301
|
Albertsson AM, Bi D, Duan L, Zhang X, Leavenworth JW, Qiao L, Zhu C, Cardell S, Cantor H, Hagberg H, Mallard C, Wang X. The immune response after hypoxia-ischemia in a mouse model of preterm brain injury. J Neuroinflammation 2014; 11:153. [PMID: 25187205 PMCID: PMC4172879 DOI: 10.1186/s12974-014-0153-z] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Accepted: 08/14/2014] [Indexed: 01/04/2023] Open
Abstract
Background Preterm brain injury consists primarily of periventricular leukomalacia accompanied by elements of gray-matter injury, and these injuries are associated with cerebral palsy and cognitive impairments. Inflammation is believed to be an important contributing factor to these injuries. The aim of this study was to examine the immune response in a postnatal day (PND) 5 mouse model of preterm brain injury induced by hypoxia-ischemia (HI) that is characterized by focal white and gray-matter injury. Methods C57Bl/6 mice at PND 5 were subjected to unilateral HI induced by left carotid artery ligation and subsequent exposure to 10% O2 for 50 minutes, 70 minutes, or 80 minutes. At seven days post-HI, the white/gray-matter injury was examined. The immune responses in the brain after HI were examined at different time points after HI using RT-PCR and immunohistochemical staining. Results HI for 70 minutes in PND 5 mice induced local white-matter injury with focal cortical injury and hippocampal atrophy, features that are similar to those seen in preterm brain injury in human infants. HI for 50 minutes resulted in a small percentage of animals being injured, and HI for 80 minutes produced extensive infarction in multiple brain areas. Various immune responses, including changes in transcription factors and cytokines that are associated with a T-helper (Th)1/Th17-type response, an increased number of CD4+ T-cells, and elevated levels of triggering receptor expressed on myeloid cells 2 (TREM-2) and its adaptor protein DNAX activation protein of 12 kDa (DAP12) were observed using the HI 70 minute preterm brain injury model. Conclusions We have established a reproducible model of HI in PND 5 mice that produces consistent local white/gray-matter brain damage that is relevant to preterm brain injury in human infants. This model provides a useful tool for studying preterm brain injury. Both innate and adaptive immune responses are observed after HI, and these show a strong pro-inflammatory Th1/Th17-type bias. Such findings provide a critical foundation for future studies on the mechanism of preterm brain injury and suggest that blocking the Th1/Th17-type immune response might provide neuroprotection after preterm brain injury.
Collapse
|
302
|
Rideau Batista Novais A, Crouzin N, Cavalier M, Boubal M, Guiramand J, Cohen-Solal C, de Jesus Ferreira MC, Cambonie G, Vignes M, Barbanel G. Tiagabine improves hippocampal long-term depression in rat pups subjected to prenatal inflammation. PLoS One 2014; 9:e106302. [PMID: 25184226 PMCID: PMC4153642 DOI: 10.1371/journal.pone.0106302] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Accepted: 08/03/2014] [Indexed: 02/02/2023] Open
Abstract
Maternal inflammation during pregnancy is associated with the later development of cognitive and behavioral impairment in the offspring, reminiscent of the traits of schizophrenia or autism spectrum disorders. Hippocampal long-term potentiation and long-term depression of glutamatergic synapses are respectively involved in memory formation and consolidation. In male rats, maternal inflammation with lipopolysaccharide (LPS) led to a premature loss of long-term depression, occurring between 12 and 25 postnatal days instead of after the first postnatal month, and aberrant occurrence of long-term potentiation. We hypothesized this would be related to GABAergic system impairment. Sprague Dawley rats received either LPS or isotonic saline ip on gestational day 19. Male offspring's hippocampus was studied between 12 and 25 postnatal days. Morphological and functional analyses demonstrated that prenatal LPS triggered a deficit of hippocampal GABAergic interneurons, associated with presynaptic GABAergic transmission deficiency in male offspring. Increasing ambient GABA by impairing GABA reuptake with tiagabine did not interact with the low frequency-induced long-term depression in control animals but fully prevented its impairment in male offspring of LPS-challenged dams. Tiagabine furthermore prevented the aberrant occurrence of paired-pulse triggered long-term potentiation in these rats. Deficiency in GABA seems to be central to the dysregulation of synaptic plasticity observed in juvenile in utero LPS-challenged rats. Modulating GABAergic tone may be a possible therapeutic strategy at this developmental stage.
Collapse
Affiliation(s)
- Aline Rideau Batista Novais
- Laboratory IBMM-UMR 5247 “Institut des Biomolécules Max Mousseron”, CNRS - Montpellier 1 University - Montpellier 2 University, Montpellier, France
- Neonatal Intensive Care Unit, Montpellier University Hospital, Montpellier, France
| | - Nadine Crouzin
- Laboratory NICN-UMR7259 “Neurobiologie des Interactions Cellulaires et Neurophysiopathologie”, CNRS - Aix-Marseille University, Marseille, France
| | - Mélanie Cavalier
- Laboratory IBMM-UMR 5247 “Institut des Biomolécules Max Mousseron”, CNRS - Montpellier 1 University - Montpellier 2 University, Montpellier, France
| | - Mathilde Boubal
- Laboratory IBMM-UMR 5247 “Institut des Biomolécules Max Mousseron”, CNRS - Montpellier 1 University - Montpellier 2 University, Montpellier, France
- Neonatal Intensive Care Unit, Montpellier University Hospital, Montpellier, France
| | - Janique Guiramand
- Laboratory IBMM-UMR 5247 “Institut des Biomolécules Max Mousseron”, CNRS - Montpellier 1 University - Montpellier 2 University, Montpellier, France
| | - Catherine Cohen-Solal
- Laboratory IBMM-UMR 5247 “Institut des Biomolécules Max Mousseron”, CNRS - Montpellier 1 University - Montpellier 2 University, Montpellier, France
| | - Marie-Céleste de Jesus Ferreira
- Laboratory IBMM-UMR 5247 “Institut des Biomolécules Max Mousseron”, CNRS - Montpellier 1 University - Montpellier 2 University, Montpellier, France
| | - Gilles Cambonie
- Laboratory IBMM-UMR 5247 “Institut des Biomolécules Max Mousseron”, CNRS - Montpellier 1 University - Montpellier 2 University, Montpellier, France
- Neonatal Intensive Care Unit, Montpellier University Hospital, Montpellier, France
| | - Michel Vignes
- Laboratory IBMM-UMR 5247 “Institut des Biomolécules Max Mousseron”, CNRS - Montpellier 1 University - Montpellier 2 University, Montpellier, France
| | - Gérard Barbanel
- Laboratory IBMM-UMR 5247 “Institut des Biomolécules Max Mousseron”, CNRS - Montpellier 1 University - Montpellier 2 University, Montpellier, France
- * E-mail:
| |
Collapse
|
303
|
Posod A, Pinzer K, Urbanek M, Wegleiter K, Keller M, Kiechl-Kohlendorfer U, Griesmaier E. The common antitussive agent dextromethorphan protects against hyperoxia-induced cell death in established in vivo and in vitro models of neonatal brain injury. Neuroscience 2014; 274:260-72. [PMID: 24912029 DOI: 10.1016/j.neuroscience.2014.05.059] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Revised: 05/24/2014] [Accepted: 05/27/2014] [Indexed: 10/25/2022]
Abstract
Preterm infants are prematurely subjected to relatively high oxygen concentrations, even when supplemental oxygen is not administered. There is increasing evidence to show that an excess of oxygen is toxic to the developing brain. Dextromethorphan (DM), a frequently used antitussive agent with pleiotropic mechanisms of action, has been shown to be neuroprotective in various models of central nervous system pathology. Due to its numerous beneficial properties, it might also be able to counteract detrimental effects of a neonatal oxygen insult. The aim of the current study was to evaluate its therapeutic potential in established cell culture and rodent models of hyperoxia-induced neonatal brain injury. For in vitro studies pre- and immature oligodendroglial (OLN-93) cells were subjected to hyperoxic conditions for 48 h after pre-treatment with increasing doses of DM. For in vivo studies 6-day-old Wistar rat pups received a single intraperitoneal injection of DM in two different dosages prior to being exposed to hyperoxia for 24h. Cell viability and caspase-3 activation were assessed as outcome parameters at the end of exposure. DM significantly increased cell viability in immature oligodendroglial cells subjected to hyperoxia. In pre-oligodendroglial cells cell viability was not significantly affected by DM treatment. In vivo caspase-3 activation induced by hyperoxic exposure was significantly lower after administration of DM in gray and white matter areas. In control animals kept under normoxic conditions DM did not significantly influence caspase-3-dependent apoptosis. The present results indicate that DM is a promising and safe treatment strategy for neonatal hyperoxia-induced brain injury that merits further investigation.
Collapse
Affiliation(s)
- A Posod
- Department of Pediatrics II (Neonatology), Innsbruck Medical University, Anichstrasse 35, 6020 Innsbruck, Austria
| | - K Pinzer
- Department of Pediatrics II (Neonatology), Innsbruck Medical University, Anichstrasse 35, 6020 Innsbruck, Austria
| | - M Urbanek
- Department of Pediatrics II (Neonatology), Innsbruck Medical University, Anichstrasse 35, 6020 Innsbruck, Austria
| | - K Wegleiter
- Department of Pediatrics II (Neonatology), Innsbruck Medical University, Anichstrasse 35, 6020 Innsbruck, Austria
| | - M Keller
- Department of Pediatrics II (Neonatology), Innsbruck Medical University, Anichstrasse 35, 6020 Innsbruck, Austria; Kinderklinik Dritter Orden, Technical University Munich, Bischof Altmann-Street 9, 94032 Passau, Germany
| | - U Kiechl-Kohlendorfer
- Department of Pediatrics II (Neonatology), Innsbruck Medical University, Anichstrasse 35, 6020 Innsbruck, Austria
| | - E Griesmaier
- Department of Pediatrics II (Neonatology), Innsbruck Medical University, Anichstrasse 35, 6020 Innsbruck, Austria.
| |
Collapse
|
304
|
Gutierrez-Murgas Y, Snowden JN. Ventricular shunt infections: immunopathogenesis and clinical management. J Neuroimmunol 2014; 276:1-8. [PMID: 25156073 DOI: 10.1016/j.jneuroim.2014.08.006] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Revised: 07/17/2014] [Accepted: 08/06/2014] [Indexed: 12/22/2022]
Abstract
Ventricular shunts are the most common neurosurgical procedure performed in the United States. This hydrocephalus treatment is often complicated by infection of the device with biofilm-forming bacteria. In this review, we discuss the pathogenesis of shunt infection, as well as the implications of the biofilm formation on treatment and prevention of these infections. Many questions remain, including the contribution of glia and the impact of inflammation on developmental outcomes following infection. Immune responses within the CNS must be carefully regulated to contain infection while minimizing bystander damage; further study is needed to design optimal treatment strategies for these patients.
