301
|
Montalbán B, Thijs S, Lobo MC, Weyens N, Ameloot M, Vangronsveld J, Pérez-Sanz A. Cultivar and Metal-Specific Effects of Endophytic Bacteria in Helianthus tuberosus Exposed to Cd and Zn. Int J Mol Sci 2017; 18:E2026. [PMID: 28934107 PMCID: PMC5666708 DOI: 10.3390/ijms18102026] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Revised: 09/09/2017] [Accepted: 09/12/2017] [Indexed: 02/04/2023] Open
Abstract
Plant growth promoting endophytic bacteria (PGPB) isolated from Brassica napus were inoculated in two cultivars of Helianthus tuberosus (VR and D19) growing on sand supplemented with 0.1 mM Cd or 1 mM Zn. Plant growth, concentrations of metals and thiobarbituric acid (TBA) reactive compounds were determined. Colonization of roots of H. tuberosus D19 by Pseudomonas sp. 262 was evaluated using confocal laser scanning microscopy. Pseudomonas sp. 228, Serratia sp. 246 and Pseudomonas sp. 262 significantly enhanced growth of H. tuberosus D19 exposed to Cd or Zn. Pseudomonas sp. 228 significantly increased Cd concentrations in roots. Serratia sp. 246, and Pseudomonas sp. 256 and 228 resulted in significantly decreased contents of TBA reactive compounds in roots of Zn exposed D19 plants. Growth improvement and decrease of metal-induced stress were more pronounced in D19 than in VR. Pseudomonas sp. 262-green fluorescent protein (GFP) colonized the root epidermis/exodermis and also inside root hairs, indicating that an endophytic interaction was established. H. tuberosus D19 inoculated with Pseudomonas sp. 228, Serratia sp. 246 and Pseudomonas sp. 262 holds promise for sustainable biomass production in combination with phytoremediation on Cd and Zn contaminated soils.
Collapse
Affiliation(s)
- Blanca Montalbán
- Departamento de Investigación Agroambiental, IMIDRA, Finca "El Encín", Autovía del Noreste A-2 Km 38.2, 28800 Alcalá de Henares, Madrid, Spain.
- Environmental Biology, Centre for Environmental Sciences, Hasselt University, Agoralaan Building D, BE3590 Diepenbeek, Belgium.
| | - Sofie Thijs
- Environmental Biology, Centre for Environmental Sciences, Hasselt University, Agoralaan Building D, BE3590 Diepenbeek, Belgium.
| | - Mª Carmen Lobo
- Departamento de Investigación Agroambiental, IMIDRA, Finca "El Encín", Autovía del Noreste A-2 Km 38.2, 28800 Alcalá de Henares, Madrid, Spain.
| | - Nele Weyens
- Environmental Biology, Centre for Environmental Sciences, Hasselt University, Agoralaan Building D, BE3590 Diepenbeek, Belgium.
| | - Marcel Ameloot
- Biomedical Research Department, Hasselt University, Agoralaan building D, BE3590 Diepenbeek, Belgium.
| | - Jaco Vangronsveld
- Environmental Biology, Centre for Environmental Sciences, Hasselt University, Agoralaan Building D, BE3590 Diepenbeek, Belgium.
| | - Araceli Pérez-Sanz
- Departamento de Investigación Agroambiental, IMIDRA, Finca "El Encín", Autovía del Noreste A-2 Km 38.2, 28800 Alcalá de Henares, Madrid, Spain.
- Department of Earth Sciences, Natural History Museum, Cromwell Road, London SW7 5BD, UK.
| |
Collapse
|
302
|
Xiao K, Li Y, Sun Y, Liu R, Li J, Zhao Y, Xu H. Remediation Performance and Mechanism of Heavy Metals by a Bottom Up Activation and Extraction System Using Multiple Biochemical Materials. ACS APPLIED MATERIALS & INTERFACES 2017; 9:30448-30457. [PMID: 28836755 DOI: 10.1021/acsami.7b09520] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Soil contamination with heavy metals has caused serious environmental problems and increased the risks to humans and biota. Herein, we developed an effective bottom up metals removal system based on the synergy between the activation of immobilization metal-resistant bacteria and the extraction of bioaccumulator material (Stropharia rugosoannulata). In this system, the advantages of biochar produced at 400 °C and sodium alginate were integrated to immobilize bacteria. Optimized by response surface methodology, the biochar and bacterial suspension were mixed at a ratio of 1:20 (w:v) for 12 h when 2.5% sodium alginate was added to the mixture. Results demonstrated that the system significantly increased the proportion of acid soluble Cd and Cu and improved the soil microecology (microbial counts, soil respiration, and enzyme activities). The maximum extractions of Cd and Cu were 8.79 and 77.92 mg kg-1, respectively. Moreover, details of the possible mechanistic insight into the metal removal are discussed, which indicate positive correlation with the acetic acid extractable metals and soil microecology. Meanwhile, the "dilution effect" in S. rugosoannulata probably plays an important role in the metal removal process. Furthermore, the metal-resistant bacteria in this system were successfully colonized, and the soil bacteria community were evaluated to understand the microbial diversity in metal-contaminated soil after remediation.
Collapse
Affiliation(s)
- Kemeng Xiao
- Key Laboratory of Bio-Resources and Eco-Environment (Ministry of Education), College of Life Sciences, Sichuan University , Chengdu, Sichuan 610064, China
| | - Yunzhen Li
- The Civil Engineering Postdoctoral Research Station, Sichuan University , Chengdu, Sichuan 610065, China
| | - Yang Sun
- Key Laboratory of Bio-Resources and Eco-Environment (Ministry of Education), College of Life Sciences, Sichuan University , Chengdu, Sichuan 610064, China
| | - Ruyue Liu
- Key Laboratory of Bio-Resources and Eco-Environment (Ministry of Education), College of Life Sciences, Sichuan University , Chengdu, Sichuan 610064, China
| | - Junjie Li
- Key Laboratory of Bio-Resources and Eco-Environment (Ministry of Education), College of Life Sciences, Sichuan University , Chengdu, Sichuan 610064, China
| | - Yun Zhao
- Key Laboratory of Bio-Resources and Eco-Environment (Ministry of Education), College of Life Sciences, Sichuan University , Chengdu, Sichuan 610064, China
| | - Heng Xu
- Key Laboratory of Bio-Resources and Eco-Environment (Ministry of Education), College of Life Sciences, Sichuan University , Chengdu, Sichuan 610064, China
| |
Collapse
|
303
|
Mishra J, Singh R, Arora NK. Alleviation of Heavy Metal Stress in Plants and Remediation of Soil by Rhizosphere Microorganisms. Front Microbiol 2017; 8:1706. [PMID: 28932218 PMCID: PMC5592232 DOI: 10.3389/fmicb.2017.01706] [Citation(s) in RCA: 218] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 08/23/2017] [Indexed: 11/23/2022] Open
Abstract
Increasing concentration of heavy metals (HM) due to various anthropogenic activities is a serious problem. Plants are very much affected by HM pollution particularly in contaminated soils. Survival of plants becomes tough and its overall health under HM stress is impaired. Remediation of HM in contaminated soil is done by physical and chemical processes which are costly, time-consuming, and non-sustainable. Metal–microbe interaction is an emerging but under-utilized technology that can be exploited to reduce HM stress in plants. Several rhizosphere microorganisms are known to play essential role in the management of HM stresses in plants. They can accumulate, transform, or detoxify HM. In general, the benefit from these microbes can have a vast impact on plant’s health. Plant–microbe associations targeting HM stress may provide another dimension to existing phytoremediation and rhizoremediation uses. In this review, applied aspects and mechanisms of action of heavy metal tolerant-plant growth promoting (HMT-PGP) microbes in ensuring plant survival and growth in contaminated soils are discussed. The use of HMT-PGP microbes and their interaction with plants in remediation of contaminated soil can be the approach for the future. This low input and sustainable biotechnology can be of immense use/importance in reclaiming the HM contaminated soils, thus increasing the quality and yield of such soils.
Collapse
Affiliation(s)
- Jitendra Mishra
- Rhizosphere Microbiology Laboratory, Department of Environmental Microbiology, Babasaheb Bhimrao Ambedkar UniversityLucknow, India
| | - Rachna Singh
- Rhizosphere Microbiology Laboratory, Department of Environmental Microbiology, Babasaheb Bhimrao Ambedkar UniversityLucknow, India
| | - Naveen K Arora
- Rhizosphere Microbiology Laboratory, Department of Environmental Microbiology, Babasaheb Bhimrao Ambedkar UniversityLucknow, India
| |
Collapse
|
304
|
Gatheru Waigi M, Sun K, Gao Y. Sphingomonads in Microbe-Assisted Phytoremediation: Tackling Soil Pollution. Trends Biotechnol 2017; 35:883-899. [DOI: 10.1016/j.tibtech.2017.06.014] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 06/18/2017] [Accepted: 06/22/2017] [Indexed: 12/24/2022]
|
305
|
Vergani L, Mapelli F, Marasco R, Crotti E, Fusi M, Di Guardo A, Armiraglio S, Daffonchio D, Borin S. Bacteria Associated to Plants Naturally Selected in a Historical PCB Polluted Soil Show Potential to Sustain Natural Attenuation. Front Microbiol 2017; 8:1385. [PMID: 28790991 PMCID: PMC5524726 DOI: 10.3389/fmicb.2017.01385] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 07/10/2017] [Indexed: 11/13/2022] Open
Abstract
The exploitation of the association between plants and microorganisms is a promising approach able to boost natural attenuation processes for soil clean-up in vast polluted areas characterized by mixed chemical contamination. We aimed to explore the selection of root-associated bacterial communities driven by different plant species spontaneously established in abandoned agricultural soils within a historical polluted site in north Italy. The site is highly contaminated by chlorinated persistent organic pollutants, mainly constituted by polychlorobiphenyls (PCBs), together with heavy metals and metalloids, in variable concentrations and uneven distribution. The overall structure of the non-vegetated and root-associated soil fractions bacterial communities was described by high-throughput sequencing of the 16S rRNA gene, and a collection of 165 rhizobacterial isolates able to use biphenyl as unique carbon source was assayed for plant growth promotion (PGP) traits and bioremediation potential. The results showed that the recruitment of specific bacterial communities in the root-associated soil fractions was driven by both soil fractions and plant species, explaining 21 and 18% of the total bacterial microbiome variation, respectively. PCR-based detection in the soil metagenome of bacterial bphA gene, encoding for the biphenyl dioxygenase α subunit, indicated that the soil in the site possesses metabolic traits linked to PCB degradation. Biphenyl-utilizing bacteria isolated from the rhizosphere of the three different plant species showed low phylogenetic diversity and well represented functional traits, in terms of PGP and bioremediation potential. On average, 72% of the strains harbored the bphA gene and/or displayed catechol 2,3-dioxygenase activity, involved in aromatic ring cleavage. PGP traits, including 1-aminocyclopropane-1-carboxylic acid deaminase activity potentially associated to plant stress tolerance induction, were widely distributed among the isolates according to in vitro assays. PGP tested in vivo on tomato plants using eleven selected bacterial isolates, confirmed the promotion and protection potential of the rhizosphere bacteria. Different spontaneous plant species naturally selected in a historical chronically polluted site showed to determine the enrichment of peculiar bacterial communities in the soil fractions associated to the roots. All the rhizosphere communities, nevertheless, hosted bacteria with degradation/detoxification and PGP potential, putatively sustaining the natural attenuation process.
