301
|
Sharma A, Anand SK, Singh N, Dwarkanath A, Dwivedi UN, Kakkar P. Berbamine induced activation of the SIRT1/LKB1/AMPK signaling axis attenuates the development of hepatic steatosis in high-fat diet-induced NAFLD rats. Food Funct 2021; 12:892-909. [PMID: 33411880 DOI: 10.1039/d0fo02501a] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Non-alcoholic fatty liver disease (NAFLD), a chronic metabolic disorder is concomitant with oxidative stress and inflammation. This study aimed to assess the effects of berbamine (BBM), a natural bisbenzylisoquinoline alkaloid with manifold biological activities and pharmacological effects on lipid, cholesterol and glucose metabolism in a rat model of NAFLD, and to explicate the potential mechanisms underlying its activity. BBM administration alleviated the increase in the body weight and liver index of HFD rats. The aberrations in liver function, serum parameters, and microscopic changes in the liver structure of HFD fed rats were significantly improved upon BBM administration. BBM also significantly attenuated oxidative damage and inhibited triglyceride and cholesterol synthesis. The SIRT1 deacetylase activity was also enhanced by BBM through liver kinase B1 and activated AMP-activated protein kinase. Activation of the SIRT1/LKB1/AMPK pathway prevented the downstream target ACC (acetyl-CoA carboxylase) and elevation in the expression of FAS (fatty acid synthase) and SCD1 (steroyl CoA desaturase). BBM also modulated the expression of PPARs maintaining the fatty acid homeostasis regulation. The assessment of berbamine induced ultrastructural changes by TEM analysis and the expression of autophagic markers LC3a/b, Beclin 1 and p62 revealed the induction of autophagy to alleviate fatty liver conditions. These results show novel findings that BBM induced protection against hepatic lipid metabolic disorders is achieved by regulating the SIRT1/LKB1/AMPK pathway, and thus it emerges as an effective phyoconstituent for the management of NAFLD.
Collapse
Affiliation(s)
- Ankita Sharma
- Herbal Research Laboratory, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Post Box No. 80, Mahatma Gandhi Marg, Lucknow-226001, India.
| | | | | | | | | | | |
Collapse
|
302
|
Prasun P, Ginevic I, Oishi K. Mitochondrial dysfunction in nonalcoholic fatty liver disease and alcohol related liver disease. Transl Gastroenterol Hepatol 2021; 6:4. [PMID: 33437892 DOI: 10.21037/tgh-20-125] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Accepted: 04/28/2020] [Indexed: 12/11/2022] Open
Abstract
Fatty liver disease constitutes a spectrum of liver diseases which begin with simple steatosis and may progress to advance stages of steatohepatitis, cirrhosis, and hepatocellular carcinoma (HCC). The two main etiologies are-alcohol related fatty liver disease (ALD) and nonalcoholic fatty liver disease (NAFLD). NAFLD is a global health epidemic strongly associated with modern dietary habits and life-style. It is the second most common cause of chronic liver disease in the US after chronic hepatitis C virus (HCV) infection. Approximately 100 million people are affected with this condition in the US alone. Excessive intakes of calories, saturated fat and refined carbohydrates, and sedentary life style have led to explosion of this health epidemic in developing nations as well. ALD is the third most common cause of chronic liver disease in the US. Even though the predominant trigger for onset of steatosis is different in these two conditions, they share common themes in progression from steatosis to the advance stages. Oxidative stress (OS) is considered a very significant contributor to hepatocyte injury in these conditions. Mitochondrial dysfunction contributes to this OS. Role of mitochondrial dysfunction in pathogenesis of fatty liver diseases is emerging but far from completely understood. A better understanding is essential for more effective preventive and therapeutic interventions. Here, we discuss the pathogenesis and therapeutic approaches of NAFLD and ALD from a mitochondrial perspective.
Collapse
Affiliation(s)
- Pankaj Prasun
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ilona Ginevic
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Kimihiko Oishi
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
303
|
Liang XY, Hong FF, Yang SL. Astragaloside IV Alleviates Liver Inflammation, Oxidative Stress and Apoptosis to Protect Against Experimental Non-Alcoholic Fatty Liver Disease. Diabetes Metab Syndr Obes 2021; 14:1871-1883. [PMID: 33953586 PMCID: PMC8089473 DOI: 10.2147/dmso.s304817] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 03/25/2021] [Indexed: 02/06/2023] Open
Abstract
PURPOSE Non-alcoholic fatty liver disease (NAFLD) is the main form of chronic liver disease in the world. Astragaloside IV (ASIV) has been tested in experimental models of different diseases. The purpose of this study was to evaluate the effect and protective mechanism of ASIV on NAFLD. METHODS Lipopolysaccharide (LPS)- and palmitate acid (PA)-induced RAW264.7 cells and LO2 cells were used as a NAFLD model. The mice NAFLD model was evaluated by hematoxylin-eosin staining (HE staining), and aspartate aminotransferase (AST) and alanine aminotransferase (ALT) levels. Liver lipid metabolism was evaluated by triglyceride (TG) and total cholesterol (TC) kits and oil red O staining. Oxidative stress indicators were examined through biochemical methods. Inflammatory factors were explored through enzyme-linked immuno sorbent assay (ELISA), real-time quantitative PCR and oxidative stress indicator kits. The expression levels of 5-LO (5-lipoxygenase) and leukotriene A4 hydrolase (LTA4H) were checked by real-time quantitative PCR and Western blotting. Apoptosis was detected by Annexin V-FITC/PI cell apoptosis detection kit. RESULTS Our results showed that in vivo ASIV significantly reduced liver tissue damage, and serum AST, ALT and serum TG levels in NAFLD mice. In vitro, ASIV reduced cell supernatant TG and TC content increased by PA treatment, and significantly decreased the accumulation of intracellular lipid droplets induced by PA treatment. Additionally, ASIV reduced reactive oxygen species (ROS) and malondialdehyde (MDA) levels, and restored glutathione peroxidase (GSH-Px) levels in PA-treated LO2 cell supernatant. Furthermore, ASIV inhibited the production of proinflammatory cytokines (IL-6 and TNF-α) in RAW264.7 cells induced by LPS. We also found that ASIV downregulated the expression of 5-LO and LTB4 (leukotriene B4) in NAFLD mice. Moreover, ASIV restored apoptotic protein (Bax and Bcl-2) expression in PA-treated LO2 cells. CONCLUSION ASIV may reduce liver steatosis, hepatocyte oxidative stress and apoptosis, and decrease liver inflammation, thereby attenuating the progression of NAFLD and thus might be of therapeutic interest.
Collapse
Affiliation(s)
- Xiao-yu Liang
- Department of Physiology, College of Medicine, Nanchang University, Nanchang, 330006, People’s Republic of China
| | - Fen-Fang Hong
- Experimental Teaching Center, Nanchang University, Nanchang, 330031, People’s Republic of China
- Fen-Fang Hong Experimental Teaching Center, Nanchang University, Nanchang, 330031, People’s Republic of ChinaTel +86 18970965319 Email
| | - Shu-Long Yang
- Department of Physiology, College of Medicine, Nanchang University, Nanchang, 330006, People’s Republic of China
- Correspondence: Shu-Long Yang Department of Physiology, College of Medicine, Nanchang University, Nanchang, 330006, People’s Republic of ChinaTel +86 13576291532 Email
| |
Collapse
|
304
|
Sall T, Shcherbakova E, Sitkin S, Vakhitov T, Bakulin I, Demyanova E. Molecular mechanisms of non-alcoholic fatty liver disease development. PROFILAKTICHESKAYA MEDITSINA 2021; 24:120. [DOI: 10.17116/profmed202124041120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
|
305
|
Shao Q, Wu Y, Ji J, Xu T, Yu Q, Ma C, Liao X, Cheng F, Wang X. Interaction Mechanisms Between Major Depressive Disorder and Non-alcoholic Fatty Liver Disease. Front Psychiatry 2021; 12:711835. [PMID: 34966296 PMCID: PMC8710489 DOI: 10.3389/fpsyt.2021.711835] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 11/11/2021] [Indexed: 12/12/2022] Open
Abstract
Major depressive disorder (MDD), which is highly associated with non-alcoholic fatty liver disease (NAFLD), has complex pathogenic mechanisms. However, a limited number of studies have evaluated the mutual pathomechanisms involved in MDD and NAFLD development. Chronic stress-mediated elevations in glucocorticoid (GC) levels play an important role in the development of MDD-related NAFLD. Elevated GC levels can induce the release of inflammatory factors and changes in gut permeability. Elevated levels of inflammatory factors activate the hypothalamic-pituitary-adrenal (HPA) axis, which further increases the release of GC. At the same time, changes in gut permeability promote the release of inflammatory factors, which results in a vicious circle among the three, causing disease outbreaks. Even though the specific role of the thyroid hormone (TH) in this pathogenesis has not been fully established, it is highly correlated with MDD and NAFLD. Therefore, changing lifestyles and reducing psychological stress levels are necessary measures for preventing MDD-related NAFLD. Among them, GC inhibitors and receptor antagonists may be key in the alleviation of early and mid-term disease progression. However, combination medications may be important in late-stage diseases, but they are associated with various side effects. Traditional Chinese medicines have been shown to be potential therapeutic alternatives for such complex diseases.
Collapse
Affiliation(s)
- Qi Shao
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Yiping Wu
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Jing Ji
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Tian Xu
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Qiaoyu Yu
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Chongyang Ma
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Xuejing Liao
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Fafeng Cheng
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Xueqian Wang
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
306
|
Francque S, Szabo G, Abdelmalek MF, Byrne CD, Cusi K, Dufour JF, Roden M, Sacks F, Tacke F. Nonalcoholic steatohepatitis: the role of peroxisome proliferator-activated receptors. Nat Rev Gastroenterol Hepatol 2021; 18:24-39. [PMID: 33093663 DOI: 10.1038/s41575-020-00366-5] [Citation(s) in RCA: 203] [Impact Index Per Article: 50.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/02/2020] [Indexed: 02/06/2023]
Abstract
The increasing epidemic of obesity worldwide is linked to serious health effects, including increased prevalence of type 2 diabetes mellitus, cardiovascular disease and nonalcoholic fatty liver disease (NAFLD). NAFLD is the liver manifestation of the metabolic syndrome and includes the spectrum of liver steatosis (known as nonalcoholic fatty liver) and steatohepatitis (known as nonalcoholic steatohepatitis), which can evolve into progressive liver fibrosis and eventually cause cirrhosis. Although NAFLD is becoming the number one cause of chronic liver diseases, it is part of a systemic disease that affects many other parts of the body, including adipose tissue, pancreatic β-cells and the cardiovascular system. The pathomechanism of NAFLD is multifactorial across a spectrum of metabolic derangements and changes in the host microbiome that trigger low-grade inflammation in the liver and other organs. Peroxisome proliferator-activated receptors (PPARs) are a group of nuclear regulatory factors that provide fine tuning for key elements of glucose and fat metabolism and regulate inflammatory cell activation and fibrotic processes. This Review summarizes and discusses the current literature on NAFLD as the liver manifestation of the systemic metabolic syndrome and focuses on the role of PPARs in the pathomechanisms as well as in the potential targeting of disease.
Collapse
Affiliation(s)
- Sven Francque
- Department of Gastroenterology and Hepatology, Antwerp University Hospital, Antwerp, Belgium. .,Translational Research in Inflammation and Immunology (TWI2N), Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium.
| | - Gyongyi Szabo
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
| | - Manal F Abdelmalek
- Division of Gastroenterology and Hepatology, Department of Medicine, Duke University Health System, Durham, NC, USA
| | - Christopher D Byrne
- Nutrition & Metabolism, Human Development & Health, Faculty of Medicine, University Hospital Southampton, Southampton, UK
| | - Kenneth Cusi
- Division of Endocrinology, Diabetes and Metabolism, University of Florida, Gainesville, FL, USA
| | - Jean-François Dufour
- Hepatology, Department of Clinical Research, University Hospital of Bern, Bern, Switzerland.,University Clinic for Visceral Surgery and Medicine, Inselspital, Bern, Switzerland
| | - Michael Roden
- Division of Endocrinology and Diabetology, Medical Faculty, Heinrich Heine University Düsseldorf, University Clinics Düsseldorf, Düsseldorf, Germany.,Institute for Clinical Diabetology, German Diabetes Center (DDZ), Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany.,German Center for Diabetes Research (DZD e.V.), München-Neuherberg, Germany
| | - Frank Sacks
- Departments of Nutrition and Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA, USA.,Channing Division, Department of Medicine Harvard Medical School and Brigham and Women's Hospital, Boston, MA, USA
| | - Frank Tacke
- Department of Hepatology & Gastroenterology, Charité University Medical Center, Berlin, Germany
| |
Collapse
|
307
|
Zhao F, Dong T, Yuan KY, Wang NJ, Xia FZ, Liu D, Wang ZM, Ma R, Lu YL, Huang ZW. Shifts in the Bacterial Community of Supragingival Plaque Associated With Metabolic-Associated Fatty Liver Disease. Front Cell Infect Microbiol 2020; 10:581888. [PMID: 33384967 PMCID: PMC7770214 DOI: 10.3389/fcimb.2020.581888] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Accepted: 11/05/2020] [Indexed: 11/13/2022] Open
Abstract
Metabolic-associated fatty liver disease (MAFLD), also known as the hepatic manifestation of metabolic disorders, has become one of the most common chronic liver diseases worldwide. The associations between some oral resident microbes and MAFLD have been described. However, changes to the oral microbial community in patients with MAFLD remain unknown. In this study, variations to the supragingival microbiota of MAFLD patients were identified. The microbial genetic profile of supragingival plaque samples from 24 MAFLD patients and 22 healthy participants were analyzed by 16S rDNA sequencing and bioinformatics analysis. Clinical variables, including indicators of insulin resistance, obesity, blood lipids, and hepatocellular damage, were evaluated with laboratory tests and physical examinations. The results showed that the diversity of the supragingival microbiota in MAFLD patients was significantly higher than that in healthy individuals. Weighted UniFrac principal coordinates analysis and partial least squares discriminant analysis showed that the samples from the MAFLD and control groups formed separate clusters (Adonis, P = 0.0120). There were 27 taxa with differential distributions (linear discriminant analysis, LDA>2.0) between two groups, among which Actinomyces spp. and Prevotella 2 spp. were over-represented in the MAFLD group with highest LDA score, while Neisseria spp. and Bergeyella spp. were more abundant in the control group. Co-occurrence networks of the top 50 abundant genera in the two groups suggested that the inter-genera relationships were also altered in the supragingival plaque of MAFLD patients. In addition, in genus level, as risk factors for the development of MAFLD, insulin resistance was positively correlated with the abundances of Granulicatella, Veillonella, Streptococcus, and Scardovia, while obesity was positively correlated to the abundances of Streptococcus, Oslenella, Scardovia, and Selenomonas. Metagenomic predictions based on Phylogenetic Investigation of Communities by Reconstruction of Unobserved States revealed that pathways related to sugar (mainly free sugar) metabolism were enriched in the supragingival plaque of the MAFLD group. In conclusion, as compared to healthy individuals, component and interactional dysbioses were observed in the supragingival microbiota of the MAFLD group.