Collapse
Affiliation(s)
- Yenis Gutierrez-Murgas
- Department of Pathology & Microbiology, University of Nebraska Medical Center, 985900 Nebraska Medical Center, Omaha, NE 68198-5900, USA.
| | - Jessica N Snowden
- Department of Pathology & Microbiology, University of Nebraska Medical Center, 985900 Nebraska Medical Center, Omaha, NE 68198-5900, USA; Department of Pediatrics, University of Nebraska Medical Center, 985900 Nebraska Medical Center, Omaha, NE 68198-5900, USA.
| |
Collapse
|
305
|
Rook GAW, Raison CL, Lowry CA. Microbial 'old friends', immunoregulation and socioeconomic status. Clin Exp Immunol 2014; 177:1-12. [PMID: 24401109 PMCID: PMC4089149 DOI: 10.1111/cei.12269] [Citation(s) in RCA: 151] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/28/2013] [Indexed: 12/13/2022] Open
Abstract
The immune system evolved to require input from at least three sources that we collectively term the ‘old friends’: (i) the commensal microbiotas transmitted by mothers and other family members; (ii) organisms from the natural environment that modulate and diversify the commensal microbiotas; and (iii) the ‘old’ infections that could persist in small isolated hunter-gatherer groups as relatively harmless subclinical infections or carrier states. These categories of organism had to be tolerated and co-evolved roles in the development and regulation of the immune system. By contrast, the ‘crowd infections’ (such as childhood virus infections) evolved later, when urbanization led to large communities. They did not evolve immunoregulatory roles because they either killed the host or induced solid immunity, and could not persist in hunter-gatherer groups. Because the western lifestyle and medical practice deplete the ‘old’ infections (for example helminths), immunoregulatory disorders have increased, and the immune system has become more dependent upon microbiotas and the natural environment. However, urbanization maintains exposure to the crowd infections that lack immunoregulatory roles, while accelerating loss of exposure to the natural environment. This effect is most pronounced in individuals of low socioeconomic status (SES) who lack rural second homes and rural holidays. Interestingly, large epidemiological studies indicate that the health benefits of living close to green spaces are most pronounced for individuals of low SES. Here we discuss the immunoregulatory role of the natural environment, and how this may interact with, and modulate, the proinflammatory effects of psychosocial stressors in low SES individuals.
Collapse
Affiliation(s)
- G A W Rook
- Centre for Clinical Microbiology, Department of Infection, University College London (UCL), London, UK
| | | | | |
Collapse
|
306
|
Sakao-Suzuki M, Kawasaki H, Akamatsu T, Meguro S, Miyajima H, Iwashita T, Tsutsui Y, Inoue N, Kosugi I. Aberrant fetal macrophage/microglial reactions to cytomegalovirus infection. Ann Clin Transl Neurol 2014; 1:570-88. [PMID: 25356429 PMCID: PMC4184560 DOI: 10.1002/acn3.88] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Accepted: 07/07/2014] [Indexed: 12/20/2022] Open
Abstract
Objective Congenital cytomegalovirus (CMV) infection is the leading viral cause of neurodevelopmental disorders in humans, with the most severe and permanent sequelae being those affecting the cerebrum. As the fetal immune reactions to congenital CMV infection in the brain and their effects on cerebral development remain elusive, our aim was to investigate primitive innate immunity to CMV infection and its effects on cerebral corticogenesis in a mouse model for congenital CMV infection using a precise intraplacental inoculation method. Methods At 13.5 embryonic days (E13.5), pregnant C57BL/6 mice were intraplacentally infected with murine CMV (MCMV). Placentas and fetal organs were collected at 1, 3, and 5 days postinfection and analyzed. Results MCMV antigens were found frequently in perivascular macrophages, and subsequently in neural stem/progenitor cells (NSPCs). With increased expression of inducible nitric oxide synthase and proinflammatory cytokines, activated macrophages infiltrated into the infectious foci. In addition to the infected area, the numbers of both meningeal macrophages and parenchymal microglia increased even in the uninfected areas of MCMV-infected brain due to recruitment of their precursors from other sites. A bromodeoxyuridine (BrdU) incorporation experiment demonstrated that MCMV infection globally disrupted the self-renewal of NSPCs. Furthermore, BrdU-labeled neurons, particularly Brn2+ neurons of upper layers II/III in the cortical plate, decreased in number significantly in the MCMV-infected E18.5 cerebrum. Interpretation Brain macrophages are crucial for innate immunity during MCMV infection in the fetal brain, while their aberrant recruitment and activation may adversely impact on the stemness of NSPCs, resulting in neurodevelopmental disorders.
Collapse
Affiliation(s)
- Makiko Sakao-Suzuki
- Department of Regenerative and Infectious Pathology, Hamamatsu University School of Medicine Hamamatsu, Japan ; Department of Neurology, Hamamatsu University School of Medicine Hamamatsu, Japan
| | - Hideya Kawasaki
- Department of Regenerative and Infectious Pathology, Hamamatsu University School of Medicine Hamamatsu, Japan
| | - Taisuke Akamatsu
- Department of Regenerative and Infectious Pathology, Hamamatsu University School of Medicine Hamamatsu, Japan ; Department of Respiratory Medicine, Hamamatsu University School of Medicine Hamamatsu, Japan
| | - Shiori Meguro
- Department of Regenerative and Infectious Pathology, Hamamatsu University School of Medicine Hamamatsu, Japan
| | - Hiroaki Miyajima
- Department of Neurology, Hamamatsu University School of Medicine Hamamatsu, Japan
| | - Toshihide Iwashita
- Department of Regenerative and Infectious Pathology, Hamamatsu University School of Medicine Hamamatsu, Japan
| | | | - Naoki Inoue
- Department of Microbiology and Immunology, Gifu Pharmaceutical University Gifu, Japan
| | - Isao Kosugi
- Department of Regenerative and Infectious Pathology, Hamamatsu University School of Medicine Hamamatsu, Japan
| |
Collapse
|
307
|
van Elst K, Bruining H, Birtoli B, Terreaux C, Buitelaar JK, Kas MJ. Food for thought: dietary changes in essential fatty acid ratios and the increase in autism spectrum disorders. Neurosci Biobehav Rev 2014; 45:369-78. [PMID: 25025657 DOI: 10.1016/j.neubiorev.2014.07.004] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2014] [Revised: 06/16/2014] [Accepted: 07/04/2014] [Indexed: 12/31/2022]
Abstract
The last decades have shown a spectacular and partially unexplained rise in the prevalence of autism spectrum disorders (ASD). This rise in ASD seems to parallel changes in the dietary composition of fatty acids. This change is marked by the replacement of cholesterol by omega-6 (n-6) fatty acids in many of our food products, resulting in a drastically increased ratio of omega-6/omega-3 (n-6/n-3). In this context, we review the available knowledge on the putative role of fatty acids in neurodevelopment and describe how disturbances in n-6/n-3 ratios may contribute to the emergence of ASDs. Both clinical and experimental research is discussed. We argue that a change in the ratio of n-6/n-3, especially during early life, may induce developmental changes in brain connectivity, synaptogenesis, cognition and behavior that are directly related to ASD.
Collapse
Affiliation(s)
- Kim van Elst
- Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Hilgo Bruining
- Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands; Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands
| | | | | | - Jan K Buitelaar
- Radboud University Medical Centre, Donders Institute for Brain, Cognition and Behavior, Department of Cognitive Neuroscience, Nijmegen, The Netherlands
| | - Martien J Kas
- Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands.
| |
Collapse
|
308
|
Li WY, Chang YC, Lee LJH, Lee LJ. Prenatal infection affects the neuronal architecture and cognitive function in adult mice. Dev Neurosci 2014; 36:359-70. [PMID: 24942872 DOI: 10.1159/000362383] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Accepted: 03/21/2014] [Indexed: 11/19/2022] Open
Abstract
Environmental factors such as prenatal infection are involved in the pathogenic processes of neurodevelopmental psychiatric disorders. In the present study, we administered a viral mimic, polyriboinosinic-polyribocytidylic acid (poly I:C, 20 mg/kg, i.p.), to pregnant B6 mice at gestational day 9.5. Neonates born to these poly I:C-treated dams showed an increase of microglia in the hippocampus, indicating an activation of the immune system in the brains. Moreover, a significant increase in the number of dopamine-producing neurons in the ventral tegmental area was observed in adult male poly I:C offspring compared with age-matched saline offspring. Poly I:C offspring also exhibited hypolocomotor activity in a novel open-field arena but did not display signs of anxiety or depression in the elevated plus maze or the forced swim test, respectively. However, the short-term memory of the poly I:C offspring was impaired in a novel object recognition task. Therefore, the dendritic architecture of granule cells in the dentate gyrus (DG) and pyramidal neurons in the medial prefrontal cortex (mPFC) were examined. The dendritic complexity was reduced in the DG granule cells of the poly I:C offspring and exhibited shorter dendritic length compared with the saline offspring. The density of dendritic spines in the DG granule cells was also decreased in the poly I:C offspring. Furthermore, the dendritic complexity and spine density were reduced in layer II/III mPFC pyramidal neurons of the poly I:C offspring. Together, these data demonstrate impaired short-term memory and altered dendritic architecture in adult poly I:C offspring, which validates the prenatal infection paradigm as a model for neurodevelopmental psychiatric disorders.
Collapse
Affiliation(s)
- Wai-Yu Li
- Graduate Institute of Anatomy and Cell Biology, National Taiwan University, Taipei, Taiwan
| | | | | | | |
Collapse
|
309
|
Bénardais K, Gudi V, Gai L, Neßler J, Singh V, Prajeeth CK, Skripuletz T, Stangel M. Long-term impact of neonatal inflammation on demyelination and remyelination in the central nervous system. Glia 2014; 62:1659-70. [PMID: 24909143 DOI: 10.1002/glia.22706] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Revised: 05/21/2014] [Accepted: 05/23/2014] [Indexed: 12/12/2022]
Abstract
Perinatal inflammation causes immediate changes of the blood-brain barrier (BBB) and thus may have different consequences in adult life including an impact on neurological diseases such as demyelinating disorders. In order to determine if such a perinatal insult affects the course of demyelination in adulthood as "second hit," we simulated perinatal bacterial inflammation by systemic administration of lipopolysaccharide (LPS) to either pregnant mice or newborn animals. Demyelination was later induced in adult animals by cuprizone [bis(cyclohexylidenehydrazide)], which causes oligodendrocyte death with subsequent demyelination accompanied by strong microgliosis and astrogliosis. A single LPS injection at embryonic day 13.5 did not have an impact on demyelination in adulthood. In contrast, serial postnatal LPS injections (P0-P8) caused an early delay of myelin removal in the corpus callosum, which was paralleled by reduced numbers of activated microglia. During remyelination, postnatal LPS treatment enhanced early remyelination with a concomitant increase of mature oligodendrocytes. Furthermore, the postnatal LPS challenge impacts the phenotype of microglia since an elevated mRNA expression of microglia related genes such as TREM 2, CD11b, TNF-α, TGF-β1, HGF, FGF-2, and IGF-1 was found in these preconditioned mice during early demyelination. These data demonstrate that postnatal inflammation has long-lasting effects on microglia functions and modifies the course of demyelination and remyelination in adulthood.
Collapse
Affiliation(s)
- Karelle Bénardais
- Department of Neurology, Hannover Medical School, Hannover, Germany; Center for Systems Neuroscience, Hannover, Germany
| | | | | | | | | | | | | | | |
Collapse
|
310
|
Abstract
How do microglia regulate synaptic function? In this issue of Neuron, Zhang et al. (2014) describe a novel form of long-term depression of AMPA receptor-mediated synaptic transmission in the hippocampus involving the activation of microglia.
Collapse
Affiliation(s)
| | - Stephane Peineau
- Centre for Synaptic Plasticity, University of Bristol, Bristol BS1 3NY, UK; Inserm U1141/Université Paris Diderot Sorbonne Paris Cité/PremUP, Hôpital Robert Debré, 75019 Paris, France
| |
Collapse
|
311
|
Luo G, Wang S, Li Z, Wei R, Zhang L, Liu H, Wang C, Niu R, Wang J. Maternal bisphenol a diet induces anxiety-like behavior in female juvenile with neuroimmune activation. Toxicol Sci 2014; 140:364-73. [PMID: 24824810 DOI: 10.1093/toxsci/kfu085] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Maternal Bisphenol A (BPA) diet triggers anxiety in rodents, but the underlying mechanism is still unclear. Accumulating epidemiological and experimental data have demonstrated that the anxiety is associated with aberrant neuroimmune response. In this study, we found that maternal BPA diet (MBD) exacerbated anxiety-like behavior in female juvenile mice, and the molecular evidence further showed that this behavioral phenotype was connected to the neuroimmune activation, such as elevated tumor necrosis factor alpha (TNF-α) and interleukin (IL)-6 levels in prefrontal cortex (PFC) rather than in peripheral blood, which indicated that neuroimmune response might be ascribed to neuroglial activation because activated neuroglia cells could secrete proinflammatory cytokines. Subsequently, we found that ionized calcium-binding adapter molecule (Iba)-1 as a selective marker for microglia and glial fibrillary acidic protein as a specific marker for astrocyte were significantly increased at transcriptional and translational levels, which confirmed the neuroglial activation in this model. Therefore, we conclude that MBD induces excessive anxiety-like behavior in female juvenile with elevated TNF-α and IL-6 levels, as well as activated microglia and astrocyte in PFC. Herein caution must be taken to prevent potential risks from MBD becuase exacerbated anxiety-like behavior in female juvenile by MBD may be a critical contribution for subsequent growth or mental disorders.
