3001
|
Chen JA, Wang Q, Davis-Turak J, Li Y, Karydas AM, Hsu SC, Sears RL, Chatzopoulou D, Huang AY, Wojta KJ, Klein E, Lee J, Beekly DL, Boxer A, Faber KM, Haase CM, Miller J, Poon WW, Rosen A, Rosen H, Sapozhnikova A, Shapira J, Varpetian A, Foroud TM, Levenson RW, Levey AI, Kukull WA, Mendez MF, Ringman J, Chui H, Cotman C, DeCarli C, Miller BL, Geschwind DH, Coppola G. A multiancestral genome-wide exome array study of Alzheimer disease, frontotemporal dementia, and progressive supranuclear palsy. JAMA Neurol 2015; 72:414-22. [PMID: 25706306 DOI: 10.1001/jamaneurol.2014.4040] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
IMPORTANCE Previous studies have indicated a heritable component of the etiology of neurodegenerative diseases such as Alzheimer disease (AD), frontotemporal dementia (FTD), and progressive supranuclear palsy (PSP). However, few have examined the contribution of low-frequency coding variants on a genome-wide level. OBJECTIVE To identify low-frequency coding variants that affect susceptibility to AD, FTD, and PSP. DESIGN, SETTING, AND PARTICIPANTS We used the Illumina HumanExome BeadChip array to genotype a large number of variants (most of which are low-frequency coding variants) in a cohort of patients with neurodegenerative disease (224 with AD, 168 with FTD, and 48 with PSP) and in 224 control individuals without dementia enrolled between 2005-2012 from multiple centers participating in the Genetic Investigation in Frontotemporal Dementia and Alzheimer's Disease (GIFT) Study. An additional multiancestral replication cohort of 240 patients with AD and 240 controls without dementia was used to validate suggestive findings. Variant-level association testing and gene-based testing were performed. MAIN OUTCOMES AND MEASURES Statistical association of genetic variants with clinical diagnosis of AD, FTD, and PSP. RESULTS Genetic variants typed by the exome array explained 44%, 53%, and 57% of the total phenotypic variance of AD, FTD, and PSP, respectively. An association with the known AD gene ABCA7 was replicated in several ancestries (discovery P=.0049, European P=.041, African American P=.043, and Asian P=.027), suggesting that exonic variants within this gene modify AD susceptibility. In addition, 2 suggestive candidate genes, DYSF (P=5.53×10(-5)) and PAXIP1 (P=2.26×10(-4)), were highlighted in patients with AD and differentially expressed in AD brain. Corroborating evidence from other exome array studies and gene expression data points toward potential involvement of these genes in the pathogenesis of AD. CONCLUSIONS AND RELEVANCE Low-frequency coding variants with intermediate effect size may account for a significant fraction of the genetic susceptibility to AD and FTD. Furthermore, we found evidence that coding variants in the known susceptibility gene ABCA7, as well as candidate genes DYSF and PAXIP1, confer risk for AD.
Collapse
Affiliation(s)
- Jason A Chen
- Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles
| | - Qing Wang
- Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles
| | - Jeremy Davis-Turak
- Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles
| | - Yun Li
- Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles
| | - Anna M Karydas
- Memory and Aging Center, University of California, San Francisco
| | - Sandy C Hsu
- Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles
| | - Renee L Sears
- Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles
| | - Doxa Chatzopoulou
- Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles
| | - Alden Y Huang
- Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles
| | - Kevin J Wojta
- Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles
| | - Eric Klein
- Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles
| | - Jason Lee
- Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles
| | - Duane L Beekly
- National Alzheimer's Coordinating Center, University of Washington, Seattle
| | - Adam Boxer
- Memory and Aging Center, University of California, San Francisco
| | - Kelley M Faber
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis
| | - Claudia M Haase
- Department of Psychology, School of Education and Social Policy, Northwestern University, Evanston, Illinois
| | - Josh Miller
- Department of Nutritional Sciences, Rutgers University, New Brunswick, New Jersey
| | - Wayne W Poon
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine
| | - Ami Rosen
- Department of Neurology, Emory University, Atlanta, Georgia
| | - Howard Rosen
- Memory and Aging Center, University of California, San Francisco
| | | | - Jill Shapira
- Department of Neurology, University of California, Los Angeles
| | | | - Tatiana M Foroud
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis
| | | | - Allan I Levey
- Department of Neurology, Emory University, Atlanta, Georgia
| | - Walter A Kukull
- National Alzheimer's Coordinating Center, University of Washington, Seattle
| | - Mario F Mendez
- Department of Neurology, University of California, Los Angeles
| | - John Ringman
- Department of Neurology, University of California, Los Angeles12Mary S. Easton Center for Alzheimer's Disease Research at UCLA, University of California, Los Angeles
| | - Helena Chui
- Department of Neurology, University of Southern California, Los Angeles
| | - Carl Cotman
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine
| | | | - Bruce L Miller
- Memory and Aging Center, University of California, San Francisco
| | - Daniel H Geschwind
- Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles10Department of Neurology, University of California, Los Angeles
| | - Giovanni Coppola
- Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles10Department of Neurology, University of California, Los Angeles
| |
Collapse
|
3002
|
Mollica MA, Navarra J, Fernández-Prieto I, Olives J, Tort A, Valech N, Coll-Padrós N, Molinuevo JL, Rami L. Subtle visuomotor difficulties in preclinical Alzheimer's disease. J Neuropsychol 2015; 11:56-73. [PMID: 26172318 DOI: 10.1111/jnp.12079] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Revised: 05/12/2015] [Indexed: 11/29/2022]
Abstract
BACKGROUND Individuals with preclinical Alzheimer's disease (Pre-AD) present nonimpaired cognition, as measured by standard neuropsychological tests. However, detecting subtle difficulties in cognitive functions may be necessary for an early diagnosis and intervention. OBJECTIVES A new computer-based visuomotor coordination task (VMC) was developed to investigate the possible presence of early visuomotor difficulties in Pre-AD individuals. Associations between VMC task performance and AD biomarkers were studied. The influence of ApoE status on participants' performance was addressed, as well as the relationship between performance and subjective cognitive decline (SCD). METHODS Sixty-six cognitively normal (CN) elders (19 Pre-AD and 47 control participants [CTR]) and 15 patients with AD performed the VMC task, which consisted in executing visually guided goal-directed movements that required the coordination of the visual and motor systems. All participants underwent ApoE analysis and lumbar puncture. CN participants also completed an extensive standard neuropsychological battery. RESULTS Despite presenting normal cognition in standard tests, Pre-AD participants exhibited higher response times (RTs) to complete the VMC task than CTR (p < .01). Besides, patients with AD showed higher RTs than CTR (p < .001) and Pre-AD (p < .05), and more errors than CTR (p < .005). RTs in ApoE4 carriers were higher than that observed in ApoE4 noncarriers (p < .01). In CN individuals, RTs were related to amyloid β-protein 42 (AB42) biomarker (p < .01) and informant-rated SCD (p < .01). CONCLUSIONS The VMC task is able to discriminate Pre-AD from CTR individuals. Moreover, VMC results are associated with AB42 levels in CN individuals, suggesting that visuomotor dysfunction may be a sensitive marker of Pre-AD.
Collapse
Affiliation(s)
- Maria A Mollica
- Alzheimer's Disease and Other Cognitive Disorders Unit, Neurology Service, Hospital Clínic, Barcelona, Spain
| | - Jordi Navarra
- Experimental Psychology and Brain Disorders Laboratory, Sant Joan de Deu Healthcare Park, Sant Joan de Deu Hospital, Barcelona, Spain
| | - Irune Fernández-Prieto
- Experimental Psychology and Brain Disorders Laboratory, Sant Joan de Deu Healthcare Park, Sant Joan de Deu Hospital, Barcelona, Spain.,Biomedical Network Research Centre on Mental Health (CIBERSAM), Madrid, Spain.,Institute for Brain, Cognition and Behaviour (IR3C), Department of Basic Psychology, Faculty of Psychology, University of Barcelona, Barcelona, Spain
| | - Jaume Olives
- Alzheimer's Disease and Other Cognitive Disorders Unit, Neurology Service, Hospital Clínic, Barcelona, Spain
| | - Adrià Tort
- Alzheimer's Disease and Other Cognitive Disorders Unit, Neurology Service, Hospital Clínic, Barcelona, Spain
| | - Natalia Valech
- Alzheimer's Disease and Other Cognitive Disorders Unit, Neurology Service, Hospital Clínic, Barcelona, Spain
| | - Nina Coll-Padrós
- Alzheimer's Disease and Other Cognitive Disorders Unit, Neurology Service, Hospital Clínic, Barcelona, Spain
| | - José L Molinuevo
- Alzheimer's Disease and Other Cognitive Disorders Unit, Neurology Service, Hospital Clínic, Barcelona, Spain.,August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain
| | - Lorena Rami
- Alzheimer's Disease and Other Cognitive Disorders Unit, Neurology Service, Hospital Clínic, Barcelona, Spain.,August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain
| |
Collapse
|
3003
|
Stevenson M, Bae H, Schupf N, Andersen S, Zhang Q, Perls T, Sebastiani P. Burden of disease variants in participants of the Long Life Family Study. Aging (Albany NY) 2015; 7:123-32. [PMID: 25664523 PMCID: PMC4359694 DOI: 10.18632/aging.100724] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Case control studies of nonagenarians and centenarians provide evidence that long-lived individuals do not differ in the rate of disease associated variants compared to population controls. These results suggest that an enrichment of novel protective variants, rather than a lack of disease associated variants, determine the genetic predisposition to exceptionally long lives. Using data from the Long Life Family Study (LLFS), we sought to replicate these findings and extend them to include a larger number of disease-specific risk alleles. To accomplish this goal, we built a genetic risk score for each of four age-related disease groups: Alzheimer's disease, cardiovascular disease and stroke, type 2 diabetes, and various cancers and compared the distribution of these scores between older participants of the LLFS, their offspring and their spouses. The analyses showed no significant differences in distribution of the genetic risk scores for cardiovascular disease and stroke, type 2 diabetes, or cancer between the groups, while participants of the LLFS appeared to carry an average 1% fewer risk alleles for Alzheimer's disease compared to spousal controls and, while the difference may not be clinically relevant, it was statistically significant. However, the statistical significance between familial longevity and the Alzheimer's disease genetic risk score was lost when a more stringent linkage disequilibrium threshold was imposed to select independent genetic variants.
Collapse
Affiliation(s)
- Meredith Stevenson
- Department of Biostatistics, Boston University School of Public Health, Boston, MA 02118, USA
| | - Harold Bae
- College of Public Health and Human Sciences, Oregon State University, OR 97331, USA
| | - Nicole Schupf
- Department of Neurology, Columbia UNiversity, New York City, NY 10027, USA
| | - Stacy Andersen
- Section of Geriatrics, Department of Medicine, Boston University School of Medicine and Boston Medical Center, Boston, MA 02118, USA
| | - Qunyuan Zhang
- Division of Statistical Genomics, Department of Genetics, Washington University School of Medicine, St. Louis, MO 63108, USA
| | - Thomas Perls
- Section of Geriatrics, Department of Medicine, Boston University School of Medicine and Boston Medical Center, Boston, MA 02118, USA
| | - Paola Sebastiani
- Department of Biostatistics, Boston University School of Public Health, Boston, MA 02118, USA
| |
Collapse
|
3004
|
Hohsfield LA, Daschil N, Orädd G, Strömberg I, Humpel C. Vascular pathology of 20-month-old hypercholesterolemia mice in comparison to triple-transgenic and APPSwDI Alzheimer's disease mouse models. Mol Cell Neurosci 2015; 63:83-95. [PMID: 25447943 DOI: 10.1016/j.mcn.2014.10.006] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Revised: 10/02/2014] [Accepted: 10/27/2014] [Indexed: 10/24/2022] Open
Abstract
Several studies have shown that elevated plasma cholesterol levels (i.e. hypercholesterolemia) serve as a risk factor for late-onset Alzheimer's disease (AD). However, it remains unclear how hypercholesterolemia may contribute to the onset and progression of AD pathology. In order to determine the role of hypercholesterolemia at various stages of AD, we evaluated the effects of high cholesterol diet (5% cholesterol) in wild-type (WT; C57BL6) and triple-transgenic AD (3xTg-AD; Psen1, APPSwe, tauB301L) mice at 7, 14, and 20 months. The transgenic APP-Swedish/Dutch/Iowa AD mouse model (APPSwDI) was used as a control since these animals are more pathologically-accelerated and are known to exhibit extensive plaque deposition and cerebral amyloid angiopathy. Here, we describe the effects of high cholesterol diet on: (1) cognitive function and stress, (2) AD-associated pathologies, (3) neuroinflammation, (4) blood–brain barrier disruption and ventricle size, and (5) vascular dysfunction. Our data show that high dietary cholesterol increases weight, slightly impairs cognitive function, promotes glial cell activation and complement-related pathways, enhances the infiltration of blood-derived proteins and alters vascular integrity, however, it does not induce AD-related pathologies. While normal-fed 3xTg-AD mice display a typical AD-like pathology in addition to severe cognitive impairment and neuroinflammation at 20 months of age, vascular alterations are less pronounced. No microbleedings were seen by MRI, however, the ventricle size was enlarged. Triple-transgenic AD mice, on the other hand, fed a high cholesterol diet do not survive past 14 months of age. Our data indicates that cholesterol does not markedly potentiate AD-related pathology, nor does it cause significant impairments in cognition. However, it appears that high cholesterol diet markedly increases stress-related plasma corticosterone levels as well as some vessel pathologies. Together, our findings represent the first demonstration of prolonged high cholesterol diet and the examination of its effects at various stages of cerebrovascular- and AD-related disease.
Collapse
|
3005
|
Wang X, Lopez OL, Sweet RA, Becker JT, DeKosky ST, Barmada MM, Demirci FY, Kamboh MI. Genetic determinants of disease progression in Alzheimer's disease. J Alzheimers Dis 2015; 43:649-55. [PMID: 25114068 DOI: 10.3233/jad-140729] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
There is a strong genetic basis for late-onset Alzheimer's disease (LOAD); thus far 22 genes/loci have been identified that affect the risk of LOAD. However, the relationships among the genetic variations at these loci and clinical progression of the disease have not been fully explored. In the present study, we examined the relationships of 22 known LOAD genes to the progression of AD in 680 AD patients recruited from the University of Pittsburgh Alzheimer's Disease Research Center. Patients were classified as "rapid progressors" if the Mini-Mental State Examination (MMSE) changed ≥3 points in 12 months and "slow progressors" if the MMSE changed ≤2 points. We also performed a genome-wide association study in this cohort in an effort to identify new loci for AD progression. Association analysis between single nucleotide polymorphisms (SNPs) and the progression status of the AD cases was performed using logistic regression model controlled for age, gender, dementia medication use, psychosis, and hypertension. While no significant association was observed with either APOE*4 (p = 0.94) or APOE*2 (p = 0.33) with AD progression, we found multiple nominally significant associations (p < 0.05) either within or adjacent to seven known LOAD genes (INPP5D, MEF2C, TREM2, EPHA1, PTK2B, FERMT2, and CASS4) that harbor both risk and protective SNPs. Genome-wide association analyses identified four suggestive loci (PAX3, CCRN4L, PIGQ, and ADAM19) at p < 1E-05. Our data suggest that short-term clinical disease progression in AD has a genetic basis. Better understanding of these genetic factors could help to improve clinical trial design and potentially affect the development of disease modifying therapies.
Collapse
Affiliation(s)
- Xingbin Wang
- Department of Human Genetics, University of Pittsburgh, Pittsburgh, PA, USA Department of Biostatistics, University of Pittsburgh, Pittsburgh, PA, USA
| | - Oscar L Lopez
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA, USA Alzheimer's Disease Research Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - Robert A Sweet
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA, USA Alzheimer's Disease Research Center, University of Pittsburgh, Pittsburgh, PA, USA Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA VISN 4 Mental Illness Research, Education and Clinical Center (MIRECC), VA Pittsburgh Healthcare System, Pittsburgh, PA, USA
| | - James T Becker
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA, USA Alzheimer's Disease Research Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - Steven T DeKosky
- Department of Neurology, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Mahmud M Barmada
- Department of Human Genetics, University of Pittsburgh, Pittsburgh, PA, USA
| | - F Yesim Demirci
- Department of Human Genetics, University of Pittsburgh, Pittsburgh, PA, USA
| | - M Ilyas Kamboh
- Department of Human Genetics, University of Pittsburgh, Pittsburgh, PA, USA Alzheimer's Disease Research Center, University of Pittsburgh, Pittsburgh, PA, USA Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
3006
|
Janota C, Lemere CA, Brito MA. Dissecting the Contribution of Vascular Alterations and Aging to Alzheimer's Disease. Mol Neurobiol 2015; 53:3793-3811. [PMID: 26143259 DOI: 10.1007/s12035-015-9319-7] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2015] [Accepted: 06/24/2015] [Indexed: 12/31/2022]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease characterized by cognitive decline that afflicts as many as 45 % of individuals who survive past the age of 85. AD has been associated with neurovascular dysfunction and brain accumulation of amyloid-β peptide, as well as tau phosphorylation and neurodegeneration, but the pathogenesis of the disease is still somewhat unclear. According to the amyloid cascade hypothesis of AD, accumulation of amyloid-β peptide (Aβ) aggregates initiates a sequence of events leading to neuronal injury and loss, and dementia. Alternatively, the vascular hypothesis of AD incorporates the vascular contribution to the disease, stating that a primary insult to brain microcirculation (e.g., stroke) not only contributes to amyloidopathy but initiates a non-amyloidogenic pathway of vascular-mediated neuronal dysfunction and injury, which involves blood-brain barrier compromise, with increased permeability of blood vessels, leakage of blood-borne components into the brain, and, consequently, neurotoxicity. Vascular dysfunction also includes a diminished brain capillary flow, causing multiple focal ischemic or hypoxic microinjuries, diminished amyloid-β clearance, and formation of neurotoxic oligomers, which lead to neuronal dysfunction. Here we present and discuss relevant findings on the contribution of vascular alterations during aging to AD, with the hope that a better understanding of the players in the "orchestra" of neurodegeneration will be useful in developing therapies to modulate the "symphony".
