerostin, and bone histomorphometry with cardiovascular disease and mortality. We performed a cross-sectional cohort study of a sample of 84 patients submitted to renal transplant, which were prospectively followed for 12 months. Demographic, clinical, and echocardiographic data were collected, laboratory evaluation, bone biopsy, and X-ray of the pelvis and hands were performed. Patient and graft survival were recorded. We diagnosed low bone turnover in 16 patients (19.5%); high bone turnover in 22 patients (26.8%); osteomalacia in 1 patient (1.2%), and mixed renal osteodystrophy in 3 patients (3.7%). At the end of 12 months, 5 patients had graft failure (5.9%), 4 had a cardiovascular event (4.8%), and 4 died. Age was associated with low remodeling disease, whereas high BALP and phosphorus and low sclerostin with high turnover disease. Sclerostin was a risk factor for isolated low bone volume. High BALP, low phosphorus, and low FGF23 were risk factors for abnormal mineralization. FGF23 appears as an independent factor for severity of vascular calcifications and for cardiovascular events, whereas the presence of valve calcifications was associated with low volume and with turnover deviations. Sclerostin was associated a higher HR for death. Sclerostin and FGF23 seemed to provide higher cardiovascular risk, as well as low bone volume, which associated with extra-osseous calcifications.
Collapse
Affiliation(s)
- Ana Carina Ferreira
- Nephrology Department, Hospital Curry Cabral|CHULC, Rua da Beneficência nº8, 1050-099, Lisbon, Portugal.
- Nova Medical School, Lisbon, Portugal.
| | - Patrícia Cotovio
- Nephrology Department, Hospital Curry Cabral|CHULC, Rua da Beneficência nº8, 1050-099, Lisbon, Portugal
| | - Inês Aires
- Nephrology Department, Hospital Curry Cabral|CHULC, Rua da Beneficência nº8, 1050-099, Lisbon, Portugal
- Nova Medical School, Lisbon, Portugal
| | - Marco Mendes
- Nephrology Department, Hospital Curry Cabral|CHULC, Rua da Beneficência nº8, 1050-099, Lisbon, Portugal
| | - David Navarro
- Nephrology Department, Hospital Curry Cabral|CHULC, Rua da Beneficência nº8, 1050-099, Lisbon, Portugal
| | - Cecília Silva
- Nephrology Department, Hospital Curry Cabral|CHULC, Rua da Beneficência nº8, 1050-099, Lisbon, Portugal
| | - Fernando Caeiro
- Nephrology Department, Hospital Curry Cabral|CHULC, Rua da Beneficência nº8, 1050-099, Lisbon, Portugal
| | - Rute Salvador
- CEDOC, Tissue Repair and Inflammation Lab, Lisbon, Portugal
| | - Bruna Correia
- CEDOC, Tissue Repair and Inflammation Lab, Lisbon, Portugal
| | | | - Fernando Nolasco
- Nephrology Department, Hospital Curry Cabral|CHULC, Rua da Beneficência nº8, 1050-099, Lisbon, Portugal
- Nova Medical School, Lisbon, Portugal
| | - Aníbal Ferreira
- Nephrology Department, Hospital Curry Cabral|CHULC, Rua da Beneficência nº8, 1050-099, Lisbon, Portugal
- Nova Medical School, Lisbon, Portugal
| |
Collapse
|
288
|
Okamoto K, Fujii H, Watanabe K, Goto S, Kono K, Nishi S. Changes of FGF23 and the Renin-Angiotensin-System in Male Mouse Models of Chronic Kidney Disease and Cardiac Hypertrophy. J Endocr Soc 2022; 6:bvab187. [PMID: 35047715 PMCID: PMC8758403 DOI: 10.1210/jendso/bvab187] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Indexed: 11/19/2022] Open
Abstract
Serum fibroblast growth factor 23 (FGF23) levels and the renin-angiotensin-aldosterone system (RAAS) are elevated in chronic kidney disease (CKD) patients, and their association with left ventricular hypertrophy (LVH) has been reported. However, whether the FGF23 elevation is the cause or result of LVH remains unclear. At 10 weeks, male C57BL/6J mice were divided into 4 groups: sham, CKD (5/6 nephrectomy), LVH (transaortic constriction), and CKD/LVH group. At 16 weeks, the mice were euthanized, and blood and urine, cardiac expressions of FGF23 and RAAS-related factors, and cardiac histological analyses were performed. Heart weight, serum FGF23 levels, and cardiac expression of FGF23 and RAAS-related factors, except for angiotensin-converting enzyme 2, were more increased in the CKD/LVH group compared to the other groups. A significant correlation between LVH and cardiac expressions of FGF23 and RAAS-related factors was observed. Furthermore, there was a significantly close correlation of the cardiac expression of FGF23 with LVH and RAAS-related factors. The coexisting CKD and LVH increased serum and cardiac FGF23 and RAAS-related factors, and there was a significant correlation between them. A close correlation of cardiac, but not serum FGF23, with LVH and RAAS suggests that local FGF23 levels may be associated with LVH and RAAS activation.