Collapse
Affiliation(s)
- Guangying Luo
- Shanxi Key Laboratory of Environmental Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi 030801, PR China
| | - Shaolin Wang
- Department of Psychiatry and Neurobehavioral Sciences, University of Virginia, Charlottesville, Virginia 22911
| | - Zhigang Li
- Shanxi Key Laboratory of Environmental Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi 030801, PR China Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing 100101, China
| | - Ruifen Wei
- Shanxi Key Laboratory of Environmental Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi 030801, PR China
| | - Lianjie Zhang
- Shanxi Key Laboratory of Environmental Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi 030801, PR China
| | - Huanhuan Liu
- Shanxi Key Laboratory of Environmental Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi 030801, PR China
| | - Chong Wang
- Shanxi Key Laboratory of Environmental Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi 030801, PR China
| | - Ruiyan Niu
- Shanxi Key Laboratory of Environmental Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi 030801, PR China
| | - Jundong Wang
- Shanxi Key Laboratory of Environmental Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi 030801, PR China
| |
Collapse
|
312
|
Gerner G, Baron IS. Pregnancy complications and neuropsychological outcomes: A review. Child Neuropsychol 2014; 21:269-84. [DOI: 10.1080/09297049.2014.910301] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
313
|
Uguz F, Onder Sonmez E, Sahingoz M, Gokmen Z, Basaran M, Gezginc K, Sonmez G, Kaya N, Yilmaz E, Erdem SS, Dulger HH, Cicekler H, Tasyurek E. Neuroinflammation in the fetus exposed to maternal obsessive-compulsive disorder during pregnancy: a comparative study on cord blood tumor necrosis factor-alpha levels. Compr Psychiatry 2014; 55:861-5. [PMID: 24480417 DOI: 10.1016/j.comppsych.2013.12.018] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2013] [Revised: 12/17/2013] [Accepted: 12/23/2013] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE The relationship between maternal psychiatric disorders and fetal neurodevelopment is unclear. Obsessive-compulsive disorder (OCD) is relatively frequent during pregnancy. The study aimed to investigate whether maternal OCD during pregnancy affects fetal circulating tumor necrosis factor-alpha (TNF-α) levels, an important pro-inflammatory cytokine, by comparing cord blood TNF-α levels in newborn infants of women with and without OCD. METHODS The study sample included 7 women with OCD and 30 healthy women. OCD and other psychiatric diagnoses were screened by means of the Structured Clinical Interview for the Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition. The blood sample for the determination of TNF-α level was obtained from the umbilical cord during delivery. RESULTS Cord blood TNF-α levels in newborn infants exposed to maternal OCD were significantly higher compared to non-exposed infants. Maternal anxiety symptom level was found to positively correlate with cord blood TNF-α levels in newborn infants of women with OCD. CONCLUSION The study results imply that maternal OCD during pregnancy may lead to neuroinflammation in the developing fetal brain through higher levels of circulating TNF-α.
Collapse
Affiliation(s)
- Faruk Uguz
- Department of Psychiatry, Meram Faculty of Medicine, Necmettin Erbakan University, Konya, Turkey.
| | - Erdem Onder Sonmez
- Department of Psychiatry, Meram Faculty of Medicine, Necmettin Erbakan University, Konya, Turkey.
| | - Mine Sahingoz
- Department of Psychiatry, Meram Faculty of Medicine, Necmettin Erbakan University, Konya, Turkey.
| | - Zeynel Gokmen
- Department of Neonatology, Konya Research and Training Hospital, Konya, Turkey.
| | - Mustafa Basaran
- Department of Obstetrics and Gynecology, Konya Research and Training Hospital, Konya, Turkey.
| | - Kazim Gezginc
- Department of Obstetrics and Gynecology, Meram Faculty of Medicine, Necmettin Erbakan University, Konya, Turkey.
| | - Gulsum Sonmez
- Department of Neonatology, Konya Research and Training Hospital, Konya, Turkey.
| | - Nazmiye Kaya
- Department of Psychiatry, Meram Faculty of Medicine, Necmettin Erbakan University, Konya, Turkey.
| | - Emre Yilmaz
- Department of Psychiatry, Meram Faculty of Medicine, Necmettin Erbakan University, Konya, Turkey.
| | - Sami Sait Erdem
- Department of Biochemistry, Konya Research and Training Hospital, Konya, Turkey.
| | - Hasan Haluk Dulger
- Department of Biochemistry, Meram Faculty of Medicine, Necmettin Erbakan University, Konya, Turkey.
| | - Humeyra Cicekler
- Department of Biochemistry, Meram Faculty of Medicine, Necmettin Erbakan University, Konya, Turkey.
| | - Erkan Tasyurek
- Department of Biochemistry, Meram Faculty of Medicine, Necmettin Erbakan University, Konya, Turkey.
| |
Collapse
|
314
|
Hagberg H, Mallard C, Rousset CI, Thornton C. Mitochondria: hub of injury responses in the developing brain. Lancet Neurol 2014; 13:217-32. [PMID: 24457191 DOI: 10.1016/s1474-4422(13)70261-8] [Citation(s) in RCA: 133] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Progress in the field of mitochondrial biology in the past few years has shown that mitochondrial activities go beyond bioenergetics. These new aspects of mitochondrial physiology and pathophysiology have important implications for the immature brain. A picture emerges in which mitochondrial biogenesis, mitophagy, migration, and morphogenesis are crucial for brain development and synaptic pruning, and play a part in recovery after acute insults. Mitochondria also affect brain susceptibility to injury, and mitochondria-directed interventions can make the immature brain highly resistant to acute injury. Finally, the mitochondrion is a platform for innate immunity, contributes to inflammation in response to infection and acute damage, and participates in antiviral and antibacterial defence. Understanding of these new aspects of mitochondrial function will provide insights into brain development and neurological disease, and enable discovery and development of new strategies for treatment.
Collapse
Affiliation(s)
- Henrik Hagberg
- Centre for the Developing Brain, Perinatal Imaging & Health, King's College London, St Thomas' Hospital, London, UK; Perinatal Center, Departments of Clinical Sciences and Physiology & Neurosciences, Sahlgrenska Academy, Sahlgrenska University Hospital, Gothenburg, Sweden.
| | - Carina Mallard
- Perinatal Center, Departments of Clinical Sciences and Physiology & Neurosciences, Sahlgrenska Academy, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Catherine I Rousset
- Centre for the Developing Brain, Perinatal Imaging & Health, King's College London, St Thomas' Hospital, London, UK
| | - Claire Thornton
- Centre for the Developing Brain, Perinatal Imaging & Health, King's College London, St Thomas' Hospital, London, UK
| |
Collapse
|
315
|
Bolouri H, Sävman K, Wang W, Thomas A, Maurer N, Dullaghan E, Fjell CD, Ek CJ, Hagberg H, Hancock REW, Brown KL, Mallard C. Innate defense regulator peptide 1018 protects against perinatal brain injury. Ann Neurol 2014; 75:395-410. [DOI: 10.1002/ana.24087] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Revised: 09/20/2013] [Accepted: 12/03/2013] [Indexed: 12/24/2022]
Affiliation(s)
- Hayde Bolouri
- Institute of Neuroscience and Physiology; Department of Physiology, Sahlgrenska Academy, University of Gothenburg; Gothenburg Sweden
| | - Karin Sävman
- Institute of Neuroscience and Physiology; Department of Physiology, Sahlgrenska Academy, University of Gothenburg; Gothenburg Sweden
- Department of Pediatrics, Sahlgrenska Academy; University of Gothenburg; Gothenburg Sweden
| | - Wei Wang
- Institute of Neuroscience and Physiology; Department of Physiology, Sahlgrenska Academy, University of Gothenburg; Gothenburg Sweden
| | - Anitha Thomas
- Centre for Drug Research and Development; Vancouver, British Columbia; Canada
| | - Norbert Maurer
- Centre for Drug Research and Development; Vancouver, British Columbia; Canada
| | - Edie Dullaghan
- Centre for Drug Research and Development; Vancouver, British Columbia; Canada
| | - Christopher D. Fjell
- James Hogg Research Centre; University of British Columbia at St Paul's Hospital; Vancouver British Columbia Canada
| | - C. Joakim Ek
- Institute of Neuroscience and Physiology; Department of Physiology, Sahlgrenska Academy, University of Gothenburg; Gothenburg Sweden
| | - Henrik Hagberg
- Perinatal Center, Department of Clinical Sciences; Sahlgrenska Academy, University of Gothenburg; Gothenburg Sweden
- Centre for the Developing Brain, King's College; Perinatal Imaging and Health, St Thomas' Hospital; London United Kingdom
| | - Robert E. W. Hancock
- James Hogg Research Centre; University of British Columbia at St Paul's Hospital; Vancouver British Columbia Canada
| | - Kelly L. Brown
- Department of Rheumatology and Inflammation Research; Sahlgrenska Academy, University of Gothenburg; Gothenburg Sweden
| | - Carina Mallard
- Institute of Neuroscience and Physiology; Department of Physiology, Sahlgrenska Academy, University of Gothenburg; Gothenburg Sweden
| |
Collapse
|
316
|
Verspyck E, Bisson V, Roman H, Marret S. Adverse respiratory outcome after premature rupture of membranes before viability. Acta Paediatr 2014; 103:256-61. [PMID: 24175963 DOI: 10.1111/apa.12489] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Revised: 10/04/2013] [Accepted: 10/28/2013] [Indexed: 11/30/2022]
Abstract
AIM To determine whether preterm premature rupture of membranes (PPROM) before 24 weeks is an independent risk factor for poor outcome in preterm neonates. METHODS A retrospective comparative cohort study was conducted, including viable premature infants born between 25 and 34-weeks gestation. Each preterm case with early PPROM was matched with two preterm controls of the same gestational age at birth, sex and birth date and who were born spontaneously with intact membranes. Logistic regression was performed to identify independent risk factors associated with composite respiratory and perinatal adverse outcomes for the overall population of preterm infants. RESULTS Thirty-five PPROM cases were matched with 70 controls. Extreme prematurity (26-28 weeks) was an independent risk factor for composite perinatal adverse outcomes [odds ratio (OR) 43.9; p = 0.001]. Extreme prematurity (OR 42.9; p = 0.001), PPROM (OR 7.1; p = 0.01), male infant (OR 5.2; p = 0.02) and intrauterine growth restriction (IUGR, OR 4.8; p = 0.04) were factors for composite respiratory adverse outcomes. CONCLUSION Preterm premature rupture of membranes before viability represents an independent risk factor for composite respiratory adverse outcomes in preterm neonates. Extreme prematurity may represent the main risk factor for both composite respiratory and perinatal adverse outcomes.