Collapse
Affiliation(s)
- Cátia Janota
- Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Avenida Professor Gama Pinto, 1649-003, Lisbon, Portugal
| | - Cynthia A Lemere
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, 77 Avenue Louis Pasteur (NRB 636F), Boston, MA, 02115, USA
| | - Maria Alexandra Brito
- Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Avenida Professor Gama Pinto, 1649-003, Lisbon, Portugal. .,Department of Biochemistry and Human Biology, Faculdade de Farmácia, Universidade de Lisboa, Avenida Professor Gama Pinto, 1649-003, Lisbon, Portugal.
| |
Collapse
|
3007
|
Carreiro AV, Mendonça A, de Carvalho M, Madeira SC. Integrative biomarker discovery in neurodegenerative diseases. WILEY INTERDISCIPLINARY REVIEWS-SYSTEMS BIOLOGY AND MEDICINE 2015; 7:357-79. [PMID: 26136395 DOI: 10.1002/wsbm.1310] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Revised: 05/22/2015] [Accepted: 05/27/2015] [Indexed: 12/12/2022]
Abstract
Data mining has been widely applied in biomarker discovery resulting in significant findings of different clinical and biological biomarkers. With developments in technology, from genomics to proteomics analysis, a deluge of data has become available, as well as standardized data repositories. Nonetheless, researchers are still facing important challenges in analyzing the data, especially when considering the complexity of pathways involved in biological processes and diseases. Data from single sources appear unable to explain complex processes, such as those involved in brain-related disorders, including Alzheimer's disease, Parkinson's disease and amyotrophic lateral sclerosis, thus raising the need for a more comprehensive perspective. A possible solution relies on data and model integration, where several data types are combined to provide complementary views. This in turn can result in the discovery of previously unknown biomarkers by unraveling otherwise hidden relationships between data from different sources, and/or validate such composite biomarkers in more powerful predictive models.
Collapse
Affiliation(s)
- André V Carreiro
- INESC-ID Lisbon and Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| | - Alexandre Mendonça
- Dementia Clinics, Institute of Molecular Medicine and Faculty of Medicine, Universidade de Lisboa, Lisboa, Portugal
| | - Mamede de Carvalho
- Translational Clinical Physiology Unit, Institute of Molecular Medicine and Faculty of Medicine, Universidade de Lisboa, Lisboa, Portugal
| | - Sara C Madeira
- INESC-ID Lisbon and Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| |
Collapse
|
3008
|
Butler JM, Sharif U, Ali M, McKibbin M, Thompson JP, Gale R, Yang YC, Inglehearn C, Paraoan L. A missense variant in CST3 exerts a recessive effect on susceptibility to age-related macular degeneration resembling its association with Alzheimer's disease. Hum Genet 2015; 134:705-15. [PMID: 25893795 PMCID: PMC4460273 DOI: 10.1007/s00439-015-1552-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Accepted: 04/05/2015] [Indexed: 12/27/2022]
Abstract
Age-related macular degeneration (AMD) and Alzheimer's disease (AD) are degenerative, multifactorial diseases involving age-related accumulation of extracellular deposits linked to dysregulation of protein homeostasis. Here, we strengthen the evidence that an nsSNP (p.Ala25Thr) in the cysteine proteinase inhibitor cystatin C gene CST3, previously confirmed by meta-analysis to be associated with AD, is associated with exudative AMD. To our knowledge, this is the first report highlighting a genetic variant that increases the risk of developing both AD and AMD. Furthermore, we demonstrate that the risk associated with the mutant allele follows a recessive model for both diseases. We perform an AMD-CST3 case-control study genotyping 350 exudative AMD Caucasian individuals. Bringing together our data with the previously reported AMD-CST3 association study, the evidence of a recessive effect on AMD risk is strengthened (OR = 1.89, P = 0.005). This effect closely resembles the AD-CST3 recessive effect (OR = 1.73, P = 0.005) previously established by meta-analysis. This resemblance is substantiated by the high correlation between CST3 genotype and effect size across the two diseases (R(2) = 0.978). A recessive effect is in line with the known function of cystatin C, a potent enzyme inhibitor. Its potency means that, in heterozygous individuals, a single functional allele is sufficient to maintain its inhibitory function; only homozygous individuals will lack this form of proteolytic regulation. Our findings support the hypothesis that recessively acting variants account for some of the missing heritability of multifactorial diseases. Replacement therapy represents a translational opportunity for individuals homozygous for the mutant allele.
Collapse
Affiliation(s)
- Joe M. Butler
- />Department of Eye and Vision Science, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, L69 3GA UK
| | - Umar Sharif
- />Department of Eye and Vision Science, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, L69 3GA UK
| | - Manir Ali
- />Ophthalmology and Neuroscience, University of Leeds, Leeds, LS9 7TF UK
| | - Martin McKibbin
- />Ophthalmology Department, St James’s University Hospital, Leeds, LS9 7TF UK
| | - Joseph P. Thompson
- />Ophthalmology and Neuroscience, University of Leeds, Leeds, LS9 7TF UK
| | - Richard Gale
- />Ophthalmology Department, The York Hospital, York, YO31 8HE UK
| | - Yit C. Yang
- />Ophthalmology, The Royal Wolverhampton NHS Trust, Wolverhampton, WV10 0QP UK
| | - Chris Inglehearn
- />Ophthalmology and Neuroscience, University of Leeds, Leeds, LS9 7TF UK
| | - Luminita Paraoan
- />Department of Eye and Vision Science, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, L69 3GA UK
| |
Collapse
|
3009
|
Abstract
The global prevalence of diabetic nephropathy is rising in parallel with the increasing incidence of diabetes in most countries. Unfortunately, up to 40 % of persons diagnosed with diabetes may develop kidney complications. Diabetic nephropathy is associated with substantially increased risks of cardiovascular disease and premature mortality. An inherited susceptibility to diabetic nephropathy exists, and progress is being made unravelling the genetic basis for nephropathy thanks to international research collaborations, shared biological resources and new analytical approaches. Multiple epidemiological studies have highlighted the clinical heterogeneity of nephropathy and the need for better phenotyping to help define important subgroups for analysis and increase the power of genetic studies. Collaborative genome-wide association studies for nephropathy have reported unique genes, highlighted novel biological pathways and suggested new disease mechanisms, but progress towards clinically relevant risk prediction models for diabetic nephropathy has been slow. This review summarises the current status, recent developments and ongoing challenges elucidating the genetics of diabetic nephropathy.
Collapse
Affiliation(s)
- Amy Jayne McKnight
- Nephrology Research Group, Centre for Public Health, Queen's University Belfast, c/o Regional Genetics Centre, Level A, Tower Block, Belfast City Hospital, Lisburn Road, Belfast, BT9 7AB, UK,
| | | | | |
Collapse
|
3010
|
Sweeney MD, Sagare AP, Zlokovic BV. Cerebrospinal fluid biomarkers of neurovascular dysfunction in mild dementia and Alzheimer's disease. J Cereb Blood Flow Metab 2015; 35:1055-68. [PMID: 25899298 PMCID: PMC4640280 DOI: 10.1038/jcbfm.2015.76] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Revised: 02/27/2015] [Accepted: 03/08/2015] [Indexed: 02/06/2023]
Abstract
Alzheimer's disease (AD) is the most common form of age-related dementias. In addition to genetics, environment, and lifestyle, growing evidence supports vascular contributions to dementias including dementia because of AD. Alzheimer's disease affects multiple cell types within the neurovascular unit (NVU), including brain vascular cells (endothelial cells, pericytes, and vascular smooth muscle cells), glial cells (astrocytes and microglia), and neurons. Thus, identifying and integrating biomarkers of the NVU cell-specific responses and injury with established AD biomarkers, amyloid-β (Aβ) and tau, has a potential to contribute to better understanding of the disease process in dementias including AD. Here, we discuss the existing literature on cerebrospinal fluid biomarkers of the NVU cell-specific responses during early stages of dementia and AD. We suggest that the clinical usefulness of established AD biomarkers, Aβ and tau, could be further improved by developing an algorithm that will incorporate biomarkers of the NVU cell-specific responses and injury. Such biomarker algorithm could aid in early detection and intervention as well as identify novel treatment targets to delay disease onset, slow progression, and/or prevent AD.
Collapse
Affiliation(s)
- Melanie D Sweeney
- Department of Physiology and Biophysics, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Abhay P Sagare
- Department of Physiology and Biophysics, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Berislav V Zlokovic
- Department of Physiology and Biophysics, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
3011
|
Weiner MW, Veitch DP, Aisen PS, Beckett LA, Cairns NJ, Cedarbaum J, Donohue MC, Green RC, Harvey D, Jack CR, Jagust W, Morris JC, Petersen RC, Saykin AJ, Shaw L, Thompson PM, Toga AW, Trojanowski JQ. Impact of the Alzheimer's Disease Neuroimaging Initiative, 2004 to 2014. Alzheimers Dement 2015; 11:865-84. [PMID: 26194320 PMCID: PMC4659407 DOI: 10.1016/j.jalz.2015.04.005] [Citation(s) in RCA: 165] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Revised: 03/04/2015] [Accepted: 04/23/2015] [Indexed: 01/18/2023]
Abstract
INTRODUCTION The Alzheimer's Disease Neuroimaging Initiative (ADNI) was established in 2004 to facilitate the development of effective treatments for Alzheimer's disease (AD) by validating biomarkers for AD clinical trials. METHODS We searched for ADNI publications using established methods. RESULTS ADNI has (1) developed standardized biomarkers for use in clinical trial subject selection and as surrogate outcome measures; (2) standardized protocols for use across multiple centers; (3) initiated worldwide ADNI; (4) inspired initiatives investigating traumatic brain injury and post-traumatic stress disorder in military populations, and depression, respectively, as an AD risk factor; (5) acted as a data-sharing model; (6) generated data used in over 600 publications, leading to the identification of novel AD risk alleles, and an understanding of the relationship between biomarkers and AD progression; and (7) inspired other public-private partnerships developing biomarkers for Parkinson's disease and multiple sclerosis. DISCUSSION ADNI has made myriad impacts in its first decade. A competitive renewal of the project in 2015 would see the use of newly developed tau imaging ligands, and the continued development of recruitment strategies and outcome measures for clinical trials.
Collapse
Affiliation(s)
- Michael W Weiner
- Department of Veterans Affairs Medical Center, Center for Imaging of Neurodegenerative Diseases, San Francisco, CA, USA; Department of Radiology, University of California, San Francisco, San Francisco, CA, USA; Department of Medicine, University of California, San Francisco, San Francisco, CA, USA; Department of Psychiatry, University of California, San Francisco, San Francisco, CA, USA; Department of Neurology, University of California, San Francisco, San Francisco, CA, USA.
| | - Dallas P Veitch
- Department of Veterans Affairs Medical Center, Center for Imaging of Neurodegenerative Diseases, San Francisco, CA, USA
| | - Paul S Aisen
- Department of Neurosciences, University of California- San Diego, La Jolla, CA, USA
| | - Laurel A Beckett
- Division of Biostatistics, Department of Public Health Sciences, University of California, Davis, Davis, CA, USA
| | - Nigel J Cairns
- Department of Neurology, Knight Alzheimer's Disease Research Center, Washington University School of Medicine, Saint Louis, MO, USA; Department of Neurology, Washington University School of Medicine, Saint Louis, MO, USA
| | - Jesse Cedarbaum
- Neurology Early Clinical Development, Biogen Idec, Cambridge, MA, USA
| | - Michael C Donohue
- Division of Biostatistics and Bioinformatics, Department of Family Medicine and Public Health, University of California, San Diego, San Diego, CA, USA
| | - Robert C Green
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Danielle Harvey
- Division of Biostatistics, Department of Public Health Sciences, University of California, Davis, Davis, CA, USA
| | | | - William Jagust
- Helen Wills Neuroscience Institute and the School of Public Health, University of California Berkeley, Berkeley, CA, USA
| | - John C Morris
- Department of Neurology, Washington University School of Medicine, Saint Louis, MO, USA
| | | | - Andrew J Saykin
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Leslie Shaw
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Paul M Thompson
- Imaging Genetics Center, Institute for Neuroimaging and Informatics, University of Southern California, Marina Del Rey, CA, USA
| | - Arthur W Toga
- Laboratory of Neuroimaging, Institute of Neuroimaging and Informatics, Keck School of Medicine of University of Southern California Los Angeles, CA, USA
| | - John Q Trojanowski
- Department of Pathology and Laboratory Medicine, Center for Neurodegenerative Research, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Institute on Aging, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Alzheimer's Disease Core Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Udall Parkinson's Research Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
3012
|
Saykin AJ, Shen L, Yao X, Kim S, Nho K, Risacher SL, Ramanan VK, Foroud TM, Faber KM, Sarwar N, Munsie LM, Hu X, Soares HD, Potkin SG, Thompson PM, Kauwe JSK, Kaddurah-Daouk R, Green RC, Toga AW, Weiner MW. Genetic studies of quantitative MCI and AD phenotypes in ADNI: Progress, opportunities, and plans. Alzheimers Dement 2015; 11:792-814. [PMID: 26194313 PMCID: PMC4510473 DOI: 10.1016/j.jalz.2015.05.009] [Citation(s) in RCA: 231] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Revised: 05/08/2015] [Accepted: 05/08/2015] [Indexed: 01/01/2023]
Abstract
INTRODUCTION Genetic data from the Alzheimer's Disease Neuroimaging Initiative (ADNI) have been crucial in advancing the understanding of Alzheimer's disease (AD) pathophysiology. Here, we provide an update on sample collection, scientific progress and opportunities, conceptual issues, and future plans. METHODS Lymphoblastoid cell lines and DNA and RNA samples from blood have been collected and banked, and data and biosamples have been widely disseminated. To date, APOE genotyping, genome-wide association study (GWAS), and whole exome and whole genome sequencing data have been obtained and disseminated. RESULTS ADNI genetic data have been downloaded thousands of times, and >300 publications have resulted, including reports of large-scale GWAS by consortia to which ADNI contributed. Many of the first applications of quantitative endophenotype association studies used ADNI data, including some of the earliest GWAS and pathway-based studies of biospecimen and imaging biomarkers, as well as memory and other clinical/cognitive variables. Other contributions include some of the first whole exome and whole genome sequencing data sets and reports in healthy controls, mild cognitive impairment, and AD. DISCUSSION Numerous genetic susceptibility and protective markers for AD and disease biomarkers have been identified and replicated using ADNI data and have heavily implicated immune, mitochondrial, cell cycle/fate, and other biological processes. Early sequencing studies suggest that rare and structural variants are likely to account for significant additional phenotypic variation. Longitudinal analyses of transcriptomic, proteomic, metabolomic, and epigenomic changes will also further elucidate dynamic processes underlying preclinical and prodromal stages of disease. Integration of this unique collection of multiomics data within a systems biology framework will help to separate truly informative markers of early disease mechanisms and potential novel therapeutic targets from the vast background of less relevant biological processes. Fortunately, a broad swath of the scientific community has accepted this grand challenge.