Collapse
Affiliation(s)
- Fen Zhao
- Department of Endodontics, Shanghai Ninth People’s Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- National Clinical Research Center for Oral Diseases, Shanghai, China
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China
| | - Ting Dong
- Department of Endodontics, Shanghai Ninth People’s Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- National Clinical Research Center for Oral Diseases, Shanghai, China
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China
| | - Ke-Yong Yuan
- Department of Endodontics, Shanghai Ninth People’s Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- National Clinical Research Center for Oral Diseases, Shanghai, China
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China
| | - Ning-Jian Wang
- Institute and Department of Endocrinology and Metabolism, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fang-Zhen Xia
- Institute and Department of Endocrinology and Metabolism, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Di Liu
- Computational Virology Group, Center for Bacteria and Viruses Resources and Bioinformation, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zhi-Min Wang
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, Chinese National Human Genome Center, Shanghai, China
| | - Rui Ma
- Department of Endodontics, Shanghai Ninth People’s Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- National Clinical Research Center for Oral Diseases, Shanghai, China
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China
| | - Ying-Li Lu
- Institute and Department of Endocrinology and Metabolism, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zheng-Wei Huang
- Department of Endodontics, Shanghai Ninth People’s Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- National Clinical Research Center for Oral Diseases, Shanghai, China
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China
| |
Collapse
|
308
|
Shi Z, Zhang K, Chen T, Zhang Y, Du X, Zhao Y, Shao S, Zheng L, Han T, Hong W. Transcriptional factor ATF3 promotes liver fibrosis via activating hepatic stellate cells. Cell Death Dis 2020; 11:1066. [PMID: 33311456 PMCID: PMC7734065 DOI: 10.1038/s41419-020-03271-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 11/17/2020] [Accepted: 11/20/2020] [Indexed: 12/15/2022]
Abstract
The excessive accumulation of extracellular matrix (ECM) is a key feature of liver fibrosis and the activated hepatic stellate cells (HSCs) are the major producer of ECM proteins. However, the precise mechanisms and target molecules that are involved in liver fibrosis remain unclear. In this study, we reported that activating transcription factor 3 (ATF3) was over-expressed in mice and human fibrotic livers, in activated HSCs and injured hepatocytes (HCs). Both in vivo and in vitro study have revealed that silencing ATF3 reduced the expression of pro-fibrotic genes and inhibited the activation of HSCs, thus alleviating the extent of liver fibrosis, indicating a potential protective role of ATF3 knockdown. However, ATF3 was not involved in either the apoptosis or proliferation of HCs. In addition, our data illustrated that increased nuclear localization of ATF3 promoted the transcription of fibrogenic genes and lnc-SCARNA10, which functioned as a novel positive regulator of TGF-β signaling in liver fibrogenesis by recruiting SMAD3 to the promoter of these genes. Interestingly, further study also demonstrated that lnc-SCARNA10 promoted the expression of ATF3 in a TGF-β/SMAD3-dependent manner, revealing a TGF-β/ATF3/lnc-SCARNA10 axis that contributed to liver fibrosis by activating HSCs. Taken together, our data provide a molecular mechanism implicating induced ATF3 in liver fibrosis, suggesting that ATF3 may represent a useful target in the development of therapeutic strategies for liver fibrosis.
Collapse
Affiliation(s)
- Zhemin Shi
- Department of Histology and Embryology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Kun Zhang
- Department of Histology and Embryology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Ting Chen
- Department of Histology and Embryology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Yu Zhang
- Department of Hepatology and Gastroenterology, The Third Central Clinical College of Tianjin Medical University, Tianjin, China
| | - Xiaoxiao Du
- Department of Histology and Embryology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Yanmian Zhao
- Department of Histology and Embryology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Shuai Shao
- Department of Hepatology and Gastroenterology, Tianjin Third Central Hospital Affiliated to Nankai University, Tianjin, China
| | - Lina Zheng
- Department of Histology and Embryology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Tao Han
- Department of Hepatology and Gastroenterology, The Third Central Clinical College of Tianjin Medical University, Tianjin, China. .,Department of Hepatology and Gastroenterology, Tianjin Third Central Hospital Affiliated to Nankai University, Tianjin, China. .,Tianjin Key Laboratory of Artificial Cells, Artificial Cell Engineering Technology Research Center of Public Health Ministry, Tianjin, China.
| | - Wei Hong
- Department of Histology and Embryology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China.
| |
Collapse
|
309
|
Abstract
Iron is essential for a variety of physiological processes. Hepatic iron overload acts as a trigger for the progression of hepatic steatosis to nonalcoholic steatohepatitis and hepatocellular carcinoma. In the present study, we aimed to study the effects of iron overload on cellular responses in hepatocytes. Rat primary hepatocytes (RPH), mouse primary hepatocytes (MPH), HepG2 human hepatoma cells and Hepa1-6 mouse hepatoma cells were treated with FeCl3. Treatment with FeCl3 effectively increased iron accumulation in primary hepatocytes. Expression levels of molecules involved in cellular signaling such as AMPK pathway, TGF-β family pathway, and MAP kinase pathway were decreased by FeCl3 treatment in RPH. Cell viability in response to FeCl3 treatment was decreased in RPH but not in HepG2 and Hepa1-6 cells. Treatment with FeCl3 also decreased expression level of LC-3B, a marker of autophagy in RPH but not in liver-derived cell lines. Ultrastructural observations revealed that cell death resembling ferroptosis and necrosis was induced upon FeCl3 treatment in RPH. The expression level of genes involved in iron transport varied among different liver-derived cells- iron is thought to be efficiently incorporated as free Fe2+ in primary hepatocytes, whereas transferrin-iron is the main route for iron uptake in HepG2 cells. The present study reveals specific cellular responses in different liver-derived cells as a consequence of iron overload.
Collapse
|
310
|
Tu C, Xiong H, Hu Y, Wang W, Mei G, Wang H, Li Y, Zhou Z, Meng F, Zhang P, Mei Z. Cardiolipin Synthase 1 Ameliorates NASH Through Activating Transcription Factor 3 Transcriptional Inactivation. Hepatology 2020; 72:1949-1967. [PMID: 32096565 DOI: 10.1002/hep.31202] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 01/18/2020] [Accepted: 02/04/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND AND AIMS NASH is an increasingly prevalent disease that is the major cause of liver dysfunction. Previous research has indicated that adipose cardiolipin synthase 1 (CRLS1) levels are associated with insulin sensitivity; however, the precise roles of CRLS1 and underlying mechanisms involving CRLS1 in the pathological process of NASH have not been elucidated. APPROACH AND RESULTS Here, we discovered that CRLS1 was significantly down-regulated in genetically obese and diet-induced mice models. In vitro studies demonstrated that overexpression of CRLS1 markedly attenuated hepatic steatosis and inflammation in hepatocytes, whereas short hairpin RNA-mediated CRLS1 knockdown aggravated these abnormalities. Moreover, high-fat diet-induced insulin resistance and hepatic steatosis were significantly exacerbated in hepatocyte-specific Crls1-knockout (Crls1-HKO) mice. It is worth noting that Crls1 depletion significantly aggravated high-fat and high-cholesterol diet-induced inflammatory response and fibrosis during NASH development. RNA-sequencing analysis systematically demonstrated a prominently aggravated lipid metabolism disorder in which inflammation and fibrosis resulted from Crls1 deficiency. Mechanically, activating transcription factor 3 (ATF3) was identified as the key differentially expressed gene in Crls1-HKO mice through transcriptomic analysis, and our investigation further showed that CRLS1 suppresses ATF3 expression and inhibits its activity in palmitic acid-stimulated hepatocytes, whereas ATF3 partially reverses lipid accumulation and inflammation inhibited by CRLS1 overexpression under metabolic stress. CONCLUSIONS In conclusion, CRLS1 ameliorates insulin resistance, hepatic steatosis, inflammation, and fibrosis during the pathological process of NASH by inhibiting the expression and activity of ATF3.
Collapse
Affiliation(s)
- Chuyue Tu
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, China
| | - Hui Xiong
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, China
| | - Yufeng Hu
- Medical Science Research Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Wen Wang
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, China
| | - Gui Mei
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, China
| | - Hua Wang
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, China
| | - Ya Li
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, China
| | - Zelin Zhou
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, China
| | - Fengping Meng
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, China
| | - Peng Zhang
- Medical Science Research Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Zhinan Mei
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, China
| |
Collapse
|
311
|
Germinated Soybean Embryo Extract Ameliorates Fatty Liver Injury in High-Fat Diet-Fed Obese Mice. Pharmaceuticals (Basel) 2020; 13:ph13110380. [PMID: 33187321 PMCID: PMC7696473 DOI: 10.3390/ph13110380] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 11/09/2020] [Accepted: 11/10/2020] [Indexed: 02/06/2023] Open
Abstract
Soybean is known to have diverse beneficial effects against human diseases, including obesity and its related metabolic disorders. Germinated soybean embryos are enriched with bioactive phytochemicals and known to inhibit diet-induced obesity in mice, but their effect on non-alcoholic fatty liver disease (NAFLD) remains unknown. Here, we germinated soybean embryos for 24 h, and their ethanolic extract (GSEE, 15 and 45 mg/kg) was administered daily to mice fed with a high-fat diet (HFD) for 10 weeks. HFD significantly increased the weight of the body, liver and adipose tissue, as well as serum lipid markers, but soyasaponin Ab-rich GSEE alleviated these changes. Hepatic injury and triglyceride accumulation in HFD-fed mice were attenuated by GSEE via decreased lipid synthesis (SREBP1c) and increased fatty acid oxidation (p-AMPKα, PPARα, PGC1α, and ACOX) and lipid export (MTTP and ApoB). HFD-induced inflammation (TNF-α, IL-6, IL-1β, CD14, F4/80, iNOS, and COX2) was normalized by GSEE in mice livers. In adipose tissue, GSEE downregulated white adipose tissue (WAT) differentiation and lipogenesis (PPARγ, C/EBPα, and FAS) and induced browning genes (PGC1α, PRDM16, CIDEA, and UCP1), which could also beneficially affect the liver via lowering adipose tissue-related circulating lipid levels. Thus, our results suggest that GSEE can prevent HFD-induced NAFLD via inhibition of hepatic inflammation and restoration of lipid metabolisms in both liver and adipose tissue.
Collapse
|
312
|
Verhaegh P, Wisse E, de Munck T, Greve JW, Verheij J, Riedl R, Duimel H, Masclee A, Jonkers D, Koek G. Electron microscopic observations in perfusion-fixed human non-alcoholic fatty liver disease biopsies. Pathology 2020; 53:220-228. [PMID: 33143903 DOI: 10.1016/j.pathol.2020.07.018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 07/23/2020] [Accepted: 07/29/2020] [Indexed: 12/19/2022]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a widespread liver disease in Western society, but its multifactorial pathogenesis is not yet fully understood. Ultrastructural analysis of liver sinusoidal endothelial cells (LSECs) in animal models and in vitro studies shows defenestration early in the course of NAFLD, promoting steatosis. LSECs and fenestrae are important in the transport of lipids across the sinusoids. However, human ultrastructural data, especially on LSECs and fenestrae, are scarce. This study aimed to explore the ultrastructural changes in perfusion type fixed liver biopsies of NAFLD patients with and without non-alcoholic steatohepatitis (NASH), with a special focus on LSECs and their fenestration. Liver biopsies from patients with NAFLD were fixed using two perfusion techniques, jet and injection fixation, for needle and wedge biopsies, respectively. Ultrastructural changes were studied using transmission electron microscopy. NASH was diagnosed by bright-field microscopy using the SAF score (steatosis, activity, fibrosis). Thirty-seven patients were included, of which 12 (32.4%) had NASH. Significantly less defenestration was found in NASH compared to noNASH samples (p=0.002). Other features, i.e., giant mitochondria and fenestrae size did not differ between groups. Furthermore, we described new structures, i.e., single cell steatonecrosis and inflammatory fat follicles (IFF) that were observed in both groups. Concluding, defenestration was more common in noNASH compared to NASH in human liver samples. Defenestration was not related to the degree of steatosis or fibrosis. We speculate that defenestration can be a protective mechanism in simple steatosis which is lacking in NASH.
Collapse
Affiliation(s)
- Pauline Verhaegh
- Department of Internal Medicine, Division Gastroenterology-Hepatology, Maastricht University Medical Center, Maastricht, the Netherlands; School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, Maastricht, the Netherlands.
| | - Eddie Wisse
- Division of Nanoscopy, Maastricht Multimodal Molecular Imaging Institute, and Department of Internal Medicine/Hepatology, The University of Maastricht, Maastricht, the Netherlands
| | - Toon de Munck
- Department of Internal Medicine, Division Gastroenterology-Hepatology, Maastricht University Medical Center, Maastricht, the Netherlands; School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, Maastricht, the Netherlands
| | - Jan Willem Greve
- Department of Surgery, Zuyderland MC, Heerlen, the Netherlands; Department of Gastro-Intestinal Surgery, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Joanne Verheij
- Department of Pathology, Amsterdam University Medical Center, Amsterdam, the Netherlands
| | - Robert Riedl
- Department of Pathology, Zuyderland MC, Heerlen, the Netherlands
| | - Hans Duimel
- Division of Nanoscopy, Maastricht Multimodal Molecular Imaging Institute, and Department of Internal Medicine/Hepatology, The University of Maastricht, Maastricht, the Netherlands
| | - Ad Masclee
- Department of Internal Medicine, Division Gastroenterology-Hepatology, Maastricht University Medical Center, Maastricht, the Netherlands; School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, Maastricht, the Netherlands
| | - Daisy Jonkers
- School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, Maastricht, the Netherlands
| | - Ger Koek
- Department of Internal Medicine, Division Gastroenterology-Hepatology, Maastricht University Medical Center, Maastricht, the Netherlands; School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, Maastricht, the Netherlands; Department of Visceral and Transplantation Surgery, Klinikum RWTH, Aachen, Germany
| |
Collapse
|
313
|
Shao M, Ye Z, Qin Y, Wu T. Abnormal metabolic processes involved in the pathogenesis of non-alcoholic fatty liver disease (Review). Exp Ther Med 2020; 20:26. [PMID: 32934691 PMCID: PMC7471863 DOI: 10.3892/etm.2020.9154] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 05/28/2020] [Indexed: 12/13/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is one of the most common chronic liver diseases and can lead to liver cirrhosis or liver cancer in severe cases. In recent years, the incidence of NAFLD has increased substantially. The trend has continued to increase and has become a key point of concern for health systems. NAFLD is often associated with metabolic abnormalities caused by increased visceral obesity, including insulin resistance, diabetes mellitus, hypertension, dyslipidemia, atherosclerosis and systemic microinflammation. Therefore, the pathophysiological mechanisms of NAFLD must be clarified to develop new drug treatment strategies. Recently, researchers have conducted numerous studies on the pathogenesis of NAFLD and have identified various important regulatory factors and potential molecular mechanisms, providing new targets and a theoretical basis for the treatment of NAFLD. However, the pathogenesis of NAFLD is extremely complex and involves the interrelationship and influence of multiple organs and systems. Therefore, the condition must be explored further. In the present review, the abnormal metabolic process, including glucose, lipid, amino acid, bile acid and iron metabolism are reviewed. It was concluded that NAFLD is associated with an imbalanced metabolic network that involves glucose, lipids, amino acids, bile acids and iron, and lipid metabolism is the core metabolic process. The current study aimed to provide evidence and hypotheses for research and clinical treatment of NAFLD.