Collapse
Affiliation(s)
- Eric Verspyck
- Department of Obstetrics and Gynecology; Rouen University Hospital; Rouen France
- Region-INSERM Team (ERI28) Neovasc; Perinatal Handicap; Institute for Biomedical Research and Innovation (IRIB); School of Medicine; University of Rouen; Rouen France
| | - Violene Bisson
- Department of Obstetrics and Gynecology; Rouen University Hospital; Rouen France
| | - Horace Roman
- Department of Obstetrics and Gynecology; Rouen University Hospital; Rouen France
| | - Stéphane Marret
- Region-INSERM Team (ERI28) Neovasc; Perinatal Handicap; Institute for Biomedical Research and Innovation (IRIB); School of Medicine; University of Rouen; Rouen France
- Department of Neonatal Medicine and Intensive Care; Rouen University Hospital; Rouen France
| |
Collapse
|
317
|
Failure of thyroid hormone treatment to prevent inflammation-induced white matter injury in the immature brain. Brain Behav Immun 2014; 37:95-102. [PMID: 24240022 PMCID: PMC3969588 DOI: 10.1016/j.bbi.2013.11.005] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Revised: 11/05/2013] [Accepted: 11/06/2013] [Indexed: 12/21/2022] Open
Abstract
Preterm birth is very strongly associated with maternal/foetal inflammation and leads to permanent neurological deficits. These deficits correlate with the severity of white matter injury, including maturational arrest of oligodendrocytes and hypomyelination. Preterm birth and exposure to inflammation causes hypothyroxinemia. As such, supplementation with thyroxine (T4) seems a good candidate therapy for reducing white matter damage in preterm infants as oligodendrocyte maturation and myelination is regulated by thyroid hormones. We report on a model of preterm inflammation-induced white matter damage, in which induction of systemic inflammation by exposure from P1 to P5 to interleukin-1β (IL-1β) causes oligodendrocyte maturational arrest and hypomyelination. This model identified transient hypothyroidism and wide-ranging dysfunction in thyroid hormone signalling pathways. To test whether a clinically relevant dose of T4 could reduce inflammation-induced white matter damage we concurrently treated mice exposed to IL-1β from P1 to P5 with T4 (20 μg/kg/day). At P10, we isolated O4-positive pre-oligodendrocytes and gene expression analysis revealed that T4 treatment did not recover the IL-1β-induced blockade of oligodendrocyte maturation. Moreover, at P10 and P30 immunohistochemistry for markers of oligodendrocyte lineage (NG2, PDGFRα and APC) and myelin (MBP) similarly indicated that T4 treatment did not recover IL-1β-induced deficits in the white matter. In summary, in this model of preterm inflammation-induced white matter injury, a clinical dose of T4 had no therapeutic efficacy. We suggest that additional pre-clinical trials with T4 covering the breadth and scope of causes and outcomes of perinatal brain injury are required before we can correctly evaluate clinical trials data and understand the potential for thyroid hormone as a widely implementable clinical therapy.
Collapse
|
318
|
Green HF, Nolan YM. Inflammation and the developing brain: Consequences for hippocampal neurogenesis and behavior. Neurosci Biobehav Rev 2014; 40:20-34. [DOI: 10.1016/j.neubiorev.2014.01.004] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2013] [Revised: 01/12/2014] [Accepted: 01/13/2014] [Indexed: 02/06/2023]
|
319
|
Abstract
This article explains the mechanisms underlying choices of pharmacotherapy for hypoxic-ischemic insults of both preterm and term babies. Some preclinical data are strong enough that clinical trials are now underway. Challenges remain in deciding the best combination therapies for each age and insult.
Collapse
Affiliation(s)
- Sandra E. Juul
- University of Washington, Department of Pediatrics, 1959 NE Pacific St, Box 356320, Seattle, Washington 98195, Telephone: (206) 221-6814; Fax: (206) 543-8926
| | - Donna M. Ferriero
- Neonatal Brain Disorders Laboratory, University of California, San Francisco, 675 Nelson Rising Lane, Room 494, Box 0663, San Francisco, California 94143, Phone: (415) 502-7319, Fax: (415) 486-2297
| |
Collapse
|
320
|
Wassink G, Gunn ER, Drury PP, Bennet L, Gunn AJ. The mechanisms and treatment of asphyxial encephalopathy. Front Neurosci 2014; 8:40. [PMID: 24578682 PMCID: PMC3936504 DOI: 10.3389/fnins.2014.00040] [Citation(s) in RCA: 140] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2013] [Accepted: 02/12/2014] [Indexed: 11/13/2022] Open
Abstract
Acute post-asphyxial encephalopathy occurring around the time of birth remains a major cause of death and disability. The recent seminal insight that allows active neuroprotective treatment is that even after profound asphyxia (the “primary” phase), many brain cells show initial recovery from the insult during a short “latent” phase, typically lasting approximately 6 h, only to die hours to days later after a “secondary” deterioration characterized by seizures, cytotoxic edema, and progressive failure of cerebral oxidative metabolism. Although many of these secondary processes are potentially injurious, they appear to be primarily epiphenomena of the “execution” phase of cell death. Animal and human studies designed around this conceptual framework have shown that moderate cerebral hypothermia initiated as early as possible but before the onset of secondary deterioration, and continued for a sufficient duration to allow the secondary deterioration to resolve, has been associated with potent, long-lasting neuroprotection. Recent clinical trials show that while therapeutic hypothermia significantly reduces morbidity and mortality, many babies still die or survive with disabilities. The challenge for the future is to find ways of improving the effectiveness of treatment. In this review, we will dissect the known mechanisms of hypoxic-ischemic brain injury in relation to the known effects of hypothermic neuroprotection.
Collapse
Affiliation(s)
- Guido Wassink
- Fetal Physiology and Neuroscience Team, Department of Physiology, Faculty of Medical and Health Sciences, University of Auckland Auckland, New Zealand
| | - Eleanor R Gunn
- Fetal Physiology and Neuroscience Team, Department of Physiology, Faculty of Medical and Health Sciences, University of Auckland Auckland, New Zealand
| | - Paul P Drury
- Fetal Physiology and Neuroscience Team, Department of Physiology, Faculty of Medical and Health Sciences, University of Auckland Auckland, New Zealand
| | - Laura Bennet
- Fetal Physiology and Neuroscience Team, Department of Physiology, Faculty of Medical and Health Sciences, University of Auckland Auckland, New Zealand
| | - Alistair J Gunn
- Fetal Physiology and Neuroscience Team, Department of Physiology, Faculty of Medical and Health Sciences, University of Auckland Auckland, New Zealand
| |
Collapse
|
321
|
Bauman MD, Iosif AM, Smith SE, Bregere C, Amaral DG, Patterson PH. Activation of the maternal immune system during pregnancy alters behavioral development of rhesus monkey offspring. Biol Psychiatry 2014; 75:332-41. [PMID: 24011823 PMCID: PMC6782053 DOI: 10.1016/j.biopsych.2013.06.025] [Citation(s) in RCA: 219] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Revised: 06/22/2013] [Accepted: 06/29/2013] [Indexed: 12/24/2022]
Abstract
BACKGROUND Maternal infection during pregnancy is associated with an increased risk of schizophrenia and autism in the offspring. Supporting this correlation, experimentally activating the maternal immune system during pregnancy in rodents produces offspring with abnormal brain and behavioral development. We have developed a nonhuman primate model to bridge the gap between clinical populations and rodent models of maternal immune activation (MIA). METHODS A modified form of the viral mimic, synthetic double-stranded RNA (polyinosinic:polycytidylic acid stabilized with poly-L-lysine) was delivered to two separate groups of pregnant rhesus monkeys to induce MIA: 1) late first trimester MIA (n = 6), and 2) late second trimester MIA (n = 7). Control animals (n = 11) received saline injections at the same first or second trimester time points or were untreated. Sickness behavior, temperature, and cytokine profiles of the pregnant monkeys confirmed a strong inflammatory response to MIA. RESULTS Behavioral development of the offspring was studied for 24 months. Following weaning at 6 months of age, MIA offspring exhibited abnormal responses to separation from their mothers. As the animals matured, MIA offspring displayed increased repetitive behaviors and decreased affiliative vocalizations. When evaluated with unfamiliar conspecifics, first trimester MIA offspring deviated from species-typical macaque social behavior by inappropriately approaching and remaining in immediate proximity of an unfamiliar animal. CONCLUSIONS In this rhesus monkey model, MIA yields offspring with abnormal repetitive behaviors, communication, and social interactions. These results extended the findings in rodent MIA models to more human-like behaviors resembling those in both autism and schizophrenia.
Collapse
Affiliation(s)
- Melissa D. Bauman
- Department of Psychiatry and Behavioral Sciences, California National Primate Research Center, University of California, Davis, Davis; The M.I.N.D. Institute, University of California, Davis, Sacramento, Center for Neuroscience, University of California, Davis, Davis, California
| | - Ana-Maria Iosif
- Department of Public Health Sciences, Division of Biostatistics, University of California, Davis, Davis
| | | | | | - David G. Amaral
- Department of Psychiatry and Behavioral Sciences, California National Primate Research Center, University of California, Davis, Davis; The M.I.N.D. Institute, University of California, Davis, Sacramento; Center for Neuroscience, University of California, Davis, Davis, California
| | | |
Collapse
|
322
|
Meyer U. Prenatal poly(i:C) exposure and other developmental immune activation models in rodent systems. Biol Psychiatry 2014; 75:307-15. [PMID: 23938317 DOI: 10.1016/j.biopsych.2013.07.011] [Citation(s) in RCA: 458] [Impact Index Per Article: 41.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Revised: 06/18/2013] [Accepted: 07/04/2013] [Indexed: 02/08/2023]
Abstract
It is increasingly appreciated that altered neuroimmune mechanisms might play a role in the development of schizophrenia and related psychotic illnesses. On the basis of human epidemiological findings, a number of translational rodent models have been established to explore the consequences of prenatal immune activation on brain and behavioral development. The currently existing models are based on maternal gestational exposure to human influenza virus, the viral mimic polyriboinosinic-polyribocytidilic acid [Poly(I:C)], the bacterial endotoxin lipopolysaccharide, the locally acting inflammatory agent turpentine, or selected inflammatory cytokines. These models are pivotal for establishing causal relationships and for identifying cellular and molecular mechanisms that affect normal brain development in the event of early-life immune exposures. An important aspect of developmental immune activation models is that they allow a multi-faceted, longitudinal monitoring of the disease process as it unfolds during the course of neurodevelopment from prenatal to adult stages of life. An important recent refinement of these models is the incorporation of multiple etiologically relevant risk factors by combining prenatal immune challenges with specific genetic manipulations or additional environmental adversities. Converging findings from such recent experimental attempts suggest that prenatal infection can act as a "neurodevelopmental disease primer" that is likely relevant for a number of chronic mental illnesses. Hence, the adverse effects induced by prenatal infection might reflect an early entry into the neuropsychiatric route, but the specificity of subsequent disease or symptoms is likely to be strongly influenced by the genetic and environmental context in which the prenatal infectious process occurs.
Collapse
Affiliation(s)
- Urs Meyer
- Physiology and Behavior Laboratory, Swiss Federal Institute of Technology (ETH) Zurich, Schwerzenbach, Switzerland.
| |
Collapse
|
323
|
Schmitt A, Malchow B, Hasan A, Falkai P. The impact of environmental factors in severe psychiatric disorders. Front Neurosci 2014; 8:19. [PMID: 24574956 PMCID: PMC3920481 DOI: 10.3389/fnins.2014.00019] [Citation(s) in RCA: 199] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Accepted: 01/23/2014] [Indexed: 01/08/2023] Open
Abstract
During the last decades, schizophrenia has been regarded as a developmental disorder. The neurodevelopmental hypothesis proposes schizophrenia to be related to genetic and environmental factors leading to abnormal brain development during the pre- or postnatal period. First disease symptoms appear in early adulthood during the synaptic pruning and myelination process. Meta-analyses of structural MRI studies revealing hippocampal volume deficits in first-episode patients and in the longitudinal disease course confirm this hypothesis. Apart from the influence of risk genes in severe psychiatric disorders, environmental factors may also impact brain development during the perinatal period. Several environmental factors such as antenatal maternal virus infections, obstetric complications entailing hypoxia as common factor or stress during neurodevelopment have been identified to play a role in schizophrenia and bipolar disorder, possibly contributing to smaller hippocampal volumes. In major depression, psychosocial stress during the perinatal period or in adulthood is an important trigger. In animal studies, chronic stress or repeated administration of glucocorticoids have been shown to induce degeneration of glucocorticoid-sensitive hippocampal neurons and may contribute to the pathophysiology of affective disorders. Epigenetic mechanisms altering the chromatin structure such as histone acetylation and DNA methylation may mediate effects of environmental factors to transcriptional regulation of specific genes and be a prominent factor in gene-environmental interaction. In animal models, gene-environmental interaction should be investigated more intensely to unravel pathophysiological mechanisms. These findings may lead to new therapeutic strategies influencing epigenetic targets in severe psychiatric disorders.