Collapse
Affiliation(s)
- Andrew J Saykin
- Center for Neuroimaging, Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA; Indiana Alzheimer Disease Center, Indiana University School of Medicine, Indianapolis, IN, USA; Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA.
| | - Li Shen
- Center for Neuroimaging, Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA; Indiana Alzheimer Disease Center, Indiana University School of Medicine, Indianapolis, IN, USA; Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Xiaohui Yao
- Center for Neuroimaging, Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA; School of Informatics and Computing, Indiana University, Purdue University - Indianapolis, Indianapolis, IN, USA
| | - Sungeun Kim
- Center for Neuroimaging, Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA; Indiana Alzheimer Disease Center, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Kwangsik Nho
- Center for Neuroimaging, Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA; Indiana Alzheimer Disease Center, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Shannon L Risacher
- Center for Neuroimaging, Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA; Indiana Alzheimer Disease Center, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Vijay K Ramanan
- Center for Neuroimaging, Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA; Indiana Alzheimer Disease Center, Indiana University School of Medicine, Indianapolis, IN, USA; Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Tatiana M Foroud
- Indiana Alzheimer Disease Center, Indiana University School of Medicine, Indianapolis, IN, USA; Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Kelley M Faber
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
| | | | | | - Xiaolan Hu
- Bristol-Myers Squibb, Wallingford, CT, USA
| | | | - Steven G Potkin
- Department of Psychiatry and Human Behavior, University of California - Irvine, Irvine, CA, USA
| | - Paul M Thompson
- Department of Neurology, Keck School of Medicine of USC, University of Southern California, Marina del Rey, CA, USA; Imaging Genetics Center, Keck School of Medicine of USC, University of Southern California, Marina del Rey, CA, USA
| | - John S K Kauwe
- Department of Biology, Brigham Young University, Provo, UT, USA; Department of Neuroscience, Brigham Young University, Provo, UT, USA
| | - Rima Kaddurah-Daouk
- Department of Psychiatry and Behavioral Sciences, Duke University, Durham, NC, USA; Duke Institute for Brain Sciences, Duke University, Durham, NC, USA
| | - Robert C Green
- Partners Center for Personalized Genetic Medicine, Boston, MA, USA; Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Arthur W Toga
- Laboratory of Neuroimaging, Institute for Neuroimaging and Neuroinformatics, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, USA
| | - Michael W Weiner
- Department of Radiology, University of California-San Francisco, San Francisco, CA, USA; Department of Medicine, University of California-San Francisco, San Francisco, CA, USA; Department of Psychiatry, University of California-San Francisco, San Francisco, CA, USA; Center for Imaging of Neurodegenerative Diseases, San Francisco VA Medical Center, San Francisco, CA, USA
| |
Collapse
|
3013
|
Zhao Z, Sagare AP, Ma Q, Halliday MR, Kong P, Kisler K, Winkler EA, Ramanathan A, Kanekiyo T, Bu G, Owens NC, Rege SV, Si G, Ahuja A, Zhu D, Miller CA, Schneider JA, Maeda M, Maeda T, Sugawara T, Ichida JK, Zlokovic BV. Central role for PICALM in amyloid-β blood-brain barrier transcytosis and clearance. Nat Neurosci 2015; 18:978-87. [PMID: 26005850 PMCID: PMC4482781 DOI: 10.1038/nn.4025] [Citation(s) in RCA: 324] [Impact Index Per Article: 32.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Accepted: 04/21/2015] [Indexed: 12/11/2022]
Abstract
PICALM is a highly validated genetic risk factor for Alzheimer's disease (AD). We found that reduced expression of PICALM in AD and murine brain endothelium correlated with amyloid-β (Aβ) pathology and cognitive impairment. Moreover, Picalm deficiency diminished Aβ clearance across the murine blood-brain barrier (BBB) and accelerated Aβ pathology in a manner that was reversible by endothelial PICALM re-expression. Using human brain endothelial monolayers, we found that PICALM regulated PICALM/clathrin-dependent internalization of Aβ bound to the low density lipoprotein receptor related protein-1, a key Aβ clearance receptor, and guided Aβ trafficking to Rab5 and Rab11, leading to Aβ endothelial transcytosis and clearance. PICALM levels and Aβ clearance were reduced in AD-derived endothelial monolayers, which was reversible by adenoviral-mediated PICALM transfer. Inducible pluripotent stem cell-derived human endothelial cells carrying the rs3851179 protective allele exhibited higher PICALM levels and enhanced Aβ clearance. Thus, PICALM regulates Aβ BBB transcytosis and clearance, which has implications for Aβ brain homeostasis and clearance therapy.
Collapse
Affiliation(s)
- Zhen Zhao
- Zilkha Neurogenetic Institute and Department of Physiology and Biophysics, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Abhay P. Sagare
- Zilkha Neurogenetic Institute and Department of Physiology and Biophysics, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Qingyi Ma
- Zilkha Neurogenetic Institute and Department of Physiology and Biophysics, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Matthew R. Halliday
- Zilkha Neurogenetic Institute and Department of Physiology and Biophysics, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Pan Kong
- Zilkha Neurogenetic Institute and Department of Physiology and Biophysics, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Kassandra Kisler
- Zilkha Neurogenetic Institute and Department of Physiology and Biophysics, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Ethan A. Winkler
- Zilkha Neurogenetic Institute and Department of Physiology and Biophysics, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA 94143, USA
| | - Anita Ramanathan
- Zilkha Neurogenetic Institute and Department of Physiology and Biophysics, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Takahisa Kanekiyo
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Guojun Bu
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Nelly Chuqui Owens
- Zilkha Neurogenetic Institute and Department of Physiology and Biophysics, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Sanket V. Rege
- Zilkha Neurogenetic Institute and Department of Physiology and Biophysics, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Gabriel Si
- Zilkha Neurogenetic Institute and Department of Physiology and Biophysics, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Ashim Ahuja
- Zilkha Neurogenetic Institute and Department of Physiology and Biophysics, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Donghui Zhu
- Department of Chemical, Biological and Bio–Engineering, North Carolina Agricultural and Technical State University, Greensboro, NC 27411, USA
| | - Carol A. Miller
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Julie A. Schneider
- Alzheimer’s Disease Center, Rush University Medical Center, Chicago, IL 60612, USA
| | - Manami Maeda
- Division of Hematopoietic Stem Cell and Leukemia Research, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA
- Division of Hematology, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Takahiro Maeda
- Division of Hematopoietic Stem Cell and Leukemia Research, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA
- Division of Hematology, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Tohru Sugawara
- Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, and Department of Stem Cell Biology and Regenerative Medicine, University of Southern California, 1425 San Pablo Street, BCC 307, Los Angeles, CA 90089, USA
| | - Justin K. Ichida
- Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, and Department of Stem Cell Biology and Regenerative Medicine, University of Southern California, 1425 San Pablo Street, BCC 307, Los Angeles, CA 90089, USA
| | - Berislav V. Zlokovic
- Zilkha Neurogenetic Institute and Department of Physiology and Biophysics, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| |
Collapse
|
3014
|
Weiner MW, Veitch DP. Introduction to special issue: Overview of Alzheimer's Disease Neuroimaging Initiative. Alzheimers Dement 2015; 11:730-3. [PMID: 26194308 PMCID: PMC5536175 DOI: 10.1016/j.jalz.2015.05.007] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2015] [Revised: 04/24/2015] [Accepted: 05/05/2015] [Indexed: 02/06/2023]
Abstract
The Alzheimer's Disease Neuroimaging Initiative (ADNI), designed as a naturalistic longitudinal study to develop and validate magnetic resonance, positron emission tomography, cerebrospinal fluid, and genetic biomarkers for use in AD clinical trials, has made many impacts in the decade since its inception. The initial 5-year study, ADNI-1, enrolled cognitively normal, mild cognitive impairment (MCI) and AD subjects, and the subsequent studies (ADNI-GO and ADNI-2) added early- and late-MCI cohorts. The development of standardized methods allowed comparison of data gathered across multiple sites, and these data are available to qualified researchers without embargo. ADNI data have been used in >600 publications including those describing relationships between biomarkers, improved methods for disease diagnosis and the prediction of future decline, and identifying novel genetic AD risk loci. ADNI has provided a framework for similar initiatives worldwide.
Collapse
Affiliation(s)
- Michael W Weiner
- Department of Veterans Affairs Medical Center, Center for Imaging of Neurodegenerative Diseases, San Francisco, CA, USA; Department of Radiology, University of California, San Francisco, CA, USA; Department of Medicine, University of California, San Francisco, CA, USA; Department of Psychiatry, University of California, San Francisco, CA, USA; Department of Neurology, University of California, San Francisco, CA, USA.
| | - Dallas P Veitch
- Department of Veterans Affairs Medical Center, Center for Imaging of Neurodegenerative Diseases, San Francisco, CA, USA
| |
Collapse
|
3015
|
Farrer LA. Expanding the genomic roadmap of Alzheimer's disease. Lancet Neurol 2015; 14:783-785. [PMID: 26141618 DOI: 10.1016/s1474-4422(15)00146-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 06/23/2015] [Indexed: 10/23/2022]
Affiliation(s)
- Lindsay A Farrer
- Departments of Medicine (Biomedical Genetics), Neurology, Ophthalmology, Epidemiology, and Biostatistics, Boston University Schools of Medicine and Public Health, Boston, MA 02118, USA.
| |
Collapse
|
3016
|
Massive accumulation of luminal protease-deficient axonal lysosomes at Alzheimer's disease amyloid plaques. Proc Natl Acad Sci U S A 2015; 112:E3699-708. [PMID: 26124111 DOI: 10.1073/pnas.1510329112] [Citation(s) in RCA: 281] [Impact Index Per Article: 28.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Through a comprehensive analysis of organellar markers in mouse models of Alzheimer's disease, we document a massive accumulation of lysosome-like organelles at amyloid plaques and establish that the majority of these organelles reside within swollen axons that contact the amyloid deposits. This close spatial relationship between axonal lysosome accumulation and extracellular amyloid aggregates was observed from the earliest stages of β-amyloid deposition. Notably, we discovered that lysosomes that accumulate in such axons are lacking in multiple soluble luminal proteases and thus are predicted to be unable to efficiently degrade proteinaceous cargos. Of relevance to Alzheimer's disease, β-secretase (BACE1), the protein that initiates amyloidogenic processing of the amyloid precursor protein and which is a substrate for these proteases, builds up at these sites. Furthermore, through a comparison between the axonal lysosome accumulations at amyloid plaques and neuronal lysosomes of the wild-type brain, we identified a similar, naturally occurring population of lysosome-like organelles in neuronal processes that is also defined by its low luminal protease content. In conjunction with emerging evidence that the lysosomal maturation of endosomes and autophagosomes is coupled to their retrograde transport, our results suggest that extracellular β-amyloid deposits cause a local impairment in the retrograde axonal transport of lysosome precursors, leading to their accumulation and a blockade in their further maturation. This study both advances understanding of Alzheimer's disease brain pathology and provides new insights into the subcellular organization of neuronal lysosomes that may have broader relevance to other neurodegenerative diseases with a lysosomal component to their pathology.
Collapse
|
3017
|
Deneka A, Korobeynikov V, Golemis EA. Embryonal Fyn-associated substrate (EFS) and CASS4: The lesser-known CAS protein family members. Gene 2015; 570:25-35. [PMID: 26119091 DOI: 10.1016/j.gene.2015.06.062] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Accepted: 06/23/2015] [Indexed: 01/15/2023]
Abstract
The CAS (Crk-associated substrate) adaptor protein family consists of four members: CASS1/BCAR1/p130Cas, CASS2/NEDD9/HEF1/Cas-L, CASS3/EFS/Sin and CASS4/HEPL. While CAS proteins lack enzymatic activity, they contain specific recognition and binding sites for assembly of larger signaling complexes that are essential for cell proliferation, survival, migration, and other processes. All family members are intermediates in integrin-dependent signaling pathways mediated at focal adhesions, and associate with FAK and SRC family kinases to activate downstream effectors regulating the actin cytoskeleton. Most studies of CAS proteins to date have been focused on the first two members, BCAR1 and NEDD9, with altered expression of these proteins now appreciated as influencing disease development and prognosis for cancer and other serious pathological conditions. For these family members, additional mechanisms of action have been defined in receptor tyrosine kinase (RTK) signaling, estrogen receptor signaling or cell cycle progression, involving discrete partner proteins such as SHC, NSP proteins, or AURKA. By contrast, EFS and CASS4 have been less studied, although structure-function analyses indicate they conserve many elements with the better-known family members. Intriguingly, a number of recent studies have implicated these proteins in immune system function, and the pathogenesis of developmental disorders, autoimmune disorders including Crohn's disease, Alzheimer's disease, cancer and other diseases. In this review, we summarize the current understanding of EFS and CASS4 protein function in the context of the larger CAS family group.
Collapse
Affiliation(s)
- Alexander Deneka
- Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, PA, 19111, United States; Kazan Federal University, 420000, Kazan, Russian Federation
| | - Vladislav Korobeynikov
- Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, PA, 19111, United States; Novosibirsk State University, Medical Department, 630090, Novosibirsk, Russian Federation
| | - Erica A Golemis
- Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, PA, 19111, United States.
| |
Collapse
|
3018
|
Henley DB, Dowsett SA, Chen YF, Liu-Seifert H, Grill JD, Doody RS, Aisen P, Raman R, Miller DS, Hake AM, Cummings J. Alzheimer's disease progression by geographical region in a clinical trial setting. Alzheimers Res Ther 2015; 7:43. [PMID: 26120369 PMCID: PMC4481070 DOI: 10.1186/s13195-015-0127-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Accepted: 04/23/2015] [Indexed: 11/10/2022]
Abstract
INTRODUCTION To facilitate enrollment and meet local registration requirements, sponsors have increasingly implemented multi-national Alzheimer's disease (AD) studies. Geographic regions vary on many dimensions that may affect disease progression or its measurement. To aid researchers designing and implementing Phase 3 AD trials, we assessed disease progression across geographic regions using placebo data from four large, multi-national clinical trials of investigational compounds developed to target AD pathophysiology. METHODS Four similarly-designed 76 to 80 week, randomized, double-blind placebo-controlled trials with nearly identical entry criteria enrolled patients aged ≥55 years with mild or moderate NINCDS/ADRDA probable AD. Descriptive analyses were performed for observed mean score and observed mean change in score from baseline at each scheduled visit. Data included in the analyses were pooled from the intent-to-treat placebo-assigned overall (mild and moderate) AD dementia populations from all four studies. Disease progression was assessed as change from baseline for each of 5 scales - the AD Assessment Scale-cognitive subscale (ADAS-cog11), the AD Cooperative Study- Activities of Daily Living Scale (ADCS-ADL), Mini-Mental State Examination (MMSE), the Clinical Dementia Rating scored by the sum of boxes method (CDR-SB), and the Neuropsychiatric Inventory (NPI). RESULTS Regions were heterogeneous at baseline. At baseline, disease severity as measured by ADAS-cog11, ADCS-ADL, and CDR-SB was numerically worse for Eastern Europe/Russia compared with other regions. Of all regional populations, Eastern Europe/Russia showed the greatest cognitive and functional decline from baseline; Japan, Asia and/or S. America/Mexico showed the least cognitive and functional decline. CONCLUSIONS These data suggest that in multi-national clinical trials, AD progression or its measurement may differ across geographic regions; this may be in part due to heterogeneity across populations at baseline. The observed differences in AD progression between outcome measures across geographic regions may generalize to 'real-world' clinic populations, where heterogeneity is the norm. TRIAL REGISTRATIONS ClinicalTrials.gov NCT00594568 - IDENTITY. Registered 11 January 2008. ClinicalTrials.gov NCT00762411 - IDENTITY2. Registered 26 September 2008 ClinicalTrials.gov NCT00905372 - EXPEDITION. Registered 18 May 2009 ClinicalTrials.gov NCT00904683 - EXPEDITION2. Registered 18 May 2009.
Collapse
Affiliation(s)
- David B Henley
- />Eli Lilly and Company, Indianapolis, IN 46285 USA
- />Indiana University School of Medicine, Indianapolis, IN 46202 USA
| | | | - Yun-Fei Chen
- />Eli Lilly and Company, Indianapolis, IN 46285 USA
| | | | - Joshua D Grill
- />University of California, Irvine, Institute for Memory Impairments and Neurological Disorders, 3206 Biological Sciences III, Irvine, CA 92697-4545 USA
| | - Rachelle S Doody
- />University of California, Irvine, Institute for Memory Impairments and Neurological Disorders, 3206 Biological Sciences III, Irvine, CA 92697-4545 USA
| | - Paul Aisen
- />Baylor College of Medicine, Department of Neurology, Houston, TX 77030 USA
| | - Rema Raman
- />University of California San Diego School of Medicine, 9500 Gilman Drive, La Jolla, CA 92093-0717 USA
| | - David S Miller
- />Dementia and Geriatric Psychiatry, Bracket, 575 E. Swedesford Rd, Ste 200, Wayne, PA 19087 USA
| | - Ann M Hake
- />Eli Lilly and Company, Indianapolis, IN 46285 USA
- />Indiana University School of Medicine, Indianapolis, IN 46202 USA
| | - Jeffrey Cummings
- />Cleveland Clinic Lou Ruvo Center for Brain Health, 888 W Bonneville, Las Vegas, NV 89106 USA
| |
Collapse
|
3019
|
Hao K, Di Narzo AF, Ho L, Luo W, Li S, Chen R, Li T, Dubner L, Pasinetti GM. Shared genetic etiology underlying Alzheimer's disease and type 2 diabetes. Mol Aspects Med 2015; 43-44:66-76. [PMID: 26116273 DOI: 10.1016/j.mam.2015.06.006] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Accepted: 06/12/2015] [Indexed: 12/12/2022]
Abstract
Epidemiological evidence supports the observation that subjects with type 2 diabetes (T2D) are at higher risk to develop Alzheimer's disease (AD). However, whether and how these two conditions are causally linked is unknown. Possible mechanisms include shared genetic risk factors, which were investigated in this study based on recent genome wide association study (GWAS) findings. In order to achieve our goal, we retrieved single nucleotide polymorphisms (SNPs) associated with T2D and AD from large-scale GWAS meta-analysis consortia and tested for overlap among the T2D- and AD-associated SNPs at various p-value thresholds. We then explored the function of the shared T2D/AD GWAS SNPs by leveraging expressional quantitative trait loci, pathways, gene ontology data, and co-expression networks. We found 927 SNPs associated with both AD and T2D with p-value ≤0.01, an overlap significantly larger than random chance (overlapping p-value of 6.93E-28). Among these, 395 of the shared GWAS SNPs have the same risk allele for AD and T2D, suggesting common pathogenic mechanisms underlying the development of both AD and T2D. Genes influenced by shared T2D/AD SNPs with the same risk allele were first identified using a SNP annotation variation (ANNOVAR) software, followed by using Association Protein-Protein Link Evaluator (DAPPLE) software to identify additional proteins that are known to physically interact with the ANNOVAR gene annotations. We found that gene annotations from ANNOVAR and DAPPLE significantly enriched specific KEGG pathways pertaining to immune responses, cell signaling and neuronal plasticity, cellular processes in which abnormalities are known to contribute to both T2D and AD pathogenesis. Thus, our observation suggests that among T2D subjects with common genetic predispositions (e.g., SNPs with consistent risk alleles for T2D and AD), dysregulation of these pathogenic pathways could contribute to the elevated risks for AD in subjects. Interestingly, we found that 532 of the shared T2D/AD GWAS SNPs had divergent risk alleles in the two diseases. For individual shared T2D/AD SNPs with divergent alleles, one of the allelic forms may contribute to one of the diseases (e.g., T2D), but not necessarily to the other (e.g., AD), or vice versa. Collectively, our GWAS studies tentatively support the epidemiological observation of disease concordance between T2D and AD. Moreover, the studies provide the much needed information for the design of future novel therapeutic approaches, for a subpopulation of T2D subjects with genetic disposition to AD, that could benefit T2D and reduce the risk for subsequent development of AD.