Collapse
Affiliation(s)
- Mingmei Shao
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P.R. China
| | - Zixiang Ye
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P.R. China
| | - Yanhong Qin
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P.R. China
| | - Tao Wu
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P.R. China
| |
Collapse
|
314
|
Wade H, Pan K, Su Q. CREBH: A Complex Array of Regulatory Mechanisms in Nutritional Signaling, Metabolic Inflammation, and Metabolic Disease. Mol Nutr Food Res 2020; 65:e2000771. [DOI: 10.1002/mnfr.202000771] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Indexed: 12/20/2022]
Affiliation(s)
- Henry Wade
- Institute for Global Food Security School of Biological Sciences Queen's University Belfast Belfast BT9 5DL UK
| | - Kaichao Pan
- Institute for Global Food Security School of Biological Sciences Queen's University Belfast Belfast BT9 5DL UK
| | - Qiaozhu Su
- Institute for Global Food Security School of Biological Sciences Queen's University Belfast Belfast BT9 5DL UK
| |
Collapse
|
315
|
Tian Y, Arai E, Makiuchi S, Tsuda N, Kuramoto J, Ohara K, Takahashi Y, Ito N, Ojima H, Hiraoka N, Gotoh M, Yoshida T, Kanai Y. Aberrant DNA methylation results in altered gene expression in non-alcoholic steatohepatitis-related hepatocellular carcinomas. J Cancer Res Clin Oncol 2020; 146:2461-2477. [PMID: 32685988 PMCID: PMC7467955 DOI: 10.1007/s00432-020-03298-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 06/20/2020] [Indexed: 12/12/2022]
Abstract
PURPOSE The aim of this study was to investigate DNA methylation alterations in non-alcoholic steatohepatitis (NASH)-related hepatocellular carcinomas (HCCs). METHODS Genome-wide DNA methylation analysis was performed using the Infinium Human Methylation 450 K BeadChip, and levels of mRNA expression were analyzed by quantitative reverse transcription-PCR. RESULTS Compared to 36 samples of normal control liver tissue (C), DNA methylation alterations were observed on 19,281 probes in 22 samples of cancerous tissue (T) obtained from patients showing histological features compatible with NASH in their non-cancerous liver tissue (N). Among those probes, 1396 were located within CpG islands or their shores and shelves, designed around the transcription start sites of 726 genes. In representative genes, such as DCAF4L2, CKLF, TRIM4, PRC1, UBE2C and TUBA1B, both DNA hypomethylation and mRNA overexpression were observed in T samples relative to C samples, and the levels of DNA methylation and mRNA expression were inversely correlated with each other. DNA hypomethylation occurred even in N samples at the precancerous NASH stage, and this was inherited by or further strengthened in T samples. DNA hypomethylation of DCAF4L2, CKLF and UBE2C was observed in both NASH-related and viral hepatitis-related HCCs, whereas that of TRIM4, PRC1 and TUBA1B occurred in a NASH-related HCC-specific manner. DNA hypomethylation and/or mRNA overexpression of these genes was frequently associated with the necroinflammatory grade of NASH and was correlated with poorer tumor differentiation. CONCLUSION DNA methylation alterations may occur under the necroinflammatory conditions characteristic of NASH and participate in NASH-related hepatocarcinogenesis through aberrant expression of tumor-related genes.
Collapse
Affiliation(s)
- Ying Tian
- Department of Pathology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Eri Arai
- Department of Pathology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan.
| | - Satomi Makiuchi
- Department of Pathology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Noboru Tsuda
- Department of Pathology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Junko Kuramoto
- Department of Pathology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Kentaro Ohara
- Department of Pathology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Yoriko Takahashi
- Bioscience Department, Solution Knowledge Center, Mitsui Knowledge Industry Co., Ltd, Tokyo, 105-6215, Japan
| | - Nanako Ito
- Department of Pathology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Hidenori Ojima
- Department of Pathology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Nobuyoshi Hiraoka
- Pathology Division, Department of Pathology and Clinical Laboratories, National Cancer Center Hospital, Tokyo, 104-0045, Japan
| | - Masahiro Gotoh
- Fundamental Innovative Oncology Core Center, National Cancer Center Research Institute, Tokyo, 104-0045, Japan
| | - Teruhiko Yoshida
- Fundamental Innovative Oncology Core Center, National Cancer Center Research Institute, Tokyo, 104-0045, Japan
| | - Yae Kanai
- Department of Pathology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| |
Collapse
|
316
|
Chakravarthy MV, Neuschwander‐Tetri BA. The metabolic basis of nonalcoholic steatohepatitis. Endocrinol Diabetes Metab 2020; 3:e00112. [PMID: 33102794 PMCID: PMC7576253 DOI: 10.1002/edm2.112] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 12/19/2019] [Accepted: 12/27/2019] [Indexed: 12/12/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a major cause of chronic liver disease and is associated with significant morbidity and mortality worldwide, with a high incidence in Western countries and non-Western countries that have adopted a Western diet. NAFLD is commonly associated with components of the metabolic syndrome, type 2 diabetes mellitus and cardiovascular disease, suggesting a common mechanistic basis. An inability to metabolically handle free fatty acid overload-metabolic inflexibility-constitutes a core node for NAFLD pathogenesis, with resulting lipotoxicity, mitochondrial dysfunction and cellular stress leading to inflammation, apoptosis and fibrogenesis. These responses can lead to the histological phenotype of nonalcoholic steatohepatitis (NASH) with varying degrees of fibrosis, which can progress to cirrhosis. This perspective review describes the key cellular and molecular mechanisms of NAFLD and NASH, namely an excessive burden of carbohydrates and fatty acids that contribute to lipotoxicity resulting in hepatocellular injury and fibrogenesis. Understanding the extrahepatic dysmetabolic contributors to NASH is crucial for the development of safe, effective and durable treatment approaches for this increasingly common disease.
Collapse
|
317
|
Prolonged Lipid Accumulation in Cultured Primary Human Hepatocytes Rather Leads to ER Stress than Oxidative Stress. Int J Mol Sci 2020; 21:ijms21197097. [PMID: 32993055 PMCID: PMC7582586 DOI: 10.3390/ijms21197097] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 09/18/2020] [Accepted: 09/23/2020] [Indexed: 12/12/2022] Open
Abstract
Overweight has become a major health care problem in Western societies and is accompanied by an increasing incidence and prevalence of non-alcoholic fatty liver disease (NAFLD). The progression from NAFLD to non-alcoholic steatohepatitis (NASH) marks a crucial tipping point in the progression of severe and irreversible liver diseases. This study aims to gain further insight into the molecular processes leading to the evolution from steatosis to steatohepatitis. Steatosis was induced in cultures of primary human hepatocytes by continuous five-day exposure to free fatty acids (FFAs). The kinetics of lipid accumulation, lipotoxicity, and oxidative stress were measured. Additionally, ER stress was evaluated by analyzing the protein expression profiles of its key players: PERK, IRE1a, and ATF6a. Our data revealed that hepatocytes are capable of storing enormous amounts of lipids without showing signs of lipotoxicity. Prolonged lipid accumulation did not create an imbalance in hepatocyte redox homeostasis or a reduction in antioxidative capacity. However, we observed an FFA-dependent increase in ER stress, revealing thresholds for triggering the activation of pathways associated with lipid stress, inhibition of protein translation, and apoptosis. Our study clearly showed that even severe lipid accumulation can be attenuated by cellular defenses, but regenerative capacities may be reduced.
Collapse
|
318
|
Mitochondrial Transfer by Human Mesenchymal Stromal Cells Ameliorates Hepatocyte Lipid Load in a Mouse Model of NASH. Biomedicines 2020; 8:biomedicines8090350. [PMID: 32937969 PMCID: PMC7554948 DOI: 10.3390/biomedicines8090350] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 09/02/2020] [Accepted: 09/10/2020] [Indexed: 12/13/2022] Open
Abstract
Mesenchymal stromal cell (MSC) transplantation ameliorated hepatic lipid load; tissue inflammation; and fibrosis in rodent animal models of non-alcoholic steatohepatitis (NASH) by as yet largely unknown mechanism(s). In a mouse model of NASH; we transplanted bone marrow-derived MSCs into the livers; which were analyzed one week thereafter. Combined metabolomic and proteomic data were applied to weighted gene correlation network analysis (WGCNA) and subsequent identification of key drivers. Livers were analyzed histologically and biochemically. The mechanisms of MSC action on hepatocyte lipid accumulation were studied in co-cultures of hepatocytes and MSCs by quantitative image analysis and immunocytochemistry. WGCNA and key driver analysis revealed that NASH caused the impairment of central carbon; amino acid; and lipid metabolism associated with mitochondrial and peroxisomal dysfunction; which was reversed by MSC treatment. MSC improved hepatic lipid metabolism and tissue homeostasis. In co-cultures of hepatocytes and MSCs; the decrease of lipid load was associated with the transfer of mitochondria from the MSCs to the hepatocytes via tunneling nanotubes (TNTs). Hence; MSCs may ameliorate lipid load and tissue perturbance by the donation of mitochondria to the hepatocytes. Thereby; they may provide oxidative capacity for lipid breakdown and thus promote recovery from NASH-induced metabolic impairment and tissue injury.
Collapse
|
319
|
Fernández-Ramos D, Lopitz-Otsoa F, Delacruz-Villar L, Bilbao J, Pagano M, Mosca L, Bizkarguenaga M, Serrano-Macia M, Azkargorta M, Iruarrizaga-Lejarreta M, Sot J, Tsvirkun D, van Liempd SM, Goni FM, Alonso C, Martínez-Chantar ML, Elortza F, Hayardeny L, Lu SC, Mato JM. Arachidyl amido cholanoic acid improves liver glucose and lipid homeostasis in nonalcoholic steatohepatitis via AMPK and mTOR regulation. World J Gastroenterol 2020; 26:5101-5117. [PMID: 32982112 PMCID: PMC7495035 DOI: 10.3748/wjg.v26.i34.5101] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 06/19/2020] [Accepted: 08/12/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Arachidyl amido cholanoic acid (Aramchol) is a potent downregulator of hepatic stearoyl-CoA desaturase 1 (SCD1) protein expression that reduces liver triglycerides and fibrosis in animal models of steatohepatitis. In a phase IIb clinical trial in patients with nonalcoholic steatohepatitis (NASH), 52 wk of treatment with Aramchol reduced blood levels of glycated hemoglobin A1c, an indicator of glycemic control.
AIM To assess lipid and glucose metabolism in mouse hepatocytes and in a NASH mouse model [induced with a 0.1% methionine and choline deficient diet (0.1MCD)] after treatment with Aramchol.
METHODS Isolated primary mouse hepatocytes were incubated with 20 μmol/L Aramchol or vehicle for 48 h. Subsequently, analyses were performed including Western blot, proteomics by mass spectrometry, and fluxomic analysis with 13C-uniformly labeled glucose. For the in vivo part of the study, male C57BL/6J mice were randomly fed a control or 0.1MCD for 4 wk and received 1 or 5 mg/kg/d Aramchol or vehicle by intragastric gavage for the last 2 wk. Liver metabolomics were assessed using ultra-high-performance liquid chromatography-time of flight-MS for the determination of glucose metabolism-related metabolites.
RESULTS Combination of proteomics and Western blot analyses showed increased AMPK activity while the activity of nutrient sensor mTORC1 was decreased by Aramchol in hepatocytes. This translated into changes in the content of their downstream targets including proteins involved in fatty acid (FA) synthesis and oxidation [P-ACCα/β(S79), SCD1, CPT1A/B, HADHA, and HADHB], oxidative phosphorylation (NDUFA9, NDUFB11, NDUFS1, NDUFV1, ETFDH, and UQCRC2), tricarboxylic acid (TCA) cycle (MDH2, SUCLA2, and SUCLG2), and ribosome (P-p70S6K[T389] and P-S6[S235/S236]). Flux experiments with 13C-uniformely labeled glucose showed that TCA cycle cataplerosis was reduced by Aramchol in hepatocytes, as indicated by the increase in the number of rounds that malate remained in the TCA cycle. Finally, liver metabolomic analysis showed that glucose homeostasis was improved by Aramchol in 0.1MCD fed mice in a dose-dependent manner, showing normalization of glucose, G6P, F6P, UDP-glucose, and Rbl5P/Xyl5P.
CONCLUSION Aramchol exerts its effect on glucose and lipid metabolism in NASH through activation of AMPK and inhibition of mTORC1, which in turn activate FA β-oxidation and oxidative phosphorylation.
Collapse
Affiliation(s)
- David Fernández-Ramos
- Precision Medicine and Metabolism Laboratory, Centro de Investigación Cooperativa en Biociencias (CIC bioGUNE), Derio 48160, Bizkaia, Spain
- CIBERehd - Centro de Investigación Biomédica en Red de enfermedades hepáticas y digestivas, Madrid 28029, Spain
| | - Fernando Lopitz-Otsoa
- Precision Medicine and Metabolism Laboratory, Centro de Investigación Cooperativa en Biociencias (CIC bioGUNE), Derio 48160, Bizkaia, Spain
| | - Laura Delacruz-Villar
- Precision Medicine and Metabolism Laboratory, Centro de Investigación Cooperativa en Biociencias (CIC bioGUNE), Derio 48160, Bizkaia, Spain
| | - Jon Bilbao
- Precision Medicine and Metabolism Laboratory, Centro de Investigación Cooperativa en Biociencias (CIC bioGUNE), Derio 48160, Bizkaia, Spain
| | - Martina Pagano
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Naples 80138, Italy
| | - Laura Mosca
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Naples 80138, Italy
| | - Maider Bizkarguenaga
- Precision Medicine and Metabolism Laboratory, Centro de Investigación Cooperativa en Biociencias (CIC bioGUNE), Derio 48160, Bizkaia, Spain
| | - Marina Serrano-Macia
- Liver Disease Laboratory, Centro de Investigación Cooperativa en Biociencias (CIC bioGUNE), Derio 48160, Spain
| | - Mikel Azkargorta
- Proteomics Platform, Centro de Investigación Cooperativa en Biociencias (CIC bioGUNE), Derio 48160, Spain
| | | | - Jesús Sot
- Instituto Biofisika (UPV/EHU, CSIC), Leioa 48940, Spain; Departamento de Bioquímica y Biología Molecular, Universidad del País Vasco, Leioa 48940, Spain
| | - Darya Tsvirkun
- Pre-clinical and Chemistry, Manufacturing and Controls, Galmed Pharmaceuticals, Tel Aviv 6578317, Israel
| | | | - Felix M Goni
- Instituto Biofisika (UPV/EHU, CSIC), Leioa 48940, Spain; Departamento de Bioquímica y Biología Molecular, Universidad del País Vasco, Leioa 48940, Spain
| | | | - María Luz Martínez-Chantar
- CIBERehd - Centro de Investigación Biomédica en Red de enfermedades hepáticas y digestivas, Madrid 28029, Spain
- Liver Disease Laboratory, Centro de Investigación Cooperativa en Biociencias (CIC bioGUNE), Derio 48160, Spain
| | - Felix Elortza
- Proteomics Platform, Centro de Investigación Cooperativa en Biociencias (CIC bioGUNE), Derio 48160, Spain
| | - Liat Hayardeny
- Pre-clinical and Chemistry, Manufacturing and Controls, Galmed Pharmaceuticals, Tel Aviv 6578317, Israel
| | - Shelly C Lu
- Division of Digestive and Liver Diseases, Cedars-Sinai Medical Center, Los Angeles, CA 90048, United States
| | - José M Mato
- Precision Medicine and Metabolism Laboratory, Centro de Investigación Cooperativa en Biociencias (CIC bioGUNE), Derio 48160, Bizkaia, Spain
- CIBERehd - Centro de Investigación Biomédica en Red de enfermedades hepáticas y digestivas, Madrid 28029, Spain
| |
Collapse
|
320
|
Rajcic D, Brandt A, Jin CJ, Sánchez V, Engstler AJ, Jung F, Nier A, Baumann A, Bergheim I. Exchanging dietary fat source with extra virgin olive oil does not prevent progression of diet-induced non-alcoholic fatty liver disease and insulin resistance. PLoS One 2020; 15:e0237946. [PMID: 32881925 PMCID: PMC7470337 DOI: 10.1371/journal.pone.0237946] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 08/05/2020] [Indexed: 12/19/2022] Open
Abstract
Dietary fat is discussed to be critical in the development of non-alcoholic fatty liver disease. Here, we assess the effect of exchanging dietary fat source from butterfat to extra virgin olive oil on the progression of an already existing diet-induced non-alcoholic fatty liver disease in mice. Female C57BL/6J mice were fed a liquid butterfat-, fructose- and cholesterol-rich diet (BFC, 25E% from butterfat) or control diet (C, 12%E from soybean oil) for 13 weeks. In week 9, fat sources of some BFC- and C-fed mice were switched either to 25E% or 12E% olive oil (OFC and CO). Glucose and insulin tolerance tests were performed, and markers of liver damage and glucose metabolism were assessed. After 6 weeks of feeding, BFC-fed mice had developed marked signs of insulin resistance, which progressed to week 12 being not affected by the exchange of fat sources. Liver damage was similar between BFC- and OFC-fed mice. Markers of lipid metabolism and lipid peroxidation in liver and of insulin signaling in liver and muscle were also similarly altered in BFC- and OFC-fed mice. Taken together, our data suggest that exchanging butterfat with extra virgin olive oil has no effect on the progression of non-alcoholic fatty liver disease and glucose tolerance in mice.