Collapse
Affiliation(s)
- Andrea Schmitt
- Department of Psychiatry and Psychotherapy, LMU Munich Munich, Germany ; Laboratory of Neuroscience (LIM27), Institute of Psychiatry, University of Sao Paulo São Paulo, Brazil
| | - Berend Malchow
- Department of Psychiatry and Psychotherapy, LMU Munich Munich, Germany
| | - Alkomiet Hasan
- Department of Psychiatry and Psychotherapy, LMU Munich Munich, Germany
| | - Peter Falkai
- Department of Psychiatry and Psychotherapy, LMU Munich Munich, Germany
| |
Collapse
|
324
|
Kichev A, Rousset CI, Baburamani AA, Levison SW, Wood TL, Gressens P, Thornton C, Hagberg H. Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) signaling and cell death in the immature central nervous system after hypoxia-ischemia and inflammation. J Biol Chem 2014; 289:9430-9. [PMID: 24509861 PMCID: PMC3979382 DOI: 10.1074/jbc.m113.512350] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is a member of the TNF family. The interaction of TRAIL with death receptor 4 (DR4) and DR5 can trigger apoptotic cell death. The aim of this study was to investigate the role of TRAIL signaling in neonatal hypoxia-ischemia (HI). Using a neonatal mouse model of HI, mRNA, and protein expression of TRAIL, DR5 and the TRAIL decoy receptors osteoprotegerin (OPG), mDcTRAILR1, and mDcTRAILR2 were determined. In vitro, mRNA expression of these genes was measured in primary neurons and oligodendrocyte progenitor cells (OPCs) after inflammatory cytokine (TNF-α/IFN-γ) treatment and/or oxygen and glucose deprivation (OGD). The toxicity of these various paradigms was also measured. The expression of TRAIL, DR5, OPG, and mDcTRAILR2 was significantly increased after HI. In vitro, inflammatory cytokines and OGD treatment significantly induced mRNAs for TRAIL, DR5, OPG, and mDcTRAILR2 in primary neurons and of TRAIL and OPG in OPCs. TRAIL protein was expressed primarily in microglia and astroglia, whereas DR5 co-localized with neurons and OPCs in vivo. OGD enhanced TNF-α/IFN-γ toxicity in both neuronal and OPC cultures. Recombinant TRAIL exerted toxicity alone or in combination with OGD and TNF-α/IFN-γ in primary neurons but not in OPC cultures. The marked increases in the expression of TRAIL and its receptors after cytokine exposure and OGD in primary neurons and OPCs were similar to those found in our animal model of neonatal HI. The toxicity of TRAIL in primary neurons suggests that TRAIL signaling participates in neonatal brain injury after inflammation and HI.
Collapse
Affiliation(s)
- Anton Kichev
- From the Centre for the Developing Brain, Perinatal Brain Injury Group, Kings College London, London SE1 7EH, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
325
|
Lin YL, Wang S. Prenatal lipopolysaccharide exposure increases depression-like behaviors and reduces hippocampal neurogenesis in adult rats. Behav Brain Res 2014; 259:24-34. [DOI: 10.1016/j.bbr.2013.10.034] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Revised: 10/18/2013] [Accepted: 10/20/2013] [Indexed: 12/11/2022]
|
326
|
Pseudoginsenoside-F11 (PF11) exerts anti-neuroinflammatory effects on LPS-activated microglial cells by inhibiting TLR4-mediated TAK1/IKK/NF-κB, MAPKs and Akt signaling pathways. Neuropharmacology 2014; 79:642-56. [PMID: 24467851 DOI: 10.1016/j.neuropharm.2014.01.022] [Citation(s) in RCA: 106] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Revised: 01/10/2014] [Accepted: 01/13/2014] [Indexed: 02/07/2023]
Abstract
Pseudoginsenoside-F11 (PF11), an ocotillol-type ginsenoside, has been shown to possess significant neuroprotective activity. Since microglia-mediated inflammation is critical for induction of neurodegeneration, this study was designed to investigate the effect of PF11 on activated microglia. PF11 significantly suppressed the release of ROS and proinflammatory mediators induced by LPS in a microglial cell line N9 including NO, PGE2, IL-1β, IL-6 and TNF-α. Moreover, PF11 inhibited interaction and expression of TLR4 and MyD88 in LPS-activated N9 cells, resulting in an inhibition of the TAK1/IKK/NF-κB signaling pathway. PF11 also inhibited the phosphorylation of Akt and MAPKs induced by LPS in N9 cells. Importantly, PF11 significantly alleviated the death of SH-SY5Y neuroblastoma cells and primary cortical neurons induced by the conditioned-medium from activated microglia. At last, the effect of PF11 on neuroinflammation was confirmed in vivo: PF11 mitigated the microglial activation and proinflammatory factors expression obviously in both cortex and hippocampus in mice injected intrahippocampally with LPS. These findings indicate that PF11 exerts anti-neuroinflammatory effects on LPS-activated microglial cells by inhibiting TLR4-mediated TAK1/IKK/NF-κB, MAPKs and Akt signaling pathways, suggesting its therapeutic implication for neurodegenerative disease associated with neuroinflammation.
Collapse
|
327
|
Schieve LA, Tian LH, Baio J, Rankin K, Rosenberg D, Wiggins L, Maenner MJ, Yeargin-Allsopp M, Durkin M, Rice C, King L, Kirby RS, Wingate MS, Devine O. Population attributable fractions for three perinatal risk factors for autism spectrum disorders, 2002 and 2008 autism and developmental disabilities monitoring network. Ann Epidemiol 2014; 24:260-6. [PMID: 24529515 DOI: 10.1016/j.annepidem.2013.12.014] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Revised: 12/03/2013] [Accepted: 12/23/2013] [Indexed: 11/26/2022]
Abstract
PURPOSE Numerous studies establish associations between adverse perinatal outcomes/complications and autism spectrum disorder (ASD). There has been little assessment of population attributable fractions (PAFs). METHODS We estimated average ASD PAFs for preterm birth (PTB), small for gestational age (SGA), and Cesarean delivery (CD) in a U.S. population. Average PAF methodology accounts for risk factor co-occurrence. ASD cases were singleton non-Hispanic white, non-Hispanic black, and Hispanic children born in 1994 (n = 703) or 2000 (n = 1339) who resided in 48 U.S. counties included within eight Autism and Developmental Disabilities Monitoring Network sites. Cases were matched on birth year, sex, and maternal county of residence, race-ethnicity, age, and education to 20 controls from U.S. natality files. RESULTS For the 1994 cohort, average PAFs were 4.2%, 0.9%, and 7.9% for PTB, SGA, and CD, respectively. The summary PAF was 13.0% (1.7%-19.5%). For the 2000 cohort, average PAFs were 2.0%, 3.1%, and 6.7% for PTB, SGA, and CD, respectively, with a summary PAF of 11.8% (7.5%-15.9%). CONCLUSIONS Three perinatal risk factors notably contribute to ASD risk in a U.S. population. Because each factor represents multiple etiologic pathways, PAF estimates are best interpreted as the proportion of ASD attributable to having a suboptimal perinatal environment resulting in PTB, SGA, and/or CD.
Collapse
Affiliation(s)
- Laura A Schieve
- National Center on Birth Defects and Developmental Disabilities, Centers for Disease Control and Prevention, Atlanta, GA.
| | - Lin H Tian
- National Center on Birth Defects and Developmental Disabilities, Centers for Disease Control and Prevention, Atlanta, GA
| | - Jon Baio
- National Center on Birth Defects and Developmental Disabilities, Centers for Disease Control and Prevention, Atlanta, GA
| | - Kristin Rankin
- School of Public Health, University of Illinois, Chicago
| | | | - Lisa Wiggins
- National Center on Birth Defects and Developmental Disabilities, Centers for Disease Control and Prevention, Atlanta, GA
| | | | - Marshalyn Yeargin-Allsopp
- National Center on Birth Defects and Developmental Disabilities, Centers for Disease Control and Prevention, Atlanta, GA
| | | | - Catherine Rice
- National Center on Birth Defects and Developmental Disabilities, Centers for Disease Control and Prevention, Atlanta, GA
| | - Lydia King
- Medical University of South Carolina, Charleston
| | | | | | - Owen Devine
- National Center on Birth Defects and Developmental Disabilities, Centers for Disease Control and Prevention, Atlanta, GA
| |
Collapse
|
328
|
Mann JR, Pan C, Rao GA, McDermott S, Hardin JW. Children born to diabetic mothers may be more likely to have intellectual disability. Matern Child Health J 2014; 17:928-32. [PMID: 22798077 DOI: 10.1007/s10995-012-1072-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Intellectual disability (ID) is a major public health condition that usually develops in utero and causes lifelong disability. Despite improvements in pregnancy and delivery care that have resulted in dramatic decreases in infant mortality rates, the incidence of ID has remained constant over the past 20 years. There may still be uncharacterized preventable causes of ID such as Diabetes Mellitus (DM). We used statewide individual level de-identified data for maternal and child pairs obtained by linking Medicaid claims, Department of Education, and Department of Disabilities and Special Needs data from 2000 to 2007 for all mother-child pairs with a minimum follow-up of 3-years post birth or until a diagnosis of ID. To ascertain the adjusted relationship between DM and ID, we fit a logistic regression model taking into account individual level clustering on mothers for multiple pregnancies using the population-averaged Generalized Estimating Equations method. Of the 162,611 eligible maternal and child pairs, 5,667 (3.49 %) of the children were diagnosed with ID between birth and 3-years of age. After adjustment for covariates the independent relationship between DM and ID was significant with odds ratio of 1.10 (1.01-1.12). On sub-analysis, patients with pre-pregnancy DM had the highest effect measure with an estimated odds ratio of 1.32 (0.84, 2.09), although this was not statistically significant. In this large cohort of mothers and children in South Carolina, we found a small but statistically significant increased risk for ID among children born to mothers with DM. Additional information about the association between maternal DM and risk of ID in children may lead to the development of effective preventive interventions on the individual and public health levels.
Collapse
Affiliation(s)
- Joshua R Mann
- School of Medicine, University of South Carolina, Columbia, SC, USA.
| | | | | | | | | |
Collapse
|
329
|
Bhalala US, Koehler RC, Kannan S. Neuroinflammation and neuroimmune dysregulation after acute hypoxic-ischemic injury of developing brain. Front Pediatr 2014; 2:144. [PMID: 25642419 PMCID: PMC4294124 DOI: 10.3389/fped.2014.00144] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Accepted: 12/22/2014] [Indexed: 12/15/2022] Open
Abstract
Hypoxic-ischemic (HI) injury to developing brain results from birth asphyxia in neonates and from cardiac arrest in infants and children. It is associated with varying degrees of neurologic sequelae, depending upon the severity and length of HI. Global HI triggers a series of cellular and biochemical pathways that lead to neuronal injury. One of the key cellular pathways of neuronal injury is inflammation. The inflammatory cascade comprises activation and migration of microglia - the so-called "brain macrophages," infiltration of peripheral macrophages into the brain, and release of cytotoxic and proinflammatory cytokines. In this article, we review the inflammatory and immune mechanisms of secondary neuronal injury after global HI injury to developing brain. Specifically, we highlight the current literature on microglial activation in relation to neuronal injury, proinflammatory and anti-inflammatory/restorative pathways, the role of peripheral immune cells, and the potential use of immunomodulators as neuroprotective compounds.