Collapse
Affiliation(s)
- Ke Hao
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, USA; Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, USA
| | - Antonio Fabio Di Narzo
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, USA; Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, USA
| | - Lap Ho
- Department of Neurology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, USA
| | - Wei Luo
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, USA; College of Computer Science and Technology, Huaqiao University, No.668 Jimei Avenue, Xiamen 361021, China
| | - Shuyu Li
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, USA; Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, USA
| | - Rong Chen
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, USA; Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, USA
| | - Tongbin Li
- AccuraScience, LLC, 5721 Merle Hay Road, Johnston, IA, USA
| | - Lauren Dubner
- Department of Neurology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, USA
| | - Giulio Maria Pasinetti
- Department of Neurology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, USA; Geriatric Research, Education and Clinical Center (GRECC), James J. Peters Veterans Affairs Medical Center, 130 West Kingsbridge Road, Bronx, NY, USA.
| |
Collapse
|
3020
|
Schupf N, Lee A, Park N, Dang LH, Pang D, Yale A, Oh DKT, Krinsky-McHale SJ, Jenkins EC, Luchsinger JA, Zigman WB, Silverman W, Tycko B, Kisselev S, Clark L, Lee JH. Candidate genes for Alzheimer's disease are associated with individual differences in plasma levels of beta amyloid peptides in adults with Down syndrome. Neurobiol Aging 2015; 36:2907.e1-10. [PMID: 26166206 DOI: 10.1016/j.neurobiolaging.2015.06.020] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Revised: 06/08/2015] [Accepted: 06/14/2015] [Indexed: 01/08/2023]
Abstract
We examined the contribution of candidates genes for Alzheimer's disease (AD) to individual differences in levels of beta amyloid peptides in adults with Down syndrom, a population at high risk for AD. Participants were 254 non-demented adults with Down syndrome, 30-78 years of age. Genomic deoxyribonucleic acid was genotyped using an Illumina GoldenGate custom array. We used linear regression to examine differences in levels of Aβ peptides associated with the number of risk alleles, adjusting for age, sex, level of intellectual disability, race and/or ethnicity, and the presence of the APOE ε4 allele. For Aβ42 levels, the strongest gene-wise association was found for a single nucleotide polymorphism (SNP) on CAHLM1; for Aβ40 levels, the strongest gene-wise associations were found for SNPs in IDE and SOD1, while the strongest gene-wise associations with levels of the Aβ42/Aβ40 ratio were found for SNPs in SORCS1. Broadly classified, variants in these genes may influence amyloid precursor protein processing (CALHM1, IDE), vesicular trafficking (SORCS1), and response to oxidative stress (SOD1).
Collapse
Affiliation(s)
- Nicole Schupf
- The Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Medical Center, New York, NY, USA; G.H. Sergievsky Center, New York, NY, USA; Department of Epidemiology, Columbia University Medical Center, New York, NY, USA; Department of Psychiatry, Columbia University Medical Center, New York, NY, USA.
| | - Annie Lee
- The Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Medical Center, New York, NY, USA
| | - Naeun Park
- The Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Medical Center, New York, NY, USA
| | - Lam-Ha Dang
- The Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Medical Center, New York, NY, USA
| | - Deborah Pang
- Department of Psychology, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY, USA
| | - Alexander Yale
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY, USA
| | - David Kyung-Taek Oh
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY, USA
| | - Sharon J Krinsky-McHale
- Department of Psychology, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY, USA
| | - Edmund C Jenkins
- Department of Human Genetics, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY, USA
| | - José A Luchsinger
- Department of Medicine, Columbia University Medical Center, New York, NY, USA
| | - Warren B Zigman
- Department of Psychology, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY, USA
| | - Wayne Silverman
- Kennedy Krieger Institute and Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Benjamin Tycko
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY, USA
| | - Sergey Kisselev
- The Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Medical Center, New York, NY, USA
| | - Lorraine Clark
- The Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Medical Center, New York, NY, USA
| | - Joseph H Lee
- The Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Medical Center, New York, NY, USA; G.H. Sergievsky Center, New York, NY, USA; Department of Epidemiology, Columbia University Medical Center, New York, NY, USA
| |
Collapse
|
3021
|
Song F, Han G, Bai Z, Peng X, Wang J, Lei H. Alzheimer's Disease: Genomics and Beyond. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2015; 121:1-24. [PMID: 26315760 DOI: 10.1016/bs.irn.2015.05.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Alzheimer's disease (AD) is a major form of senile dementia. Despite the critical roles of Aβ and tau in AD pathology, drugs targeting Aβ or tau have so far reached limited success. The advent of genomic technologies has made it possible to gain a more complete picture regarding the molecular network underlying the disease progression which may lead to discoveries of novel treatment targets. In this review, we will discuss recent progresses in AD research focusing on genome, transcriptome, epigenome, and related subjects. Advancements have been made in the finding of novel genetic risk factors, new hypothesis for disease mechanism, candidate biomarkers for early diagnosis, and potential drug targets. As an integration effort, we have curated relevant data in a database named AlzBase.
Collapse
Affiliation(s)
- Fuhai Song
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, PR China; University of Chinese Academy of Sciences, Beijing, PR China
| | - Guangchun Han
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, PR China
| | - Zhouxian Bai
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, PR China; University of Chinese Academy of Sciences, Beijing, PR China
| | - Xing Peng
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, PR China; University of Chinese Academy of Sciences, Beijing, PR China
| | - Jiajia Wang
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, PR China; University of Chinese Academy of Sciences, Beijing, PR China
| | - Hongxing Lei
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, PR China; Center of Alzheimer's Disease, Beijing Institute for Brain Disorders, Beijing, PR China.
| |
Collapse
|
3022
|
Snyder HM, Hendrix J, Bain LJ, Carrillo MC. Alzheimer's disease research in the context of the national plan to address Alzheimer's disease. Mol Aspects Med 2015; 43-44:16-24. [PMID: 26096321 DOI: 10.1016/j.mam.2015.06.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Revised: 06/10/2015] [Accepted: 06/10/2015] [Indexed: 12/22/2022]
Abstract
In 2012, the first National Plan to Address Alzheimer's Disease in the United States (U.S.) was released, a component of the National Alzheimer's Project Act legislation. Since that time, there have been incremental increases in U.S. federal funding for Alzheimer's disease and related dementia research, particularly in the areas of biomarker discovery, genetic link and related biological underpinnings, and prevention studies for Alzheimer's. A central theme in each of these areas has been the emphasis of cross-sector collaboration and private-public partnerships between government, non-profit organizations and for-profit organizations. This paper will highlight multiple private-public partnerships supporting the advancement of Alzheimer's research in the context of the National Plan to Address Alzheimer's.
Collapse
Affiliation(s)
- Heather M Snyder
- Alzheimer's Association, Medical & Scientific Relations, Chicago, IL, USA.
| | - James Hendrix
- Alzheimer's Association, Medical & Scientific Relations, Chicago, IL, USA
| | - Lisa J Bain
- Independent Science Writer, Philadelphia, PA, USA
| | - Maria C Carrillo
- Alzheimer's Association, Medical & Scientific Relations, Chicago, IL, USA
| |
Collapse
|
3023
|
Tosto G, Fu H, Vardarajan BN, Lee JH, Cheng R, Reyes-Dumeyer D, Lantigua R, Medrano M, Jimenez-Velazquez IZ, Elkind MSV, Wright CB, Sacco RL, Pericak-Vance M, Farrer L, Rogaeva E, St George-Hyslop P, Reitz C, Mayeux R. F-box/LRR-repeat protein 7 is genetically associated with Alzheimer's disease. Ann Clin Transl Neurol 2015; 2:810-20. [PMID: 26339675 PMCID: PMC4554442 DOI: 10.1002/acn3.223] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Revised: 05/05/2015] [Accepted: 05/14/2015] [Indexed: 01/28/2023] Open
Abstract
Objective In the context of late-onset Alzheimer’s disease (LOAD) over 20 genes have been identified but, aside APOE, all show small effect sizes, leaving a large part of the genetic component unexplained. Admixed populations, such as Caribbean Hispanics, can provide a valuable contribution because of their unique genetic profile and higher incidence of the disease. We aimed to identify novel loci associated with LOAD. Methods About 4514 unrelated Caribbean Hispanics (2451 cases and 2063 controls) were selected for genome-wide association analysis. Significant loci were further tested in the expanded cohort that also included related family members (n = 5300). Two AD-like transgenic mice models (J20 and rTg4510) were used to study gene expression. Independent data sets of non-Hispanic Whites and African Americans were used to further validate findings, along with publicly available brain expression data sets. Results A novel locus, rs75002042 in FBXL7 (5p15.1), was found genome-wide significant in the case–control cohort (odd ratio [OR] = 0.61, P = 6.19E-09) and confirmed in the related members cohorts (OR = 0.63, P = 4.7E-08). Fbxl7 protein was overexpressed in both AD-like transgenic mice compared to wild-type littermates. Publicly available microarray studies also showed significant overexpression of Fbxl7 in LOAD brains compared to nondemented controls. single-nucleotide polymorphism (SNP) rs75002042 was in complete linkage disequilibrium with other variants in two independent non-Hispanic White and African American data sets (0.0005 < P < 0.02) used for replication. Interpretation FBXL7, encodes a subcellular protein involved in phosphorylation-dependent ubiquitination processes and displays proapoptotic activity. F-box proteins also modulate inflammation and innate immunity, which may be important in LOAD pathogenesis. Further investigations are needed to validate and understand its role in this and other populations.
Collapse
Affiliation(s)
- Giuseppe Tosto
- The Taub Institute for Research on Alzheimer's Disease and the Aging Brain, School of Public Health, Columbia University New York, New York ; The Gertrude H. Sergievsky Center, School of Public Health, Columbia University New York, New York
| | - Hongjun Fu
- The Taub Institute for Research on Alzheimer's Disease and the Aging Brain, School of Public Health, Columbia University New York, New York
| | - Badri N Vardarajan
- The Taub Institute for Research on Alzheimer's Disease and the Aging Brain, School of Public Health, Columbia University New York, New York ; The Gertrude H. Sergievsky Center, School of Public Health, Columbia University New York, New York
| | - Joseph H Lee
- The Taub Institute for Research on Alzheimer's Disease and the Aging Brain, School of Public Health, Columbia University New York, New York ; The Gertrude H. Sergievsky Center, School of Public Health, Columbia University New York, New York
| | - Rong Cheng
- The Taub Institute for Research on Alzheimer's Disease and the Aging Brain, School of Public Health, Columbia University New York, New York ; The Gertrude H. Sergievsky Center, School of Public Health, Columbia University New York, New York
| | - Dolly Reyes-Dumeyer
- The Taub Institute for Research on Alzheimer's Disease and the Aging Brain, School of Public Health, Columbia University New York, New York ; The Gertrude H. Sergievsky Center, School of Public Health, Columbia University New York, New York
| | - Rafael Lantigua
- Department of Medicine College of Physicians and Surgeons, School of Public Health, Columbia University New York, New York
| | - Martin Medrano
- School of Medicine, Pontificia Universidad Catolica Madre y Maestra Santiago, Dominican Republic
| | - Ivonne Z Jimenez-Velazquez
- Department of Medicine, Geriatrics Program, School of Medicine, University of Puerto Rico San Juan, Puerto Rico
| | - Mitchell S V Elkind
- The Gertrude H. Sergievsky Center, School of Public Health, Columbia University New York, New York ; Department of Neurology, Columbia University New York, New York
| | - Clinton B Wright
- Evelyn F. McKnight Brain Institute and Departments of Neurology, Public Health Sciences, John T. McDonald Department of Human Genetics, University of Miami Miami, Florida, 33136
| | - Ralph L Sacco
- Evelyn F. McKnight Brain Institute and Departments of Neurology, Public Health Sciences, John T. McDonald Department of Human Genetics, University of Miami Miami, Florida, 33136 ; Neuroscience Program, Leonard M. Miller School of Medicine, University of Miami Miami, Florida, 33136
| | - Margaret Pericak-Vance
- Neuroscience Program, Leonard M. Miller School of Medicine, University of Miami Miami, Florida, 33136 ; The John P. Hussman Institute for Human Genomics, University of Miami Miami, Florida, 33136
| | - Lindsay Farrer
- Departments of Medicine (Biomedical Genetics), Neurology, Ophthalmology, Biostatistics and Epidemiology, Boston University Schools of Medicine and Public Health Boston, Massachusetts
| | - Ekaterina Rogaeva
- Tanz Centre for Research in Neurodegenerative Diseases, and Department of Medicine, University of Toronto Krembil Discovery Tower, 60 Leonard Avenue, Toronto, Ontario, Canada, M5T 2S8
| | - Peter St George-Hyslop
- Tanz Centre for Research in Neurodegenerative Diseases, and Department of Medicine, University of Toronto Krembil Discovery Tower, 60 Leonard Avenue, Toronto, Ontario, Canada, M5T 2S8 ; Department of Clinical Neurosciences, Cambridge Institute for Medical Research, University of Cambridge Cambridge, CB2 0XY, United Kingdom
| | - Christiane Reitz
- The Taub Institute for Research on Alzheimer's Disease and the Aging Brain, School of Public Health, Columbia University New York, New York ; The Gertrude H. Sergievsky Center, School of Public Health, Columbia University New York, New York ; Department of Neurology, Columbia University New York, New York
| | - Richard Mayeux
- The Taub Institute for Research on Alzheimer's Disease and the Aging Brain, School of Public Health, Columbia University New York, New York ; The Gertrude H. Sergievsky Center, School of Public Health, Columbia University New York, New York ; Department of Neurology, Columbia University New York, New York ; Department of Psychiatry, School of Public Health, Columbia University New York, New York ; Department of Epidemiology, School of Public Health, Columbia University New York, New York
| |
Collapse
|
3024
|
Abstract
Alzheimer's disease (AD) represents the main form of dementia, and is a major public health problem. Despite intensive research efforts, current treatments have only marginal symptomatic benefits and there are no effective disease-modifying or preventive interventions. AD has a strong genetic component, so much research in AD has focused on identifying genetic causes and risk factors. This chapter will cover genetic discoveries in AD and their consequences in terms of improved knowledge regarding the disease and the identification of biomarkers and drug targets. First, we will discuss the study of the rare early-onset, autosomal dominant forms of AD that led to the discovery of mutations in three major genes, APP, PSEN1, and PSEN2. These discoveries have shaped our current understanding of the pathophysiology and natural history of AD as well as the development of therapeutic targets and the design of clinical trials. Then, we will explore linkage analysis and candidate gene approaches, which identified variants in Apolipoprotein E (APOE) as the major genetic risk factor for late-onset, "sporadic" forms of AD (LOAD), but failed to robustly identify other genetic risk factors, with the exception of variants in SORL1. The main focus of this chapter will be on recent genome-wide association studies that have successfully identified common genetic variations at over 20 loci associated with LOAD outside of the APOE locus. These loci are in or near-novel AD genes including BIN1, CR1, CLU, phosphatidylinositol-binding clathrin assembly protein (PICALM), CD33, EPHA1, MS4A4/MS4A6, ABCA7, CD2AP, SORL1, HLA-DRB5/DRB1, PTK2B, SLC24A4-RIN3, INPP5D, MEF2C, NME8, ZCWPW1, CELF1, FERMT2, CASS4, and TRIP4 and each has small effects on risk of AD (relative risks of 1.1-1.3). Finally, we will touch upon the ongoing effort to identify less frequent and rare variants through whole exome and whole genome sequencing. This effort has identified two novel genes, TREM2 and PLD3, and shown a role for APP in LOAD. The identification of these recently identified genes has implicated previously unsuspected biological pathways in the pathophysiology of AD.
Collapse
Affiliation(s)
- Vincent Chouraki
- Department of Neurology, Boston University School of Medicine, Boston, MA, USA; Framingham Heart Study, Framingham, MA, USA
| | - Sudha Seshadri
- Department of Neurology, Boston University School of Medicine, Boston, MA, USA; Framingham Heart Study, Framingham, MA, USA
| |
Collapse
|
3025
|
Walkiewicz KW, Girault JA, Arold ST. How to awaken your nanomachines: Site-specific activation of focal adhesion kinases through ligand interactions. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2015; 119:60-71. [PMID: 26093249 DOI: 10.1016/j.pbiomolbio.2015.06.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2015] [Revised: 06/07/2015] [Accepted: 06/14/2015] [Indexed: 01/12/2023]
Abstract
The focal adhesion kinase (FAK) and the related protein-tyrosine kinase 2-beta (Pyk2) are highly versatile multidomain scaffolds central to cell adhesion, migration, and survival. Due to their key role in cancer metastasis, understanding and inhibiting their functions are important for the development of targeted therapy. Because FAK and Pyk2 are involved in many different cellular functions, designing drugs with partial and function-specific inhibitory effects would be desirable. Here, we summarise recent progress in understanding the structural mechanism of how the tug-of-war between intramolecular and intermolecular interactions allows these protein 'nanomachines' to become activated in a site-specific manner.