Collapse
Affiliation(s)
- Dragana Rajcic
- Department of Nutritional Sciences, Molecular Nutritional Science, University of Vienna, Vienna, Austria
| | - Annette Brandt
- Department of Nutritional Sciences, Molecular Nutritional Science, University of Vienna, Vienna, Austria
| | - Cheng Jun Jin
- Institute of Nutrition, SD Model Systems of Molecular Nutrition, Friedrich-Schiller University of Jena, Jena, Germany
| | - Victor Sánchez
- Department of Nutritional Sciences, Molecular Nutritional Science, University of Vienna, Vienna, Austria
| | - Anna Janina Engstler
- Department of Nutritional Sciences, Molecular Nutritional Science, University of Vienna, Vienna, Austria
| | - Finn Jung
- Department of Nutritional Sciences, Molecular Nutritional Science, University of Vienna, Vienna, Austria
| | - Anika Nier
- Department of Nutritional Sciences, Molecular Nutritional Science, University of Vienna, Vienna, Austria
| | - Anja Baumann
- Department of Nutritional Sciences, Molecular Nutritional Science, University of Vienna, Vienna, Austria
| | - Ina Bergheim
- Department of Nutritional Sciences, Molecular Nutritional Science, University of Vienna, Vienna, Austria
- * E-mail:
| |
Collapse
|
321
|
Maximus PS, Al Achkar Z, Hamid PF, Hasnain SS, Peralta CA. Adipocytokines: Are they the Theory of Everything? Cytokine 2020; 133:155144. [PMID: 32559663 PMCID: PMC7297161 DOI: 10.1016/j.cyto.2020.155144] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 05/08/2020] [Accepted: 05/21/2020] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Adipose tissue secretes various bioactive peptides/proteins, immune molecules and inflammatory mediators which are known as adipokines or adipocytokines. Adipokines play important roles in the maintenance of energy homeostasis, appetite, glucose and lipid metabolism, insulin sensitivity, angiogenesis, immunity and inflammation. Enormous number of studies from all over the world proved that adipocytokines are involved in the pathogenesis of diseases affecting nearly all body systems, which raises the question whether we can always blame adipocytokines as the triggering factor of every disease that may hit the body. OBJECTIVE Our review targeted the role played by adipocytokines in the pathogenesis of different diseases affecting different body systems including diabetes mellitus, kidney diseases, gynecological diseases, rheumatologic disorders, cancers, Alzheimer's, depression, muscle disorders, liver diseases, cardiovascular and lung diseases. METHODOLOGY We cited more than 33 recent literature reviews that discussed the role played by adipocytokines in the pathogenesis of different diseases affecting different body systems. CONCLUSION More evidence is being discovered to date about the role played by adipocytokines in more diseases and extra research is needed to explore hidden roles played by adipokine imbalance on disease pathogenesis.
Collapse
Affiliation(s)
- Pierre S Maximus
- California Institute of Behavioral Neurosciences and Psychology, United States.
| | - Zeina Al Achkar
- California Institute of Behavioral Neurosciences and Psychology, United States
| | - Pousette F Hamid
- California Institute of Behavioral Neurosciences and Psychology, United States
| | - Syeda S Hasnain
- California Institute of Behavioral Neurosciences and Psychology, United States
| | - Cesar A Peralta
- California Institute of Behavioral Neurosciences and Psychology, United States
| |
Collapse
|
322
|
Dietary intake of specific amino acids and liver status in subjects with nonalcoholic fatty liver disease: fatty liver in obesity (FLiO) study. Eur J Nutr 2020; 60:1769-1780. [PMID: 32857176 DOI: 10.1007/s00394-020-02370-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 08/19/2020] [Indexed: 12/18/2022]
Abstract
PURPOSE Identification of dietary factors involved in the development and progression of nonalcoholic fatty liver disease (NAFLD) is relevant to the current epidemics of the disease. Dietary amino acids appear to play a key role in the onset and progression of NAFLD. The aim of this study was to analyze potential associations between specific dietary amino acids and variables related to glucose metabolism and hepatic status in adults with overweight/obesity and NAFLD. METHODS One hundred and twelve individuals from the Fatty Liver in Obesity (FLiO) study were evaluated. Liver assessment was carried out by ultrasonography, magnetic resonance imaging and analysis of biochemical parameters. Dietary amino acid intake (aromatic amino acids (AAA); branched-chain amino acids (BCAA); sulfur amino acids (SAA)) was estimated by means of a validated 137-item food frequency questionnaire. RESULTS Higher consumption of these amino acids was associated with worse hepatic health. Multiple adjusted regression models confirmed that dietary AAA, BCAA and SAA were positively associated with liver fat content. AAA and BCAA were positively associated with liver iron concentration. Regarding ferritin levels, a positive association was found with BCAA. Dietary intake of these amino acids was positively correlated with glucose metabolism (glycated hemoglobin, triglyceride and glucose index) although the significance disappeared when potential confounders were included in the model. CONCLUSION These findings suggest that the consumption of specific dietary amino acids might negatively impact on liver status and, to a lesser extent on glucose metabolism in subjects with overweight/obesity and NAFLD. A control of specific dietary amino acid composition should be considered in the management of NAFLD and associated insulin resistance. NCT03183193; June 2017.
Collapse
|
323
|
Khalifa O, Errafii K, Al-Akl NS, Arredouani A. Noncoding RNAs in Nonalcoholic Fatty Liver Disease: Potential Diagnosis and Prognosis Biomarkers. DISEASE MARKERS 2020; 2020:8822859. [PMID: 33133304 PMCID: PMC7593715 DOI: 10.1155/2020/8822859] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 07/25/2020] [Accepted: 07/31/2020] [Indexed: 12/14/2022]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is currently the most common chronic liver disease worldwide in part due to the concomitant obesity pandemic and insulin resistance (IR). It is increasingly becoming evident that NAFLD is a disease affecting numerous extrahepatic vital organs and regulatory pathways. The molecular mechanisms underlying the nonalcoholic steatosis formation are poorly understood, and little information is available on the pathways that are responsible for the progressive hepatocellular damage that follows lipid accumulation. Recently, much research has focused on the identification of the epigenetic modifications that contribute to NAFLD pathogenesis. Noncoding RNAs (ncRNAs) are one of such epigenetic factors that could be implicated in the NAFLD development and progression. In this review, we summarize the current knowledge of the genetic and epigenetic factors potentially underlying the disease. Particular emphasis will be put on the contribution of microRNAs (miRNAs), long noncoding RNAs (lncRNAs), and circular RNAs (circRNAs) to the pathophysiology of NAFLD as well as their potential use as therapeutic targets or as markers for the prediction and the progression of the disease.
Collapse
Affiliation(s)
- Olfa Khalifa
- Diabetes Research Center, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
| | - Khaoula Errafii
- Diabetes Research Center, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
- College of Health and Life Sciences, Hamad Bin Khalifa University, Qatar Foundation, Education City, Doha, Qatar
| | - Nayla S. Al-Akl
- Diabetes Research Center, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
| | - Abdelilah Arredouani
- Diabetes Research Center, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
- College of Health and Life Sciences, Hamad Bin Khalifa University, Qatar Foundation, Education City, Doha, Qatar
| |
Collapse
|
324
|
Emma MR, Giannitrapani L, Cabibi D, Porcasi R, Pantuso G, Augello G, Giglio RV, Re NL, Capitano AR, Montalto G, Soresi M, Cervello M. Hepatic and circulating levels of PCSK9 in morbidly obese patients: Relation with severity of liver steatosis. Biochim Biophys Acta Mol Cell Biol Lipids 2020; 1865:158792. [PMID: 32777481 DOI: 10.1016/j.bbalip.2020.158792] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 07/03/2020] [Accepted: 08/03/2020] [Indexed: 02/07/2023]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is becoming the main cause of liver disease in Western countries, especially in morbidly obese patients (MOPs). The proprotein convertase subtilisin/kexin type 9 (PCSK9) has been recently studied because of its possible involvement in the pathogenesis of NAFLD, but its role, at least in MOPs, is still controversial. The aim of this study was to clarify the correlation between the circulating levels of the PCSK9 protein (cPCSK9) and its hepatic expression with the severity of liver damage in a population of MOPs with NAFLD undergoing bariatric surgery. PCSK9 mRNA was positively correlated with FASN, PPARγ and PPARα mRNAs, while no significant differences were found in PCSK9 mRNA expression in relation to the severity of liver steatosis, lobular inflammation and hepatocellular ballooning. In addition, hepatic PCSK9 protein expression levels were not related to histological parameters of lobular inflammation and hepatocyte ballooning, decreased significantly only in relation to the severity of hepatic steatosis, and were inversely correlated with ALT and AST serum levels. cPCSK9 levels in the whole population were associated with the severity of hepatic steatosis and were positively correlated to total cholesterol levels. In multivariate analysis, cPCSK9 levels were associated with age, total cholesterol and HbA1c. In conclusion, in MOPs our findings support a role for PCSK9 in liver fat accumulation, but not in liver damage progression, and confirm its role in the increase of blood cholesterol, which ultimately may contribute to increased cardiovascular risk in this population.
Collapse
Affiliation(s)
- Maria R Emma
- Institute for Biomedical Research and Innovation, National Research Council (CNR), Palermo, Italy
| | - Lydia Giannitrapani
- Institute for Biomedical Research and Innovation, National Research Council (CNR), Palermo, Italy; Department of Health Promotion Sciences Maternal and Infantile Care, Internal Medicine and Medical Specialties, University of Palermo, Palermo, Italy
| | - Daniela Cabibi
- Department of Health Promotion Sciences Maternal and Infantile Care, Internal Medicine and Medical Specialties, University of Palermo, Palermo, Italy
| | - Rossana Porcasi
- Department of Health Promotion Sciences Maternal and Infantile Care, Internal Medicine and Medical Specialties, University of Palermo, Palermo, Italy
| | - Gianni Pantuso
- Department of Surgical, Oncological and Oral Sciences, Division of General and Oncological Surgery, University of Palermo, Palermo, Italy
| | - Giuseppa Augello
- Institute for Biomedical Research and Innovation, National Research Council (CNR), Palermo, Italy
| | - Rosaria V Giglio
- Department of Health Promotion Sciences Maternal and Infantile Care, Internal Medicine and Medical Specialties, University of Palermo, Palermo, Italy
| | - Noemi Lo Re
- Institute for Biomedical Research and Innovation, National Research Council (CNR), Palermo, Italy
| | - Adele R Capitano
- Department of Health Promotion Sciences Maternal and Infantile Care, Internal Medicine and Medical Specialties, University of Palermo, Palermo, Italy
| | - Giuseppe Montalto
- Institute for Biomedical Research and Innovation, National Research Council (CNR), Palermo, Italy; Department of Health Promotion Sciences Maternal and Infantile Care, Internal Medicine and Medical Specialties, University of Palermo, Palermo, Italy
| | - Maurizio Soresi
- Department of Health Promotion Sciences Maternal and Infantile Care, Internal Medicine and Medical Specialties, University of Palermo, Palermo, Italy.
| | - Melchiorre Cervello
- Institute for Biomedical Research and Innovation, National Research Council (CNR), Palermo, Italy.
| |
Collapse
|
325
|
Guo C, Xue H, Guo T, Zhang W, Xuan WQ, Ren YT, Wang D, Chen YH, Meng YH, Gao HL, Zhao P. Recombinant human lactoferrin attenuates the progression of hepatosteatosis and hepatocellular death by regulating iron and lipid homeostasis in ob/ob mice. Food Funct 2020; 11:7183-7196. [PMID: 32756704 DOI: 10.1039/d0fo00910e] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Lactoferrin (Lf), an iron-binding glycoprotein, has been shown to possess antioxidant and anti-inflammatory properties and exert modulatory effects on lipid homeostasis and non-alcoholic fatty liver disease (NAFLD), but our understanding of its regulatory mechanisms is limited and inconsistent. We used leptin-deficient (ob/ob) mice as the rodent model of NAFLD, and administered recombinant human Lf (4 mg per kg body weight) or control vehicle by intraperitoneal injection to evaluate the hepatoprotective effects of Lf. After 40 days of treatment with Lf, insulin sensitivity and hepatic steatosis in ob/ob mice were significantly improved with the down-regulation of sterol regulatory element binding protein-2 (SREBP2), indicating an improvement in hepatic lipid metabolism and function. We further explored the mechanism, and found that Lf may increase the hepatocellular iron output by targeting the hepcidin-ferroportin (FPn) axis, and then maintains the liver oxidative balance through a nonenzymatic antioxidant system, ultimately suppressing the death of hepatocytes. In addition, the cytoprotective role of Lf may be associated with the inhibition of endoplasmic reticulum (ER) stress and inflammation, promotion of autophagy of damaged hepatocytes and induction of up-regulation of hypoxia inducible factor-1α/vascular endothelial growth factor (HIF-lα/VEGF) to facilitate liver function recovery. These findings suggest that recombinant human Lf might be a potential therapeutic agent for mitigating or delaying the pathological process of NAFLD.
Collapse
Affiliation(s)
- Chuang Guo
- College of Life and Health Sciences, Northeastern University, No. 195, Chuangxin Road, Hunnan District, Shenyang, 110169, China.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
326
|
C-Jun/C7ORF41/NF-κB axis mediates hepatic inflammation and lipid accumulation in NAFLD. Biochem J 2020; 477:691-708. [PMID: 31957809 DOI: 10.1042/bcj20190799] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 01/17/2020] [Accepted: 01/20/2020] [Indexed: 02/06/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is an expanding health problem worldwide. Although many studies have made great efforts to elucidate the pathogenesis of NAFLD, the molecular basis remains poorly understood. Here, we showed that hepatic C7ORF41, a critical regulator of innate immune response, was markedly decreased in diet or genetic-induced NAFLD model. We also demonstrated that C7ORF41 overexpression significantly ameliorated hepatic inflammation and lipid accumulation in palmitic acid (PA)-treated hepatocytes, whereas C7ORF41 knockdown showed the opposite effects. Mechanistically, we found the anti-inflammatory role of C7ORF41 was attributed to the suppression of NF-κB p65-mediated induction of inflammatory cytokines. Moreover, we demonstrated that the suppression of C7ORF41 expression in hepatocytes is due to JNK activation, which promotes c-Jun-mediated transcriptional repression of C7ORF41. In conclusion, our findings suggested that a c-Jun/C7ORF41/NF-κB regulatory network controls the inflammatory response and lipid accumulation in NAFLD and may benefit the development of novel and promising therapeutic targets for NAFLD.
Collapse
|
327
|
Wallert M, Börmel L, Lorkowski S. Inflammatory Diseases and Vitamin E-What Do We Know and Where Do We Go? Mol Nutr Food Res 2020; 65:e2000097. [PMID: 32692879 DOI: 10.1002/mnfr.202000097] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 06/26/2020] [Indexed: 12/14/2022]
Abstract
Inflammation-driven diseases and related comorbidities, such as the metabolic syndrome, obesity, fatty liver disease, and cardiovascular diseases cause significant global burden. There is a growing body of evidence that nutrients alter inflammatory responses and can therefore make a decisive contribution to the treatment of these diseases. Recently, the inflammasome, a cytosolic multiprotein complex, has been identified as a key player in inflammation and the development of various inflammation-mediated disorders, with nucleotide-binding domain and leucine-rich repeat pyrin domain (NLRP) 3 being the inflammasome of interest. Here an overview about the cellular signaling pathways underlying nuclear factor "kappa-light-chain-enhancer" of activated B-cells (NF-κB)- and NLRP3-mediated inflammatory processes, and the pathogenesis of the inflammatory diseases atherosclerosis and non-alcoholic fatty liver disease (NAFLD) is provided; next, the current state of knowledge for drug-based and dietary-based interventions for treating cardiovascular diseases and NAFLD is discussed. To date, one of the most important antioxidants in the human diet is vitamin E. Various in vitro and in vivo studies suggest that the different forms of vitamin E and also their derivatives have anti-inflammatory activity. Recent publications suggest that vitamin E-and possibly metabolites of vitamin E-are a promising therapeutic approach for treating inflammatory diseases such as NAFLD.