Collapse
Affiliation(s)
- Lorenzo Vergani
- Department of Food, Environmental and Nutritional Sciences, University of MilanMilan, Italy
| | - Francesca Mapelli
- Department of Food, Environmental and Nutritional Sciences, University of MilanMilan, Italy
| | - Ramona Marasco
- Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and TechnologyThuwal, Saudi Arabia
| | - Elena Crotti
- Department of Food, Environmental and Nutritional Sciences, University of MilanMilan, Italy
| | - Marco Fusi
- Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and TechnologyThuwal, Saudi Arabia
| | - Antonio Di Guardo
- Department of Science and High Technology, University of InsubriaComo, Italy
| | | | - Daniele Daffonchio
- Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and TechnologyThuwal, Saudi Arabia
| | - Sara Borin
- Department of Food, Environmental and Nutritional Sciences, University of MilanMilan, Italy
| |
Collapse
|
306
|
Iyer R, Damania A, Iken B. Whole genome sequencing of Microbacterium sp. AISO3 from polluted San Jacinto River sediment reveals high bacterial mobility, metabolic versatility and heavy metal resistance. GENOMICS DATA 2017; 14:10-13. [PMID: 28794988 PMCID: PMC5542380 DOI: 10.1016/j.gdata.2017.07.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 07/11/2017] [Accepted: 07/13/2017] [Indexed: 11/18/2022]
Abstract
The genus Microbacterium is composed of high GC content, Gram-positive bacteria of the phylum Acintobacteria known for their antibiotic production. Microbacterium species commonly colonize agricultural rhizospheres and more infrequently have been found to colonize and infect human tissues as well. Here we report the 3,696,310 bp draft genome (chromosome and plasmids) sequence assembled at the scaffold level from 232 contigs of Microbacterium sp. strain AISO3, isolated from polluted San Jacinto River sediment in Channelview, Texas. The nucleotide sequence of this genome was deposited into NCBI GenBank under the accession NHRF00000000.
Collapse
Affiliation(s)
- Rupa Iyer
- Center for Life Sciences Technology, Department of Engineering Technology, University of Houston, Houston, TX, USA
- Corresponding author.
| | - Ashish Damania
- Department of Tropical Medicine-Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Brian Iken
- Center for Life Sciences Technology, Department of Engineering Technology, University of Houston, Houston, TX, USA
| |
Collapse
|
307
|
Afzal S, Begum N, Zhao H, Fang Z, Lou L, Cai Q. Influence of endophytic root bacteria on the growth, cadmium tolerance and uptake of switchgrass (Panicum virgatumL.). J Appl Microbiol 2017; 123:498-510. [DOI: 10.1111/jam.13505] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 06/01/2017] [Accepted: 06/01/2017] [Indexed: 11/30/2022]
Affiliation(s)
- S. Afzal
- College of Life Sciences; Nanjing Agricultural University; Nanjing China
- Girls Degree College no.1; Gomal University; Dera Ismail Khan Pakistan
| | - N. Begum
- College of Life Sciences; Nanjing Agricultural University; Nanjing China
| | - H. Zhao
- College of Life Sciences; Nanjing Agricultural University; Nanjing China
| | - Z. Fang
- College of Life Sciences; Nanjing Agricultural University; Nanjing China
| | - L. Lou
- College of Life Sciences; Nanjing Agricultural University; Nanjing China
| | - Q. Cai
- College of Life Sciences; Nanjing Agricultural University; Nanjing China
| |
Collapse
|
308
|
de Souza Vandenberghe LP, Garcia LMB, Rodrigues C, Camara MC, de Melo Pereira GV, de Oliveira J, Soccol CR. Potential applications of plant probiotic microorganisms in agriculture and forestry. AIMS Microbiol 2017; 3:629-648. [PMID: 31294180 PMCID: PMC6604986 DOI: 10.3934/microbiol.2017.3.629] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 07/04/2017] [Indexed: 12/23/2022] Open
Abstract
Agriculture producers, pushed by the need for high productivity, have stimulated the intensive use of pesticides and fertilizers. Unfortunately, negative effects on water, soil, and human and animal health have appeared as a consequence of this indiscriminate practice. Plant probiotic microorganisms (PPM), also known as bioprotectants, biocontrollers, biofertilizers, or biostimulants, are beneficial microorganisms that offer a promising alternative and reduce health and environmental problems. These microorganisms are involved in either a symbiotic or free-living association with plants and act in different ways, sometimes with specific functions, to achieve satisfactory plant development. This review deals with PPM presentation and their description and function in different applications. PPM includes the plant growth promoters (PGP) group, which contain bacteria and fungi that stimulate plant growth through different mechanisms. Soil microflora mediate many biogeochemical processes. The use of plant probiotics as an alternative soil fertilization source has been the focus of several studies; their use in agriculture improves nutrient supply and conserves field management and causes no adverse effects. The species related to organic matter and pollutant biodegradation in soil and abiotic stress tolerance are then presented. As an important way to understand not only the ecological role of PPM and their interaction with plants but also the biotechnological application of these cultures to crop management, two main approaches are elucidated: the culture-dependent approach where the microorganisms contained in the plant material are isolated by culturing and are identified by a combination of phenotypic and molecular methods; and the culture-independent approach where microorganisms are detected without cultivating them, based on extraction and analyses of DNA. These methods combine to give a thorough knowledge of the microbiology of the studied environment.
Collapse
Affiliation(s)
| | | | - Cristine Rodrigues
- Bioprocess Engineering and Biotechnology Department, Federal University of Paraná, Curitiba-PR, Brazil
| | - Marcela Cândido Camara
- Bioprocess Engineering and Biotechnology Department, Federal University of Paraná, Curitiba-PR, Brazil
| | | | - Juliana de Oliveira
- Bioprocess Engineering and Biotechnology Department, Federal University of Paraná, Curitiba-PR, Brazil
| | - Carlos Ricardo Soccol
- Bioprocess Engineering and Biotechnology Department, Federal University of Paraná, Curitiba-PR, Brazil
| |
Collapse
|
309
|
Plant growth-promoting actinobacteria: a new strategy for enhancing sustainable production and protection of grain legumes. 3 Biotech 2017; 7:102. [PMID: 28560641 DOI: 10.1007/s13205-017-0736-3] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 04/19/2017] [Indexed: 10/19/2022] Open
Abstract
Grain legumes are a cost-effective alternative for the animal protein in improving the diets of the poor in South-East Asia and Africa. Legumes, through symbiotic nitrogen fixation, meet a major part of their own N demand and partially benefit the following crops of the system by enriching soil. In realization of this sustainability advantage and to promote pulse production, United Nations had declared 2016 as the "International Year of pulses". Grain legumes are frequently subjected to both abiotic and biotic stresses resulting in severe yield losses. Global yields of legumes have been stagnant for the past five decades in spite of adopting various conventional and molecular breeding approaches. Furthermore, the increasing costs and negative effects of pesticides and fertilizers for crop production necessitate the use of biological options of crop production and protection. The use of plant growth-promoting (PGP) bacteria for improving soil and plant health has become one of the attractive strategies for developing sustainable agricultural systems due to their eco-friendliness, low production cost and minimizing consumption of non-renewable resources. This review emphasizes on how the PGP actinobacteria and their metabolites can be used effectively in enhancing the yield and controlling the pests and pathogens of grain legumes.
Collapse
|
310
|
Hansda A, Kumar V, Anshumali. Cu-resistant Kocuria sp. CRB15: a potential PGPR isolated from the dry tailing of Rakha copper mine. 3 Biotech 2017; 7:132. [PMID: 28593515 DOI: 10.1007/s13205-017-0757-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Accepted: 01/30/2017] [Indexed: 10/19/2022] Open
Abstract
Rhizobacteria may enhance biomass production and heavy metal tolerance of plants under stress conditions. The present study was carried out for isolation of metal-resistant bacteria that can be further utilized for phytoremediation process. A potential metal-resistant strain CRB15 was isolated from rhizospheric region of Saccharum spontaneum that was found to be resistant against Cu (6.29 mM), Zn (3.25 mM), Pb (1.5 mM), Ni (1.25 mM), and Cd (0.25 mM). SEM analysis was performed for evaluation of morphological changes on bacterial isolate. FTIR analysis observed the change in wavenumbers after the addition of Cu. 16S rDNA sequence analysis showed that CRB15 isolate matched best with genus of Kocuria and was named as Kocuria sp. CRB15. The isolate Kocuria sp. CRB15 was a potential plant growth-promoting rhizobacterium as it had a high IAA (46 µg ml-1), P solubilisation (39.37 µg ml-1), ammonia production (30.46 µmol ml-1), and hydrogen cyanide production capacity. Root-shoot elongation assay conducted on Brassica nigra under lab conditions with strain CRB15 demonstrated positive effects of strain CRB15 in root and shoot elongation of Cu-treated seedlings. This study proved the Kocuria sp. CRB15 a potential PGPR for bacterial-assisted phytoremediation.