Collapse
Affiliation(s)
- Kohei Okamoto
- Division of Nephrology and Kidney Center, Kobe University Graduate School of Medicine, Kobe, Hyogo 650-0017, Japan
| | - Hideki Fujii
- Division of Nephrology and Kidney Center, Kobe University Graduate School of Medicine, Kobe, Hyogo 650-0017, Japan
| | - Kentaro Watanabe
- Division of Nephrology and Kidney Center, Kobe University Graduate School of Medicine, Kobe, Hyogo 650-0017, Japan
| | - Shunsuke Goto
- Division of Nephrology and Kidney Center, Kobe University Graduate School of Medicine, Kobe, Hyogo 650-0017, Japan
| | - Keiji Kono
- Division of Nephrology and Kidney Center, Kobe University Graduate School of Medicine, Kobe, Hyogo 650-0017, Japan
| | - Shinichi Nishi
- Division of Nephrology and Kidney Center, Kobe University Graduate School of Medicine, Kobe, Hyogo 650-0017, Japan
| |
Collapse
|
289
|
Emmens JE, de Borst MH, Boorsma EM, Damman K, Navis G, van Veldhuisen DJ, Dickstein K, Anker SD, Lang CC, Filippatos G, Metra M, Samani NJ, Ponikowski P, Ng LL, Voors AA, ter Maaten JM. Assessment of Proximal Tubular Function by Tubular Maximum Phosphate Reabsorption Capacity in Heart Failure. Clin J Am Soc Nephrol 2022; 17:228-239. [PMID: 35131929 PMCID: PMC8823926 DOI: 10.2215/cjn.03720321] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 11/23/2021] [Indexed: 02/03/2023]
Abstract
BACKGROUND AND OBJECTIVES The estimated glomerular filtration rate (eGFR) is a crucial parameter in heart failure. Much less is known about the importance of tubular function. We addressed the effect of tubular maximum phosphate reabsorption capacity (TmP/GFR), a parameter of proximal tubular function, in patients with heart failure. DESIGN, SETTING, PARTICIPANTS, & MEASUREMENTS We established TmP/GFR (Bijvoet formula) in 2085 patients with heart failure and studied its association with deterioration of kidney function (>25% eGFR decrease from baseline) and plasma neutrophil gelatinase-associated lipocalin (NGAL) doubling (baseline to 9 months) using logistic regression analysis and clinical outcomes using Cox proportional hazards regression. Additionally, we evaluated the effect of sodium-glucose transport protein 2 (SGLT2) inhibition by empagliflozin on tubular maximum phosphate reabsorption capacity in 78 patients with acute heart failure using analysis of covariance. RESULTS Low TmP/GFR (<0.80 mmol/L) was observed in 1392 (67%) and 21 (27%) patients. Patients with lower TmP/GFR had more advanced heart failure, lower eGFR, and higher levels of tubular damage markers. The main determinant of lower TmP/GFR was higher fractional excretion of urea (P<0.001). Lower TmP/GFR was independently associated with higher risk of plasma NGAL doubling (odds ratio, 2.20; 95% confidence interval, 1.05 to 4.66; P=0.04) but not with deterioration of kidney function. Lower TmP/GFR was associated with higher risk of all-cause mortality (hazard ratio, 2.80; 95% confidence interval, 1.37 to 5.73; P=0.005), heart failure hospitalization (hazard ratio, 2.29; 95% confidence interval, 1.08 to 4.88; P=0.03), and their combination (hazard ratio, 1.89; 95% confidence interval, 1.07 to 3.36; P=0.03) after multivariable adjustment. Empagliflozin significantly increased TmP/GFR compared with placebo after 1 day (P=0.004) but not after adjustment for eGFR change. CONCLUSIONS TmP/GFR, a measure of proximal tubular function, is frequently reduced in heart failure, especially in patients with more advanced heart failure. Lower TmP/GFR is furthermore associated with future risk of plasma NGAL doubling and worse clinical outcomes, independent of glomerular function.