Collapse
Affiliation(s)
- Utpal S Bhalala
- Department of Anesthesiology, Johns Hopkins University School of Medicine , Baltimore, MD , USA ; Department of Critical Care Medicine, Johns Hopkins University School of Medicine , Baltimore, MD , USA
| | - Raymond C Koehler
- Department of Anesthesiology, Johns Hopkins University School of Medicine , Baltimore, MD , USA ; Department of Critical Care Medicine, Johns Hopkins University School of Medicine , Baltimore, MD , USA
| | - Sujatha Kannan
- Department of Anesthesiology, Johns Hopkins University School of Medicine , Baltimore, MD , USA ; Department of Critical Care Medicine, Johns Hopkins University School of Medicine , Baltimore, MD , USA
| |
Collapse
|
330
|
Doshi-Velez F, Ge Y, Kohane I. Comorbidity clusters in autism spectrum disorders: an electronic health record time-series analysis. Pediatrics 2014; 133:e54-63. [PMID: 24323995 PMCID: PMC3876178 DOI: 10.1542/peds.2013-0819] [Citation(s) in RCA: 245] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
OBJECTIVE The distinct trajectories of patients with autism spectrum disorders (ASDs) have not been extensively studied, particularly regarding clinical manifestations beyond the neurobehavioral criteria from the Diagnostic and Statistical Manual of Mental Disorders. The objective of this study was to investigate the patterns of co-occurrence of medical comorbidities in ASDs. METHODS International Classification of Diseases, Ninth Revision codes from patients aged at least 15 years and a diagnosis of ASD were obtained from electronic medical records. These codes were aggregated by using phenotype-wide association studies categories and processed into 1350-dimensional vectors describing the counts of the most common categories in 6-month blocks between the ages of 0 to 15. Hierarchical clustering was used to identify subgroups with distinct courses. RESULTS Four subgroups were identified. The first was characterized by seizures (n = 120, subgroup prevalence 77.5%). The second (n = 197) was characterized by multisystem disorders including gastrointestinal disorders (prevalence 24.3%) and auditory disorders and infections (prevalence 87.8%), and the third was characterized by psychiatric disorders (n = 212, prevalence 33.0%). The last group (n = 4316) could not be further resolved. The prevalence of psychiatric disorders was uncorrelated with seizure activity (P = .17), but a significant correlation existed between gastrointestinal disorders and seizures (P < .001). The correlation results were replicated by using a second sample of 496 individuals from a different geographic region. CONCLUSIONS Three distinct patterns of medical trajectories were identified by unsupervised clustering of electronic health record diagnoses. These may point to distinct etiologies with different genetic and environmental contributions. Additional clinical and molecular characterizations will be required to further delineate these subgroups.
Collapse
Affiliation(s)
- Finale Doshi-Velez
- Center for Biomedical Informatics, Harvard Medical School, 10 Shattuck St, Boston, MA 02115.
| | - Yaorong Ge
- Center for Biomedical Informatics, Wake Forest University, Winston-Salem, North Carolina
| | - Isaac Kohane
- Center for Biomedical Informatics, Harvard Medical School, Boston, Massachusetts; and
| |
Collapse
|
331
|
Rosenzweig JM, Lei J, Burd I. Interleukin-1 receptor blockade in perinatal brain injury. Front Pediatr 2014; 2:108. [PMID: 25340046 PMCID: PMC4187538 DOI: 10.3389/fped.2014.00108] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Accepted: 09/23/2014] [Indexed: 12/13/2022] Open
Abstract
Interleukin-1 (IL-1) is a potent inflammatory cytokine that can be produced by a variety of cell types throughout the body. While IL-1 is a central mediator of inflammation and response to infection, the role of IL-1 signaling in adult and pediatric brain injury is becoming increasingly clear. Although the mechanisms of IL-1 expression are largely understood, the downstream effects and contributions to excitotoxicity and oxidative stress are poorly defined. Here, we present a review of mechanisms of IL-1 signaling with a focus on the role of IL-1 in perinatal brain injury. We highlight research models of perinatal brain injury and the use of interleukin-1 receptor antagonist (IL-1RA) as an agent of therapeutic potential in preventing perinatal brain injury due to exposure to inflammation.
Collapse
Affiliation(s)
- Jason M Rosenzweig
- Department of Gynecology and Obstetrics, Integrated Research Center for Fetal Medicine, Johns Hopkins University School of Medicine , Baltimore, MD , USA
| | - Jun Lei
- Department of Gynecology and Obstetrics, Integrated Research Center for Fetal Medicine, Johns Hopkins University School of Medicine , Baltimore, MD , USA
| | - Irina Burd
- Department of Gynecology and Obstetrics, Integrated Research Center for Fetal Medicine, Johns Hopkins University School of Medicine , Baltimore, MD , USA ; Department of Neuroscience, Kennedy Krieger Institute , Baltimore, MD , USA ; Department of Neurology, Johns Hopkins University School of Medicine , Baltimore, MD , USA
| |
Collapse
|
332
|
Taliou A, Zintzaras E, Lykouras L, Francis K. An open-label pilot study of a formulation containing the anti-inflammatory flavonoid luteolin and its effects on behavior in children with autism spectrum disorders. Clin Ther 2013; 35:592-602. [PMID: 23688534 DOI: 10.1016/j.clinthera.2013.04.006] [Citation(s) in RCA: 143] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Revised: 04/15/2013] [Accepted: 04/17/2013] [Indexed: 10/26/2022]
Abstract
BACKGROUND Accumulating evidence suggests an association between autism spectrum disorders (ASD) and inflammation in brain regions related to cognitive function. The natural flavonoid luteolin has antioxidant, anti-inflammatory, mast cell-blocking, and neuroprotective effects. It was shown to improve cognitive performance in a mouse model of ASD, but its effect in humans has not been adequately studied. OBJECTIVES The goal of this study was to assess the effectiveness and tolerability in white children with ASD of a dietary supplement containing 2 flavonoids (>95% pure), luteolin (100 mg/capsule, from chamomile) and quercetin (70 mg/capsule), and the quercetin glycoside rutin (30 mg/capsule) from the Sophora japonica leaf, formulated in olive kernel oil to increase oral absorption. METHODS Fifty children (4-10 years old; 42 boys and 8 girls) with ASD were enrolled in a 26-week, prospective, open-label trial at the 2nd University Department of Psychiatry at "Attikon" General Hospital, Athens, Greece. Children were referred for the study by their respective physicians or came from the practice of the senior author. ASD diagnosis by clinical assessment was based on the Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition, Text Revision, symptom list and corroborated by using the Autism Diagnostic Observation Schedule. The dose of the study formulation used was 1 capsule per 10 kg weight per day with food. The primary outcome measures were the age-equivalent scores in the Vineland Adaptive Behavior Scales domains. Secondary outcomes included the Aberrant Behavior Checklist, the Autism Treatment Evaluation Checklist, and the Clinical Global Impression-Improvement score. Data were measured at baseline, week 18, and week 26. Parents were interviewed for any possible improvements they noticed and instructed to report any unusual adverse events. RESULTS A total of 40 children completed the protocol. There was a significant improvement in adaptive functioning as measured by using the VABS age-equivalent scores (8.43 months in the communication domain, 7.17 months in daily living skills, and 8 months in the social domain; P < 0.005), as well as in overall behavior as indicated by the reduction (26.6%-34.8%) in Aberrant Behavior Checklist subscale scores. Age, sex, and history of allergies had no effect on the results, whereas the initial level of functioning or difficulty did predict the final outcome in most of the measures used. There was a transient (1-8 weeks) increased irritability in 27 of the 50 participants. CONCLUSIONS These results are encouraging in that the combination of the flavonoids luteolin and quercetin seemed to be effective in reducing ASD symptoms, with no major adverse effects. ClinicalTrials.gov identifier: NCT01847521.
Collapse
Affiliation(s)
- Anilia Taliou
- Second Department of Psychiatry, Athens University Medical School, Attikon General Hospital, Athens, Greece
| | | | | | | |
Collapse
|
333
|
Kuypers E, Jellema RK, Ophelders DRMG, Dudink J, Nikiforou M, Wolfs TGAM, Nitsos I, Pillow JJ, Polglase GR, Kemp MW, Saito M, Newnham JP, Jobe AH, Kallapur SG, Kramer BW. Effects of intra-amniotic lipopolysaccharide and maternal betamethasone on brain inflammation in fetal sheep. PLoS One 2013; 8:e81644. [PMID: 24358119 PMCID: PMC3866104 DOI: 10.1371/journal.pone.0081644] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2013] [Accepted: 10/15/2013] [Indexed: 01/16/2023] Open
Abstract
Rationale Chorioamnionitis and antenatal glucocorticoids are common exposures for preterm infants and can affect the fetal brain, contributing to cognitive and motor deficits in preterm infants. The effects of antenatal glucocorticoids on the brain in the setting of chorioamnionitis are unknown. We hypothesized that antenatal glucocorticoids would modulate inflammation in the brain and prevent hippocampal and white matter injury after intra-amniotic lipopolysaccharide (LPS) exposure. Methods Time-mated ewes received saline (control), an intra-amniotic injection of 10 mg LPS at 106d GA or 113d GA, maternal intra-muscular betamethasone (0.5 mg/kg maternal weight) alone at 113d GA, betamethasone at 106d GA before LPS or betamethasone at 113d GA after LPS. Animals were delivered at 120d GA (term=150d). Brain structure volumes were measured on T2-weighted MRI images. The subcortical white matter (SCWM), periventricular white matter (PVWM) and hippocampus were analyzed for microglia, astrocytes, apoptosis, proliferation, myelin and pre-synaptic vesicles. Results LPS and/or betamethasone exposure at different time-points during gestation did not alter brain structure volumes on MRI. Betamethasone alone did not alter any of the measurements. Intra-amniotic LPS at 106d or 113d GA induced inflammation as indicated by increased microglial and astrocyte recruitment which was paralleled by increased apoptosis and hypomyelination in the SCWM and decreased synaptophysin density in the hippocampus. Betamethasone before the LPS exposure at 113d GA prevented microglial activation and the decrease in synaptophysin. Betamethasone after LPS exposure increased microglial infiltration and apoptosis. Conclusion Intra-uterine LPS exposure for 7d or 14d before delivery induced inflammation and injury in the fetal white matter and hippocampus. Antenatal glucocorticoids aggravated the inflammatory changes in the brain caused by pre-existing intra-amniotic inflammation. Antenatal glucocorticoids prior to LPS reduced the effects of intra-uterine inflammation on the brain. The timing of glucocorticoid administration in the setting of chorioamnionitis can alter outcomes for the fetal brain.