Collapse
|
311
|
Abstract
Phytoremediation is a promising technology that uses plants and their associated microbes to clean up contaminants from the environment. In recent years, phytoremediation assisted by plant growth-promoting bacteria (PGPB) has been highly touted for cleaning up toxic metals from soil. PGPB include rhizospheric bacteria, endophytic bacteria and the bacteria that facilitate phytoremediation by other means. This review provides information about the traits and mechanisms possessed by PGPB that improve plant metal tolerance and growth, and illustrate mechanisms responsible for plant metal accumulation/translocation in plants. Several recent examples of phytoremediation of metals facilitated by PGPB are reviewed. Although many encouraging results have been reported in the past years, there have also been numerous challenges encountered in phytoremediation in the field. To implement PGPB-assisted phytoremediation of metals in the natural environment, there is also a need to critically assess the ecological effects of PGPB, especially for those nonnative bacteria.
Collapse
Affiliation(s)
- Zhaoyu Kong
- School of Life Science, Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, Nanchang University, Nanchang, China.
| | | |
Collapse
|
312
|
Díez-Méndez A, Rivas R. Improvement of saffron production using Curtobacterium herbarum as a bioinoculant under greenhouse conditions. AIMS Microbiol 2017; 3:354-364. [PMID: 31294166 PMCID: PMC6604984 DOI: 10.3934/microbiol.2017.3.354] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 05/16/2017] [Indexed: 11/18/2022] Open
Abstract
Plant Growth Promoting Rhizobacteria (PGPR) are natural soil bacteria which establish a beneficial relationship with their host. This microbiota community exists in the rhizosphere and inside plant tissues and stimulates plant growth by a variety of direct or indirect mechanisms. These bacterial plant promoters are frequently present in different environments, and are associated with many plant species, both wild and agricultural. Saffron is the dried stigmas of Crocus sativus (L.) and is the most expensive spice in the world. Remarkably, saffron cultivation and collection is carried out by hand and does not involve the use of machines. Additionally, 150 flowers are needed to produce one gram of dried stigmas. Hence, a slight increase in the size of the saffron filaments per plant would result in a significant increase in the production of this spice. In this study, we report the improved production of saffron using Curtobacterium herbarum Cs10, isolated from Crocus seronitus subs clusii, as a bioinoculant. The bacterial strain was selected owing to its multifunctional ability to produce siderophores, solubilize phosphate and to produce plant growth hormones like IAA. Furthermore, the isolate was tested on saffron producing plants under greenhouse conditions. The results indicate that Curtobacterium herbarum Cs10 improves the number of flowers and significantly enhances the length of the saffron filaments and overall saffron production compared to the control treated plants.
Collapse
Affiliation(s)
- Alexandra Díez-Méndez
- Department of Microbiology and Genetics, Edificio Departamental de Biología, Universidad de Salamanca, (USAL) Dres. de la Reina s/n, 37007, Salamanca, Spain.,Instituto Hispano Luso de Investigaciones Agrarias (CIALE), Salamanca, Spain
| | - Raul Rivas
- Department of Microbiology and Genetics, Edificio Departamental de Biología, Universidad de Salamanca, (USAL) Dres. de la Reina s/n, 37007, Salamanca, Spain.,Instituto Hispano Luso de Investigaciones Agrarias (CIALE), Salamanca, Spain.,Associated Unit USAL-CSIC (IRNASA), Salamanca, Spain
| |
Collapse
|
313
|
Kiran BR, Prasad MNV. Ricinus communis L. (Castor bean), a potential multi-purpose environmental crop for improved and integrated phytoremediation. EUROBIOTECH JOURNAL 2017. [DOI: 10.24190/issn2564-615x/2017/02.01] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Abstract
Phytoremediation is a plant based environmental cleanup technology to contain (rendering less toxic), sequester and degrade contaminated susbtrates. As can be seen from data metrics, it is gaining cosiderable importance globally. Phytoremediation approach is being applied for cleanup of inorganic (potentially toxic metals), organic (persistent, emergent, poly-acromatic hydrocarbons and crude oil etc.) and co-contaminated (mixture of inorganic and organic) and/or polluted sites globally. Recently new approaches of utilizing abundantly available natural organic amendments have yielded significant results. Ricinus communis L. (Castor bean) is an important multipurpose crop viz., Agricultural, Energy, Environmental and Industrial crop. The current status of knowledge is abundant but scattered which need to be exploited for sustainable development. This review collates and evaluates all the scattered information and provides a critical view on the possible options for exploiting its potential as follows: 1. Origin and distribution, 2. Lead toxicity bioassays, 3. Progress in arbuscular mycorrhizal fungi-assisted phytoremediation, 4. Promising bioenergy crop that can be linked to pytoremediation, 5. A renewable source for many bioproducts with rich chemical diversity, 6. It is a good biomonitor and bioindicator of atmospheric pollution in urban areas, 7. Enhanced chelate aided remediation, 8. Its rhizospheric processes accelerate natural attenuation, 9. It is suitable for remediation of crude oil contaminated soil, 10. It is an ideal candidate for aided phytostabilization, 11. Castor bean is a wizard for phytoremediation and 12. Its use in combined phytoextraction and ecocatalysis. Further, the knowledge gaps and scope for future research on sustainable co-generation of value chain and value addition biobased products for sustainable circular economy and environmental security are described in this paper.
Collapse
Affiliation(s)
- Boda Ravi Kiran
- Department of Plant Sciences, University of Hyderabad, Central University P.O., Gachibowli, Hyderabad, Telangana , India
| | - Majeti Narasimha Vara Prasad
- Department of Plant Sciences, University of Hyderabad, Central University P.O., Gachibowli, Hyderabad, Telangana , India
- Visiting Professor School of Environment, Resources and Development (SERD), Room E120 Asian Institute of Technology (AIT), Klong Luang, Pathumthani , Thailand
| |
Collapse
|
314
|
Khaksar G, Treesubsuntorn C, Thiravetyan P. Impact of endophytic colonization patterns on Zamioculcas zamiifolia stress response and in regulating ROS, tryptophan and IAA levels under airborne formaldehyde and formaldehyde-contaminated soil conditions. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2017; 114:1-9. [PMID: 28246037 DOI: 10.1016/j.plaphy.2017.02.016] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 02/04/2017] [Accepted: 02/19/2017] [Indexed: 06/06/2023]
Abstract
Deeper understanding of plant-endophyte interactions under abiotic stress would provide new insights into phytoprotection and phytoremediation enhancement. Many studies have investigated the positive role of plant-endophyte interactions in providing protection to the plant against pollutant stress through auxin (indole-3-acetic acid (IAA)) production. However, little is known about the impact of endophytic colonization patterns on plant stress response in relation to reactive oxygen species (ROS) and IAA levels. Moreover, the possible effect of pollutant phase on plant stress response is poorly understood. Here, we elucidated the impact of endophytic colonization patterns on plant stress response under airborne formaldehyde compared to formaldehyde-contaminated soil. ROS, tryptophan and IAA levels in the roots and shoots of endophyte-inoculated and non-inoculated plants in the presence and absence of formaldehyde were measured. Strain-specific quantitative polymerase chain reaction (qPCR) was used to investigate dynamics of endophyte colonization. Under the initial exposure to airborne formaldehyde, non-inoculated plants accumulated more tryptophan in the shoots (compared to the roots) to synthesize IAA. However, endophyte-inoculated plants behaved differently as they synthesized and accumulated more tryptophan in the roots and, hence, higher levels of IAA accumulation and exudation within roots which might act as a signaling molecule to selectively recruit B. cereus ERBP. Under continuous airborne formaldehyde stress, higher levels of ROS accumulation in the shoots pushed the plant to synthesize more tryptophan and IAA in the shoots (compared to the roots). Higher levels of IAA in the shoots might act as the potent driving force to relocalize B. cereus ERBP from roots to the shoots. In contrast, under formaldehyde-contaminated soil, B. cereus ERBP colonized root tissues without moving to the shoots since there was a sharp increase in ROS, tryptophan and IAA levels of the roots without any significant increase in the shoots. Pollutant phase affected endophytic colonization patterns and plant stress responses differently.
Collapse
Affiliation(s)
- Gholamreza Khaksar
- School of Bioresources and Technology, King Mongkut's University of Technology Thonburi, Bangkok 10150, Thailand.
| | - Chairat Treesubsuntorn
- Pilot Plant Development and Training Institute, King Mongkut's University of Technology Thonburi, Bangkok 10150, Thailand.
| | - Paitip Thiravetyan
- School of Bioresources and Technology, King Mongkut's University of Technology Thonburi, Bangkok 10150, Thailand.
| |
Collapse
|
315
|
An investigation of Panax ginseng Meyer growth promotion and the biocontrol potential of antagonistic bacteria against ginseng black spot. J Ginseng Res 2017; 42:304-311. [PMID: 29983611 PMCID: PMC6026354 DOI: 10.1016/j.jgr.2017.03.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Revised: 02/27/2017] [Accepted: 03/31/2017] [Indexed: 12/04/2022] Open
Abstract
Background Ginseng black spot disease resulting from Alternaria panax Whuetz is a common soil-borne disease, with an annual incidence rate higher than 20–30%. In this study, the bacterial strains with good antagonistic effect against A. panax are screened. Methods A total of 285 bacterial strains isolated from ginseng rhizosphere soils were screened using the Kirby–Bauer disk diffusion method and the Oxford cup plate assay. We analyzed the antifungal spectrum of SZ-22 by confronting incubation. To evaluate the efficacy of biocontrol against ginseng black spot and for growth promotion by SZ-22, we performed pot experiments in a plastic greenhouse. Taxonomic position of SZ-22 was identified using morphology, physiological, and biochemical characteristics, 16S ribosomal DNA, and gyrB sequences. Results SZ-22 (which was identified as Brevundimonas terrae) showed the strongest inhibition rate against A. panax, which showed 83.70% inhibition, and it also provided broad-spectrum antifungal effects. The inhibition efficacies of the SZ-22 bacterial suspension against ginseng black spot reached 82.47% inhibition, which is significantly higher than that of the 25% suspension concentrate azoxystrobin fungicide treatment (p < 0.05). Moreover, the SZ-22 bacterial suspension also caused ginseng plant growth promotion as well as root enhancement. Conclusion Although the results of the outdoor pot-culture method were influenced by the pathogen inoculum density, the cropping history of the field site, and the weather conditions, B. terrae SZ-22 controlled ginseng black spot and promoted ginseng growth successfully. This study provides resource for the biocontrol of ginseng black spot.