Collapse
Affiliation(s)
- Johanna E. Emmens
- Department of Cardiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Martin H. de Borst
- Department of Internal Medicine, Division of Nephrology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Eva M. Boorsma
- Department of Cardiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Kevin Damman
- Department of Cardiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Gerjan Navis
- Department of Internal Medicine, Division of Nephrology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Dirk J. van Veldhuisen
- Department of Cardiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Kenneth Dickstein
- Department of Clinical Sciences, University of Bergen, Bergen, Norway,Stavanger University Hospital, Stavanger, Norway
| | - Stefan D. Anker
- Department of Cardiology and Berlin-Brandenburg Center for Regenerative Therapies, German Centre for Cardiovascular Research Partner Site Berlin, Charité Universitätsmedizin Berlin, Berlin, Germany,Department of Cardiology and Pneumology, University Medical Center Goettingen, Goettingen, Germany
| | - Chim C. Lang
- School of Medicine Centre for Cardiovascular and Lung Biology, Division of Molecular and Clinical Medicine, University of Dundee, Dundee, United Kingdom
| | - Gerasimos Filippatos
- Department of Cardiology, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Marco Metra
- Institute of Cardiology, Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, Brescia, Italy
| | - Nilesh J. Samani
- Department of Cardiovascular Sciences, University of Leicester, Leicester, United Kingdom,National Institute for Health Research, Leicester Biomedical Research Centre, Glenfield Hospital, Leicester, United Kingdom
| | - Piotr Ponikowski
- Department of Heart Diseases, Wroclaw Medical University, Wroclaw, Poland,Cardiology Department, Military Hospital, Wroclaw, Poland
| | - Leong L. Ng
- Department of Cardiovascular Sciences, University of Leicester, Leicester, United Kingdom,National Institute for Health Research, Leicester Biomedical Research Centre, Glenfield Hospital, Leicester, United Kingdom
| | - Adriaan A. Voors
- Department of Cardiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Jozine M. ter Maaten
- Department of Cardiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|
290
|
Doshi SM, Wish JB. Past, Present, and Future of Phosphate Management. Kidney Int Rep 2022; 7:688-698. [PMID: 35497793 PMCID: PMC9039476 DOI: 10.1016/j.ekir.2022.01.1055] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 01/12/2022] [Accepted: 01/17/2022] [Indexed: 11/20/2022] Open
Abstract
Cardiovascular (CV) disease (CVD) accounts for >50% of deaths with known causes in patients on dialysis. Elevated serum phosphorus levels are an important nontraditional risk factor for bone mineral disease and CVD in patients with chronic kidney disease (CKD). Given that phosphorus concentrations drive other disorders associated with increased CV risk (e.g., endothelial dysfunction, vascular calcification, fibroblast growth factor-23, parathyroid hormone), phosphate is a logical target to improve CV health. Phosphate binders are the only pharmacologic treatment approved for hyperphosphatemia. Although their safety has improved since inception, the mechanism of action leads to characteristics that make ingestion difficult and unpleasant; large pill size, objectionable taste, and multiple pills required for each meal and snack make phosphate binders a burden. Side effects, especially those affecting the gastrointestinal (GI) system, are common with binders, often leading to treatment discontinuation. The presence of “hidden” phosphates in processed foods and certain medications makes phosphate management even more challenging. Owing to these significant issues, most patients on dialysis are not consistently achieving and maintaining target phosphorus concentrations of <5.5 mg/dl, let alone more normal levels of <4.5 mg/dl, indicating novel approaches to improve phosphate management and CV health are needed. Several new nonbinder therapies that target intestinal phosphate absorption pathways have been developed. These include EOS789, which acts on the transcellular pathway, and tenapanor, which targets the dominant paracellular pathway. As observational evidence has established a strong association between phosphorus concentration and clinical outcomes, such as mortality, phosphate is an important target for improving the health of patients with CKD and end-stage kidney disease (ESKD).