Collapse
Affiliation(s)
- Maria Wallert
- Department of Nutritional Biochemistry and Physiology, Institute of Nutritional Science, Friedrich Schiller University Jena, Jena, 07743, Germany.,Competence Cluster for Nutrition and Cardiovascular Health (nutriCARD), Halle-Jena-Leipzig, Germany
| | - Lisa Börmel
- Department of Nutritional Biochemistry and Physiology, Institute of Nutritional Science, Friedrich Schiller University Jena, Jena, 07743, Germany.,Competence Cluster for Nutrition and Cardiovascular Health (nutriCARD), Halle-Jena-Leipzig, Germany
| | - Stefan Lorkowski
- Department of Nutritional Biochemistry and Physiology, Institute of Nutritional Science, Friedrich Schiller University Jena, Jena, 07743, Germany.,Competence Cluster for Nutrition and Cardiovascular Health (nutriCARD), Halle-Jena-Leipzig, Germany
| |
Collapse
|
328
|
Schierle S, Neumann S, Heitel P, Willems S, Kaiser A, Pollinger J, Merk D. Design and Structural Optimization of Dual FXR/PPARδ Activators. J Med Chem 2020; 63:8369-8379. [PMID: 32687365 DOI: 10.1021/acs.jmedchem.0c00618] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Nonalcoholic steatohepatitis (NASH) is considered as severe hepatic manifestation of the metabolic syndrome and has alarming global prevalence. The ligand-activated transcription factors farnesoid X receptor (FXR) and peroxisome proliferator-activated receptor (PPAR) δ have been validated as molecular targets to counter NASH. To achieve robust therapeutic efficacy in this multifactorial pathology, combined peripheral PPARδ-mediated activity and hepatic effects of FXR activation appear as a promising multitarget approach. We have designed a minimal dual FXR/PPARδ activator scaffold by rational fusion of pharmacophores derived from selective agonists. Our dual agonist lead compound exhibited weak agonism on FXR and PPARδ and was structurally refined to a potent and balanced FXR/PPARδ activator in a computer-aided fashion. The resulting dual FXR/PPARδ modulator comprises high selectivity over related nuclear receptors and activates the two target transcription factors in native cellular settings.
Collapse
Affiliation(s)
- Simone Schierle
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Straße 9, D-60438 Frankfurt, Germany
| | - Sebastian Neumann
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Straße 9, D-60438 Frankfurt, Germany
| | - Pascal Heitel
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Straße 9, D-60438 Frankfurt, Germany
| | - Sabine Willems
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Straße 9, D-60438 Frankfurt, Germany
| | - Astrid Kaiser
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Straße 9, D-60438 Frankfurt, Germany
| | - Julius Pollinger
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Straße 9, D-60438 Frankfurt, Germany
| | - Daniel Merk
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Straße 9, D-60438 Frankfurt, Germany
| |
Collapse
|
329
|
Azevedo Foinquinos G, Azevedo Acioli ME, Santana Cavalcanti AH, Barbosa Junior WL, Lima RE, Juca NT, de Azevedo Foinquinos RC, Rocha da Cruz C, Fernandez Pereira FM, de Carvalho SR, de Mendonça Belmont TF, Vasconcelos LRS, Beltrão Pereira LMM. Influence of LGALS3 and PNPLA3 genes in non-alcoholic steatohepatitis (NASH) in patients undergone bariatric surgery. Obes Res Clin Pract 2020; 14:326-332. [PMID: 32690320 DOI: 10.1016/j.orcp.2020.07.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 06/10/2020] [Accepted: 07/09/2020] [Indexed: 02/06/2023]
Abstract
AIM This study evaluated the genesPNPLA3 and LGALS3 in patients who have undergone bariatric surgery. METHODS Individuals with NAFLD and NASH were evaluated, the DNA was extracted from total blood for genotyping of rs4644, rs4652 from LGALS3 and rs738409 from PNPLA3 genes, the total RNA was obtained from liver biopsy. For the detection of the molecular targets, real-time PCR through Taqman probes was used. RESULTS From a total of 46 collected patients, of those 21 (456%) were included as NASH and 25 (544%) as steatosis group. This groups showed significant difference to aspartate aminotransferase (AST), alanine aminotransferase (ALT) and Glutamyl transpeptidase (GGT) (p = 0.0108, p = 0.0090 and p = 0.0044). Regarding to gene expression in studied groups, hepatic steatosis vs NASH, we observed a higher expression of the LGALS3 gene in NASH (p = 0.0273). In addition, patients with C allele in homozygous for rs4644 and rs4652 of LGALS3 gene had higher expression, in NASH group (p = 0.0500 and p = 0.0242, respectively), furthermore for rs4644 both alleles in homozygous showed higher expression (AA/CC vs AC) (p = 0.0500), when analyzed PNPLA3 rs738409, NASH patients with G allele in homozygous had higher expression (p = 0.0494). CONCLUSIONS Therefore, an increased expression of the LGALS3 gene in patients with NASH may be important in the etiopathogenesis of the disease, as well as the presence of rs4652 and rs4644 SNPs in the regulation of transcriptional levels of the gene in patients with NAFLD and NASH.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Luydson Richardson Silva Vasconcelos
- School of Medical Sciences, University of Pernambuco, Brazil; Aggeu Magalhães Institute - IAM- FIOCRUZ-PE, Brazil; Institute of Liver and Transplant of Pernambuco, Brazil.
| | | |
Collapse
|
330
|
An Overview of Lipid Metabolism and Nonalcoholic Fatty Liver Disease. BIOMED RESEARCH INTERNATIONAL 2020; 2020:4020249. [PMID: 32733940 PMCID: PMC7383338 DOI: 10.1155/2020/4020249] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 06/14/2020] [Accepted: 06/25/2020] [Indexed: 12/11/2022]
Abstract
The occurrence of nonalcoholic fatty liver disease (NAFLD) is associated with major abnormalities of hepatic lipid metabolism. We propose that lipid abnormalities directly or indirectly contribute to NAFLD, especially fatty acid accumulation, arachidonic acid metabolic disturbance, and ceramide overload. The effects of lipid intake and accumulation on NAFLD and NAFLD treatment are explained with theoretical and experimental details. Overall, these findings provide further understanding of lipid metabolism in NAFLD and may lead to novel therapies.
Collapse
|
331
|
Gao Y, Zhang S, Li J, Zhao J, Xiao Q, Zhu Y, Zhang J, Huang W. Effect and mechanism of ginsenoside Rg1-regulating hepatic steatosis in HepG2 cells induced by free fatty acid. Biosci Biotechnol Biochem 2020; 84:2228-2240. [PMID: 32654591 DOI: 10.1080/09168451.2020.1793293] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Ginsenoside Rg1 (G-Rg1) is a bioactive phytochemical that has been found to be beneficial for the treatment of several diseases including nonalcoholic fatty liver disease (NAFLD). But there is a lack of literature reporting the effect of G-Rg1 on lipid metabolism balance in NAFLD. We investigated the effect and mechanism of G-Rg1 on lipid metabolism in vitro. We found that G-Rg1 decreased the levels of TG, TC, and MDA, and increased activity of SOD. Results of RT-PCR and western blotting showed that supplementation with G-Rg1 downregulated the expression of PPAR γ, FABP1, FATP2/5, CD36, SREBP1 c, and FASN, while the expression of PPAR ɑ, CPT1, ACOX1, MTTP, and ApoB100 was upregulated, after induction by a free fatty acid. Taken together, we conclude that G-Rg1 inhibits lipid synthesis and lipid uptake, and enhances lipid oxidation and lipid export to reduce hepatic steatosis of HepG2 cells by regulating PPAR ɑ and PPAR γ expression.
Collapse
Affiliation(s)
- Yue Gao
- Chongqing Key Laboratory of Infectious Diseases and Parasitic Diseases, Department of Infectious Diseases, The First Affiliated Hospital of Chongqing Medical University , Chongqing, China
| | - Shujun Zhang
- Chongqing Key Laboratory of Infectious Diseases and Parasitic Diseases, Department of Infectious Diseases, The First Affiliated Hospital of Chongqing Medical University , Chongqing, China
| | - Jiajun Li
- Chongqing Key Laboratory of Infectious Diseases and Parasitic Diseases, Department of Infectious Diseases, The First Affiliated Hospital of Chongqing Medical University , Chongqing, China
| | - Jinqiu Zhao
- Chongqing Key Laboratory of Infectious Diseases and Parasitic Diseases, Department of Infectious Diseases, The First Affiliated Hospital of Chongqing Medical University , Chongqing, China
| | - Qing Xiao
- Chongqing Key Laboratory of Infectious Diseases and Parasitic Diseases, Department of Infectious Diseases, The First Affiliated Hospital of Chongqing Medical University , Chongqing, China
| | - Yali Zhu
- Chongqing Key Laboratory of Infectious Diseases and Parasitic Diseases, Department of Infectious Diseases, The First Affiliated Hospital of Chongqing Medical University , Chongqing, China
| | - Jia Zhang
- Chongqing Key Laboratory of Infectious Diseases and Parasitic Diseases, Department of Infectious Diseases, The First Affiliated Hospital of Chongqing Medical University , Chongqing, China
| | - Wenxiang Huang
- Chongqing Key Laboratory of Infectious Diseases and Parasitic Diseases, Department of Infectious Diseases, The First Affiliated Hospital of Chongqing Medical University , Chongqing, China
| |
Collapse
|
332
|
Nocetti D, Espinosa A, Pino-De la Fuente F, Sacristán C, Bucarey JL, Ruiz P, Valenzuela R, Chouinard-Watkins R, Pepper I, Troncoso R, Puente L. Lipid droplets are both highly oxidized and Plin2-covered in hepatocytes of diet-induced obese mice. Appl Physiol Nutr Metab 2020; 45:1368-1376. [PMID: 32585124 DOI: 10.1139/apnm-2019-0966] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Chronic high-fat diet feeding is associated with obesity and accumulation of fat in the liver, leading to the development of insulin resistance and nonalcoholic fatty liver disease. This condition is characterized by the presence of a high number of intrahepatic lipid droplets (LDs), with changes in the perilipin pattern covering them. This work aimed to describe the distribution of perilipin (Plin) 2, an LD-associated protein involved in neutral lipid storage, and Plin5, which favors lipid oxidation in LD, and to evaluate lipid peroxidation through live-cell visualization using the lipophilic fluorescent probe C11-BODIPY581/591 in fresh hepatocytes isolated from mice fed a high-fat diet (HFD). Male C57BL/6J adult mice were divided into control and HFD groups and fed with a control diet (10% fat, 20% protein, and 70% carbohydrates) or an HFD (60% fat, 20% protein, and 20% carbohydrates) for 8 weeks. The animals fed the HFD showed a significant increase of Plin2 in LD of hepatocytes. LD from HFD-fed mice have a stronger lipid peroxidation level than control hepatocytes. These data provide evidence that obesity status is accompanied by a higher degree of lipid peroxidation in hepatocytes, both in the cytoplasm and in the fats stored inside the LD. Novelty Our study shows that lipid droplets from isolated hepatocytes in HFD-fed mice have a stronger lipid peroxidation level than control hepatocytes. C11-BODIPY581/591 is a useful tool to measure the initial level of intracellular lipid peroxidation in single isolated hepatocytes. Perilipins pattern changes with HFD feeding, showing an increase of Plin2 covering lipid droplets.
Collapse
Affiliation(s)
- Diego Nocetti
- Departamento de Tecnología Médica, Universidad de Tarapacá, Arica 1010069, Chile.,Programa de Doctorado en Ciencias Médicas, Universidad de La Frontera, Temuco 4811230, Chile
| | - Alejandra Espinosa
- Departamento de Tecnología Médica, Facultad de Medicina, Universidad de Chile, Santiago 8380463, Chile.,Escuela de Medicina, Campus San Felipe, Universidad de Valparaíso, San Felipe 2340000, Chile.,Center for Studies of Exercise, Metabolism and Cancer (CEMC), Facultad de Medicina, Universidad de Chile, Santiago 8380463, Chile
| | | | - Camila Sacristán
- Departamento de Tecnología Médica, Facultad de Medicina, Universidad de Chile, Santiago 8380453, Chile
| | - José Luis Bucarey
- Escuela de Medicina, Campus San Felipe, Universidad de Valparaíso, San Felipe 2340000, Chile
| | - Paulina Ruiz
- Departamento de Tecnología Médica, Facultad de Medicina, Universidad de Chile, Santiago 8380453, Chile
| | - Rodrigo Valenzuela
- Nutrition Department, Faculty of Medicine, University of Chile, Santiago 8380453, Chile.,Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Raphaël Chouinard-Watkins
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Inés Pepper
- Departamento de Tecnología Médica, Facultad de Medicina, Universidad de Chile, Santiago 8380453, Chile
| | - Rodrigo Troncoso
- Laboratorio de Investigación en Nutrición y Actividad Física (LABINAF), Instituto de Nutrición y Tecnología de los Alimentos (INTA), Universidad de Chile, Santiago 7830490, Chile
| | - Luis Puente
- Departamento de Ciencia de los Alimentos, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago 8380494, Chile
| |
Collapse
|
333
|
Figueiredo LS, Oliveira KM, Freitas IN, Silva JA, Silva JN, Favero-Santos BC, Bonfleur ML, Carneiro EM, Ribeiro RA. Bisphenol-A exposure worsens hepatic steatosis in ovariectomized mice fed on a high-fat diet: Role of endoplasmic reticulum stress and fibrogenic pathways. Life Sci 2020; 256:118012. [PMID: 32593710 DOI: 10.1016/j.lfs.2020.118012] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 06/21/2020] [Accepted: 06/23/2020] [Indexed: 02/07/2023]
Abstract
AIMS Bisphenol (BP)-A exposure can impair glucose and lipid metabolism. However, it is unclear whether this endocrine disruptor (ED) modulates these processes in postmenopause, a period with organic changes that increase the risk for metabolic diseases. Herein, we evaluated the effects of BPA exposure on adiposity, glucose homeostasis and hepatic steatosis in ovariectomized (OVX) mice fed on a high-fat diet (HFD). MAIN METHODS Adult Swiss female mice were OVX and submitted to a normolipidic diet or HFD and drinking water without [control (OVX CTL) and OVX HFD groups, respectively] or with 1 μg/mL BPA (OVX CBPA and OVX HBPA groups, respectively), for 3 months. KEY FINDINGS OVX HFD females displayed increased adiposity, glucose intolerance, insulin resistance and moderate hepatic steatosis. This effect was associated with a high hepatic expression of genes involved in lipogenesis (Srebf1 and Scd1), β-oxidation (Cpt1a) and endoplasmic reticulum (ER) stress (Hspa5 and Hyou1). BPA did not alter adiposity or glucose homeostasis disruptions induced by HFD. However, this ED triggered severe steatosis, exacerbating hepatic fat and collagen depositions in OVX HBPA, in association with a reduction in Mttp mRNA, and up-regulation of genes involved in β-oxidation (Acox1 and Acadvl), mitochondrial uncoupling (Ucp2), ER stress (Hyou1 and Atf6) and chronic liver injury (Tgfb1and Casp8). Furthermore, BPA caused mild steatosis in OVX CBPA females, increasing the hepatic total lipids and mRNAs for Srebf1, Scd1, Hspa5, Hyou1 and Atf6. SIGNIFICANCE BPA aggravated hepatic steatosis in OVX mice. Especially when combined with a HFD, BPA caused NAFLD progression, which was partly mediated by chronic ER stress and the TGF-β1 pathway.