Collapse
|
316
|
Ye S, Zeng G, Wu H, Zhang C, Dai J, Liang J, Yu J, Ren X, Yi H, Cheng M, Zhang C. Biological technologies for the remediation of co-contaminated soil. Crit Rev Biotechnol 2017; 37:1062-1076. [DOI: 10.1080/07388551.2017.1304357] [Citation(s) in RCA: 249] [Impact Index Per Article: 31.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Shujing Ye
- College of Environmental Science and Engineering, Hunan University, Changsha, PR China
- Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, PR China
| | - Guangming Zeng
- College of Environmental Science and Engineering, Hunan University, Changsha, PR China
- Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, PR China
| | - Haipeng Wu
- College of Environmental Science and Engineering, Hunan University, Changsha, PR China
- Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, PR China
- Changjiang River Scientific Research Institute, Wuhan, PR China
| | - Chang Zhang
- College of Environmental Science and Engineering, Hunan University, Changsha, PR China
- Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, PR China
| | - Juan Dai
- College of Environmental Science and Engineering, Hunan University, Changsha, PR China
- Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, PR China
- Changjiang River Scientific Research Institute, Wuhan, PR China
| | - Jie Liang
- College of Environmental Science and Engineering, Hunan University, Changsha, PR China
- Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, PR China
| | - Jiangfang Yu
- College of Environmental Science and Engineering, Hunan University, Changsha, PR China
- Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, PR China
| | - Xiaoya Ren
- College of Environmental Science and Engineering, Hunan University, Changsha, PR China
- Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, PR China
| | - Huan Yi
- College of Environmental Science and Engineering, Hunan University, Changsha, PR China
- Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, PR China
| | - Min Cheng
- College of Environmental Science and Engineering, Hunan University, Changsha, PR China
- Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, PR China
| | - Chen Zhang
- College of Environmental Science and Engineering, Hunan University, Changsha, PR China
- Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, PR China
| |
Collapse
|
317
|
Ali A, Guo D, Mahar A, Ma F, Li R, Shen F, Wang P, Zhang Z. Streptomyces pactum assisted phytoremediation in Zn/Pb smelter contaminated soil of Feng County and its impact on enzymatic activities. Sci Rep 2017; 7:46087. [PMID: 28387235 PMCID: PMC5384225 DOI: 10.1038/srep46087] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Accepted: 03/08/2017] [Indexed: 11/12/2022] Open
Abstract
Anthropogenic activities, such as industrial expansion, smelting, mining and agricultural practices, have intensified the discharge of potentially toxic trace elements (PTEs) into the environment, threatening human health and other organisms. To assist phytoremediation by sorghum in soil contaminated by smelters/mines in Feng County (FC), a pot experiment was performed to examine the phytoremediation potential of Streptomyces pactum (Act12) + biochar. The results showed that root uptake of Zn and Cd was reduced by 45 and 22%, respectively, while the uptake of Pb and Cu increased by 17 and 47%, respectively. The shoot and root dry weight and chlorophyll content improved after Act12 inoculation. β-glucosidase, alkaline phosphatase and urease activities in soil improved and antioxidant activities (POD, PAL, PPO) decreased after application of Act12 + biochar due to a reduction in stress from PTEs. BCF, TF and MEA confirmed the role of Act12 in the amelioration and translocation of PTEs. PCA analysis showed a correlation between different factors that affect the translocation of PTEs. Overall, Act12 promoted the phytoremediation of PTEs. Field experiments on Act12 + biochar may provide new insights into the rehabilitation and restoration of soils contaminated by mines.
Collapse
Affiliation(s)
- Amjad Ali
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, China
| | - Di Guo
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, China
| | - Amanullah Mahar
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, China
- Centre for Environmental Sciences, University of Sindh, Jamshoro 76080, Pakistan
| | - Fang Ma
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, China
| | - Ronghua Li
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, China
| | - Feng Shen
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, China
| | - Ping Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, China
| | - Zengqiang Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, China
| |
Collapse
|
318
|
Sarathambal C, Khankhane PJ, Gharde Y, Kumar B, Varun M, Arun S. The effect of plant growth-promoting rhizobacteria on the growth, physiology, and Cd uptake of Arundo donax L. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2017; 19:360-370. [PMID: 27592507 DOI: 10.1080/15226514.2016.1225289] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
In this study, plant growth-promoting potential isolates from rhizosphere of 10 weed species grown in heavy metal-contaminated areas were identified and their effect on growth, antioxidant enzymes, and cadmium (Cd) uptake in Arundo donax L. was explored. Plant growth-promoting traits of isolates were also analyzed. These isolates were found to produce siderophores and enzymes such as 1-aminocyclopropane-1-carboxylate (ACC) deaminase, and aid in solubilization of mineral nutrients and modulate plant growth and development. Based on the presence of multiple plant growth-promoting traits, isolates were selected for molecular characterization and inoculation studies. Altogether, 58 isolates were obtained and 20% of them were able to tolerate Cd up to 400 ppm. The sequence analysis of the 16S rRNA genes indicates that the isolates belong to the phylum Firmicutes. Bacillus sp. along with mycorrhizae inoculation significantly improves the growth, the activity of antioxidants enzymes, and the Cd uptake in A. donax than Bacillus alone. Highly significant correlations were observed between Cd uptake, enzymatic activities, and plant growth characteristics at 1% level of significance. The synergistic interaction effect between these organisms helps to alleviate Cd effects on soil. Heavy metal-tolerant isolate along with arbuscular mycorrhizae (AM) could be used to improve the phytoremedial potential of plants.
Collapse
Affiliation(s)
| | | | - Yogita Gharde
- a ICAR-Directorate of Weed Research , Jabalpur , Madhya Pradesh , India
| | - Bhumesh Kumar
- a ICAR-Directorate of Weed Research , Jabalpur , Madhya Pradesh , India
| | - Mayank Varun
- b Department of Botany , St. John's College , Agra , Uttar Pradesh , India
| | - Sellappan Arun
- c Department of Soil Science and Agricultural Chemistry , Tamil Nadu Agricultural University , Coimbatore , Tamil Nadu , India
| |
Collapse
|
319
|
Kumar A, Usmani Z, Kumar V. Biochar and flyash inoculated with plant growth promoting rhizobacteria act as potential biofertilizer for luxuriant growth and yield of tomato plant. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2017; 190:20-27. [PMID: 28024172 DOI: 10.1016/j.jenvman.2016.11.060] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Revised: 11/11/2016] [Accepted: 11/25/2016] [Indexed: 06/06/2023]
Abstract
Overuse of agrochemical fertilizers alarmingly causes deterioration in soil health and soil-flora. Persistence of these agrochemicals exerts detrimental effects on environment, potentially inducing toxic effects on human health, thus pronouncing an urgent need for a safer substitute. The present study investigates the potential use of agricultural and industrial wastes as carrier materials, viz. biochar and flyash, respectively, for preparation of bioformulations (or biofertilizers) using two plant growth promoting rhizobacteria, Bacillus sp. strain A30 and Burkholderia sp. strain L2, and its effect on growth of Lycopersicon esculentum Mill. (tomato). The viability of strains was determined based on colony forming units (cfu) count of each bioformulation at an interval of 60 days for a period of 240 days. Seeds were coated with different carrier based bioformulations and pot experiment(s) were carried out to access its effects on plant growth parameters. Biochar based bioformulations showed higher cfu count and maximum viability for strain L2 (107 cfu g-1) at 240 days of storage. Maximum percentage of seed germination was also observed in biochar inoculated with strain L2. Significant (p < 0.05) increase in plant growth parameters (dry and fresh biomass, length, number of flowers) were ascertained from the pot experiment and amongst all bioformulations, biochar inoculated with strain L2 performed consistently thriving results for tomato yield. Furthermore, post-harvest study of this bioformulation treated soil improved physico-chemical properties and dehydrogenase activity as compared to pre-plantation soil status. Overall, we show that prepared biochar based bioformulation using Burkholderia sp. L2 as inoculum can tremendously enhance the productivity of tomato, soil fertility, and can also act as a sustainable substitute for chemical fertilizers. In addition, mixture of biochar and flyash inoculated with strain L2 also showed noteworthy results for the growth parameters and yield, and future studies are required to strengthen flyash utilization as carrier materials to resolve its disposal problem and waste management.
Collapse
Affiliation(s)
- Adarsh Kumar
- Department of Experimental Biology and Biotechnology, Institute of Natural Sciences and Mathematics, Ural Federal University, Ekaterinburg, 620002, Russia
| | - Zeba Usmani
- Department of Environmental Science and Engineering, Centre of Mining Environment, Indian Institute of Technology (Indian School of Mines), Dhanbad, 826004, Jharkhand, India
| | - Vipin Kumar
- Department of Environmental Science and Engineering, Centre of Mining Environment, Indian Institute of Technology (Indian School of Mines), Dhanbad, 826004, Jharkhand, India
| |
Collapse
|
320
|
Proença DN, Grass G, Morais PV. Understanding pine wilt disease: roles of the pine endophytic bacteria and of the bacteria carried by the disease-causing pinewood nematode. Microbiologyopen 2017; 6:e00415. [PMID: 27785885 PMCID: PMC5387314 DOI: 10.1002/mbo3.415] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 09/16/2016] [Accepted: 09/21/2016] [Indexed: 12/03/2022] Open
Abstract
Pine wilt disease (PWD) is one of the most destructive diseases in trees of the genus Pinus and is responsible for environmental and economic losses around the world. The only known causal agent of the disease is the pinewood nematode (PWN) Bursaphelenchus xylophilus. Despite that, bacteria belonging to several different genera have been found associated with PWN and their roles in the development of PWD have been suggested. Molecular methodologies and the new era of genomics have revealed different perspectives to the problem, recognizing the manifold interactions between different organisms involved in the disease. Here, we reviewed the possible roles of nematode-carried bacteria in PWD, what could be the definition of this group of microorganisms and questioned their origin as possible endophytes, discussing their relation within the endophytic community of pine trees. The diversity of the nematode-carried bacteria and the diversity of pine tree endophytes, reported until now, is revised in detail in this review. What could signify a synergetic effect with PWN harming the plant, or what could equip bacteria with functions to control the presence of nematodes inside the tree, is outlined as two possible roles of the microbial community in the etiology of this disease. An emphasis is put on the potential revealed by the genomic data of isolated organisms in their potential activities as effective tools in PWD management.