Collapse
|
291
|
Granda ML, Kestenbaum B. A Heartwarming Role of the Proximal Tubules. Clin J Am Soc Nephrol 2022; 17:182-183. [PMID: 35131926 PMCID: PMC8823941 DOI: 10.2215/cjn.16241221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Michael L. Granda
- Division of Nephrology, Kidney Research Institute, Seattle, Washington
| | - Bryan Kestenbaum
- Division of Nephrology, Kidney Research Institute, Seattle, Washington
| |
Collapse
|
292
|
Meyre PB, Aeschbacher S, Blum S, Voellmin G, Kastner PM, Hennings E, Kaufmann BA, Kühne M, Osswald S, Conen D. Biomarkers associated with rhythm status after cardioversion in patients with atrial fibrillation. Sci Rep 2022; 12:1680. [PMID: 35102265 PMCID: PMC8803959 DOI: 10.1038/s41598-022-05769-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 01/13/2022] [Indexed: 01/13/2023] Open
Abstract
Biomarkers may help to improve our knowledge about the complex pathophysiology of atrial fibrillation (AF). In this study we sought to identify significant changes in biomarkers and clinical measures in patients with and without AF recurrence after electrical cardioversion. We measured 21 conventional and new biomarkers before and 30 days after electrical cardioversion and assessed the associations of changes in biomarker levels with rhythm status at follow-up. Significant between-group changes were observed for bone morphogenetic protein 10 (BMP10), N-terminal pro-B-type natriuretic peptide (NT-proBNP) and total bilirubin. Their respective changes were - 10.4%, - 62.0% and - 25.6% in patients with sinus rhythm, and 3.1%, 1.1% and - 9.4% in patients with recurrent AF, for a between-group difference of - 13.5% (95% confidence interval [CI] - 19.3% to - 7.6%; P < 0.001), - 63.1% (95% CI - 76.6% to - 49.6%; P < 0.001) and - 16.3% (95% CI - 27.9% to - 4.7%; P = 0.007). In multivariable models, the reductions of BMP10 and NT-proBNP were significantly associated with follow-up rhythm status (β coefficient per 1 - SD decrease, - 3.85; 95% CI - 6.34 to - 1.35; P = 0.003 for BMP10 and - 5.84; 95% CI - 10.22 to - 1.47; P = 0.009 for NT-proBNP. In conclusion, changes in BMP10 und NT-proBNP levels were independently associated with rhythm status after cardioversion, suggesting that these markers may be dependent on the actual heart rhythm.
Collapse
Affiliation(s)
- Pascal B Meyre
- Division of Cardiology, Department of Medicine, University Hospital Basel, Basel, Switzerland.
- Cardiovascular Research Institute Basel, University Hospital Basel, Spitalstrasse 2, 4031, Basel, Switzerland.
| | - Stefanie Aeschbacher
- Division of Cardiology, Department of Medicine, University Hospital Basel, Basel, Switzerland
- Cardiovascular Research Institute Basel, University Hospital Basel, Spitalstrasse 2, 4031, Basel, Switzerland
| | - Steffen Blum
- Division of Cardiology, Department of Medicine, University Hospital Basel, Basel, Switzerland
- Cardiovascular Research Institute Basel, University Hospital Basel, Spitalstrasse 2, 4031, Basel, Switzerland
| | - Gian Voellmin
- Division of Cardiology, Department of Medicine, University Hospital Basel, Basel, Switzerland
- Cardiovascular Research Institute Basel, University Hospital Basel, Spitalstrasse 2, 4031, Basel, Switzerland
| | | | - Elisa Hennings
- Division of Cardiology, Department of Medicine, University Hospital Basel, Basel, Switzerland
- Cardiovascular Research Institute Basel, University Hospital Basel, Spitalstrasse 2, 4031, Basel, Switzerland
| | - Beat A Kaufmann
- Division of Cardiology, Department of Medicine, University Hospital Basel, Basel, Switzerland
- Cardiovascular Research Institute Basel, University Hospital Basel, Spitalstrasse 2, 4031, Basel, Switzerland
| | - Michael Kühne
- Division of Cardiology, Department of Medicine, University Hospital Basel, Basel, Switzerland
- Cardiovascular Research Institute Basel, University Hospital Basel, Spitalstrasse 2, 4031, Basel, Switzerland
| | - Stefan Osswald
- Division of Cardiology, Department of Medicine, University Hospital Basel, Basel, Switzerland
- Cardiovascular Research Institute Basel, University Hospital Basel, Spitalstrasse 2, 4031, Basel, Switzerland
| | - David Conen
- Population Health Research Institute, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
293
|
Mawhin MA, Bright RG, Fourre JD, Vloumidi EI, Tomlinson J, Sardini A, Pusey CD, Woollard KJ. Chronic kidney disease mediates cardiac dysfunction associated with increased resident cardiac macrophages. BMC Nephrol 2022; 23:47. [PMID: 35090403 PMCID: PMC8796634 DOI: 10.1186/s12882-021-02593-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 11/01/2021] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND The leading cause of death in end-stage kidney disease is related to cardiovascular disease. Macrophages are known to be involved in both chronic kidney disease (CKD) and heart failure, however their role in the development of cardiorenal syndrome is less clear. We thus sought to investigate the role of macrophages in uremic cardiac disease. METHODS We assessed cardiac response in two experimental models of CKD and tested macrophage and chemokine implication in monocytopenic CCR2-/- and anti-CXCL10 treated mice. We quantified CXCL10 in human CKD plasma and tested the response of human iPSC-derived cardiomyocytes and primary cardiac fibroblasts to serum from CKD donors. RESULTS We found that reduced kidney function resulted in the expansion of cardiac macrophages, in particular through local proliferation of resident populations. Influx of circulating monocytes contributed to this increase. We identified CXCL10 as a crucial factor for cardiac macrophage expansion in uremic disease. In humans, we found increased plasma CXCL10 concentrations in advanced CKD, and identified the production of CXCL10 in cardiomyocytes and cardiac fibroblasts. CONCLUSIONS This study provides new insight into the role of the innate immune system in uremic cardiomyopathy.