Collapse
Affiliation(s)
- Letícia S Figueiredo
- Laboratório de Fisiopatologia, Divisão de Pesquisa Integrada em Produtos Bioativos e Biociências (DPBio), Polo Novo Cavaleiros, Universidade Federal do Rio de Janeiro, Campus UFRJ-Macaé, Macaé, RJ, Brazil
| | - Kênia M Oliveira
- Laboratório de Fisiopatologia, Divisão de Pesquisa Integrada em Produtos Bioativos e Biociências (DPBio), Polo Novo Cavaleiros, Universidade Federal do Rio de Janeiro, Campus UFRJ-Macaé, Macaé, RJ, Brazil
| | - Israelle N Freitas
- Departamento de Biologia Estrutural e Funcional, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, SP, Brazil
| | - Joel A Silva
- Laboratório de Fisiopatologia, Divisão de Pesquisa Integrada em Produtos Bioativos e Biociências (DPBio), Polo Novo Cavaleiros, Universidade Federal do Rio de Janeiro, Campus UFRJ-Macaé, Macaé, RJ, Brazil
| | - Juliana N Silva
- Laboratório de Fisiopatologia, Divisão de Pesquisa Integrada em Produtos Bioativos e Biociências (DPBio), Polo Novo Cavaleiros, Universidade Federal do Rio de Janeiro, Campus UFRJ-Macaé, Macaé, RJ, Brazil
| | - Bianca C Favero-Santos
- Departamento de Biologia Estrutural e Funcional, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, SP, Brazil
| | - Maria Lúcia Bonfleur
- Centro de Ciências Biológicas e da Saúde, Universidade Estadual do Oeste do Paraná, Campus Cascavel, Cascavel, PR, Brazil
| | - Everardo M Carneiro
- Departamento de Biologia Estrutural e Funcional, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, SP, Brazil
| | - Rosane A Ribeiro
- Laboratório de Fisiopatologia, Divisão de Pesquisa Integrada em Produtos Bioativos e Biociências (DPBio), Polo Novo Cavaleiros, Universidade Federal do Rio de Janeiro, Campus UFRJ-Macaé, Macaé, RJ, Brazil; Setor de Ciências Biológicas e da Saúde (SEBISA), Departamento de Biologia Geral, Universidade Estadual de Ponta Grossa (UEPG), Ponta Grossa, PR, Brazil.
| |
Collapse
|
334
|
Molecular mechanisms of hepatic insulin resistance in nonalcoholic fatty liver disease and potential treatment strategies. Pharmacol Res 2020; 159:104984. [PMID: 32502637 DOI: 10.1016/j.phrs.2020.104984] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 04/27/2020] [Accepted: 05/29/2020] [Indexed: 02/07/2023]
Abstract
The prevalence of nonalcoholic fatty liver disease (NAFLD) in the general population is estimated at 25 %, and there is currently no effective treatment of NAFLD. Although insulin resistance (IR) is not the only factor causing the pathogenesis of NAFLD, hepatic IR has a cause-effective relationship with NAFLD. Improving hepatic IR is a potential therapeutic strategy to treat NAFLD. This review highlights the molecular mechanisms of hepatic IR in the development of NAFLD. Available data on potential drugs including glucagon-like peptide 1 receptor (GLP-1) agonists, peroxisome proliferator-activated receptor (PPAR-γ/α/δ) agonists, farnesoid X receptor (FXR) agonists, etc. are carefully discussed.
Collapse
|
335
|
Nair B, Nath LR. Inevitable role of TGF-β1 in progression of nonalcoholic fatty liver disease. J Recept Signal Transduct Res 2020; 40:195-200. [PMID: 32054379 DOI: 10.1080/10799893.2020.1726952] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a major health concern and the most commonly diagnosed chronic liver manifestation among 25% worldwide population. Obesity, insulin resistance, accumulation of toxic lipid free radicals, generation of oxidative stress, overconsumption of fat containing dietary meals and lack of exercise are the paramount factors accountable for the development of NAFLD. During NAFLD, increased oxidative stress and production of enormous number of toxic free radicals activates a number of pro-inflammatory and inflammatory pathways. TGF-β signaling mechanisms play a central role in maintaining the normal homeostasis of liver. TGF-β1, one of the three isoforms of TGF-β family has significant role in different stages of chronic liver conditions. TGF-β1 promotes HSC activation and extracellular matrix production (ECM), which further contributes in the progression of NAFLD. In this review, we outline the role of TGF-β1 in different phases of progressive NAFLD along with the signaling mechanism.
Collapse
Affiliation(s)
- Bhagyalakshmi Nair
- Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, Ponekkara P.O, Kochi, India
| | - Lekshmi R Nath
- Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, Ponekkara P.O, Kochi, India
| |
Collapse
|
336
|
Narankiewicz D, Ruiz-Nava J, Buonaiuto V, Ruiz-Moreno MI, López-Carmona MD, Pérez-Belmonte LM, Gómez-Huelgas R, Bernal-López MR. Utility of Liver Function Tests and Fatty Liver Index to Categorize Metabolic Phenotypes in a Mediterranean Population. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17103518. [PMID: 32443453 PMCID: PMC7277926 DOI: 10.3390/ijerph17103518] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 05/11/2020] [Accepted: 05/14/2020] [Indexed: 12/21/2022]
Abstract
The aim of this study was to analyze the utility of liver function tests (LFT) and fatty liver index (FLI), a surrogate marker of non-alcoholic fatty liver disease, in the categorization of metabolic phenotypes in a Mediterranean population. A cross-sectional study was performed on a random representative sample of 2233 adults assigned to a health center in Málaga, Spain. The metabolic phenotypes were determined based on body mass index (BMI) categorization and the presence or absence of two or more cardiometabolic abnormalities (high blood pressure, low high-density lipoprotein (HDL) cholesterol, hypertriglyceridemia, pre-diabetes) or type 2 diabetes. No difference was observed between metabolically healthy and metabolically abnormal phenotypes on LFT. The mean FLI of the population was 41.1 ± 28.6. FLI was significantly higher (p < 0.001) in the metabolically abnormal phenotypes in all BMI categories. The proportion of individuals with pathological FLI (≥60) was significantly higher in the metabolically abnormal overweight and obese phenotypes (p < 0.001). On a multivariate model adjusted for sex, age, and waist circumference, a significant correlation was found between pathological FLI and metabolically abnormal phenotypes in the overweight and obese BMI categories. Area under the curve (AUC) of FLI as a biomarker was 0.76, 0.74, and 0.72 for the metabolically abnormal normal-weight, overweight, and obese groups, respectively. Liver biochemistry is poorly correlated with metabolic phenotypes. Conversely, a good correlation between FLI, as a marker of non-alcoholic fatty liver disease (NAFLD), and metabolically abnormal phenotypes in all BMI ranges was found. Our study suggests that FLI may be a useful marker for characterizing metabolically abnormal phenotypes in individuals who are overweight or obese.
Collapse
Affiliation(s)
- Dariusz Narankiewicz
- Preventive Medicine Department, Virgen de la Victoria University Hospital, 29010 Malaga, Spain;
| | - Josefina Ruiz-Nava
- Internal Medicine Department, Regional University Hospital of Málaga, Instituto de Investigación Biomédica de Málaga (IBIMA), 29010 Malaga, Spain; (J.R.-N.); (V.B.); (M.I.R.-M.); (M.D.L.-C.); (L.M.P.-B.)
| | - Veronica Buonaiuto
- Internal Medicine Department, Regional University Hospital of Málaga, Instituto de Investigación Biomédica de Málaga (IBIMA), 29010 Malaga, Spain; (J.R.-N.); (V.B.); (M.I.R.-M.); (M.D.L.-C.); (L.M.P.-B.)
| | - María Isabel Ruiz-Moreno
- Internal Medicine Department, Regional University Hospital of Málaga, Instituto de Investigación Biomédica de Málaga (IBIMA), 29010 Malaga, Spain; (J.R.-N.); (V.B.); (M.I.R.-M.); (M.D.L.-C.); (L.M.P.-B.)
| | - María Dolores López-Carmona
- Internal Medicine Department, Regional University Hospital of Málaga, Instituto de Investigación Biomédica de Málaga (IBIMA), 29010 Malaga, Spain; (J.R.-N.); (V.B.); (M.I.R.-M.); (M.D.L.-C.); (L.M.P.-B.)
| | - Luis Miguel Pérez-Belmonte
- Internal Medicine Department, Regional University Hospital of Málaga, Instituto de Investigación Biomédica de Málaga (IBIMA), 29010 Malaga, Spain; (J.R.-N.); (V.B.); (M.I.R.-M.); (M.D.L.-C.); (L.M.P.-B.)
| | - Ricardo Gómez-Huelgas
- Internal Medicine Department, Regional University Hospital of Málaga, Instituto de Investigación Biomédica de Málaga (IBIMA), 29010 Malaga, Spain; (J.R.-N.); (V.B.); (M.I.R.-M.); (M.D.L.-C.); (L.M.P.-B.)
- Ciber Fisiopatología de la Obesidad y Nutrición. Instituto de Salud Carlos III, 28029 Madrid, Spain
- Correspondence: (R.G.-H.); (M.R.B.-L.); Tel.: +34-951-291-169 (R.G.-H.); 34-951-290-346 (M.R.B.-L.); Fax: +34-951-290-006 (R.G.-H.); +34-951-290-302 (M.R.B.-L.)
| | - María Rosa Bernal-López
- Internal Medicine Department, Regional University Hospital of Málaga, Instituto de Investigación Biomédica de Málaga (IBIMA), 29010 Malaga, Spain; (J.R.-N.); (V.B.); (M.I.R.-M.); (M.D.L.-C.); (L.M.P.-B.)
- Ciber Fisiopatología de la Obesidad y Nutrición. Instituto de Salud Carlos III, 28029 Madrid, Spain
- Correspondence: (R.G.-H.); (M.R.B.-L.); Tel.: +34-951-291-169 (R.G.-H.); 34-951-290-346 (M.R.B.-L.); Fax: +34-951-290-006 (R.G.-H.); +34-951-290-302 (M.R.B.-L.)
| |
Collapse
|
337
|
Arctigenin exhibits hepatoprotective activity in Toxoplasma gondii-infected host through HMGB1/TLR4/NF-κB pathway. Int Immunopharmacol 2020; 84:106539. [PMID: 32361192 DOI: 10.1016/j.intimp.2020.106539] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Revised: 04/18/2020] [Accepted: 04/21/2020] [Indexed: 01/26/2023]
Abstract
Toxoplasmosis is a parasitic zoonosis with the highest incidence in humans. Severe lesions due to acute toxoplasmosis have been recorded in the visceral organs including the liver, where hepatocytes and Kupffer cells are important innate immune cells. Arctigenin (AG) is a bioactive ingredient of Arctium lappa L. and increasing evidence suggests that AG exhibits anti-oxidant, anti-inflammatory and anti-Toxoplasma gondii (T. gondii) effects. However, the role of AG in acute liver damage induced by T. gondii infection remains unclear. In this study, we analyzed the effects of AG against T. gondii-induced liver damage by establishing an in vitro infection model using a murine liver cell line (NCTC-1469 cells) and an in vivo mouse model with acute T. gondii infection of virulent RH strain. In the current study, AG effectively attenuated hepatocytes apoptosis and inhibited the reproduction of T. gondii. The results of in vitro and in vivo studies showed that AG significantly reduced alanine aminotransferase/aspartate aminotransferase activities and lessened pathological damage of liver. Moreover, AG suppressed T. gondii-induced inducible nitric oxide synthase production. AG also attenuated liver inflammation by inhibiting T. gondii-induced activation of the high-mobility group box1/toll-like receptor 4/nuclear factor-kappa B (HMGB1/TLR4/NF-κB) signaling pathway. These findings demonstrated that AG exhibited prominent hepatoprotective activities in toxoplasmic liver injury with anti-inflammatory effects by inhibiting the HMGB1/TLR4/NF-κB signaling axis. Thus, this study provides the basis for the development of new drugs to treat toxoplasmic hepatitis.
Collapse
|
338
|
Xiao L, Liang S, Ge L, Qiu S, Wan H, Wu S, Fei J, Peng S, Zeng X. Si-Wei-Qing-Gan-Tang Improves Non-Alcoholic Steatohepatitis by Modulating the Nuclear Factor-κB Signal Pathway and Autophagy in Methionine and Choline Deficient Diet-Fed Rats. Front Pharmacol 2020; 11:530. [PMID: 32425782 PMCID: PMC7206618 DOI: 10.3389/fphar.2020.00530] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 04/03/2020] [Indexed: 12/12/2022] Open
Abstract
Si-Wei-Qing-Gan-Tang (SWQGT) is a Chinese medicine formula that is widely used as a folk remedy of herbal tea for the treatment of chronic hepatitis, like non-alcoholic steatohepatitis (NASH), around Ganzhou City (Jiangxi province, China). However, the underlying mechanisms of this formula against NASH are still unknown. This study aimed to explore the effect and mechanisms of SWQGT against NASH. A network pharmacology approach was used to predict the potential mechanisms of SWQGT against NASH. Then a rat model of NASH established by feeding the methionine and choline deficient (MCD) diet was used to verify the effect and mechanisms of SWQGT on NASH in vivo. SWQGT (1 g/kg/d and 3 g/kg/d) were given by intragastric administration. Body weight, liver weight, serum biochemical indicators, liver triglyceride and total cholesterol were all measured. Tumor necrosis factor-α (TNF-α), Interleukin (IL)-1β, IL-6 levels in the livers were evaluated using ELISA. Hematoxylin and eosin (HE) and Oil Red O staining were used to determine histology, while western blot was used to assess the relative expression levels of the nuclear factor-κB (NF-κB) pathway- and autophagy-related proteins. Functional and pathway enrichment analyses revealed that SWQGT obviously influenced inflammation-related signal pathways in NASH. Furthermore, in vivo experiment showed that SWQGT caused a reduction in liver weight and liver index of MCD diet-fed rats. The formula also helped to reduce hepatomegaly and improve pathological liver changes and hepatic steatosis. SWQGT likewise reduced liver TNF-α, IL-1β, and IL-6 levels and down-regulated p-NF-κB p65, p-p38 MAPK, p-MEK1/2, p-ERK1/2, p-mTOR, and p62, while up-regulating p-ULK1 and LC3II protein expression levels. SWQGT could improve NASH in MCD diet-fed rats, and this effect may be associated with its down-regulation of NF-κB and activation of autophagy.