Collapse
Affiliation(s)
- Diogo N. Proença
- CEMUCUniversity of CoimbraCoimbraPortugal
- Department of Biology and CESAMUniversity of AveiroAveiroPortugal
| | - Gregor Grass
- Bundeswehr Institute of MicrobiologyMunichGermany
| | - Paula V. Morais
- CEMUCUniversity of CoimbraCoimbraPortugal
- Department of Life SciencesUniversity of CoimbraCoimbraPortugal
| |
Collapse
|
321
|
Treesubsuntorn C, Boraphech P, Thiravetyan P. Trimethylamine removal by plant capsule of Sansevieria kirkii in combination with Bacillus cereus EN1. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:10139-10149. [PMID: 28258430 DOI: 10.1007/s11356-017-8679-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 02/20/2017] [Indexed: 06/06/2023]
Abstract
Trimethylamine (TMA) contamination produces a strong "fishy" odor and can cause pathological changes in humans. By screening native microorganisms from Sansevieria kirkii exposed to 100 ppm TMA, it was shown that endophytic bacteria number 1 (EN1) and number 2 (EN2) have a higher TMA tolerance and removal capacity than other bacteria species in a closed system. In addition, EN1 and EN2 demonstrated the ability to produce high quantities of indole-3-acetic acid (IAA) and use 1-aminocyclopropane-1-carboxylic acid (ACC), which is found normally in plant growth-promoting bacteria (PGPB). Moreover, 16S ribosomal DNA (rDNA) sequences of EN1 and EN2 identification showed that EN1 and EN2 was the same bacteria species, Bacillus cereus. B. cereus EN1 was chosen to apply with S. kirkii to remove TMA in a plant capsule, which was compared to control conditions. It was found that 500 g of soil with S. kirkii inoculated with B. cereus EN1 had a higher TMA removal efficiency than other conditions. Moreover, the flow rate of TMA-contaminated gas was varied (0.03-1 L min-1) to calculate the loading rate and elimination capacity. The maximum loading rate of 500 g soil with B. cereus EN1-inoculated S. kirkii was 2500 mg m-3 h-1, while other conditions showed only around 250-750 mg m-3 h-1. Therefore, a plant capsule with B. cereus EN1-inoculated S. kirkii had the potential to be applied in TMA-contaminated air.
Collapse
Affiliation(s)
- Chairat Treesubsuntorn
- Pilot Plant Development and Training Institute, King Mongkut's University of Technology Thonburi, Bangkok, 10150, Thailand
| | - Phattara Boraphech
- School of Bioresources and Technology, King Mongkut's University of Technology Thonburi, Bangkok, 10150, Thailand
| | - Paitip Thiravetyan
- School of Bioresources and Technology, King Mongkut's University of Technology Thonburi, Bangkok, 10150, Thailand.
| |
Collapse
|
322
|
Yu X, Li Y, Cui Y, Liu R, Li Y, Chen Q, Gu Y, Zhao K, Xiang Q, Xu K, Zhang X. An indoleacetic acid-producing Ochrobactrum sp. MGJ11 counteracts cadmium effect on soybean by promoting plant growth. J Appl Microbiol 2017; 122:987-996. [PMID: 27995689 DOI: 10.1111/jam.13379] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Revised: 11/16/2016] [Accepted: 12/08/2016] [Indexed: 11/29/2022]
Abstract
AIMS To analyse whether some indoleacetic acid (IAA)-secreting plant growth-promoting bacteria can alleviate cadmium (Cd) stress, the role of an Ochrobactrum sp. MGJ11 from rhizosphere of soybean in promoting plant growth, and to evaluate the counteracting Cd effects on soybean. METHODS AND RESULTS Ochrobactrum sp. MGJ11 produced 121·2 mg l-1 of IAA. MGJ11 increased soybean root length, shoot length and biomass by 30·1, 30·8 and 13·4% respectively. In liquid medium, no IAA production was detected in Cd concentration of 100 mg l-1 . In soil with 20-80 mg kg-1 Cd, MGJ11 promoted soybean root elongation (29·4-161·4%) and increased the shoot length (up to 52·7%) and biomass (up to 87·2%). After growing for 38 days, Cd concentrations in the roots of inoculated soybean were lower than in those of noninoculated plants. Only a little Cd (2·6-16·9 μg g-1 ) was translocated from the root to shoot. CONCLUSIONS Ochrobactrum sp. MGJ11 secretes IAA and shows tolerance against Cd. MGJ11 inoculation improves the root length, shoot length and biomass of soybean in both vermiculite and Cd vermiculite, and decreases Cd concentration of soybean root. The characteristics of MGJ11 suggest that it could be used for promoting soybean growth and lowering bioavailability of soil Cd for soybean root. SIGNIFICANCE AND IMPACT OF THE STUDY In this study, we isolated a plant growth-promoting Ochrobactrum with the activity of mitigating Cd toxicity to plant roots. The Ochrobactrum can be considered as a potential bioaugmentation agent that promotes plant growth, especially in some agricultural systems, or that helps in the phytoremediation of Cd-contaminated soil.
Collapse
Affiliation(s)
- X Yu
- College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Y Li
- College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Y Cui
- Sichuan Provincial Academy of Natural Resource and Sciences, Chengdu, China
| | - R Liu
- College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Y Li
- College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Q Chen
- College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Y Gu
- College of Resources, Sichuan Agricultural University, Chengdu, China
| | - K Zhao
- College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Q Xiang
- College of Resources, Sichuan Agricultural University, Chengdu, China
| | - K Xu
- College of Resources, Sichuan Agricultural University, Chengdu, China
| | - X Zhang
- College of Resources, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
323
|
Li Y, Pang HD, He LY, Wang Q, Sheng XF. Cd immobilization and reduced tissue Cd accumulation of rice (Oryza sativa wuyun-23) in the presence of heavy metal-resistant bacteria. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2017; 138:56-63. [PMID: 28011421 DOI: 10.1016/j.ecoenv.2016.12.024] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Revised: 12/07/2016] [Accepted: 12/16/2016] [Indexed: 06/06/2023]
Abstract
Two metal-resistant Bacillus megaterium H3 and Neorhizobium huautlense T1-17 were investigated for their immobilization of Cd in solution and tissue Cd accumulation of rice (Oryza sativa wuyun-23) in the Cd-contaminated soil. Strains H3 and T1-17 decreased 79-96% of water-soluble Cd in solution and increased grain biomass in the high Cd-contaminated soil. Inoculation with H3 and T1-17 significantly decreased the root (ranging from 25% to 58%), above-ground tissue (ranging from 13% to 34%), and polished rice (ranging from 45% to 72%) Cd contents as well as Cd bioconcentration factor of the rice compared to the controls. Furthermore, H3 and T1-17 significantly reduced the exchangeable Cd content of the rhizosphere soils compared with the controls. Notably, strain T1-17 had significantly higher ability to reduce Cd bioconcentration factor and polished rice Cd uptake than strain H3. The results demonstrated that H3 and T1-17 decreased the tissue (especially polished rice) Cd uptake by decreasing Cd availability in soil and Cd bioconcentration factor and the effect on the reduced polished rice Cd uptake was dependent on the strains. The results may provide an effective synergistic bioremediation of Cd-contaminated soils in the bacteria and rice plants and bacterial-assisted safe production of rice in Cd-contaminated soils.
Collapse
Affiliation(s)
- Ya Li
- Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, Jiangsu, People's Republic of China
| | - Hai-Dong Pang
- Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, Jiangsu, People's Republic of China
| | - Lin-Yan He
- Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, Jiangsu, People's Republic of China
| | - Qi Wang
- Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, Jiangsu, People's Republic of China
| | - Xia-Fang Sheng
- Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, Jiangsu, People's Republic of China.
| |
Collapse
|
324
|
Use of Endophytic and Rhizosphere Bacteria To Improve Phytoremediation of Arsenic-Contaminated Industrial Soils by Autochthonous Betula celtiberica. Appl Environ Microbiol 2017; 83:AEM.03411-16. [PMID: 28188207 DOI: 10.1128/aem.03411-16] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 02/06/2017] [Indexed: 11/20/2022] Open
Abstract
The aim of this study was to investigate the potential of indigenous arsenic-tolerant bacteria to enhance arsenic phytoremediation by the autochthonous pseudometallophyte Betula celtiberica The first goal was to perform an initial analysis of the entire rhizosphere and endophytic bacterial communities of the above-named accumulator plant, including the cultivable bacterial species. B. celtiberica's microbiome was dominated by taxa related to Flavobacteriales, Burkholderiales, and Pseudomonadales, especially the Pseudomonas and Flavobacterium genera. A total of 54 cultivable rhizobacteria and 41 root endophytes, mainly affiliated with the phyla Proteobacteria, Bacteroidetes, Firmicutes, and Actinobacteria, were isolated and characterized with respect to several potentially useful features for metal plant accumulation, such as the ability to promote plant growth, metal chelation, and/or mitigation of heavy-metal stress. Seven bacterial isolates were further selected and tested for in vitro accumulation of arsenic in plants; four of them were finally assayed in field-scale bioaugmentation experiments. The exposure to arsenic in vitro caused an increase in the total nonprotein thiol compound content in roots, suggesting a detoxification mechanism through phytochelatin complexation. In the contaminated field, the siderophore and indole-3-acetic acid producers of the endophytic bacterial consortium enhanced arsenic accumulation in the leaves and roots of Betula celtiberica, whereas the rhizosphere isolate Ensifer adhaerens strain 91R mainly promoted plant growth. Field experimentation showed that additional factors, such as soil arsenic content and pH, influenced arsenic uptake in the plant, attesting to the relevance of field conditions in the success of phytoextraction strategies.IMPORTANCE Microorganisms and plants have developed several ways of dealing with arsenic, allowing them to resist and metabolize this metalloid. These properties form the basis of phytoremediation treatments and the understanding that the interactions of plants with soil bacteria are crucial for the optimization of arsenic uptake. To address this in our work, we initially performed a microbiome analysis of the autochthonous Betula celtiberica plants growing in arsenic-contaminated soils, including endosphere and rhizosphere bacterial communities. We then proceeded to isolate and characterize the cultivable bacteria that were potentially better suited to enhance phytoextraction efficiency. Eventually, we went to the field application stage. Our results corroborated the idea that recovery of pseudometallophyte-associated bacteria adapted to a large historically contaminated site and their use in bioaugmentation technologies are affordable experimental approaches and potentially very useful for implementing effective phytoremediation strategies with plants and their indigenous bacteria.