Collapse
Affiliation(s)
- M A Mawhin
- Centre for Inflammatory Disease, Department of Immunology and Inflammation, Imperial College London, London, UK.
| | - R G Bright
- Centre for Inflammatory Disease, Department of Immunology and Inflammation, Imperial College London, London, UK
| | - J D Fourre
- Faculty of Medicine, National Heart & Lung Institute, Imperial College London, London, UK
| | - E I Vloumidi
- MRC Laboratory of Molecular Biology, Imperial College London, London, UK
| | - J Tomlinson
- Renal Directorate, Imperial College Healthcare NHS Trust, London, UK
| | - A Sardini
- MRC London Institute of Medical Sciences, Imperial College London, London, UK
| | - C D Pusey
- Centre for Inflammatory Disease, Department of Immunology and Inflammation, Imperial College London, London, UK
| | - K J Woollard
- Centre for Inflammatory Disease, Department of Immunology and Inflammation, Imperial College London, London, UK.
| |
Collapse
|
294
|
The regulation of FGF23 under physiological and pathophysiological conditions. Pflugers Arch 2022; 474:281-292. [PMID: 35084563 PMCID: PMC8837506 DOI: 10.1007/s00424-022-02668-w] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/18/2022] [Accepted: 01/19/2022] [Indexed: 12/18/2022]
Abstract
Fibroblast growth factor 23 (FGF23) is an important bone hormone that regulates phosphate homeostasis in the kidney along with active vitamin D (1,25(OH)2D3) and parathyroid hormone (PTH). Endocrine effects of FGF23 depend, at least in part, on αKlotho functioning as a co-receptor whereas further paracrine effects in other tissues are αKlotho-independent. Regulation of FGF23 production is complex under both, physiological and pathophysiological conditions. Physiological regulators of FGF23 include, but are not limited to, 1,25(OH)2D3, PTH, dietary phosphorus intake, and further intracellular and extracellular factors, kinases, cytokines, and hormones. Moreover, several acute and chronic diseases including chronic kidney disease (CKD) or further cardiovascular disorders are characterized by early rises in the plasma FGF23 level pointing to further mechanisms effective in the regulation of FGF23 under pathophysiological conditions. Therefore, FGF23 also serves as a prognostic marker in several diseases. Our review aims to comprehensively summarize the regulation of FGF23 in health and disease.
Collapse
|
295
|
Fibroblast Growth Factor 23 and Outcome Prediction in Patients with Acute Myocardial Infarction. J Clin Med 2022; 11:jcm11030601. [PMID: 35160052 PMCID: PMC8837072 DOI: 10.3390/jcm11030601] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 01/17/2022] [Accepted: 01/21/2022] [Indexed: 02/04/2023] Open
Abstract
(1) Background: Fibroblast growth factor 23 (FGF23) is associated with mortality in patients with heart failure (HF); however, less is known about mortality associations in patients with myocardial infarction (MI). (2) Methods: FGF23 was assessed in 180 patients with acute MI, 99 of whom presented with concomitant acute HF. Patients were followed up for one year, and outcome estimates by FGF23 were compared to GRACE score estimates. (3) Results: Log-transformed serum levels of intact FGF23 (logFGF23) did not differ between MI patients with and without HF, and no difference in logFGF23 was observed between 14 MI patients who died and those who survived. However, when only MI patients with concomitant HF were considered, logFGF23 was significantly higher among non-survivors compared to that in survivors. While logFGF23 was not associated with the outcome in the entire cohort, logFGF23 was fairly predictive for one-year mortality in patients with concomitant HF (AUC 0.78; 95%CI 0.61–0.95), where it outperformed GRACE score estimates (AUC 0.70; 95%CI 0.46–0.94). (4) Conclusions: FGF23 was associated with one-year mortality only in MI patients who concomitantly presented with HF, surpassing the predictive ability of GRACE score estimates. No associations were observed in patients without HF despite similar FGF23 levels at admission. Further studies are warranted to investigate whether FGF23 is causal for dismal outcome of HF.