Collapse
Affiliation(s)
- Elke Kuypers
- Department of Pediatrics, School of Mental Health and Neuroscience, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Reint K. Jellema
- Department of Pediatrics, School of Mental Health and Neuroscience, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Daan R. M. G. Ophelders
- Department of Pediatrics, School of Mental Health and Neuroscience, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Jeroen Dudink
- Department of Pediatrics, Erasmus Medical Center-Sophia, Rotterdam, The Netherlands
| | - Maria Nikiforou
- Department of Pediatrics, School of Mental Health and Neuroscience, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Tim G. A. M. Wolfs
- Department of Pediatrics, School of Mental Health and Neuroscience, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Ilias Nitsos
- School of Women’s and Infants’ Health, The University of Western Australia, Perth, Australia
- The Ritchie Centre, Monash Institute of Medical Research, Melbourne, Australia
| | - J. Jane Pillow
- School of Anatomy, Physiology and Human Biology, The University of Western Australia, Perth, Australia
| | - Graeme R. Polglase
- School of Women’s and Infants’ Health, The University of Western Australia, Perth, Australia
- The Ritchie Centre, Monash Institute of Medical Research, Melbourne, Australia
| | - Matthew W. Kemp
- School of Women’s and Infants’ Health, The University of Western Australia, Perth, Australia
| | - Masatoshi Saito
- School of Women’s and Infants’ Health, The University of Western Australia, Perth, Australia
| | - John P. Newnham
- School of Women’s and Infants’ Health, The University of Western Australia, Perth, Australia
| | - Alan H. Jobe
- School of Women’s and Infants’ Health, The University of Western Australia, Perth, Australia
- Division of Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, United States of America
| | - Suhas G. Kallapur
- School of Women’s and Infants’ Health, The University of Western Australia, Perth, Australia
- Division of Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, United States of America
| | - Boris W. Kramer
- Department of Pediatrics, School of Mental Health and Neuroscience, Maastricht University Medical Center, Maastricht, The Netherlands
- * E-mail:
| |
Collapse
|
334
|
Giurgescu C, Engeland CG, Zenk SN, Kavanaugh K. Stress, Inflammation and Preterm Birth in African American Women. ACTA ACUST UNITED AC 2013. [DOI: 10.1053/j.nainr.2013.09.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
335
|
Neonatal E. coli infection causes neuro-behavioral deficits associated with hypomyelination and neuronal sequestration of iron. J Neurosci 2013; 33:16334-45. [PMID: 24107964 DOI: 10.1523/jneurosci.0708-13.2013] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Recent evidence indicates that inflammatory insults in neonates significantly influenced white matter development and caused behavioral deficits that manifest in young adulthood. The mechanisms underlying these developmental and behavioral complications, however, are not well understood. We hypothesize that acute brain inflammation caused by neonatal infection reduces the bioavailability of iron required for oligodendrocyte maturation and white matter development. Here, we confirm that peripheral Escherichia coli infection in neonates at postnatal day 3 (P3) caused acute brain inflammation that was resolved within 72 h. Nonetheless, transient early life infection (ELI) profoundly influenced behavior, white matter development, and iron homeostasis in the brain. For instance, mice exposed to E. coli as neonates had increased locomotor activity and impaired motor coordination as juveniles (P35) and young adults (P60). In addition, these behavioral deficits were associated with marked hypomyelination and a reduction of oligodendrocytes in subcortical white matter and motor cortex. Moreover, ELI altered transcripts related to cellular sequestration of iron in the brain including hepcidin, ferroportin, and L-ferritin. For example, ELI increased hepcidin mRNA and decreased ferroportin mRNA and protein in the brain at P4, which preceded increased L-ferritin mRNA at P12. Consistent with the mRNA results, L-ferritin protein was robustly increased at P12 specifically in neurons of E. coli infected mice. We interpret these data to indicate that neonatal infection causes significant neuronal sequestration of iron at a time point before myelination. Together, these data indicate a possible role for aberrant neuronal iron storage in neonatal infection-induced disturbances in myelination and behavior.
Collapse
|
336
|
Abdoli A, Dalimi A, Arbabi M, Ghaffarifar F. Neuropsychiatric manifestations of latent toxoplasmosis on mothers and their offspring. J Matern Fetal Neonatal Med 2013; 27:1368-74. [PMID: 24156764 DOI: 10.3109/14767058.2013.858685] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Toxoplasmosis is one of the most common parasitic diseases worldwide. It is estimated that approximately one-third of the world's population is latently infected. Infection generally occurs via oral the route and maternal transmission. Damage of the central nervous system is one of the most serious consequences of congenital toxoplasmosis. Moreover, recent investigations proposed that acute and sub-acute congenital toxoplasmosis as well as latent toxoplasmosis during pregnancy; play various roles in the etiology of different neuropsychiatric disorders in mothers and their offspring. This paper reviews new findings about the role of latent toxoplasmosis in the etiology of various neuropsychiatric disorders in mothers and their offspring.
Collapse
Affiliation(s)
- Amir Abdoli
- Department of Parasitology, Faculty of Medical Sciences, Kashan University of Medical Science , Kashan , Iran and
| | | | | | | |
Collapse
|
337
|
Abstract
Hemolytic conditions in preterm neonates, including Rhesus (Rh) disease, can lead to mortality and long-term impairments due to bilirubin neurotoxicity. Universal access to Rh immunoprophylaxis, coordinated perinatal-neonatal care, and effective phototherapy has virtually eliminated the risk of kernicterus in many countries. In the absence of jaundice due to isoimmunization and without access to phototherapy or exchange transfusion (in 1955), kernicterus was reported at 10.1%, 5.5%, and 1.2% in babies <30, 31-32, and 33-34 wks gestational age, respectively. Phototherapy initiated at 24±12 hr effectively prevented hyperbilirubinemia in infants <2,000 g even in the presence of hemolysis. This approach (in 1985) reduced exchange transfusions from 23.9% to 4.8%. Now with 3 decades of experience in implementing effective phototherapy, the need for exchange transfusions has virtually been eliminated. However, bilirubin neurotoxicity continues to be associated with prematurity alone. The ability to better predict this risk, other than birthweight and gestation, has been elusive. Objective tests such as total bilirubin, unbound or free bilirubin, albumin levels, and albumin-bilirubin binding, together with observations of concurrent hemolysis, sepsis, and rapid rate of bilirubin rise have been considered, but their individual or combined predictive utility has yet to be refined. The disruptive effects of immaturity, concurrent neonatal disease, cholestasis, use of total parenteral nutrition or drugs that alter bilirubin-binding abilities augment the clinical risk of neurotoxicity. Current management options rely on the “fine-tuning” of each infant's exposure to beneficial antioxidants and avoidance of silent neurotoxic properties of bilirubin navigated within the safe spectrum of operational thresholds demarcated by experts.
Collapse
Affiliation(s)
- Vinod K Bhutani
- Department of Pediatrics, Division of Neonatal and Developmental Medicine, Stanford University School of Medicine, Lucile Packard Children's Hospital, Stanford, California, USA
| | | |
Collapse
|
338
|
Bergeron J, Deslauriers J, Grignon S, Fortier L, Lepage M, Stroh T, Poyart C, Sébire G. White Matter Injury and Autistic-Like Behavior Predominantly Affecting Male Rat Offspring Exposed to Group B Streptococcal Maternal Inflammation. Dev Neurosci 2013; 35:504-15. [DOI: 10.1159/000355656] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Accepted: 09/13/2013] [Indexed: 11/19/2022] Open
|
339
|
Miller JE, Pedersen LH, Streja E, Bech BH, Yeargin-Allsopp M, Van Naarden Braun K, Schendel DE, Christensen D, Uldall P, Olsen J. Maternal infections during pregnancy and cerebral palsy: a population-based cohort study. Paediatr Perinat Epidemiol 2013; 27:542-52. [PMID: 24117888 PMCID: PMC4997608 DOI: 10.1111/ppe.12082] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
BACKGROUND Cerebral palsy (CP) is a common motor disability in childhood. We examined the association between maternal infections during pregnancy and the risk of congenital CP in the child. METHODS Liveborn singletons in Denmark between 1997 and 2003 were identified from the Danish National Birth Registry and followed from 1 year of life until 2008. Redemption of antibiotics from the National Register of Medicinal Product Statistics and maternal infections reported by the National Hospital Register were used as markers of maternal infection during pregnancy. CP diagnoses were obtained from the Danish Cerebral Palsy Registry. Adjusted hazard ratio (HR) and 95% confidence interval (CI) were estimated by Cox proportional hazard models. RESULTS Of the 440 564 singletons with follow-up data, 840 were diagnosed with congenital CP. Maternal genito-urinary tract infections (HR 2.1, 95% CI 1.4, 3.2) were associated with CP in all births, in term births (HR 1.9, 95% CI 1.1, 3.2), in children with spastic CP (HR 2.1, 95% CI 1.4, 3.3), and among first-born children (HR 1.9, 95% CI 1.4, 3.3). Overall, we found associations between redeemed nitrofurantoin (HR 1.7, 95% CI 1.1, 2.8) and CP. Among trimester-specific exposures, CP risk was associated with prescriptions redeemed in the first trimester for any antibacterials, beta-lactam antibacterials, and nitrofurantoin, an antibiotic commonly used to treat lower urinary tract infection, and genito-urinary tract infections in the third trimester. CONCLUSION Genito-urinary tract infections and antibiotic use during pregnancy were associated with increased risks of CP, indicating that some maternal infections or causes of maternal infections present in prenatal life may be part of a causal pathway leading to CP.
Collapse
Affiliation(s)
- Jessica E. Miller
- Department of Epidemiology, Fielding School of Public Health, University of California, Los Angeles, CA
| | - Lars Henning Pedersen
- Department of Obstetrics and Gynecology, Institute of Clinical Medicine, Aarhus University, Aarhus, Denmark
,Department of Public Health, Section for Epidemiology, Aarhus University, Aarhus, Denmark
| | - Elani Streja
- Department of Epidemiology, Fielding School of Public Health, University of California, Los Angeles, CA
| | - Bodil H. Bech
- Department of Public Health, Section for Epidemiology, Aarhus University, Aarhus, Denmark
| | - Marshalyn Yeargin-Allsopp
- National Center on Birth Defects and Developmental Disabilities, Centers for Disease Control and Prevention, Atlanta, GA
| | - Kim Van Naarden Braun
- National Center on Birth Defects and Developmental Disabilities, Centers for Disease Control and Prevention, Atlanta, GA
| | - Diana E. Schendel
- National Center on Birth Defects and Developmental Disabilities, Centers for Disease Control and Prevention, Atlanta, GA
| | - Deborah Christensen
- National Center on Birth Defects and Developmental Disabilities, Centers for Disease Control and Prevention, Atlanta, GA
| | - Peter Uldall
- The Danish Cerebral Palsy Registry, National Institute of Public Health, University of Southern Denmark, Copenhagen, Denmark
,Pediatric Department, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Jørn Olsen
- Department of Epidemiology, Fielding School of Public Health, University of California, Los Angeles, CA
,Department of Public Health, Section for Epidemiology, Aarhus University, Aarhus, Denmark
| |
Collapse
|
340
|
Abstract
Cerebral palsy is a chronic childhood disorder that can have diverse etiologies. Injury to the developing brain that occurs either in utero or soon after birth can result in the motor, sensory, and cognitive deficits seen in cerebral palsy. Although the etiologies for cerebral palsy are variable, neuroinflammation plays a key role in the pathophysiology of the brain injury irrespective of the etiology. Currently, there is no effective cure for cerebral palsy. Nanomedicine offers a new frontier in the development of therapies for prevention and treatment of brain injury resulting in cerebral palsy. Nanomaterials such as dendrimers provide opportunities for the targeted delivery of multiple drugs that can mitigate several pathways involved in injury and can be delivered specifically to the cells that are responsible for neuroinflammation and injury. These materials also offer the opportunity to deliver agents that would promote repair and regeneration in the brain, resulting not only in attenuation of injury, but also enabling normal growth. In this review, the current advances in nanotechnology for treatment of brain injury are discussed with specific relevance to cerebral palsy. Future directions that would facilitate clinical translation in neonates and children are also addressed.