Collapse
|
325
|
Jaiswal AK, Elad Y, Paudel I, Graber ER, Cytryn E, Frenkel O. Linking the Belowground Microbial Composition, Diversity and Activity to Soilborne Disease Suppression and Growth Promotion of Tomato Amended with Biochar. Sci Rep 2017; 7:44382. [PMID: 28287177 PMCID: PMC5347032 DOI: 10.1038/srep44382] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 02/07/2017] [Indexed: 01/21/2023] Open
Abstract
Biochar, in addition to sequestering carbon, ameliorating soil, and improving plant performance, can impact foliar and soilborne plant diseases. Nevertheless, the mechanisms associated with suppression of soilborne diseases and improved plant performances are not well understood. This study is designed to establish the relationships between biochar-induced changes in rhizosphere microbial community structure, taxonomic and functional diversity, and activity with soilborne disease suppression and enhanced plant performance in a comprehensive fashion. Biochar suppressed Fusarium crown and root-rot of tomato and simultaneously improved tomato plant growth and physiological parameters. Furthermore, biochar reduced Fusarium root colonization and survival in soil, and increased the culturable counts of several biocontrol and plant growth promoting microorganisms. Illumina sequencing analyses of 16S rRNA gene revealed substantial differences in rhizosphere bacterial taxonomical composition between biochar-amended and non-amended treatments. Moreover, biochar amendment caused a significant increase in microbial taxonomic and functional diversity, microbial activities and an overall shift in carbon-source utilization. High microbial taxonomic and functional diversity and activity in the rhizosphere has been previously associated with suppression of diseases caused by soilborne pathogens and with plant growth promotion, and may collectively explain the significant reduction of disease and improvement in plant performance observed in the presence of biochar.
Collapse
Affiliation(s)
- Amit K. Jaiswal
- Department of Plant Pathology and Weed Research, Institute of Plant Protection, Agricultural Research Organization (ARO), The Volcani Center, Bet Dagan 50250, Israel
- Department of Soil Chemistry, Plant Nutrition and Microbiology, Institute of Soil, Water and Environmental Sciences, The Volcani Center, Bet Dagan 50250, Israel
- Department of Plant Pathology and Microbiology, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, P. O. Box 12, Rehovot, 76100, Israel
| | - Yigal Elad
- Department of Plant Pathology and Weed Research, Institute of Plant Protection, Agricultural Research Organization (ARO), The Volcani Center, Bet Dagan 50250, Israel
| | - Indira Paudel
- Department of Soil and Water Sciences, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, P. O. Box 12, Rehovot, 76100, Israel
| | - Ellen R. Graber
- Department of Soil Chemistry, Plant Nutrition and Microbiology, Institute of Soil, Water and Environmental Sciences, The Volcani Center, Bet Dagan 50250, Israel
| | - Eddie Cytryn
- Department of Soil Chemistry, Plant Nutrition and Microbiology, Institute of Soil, Water and Environmental Sciences, The Volcani Center, Bet Dagan 50250, Israel
| | - Omer Frenkel
- Department of Plant Pathology and Weed Research, Institute of Plant Protection, Agricultural Research Organization (ARO), The Volcani Center, Bet Dagan 50250, Israel
| |
Collapse
|
326
|
Pan F, Meng Q, Luo S, Shen J, Chen B, Khan KY, Japenga J, Ma X, Yang X, Feng Y. Enhanced Cd extraction of oilseed rape (Brassica napus) by plant growth-promoting bacteria isolated from Cd hyperaccumulator Sedum alfredii Hance. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2017; 19:281-289. [PMID: 27593491 DOI: 10.1080/15226514.2016.1225280] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Four plant growth-promoting bacteria (PGPB) were used as study materials, among them two heavy metal-tolerant rhizosphere strains SrN1 (Arthrobacter sp.) and SrN9 (Bacillus altitudinis) were isolated from rhizosphere soil, while two endophytic strains SaN1 (Bacillus megaterium) and SaMR12 (Sphingomonas) were identified from roots of the cadmium (Cd)/zinc (Zn) hyperaccumulator Sedum alfredii Hance. A pot experiment was carried out to investigate the effects of these PGPB on plant growth and Cd accumulation of oilseed rape (Brassica napus) plants grown on aged Cd-spiked soil. The results showed that the four PGPB significantly boosted oilseed rape shoot biomass production, improved soil and plant analyzer development (SPAD) value, enhanced Cd uptake of plant and Cd translocation to the leaves. By fluorescent in situ hybridization (FISH) and green fluorescent protein (GFP), we demonstrated the studied S. alfredii endophytic bacterium SaMR12 were able to colonize successfully in the B. napus roots. However, all four PGPB could increase seed Cd accumulation. Due to its potential to enhance Cd uptake by the plant and to restrict Cd accumulation in the seeds, SaMR12 was selected as the most promising microbial partner of B. napus when setting up a plant-microbe fortified remediation system.
Collapse
Affiliation(s)
- Fengshan Pan
- a MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental and Resources Sciences, Zhejiang University , Hangzhou , China
| | - Qian Meng
- a MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental and Resources Sciences, Zhejiang University , Hangzhou , China
| | - Sha Luo
- a MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental and Resources Sciences, Zhejiang University , Hangzhou , China
| | - Jing Shen
- b Agricultural Bureau of Shaoxing City , Shaoxing, Zhejiang , China
| | - Bao Chen
- a MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental and Resources Sciences, Zhejiang University , Hangzhou , China
| | - Kiran Yasmin Khan
- a MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental and Resources Sciences, Zhejiang University , Hangzhou , China
| | - Jan Japenga
- a MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental and Resources Sciences, Zhejiang University , Hangzhou , China
| | - Xiaoxiao Ma
- a MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental and Resources Sciences, Zhejiang University , Hangzhou , China
| | - Xiaoe Yang
- a MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental and Resources Sciences, Zhejiang University , Hangzhou , China
| | - Ying Feng
- a MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental and Resources Sciences, Zhejiang University , Hangzhou , China
| |
Collapse
|
327
|
Tamburini E, Sergi S, Serreli L, Bacchetta G, Milia S, Cappai G, Carucci A. Bioaugmentation-Assisted Phytostabilisation of Abandoned Mine Sites in South West Sardinia. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2017; 98:310-316. [PMID: 27385370 DOI: 10.1007/s00128-016-1866-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Accepted: 06/23/2016] [Indexed: 06/06/2023]
Abstract
Bioaugmentation-assisted phytoremediation implies the administration of selected plant growth promoting bacteria, which significantly improve plant growth and sequestration of heavy metals. In this work, 184 bacterial strains associated with roots of Pistacia lentiscus were isolated from plants spontaneously growing in the abandoned Sardinian mining areas (SW Sardinia, Italy) and phylogenetically characterised. Twenty-one bacterial isolates were assayed for properties relevant for plant growth promotion and metal tolerance. Five different strains, belonging to the genera Novosphingobium, Variovorax, Streptomyces, Amycolatopsis, Pseudomonas, were selected based on their properties for the greenhouse phytoremediation tests. Among the tested inocula, the strain Variovorax sp. RA128A, able to produce ACC deaminase and siderophore, was able to significantly enhance germination and increase length and weight of shoots and roots. Irrespective of the applied treatment, mastic shrub was able to accumulate Cd, Pb and Zn especially in roots.
Collapse
Affiliation(s)
- E Tamburini
- Department of Biomedical Sciences, University of Cagliari, Monserrato, Cagliari, Italy.
| | - S Sergi
- Department of Biomedical Sciences, University of Cagliari, Monserrato, Cagliari, Italy
| | - L Serreli
- Department of Biomedical Sciences, University of Cagliari, Monserrato, Cagliari, Italy
- Department of Life and Environmental Sciences, University of Cagliari, Cagliari, Italy
| | - G Bacchetta
- Department of Life and Environmental Sciences, University of Cagliari, Cagliari, Italy
| | - S Milia
- Institute of Environmental Geology and Geoengineering, National Research Council, Cagliari, Italy
| | - G Cappai
- Institute of Environmental Geology and Geoengineering, National Research Council, Cagliari, Italy
- Department of Civil, Environmental Engineering and Architecture, University of Cagliari, Cagliari, Italy
| | - A Carucci
- Institute of Environmental Geology and Geoengineering, National Research Council, Cagliari, Italy
- Department of Civil, Environmental Engineering and Architecture, University of Cagliari, Cagliari, Italy
| |
Collapse
|
328
|
Gerhardt KE, Gerwing PD, Greenberg BM. Opinion: Taking phytoremediation from proven technology to accepted practice. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2017; 256:170-185. [PMID: 28167031 DOI: 10.1016/j.plantsci.2016.11.016] [Citation(s) in RCA: 120] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 11/07/2016] [Accepted: 11/29/2016] [Indexed: 05/22/2023]
Abstract
Phytoremediation is the use of plants to extract, immobilize, contain and/or degrade contaminants from soil, water or air. It can be an effective strategy for on site and/or in situ removal of various contaminants from soils, including petroleum hydrocarbons (PHC), polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), solvents (e.g., trichloroethylene [TCE]), munitions waste (e.g., 2,4,6-trinitrotoluene [TNT]), metal(loid)s, salt (NaCl) and radioisotopes. Commercial phytoremediation technologies appear to be underutilized globally. The primary objective of this opinion piece is to discuss how to take phytoremediation from a proven technology to an accepted practice. An overview of phytoremediation of soil is provided, with the focus on field applications, to provide a frame of reference for the subsequent discussion on better utilization of phytoremediation. We consider reasons why phytoremediation is underutilized, despite clear evidence that, under many conditions, it can be applied quite successfully in the field. We offer suggestions on how to gain greater acceptance for phytoremediation by industry and government. A new paradigm of phytomanagement, with a specific focus on using phytoremediation as a "gentle remediation option" (GRO) within a broader, long-term management strategy, is also discussed.