Collapse
|
296
|
Navarro-García JA, Salguero-Bodes R, González-Lafuente L, Martín-Nunes L, Rodríguez-Sánchez E, Bada-Bosch T, Hernández E, Mérida-Herrero E, Praga M, Solís J, Arribas F, Bueno H, Kuro-O M, Fernández-Velasco M, Ruilope LM, Delgado C, Ruiz-Hurtado G. The anti-aging factor Klotho protects against acquired long QT syndrome induced by uremia and promoted by fibroblast growth factor 23. BMC Med 2022; 20:14. [PMID: 35042527 PMCID: PMC8767669 DOI: 10.1186/s12916-021-02209-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 12/06/2021] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Chronic kidney disease (CKD) is associated with increased propensity for arrhythmias. In this context, ventricular repolarization alterations have been shown to predispose to fatal arrhythmias and sudden cardiac death. Between mineral bone disturbances in CKD patients, increased fibroblast growth factor (FGF) 23 and decreased Klotho are emerging as important effectors of cardiovascular disease. However, the relationship between imbalanced FGF23-Klotho axis and the development of cardiac arrhythmias in CKD remains unknown. METHODS We carried out a translational approach to study the relationship between the FGF23-Klotho signaling axis and acquired long QT syndrome in CKD-associated uremia. FGF23 levels and cardiac repolarization dynamics were analyzed in patients with dialysis-dependent CKD and in uremic mouse models of 5/6 nephrectomy (Nfx) and Klotho deficiency (hypomorphism), which show very high systemic FGF23 levels. RESULTS Patients in the top quartile of FGF23 levels had a higher occurrence of very long QT intervals (> 490 ms) than peers in the lowest quartile. Experimentally, FGF23 induced QT prolongation in healthy mice. Similarly, alterations in cardiac repolarization and QT prolongation were observed in Nfx mice and in Klotho hypomorphic mice. QT prolongation in Nfx mice was explained by a significant decrease in the fast transient outward potassium (K+) current (Itof), caused by the downregulation of K+ channel 4.2 subunit (Kv4.2) expression. Kv4.2 expression was also significantly reduced in ventricular cardiomyocytes exposed to FGF23. Enhancing Klotho availability prevented both long QT prolongation and reduced Itof current. Likewise, administration of recombinant Klotho blocked the downregulation of Kv4.2 expression in Nfx mice and in FGF23-exposed cardiomyocytes. CONCLUSION The FGF23-Klotho axis emerges as a new therapeutic target to prevent acquired long QT syndrome in uremia by minimizing the predisposition to potentially fatal ventricular arrhythmias and sudden cardiac death in patients with CKD.
Collapse
Affiliation(s)
- José Alberto Navarro-García
- Cardiorenal Translational Laboratory, Institute of Research imas12, Hospital Universitario 12 de Octubre, Avenida de Córdoba s/n, 28041, Madrid, Spain
| | - Rafael Salguero-Bodes
- Cardiology Department, Hospital Universitario 12 de Octubre, Madrid, Spain.,Facultad de Medicina, Universidad Complutense de Madrid, Madrid, Spain.,CIBER-CV, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Laura González-Lafuente
- Cardiorenal Translational Laboratory, Institute of Research imas12, Hospital Universitario 12 de Octubre, Avenida de Córdoba s/n, 28041, Madrid, Spain
| | - Laura Martín-Nunes
- Biomedical Research Institute Alberto Sols (CSIC-UAM)/CIBER-CV, Arturo Duperier 4, 28029, Madrid, Spain
| | - Elena Rodríguez-Sánchez
- Cardiorenal Translational Laboratory, Institute of Research imas12, Hospital Universitario 12 de Octubre, Avenida de Córdoba s/n, 28041, Madrid, Spain
| | - Teresa Bada-Bosch
- Service of Nephrology, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Eduardo Hernández
- Service of Nephrology, Hospital Universitario 12 de Octubre, Madrid, Spain
| | | | - Manuel Praga
- Service of Nephrology, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Jorge Solís
- Cardiology Department, Hospital Universitario 12 de Octubre, Madrid, Spain.,CIBER-CV, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Fernando Arribas
- Cardiology Department, Hospital Universitario 12 de Octubre, Madrid, Spain.,CIBER-CV, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Héctor Bueno
- Cardiology Department, Hospital Universitario 12 de Octubre, Madrid, Spain.,Facultad de Medicina, Universidad Complutense de Madrid, Madrid, Spain.,CIBER-CV, Hospital Universitario 12 de Octubre, Madrid, Spain.,Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Makoto Kuro-O
- Division of Anti-aging Medicine, Centre for Molecular Medicine, Jichi Medical University, Shimotsuke, Tochigi, Japan
| | - María Fernández-Velasco
- IdiPAZ Institute for Health Research/Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares, CIBER-CV, Madrid, Spain
| | - Luis Miguel Ruilope
- Cardiorenal Translational Laboratory, Institute of Research imas12, Hospital Universitario 12 de Octubre, Avenida de Córdoba s/n, 28041, Madrid, Spain.,CIBER-CV, Hospital Universitario 12 de Octubre, Madrid, Spain.,European University of Madrid, Madrid, Spain
| | - Carmen Delgado
- Biomedical Research Institute Alberto Sols (CSIC-UAM)/CIBER-CV, Arturo Duperier 4, 28029, Madrid, Spain.