Collapse
Affiliation(s)
- Katarzyna W Walkiewicz
- King Abdullah University of Science and Technology (KAUST), Division of Biological and Environmental Sciences and Engineering, Computational Bioscience Research Center (CBRC), Thuwal, Saudi Arabia
| | - Jean-Antoine Girault
- Inserm, UMR-S 839, F-75005 Paris, France; Université Pierre & Marie Curie (UPMC), Sorbonne Universités, F-75005 Paris, France; Institut du Fer à Moulin, F-75005 Paris, France
| | - Stefan T Arold
- King Abdullah University of Science and Technology (KAUST), Division of Biological and Environmental Sciences and Engineering, Computational Bioscience Research Center (CBRC), Thuwal, Saudi Arabia.
| |
Collapse
|
3026
|
Kiddle SJ, Steves CJ, Mehta M, Simmons A, Xu X, Newhouse S, Sattlecker M, Ashton NJ, Bazenet C, Killick R, Adnan J, Westman E, Nelson S, Soininen H, Kloszewska I, Mecocci P, Tsolaki M, Vellas B, Curtis C, Breen G, Williams SCR, Lovestone S, Spector TD, Dobson RJB. Plasma protein biomarkers of Alzheimer's disease endophenotypes in asymptomatic older twins: early cognitive decline and regional brain volumes. Transl Psychiatry 2015; 5:e584. [PMID: 26080319 PMCID: PMC4490288 DOI: 10.1038/tp.2015.78] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Accepted: 05/07/2015] [Indexed: 01/08/2023] Open
Abstract
There is great interest in blood-based markers of Alzheimer's disease (AD), especially in its pre-symptomatic stages. Therefore, we aimed to identify plasma proteins whose levels associate with potential markers of pre-symptomatic AD. We also aimed to characterise confounding by genetics and the effect of genetics on blood proteins in general. Panel-based proteomics was performed using SOMAscan on plasma samples from TwinsUK subjects who are asymptomatic for AD, measuring the level of 1129 proteins. Protein levels were compared with 10-year change in CANTAB-paired associates learning (PAL; n = 195), and regional brain volumes (n = 34). Replication of proteins associated with regional brain volumes was performed in 254 individuals from the AddNeuroMed cohort. Across all the proteins measured, genetic factors were found to explain ~26% of the variability in blood protein levels on average. The plasma level of the mitogen-activated protein kinase (MAPK) MAPKAPK5 protein was found to positively associate with the 10-year change in CANTAB-PAL in both the individual and twin difference context. The plasma level of protein MAP2K4 was found to suggestively associate negatively (Q < 0.1) with the volume of the left entorhinal cortex. Future studies will be needed to assess the specificity of MAPKAPK5 and MAP2K4 to eventual conversion to AD.
Collapse
Affiliation(s)
- S J Kiddle
- MRC Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - C J Steves
- Department of Twin Research & Genetic Epidemiology, King's College London, London, UK
| | - M Mehta
- Centre for Neuroimaging Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - A Simmons
- Centre for Neuroimaging Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- NIHR Biomedical Research Centre for Mental Health and Biomedical Research Unit for Dementia at South London and Maudsley NHS Foundation, London, UK
| | - X Xu
- MRC Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- NIHR Biomedical Research Centre for Mental Health and Biomedical Research Unit for Dementia at South London and Maudsley NHS Foundation, London, UK
| | - S Newhouse
- MRC Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- NIHR Biomedical Research Centre for Mental Health and Biomedical Research Unit for Dementia at South London and Maudsley NHS Foundation, London, UK
| | - M Sattlecker
- MRC Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- NIHR Biomedical Research Centre for Mental Health and Biomedical Research Unit for Dementia at South London and Maudsley NHS Foundation, London, UK
| | - N J Ashton
- NIHR Biomedical Research Centre for Mental Health and Biomedical Research Unit for Dementia at South London and Maudsley NHS Foundation, London, UK
- Department of Old Age Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - C Bazenet
- NIHR Biomedical Research Centre for Mental Health and Biomedical Research Unit for Dementia at South London and Maudsley NHS Foundation, London, UK
- Department of Old Age Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - R Killick
- Department of Old Age Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - J Adnan
- Department of Old Age Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - E Westman
- Department of Neurobiology, Care Sciences and Society, Karolinska Instituet, Stockholm, Sweden
| | | | - H Soininen
- Institute of Clinical Medicine – Neurology, University of Eastern Finland, Kuopio, Finland
- NeuroCenter, Kuopio University Hospital, Kuopio, Finland
| | - I Kloszewska
- Department of Old Age Psychiatry and Psychotic disorders, Medical University of Łódź, Łódź, Poland
| | - P Mecocci
- Institute of Gerontology and Geriatrics, University of Perugia, Perugia, Italy
| | - M Tsolaki
- 3rd Department of Neurology, Aristotle University, Thessaloniki, Greece
| | - B Vellas
- Department of Internal Medicine and Geriatric Medicine, INSERM University of Toulouse, Toulouse, France
| | - C Curtis
- MRC Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- NIHR Biomedical Research Centre for Mental Health and Biomedical Research Unit for Dementia at South London and Maudsley NHS Foundation, London, UK
| | - G Breen
- MRC Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- NIHR Biomedical Research Centre for Mental Health and Biomedical Research Unit for Dementia at South London and Maudsley NHS Foundation, London, UK
| | - S C R Williams
- Centre for Neuroimaging Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - S Lovestone
- Department of Psychiatry, Oxford University, Warneford Hospital, Oxford, UK
| | - T D Spector
- Department of Twin Research & Genetic Epidemiology, King's College London, London, UK
| | - R J B Dobson
- MRC Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- NIHR Biomedical Research Centre for Mental Health and Biomedical Research Unit for Dementia at South London and Maudsley NHS Foundation, London, UK
| |
Collapse
|
3027
|
Sleegers K, Bettens K, De Roeck A, Van Cauwenberghe C, Cuyvers E, Verheijen J, Struyfs H, Van Dongen J, Vermeulen S, Engelborghs S, Vandenbulcke M, Vandenberghe R, De Deyn PP, Van Broeckhoven C. A 22-single nucleotide polymorphism Alzheimer's disease risk score correlates with family history, onset age, and cerebrospinal fluid Aβ42. Alzheimers Dement 2015; 11:1452-1460. [PMID: 26086184 DOI: 10.1016/j.jalz.2015.02.013] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Revised: 12/26/2014] [Accepted: 02/20/2015] [Indexed: 11/29/2022]
Abstract
INTRODUCTION The ability to identify individuals at increased genetic risk for Alzheimer's disease (AD) may streamline biomarker and drug trials and aid clinical and personal decision making. METHODS We evaluated the discriminative ability of a genetic risk score (GRS) covering 22 published genetic risk loci for AD in 1162 Flanders-Belgian AD patients and 1019 controls and assessed correlations with family history, onset age, and cerebrospinal fluid (CSF) biomarkers (Aβ1-42, T-Tau, P-Tau181P). RESULTS A GRS including all single nucleotide polymorphisms (SNPs) and age-specific APOE ε4 weights reached area under the curve (AUC) 0.70, which increased to AUC 0.78 for patients with familial predisposition. Risk of AD increased with GRS (odds ratio, 2.32 (95% confidence interval 2.08-2.58 per unit; P < 1.0e(-15)). Onset age and CSF Aβ1-42 decreased with increasing GRS (Ponset_age = 9.0e(-11); PAβ = 8.9e(-7)). DISCUSSION The discriminative ability of this 22-SNP GRS is still limited, but these data illustrate that incorporation of age-specific weights improves discriminative ability. GRS-phenotype correlations highlight the feasibility of identifying individuals at highest susceptibility.
Collapse
Affiliation(s)
- Kristel Sleegers
- Neurodegenerative Brain Diseases Group, Department of Molecular Genetics, VIB, Antwerp, Belgium; Institute Born-Bunge, University of Antwerp, Antwerp, Belgium.
| | - Karolien Bettens
- Neurodegenerative Brain Diseases Group, Department of Molecular Genetics, VIB, Antwerp, Belgium; Institute Born-Bunge, University of Antwerp, Antwerp, Belgium
| | - Arne De Roeck
- Neurodegenerative Brain Diseases Group, Department of Molecular Genetics, VIB, Antwerp, Belgium; Institute Born-Bunge, University of Antwerp, Antwerp, Belgium
| | - Caroline Van Cauwenberghe
- Neurodegenerative Brain Diseases Group, Department of Molecular Genetics, VIB, Antwerp, Belgium; Institute Born-Bunge, University of Antwerp, Antwerp, Belgium
| | - Elise Cuyvers
- Neurodegenerative Brain Diseases Group, Department of Molecular Genetics, VIB, Antwerp, Belgium; Institute Born-Bunge, University of Antwerp, Antwerp, Belgium
| | - Jan Verheijen
- Neurodegenerative Brain Diseases Group, Department of Molecular Genetics, VIB, Antwerp, Belgium; Institute Born-Bunge, University of Antwerp, Antwerp, Belgium
| | - Hanne Struyfs
- Institute Born-Bunge, University of Antwerp, Antwerp, Belgium
| | - Jasper Van Dongen
- Neurodegenerative Brain Diseases Group, Department of Molecular Genetics, VIB, Antwerp, Belgium; Institute Born-Bunge, University of Antwerp, Antwerp, Belgium
| | - Steven Vermeulen
- Neurodegenerative Brain Diseases Group, Department of Molecular Genetics, VIB, Antwerp, Belgium; Institute Born-Bunge, University of Antwerp, Antwerp, Belgium
| | - Sebastiaan Engelborghs
- Institute Born-Bunge, University of Antwerp, Antwerp, Belgium; Department of Neurology and Memory Clinic, Hospital Network Antwerp Middelheim and Hoge Beuken, Antwerp, Belgium
| | - Mathieu Vandenbulcke
- Department of Old Age Psychiatry and Memory Clinic, University of Leuven and University Hospitals Leuven Gasthuisberg, Leuven, Belgium
| | - Rik Vandenberghe
- Laboratory for Cognitive Neurology, Department of Neurology, University of Leuven and University Hospitals Leuven Gasthuisberg, Leuven, Belgium
| | - Peter Paul De Deyn
- Institute Born-Bunge, University of Antwerp, Antwerp, Belgium; Department of Neurology and Memory Clinic, Hospital Network Antwerp Middelheim and Hoge Beuken, Antwerp, Belgium; Department of Neurology and Alzheimer Research Center, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Christine Van Broeckhoven
- Neurodegenerative Brain Diseases Group, Department of Molecular Genetics, VIB, Antwerp, Belgium; Institute Born-Bunge, University of Antwerp, Antwerp, Belgium.
| | | |
Collapse
|
3028
|
Liu Z, Zhao J, Tan Y, Tang M, Li G. Systematic tracking of dysregulated modules identifies disrupted pathways in narcolepsy. Int J Clin Exp Med 2015; 8:9384-93. [PMID: 26309600 PMCID: PMC4538164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Accepted: 05/25/2015] [Indexed: 06/04/2023]
Abstract
OBJECTIVE The objective of this work is to identify disrupted pathways in narcolepsy according to systematically tracking the dysregulated modules of reweighted Protein-Protein Interaction (PPI) networks. Here, we performed systematic identification and comparison of modules across normal and narcolepsy conditions by integrating PPI and gene-expression data. METHODS Firstly, normal and narcolepsy PPI network were inferred and reweighted based on Pearson correlation coefficient (PCC). Then, modules in PPI network were explored by clique-merging algorithm and we identified altered modules using a maximum weight bipartite matching and in non-increasing order. Finally, pathways enrichment analyses of genes in altered modules were carried out based on Expression Analysis Systematic Explored (EASE) test to illuminate the biological pathways in narcolepsy. RESULTS Our analyses revealed that 235 altered modules were identified by comparing modules in normal and narcolepsy PPI network. Pathway functional enrichment analysis of disrupted module genes showed 59 disrupted pathways within threshold P < 0.001. The most significant five disrupted pathways were: oxidative phosphorylation, T cell receptor signaling pathway, cell cycle, Alzheimer's disease and focal adhesion. CONCLUSIONS We successfully identified disrupted pathways and these pathways might be potential biological processes for treatment and etiology mechanism in narcolepsy.
Collapse
Affiliation(s)
- Zhenhua Liu
- Department of Neurology and Shandong Sleep Medical Center, Provincial Hospital Affiliated to Shandong UniversityJinan 250021, China
| | - Jiali Zhao
- Department of Neurology, Provincial Hospital Affiliated to Shandong UniversityJinan 250021, China
| | - Yinyin Tan
- Department of Neurology, Provincial Hospital Affiliated to Shandong UniversityJinan 250021, China
| | - Minglu Tang
- Shandong Sleep Medical Center, Provincial Hospital Affiliated to Shandong UniversityJinan 250021, China
| | - Guanzhen Li
- Shandong Sleep Medical Center, Provincial Hospital Affiliated to Shandong UniversityJinan 250021, China
| |
Collapse
|
3029
|
Nordestgaard LT, Tybjærg-Hansen A, Nordestgaard BG, Frikke-Schmidt R. Loss-of-function mutation in ABCA1 and risk of Alzheimer's disease and cerebrovascular disease. Alzheimers Dement 2015; 11:1430-1438. [PMID: 26079414 DOI: 10.1016/j.jalz.2015.04.006] [Citation(s) in RCA: 107] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Revised: 03/23/2015] [Accepted: 04/16/2015] [Indexed: 01/01/2023]
Abstract
INTRODUCTION The adenosine triphosphate-binding cassette transporter A1 (ABCA1) is a major cholesterol transporter highly expressed in the liver and brain. In the brain, ABCA1 lipidates apolipoprotein E (apoE), facilitates clearance of amyloid-β, and may be involved in maintenance of the blood-brain barrier via apoE-mediated pathways. METHODS We tested whether a loss-of-function mutation in ABCA1, N1800H, is associated with plasma levels of apoE and with risk of Alzheimer's disease (AD) in 92,726 individuals and with risk of cerebrovascular disease in 64,181 individuals. RESULTS N1800H AC (0.2%) versus AA (99.8%) was associated with a 13% lower plasma level of apoE (P = 1 × 10(-11)). Multifactorially adjusted hazard ratios for N1800H AC versus AA were 4.13 (95% confidence interval, 1.32-12.9) for AD, 2.46 (1.10-5.50) for cerebrovascular disease, and 8.28 (2.03-33.7) for the hemorrhagic stroke subtype. DISCUSSION A loss-of-function mutation in ABCA1, present in 1:500 individuals, was associated with low plasma levels of apoE and with high risk of AD and cerebrovascular disease in the general population.
Collapse
Affiliation(s)
- Liv Tybjærg Nordestgaard
- Department of Clinical Biochemistry, Rigshospitalet, Copenhagen University Hospitals, Copenhagen, Denmark
| | - Anne Tybjærg-Hansen
- Department of Clinical Biochemistry, Rigshospitalet, Copenhagen University Hospitals, Copenhagen, Denmark; The Copenhagen General Population Study, Herlev Hospital, Copenhagen University Hospitals, Herlev, Denmark; Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Børge G Nordestgaard
- The Copenhagen General Population Study, Herlev Hospital, Copenhagen University Hospitals, Herlev, Denmark; Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Department of Clinical Biochemistry, Herlev Hospital, Copenhagen University Hospitals, Herlev, Denmark
| | - Ruth Frikke-Schmidt
- Department of Clinical Biochemistry, Rigshospitalet, Copenhagen University Hospitals, Copenhagen, Denmark; The Copenhagen General Population Study, Herlev Hospital, Copenhagen University Hospitals, Herlev, Denmark; Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
3030
|
Desikan RS, Schork AJ, Wang Y, Thompson WK, Dehghan A, Ridker PM, Chasman DI, McEvoy LK, Holland D, Chen CH, Karow DS, Brewer JB, Hess CP, Williams J, Sims R, O'Donovan MC, Choi SH, Bis JC, Ikram MA, Gudnason V, DeStefano AL, van der Lee SJ, Psaty BM, van Duijn CM, Launer L, Seshadri S, Pericak-Vance MA, Mayeux R, Haines JL, Farrer LA, Hardy J, Ulstein ID, Aarsland D, Fladby T, White LR, Sando SB, Rongve A, Witoelar A, Djurovic S, Hyman BT, Snaedal J, Steinberg S, Stefansson H, Stefansson K, Schellenberg GD, Andreassen OA, Dale AM, for the Inflammation working group, IGAP and DemGene Investigators. Polygenic Overlap Between C-Reactive Protein, Plasma Lipids, and Alzheimer Disease. Circulation 2015; 131:2061-2069. [PMID: 25862742 PMCID: PMC4677995 DOI: 10.1161/circulationaha.115.015489] [Citation(s) in RCA: 106] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Accepted: 04/06/2015] [Indexed: 11/16/2022]
Abstract
BACKGROUND Epidemiological findings suggest a relationship between Alzheimer disease (AD), inflammation, and dyslipidemia, although the nature of this relationship is not well understood. We investigated whether this phenotypic association arises from a shared genetic basis. METHODS AND RESULTS Using summary statistics (P values and odds ratios) from genome-wide association studies of >200 000 individuals, we investigated overlap in single-nucleotide polymorphisms associated with clinically diagnosed AD and C-reactive protein (CRP), triglycerides, and high- and low-density lipoprotein levels. We found up to 50-fold enrichment of AD single-nucleotide polymorphisms for different levels of association with C-reactive protein, low-density lipoprotein, high-density lipoprotein, and triglyceride single-nucleotide polymorphisms using a false discovery rate threshold <0.05. By conditioning on polymorphisms associated with the 4 phenotypes, we identified 55 loci associated with increased AD risk. We then conducted a meta-analysis of these 55 variants across 4 independent AD cohorts (total: n=29 054 AD cases and 114 824 healthy controls) and discovered 2 genome-wide significant variants on chromosome 4 (rs13113697; closest gene, HS3ST1; odds ratio=1.07; 95% confidence interval=1.05-1.11; P=2.86×10(-8)) and chromosome 10 (rs7920721; closest gene, ECHDC3; odds ratio=1.07; 95% confidence interval=1.04-1.11; P=3.38×10(-8)). We also found that gene expression of HS3ST1 and ECHDC3 was altered in AD brains compared with control brains. CONCLUSIONS We demonstrate genetic overlap between AD, C-reactive protein, and plasma lipids. By conditioning on the genetic association with the cardiovascular phenotypes, we identify novel AD susceptibility loci, including 2 genome-wide significant variants conferring increased risk for AD.