Collapse
Affiliation(s)
- Karen E Gerhardt
- Department of Biology, University of Waterloo, Waterloo, ON, Canada
| | - Perry D Gerwing
- Earthmaster Environmental Strategies Inc., Calgary, AB, Canada
| | - Bruce M Greenberg
- Department of Biology, University of Waterloo, Waterloo, ON, Canada.
| |
Collapse
|
329
|
Shi P, Xing Z, Zhang Y, Chai T. Effect of heavy-metal on synthesis of siderophores by Pseudomonas aeruginosa ZGKD3. ACTA ACUST UNITED AC 2017. [DOI: 10.1088/1742-6596/52/1/012103] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
330
|
Syranidou E, Christofilopoulos S, Politi M, Weyens N, Venieri D, Vangronsveld J, Kalogerakis N. Bisphenol-A removal by the halophyte Juncus acutus in a phytoremediation pilot: Characterization and potential role of the endophytic community. JOURNAL OF HAZARDOUS MATERIALS 2017; 323:350-358. [PMID: 27321745 DOI: 10.1016/j.jhazmat.2016.05.034] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 05/09/2016] [Accepted: 05/10/2016] [Indexed: 06/06/2023]
Abstract
A phytoremediation pilot emulating a shallow aquifer planted with Juncus acutus showed to be effective for remediating Bisphenol-A (BPA) contaminated groundwater. Biostimulation with root exudates, low molecular weight organic acids, of J. acutus did not improve BPA-degradation rates. Furthermore, the endophytic bacterial community of J. acutus was isolated and characterized. Many strains were found to possess increased tolerance to metals such as Zn, Ni, Pb and Cd. Moreover, several endophytic bacterial strains tolerated and even used BPA and/or two antibiotics (ciprofloxacin and sulfamethoxazole) as a sole carbon source. Our results demonstrate that the cultivable bacterial endophytic community of J. acutus is able to use organic contaminants as carbon sources, tolerates metals and is equipped with plant-growth promoting traits. Therefore, J. acutus has potential to be exploited in constructed wetlands when co-contamination is one of the restricting factors.
Collapse
Affiliation(s)
- Evdokia Syranidou
- Technical University of Crete, School of Environmental Engineering, Polytechneioupolis, Chania 73100, Greece; Hasselt University, Centre for Environmental Sciences, Agoralaan, Building D, B-3590 Diepenbeek, Belgium
| | - Stavros Christofilopoulos
- Technical University of Crete, School of Environmental Engineering, Polytechneioupolis, Chania 73100, Greece
| | - Maria Politi
- Technical University of Crete, School of Environmental Engineering, Polytechneioupolis, Chania 73100, Greece
| | - Nele Weyens
- Hasselt University, Centre for Environmental Sciences, Agoralaan, Building D, B-3590 Diepenbeek, Belgium
| | - Danae Venieri
- Technical University of Crete, School of Environmental Engineering, Polytechneioupolis, Chania 73100, Greece
| | - Jaco Vangronsveld
- Hasselt University, Centre for Environmental Sciences, Agoralaan, Building D, B-3590 Diepenbeek, Belgium
| | - Nicolas Kalogerakis
- Technical University of Crete, School of Environmental Engineering, Polytechneioupolis, Chania 73100, Greece.
| |
Collapse
|
331
|
Khaksar G, Treesubsuntorn C, Thiravetyan P. Euphorbia milii-native bacteria interactions under airborne formaldehyde stress: Effect of epiphyte and endophyte inoculation in relation to IAA, ethylene and ROS levels. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2017; 111:284-294. [PMID: 27987473 DOI: 10.1016/j.plaphy.2016.12.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 12/06/2016] [Indexed: 06/06/2023]
Abstract
Better understanding of plant-bacteria interactions under stress is of the prime importance for enhancing airborne pollutant phytoremediation. No studies have investigated plant-epiphyte interactions compared to plant-endophyte interactions under airborne formaldehyde stress in terms of plant Indole-3-acetic acid (IAA), ethylene, reactive oxygen species (ROS) levels and pollutant removal efficiency. Euphorbia milii was inoculated with native plant growth-promoting (PGP) endophytic and epiphytic isolates individually to investigate plant-endophyte compared to plant-epiphyte interactions under continuous formaldehyde fumigation. Under airborne formaldehyde stress, endophyte interacts with its host plant closely and provides higher levels of IAA which protected the plant against formaldehyde phytotoxicity by lowering intracellular ROS, ethylene levels and maintaining shoot epiphytic community; hence, higher pollutant removal. However, plant-epiphyte interactions could not provide enough IAA to confer protection against formaldehyde stress; thus, increased ROS and ethylene levels, large decrease in shoot epiphytic population and lower pollutant removal although epiphyte contacts with airborne pollutant directly (has greater access to gaseous formaldehyde). Endophyte-inoculated plant synthesized more tryptophan as a signaling molecule for its associated bacteria to produce IAA compared to the epiphyte-inoculated one. Under stress, PGP endophyte interacts with its host closely; thus, better protection against stress and higher pollutant removal compared to epiphyte which has limited interactions with the host plant; hence, lower pollutant removal.
Collapse
Affiliation(s)
- Gholamreza Khaksar
- School of Bioresources and Technology, King Mongkut's University of Technology Thonburi, Bangkok 10150, Thailand.
| | - Chairat Treesubsuntorn
- Pilot Plant Development and Training Institute, King Mongkut's University of Technology Thonburi, Bangkok 10150, Thailand.
| | - Paitip Thiravetyan
- School of Bioresources and Technology, King Mongkut's University of Technology Thonburi, Bangkok 10150, Thailand.
| |
Collapse
|
332
|
Wang X, Nie Z, He L, Wang Q, Sheng X. Isolation of As-tolerant bacteria and their potentials of reducing As and Cd accumulation of edible tissues of vegetables in metal(loid)-contaminated soils. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 579:179-189. [PMID: 27839757 DOI: 10.1016/j.scitotenv.2016.10.239] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Revised: 10/25/2016] [Accepted: 10/25/2016] [Indexed: 06/06/2023]
Abstract
In this study, three As-tolerant bacteria Ralstonia eutropha Q2-8, Rhizobium tropici Q2-13, and Exiguobacterium aurantiacum Q3-11 were isolated from the rhizosphere and bulk soils of Chinese cabbage. The strains were characterized for their production of indole-3-acetic acid (IAA) and siderophores, their effects on soil metal(loid) bioavailability and organic matter content, and their effects on the edible tissue growth and metal(loid) accumulation of Chinese cabbage and radish in the metal(loid)-contaminated soil. The strains produced IAA and siderophores and increased the edible tissue biomass (ranging from 74% to 124%) of the vegetables compared to the controls. Furthermore, strain Q2-8 reduced As contents (ranging from 22% to 50%), while strains Q2-13 and Q3-11 decreased Cd contents (ranging from 21% to 53%) of the edible tissues of the vegetables compared to the controls. Strains Q2-8, Q2-13, and Q3-11 decreased the DTPA-extractable Cd contents (ranging from 16% to 41%) and increased the organic matter contents of the rhizosphere soils compared to the controls. The results showed the effects of the strains on the increased edible tissue growth and reduced As and Cd uptake of the edible tissues and highlighted the possibility to develop a new bacterial-assisted technique for reduced metal(loid) uptake of vegetables in the metal(loid)-contaminated soils.
Collapse
Affiliation(s)
- Xiaohan Wang
- Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture, College of Life Science, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Zongwei Nie
- Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture, College of Life Science, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Linyan He
- Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture, College of Life Science, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Qi Wang
- Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture, College of Life Science, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Xiafang Sheng
- Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture, College of Life Science, Nanjing Agricultural University, Nanjing 210095, PR China.
| |
Collapse
|
333
|
A metaproteomic approach dissecting major bacterial functions in the rhizosphere of plants living in serpentine soil. Anal Bioanal Chem 2017; 409:2327-2339. [DOI: 10.1007/s00216-016-0175-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Revised: 12/15/2016] [Accepted: 12/21/2016] [Indexed: 12/20/2022]
|
334
|
Thijs S, Sillen W, Weyens N, Vangronsveld J. Phytoremediation: State-of-the-art and a key role for the plant microbiome in future trends and research prospects. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2017; 19:23-38. [PMID: 27484694 DOI: 10.1080/15226514.2016.1216076] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Phytoremediation is increasingly adopted as a more sustainable approach for soil remediation. However, significant advances in efficiency are still necessary to attain higher levels of environmental and economic sustainability. Current interventions do not always give the expected outcomes in field settings due to an incomplete understanding of the multicomponent biological interactions. New advances in -omics are gradually implemented for studying microbial communities of polluted land in situ. This opens new perspectives for the discovery of biodegradative strains and provides us new ways of interfering with microbial communities to enhance bioremediation rates. This review presents retrospectives and future perspectives for plant microbiome studies relevant to phytoremediation, as well as some knowledge gaps in this promising research field. The implementation of phytoremediation in soil clean-up management systems is discussed, and an overview of the promoting factors that determine the growth of the phytoremediation market is given. Continuous growth is expected since elimination of contaminants from the environment is demanded. The evolution of scientific thought from a reductionist view to a more holistic approach will boost phytoremediation as an efficient and reliable phytotechnology. It is anticipated that phytoremediation will prove the most promising for organic contaminant degradation and bioenergy crop production on marginal land.