| | - Gema Ruiz-Hurtado
- Cardiorenal Translational Laboratory, Institute of Research imas12, Hospital Universitario 12 de Octubre, Avenida de Córdoba s/n, 28041, Madrid, Spain. .,CIBER-CV, Hospital Universitario 12 de Octubre, Madrid, Spain.
| |
Collapse
|
297
|
Eitner F, Richter B, Schwänen S, Szaroszyk M, Vogt I, Grund A, Thum T, Heineke J, Haffner D, Leifheit-Nestler M. Comprehensive Expression Analysis of Cardiac Fibroblast Growth Factor 23 in Health and Pressure-induced Cardiac Hypertrophy. Front Cell Dev Biol 2022; 9:791479. [PMID: 35118076 PMCID: PMC8804498 DOI: 10.3389/fcell.2021.791479] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 12/13/2021] [Indexed: 12/18/2022] Open
Abstract
Enhanced fibroblast growth factor 23 (FGF23) is associated with left ventricular hypertrophy (LVH) in patients with chronic kidney and heart disease. Experimentally, FGF23 directly induces cardiac hypertrophy and vice versa cardiac hypertrophy stimulates FGF23. Besides the bone, FGF23 is expressed by cardiac myocytes, whereas its synthesis in other cardiac cell types and its paracrine role in the heart in health and disease is unknown. By co-immunofluorescence staining of heart tissue of wild-type mice, we show that Fgf23 is expressed by cardiac myocytes, fibroblasts and endothelial cells. Cardiac Fgf23 mRNA and protein level increases from neonatal to six months of age, whereas no age-related changes in bone Fgf23 mRNA expression were noted. Cardiac myocyte-specific disruption of Fgf23 using Cre-LoxP system (Fgf23fl/fl/cre+) caused enhanced mortality, but no differences in cardiac function or structure. Although pressure overload-induced cardiac hypertrophy induced by transverse aortic constriction (TAC) resulted in a slightly worse phenotype with a more severe reduced ejection fraction, higher end-systolic volume and more enlarged systolic LV diameter in Fgf23fl/fl/cre+ mice compared to controls, this was not translated to any worse cellular hypertrophy, fibrosis or chamber remodeling. TAC induced Fgf23 mRNA expression in whole cardiac tissue in both genotypes. Interestingly, co-immunofluorescence staining revealed enhanced Fgf23 synthesis in cardiac fibroblasts and endothelial cells but not in cardiac myocytes. RNA sequencing of isolated adult cardiac myocytes, cardiac fibroblasts and endothelial cells confirmed significantly higher Fgf23 transcription in cardiac fibroblasts and endothelial cells after TAC. Our data indicate that Fgf23 is physiologically expressed in various cardiac cell types and that cardiac fibroblasts and endothelial cells might be an important source of FGF23 in pathological conditions. In addition, investigations in Fgf23fl/fl/cre+ mice suggest that cardiac myocyte-derived FGF23 is needed to maintain cardiac function during pressure overload.
Collapse
Affiliation(s)
- Fiona Eitner
- Department of Pediatric Kidney, Liver and Metabolic Diseases, Pediatric Research Center, Hannover Medical School, Hannover, Germany
| | - Beatrice Richter
- Department of Pediatric Kidney, Liver and Metabolic Diseases, Pediatric Research Center, Hannover Medical School, Hannover, Germany
| | - Saskia Schwänen
- Department of Pediatric Kidney, Liver and Metabolic Diseases, Pediatric Research Center, Hannover Medical School, Hannover, Germany
| | - Malgorzata Szaroszyk
- Department for Cardiology and Angiology, Hannover Medical School, Hannover, Germany
| | - Isabel Vogt
- Department of Pediatric Kidney, Liver and Metabolic Diseases, Pediatric Research Center, Hannover Medical School, Hannover, Germany
| | - Andrea Grund
- Department of Pediatric Kidney, Liver and Metabolic Diseases, Pediatric Research Center, Hannover Medical School, Hannover, Germany
| | - Thomas Thum
- Institute of Molecular and Translational Therapeutic Strategies, Hannover Medical School, Hannover, Germany
| | - Joerg Heineke
- Department for Cardiology and Angiology, Hannover Medical School, Hannover, Germany
- Department of Cardiovascular Physiology, European Center for Angioscience (ECAS), Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Dieter Haffner
- Department of Pediatric Kidney, Liver and Metabolic Diseases, Pediatric Research Center, Hannover Medical School, Hannover, Germany
| | - Maren Leifheit-Nestler
- Department of Pediatric Kidney, Liver and Metabolic Diseases, Pediatric Research Center, Hannover Medical School, Hannover, Germany
- *Correspondence: Maren Leifheit-Nestler,
| |
Collapse
|
298
|
Yan Z, Wang G, Shi X. Advances in the Progression and Prognosis Biomarkers of Chronic Kidney Disease. Front Pharmacol 2022; 12:785375. [PMID: 34992536 PMCID: PMC8724575 DOI: 10.3389/fphar.2021.785375] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 11/30/2021] [Indexed: 12/29/2022] Open