Collapse
Affiliation(s)
- Lingyun Xiao
- Centre Lab of Longhua Branch and Department of Infectious Disease, 2nd Clinical Medical College (Shenzhen People's Hospital) of Jinan University, Shenzhen, China.,Integrated Chinese and Western Medicine Postdoctoral Research Station, Jinan University, Guangzhou, China
| | - Shu Liang
- Centre Lab of Longhua Branch and Department of Infectious Disease, 2nd Clinical Medical College (Shenzhen People's Hospital) of Jinan University, Shenzhen, China
| | - Lanlan Ge
- Centre Lab of Longhua Branch and Department of Infectious Disease, 2nd Clinical Medical College (Shenzhen People's Hospital) of Jinan University, Shenzhen, China.,Integrated Chinese and Western Medicine Postdoctoral Research Station, Jinan University, Guangzhou, China
| | - Shuling Qiu
- Centre Lab of Longhua Branch and Department of Infectious Disease, 2nd Clinical Medical College (Shenzhen People's Hospital) of Jinan University, Shenzhen, China
| | - Haoqiang Wan
- Centre Lab of Longhua Branch and Department of Infectious Disease, 2nd Clinical Medical College (Shenzhen People's Hospital) of Jinan University, Shenzhen, China.,Department of Pathology (Longhua Branch), 2nd Clinical Medical College (Shenzhen People's Hospital) of Jinan University, Shenzhen, China
| | - Shipin Wu
- Centre Lab of Longhua Branch and Department of Infectious Disease, 2nd Clinical Medical College (Shenzhen People's Hospital) of Jinan University, Shenzhen, China
| | - Jia Fei
- Integrated Chinese and Western Medicine Postdoctoral Research Station, Jinan University, Guangzhou, China
| | - Shusong Peng
- Department of Pathology (Longhua Branch), 2nd Clinical Medical College (Shenzhen People's Hospital) of Jinan University, Shenzhen, China
| | - Xiaobin Zeng
- Centre Lab of Longhua Branch and Department of Infectious Disease, 2nd Clinical Medical College (Shenzhen People's Hospital) of Jinan University, Shenzhen, China.,Guangdong Key Laboratory of Regional Immunity and Diseases, Shenzhen University School of Medicine, Shenzhen, China
| |
Collapse
|
339
|
Yamamoto S, Sato I, Fukuhama N, Akiyama N, Sakai M, Kumazaki S, Ran S, Hirohata S, Kitamori K, Yamori Y, Watanabe S. Bile acids aggravate nonalcoholic steatohepatitis and cardiovascular disease in SHRSP5/Dmcr rat model. Exp Mol Pathol 2020; 114:104437. [PMID: 32246926 DOI: 10.1016/j.yexmp.2020.104437] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 03/27/2020] [Accepted: 03/31/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND AND AIMS Nonalcoholic steatohepatitis (NASH) is linked to an increased risk of cardiovascular disease, regardless of the risk factors in metabolic syndrome. However, the intermediary factors between NASH and cardiovascular disease are still unknown. A previous study revealed that serum and hepatic bile acid (BA) levels are increased in some NASH patients. We aimed to examine whether NASH and cardiovascular disease were aggravated by BA using an animal model. METHOD AND RESULTS From 10 to 18 weeks of age, SHRSP5/Dmcr rats divided into 3 groups were fed 3 types of high-fat and high-cholesterol (HFC) diets which were changed in the cholic acid (CA) concentration (0%, 2%, or 4%). The nitro oxide synthase inhibition (L-NAME) was administered intraperitoneally from 16 to 18 weeks of age. The 4% CA groups showed the worst LV dysfunction and myocardial fibrosis, and demonstrated severe hepatic fibrosis and lipid depositions. In addition, a large amount of lipid accumulation was observed in the aortas of the 4% CA group, and NFκB and VCAM-1 gene expression levels were increased. These findings were not seen in the 0% CA group. CONCLUSION In the SHRSP5/Dmcr rat model, NASH and cardiovascular disease were aggravated with increasing BAs concentrations in an HFC diet.
Collapse
Affiliation(s)
- Shusei Yamamoto
- Department of Medical Technology, Graduate School of Health Sciences, Okayama University, 2-5-1, Shikata-cho, Kita-ku, Okayama-shi, Okayama 700-8558, Japan
| | - Ikumi Sato
- Department of Medical Technology, Graduate School of Health Sciences, Okayama University, 2-5-1, Shikata-cho, Kita-ku, Okayama-shi, Okayama 700-8558, Japan
| | - Natsuki Fukuhama
- Department of Medical Technology, Faculty of Health Sciences, Okayama University, 2-5-1, Shikata-cho, Kita-ku, Okayama-shi, Okayama 700-8558, Japan
| | - Natsumi Akiyama
- Department of Medical Technology, Faculty of Health Sciences, Okayama University, 2-5-1, Shikata-cho, Kita-ku, Okayama-shi, Okayama 700-8558, Japan
| | - Miku Sakai
- Department of Medical Technology, Faculty of Health Sciences, Okayama University, 2-5-1, Shikata-cho, Kita-ku, Okayama-shi, Okayama 700-8558, Japan
| | - Shota Kumazaki
- Department of Medical Technology, Graduate School of Health Sciences, Okayama University, 2-5-1, Shikata-cho, Kita-ku, Okayama-shi, Okayama 700-8558, Japan
| | - Shang Ran
- Advanced Institute for Medical Sciences, Dalian Medical University, No.9 West Section Lvshun South Road, Dalian, Liaoning Province 116-044, China
| | - Satoshi Hirohata
- Department of Medical Technology, Graduate School of Health Sciences, Okayama University, 2-5-1, Shikata-cho, Kita-ku, Okayama-shi, Okayama 700-8558, Japan
| | - Kazuya Kitamori
- College of Human Life and Environment, Kinjo Gakuin University, 2-1723, Omori, Moriyama-ku, Nagoya-shi, Aichi 463-8521, Japan
| | - Yukio Yamori
- Institute for World Health Development, Mukogawa Women's University, 4-16, Edagawa-cho, Nishinomiya-shi, Hyogo 663-8143, Japan
| | - Shogo Watanabe
- Department of Medical Technology, Graduate School of Health Sciences, Okayama University, 2-5-1, Shikata-cho, Kita-ku, Okayama-shi, Okayama 700-8558, Japan.
| |
Collapse
|
340
|
Montesano A, Senesi P, Vacante F, Mollica G, Benedini S, Mariotti M, Luzi L, Terruzzi I. L-Carnitine counteracts in vitro fructose-induced hepatic steatosis through targeting oxidative stress markers. J Endocrinol Invest 2020; 43:493-503. [PMID: 31705397 PMCID: PMC7067714 DOI: 10.1007/s40618-019-01134-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 10/21/2019] [Indexed: 02/06/2023]
Abstract
PURPOSE Nonalcoholic fatty liver disease (NAFLD) is defined by excessive lipid accumulation in the liver and involves an ample spectrum of liver diseases, ranging from simple uncomplicated steatosis to cirrhosis and hepatocellular carcinoma. Accumulating evidence demonstrates that high fructose intake enhances NAFLD development and progression promoting inhibition of mitochondrial β-oxidation of long-chain fatty acids and oxidative damages. L-Carnitine (LC), involved in β-oxidation, has been used to reduce obesity caused by high-fat diet, which is beneficial to ameliorating fatty liver diseases. Moreover, in the recent years, various studies have established LC anti-oxidative proprieties. The objective of this study was to elucidate primarily the underlying anti-oxidative mechanisms of LC in an in vitro model of fructose-induced liver steatosis. METHODS Human hepatoma HepG2 cells were maintained in medium supplemented with LC (5 mM LC) with or without 5 mM fructose (F) for 48 h and 72 h. In control cells, LC or F was not added to medium. Fat deposition, anti-oxidative, and mitochondrial homeostasis were investigated. RESULTS LC supplementation decreased the intracellular lipid deposition enhancing AMPK activation. However, compound C (AMPK inhibitor-10 μM), significantly abolished LC benefits in F condition. Moreover, LC, increasing PGC1 α expression, ameliorates mitochondrial damage-F induced. Above all, LC reduced ROS production and simultaneously increased protein content of antioxidant factors, SOD2 and Nrf2. CONCLUSION Our data seemed to show that LC attenuate fructose-mediated lipid accumulation through AMPK activation. Moreover, LC counteracts mitochondrial damages and reactive oxygen species production restoring antioxidant cellular machine. These findings provide new insights into LC role as an AMPK activator and anti-oxidative molecule in NAFLD.
Collapse
Affiliation(s)
- A Montesano
- Department of Biomedical Sciences for Health, University of Milan, Milan, Italy
| | - P Senesi
- Department of Biomedical Sciences for Health, University of Milan, Milan, Italy
| | - F Vacante
- Metabolism Research Center, IRCCS Policlinico San Donato, San Donato Milanese, Milan, Italy
| | - G Mollica
- Department of Biomedical Sciences for Health, University of Milan, Milan, Italy
- Metabolism Research Center, IRCCS Policlinico San Donato, San Donato Milanese, Milan, Italy
| | - S Benedini
- Department of Biomedical Sciences for Health, University of Milan, Milan, Italy
| | - M Mariotti
- IRCCS Istituto Ortopedico Galeazzi, Milan, Italy
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan, Italy
| | - L Luzi
- Department of Biomedical Sciences for Health, University of Milan, Milan, Italy
- Metabolism Research Center, IRCCS Policlinico San Donato, San Donato Milanese, Milan, Italy
| | - I Terruzzi
- Department of Biomedical Sciences for Health, University of Milan, Milan, Italy.
- Metabolism Research Center, IRCCS Policlinico San Donato, San Donato Milanese, Milan, Italy.
| |
Collapse
|
341
|
Ma M, Duan R, Shen L, Liu M, Ji Y, Zhou H, Li C, Liang T, Li X, Guo L. The lncRNA Gm15622 stimulates SREBP-1c expression and hepatic lipid accumulation by sponging the miR-742-3p in mice. J Lipid Res 2020; 61:1052-1064. [PMID: 32229588 DOI: 10.1194/jlr.ra120000664] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 03/10/2020] [Indexed: 12/12/2022] Open
Abstract
Excessive lipid deposition is a hallmark of NAFLD. Although much has been learned about the enzymes and metabolites involved in NAFLD, few studies have focused on the role of long noncoding RNAs (lncRNAs) in hepatic lipid accumulation. Here, using in vitro and in vivo models of NAFLD, we found that the lncRNA Gm15622 is highly expressed in the liver of obese mice fed a HFD and in murine liver (AML-12) cells treated with free fatty acids. Investigating the molecular mechanism in the liver-enriched expression of Gm15622 and its effects on lipid accumulation in hepatocytes and on NAFLD pathogenesis, we found that Gm15622 acts as a sponge for the microRNA miR-742-3p. This sponging activity increased the expression of the transcriptional regulator SREBP-1c and promoted lipid accumulation in the liver of the HFD mice and AML-12 cells. Moreover, further results indicated that metformin suppresses Gm15622 and alleviates NAFLD-associated lipid deposition in mice. In conclusion, we have identified an lncRNA Gm15622/miR-742-3p/SREBP-1c regulatory circuit associated with NAFLD in mice, a finding that significantly advances our insight into how lipid metabolism and accumulation are altered in this metabolic disorder. Our results also suggest that Gm15622 may be a potential therapeutic target for managing NAFLD.
Collapse
Affiliation(s)
- Minjuan Ma
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, School of Life Science, Nanjing Normal University, Nanjing 210023, China
| | - Rui Duan
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, School of Life Science, Nanjing Normal University, Nanjing 210023, China
| | - Lulu Shen
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, School of Life Science, Nanjing Normal University, Nanjing 210023, China
| | - Mengting Liu
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, School of Life Science, Nanjing Normal University, Nanjing 210023, China
| | - Yaya Ji
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, School of Life Science, Nanjing Normal University, Nanjing 210023, China
| | - Hao Zhou
- Changzhou Institute of Innovation and Development, Nanjing Normal University, Nanjing 210023, China
| | - Changxian Li
- Hepatobiliary Center, First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Tingming Liang
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, School of Life Science, Nanjing Normal University, Nanjing 210023, China; Changzhou Institute of Innovation and Development, Nanjing Normal University, Nanjing 210023, China. mailto:
| | - Xiangcheng Li
- Hepatobiliary Center, First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Li Guo
- Department of Bioinformatics, School of Geographic and Biologic Information, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| |
Collapse
|
342
|
Bertasso IM, Pietrobon CB, Lopes BP, Peixoto TC, Soares PN, Oliveira E, Manhães AC, Bonfleur ML, Balbo SL, Cabral SS, Gabriel Kluck GE, Atella GC, Gaspar de Moura E, Lisboa PC. Programming of hepatic lipid metabolism in a rat model of postnatal nicotine exposure - Sex-related differences. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 258:113781. [PMID: 31864076 DOI: 10.1016/j.envpol.2019.113781] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Revised: 12/04/2019] [Accepted: 12/08/2019] [Indexed: 06/10/2023]
Abstract
Maternal nicotine exposure during lactation induces liver damage in adult male rats. However, the mechanism in males is unknown and females have not been tested. Here, we determined the liver lipid composition and lipogenic enzymes in male and female offspring at two ages in a model of postnatal nicotine exposure. Osmotic minipumps were implanted in lactating Wistar rat dams at postnatal day (PND) 2 to release 6 mg/kg/day of nicotine (NIC group) or saline (CON group) for 14 days. Offspring received a standard diet from weaning until euthanasia at PND120 (1 pup/litter/sex) or PND180 (2 pups/litter/sex). At PND120, NIC males showed lower plasma triglycerides (TG), steatosis degree 1, higher hepatic cholesterol (CHOL) ester, free fatty acids, monoacylglycerol content as well as acetyl-coa carboxylase-1 (ACC-1) and fatty acid synthase (FAS) protein expression in the liver compared to CON males. At this age, NIC females had preserved hepatocytes architecture, higher plasma CHOL, higher CHOL ester and lower total CHOL content in the liver compared to CON females. At PND180, NIC males showed steatosis degrees 1 and 2, higher TG, lower free fatty acids and total CHOL content in the liver and an increase in ACC-1 hepatic protein expression. NIC females had higher plasma TG and CHOL levels, no change in hepatic morphology, lower CHOL ester and free fatty acids in the liver, which also showed higher total ACC-1 and FAS protein expression. Maternal nicotine exposure induces long-term liver dysfunction, with an alteration in hepatic cytoarchitecture that was aggravated with age in males. Concerning females, despite unchanged hepatic cytoarchitecture, lipid metabolism was compromised, which deserves further attention.
Collapse
Affiliation(s)
- Iala Milene Bertasso
- Laboratory of Endocrine Physiology, Biology Institute, State University of Rio de Janeiro, RJ, Brazil
| | - Carla Bruna Pietrobon
- Laboratory of Endocrine Physiology, Biology Institute, State University of Rio de Janeiro, RJ, Brazil
| | - Bruna Pereira Lopes
- Laboratory of Endocrine Physiology, Biology Institute, State University of Rio de Janeiro, RJ, Brazil
| | - Thamara Cherem Peixoto
- Laboratory of Endocrine Physiology, Biology Institute, State University of Rio de Janeiro, RJ, Brazil
| | - Patrícia Novaes Soares
- Laboratory of Endocrine Physiology, Biology Institute, State University of Rio de Janeiro, RJ, Brazil
| | - Elaine Oliveira
- Laboratory of Endocrine Physiology, Biology Institute, State University of Rio de Janeiro, RJ, Brazil
| | - Alex Christian Manhães
- Laboratory of Neurophysiology, Biology Institute, State University of Rio de Janeiro, RJ, Brazil
| | - Maria Lucia Bonfleur
- Laboratory of Endocrine Physiology and Metabolism, Center of Biological and Health Sciences, Western Paraná State University, Cascavel, PR, Brazil
| | - Sandra Lucinei Balbo
- Laboratory of Endocrine Physiology and Metabolism, Center of Biological and Health Sciences, Western Paraná State University, Cascavel, PR, Brazil
| | - Suellen Silva Cabral
- Laboratory of Lipids and Lipoprotein Biochemistry, Biochemistry Institute of Federal University of Rio de Janeiro, RJ, Brazil
| | - George Eduardo Gabriel Kluck
- Laboratory of Lipids and Lipoprotein Biochemistry, Biochemistry Institute of Federal University of Rio de Janeiro, RJ, Brazil
| | - Georgia Correa Atella
- Laboratory of Lipids and Lipoprotein Biochemistry, Biochemistry Institute of Federal University of Rio de Janeiro, RJ, Brazil
| | - Egberto Gaspar de Moura
- Laboratory of Endocrine Physiology, Biology Institute, State University of Rio de Janeiro, RJ, Brazil
| | - Patrícia Cristina Lisboa
- Laboratory of Endocrine Physiology, Biology Institute, State University of Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
343
|
Ju L, Sun Y, Xue H, Chen L, Gu C, Shao J, Lu R, Luo X, Wei J, Ma X, Bian Z. CCN1 promotes hepatic steatosis and inflammation in non-alcoholic steatohepatitis. Sci Rep 2020; 10:3201. [PMID: 32081971 PMCID: PMC7035350 DOI: 10.1038/s41598-020-60138-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 02/05/2020] [Indexed: 12/13/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is characterized by increased uptake and accumulation of lipids in hepatocytes. Simple steatosis may progress to non-alcoholic steatohepatitis (NASH) with inflammation, hepatocellular injury and fibrosis. CCN1 is an important matrix protein that regulates cell death and promotes immune cell adhesion and may potentially control this process. The role of CCN1 in NASH remains unclear. We investigated the role of CCN1 in the pathogenesis of steatohepatitis. CCN1 upregulation was found to be closely related with steatosis in patients with NASH, obese mice and a FFA-treated hepatocyte model. Controlling the expression of CCN1 in murine NASH models demonstrated that CCN1 increased the severity of steatosis and inflammation. From the sequence results, we found that fatty acid metabolism genes were primarily involved in the MCD mice overexpressing CCN1 compared to the control. Then, the expression of fatty acid metabolism genes was determined using a custom-designed pathway-focused qPCR-based gene expression array. Expression analysis showed that CCN1 overexpression significantly upregulated the expression of fatty acid metabolism-associated genes. In vitro analysis revealed that CCN1 increased the intracellular TG content, the pro-inflammatory cytokines and the expression level of apoptosis-associated proteins in a steatosis model using murine primary hepatocytes. We identified CCN1 as an important positive regulator in NASH.