Collapse
Affiliation(s)
- Rahul S. Desikan
- Department of Radiology, University of California, San Diego, La Jolla, CA
| | - Andrew J. Schork
- Department of Cognitive Science, University of California, San Diego, La Jolla, CA
| | - Yunpeng Wang
- Department of Neurosciences, University of California, San Diego, La Jolla, CA
- NORMENT; Institute of Clinical Medicine, University of Oslo and Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Wesley K. Thompson
- Department of Psychiatry, University of California, San Diego, La Jolla, CA
| | - Abbas Dehghan
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, Netherlands
| | - Paul M Ridker
- Center for Cardiovascular Disease Prevention, Division of Preventative Medicine, Brigham and Women's Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA
| | - Daniel I. Chasman
- Center for Cardiovascular Disease Prevention, Division of Preventative Medicine, Brigham and Women's Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA
| | - Linda K. McEvoy
- Department of Radiology, University of California, San Diego, La Jolla, CA
| | - Dominic Holland
- Department of Neurosciences, University of California, San Diego, La Jolla, CA
| | - Chi-Hua Chen
- Department of Radiology, University of California, San Diego, La Jolla, CA
- NORMENT; Institute of Clinical Medicine, University of Oslo and Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - David S. Karow
- Department of Radiology, University of California, San Diego, La Jolla, CA
| | - James B. Brewer
- Department of Radiology, University of California, San Diego, La Jolla, CA
- Department of Neurosciences, University of California, San Diego, La Jolla, CA
| | - Christopher P. Hess
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA
| | - Julie Williams
- Medical Research Council Centre for Neuropsychiatric Genetics and Genomics, Institute of Psychological Medicine and Clinical Neurosciences, Cardiff University School of Medicine, Wales, United Kingdom
| | - Rebecca Sims
- Medical Research Council Centre for Neuropsychiatric Genetics and Genomics, Institute of Psychological Medicine and Clinical Neurosciences, Cardiff University School of Medicine, Wales, United Kingdom
| | - Michael C. O'Donovan
- Medical Research Council Centre for Neuropsychiatric Genetics and Genomics, Institute of Psychological Medicine and Clinical Neurosciences, Cardiff University School of Medicine, Wales, United Kingdom
| | - Seung Hoan Choi
- Department of Biostatistics, School of Public Health, Boston University, Boston, MA
| | - Joshua C. Bis
- Deparment of Internal Medicine, University of Washington, Seattle, WA
| | - M. Arfan Ikram
- Deparment of Epidemiology, Erasmus MC, Rotterdam, Netherlands
- Departments of Radiology, Erasmus MC, Rotterdam, Netherlands
| | - Vilmundur Gudnason
- Icelandic Heart Association, Kopavogur, Iceland; Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | - Anita L. DeStefano
- Department of Biostatistics, School of Public Health, Boston University, Boston, MA
- The National Heart Lung and Blood Institute's Framingham Heart Study, Framingham, MA
| | | | - Bruce M. Psaty
- Cardiovascular Health Research Unit, Departments of Medicine, Epidemiology and Health Services, University of Washington, Seattle, WA; Group Health Research Institute, Group Health Cooperative, Seattle, WA
| | | | - Lenore Launer
- Laboratory of Epidemiology, Demography and Biometry, Intramural Research Program, National Institute on Aging, Washington, DC
| | - Sudha Seshadri
- The National Heart Lung and Blood Institute's Framingham Heart Study, Framingham, MA
- Department of Neurology, Boston University School of Medicine, Boston, MA
| | | | - Richard Mayeux
- Department of Neurology, Taub Institute on Alzheimer's Disease and the Aging Brain, and Gertrude H. Sergievsky Center, Columbia University, New York, NY
| | - Jonathan L. Haines
- Department of Epidemiology and Biostatistics and Institute for Computational Biology, Case Western University, Cleveland, OH
| | - Lindsay A. Farrer
- Departments of Medicine (Biomedical Genetics), Neurology, Ophthalmology, Biostatistics, and Epidemiology, Boston University Schools of Medicine and Public Health, Boston, MA
| | - John Hardy
- Department of Molecular Neuroscience, UCL Institute of Neurology, London, United Kingdom
| | - Ingun Dina Ulstein
- Norwegian Centre for Dementia Research, Department of Old Age Psychiatry, Oslo University Hospital, Oslo, Norway
| | - Dag Aarsland
- Department of Cognitive Science, University of California, San Diego, La Jolla, CA
- NORMENT; Institute of Clinical Medicine, University of Oslo and Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
- Department of Psychiatry, University of California, San Diego, La Jolla, CA
| | - Tormod Fladby
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Department of Neurology, Akershus University Hospital, Norway
| | - Linda R. White
- Department of Neuroscience, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
- Department of Neurology, St Olav's Hospital, Trondheim University Hospital, Norway
| | - Sigrid B. Sando
- Department of Neuroscience, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
- Department of Neurology, St Olav's Hospital, Trondheim University Hospital, Norway
| | - Arvid Rongve
- Department of Psychiatry, Haugesund Hospital, Haugesund, Norway
| | - Aree Witoelar
- NORMENT; Institute of Clinical Medicine, University of Oslo and Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Srdjan Djurovic
- Department of Medical Genetics, Oslo University Hospital, Oslo and NORMENT, KG Jebsen Centre for Psychosis Research; Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Bradley T. Hyman
- Department of Neurology, Massachusetts General Hospital, Boston, MA
| | - Jon Snaedal
- Department of Geriatric Medicine, University Hospital Reykjavik, Iceland
| | | | | | - Kari Stefansson
- deCODE Genetics, Reykjavik, Iceland
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | - Gerard D. Schellenberg
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - Ole A. Andreassen
- NORMENT; Institute of Clinical Medicine, University of Oslo and Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
- Department of Psychiatry, University of California, San Diego, La Jolla, CA
| | - Anders M. Dale
- Department of Radiology, University of California, San Diego, La Jolla, CA
- Department of Cognitive Science, University of California, San Diego, La Jolla, CA
- Department of Neurosciences, University of California, San Diego, La Jolla, CA
- NORMENT; Institute of Clinical Medicine, University of Oslo and Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | | |
Collapse
|
3031
|
Wes PD, Holtman IR, Boddeke EW, Möller T, Eggen BJ. Next generation transcriptomics and genomics elucidate biological complexity of microglia in health and disease. Glia 2015; 64:197-213. [DOI: 10.1002/glia.22866] [Citation(s) in RCA: 93] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Accepted: 05/11/2015] [Indexed: 12/11/2022]
Affiliation(s)
| | - Inge R. Holtman
- Department of NeuroscienceSection Medical Physiology, University of Groningen, University Medical Center GroningenGroningen The Netherlands
| | - Erik W.G.M. Boddeke
- Department of NeuroscienceSection Medical Physiology, University of Groningen, University Medical Center GroningenGroningen The Netherlands
| | | | - Bart J.L. Eggen
- Department of NeuroscienceSection Medical Physiology, University of Groningen, University Medical Center GroningenGroningen The Netherlands
| |
Collapse
|
3032
|
Lu Y, Liu W, Wang X. TREM2 variants and risk of Alzheimer's disease: a meta-analysis. Neurol Sci 2015; 36:1881-8. [PMID: 26037549 DOI: 10.1007/s10072-015-2274-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 05/28/2015] [Indexed: 02/08/2023]
Abstract
Recent studies show that heterozygous variant of triggering receptor expressed on myeloid cells 2 (TREM2) increase the risk of Alzheimer's disease (AD) but with inconclusive results. Here, we conducted a meta-analysis to summarize and clarify the association between TREM2 variants and AD, and examined the relationship between TREM2 genetic variant and the etiology of AD. Relevant case-control studies were retrieved and collected according to established inclusion criteria. Odds ratio (OR) and 95% confidence interval (95% CI) were used to estimate the associations between three TREM2 variants (rs75932628, rs104894002, and rs143332484) and AD. In overall meta-analysis, the summary ORs for rs75932628, rs104894002, and rs143332484 were 2.70 [95% CI: 2.24, 3.24; P < 0.001], 7.21 (95% CI: 1.28, 40.78; P = 0.025), and 1.65 (95% CI: 1.24, 2.21; P = 0.001), respectively, indicating that the TREM2 rs75932628, rs104894002, and rs143332484 may contribute to AD risk. However, sensitivity analysis showed that the results of rs104894002 and rs143332484 should be interpreted with caution, and larger sample size, particularly in different ethnicities, are needed to validate the two variants. The current meta-analysis demonstrates that TREM2 is a candidate gene for AD susceptibility, and TREM2 variant rs75932628 may be a risk factor for AD.
Collapse
Affiliation(s)
- Yanjun Lu
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Wei Liu
- Department of Public Health, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xiong Wang
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
3033
|
Østergaard SD, Mukherjee S, Sharp SJ, Proitsi P, Lotta LA, Day F, Perry JRB, Boehme KL, Walter S, Kauwe JS, Gibbons LE, Alzheimer’s Disease Genetics Consortium, The GERAD1 Consortium, EPIC-InterAct Consortium, Larson EB, Powell JF, Langenberg C, Crane PK, Wareham NJ, Scott RA. Associations between Potentially Modifiable Risk Factors and Alzheimer Disease: A Mendelian Randomization Study. PLoS Med 2015; 12:e1001841; discussion e1001841. [PMID: 26079503 PMCID: PMC4469461 DOI: 10.1371/journal.pmed.1001841] [Citation(s) in RCA: 153] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Accepted: 05/08/2015] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Potentially modifiable risk factors including obesity, diabetes, hypertension, and smoking are associated with Alzheimer disease (AD) and represent promising targets for intervention. However, the causality of these associations is unclear. We sought to assess the causal nature of these associations using Mendelian randomization (MR). METHODS AND FINDINGS We used SNPs associated with each risk factor as instrumental variables in MR analyses. We considered type 2 diabetes (T2D, NSNPs = 49), fasting glucose (NSNPs = 36), insulin resistance (NSNPs = 10), body mass index (BMI, NSNPs = 32), total cholesterol (NSNPs = 73), HDL-cholesterol (NSNPs = 71), LDL-cholesterol (NSNPs = 57), triglycerides (NSNPs = 39), systolic blood pressure (SBP, NSNPs = 24), smoking initiation (NSNPs = 1), smoking quantity (NSNPs = 3), university completion (NSNPs = 2), and years of education (NSNPs = 1). We calculated MR estimates of associations between each exposure and AD risk using an inverse-variance weighted approach, with summary statistics of SNP-AD associations from the International Genomics of Alzheimer's Project, comprising a total of 17,008 individuals with AD and 37,154 cognitively normal elderly controls. We found that genetically predicted higher SBP was associated with lower AD risk (odds ratio [OR] per standard deviation [15.4 mm Hg] of SBP [95% CI]: 0.75 [0.62-0.91]; p = 3.4 × 10(-3)). Genetically predicted higher SBP was also associated with a higher probability of taking antihypertensive medication (p = 6.7 × 10(-8)). Genetically predicted smoking quantity was associated with lower AD risk (OR per ten cigarettes per day [95% CI]: 0.67 [0.51-0.89]; p = 6.5 × 10(-3)), although we were unable to stratify by smoking history; genetically predicted smoking initiation was not associated with AD risk (OR = 0.70 [0.37, 1.33]; p = 0.28). We saw no evidence of causal associations between glycemic traits, T2D, BMI, or educational attainment and risk of AD (all p > 0.1). Potential limitations of this study include the small proportion of intermediate trait variance explained by genetic variants and other implicit limitations of MR analyses. CONCLUSIONS Inherited lifetime exposure to higher SBP is associated with lower AD risk. These findings suggest that higher blood pressure--or some environmental exposure associated with higher blood pressure, such as use of antihypertensive medications--may reduce AD risk.
Collapse
Affiliation(s)
- Søren D. Østergaard
- Research Department P, Aarhus University Hospital, Risskov, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Shubhabrata Mukherjee
- Department of Medicine, University of Washington, Seattle, Washington, United States of America
| | - Stephen J. Sharp
- MRC Epidemiology Unit, Institute of Metabolic Science, University of Cambridge, Cambridge, United Kingdom
| | - Petroula Proitsi
- Department of Basic and Clinical Neuroscience, King’s College London, Institute of Psychiatry, Psychology and Neuroscience, London, United Kingdom
| | - Luca A. Lotta
- MRC Epidemiology Unit, Institute of Metabolic Science, University of Cambridge, Cambridge, United Kingdom
| | - Felix Day
- MRC Epidemiology Unit, Institute of Metabolic Science, University of Cambridge, Cambridge, United Kingdom
| | - John R. B. Perry
- MRC Epidemiology Unit, Institute of Metabolic Science, University of Cambridge, Cambridge, United Kingdom
| | - Kevin L. Boehme
- Department of Biology, Brigham Young University, Provo, Utah, United States of America
| | - Stefan Walter
- Department of Epidemiology and Biostatistics, School of Medicine, University of California San Francisco, San Francisco, California, United States of America
| | - John S. Kauwe
- Department of Biology, Brigham Young University, Provo, Utah, United States of America
| | - Laura E. Gibbons
- Department of Medicine, University of Washington, Seattle, Washington, United States of America
| | | | | | | | - Eric B. Larson
- Department of Medicine, University of Washington, Seattle, Washington, United States of America
- Group Health Research Institute, Seattle, Washington, United States of America
| | - John F. Powell
- Department of Basic and Clinical Neuroscience, King’s College London, Institute of Psychiatry, Psychology and Neuroscience, London, United Kingdom
| | - Claudia Langenberg
- MRC Epidemiology Unit, Institute of Metabolic Science, University of Cambridge, Cambridge, United Kingdom
| | - Paul K. Crane
- Department of Medicine, University of Washington, Seattle, Washington, United States of America
| | - Nicholas J. Wareham
- MRC Epidemiology Unit, Institute of Metabolic Science, University of Cambridge, Cambridge, United Kingdom
| | - Robert A. Scott
- MRC Epidemiology Unit, Institute of Metabolic Science, University of Cambridge, Cambridge, United Kingdom
- * E-mail:
| |
Collapse
|
3034
|
Bridging Integrator 1 (BIN1) Genotype Effects on Working Memory, Hippocampal Volume, and Functional Connectivity in Young Healthy Individuals. Neuropsychopharmacology 2015; 40:1794-803. [PMID: 25630570 PMCID: PMC4915264 DOI: 10.1038/npp.2015.30] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2014] [Revised: 01/15/2015] [Accepted: 01/17/2015] [Indexed: 01/08/2023]
Abstract
Alzheimer's disease (AD) is the most common form of dementia and exhibits a considerable level of heritability. The bridging integrator 1 (BIN1) gene has recently been identified in several large genome-wide association studies (GWAS) as the second most important risk locus for AD following apolipoprotein E (APOE). However, how and when the established genetic risk locus BIN1 rs744373 confers risk to late-onset AD has yet to be determined. Here using an imaging genetic strategy in large-sample Chinese subjects, we show that healthy homozygous carriers of the rs744373 risk allele exhibit worse high-load working memory (WM) performance, larger hippocampal volume and lower functional connectivity between the bilateral hippocampus and the right dorsolateral prefrontal cortex (DLPFC), mirroring clinical evidence of disturbed memory and connectivity in patients. Our findings demonstrate that rs744373 itself or a variation in linkage disequilibrium may provide a neurogenetic mechanism for BIN1 while further validating the possibility of combining genetic and neuroimaging strategies to monitor individuals at risk for AD.