Abstract
Chronic kidney disease (CKD) is one of the increasingly serious public health concerns worldwide; the global burden of CKD is increasingly due to high morbidity and mortality. At present, there are three key problems in the clinical treatment and management of CKD. First, the current diagnostic indicators, such as proteinuria and serum creatinine, are greatly interfered by the physiological conditions of patients, and the changes in the indicator level are not synchronized with renal damage. Second, the established diagnosis of suspected CKD still depends on biopsy, which is not suitable for contraindication patients, is also traumatic, and is not sensitive to early progression. Finally, the prognosis of CKD is affected by many factors; hence, it is ineviatble to develop effective biomarkers to predict CKD prognosis and improve the prognosis through early intervention. Accurate progression monitoring and prognosis improvement of CKD are extremely significant for improving the clinical treatment and management of CKD and reducing the social burden. Therefore, biomarkers reported in recent years, which could play important roles in accurate progression monitoring and prognosis improvement of CKD, were concluded and highlighted in this review article that aims to provide a reference for both the construction of CKD precision therapy system and the pharmaceutical research and development.
Collapse
Affiliation(s)
- Zhonghong Yan
- Heilongjiang University of Chinese Medicine, Harbin, China
| | - Guanran Wang
- Heilongjiang University of Chinese Medicine, Harbin, China.,Department of Nephrology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xingyang Shi
- Heilongjiang University of Chinese Medicine, Harbin, China
| |
Collapse
|
299
|
Npt2a as a target for treating hyperphosphatemia. Biochem Soc Trans 2022; 50:439-446. [PMID: 34994388 PMCID: PMC9022968 DOI: 10.1042/bst20211005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 12/08/2021] [Accepted: 12/13/2021] [Indexed: 12/04/2022]
Abstract
Hyperphosphatemia results from an imbalance in phosphate (Pi) homeostasis. In patients with and without reduced kidney function, hyperphosphatemia is associated with cardiovascular complications. The current mainstays in the management of hyperphosphatemia are oral Pi binder and dietary Pi restriction. Although these options are employed in patients with chronic kidney disease (CKD), they seem inadequate to correct elevated plasma Pi levels. In addition, a paradoxical increase in expression of intestinal Pi transporter and uptake may occur. Recently, studies in rodents targeting the renal Na+/Pi cotransporter 2a (Npt2a), responsible for ∼70% of Pi reabsorption, have been proposed as a potential treatment option. Two compounds (PF-06869206 and BAY-767) have been developed which are selective for Npt2a. These Npt2a inhibitors significantly increased urinary Pi excretion consequently lowering plasma Pi and PTH levels. Additionally, increases in urinary excretions of Na+, Cl− and Ca2+ have been observed. Some of these results are also seen in models of reduced kidney function. Responses of FGF23, a phosphaturic hormone that has been linked to the development of left ventricular hypertrophy in CKD, are ambiguous. In this review, we discuss the recent advances on the role of Npt2a inhibition on Pi homeostasis as well as other pleiotropic effects observed with Npt2a inhibition.
Collapse
|
300
|
Berg AH, Kumar S, Karumanchi SA. Indoxyl sulfate in uremia: an old idea with updated concepts. J Clin Invest 2022; 132:155860. [PMID: 34981787 PMCID: PMC8718144 DOI: 10.1172/jci155860] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Patients with end-stage kidney disease (ESKD) have increased vascular disease. While protein-bound molecules that escape hemodialysis may contribute to uremic toxicity, specific contributing toxins remain ambiguous. In this issue of the JCI, Arinze et al. explore the role of tryptophan metabolites in chronic kidney disease–associated (CKD-associated) peripheral arterial disease. The authors used mouse and zebrafish models to show that circulating indoxyl sulfate (IS) blocked endothelial Wnt signaling, which impaired angiogenesis. Plasma levels of IS and other tryptophan metabolites correlated with adverse peripheral vascular disease events in humans. These findings suggest that lowering IS may benefit individuals with CKD and ESKD.
Collapse
Affiliation(s)
| | - Sanjeev Kumar
- Medicine and Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - S Ananth Karumanchi
- Medicine and Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, USA.,Deparment of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|