Collapse
Affiliation(s)
- Linling Ju
- Nantong Institute of Liver Disease, Department of Gastroenterology and Hepatology, Nantong Third People's Hospital, Nantong University, Nantong, Jiangsu, China
| | - Yan Sun
- Department of Neurology, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Hong Xue
- Liver Diseases Infectious Diseases, Nantong Third People's Hospital, Nantong University, Nantong, Jiangsu, China
| | - Lin Chen
- Nantong Institute of Liver Disease, Department of Gastroenterology and Hepatology, Nantong Third People's Hospital, Nantong University, Nantong, Jiangsu, China
| | - Chunyan Gu
- Department of Pathology, Nantong Third People's Hospital, Nantong University, Nantong, Jiangsu, China
| | - Jianguo Shao
- Nantong Institute of Liver Disease, Department of Gastroenterology and Hepatology, Nantong Third People's Hospital, Nantong University, Nantong, Jiangsu, China
| | - Rujian Lu
- Department of Cardiothoracic Surgery, Nantong Third People's Hospital, Nantong University, Nantong, Jiangsu, China
| | - Xi Luo
- Nantong Institute of Liver Disease, Department of Gastroenterology and Hepatology, Nantong Third People's Hospital, Nantong University, Nantong, Jiangsu, China
| | - Jue Wei
- Department of Gastroenterology, Tongren Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Xiong Ma
- State Key Laboratory for Oncogenes and Related Genes, Key Laboratory of Gastroenterology & Hepatology, Ministry of Health, Division of Gastroenterology and Hepatology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Cancer Institute, Shanghai Institute of Digestive Disease, Shanghai, China
| | - Zhaolian Bian
- Nantong Institute of Liver Disease, Department of Gastroenterology and Hepatology, Nantong Third People's Hospital, Nantong University, Nantong, Jiangsu, China.
| |
Collapse
|
344
|
Radak Z, Suzuki K, Posa A, Petrovszky Z, Koltai E, Boldogh I. The systemic role of SIRT1 in exercise mediated adaptation. Redox Biol 2020; 35:101467. [PMID: 32086007 PMCID: PMC7284913 DOI: 10.1016/j.redox.2020.101467] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 02/07/2020] [Accepted: 02/13/2020] [Indexed: 12/30/2022] Open
Abstract
Cellular energy demands are readily changed during physical exercise resulting in adaptive responses by signaling proteins of metabolic processes, including the NAD+ dependent lysine deacetylase SIRT1. Regular exercise results in systemic adaptation that restores the level of SIRT1 in the kidney, liver, and brain in patients with neurodegenerative diseases, and thereby normalizes cellular metabolic processes to attenuate the severity of these diseases. In skeletal muscle, over-expression of SIRT1 results in enhanced numbers of myonuclei improves the repair process after injury and is actively involved in muscle hypertrophy by up-regulating anabolic and downregulating catabolic processes. The present review discusses the different views of SIRT1 dependent deacetylation of PGC-α.
Collapse
Affiliation(s)
- Zsolt Radak
- Research Institute of Sport Science, University of Physical Education, Budapest, Hungary; Faculty of Sport Sciences, Waseda University, Saitama, 359-1192, Japan; University of Szeged, Szeged, Hungary.
| | - Katsuhiko Suzuki
- Faculty of Sport Sciences, Waseda University, Saitama, 359-1192, Japan
| | | | | | - Erika Koltai
- Research Institute of Sport Science, University of Physical Education, Budapest, Hungary
| | - Istvan Boldogh
- Department of Microbiology and Immunology, University of Texas Medical Branch at Galveston, Galveston, TX, 77555, USA
| |
Collapse
|
345
|
Du J, Ji Y, Qiao L, Liu Y, Lin J. Cellular endo-lysosomal dysfunction in the pathogenesis of non-alcoholic fatty liver disease. Liver Int 2020; 40:271-280. [PMID: 31765080 DOI: 10.1111/liv.14311] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 11/09/2019] [Accepted: 11/13/2019] [Indexed: 12/13/2022]
Abstract
Non-alcoholic fatty liver disease (NAFLD), an increasingly devastating human disorder, is characterized by intrahepatic fat accumulation. Although important progress has been made in understanding NAFLD, the fundamental mechanisms involved in the pathogenesis of NAFLD have not been fully explained. The endo-lysosomal trafficking network is central to lipid metabolism, protein degradation and signal transduction, which are involved in a variety of diseases. In recent years, many genes and pathways in the endo-lysosomal trafficking network and involved in lysosomal biogenesis have been associated with the development and progression of NAFLD. Mutations of these genes and impaired signalling lead to dysfunction in multiple steps of the endo-lysosomal network (endocytic trafficking, membrane fusion and lysosomal degradation), resulting in the accumulation of pathogenic proteins. In this review, we will focus on how alterations in these genes and pathways affect endo-lysosomal trafficking as well as the pathophysiology of NAFLD.
Collapse
Affiliation(s)
- Jiang Du
- College of Biomedical Engineering, Xinxiang Medical University, Xinxiang, China.,Stem Cell and Biotherapy Engineering Research Center of Henan, Xinxiang Medical University, Xinxiang, China
| | - Yu Ji
- College of Biomedical Engineering, Xinxiang Medical University, Xinxiang, China
| | - Liang Qiao
- Stem Cell and Biotherapy Engineering Research Center of Henan, Xinxiang Medical University, Xinxiang, China
| | - Yanli Liu
- Stem Cell and Biotherapy Engineering Research Center of Henan, Xinxiang Medical University, Xinxiang, China
| | - Juntang Lin
- Stem Cell and Biotherapy Engineering Research Center of Henan, Xinxiang Medical University, Xinxiang, China
| |
Collapse
|
346
|
Raigani S, Karimian N, Huang V, Zhang AM, Beijert I, Geerts S, Nagpal S, Hafiz EOA, Fontan FM, Aburawi MM, Mahboub P, Markmann JF, Porte RJ, Uygun K, Yarmush M, Yeh H. Metabolic and lipidomic profiling of steatotic human livers during ex situ normothermic machine perfusion guides resuscitation strategies. PLoS One 2020; 15:e0228011. [PMID: 31978172 PMCID: PMC6980574 DOI: 10.1371/journal.pone.0228011] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 01/06/2020] [Indexed: 12/15/2022] Open
Abstract
There continues to be a significant shortage of donor livers for transplantation. One impediment is the discard rate of fatty, or steatotic, livers because of their poor post-transplant function. Steatotic livers are prone to significant ischemia-reperfusion injury (IRI) and data regarding how best to improve the quality of steatotic livers is lacking. Herein, we use normothermic (37°C) machine perfusion in combination with metabolic and lipidomic profiling to elucidate deficiencies in metabolic pathways in steatotic livers, and to inform strategies for improving their function. During perfusion, energy cofactors increased in steatotic livers to a similar extent as non-steatotic livers, but there were significant deficits in anti-oxidant capacity, efficient energy utilization, and lipid metabolism. Steatotic livers appeared to oxidize fatty acids at a higher rate but favored ketone body production rather than energy regeneration via the tricyclic acid cycle. As a result, lactate clearance was slower and transaminase levels were higher in steatotic livers. Lipidomic profiling revealed ω-3 polyunsaturated fatty acids increased in non-steatotic livers to a greater extent than in steatotic livers. The novel use of metabolic and lipidomic profiling during ex situ normothermic machine perfusion has the potential to guide the resuscitation and rehabilitation of steatotic livers for transplantation.
Collapse
Affiliation(s)
- Siavash Raigani
- Division of Transplantation, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Negin Karimian
- Center for Engineering in Medicine, Massachusetts General Hospital and Shriners Hospital for Children, Boston, Massachusetts, United States of America
| | - Viola Huang
- Center for Engineering in Medicine, Massachusetts General Hospital and Shriners Hospital for Children, Boston, Massachusetts, United States of America
| | - Anna M. Zhang
- Tufts University School of Medicine, Boston, Massachusetts, United States of America
| | - Irene Beijert
- Center for Engineering in Medicine, Massachusetts General Hospital and Shriners Hospital for Children, Boston, Massachusetts, United States of America
- Section of Hepatobiliary Surgery and Liver Transplantation, Department of Surgery, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Sharon Geerts
- Center for Engineering in Medicine, Massachusetts General Hospital and Shriners Hospital for Children, Boston, Massachusetts, United States of America
- Section of Hepatobiliary Surgery and Liver Transplantation, Department of Surgery, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Sonal Nagpal
- Center for Engineering in Medicine, Massachusetts General Hospital and Shriners Hospital for Children, Boston, Massachusetts, United States of America
| | - Ehab O. A. Hafiz
- Electron Microscopy Research Division, Theodor Bilharz Research Institute, Giza, Egypt
| | - Fermin M. Fontan
- Center for Engineering in Medicine, Massachusetts General Hospital and Shriners Hospital for Children, Boston, Massachusetts, United States of America
| | - Mohamed M. Aburawi
- Center for Engineering in Medicine, Massachusetts General Hospital and Shriners Hospital for Children, Boston, Massachusetts, United States of America
| | - Paria Mahboub
- Center for Engineering in Medicine, Massachusetts General Hospital and Shriners Hospital for Children, Boston, Massachusetts, United States of America
| | - James F. Markmann
- Division of Transplantation, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Robert J. Porte
- Section of Hepatobiliary Surgery and Liver Transplantation, Department of Surgery, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Korkut Uygun
- Division of Transplantation, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
- Center for Engineering in Medicine, Massachusetts General Hospital and Shriners Hospital for Children, Boston, Massachusetts, United States of America
| | - Martin Yarmush
- Division of Transplantation, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
- Center for Engineering in Medicine, Massachusetts General Hospital and Shriners Hospital for Children, Boston, Massachusetts, United States of America
| | - Heidi Yeh
- Division of Transplantation, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
347
|
Challenges and opportunities in drug development for nonalcoholic steatohepatitis. Eur J Pharmacol 2020; 870:172913. [PMID: 31926994 DOI: 10.1016/j.ejphar.2020.172913] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 12/04/2019] [Accepted: 01/07/2020] [Indexed: 12/22/2022]
Abstract
Nonalcoholic fatty liver disease (NAFLD) and nonalcoholic steatohepatitis (NASH) are considered major global medical burdens with high prevalence and steeply rising incidence. Despite the characterization of numerous pathophysiologic pathways leading to metabolic disorder, lipid accumulation, inflammation, fibrosis, and ultimately end-stage liver disease or liver cancer formation, so far no causal pharmacological therapy is available. Drug development for NAFLD and NASH is limited by long disease duration and slow progression and the need for sequential biopsies to monitor the disease stage. Additional non-invasive biomarkers could therefore improve design and feasibility of such. Here, the current concepts on preclinical models, biomarkers and clinical endpoints and trial designs are briefly reviewed.
Collapse
|
348
|
Shan Q, Li H, Chen N, Qu F, Guo J. Understanding the Multiple Effects of PCBs on Lipid Metabolism. Diabetes Metab Syndr Obes 2020; 13:3691-3702. [PMID: 33116719 PMCID: PMC7568599 DOI: 10.2147/dmso.s264851] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 08/19/2020] [Indexed: 12/28/2022] Open
Abstract
Polychlorinated biphenyls (PCBs) are a typical class of environmental contaminants recently shown to be metabolism-disrupting chemicals. Lipids are a highly complex group of biomolecules that not only form the structural basis of biofilms but also act as signaling molecules and energy sources. Lipid metabolic disorders contribute to multiple diseases, including obesity, diabetes, fatty liver, and metabolic syndromes. Although previous literature has reported that PCBs can affect lipid metabolism, including lipid synthesis, uptake, and elimination, few systematic summaries of the detailed process of lipid metabolism caused by PCB exposure have been published. Lipid metabolic processes involve many molecules; however, the key factors that are sensitive to PCB exposure have not been fully clarified. Here, we summarize the recent developments in PCB research with a focus on biomarkers of lipid metabolic disorders related to environmental exposures.
Collapse
Affiliation(s)
- Qiuli Shan
- College of Biological Science and Technology, University of Jinan, Jinan250022, People’s Republic of China
- State Key Laboratory of Environmental Chemistry and Eco-Toxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing100085, People’s Republic of China
- Correspondence: Qiuli Shan Email
| | - Hongmei Li
- College of Biological Science and Technology, University of Jinan, Jinan250022, People’s Republic of China
| | - Ningning Chen
- College of Biological Science and Technology, University of Jinan, Jinan250022, People’s Republic of China
| | - Fan Qu
- College of Biological Science and Technology, University of Jinan, Jinan250022, People’s Republic of China
| | - Jing Guo
- College of Biological Science and Technology, University of Jinan, Jinan250022, People’s Republic of China
| |
Collapse
|
349
|
Ye Z, Wang S, Zhang C, Zhao Y. Coordinated Modulation of Energy Metabolism and Inflammation by Branched-Chain Amino Acids and Fatty Acids. Front Endocrinol (Lausanne) 2020; 11:617. [PMID: 33013697 PMCID: PMC7506139 DOI: 10.3389/fendo.2020.00617] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 07/28/2020] [Indexed: 12/18/2022] Open
Abstract
As important metabolic substrates, branched-chain amino acids (BCAAs) and fatty acids (FAs) participate in many significant physiological processes, such as mitochondrial biogenesis, energy metabolism, and inflammation, along with intermediate metabolites generated in their catabolism. The increased levels of BCAAs and fatty acids can lead to mitochondrial dysfunction by altering mitochondrial biogenesis and adenosine triphosphate (ATP) production and interfering with glycolysis, fatty acid oxidation, the tricarboxylic acid cycle (TCA) cycle, and oxidative phosphorylation. BCAAs can directly activate the mammalian target of rapamycin (mTOR) signaling pathway to induce insulin resistance, or function together with fatty acids. In addition, elevated levels of BCAAs and fatty acids can activate the canonical nuclear factor-κB (NF-κB) signaling pathway and inflammasome and regulate mitochondrial dysfunction and metabolic disorders through upregulated inflammatory signals. This review provides a comprehensive summary of the mechanisms through which BCAAs and fatty acids modulate energy metabolism, insulin sensitivity, and inflammation synergistically.
Collapse
Affiliation(s)
- Zhenhong Ye
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Peking University Third Hospital, Beijing, China
- National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, China
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Peking University, Beijing, China
| | - Siyu Wang
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Peking University Third Hospital, Beijing, China
- National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, China
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Peking University, Beijing, China
| | - Chunmei Zhang
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Peking University Third Hospital, Beijing, China
- National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, China
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Peking University, Beijing, China
| | - Yue Zhao
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Peking University Third Hospital, Beijing, China
- National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, China
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Peking University, Beijing, China
- Research Units of Comprehensive Diagnosis and Treatment of Oocyte Maturation Arrest, Chinese Academy of Medical Sciences, Beijing, China
- *Correspondence: Yue Zhao
| |
Collapse
|
350
|
Ure DR, Trepanier DJ, Mayo PR, Foster RT. Cyclophilin inhibition as a potential treatment for nonalcoholic steatohepatitis (NASH). Expert Opin Investig Drugs 2019; 29:163-178. [PMID: 31868526 DOI: 10.1080/13543784.2020.1703948] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Daren R. Ure
- Hepion Pharmaceuticals Inc, Edmonton, AB, Canada
| | | | | | | |
Collapse
|