Collapse
|
3035
|
Snyder HM, Corriveau RA, Craft S, Faber JE, Greenberg SM, Knopman D, Lamb BT, Montine TJ, Nedergaard M, Schaffer CB, Schneider JA, Wellington C, Wilcock DM, Zipfel GJ, Zlokovic B, Bain LJ, Bosetti F, Galis ZS, Koroshetz W, Carrillo MC. Vascular contributions to cognitive impairment and dementia including Alzheimer's disease. Alzheimers Dement 2015; 11:710-7. [PMID: 25510382 PMCID: PMC4731036 DOI: 10.1016/j.jalz.2014.10.008] [Citation(s) in RCA: 451] [Impact Index Per Article: 45.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Revised: 08/22/2014] [Accepted: 10/02/2014] [Indexed: 02/07/2023]
Abstract
Scientific evidence continues to demonstrate the linkage of vascular contributions to cognitive impairment and dementia such as Alzheimer's disease. In December, 2013, the Alzheimer's Association, with scientific input from the National Institute of Neurological Disorders and Stroke and the National Heart, Lung and Blood Institute from the National Institutes of Health, convened scientific experts to discuss the research gaps in our understanding of how vascular factors contribute to Alzheimer's disease and related dementia. This manuscript summarizes the meeting and the resultant discussion, including an outline of next steps needed to move this area of research forward.
Collapse
Affiliation(s)
- Heather M Snyder
- Medical & Scientific Relations, Alzheimer's Association, Chicago, IL, USA.
| | - Roderick A Corriveau
- National Institute on Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Suzanne Craft
- Department of Gerontology and Geriatric Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - James E Faber
- Department of Cell Biology and Physiology, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Steven M Greenberg
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - David Knopman
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | - Bruce T Lamb
- Department of Neurosciences, Cleveland Clinic, Cleveland, OH, USA
| | - Thomas J Montine
- Department of Pathology, University of Washington, Seattle, WA, USA
| | - Maiken Nedergaard
- Division of Glial Disease and Therapeutics, University of Rochester Medical Center, Rochester, NY, USA
| | - Chris B Schaffer
- Department of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | - Julie A Schneider
- Departments of Pathology and Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| | - Cheryl Wellington
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Donna M Wilcock
- Department of Physiology, University of Kentucky, Lexington, KY, USA
| | - Gregory J Zipfel
- Departments of Neurological Surgery and Neurology, Washington University, St Louis, St Louis, MO, USA
| | - Berislav Zlokovic
- Department of Physiology, University of Southern California, Los Angeles, CA, USA
| | - Lisa J Bain
- Independent Science Writer, Elverson, PA, USA
| | - Francesca Bosetti
- National Institute on Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Zorina S Galis
- National Institute of Heart, Lung and Blood, National Institutes of Health, Bethesda, MD, USA
| | - Walter Koroshetz
- National Institute on Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Maria C Carrillo
- Medical & Scientific Relations, Alzheimer's Association, Chicago, IL, USA
| |
Collapse
|
3036
|
Convergent genetic and expression data implicate immunity in Alzheimer's disease. Alzheimers Dement 2015; 11:658-71. [PMID: 25533204 PMCID: PMC4672734 DOI: 10.1016/j.jalz.2014.05.1757] [Citation(s) in RCA: 154] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Revised: 04/04/2014] [Accepted: 05/29/2014] [Indexed: 12/24/2022]
Abstract
BACKGROUND Late-onset Alzheimer's disease (AD) is heritable with 20 genes showing genome-wide association in the International Genomics of Alzheimer's Project (IGAP). To identify the biology underlying the disease, we extended these genetic data in a pathway analysis. METHODS The ALIGATOR and GSEA algorithms were used in the IGAP data to identify associated functional pathways and correlated gene expression networks in human brain. RESULTS ALIGATOR identified an excess of curated biological pathways showing enrichment of association. Enriched areas of biology included the immune response (P = 3.27 × 10(-12) after multiple testing correction for pathways), regulation of endocytosis (P = 1.31 × 10(-11)), cholesterol transport (P = 2.96 × 10(-9)), and proteasome-ubiquitin activity (P = 1.34 × 10(-6)). Correlated gene expression analysis identified four significant network modules, all related to the immune response (corrected P = .002-.05). CONCLUSIONS The immune response, regulation of endocytosis, cholesterol transport, and protein ubiquitination represent prime targets for AD therapeutics.
Collapse
|
3037
|
Pedersen JT, Sigurdsson EM. Tau immunotherapy for Alzheimer's disease. Trends Mol Med 2015; 21:394-402. [DOI: 10.1016/j.molmed.2015.03.003] [Citation(s) in RCA: 195] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Revised: 03/11/2015] [Accepted: 03/13/2015] [Indexed: 11/27/2022]
|
3038
|
Kaufman AC, Salazar SV, Haas LT, Yang J, Kostylev MA, Jeng AT, Robinson SA, Gunther EC, van Dyck CH, Nygaard HB, Strittmatter SM. Fyn inhibition rescues established memory and synapse loss in Alzheimer mice. Ann Neurol 2015; 77:953-71. [PMID: 25707991 PMCID: PMC4447598 DOI: 10.1002/ana.24394] [Citation(s) in RCA: 245] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Revised: 02/18/2015] [Accepted: 02/19/2015] [Indexed: 12/15/2022]
Abstract
OBJECTIVE Currently no effective disease-modifying agents exist for the treatment of Alzheimer disease (AD). The Fyn tyrosine kinase is implicated in AD pathology triggered by amyloid-ß oligomers (Aßo) and propagated by Tau. Thus, Fyn inhibition may prevent or delay disease progression. Here, we sought to repurpose the Src family kinase inhibitor oncology compound, AZD0530, for AD. METHODS The pharmacokinetics and distribution of AZD0530 were evaluated in mice. Inhibition of Aßo signaling to Fyn, Pyk2, and Glu receptors by AZD0530 was tested by brain slice assays. After AZD0530 or vehicle treatment of wild-type and AD transgenic mice, memory was assessed by Morris water maze and novel object recognition. For these cohorts, amyloid precursor protein (APP) metabolism, synaptic markers (SV2 and PSD-95), and targets of Fyn (Pyk2 and Tau) were studied by immunohistochemistry and by immunoblotting. RESULTS AZD0530 potently inhibits Fyn and prevents both Aßo-induced Fyn signaling and downstream phosphorylation of the AD risk gene product Pyk2, and of NR2B Glu receptors in brain slices. After 4 weeks of treatment, AZD0530 dosing of APP/PS1 transgenic mice fully rescues spatial memory deficits and synaptic depletion, without altering APP or Aß metabolism. AZD0530 treatment also reduces microglial activation in APP/PS1 mice, and rescues Tau phosphorylation and deposition abnormalities in APP/PS1/Tau transgenic mice. There is no evidence of AZD0530 chronic toxicity. INTERPRETATION Targeting Fyn can reverse memory deficits found in AD mouse models, and rescue synapse density loss characteristic of the disease. Thus, AZD0530 is a promising candidate to test as a potential therapy for AD.
Collapse
Affiliation(s)
- Adam C. Kaufman
- Cellular Neuroscience, Neurodegeneration & Repair, Yale University School of Medicine, New Haven, CT USA
| | - Santiago V. Salazar
- Cellular Neuroscience, Neurodegeneration & Repair, Yale University School of Medicine, New Haven, CT USA
| | - Laura T. Haas
- Cellular Neuroscience, Neurodegeneration & Repair, Yale University School of Medicine, New Haven, CT USA
| | - Jinhee Yang
- Cellular Neuroscience, Neurodegeneration & Repair, Yale University School of Medicine, New Haven, CT USA
| | - Mikhail A. Kostylev
- Cellular Neuroscience, Neurodegeneration & Repair, Yale University School of Medicine, New Haven, CT USA
| | - Amanda T. Jeng
- Cellular Neuroscience, Neurodegeneration & Repair, Yale University School of Medicine, New Haven, CT USA
| | - Sophie A. Robinson
- Cellular Neuroscience, Neurodegeneration & Repair, Yale University School of Medicine, New Haven, CT USA
| | - Erik C. Gunther
- Cellular Neuroscience, Neurodegeneration & Repair, Yale University School of Medicine, New Haven, CT USA
- Department of Neurology, Yale University School of Medicine, New Haven, CT, USA
| | | | - Haakon B. Nygaard
- Cellular Neuroscience, Neurodegeneration & Repair, Yale University School of Medicine, New Haven, CT USA
- Department of Neurology, Yale University School of Medicine, New Haven, CT, USA
| | - Stephen M. Strittmatter
- Cellular Neuroscience, Neurodegeneration & Repair, Yale University School of Medicine, New Haven, CT USA
- Department of Neurology, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
3039
|
Mitochondrial DNA mutations in neurodegeneration. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2015; 1847:1401-11. [PMID: 26014345 DOI: 10.1016/j.bbabio.2015.05.015] [Citation(s) in RCA: 108] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Revised: 05/14/2015] [Accepted: 05/17/2015] [Indexed: 12/13/2022]
Abstract
Mitochondrial dysfunction is observed in both the aging brain, and as a core feature of several neurodegenerative diseases. A central mechanism mediating this dysfunction is acquired molecular damage to mitochondrial DNA (mtDNA). In addition, inherited stable mtDNA variation (mitochondrial haplogroups), and inherited low level variants (heteroplasmy) have also been associated with the development of neurodegenerative disease and premature neural aging respectively. Herein we review the evidence for both inherited and acquired mtDNA mutations contributing to neural aging and neurodegenerative disease. This article is part of a Special Issue entitled: Mitochondrial Dysfunction in Aging.
Collapse
|
3040
|
Humphries C, Kohli MA, Whitehead P, Mash DC, Pericak-Vance MA, Gilbert J. Alzheimer disease (AD) specific transcription, DNA methylation and splicing in twenty AD associated loci. Mol Cell Neurosci 2015; 67:37-45. [PMID: 26004081 DOI: 10.1016/j.mcn.2015.05.003] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Revised: 05/15/2015] [Accepted: 05/20/2015] [Indexed: 12/15/2022] Open
Abstract
Genome-wide association studies have identified twenty loci associated with late-onset Alzheimer disease (LOAD). We examined each of the twenty loci, specifically the ±50kb region surrounding the most strongly associated variant, for changes in gene(s) transcription specific to LOAD. Post-mortem human brain samples were examined for expression, methylation, and splicing differences. LOAD specific differences were detected by comparing LOAD to normal and "disease" controls. Eight loci, prominently ABCA7, contain LOAD specific differences. Significant changes in the CELF1 and ZCWPW1 loci occurred in genes not located nearest the associated variant, suggesting that these genes should be investigated further as LOAD candidates.
Collapse
Affiliation(s)
- Crystal Humphries
- John P. Hussman Institute for Human Genomics, University of Miami, Miller School of Medicine, Miami, FL 33136, USA; Dr. John T. Macdonald Foundation Department of Human Genetics, University of Miami, Miller School of Medicine, Miami, FL 33136, USA
| | - Martin A Kohli
- John P. Hussman Institute for Human Genomics, University of Miami, Miller School of Medicine, Miami, FL 33136, USA
| | - Patrice Whitehead
- John P. Hussman Institute for Human Genomics, University of Miami, Miller School of Medicine, Miami, FL 33136, USA
| | - Deborah C Mash
- Department of Neurology, University of Miami, Miller School of Medicine, FL 33136, USA
| | - Margaret A Pericak-Vance
- John P. Hussman Institute for Human Genomics, University of Miami, Miller School of Medicine, Miami, FL 33136, USA; Dr. John T. Macdonald Foundation Department of Human Genetics, University of Miami, Miller School of Medicine, Miami, FL 33136, USA
| | - John Gilbert
- John P. Hussman Institute for Human Genomics, University of Miami, Miller School of Medicine, Miami, FL 33136, USA; Dr. John T. Macdonald Foundation Department of Human Genetics, University of Miami, Miller School of Medicine, Miami, FL 33136, USA.
| |
Collapse
|
3041
|
Iturria-Medina Y, Evans AC. On the central role of brain connectivity in neurodegenerative disease progression. Front Aging Neurosci 2015; 7:90. [PMID: 26052284 PMCID: PMC4439541 DOI: 10.3389/fnagi.2015.00090] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Accepted: 05/01/2015] [Indexed: 12/12/2022] Open
Abstract
Increased brain connectivity, in all its variants, is often considered an evolutionary advantage by mediating complex sensorimotor function and higher cognitive faculties. Interaction among components at all spatial scales, including genes, proteins, neurons, local neuronal circuits and macroscopic brain regions, are indispensable for such vital functions. However, a growing body of evidence suggests that, from the microscopic to the macroscopic levels, such connections might also be a conduit for in intra-brain disease spreading. For instance, cell-to-cell misfolded proteins (MP) transmission and neuronal toxicity are prominent connectivity-mediated factors in aging and neurodegeneration. This article offers an overview of connectivity dysfunctions associated with neurodegeneration, with a specific focus on how these may be central to both normal aging and the neuropathologic degenerative progression.
Collapse
Affiliation(s)
- Yasser Iturria-Medina
- Montreal Neurological Institute Montreal, QC, Canada ; Ludmer Center for NeuroInformatics and Mental Health Montreal, QC, Canada
| | - Alan C Evans
- Montreal Neurological Institute Montreal, QC, Canada ; Ludmer Center for NeuroInformatics and Mental Health Montreal, QC, Canada
| |
Collapse
|
3042
|
Khurana V, Tardiff DF, Chung CY, Lindquist S. Toward stem cell-based phenotypic screens for neurodegenerative diseases. Nat Rev Neurol 2015; 11:339-50. [PMID: 25986505 DOI: 10.1038/nrneurol.2015.79] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
In the absence of a single preventive or disease-modifying strategy, neurodegenerative diseases are becoming increasingly prevalent in our ageing population. The mechanisms underlying neurodegeneration are poorly understood, making the target-based drug screening strategies that are employed by the pharmaceutical industry fraught with difficulty. However, phenotypic screening in neurons and glia derived from patients is now conceivable through unprecedented developments in reprogramming, transdifferentiation, and genome editing. We outline progress in this nascent field, but also consider the formidable hurdles to identifying robust, disease-relevant and screenable cellular phenotypes in patient-derived cells. We illustrate how analysis in the simple baker's yeast cell Saccharaomyces cerevisiae is driving discovery in patient-derived neurons, and how approaches in this model organism can establish a paradigm to guide the development of stem cell-based phenotypic screens.
Collapse
Affiliation(s)
- Vikram Khurana
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, WACC-835, 15 Parkman Street, Boston, MA 02114, USA
| | - Daniel F Tardiff
- Whitehead Institute for Biomedical Research, 9 Cambridge Center, Cambridge, MA 02142, USA
| | - Chee Yeun Chung
- Whitehead Institute for Biomedical Research, 9 Cambridge Center, Cambridge, MA 02142, USA
| | - Susan Lindquist
- Whitehead Institute for Biomedical Research, 9 Cambridge Center, Cambridge, MA 02142, USA
| |
Collapse
|
3043
|
Bridging the gap between statistical and biological epistasis in Alzheimer's disease. BIOMED RESEARCH INTERNATIONAL 2015; 2015:870123. [PMID: 26075270 PMCID: PMC4449899 DOI: 10.1155/2015/870123] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Accepted: 05/05/2015] [Indexed: 12/17/2022]
Abstract
Alzheimer's disease affects millions of people worldwide and incidence is expected to rise as the population ages, but no effective therapies exist despite decades of research and more than 20 known disease markers. Research has shown that Alzheimer's disease's missing heritability remains extensive with an estimated 25% of phenotypic variance unexplained by known variants. The missing heritability may be explained by missing variants or by epistasis. Researchers often focus on individual loci rather than epistatic interactions, which is likely an oversimplification of the underlying biology since most phenotypes are affected by multiple genes. Focusing research efforts on epistasis will be critical to resolving Alzheimer's disease etiology, and a major key to identifying and properly interpreting key epistatic interactions will be bridging the gap between statistical and biological epistasis. This review covers the current state of epistasis research in Alzheimer's disease and how researchers can bridge the gap between statistical and biological epistasis to help resolve Alzheimer's disease etiology.
Collapse
|
3044
|
Montine TJ, Montine KS. Precision medicine: Clarity for the clinical and biological complexity of Alzheimer's and Parkinson's diseases. J Exp Med 2015; 212:601-5. [PMID: 25941321 PMCID: PMC4419342 DOI: 10.1084/jem.20150656] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2015] [Accepted: 04/13/2015] [Indexed: 01/10/2023] Open
Abstract
The goal of precision medicine is to deliver optimally targeted and timed interventions tailored to an individual's molecular drivers of disease. This concept has wide currency in cancer care and in some diseases caused by monogenetic mutations, such as cystic fibrosis, and recently has been endorsed by the White House Office of Science and Technology for more widespread application in medicine. Here we describe our vision of how precision medicine can bring greater clarity to the clinical and biological complexity of the two most common neurodegenerative diseases, Alzheimer's disease and Parkinson's disease.