Collapse
Affiliation(s)
- Bindu Balakrishnan
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University; Baltimore, MD, USA
| | | | | | | | | |
Collapse
|
341
|
Posod A, Krepp Y, Urbanek M, Stock K, Kiechl-Kohlendorfer U, Griesmaier E. In vivo and in vitro evaluation of the effect of 2-(4-morpholinethyl)1-phenylcyclohexanecarboxylate on inflammation-sensitized hyperoxia-induced developing brain injury. J Neurosci Res 2013; 91:1463-72. [PMID: 24038156 DOI: 10.1002/jnr.23271] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2013] [Revised: 05/24/2013] [Accepted: 06/04/2013] [Indexed: 01/13/2023]
Abstract
Supraphysiological oxygen concentrations are toxic to the developing brain. Inflammatory processes increase the risk for brain injury. Sigma-1 receptor agonists are potent suppressors of inflammation-related events and are powerful immunomodulatory and antioxidative agents. Neuroprotective effects of sigma-1 receptor agonists have been described previously for neonatal and adult models of brain injury. The aim of this study was to assess the selective sigma-1 receptor agonist 2-(4-morpholinethyl)1-phenylcyclohexanecarboxylate (PRE-084) in models of inflammation-sensitized hyperoxia-induced developing brain injury. For in vivo studies, rat pups were randomly presensitized with 1) lipopolysaccharide or 2) vehicle on postnatal day 3. On day 6, pups received either 1) PRE-084 or 2) vehicle and were subsequently exposed to hyperoxic conditions for 6, 12, or 24 hr. At the end of exposure, animals were sacrificed and brains were processed for caspase-3 analysis using immunohistochemistry and Western blotting. For in vitro studies, oligodendroglial cells were subjected to hyperoxic conditions in the presence or absence of proinflammatory cytokines and PRE-084. Cell membrane integrity and cell viability were assessed by means of lactate dehydrogenase and 2,3-bis-(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide (XTT) assays. Inflammatory presensitization significantly increased hyperoxia-induced injury both in vivo and in vitro. PRE-084 administration did not attenuate damage. Sigma-1 receptor agonists have been described as a promising therapeutic strategy for brain injury. We were not able to confirm this in the present model. The exact mechanisms of action of sigma-1 receptor agonists as well as the pathophysiologic pathways involved in hyperoxia-induced injury in the developing brain remain to be elucidated.
Collapse
Affiliation(s)
- Anna Posod
- Department of Pediatrics II, Innsbruck Medical University, Innsbruck, Austria
| | | | | | | | | | | |
Collapse
|
342
|
Bennet L, Van Den Heuij L, M Dean J, Drury P, Wassink G, Jan Gunn A. Neural plasticity and the Kennard principle: does it work for the preterm brain? Clin Exp Pharmacol Physiol 2013; 40:774-84. [DOI: 10.1111/1440-1681.12135] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Revised: 05/29/2013] [Accepted: 05/31/2013] [Indexed: 12/27/2022]
Affiliation(s)
- Laura Bennet
- Fetal Physiology and Neuroscience Groups; Department of Physiology; University of Auckland; Auckland New Zealand
| | - Lotte Van Den Heuij
- Fetal Physiology and Neuroscience Groups; Department of Physiology; University of Auckland; Auckland New Zealand
| | - Justin M Dean
- Fetal Physiology and Neuroscience Groups; Department of Physiology; University of Auckland; Auckland New Zealand
| | - Paul Drury
- Fetal Physiology and Neuroscience Groups; Department of Physiology; University of Auckland; Auckland New Zealand
| | - Guido Wassink
- Fetal Physiology and Neuroscience Groups; Department of Physiology; University of Auckland; Auckland New Zealand
| | - Alistair Jan Gunn
- Fetal Physiology and Neuroscience Groups; Department of Physiology; University of Auckland; Auckland New Zealand
| |
Collapse
|
343
|
Ratnayake U, Quinn T, Walker DW, Dickinson H. Cytokines and the neurodevelopmental basis of mental illness. Front Neurosci 2013; 7:180. [PMID: 24146637 PMCID: PMC3797953 DOI: 10.3389/fnins.2013.00180] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Accepted: 09/19/2013] [Indexed: 11/21/2022] Open
Abstract
Epidemiological studies suggest that prenatal exposure to different types of viral or bacterial infections may be associated with similar outcomes; i.e., an increased risk of mental illness disorders in the offspring. Infections arising from various causes have similar debilitating effects in later life, suggesting that the exact pathogen may not be the critical factor in determining the neurological and cognitive outcome in the offspring. Instead, it is thought that response of the innate immune system, specifically the increased production of inflammatory cytokines, may be the critical mediator in altering fetal brain development pre-disposing the offspring to mental illness disorders later in life. Inflammatory cytokines are essential for normal brain development. Factors such as the site of cytokine production, a change in balance between anti- and pro- inflammatory cytokines, placental transfer of cytokines, the effects of cytokines on glial cells, and the effects of glucocorticoids are important when evaluating the impact of maternal infection on fetal brain development. Although it is clear that cytokines are altered in the fetal brain following maternal infection, further evidence is required to determine if cytokines are the critical factor that alters the trajectory of brain development, subsequently leading to postnatal behavioral and neurological abnormalities.
Collapse
Affiliation(s)
- Udani Ratnayake
- Ritchie Centre, Monash Institute of Medical Research, Monash University Clayton, Australia
| | | | | | | |
Collapse
|
344
|
Sun Y, Christensen J, Olsen J. Childhood epilepsy and maternal antibodies to microbial and tissue antigens during pregnancy. Epilepsy Res 2013; 107:61-74. [PMID: 24054428 DOI: 10.1016/j.eplepsyres.2013.08.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Revised: 07/23/2013] [Accepted: 08/14/2013] [Indexed: 11/19/2022]
Abstract
INTRODUCTION Several epidemiologic studies show associations between mother's infections during pregnancy and an increased risk of mental and neurological disorders in the offspring. Such associations could be due to the direct or indirect effects of infectious agents, including immune responses to infectious agents that display molecular mimicry with host antigens. We measured a range of antigen-specific maternal IgG antibodies to examine if any were associated with risk for childhood epilepsy in offspring. METHODS We used a case-cohort design within the Danish National Birth Cohort (DNBC) to examine maternal IgG antibodies to 25 microbial and tissue antigens during pregnancy and their association with the risk of epilepsy in offspring. The source population of this study was 68,250 live born singletons with up to 10 years of follow up. We randomly identified a sample of 282 children as a subcohort and included 275 children with a verified diagnosis of epilepsy as cases. Maternal antibodies were categorized into 6 groups (<50, 50-59, 60-69, 70-79, 80-89, ≥90 percentile) according to the level in the subcohort. We used a Prentice-weighted Cox regression model to estimate the hazard ratio (HR) and 95% confidence interval (CI) for epilepsy according to measured antibodies. RESULTS Higher levels of maternal antibodies against herpes simples virus type 1 (anti-HSV1) were associated with a slightly higher risk of childhood epilepsy (HR for trend=1.09, 95% CI: 0.99-1.21), while higher levels of maternal antibodies against pneumococcal polysaccharide 18 (anti-PnPS18) were associated with a lower risk of childhood epilepsy (HR for trend=0.90, 95% CI: 0.81-1.01). Among the subtypes, a significantly higher risk associated with anti-HSV1 antibodies was seen for childhood absence epilepsy (HR for trend=2.08, 95% CI: 1.12-3.85) and for epileptic encephalopathies (HR for trend=1.49, 95% CI: 1.01-2.22). The significantly lower risk associated with anti-PnPS18 antibodies was observed for infantile spasms (HR for trend=0.47, 95% CI: 0.27-0.83). CONCLUSIONS Maternal anti-HSV1and anti-PnPS18 antibodies during pregnancy may be associated with the risk of epilepsy in offspring, but any potential etiologic and preventative implications of these associations warrant further exploration.
Collapse
Affiliation(s)
- Yuelian Sun
- Section for Epidemiology, Department of Public Health, Aarhus University, Aarhus 8000C, Denmark.
| | | | | |
Collapse
|
345
|
O'Shea TM, Downey LC, Kuban KKC. Extreme prematurity and attention deficit: epidemiology and prevention. Front Hum Neurosci 2013; 7:578. [PMID: 24065904 PMCID: PMC3776954 DOI: 10.3389/fnhum.2013.00578] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Accepted: 08/28/2013] [Indexed: 01/01/2023] Open
Affiliation(s)
- T. Michael O'Shea
- Division of Neonatology, Department of Pediatrics, Wake Forest School of Medicine, Winston-SalemNC, USA
| | - L. Corbin Downey
- Division of Neonatology, Department of Pediatrics, Wake Forest School of Medicine, Winston-SalemNC, USA
| | - Karl K. C. Kuban
- Division of Pediatric Neurology, Department of Pediatrics, Boston UniversityBoston, MA, USA
| |
Collapse
|
346
|
Jones T, Budinger TF. The potential for low-dose functional studies in maternal-fetal medicine using PET/MR imaging. J Nucl Med 2013; 54:2016-7. [PMID: 24029653 DOI: 10.2967/jnumed.113.123919] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Affiliation(s)
- Terry Jones
- The PET Research Advisory Company 8 Prestbury Rd. Wilmslow, Cheshire, SK9 2LJ, U.K. E-mail:
| | | |
Collapse
|
347
|
Wei H, Alberts I, Li X. Brain IL-6 and autism. Neuroscience 2013; 252:320-5. [PMID: 23994594 DOI: 10.1016/j.neuroscience.2013.08.025] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2013] [Revised: 08/14/2013] [Accepted: 08/15/2013] [Indexed: 12/17/2022]
Abstract
Autism is a severe neurodevelopmental disorder characterized by impairments in social interaction, deficits in verbal and non-verbal communication, and repetitive behavior and restricted interests. Emerging evidence suggests that aberrant neuroimmune responses may contribute to phenotypic deficits and could be appropriate targets for pharmacologic intervention. Interleukin (IL)-6, one of the most important neuroimmune factors, has been shown to be involved in physiological brain development and in several neurological disorders. For instance, findings from postmortem and animal studies suggest that brain IL-6 is an important mediator of autism-like behaviors. In this review, a possible pathological mechanism behind autism is proposed, which suggests that IL-6 elevation in the brain, caused by the activated glia and/or maternal immune activation, could be an important inflammatory cytokine response involved in the mediation of autism-like behaviors through impairments of neuroanatomical structures and neuronal plasticity. Further studies to investigate whether IL-6 could be used for therapeutic interventions in autism would be of great significance.
Collapse
Affiliation(s)
- H Wei
- Central Laboratory, Shanxi Provincial People's Hospital, Affiliate of Shanxi Medical University, Taiyuan, China.
| | | | | |
Collapse
|
348
|
Balakrishnan B, Dai H, Janisse J, Romero R, Kannan S. Maternal endotoxin exposure results in abnormal neuronal architecture in the newborn rabbit. Dev Neurosci 2013; 35:396-405. [PMID: 23988854 DOI: 10.1159/000353156] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Accepted: 05/17/2013] [Indexed: 11/19/2022] Open
Abstract
Maternal intrauterine inflammation/infection is a potential risk factor for the development of neurologic disorders such as cerebral palsy (CP) in preterm and term infants. CP is associated with white matter and grey matter injury. In the current study, we used a rabbit model of CP in which pregnant rabbits are administered intrauterine injections of the endotoxin lipopolysaccharide. We then investigated the extent of neuronal damage in the newborn kit brain. We observed an overall decrease in the number of MAP2-stained neurons and an increase in Fluoro-Jade C-stained cells in the anterior thalamus of 1-day-old rabbit brain. We also observed an overall decrease in the number of branching points and spine density in the retrosplenial cortex, a major output region of the anterior thalamus that is involved in cognition and memory. The loss of spines and dendritic atrophy in the retrosplenial cortex may be caused by loss of presynaptic input from the thalamus. Our study indicates that the cognitive impairments seen in patients with CP may be related to the degeneration of neurons and abnormal arborization of the thalamic and cortical neurons.
Collapse
Affiliation(s)
- Bindu Balakrishnan
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, Baltimore, Md., USA
| | | | | | | | | |
Collapse
|
349
|
Vezzani A. Fetal brain inflammation may prime hyperexcitability and behavioral dysfunction later in life. Ann Neurol 2013; 74:1-3. [PMID: 23686675 DOI: 10.1002/ana.23930] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Revised: 04/30/2013] [Accepted: 05/08/2013] [Indexed: 12/25/2022]
Affiliation(s)
- Annamaria Vezzani
- Department of Neuroscience, IRCCS-Istituto di Ricerche Farmacologiche "Mario Negri", Milan, Italy
| |
Collapse
|
350
|
Effect of stress on brain inflammation and multiple sclerosis. Autoimmun Rev 2013; 12:947-53. [DOI: 10.1016/j.autrev.2013.02.006] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Accepted: 02/28/2013] [Indexed: 12/18/2022]
|