Collapse
Affiliation(s)
- Thomas J Montine
- T.J. Montine and K.S. Montine are at the Department of Pathology, University of Washington, Seattle, WA 98104
| | - Kathleen S Montine
- T.J. Montine and K.S. Montine are at the Department of Pathology, University of Washington, Seattle, WA 98104
| |
Collapse
|
3045
|
Cunningham EL, McGuinness B, Herron B, Passmore AP. Dementia. THE ULSTER MEDICAL JOURNAL 2015; 84:79-87. [PMID: 26170481 PMCID: PMC4488926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Accepted: 04/04/2015] [Indexed: 11/17/2022]
Abstract
Dementia is a clinical diagnosis requiring new functional dependence on the basis of progressive cognitive decline. It is estimated that 1.3% of the entire UK population, or 7.1% of those aged 65 or over, have dementia. Applying these to 2013 population estimates gives an estimated number of 19,765 people living with dementia in Northern Ireland. The clinical syndrome of dementia can be due to a variety of underlying pathophysiological processes. The most common of these is Alzheimer's disease (50-75%) followed by vascular dementia (20%), dementia with Lewy bodies (5%) and frontotemporal lobar dementia (5%). The clinical symptoms and pathophysiological processes of these diseases overlap significantly. Biomarkers to aid diagnosis and prognosis are emerging. Acetylcholinesterase inhibitors and memantine are the only medications currently licensed for the treatment of dementia. The nature of symptoms mean people with dementia are more dependent and vulnerable, both socially and in terms of physical and mental health, presenting evolving challenges to society and to our healthcare systems.
Collapse
Affiliation(s)
| | - B McGuinness
- Centre for Public Health, Queen's University Belfast ; Belfast Health and Social Care Trust
| | - B Herron
- Belfast Health and Social Care Trust
| | - A P Passmore
- Centre for Public Health, Queen's University Belfast ; Belfast Health and Social Care Trust
| |
Collapse
|
3046
|
Tai LM, Ghura S, Koster KP, Liakaite V, Maienschein‐Cline M, Kanabar P, Collins N, Ben‐Aissa M, Lei AZ, Bahroos N, Green SJ, Hendrickson B, Van Eldik LJ, LaDu MJ. APOE-modulated Aβ-induced neuroinflammation in Alzheimer's disease: current landscape, novel data, and future perspective. J Neurochem 2015; 133:465-88. [PMID: 25689586 PMCID: PMC4400246 DOI: 10.1111/jnc.13072] [Citation(s) in RCA: 114] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Revised: 02/10/2015] [Accepted: 02/11/2015] [Indexed: 01/12/2023]
Abstract
Chronic glial activation and neuroinflammation induced by the amyloid-β peptide (Aβ) contribute to Alzheimer's disease (AD) pathology. APOE4 is the greatest AD-genetic risk factor; increasing risk up to 12-fold compared to APOE3, with APOE4-specific neuroinflammation an important component of this risk. This editorial review discusses the role of APOE in inflammation and AD, via a literature review, presentation of novel data on Aβ-induced neuroinflammation, and discussion of future research directions. The complexity of chronic neuroinflammation, including multiple detrimental and beneficial effects occurring in a temporal and cell-specific manner, has resulted in conflicting functional data for virtually every inflammatory mediator. Defining a neuroinflammatory phenotype (NIP) is one way to address this issue, focusing on profiling the changes in inflammatory mediator expression during disease progression. Although many studies have shown that APOE4 induces a detrimental NIP in peripheral inflammation and Aβ-independent neuroinflammation, data for APOE-modulated Aβ-induced neuroinflammation are surprisingly limited. We present data supporting the hypothesis that impaired apoE4 function modulates Aβ-induced effects on inflammatory receptor signaling, including amplification of detrimental (toll-like receptor 4-p38α) and suppression of beneficial (IL-4R-nuclear receptor) pathways. To ultimately develop APOE genotype-specific therapeutics, it is critical that future studies define the dynamic NIP profile and pathways that underlie APOE-modulated chronic neuroinflammation. In this editorial review, we present data supporting the hypothesis that impaired apoE4 function modulates Aβ-induced effects on inflammatory receptor signaling, including amplification of detrimental (TLR4-p38α) and suppression of beneficial (IL-4R-nuclear receptor) pathways, resulting in an adverse NIP that causes neuronal dysfunction. NIP, Neuroinflammatory phenotype; P.I., pro-inflammatory; A.I., anti-inflammatory.
Collapse
Affiliation(s)
- Leon M. Tai
- Department of Anatomy and Cell BiologyUniversity of IllinoisChicagoIllinoisUSA
| | - Shivesh Ghura
- Department of Anatomy and Cell BiologyUniversity of IllinoisChicagoIllinoisUSA
| | - Kevin P. Koster
- Department of Anatomy and Cell BiologyUniversity of IllinoisChicagoIllinoisUSA
| | | | | | - Pinal Kanabar
- UIC Center for Research Informatics University of IllinoisChicagoIllinoisUSA
| | - Nicole Collins
- Department of Anatomy and Cell BiologyUniversity of IllinoisChicagoIllinoisUSA
| | - Manel Ben‐Aissa
- Department of Anatomy and Cell BiologyUniversity of IllinoisChicagoIllinoisUSA
| | - Arden Zhengdeng Lei
- UIC Center for Research Informatics University of IllinoisChicagoIllinoisUSA
| | - Neil Bahroos
- UIC Center for Research Informatics University of IllinoisChicagoIllinoisUSA
| | | | - Bill Hendrickson
- UIC Research Resources CenterUniversity of IllinoisChicagoIllinoisUSA
| | | | - Mary Jo LaDu
- Department of Anatomy and Cell BiologyUniversity of IllinoisChicagoIllinoisUSA
| |
Collapse
|
3047
|
Genetic variability in SQSTM1 and risk of early-onset Alzheimer dementia: a European early-onset dementia consortium study. Neurobiol Aging 2015; 36:2005.e15-22. [DOI: 10.1016/j.neurobiolaging.2015.02.014] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Accepted: 02/12/2015] [Indexed: 12/14/2022]
|
3048
|
Hooli BV, Lill CM, Mullin K, Qiao D, Lange C, Bertram L, Tanzi RE. PLD3 gene variants and Alzheimer's disease. Nature 2015; 520:E7-8. [PMID: 25832413 DOI: 10.1038/nature14040] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Accepted: 10/16/2014] [Indexed: 11/09/2022]
Affiliation(s)
- Basavaraj V Hooli
- MassGeneral Institute for Neurodegenerative Diseases, Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts 02114, USA
| | - Christina M Lill
- 1] Platform for Genome Analytics, Institutes of Neurogenetics &Integrative and Experimental Genomics, University of Lübeck, 23552 Lübeck, Germany [2] Department of Neurology, Focus Program Translational Neuroscience, University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany [3] Department of Vertebrate Genomics, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
| | - Kristina Mullin
- MassGeneral Institute for Neurodegenerative Diseases, Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts 02114, USA
| | - Dandi Qiao
- Department of Biostatistics, Harvard School of Public Health, Boston, Massachusetts 02115, USA
| | - Christoph Lange
- Department of Biostatistics, Harvard School of Public Health, Boston, Massachusetts 02115, USA
| | - Lars Bertram
- 1] Platform for Genome Analytics, Institutes of Neurogenetics &Integrative and Experimental Genomics, University of Lübeck, 23552 Lübeck, Germany [2] Department of Vertebrate Genomics, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany [3] School of Public Health, Faculty of Medicine, The Imperial College of Science, Technology, and Medicine, London W6 8RP, UK
| | - Rudolph E Tanzi
- MassGeneral Institute for Neurodegenerative Diseases, Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts 02114, USA
| |
Collapse
|
3049
|
Lambert JC, Grenier-Boley B, Bellenguez C, Pasquier F, Campion D, Dartigues JF, Berr C, Tzourio C, Amouyel P. PLD3 and sporadic Alzheimer's disease risk. Nature 2015; 520:E1. [PMID: 25832408 DOI: 10.1038/nature14036] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Accepted: 10/16/2014] [Indexed: 11/09/2022]
Affiliation(s)
- Jean-Charles Lambert
- INSERM, U744, Université Lille 2, Institut Pasteur de Lille, Lille 59000, France
| | | | - Céline Bellenguez
- INSERM, U744, Université Lille 2, Institut Pasteur de Lille, Lille 59000, France
| | - Florence Pasquier
- CNR-MAJ, Centre Hospitalier Régional Universitaire de Lille, Université Lille 2, Lille 59000, France
| | - Dominique Campion
- CNR-MAJ, INSERM, U1079, Rouen University Hospital, Rouen 76031, France
| | | | - Claudine Berr
- INSERM, U1061, Faculty of Medicine, Hôpital La Colombière, Montpellier 34093, France
| | | | - Philippe Amouyel
- INSERM, U744, Université Lille 2, Institut Pasteur de Lille, Lille 59000, France
| |
Collapse
|
3050
|
Lill CM, Rengmark A, Pihlstrøm L, Fogh I, Shatunov A, Sleiman PM, Wang LS, Liu T, Lassen CF, Meissner E, Alexopoulos P, Calvo A, Chio A, Dizdar N, Faltraco F, Forsgren L, Kirchheiner J, Kurz A, Larsen JP, Liebsch M, Linder J, Morrison KE, Nissbrandt H, Otto M, Pahnke J, Partch A, Restagno G, Rujescu D, Schnack C, Shaw CE, Shaw PJ, Tumani H, Tysnes OB, Valladares O, Silani V, van den Berg LH, van Rheenen W, Veldink JH, Lindenberger U, Steinhagen-Thiessen E, Teipel S, Perneczky R, Hakonarson H, Hampel H, von Arnim CAF, Olsen JH, Van Deerlin VM, Al-Chalabi A, Toft M, Ritz B, Bertram L. The role of TREM2 R47H as a risk factor for Alzheimer's disease, frontotemporal lobar degeneration, amyotrophic lateral sclerosis, and Parkinson's disease. Alzheimers Dement 2015; 11:1407-1416. [PMID: 25936935 DOI: 10.1016/j.jalz.2014.12.009] [Citation(s) in RCA: 142] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Revised: 10/22/2014] [Accepted: 12/02/2014] [Indexed: 01/12/2023]
Abstract
A rare variant in TREM2 (p.R47H, rs75932628) was recently reported to increase the risk of Alzheimer's disease (AD) and, subsequently, other neurodegenerative diseases, i.e. frontotemporal lobar degeneration (FTLD), amyotrophic lateral sclerosis (ALS), and Parkinson's disease (PD). Here we comprehensively assessed TREM2 rs75932628 for association with these diseases in a total of 19,940 previously untyped subjects of European descent. These data were combined with those from 28 published data sets by meta-analysis. Furthermore, we tested whether rs75932628 shows association with amyloid beta (Aβ42) and total-tau protein levels in the cerebrospinal fluid (CSF) of 828 individuals with AD or mild cognitive impairment. Our data show that rs75932628 is highly significantly associated with the risk of AD across 24,086 AD cases and 148,993 controls of European descent (odds ratio or OR = 2.71, P = 4.67 × 10(-25)). No consistent evidence for association was found between this marker and the risk of FTLD (OR = 2.24, P = .0113 across 2673 cases/9283 controls), PD (OR = 1.36, P = .0767 across 8311 cases/79,938 controls) and ALS (OR = 1.41, P = .198 across 5544 cases/7072 controls). Furthermore, carriers of the rs75932628 risk allele showed significantly increased levels of CSF-total-tau (P = .0110) but not Aβ42 suggesting that TREM2's role in AD may involve tau dysfunction.
Collapse
Affiliation(s)
- Christina M Lill
- Platform for Genome Analytics, Institutes of Neurogenetics & Integrative and Experimental Genomics, University of Lübeck, Lübeck, Germany; Department of Vertebrate Genomics, Max Planck Institute for Molecular Genetics, Berlin, Germany.
| | - Aina Rengmark
- Department of Neurology, Oslo University Hospital, Oslo, Norway
| | - Lasse Pihlstrøm
- Department of Neurology, Oslo University Hospital, Oslo, Norway
| | - Isabella Fogh
- Department of Clinical Neuroscience, Institute of Psychiatry, King's College London, London, UK
| | - Aleksey Shatunov
- Department of Clinical Neuroscience, Institute of Psychiatry, King's College London, London, UK
| | - Patrick M Sleiman
- Center for Applied Genomics, Abramson Research Center, The Children's Hospital of Philadelphia, Philadelphia, PA, USA; Division of Human Genetics, Abramson Research Center, The Children's Hospital of Philadelphia, Philadelphia, PA, USA; Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Li-San Wang
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Tian Liu
- Max Planck Institute for Human Development, Berlin, Germany
| | - Christina F Lassen
- Institute of Cancer Epidemiology, Danish Cancer Society, Copenhagen, Denmark
| | - Esther Meissner
- Department of Vertebrate Genomics, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Panos Alexopoulos
- Department of Psychiatry and Psychotherapy, Technische Universität München, Munich, Germany
| | - Andrea Calvo
- Rita Levi Montalcini Department of Neuroscience, ALS Center, University of Torino, Torino, Italy
| | - Adriano Chio
- Rita Levi Montalcini Department of Neuroscience, ALS Center, University of Torino, Torino, Italy; Neuroscience Institute of Turin, Turin, Italy
| | - Nil Dizdar
- Department of Neurology, Linköping University, Linköping, Sweden
| | - Frank Faltraco
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, Goethe University of Frankfurt, Frankfurt, Germany
| | - Lars Forsgren
- Department of Pharmacology and Clinical Neuroscience, Umeå University, Umeå, Sweden
| | | | - Alexander Kurz
- Department of Psychiatry and Psychotherapy, Technische Universität München, Munich, Germany
| | - Jan P Larsen
- The Norwegian Centre for Movement Disorders, Stavanger University Hospital, Stavanger, Norway
| | - Maria Liebsch
- Department of Vertebrate Genomics, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Jan Linder
- Department of Pharmacology and Clinical Neuroscience, Umeå University, Umeå, Sweden
| | - Karen E Morrison
- School of Clinical and Experimental Medicine, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK; Neurosciences Division, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| | - Hans Nissbrandt
- Department of Pharmacology, The Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Markus Otto
- Department of Neurology, University of Ulm, Ulm, Germany
| | - Jens Pahnke
- Department of Neuro-/Pathology, University of Oslo and Oslo University Hospital, Oslo, Norway; Lübeck Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany
| | - Amanda Partch
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Gabriella Restagno
- Department of Clinical Pathology, Molecular Genetics Unit, Azienda Ospedaliera Città della Salute e della Scienza, Torino, Italy
| | - Dan Rujescu
- Department of Psychiatry, University of Halle-Wittenberg, Halle, Germany
| | | | - Christopher E Shaw
- Department of Clinical Neuroscience, Institute of Psychiatry, King's College London, London, UK
| | - Pamela J Shaw
- Department of Neuroscience, Sheffield Institute for Translational Neuroscience (SITraN), Faculty of Medicine, Dentistry and Health, University of Sheffield, Sheffield, UK
| | | | - Ole-Bjørn Tysnes
- Department of Neurology, Haukeland University Hospital, Bergen, Norway; Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Otto Valladares
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Vincenzo Silani
- Department of Neurology and Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, Milano, Italy; Department of Pathophysiology and Tranplantation, "Dino Ferrari" Center, Università degli Studi di Milano, Milano, Italy
| | - Leonard H van den Berg
- Department of Neurology, Neuromuscular Diseases Brain Center Rudolf Magnus, Netherlands ALS Center, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Wouter van Rheenen
- Department of Neurology, Neuromuscular Diseases Brain Center Rudolf Magnus, Netherlands ALS Center, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Jan H Veldink
- Department of Neurology, Neuromuscular Diseases Brain Center Rudolf Magnus, Netherlands ALS Center, University Medical Center Utrecht, Utrecht, The Netherlands
| | | | | | - Stefan Teipel
- German Center for Neurodegenerative Diseases (DZNE), Rostock, Germany; Department of Psychosomatic Medicine, University of Rostock, Rostock, Germany
| | - Robert Perneczky
- Department of Psychiatry and Psychotherapy, Technische Universität München, Munich, Germany; Neuroepidemiology and Ageing Research Unit, School of Public Health, Faculty of Medicine, The Imperial College of Science, Technology, and Medicine, London, UK; West London Cognitive Disorders Treatment and Research Unit, West London Mental Health Trust, London, UK
| | - Hakon Hakonarson
- Center for Applied Genomics, Abramson Research Center, The Children's Hospital of Philadelphia, Philadelphia, PA, USA; Division of Human Genetics, Abramson Research Center, The Children's Hospital of Philadelphia, Philadelphia, PA, USA; Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Harald Hampel
- AXA Research Fund & UPMC Chair, Paris, France; Département de Neurologie, Sorbonne Universités, Université Pierre et Marie Curie, Institut de la Mémoire et de la Maladie d'Alzheimer & Institut du Cerveau et de la Moelle épinière (ICM), Hôpital de la Pitié-Salpétrière, Paris, France
| | | | - Jørgen H Olsen
- Institute of Cancer Epidemiology, Danish Cancer Society, Copenhagen, Denmark
| | - Vivianna M Van Deerlin
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Ammar Al-Chalabi
- Department of Clinical Neuroscience, Institute of Psychiatry, King's College London, London, UK
| | - Mathias Toft
- Department of Neurology, Oslo University Hospital, Oslo, Norway
| | - Beate Ritz
- Department of Epidemiology and Environmental Sciences, School of Public Health, University of California, Los Angeles, CA, USA
| | - Lars Bertram
- Platform for Genome Analytics, Institutes of Neurogenetics & Integrative and Experimental Genomics, University of Lübeck, Lübeck, Germany; Department of Vertebrate Genomics, Max Planck Institute for Molecular Genetics, Berlin, Germany; Neuroepidemiology and Ageing Research Unit, School of Public Health, Faculty of Medicine, The Imperial College of Science, Technology, and Medicine, London, UK
| |
Collapse
|