Collapse
Affiliation(s)
- Sofie Thijs
- a Centre for Environmental Sciences, Hasselt University , Diepenbeek , Belgium
| | - Wouter Sillen
- a Centre for Environmental Sciences, Hasselt University , Diepenbeek , Belgium
| | - Nele Weyens
- a Centre for Environmental Sciences, Hasselt University , Diepenbeek , Belgium
| | - Jaco Vangronsveld
- a Centre for Environmental Sciences, Hasselt University , Diepenbeek , Belgium
| |
Collapse
|
335
|
Mohamed HM, Almaroai YA. Effect of Phosphate Solubilizing Bacteria on the Uptake of Heavy Metals by Corn Plants in a Long-Term Sewage Wastewater Treated Soil. ACTA ACUST UNITED AC 2017. [DOI: 10.18178/ijesd.2017.8.5.979] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
336
|
Vergani L, Mapelli F, Zanardini E, Terzaghi E, Di Guardo A, Morosini C, Raspa G, Borin S. Phyto-rhizoremediation of polychlorinated biphenyl contaminated soils: An outlook on plant-microbe beneficial interactions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 575:1395-1406. [PMID: 27717569 DOI: 10.1016/j.scitotenv.2016.09.218] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Revised: 09/28/2016] [Accepted: 09/28/2016] [Indexed: 05/18/2023]
Abstract
Polychlorinated biphenyls (PCBs) are toxic chemicals, recalcitrant to degradation, bioaccumulative and persistent in the environment, causing adverse effects on ecosystems and human health. For this reason, the remediation of PCB-contaminated soils is a primary issue to be addressed. Phytoremediation represents a promising tool for in situ soil remediation, since the available physico-chemical technologies have strong environmental and economic impacts. Plants can extract and metabolize several xenobiotics present in the soil, but their ability to uptake and mineralize PCBs is limited due to the recalcitrance and low bioavailability of these molecules that in turn impedes an efficient remediation of PCB-contaminated soils. Besides plant degradation ability, rhizoremediation takes into account the capability of soil microbes to uptake, attack and degrade pollutants, so it can be seen as the most suitable strategy to clean-up PCB-contaminated soils. Microbes are in fact the key players of PCB degradation, performed under both aerobic and anaerobic conditions. In the rhizosphere, microbes and plants positively interact. Microorganisms can promote plant growth under stressed conditions typical of polluted soils. Moreover, in this specific niche, root exudates play a pivotal role by promoting the biphenyl catabolic pathway, responsible for microbial oxidative PCB metabolism, and by improving the overall PCB degradation performance. Besides rhizospheric microbial community, also the endophytic bacteria are involved in pollutant degradation and represent a reservoir of microbial resources to be exploited for bioremediation purposes. Here, focusing on plant-microbe beneficial interactions, we propose a review of the available results on PCB removal from soil obtained combining different plant and microbial species, mainly under simplified conditions like greenhouse experiments. Furthermore, we discuss the potentiality of "omics" approaches to identify PCB-degrading microbes, an aspect of paramount importance to design rhizoremediation strategies working efficiently under different environmental conditions, pointing out the urgency to expand research investigations to field scale.
Collapse
Affiliation(s)
- Lorenzo Vergani
- Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, Via Celoria 2, 20133 Milan, Italy
| | - Francesca Mapelli
- Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, Via Celoria 2, 20133 Milan, Italy
| | - Elisabetta Zanardini
- Department of Science and High Technology (DiSAT), University of Insubria, Via Valleggio 9, Como, Italy
| | - Elisa Terzaghi
- Department of Science and High Technology (DiSAT), University of Insubria, Via Valleggio 9, Como, Italy
| | - Antonio Di Guardo
- Department of Science and High Technology (DiSAT), University of Insubria, Via Valleggio 9, Como, Italy
| | - Cristiana Morosini
- Department of Science and High Technology (DiSAT), University of Insubria, Via G.B. Vico 46, Varese, Italy
| | - Giuseppe Raspa
- Department of Chemical Engineering Materials Environment (DICMA), Rome "La Sapienza" University, Via Eudossiana 18, Rome, Italy
| | - Sara Borin
- Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, Via Celoria 2, 20133 Milan, Italy.
| |
Collapse
|
337
|
Chandra R, Kumar V. Phytoextraction of heavy metals by potential native plants and their microscopic observation of root growing on stabilised distillery sludge as a prospective tool for in situ phytoremediation of industrial waste. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:2605-2619. [PMID: 27826829 DOI: 10.1007/s11356-016-8022-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Accepted: 10/31/2016] [Indexed: 06/06/2023]
Abstract
The safe disposal of post-methanated distillery sludge (PMDS) in the environment is challenging due to high concentrations of heavy metals along with other complex organic pollutants. The study has revealed that PMDS contained high amounts of Fe (2403), Zn (210), Mn (126), Cu (73.62), Cr (21.825), Pb (16.33) and Ni (13.425 mg kg-1) along with melanoidins and other co-pollutants. The phytoextraction pattern in 15 potential native plants growing on sludge showed that the Blumea lacera, Parthenium hysterophorous, Setaria viridis, Chenopodium album, Cannabis sativa, Basella alba, Tricosanthes dioica, Amaranthus spinosus L., Achyranthes sp., Dhatura stramonium, Sacchrum munja and Croton bonplandianum were noted as root accumulator for Fe, Zn and Mn, while S. munja, P. hysterophorous, C. sativa, C. album, T. dioica, D. stramonium, B. lacera, B. alba, Kalanchoe pinnata and Achyranthes sp. were found as shoot accumulator for Fe. In addition, A. spinosus L. was found as shoot accumulator for Zn and Mn. Similarly, all plants found as leaf accumulator for Fe, Zn and Mn except A. spinosus L. and Ricinus communis. Further, the BCF of all tested plants were noted <1, while the TF showed >1. This revealed that metal bioavailability to plant is poor due to strong complexation of heavy metals with organic pollutants. This gives a strong evidence of hyperaccumulation for the tested metals from complex distillery waste. Furthermore, the TEM observations of root of P. hysterophorous, C. sativa, Solanum nigrum and R. communis showed formation of multi-nucleolus, multi-vacuoles and deposition of metal granules in cellular component of roots as a plant adaptation mechanism for phytoextraction of heavy metal-rich polluted site. Hence, these native plants may be used as a tool for in situ phytoremediation and eco-restoration of industrial waste-contaminated site.
Collapse
Affiliation(s)
- Ram Chandra
- Environmental Microbiology Laboratory, Environmental Toxicology Group, Indian Institute of Toxicology Research, Vishvigyan Bhavan, 31, Mahatma Gandhi Marg, Lucknow, Uttar Pradesh, 226001, India.
- Department of Environmental Microbiology, School for Environmental Sciences, Babasaheb Bhimrao Ambedkar Central University, Vidya Vihar, Raebareli Road, Lucknow, Uttar Pradesh, 226025, India.
| | - Vineet Kumar
- Department of Environmental Microbiology, School for Environmental Sciences, Babasaheb Bhimrao Ambedkar Central University, Vidya Vihar, Raebareli Road, Lucknow, Uttar Pradesh, 226025, India
| |
Collapse
|
338
|
Boechat CL, Giovanella P, Amorim MB, de Sá ELS, de Oliveira Camargo FA. Metal-resistant rhizobacteria isolates improve Mucuna deeringiana phytoextraction capacity in multi-metal contaminated soils from a gold mining area. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:3063-3073. [PMID: 27854061 DOI: 10.1007/s11356-016-8103-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 11/11/2016] [Indexed: 06/06/2023]
Abstract
Phytoremediation consists of biological techniques for heavy metal remediation, which include exploring the genetic package of vegetable species to remove heavy metals from the environment. The goals of this study were to investigate heavy metal and bioaugmentation effects on growth and nutrient uptake by Mucuna deeringiana; to determine the metal translocation factor and bioconcentration factor and provide insight for using native bacteria to enhance heavy metal accumulation. The experiment was conducted under greenhouse conditions using a 2 × 4 factorial scheme with highly and slightly contaminated soil samples and inoculating M. deeringiana with three highly lead (Pb+2)-resistant bacteria Kluyvera intermedia (Ki), Klebsiella oxytoca (Ko), and Citrobacter murliniae (Cm) isolated from the rhizosphere of native plants identified as Senecio brasiliensis (Spreng.) Less., Senecio leptolobus DC., and Baccharis trimera (Less) DC., respectively. The increased heavy metal concentrations in soil samples do not decrease the root dry mass of M. deeringiana, concerning the number and dry weight of nodules. The shoot dry mass is reduced by the increasing concentration of heavy metals in soil associated with Kluyvera intermedia and Klebsiella oxytoca bacteria. The number of nodules is affected by heavy metals associated with Citrobacter murliniae bacteria. The bacteria K. intermedia, C. murliniae, and K. oxytoca increase the lead and cadmium available in the soil and enhanced metal uptake by Mucuna deeringiana. The M. deeringiana specie has characteristics that make it hyperaccumulate copper and zinc. The translocation and bioconcentration factors for M. deeringiana characterize it as a promising candidate to phytostabilize multi-metal contaminated soils.
Collapse
Affiliation(s)
- Cácio Luiz Boechat
- Cinobelina Elvas, Agronomy Department, Federal University of Piauí, BR 135, km 3, Planalto Horizonte, Bom Jesus, PI, Brazil.
| | - Patricia Giovanella
- Soil Department, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Magno Batista Amorim
- Federal Institute of Education Science and Technology of Rondônia, Colorado do Oeste, RO, Brazil
| | | | | |
Collapse
|
339
|
Zoomi I, Narayan RP, Akhtar O, Srivastava P. Role of Plant Growth Promoting Rhizobacteria in Reclamation of Wasteland. Microb Biotechnol 2017. [DOI: 10.1007/978-981-10-6847-8_3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
|
340
|
Praburaman L, Park SH, Cho M, Lee KJ, Ko JA, Han SS, Lee SH, Kamala-Kannan S, Oh BT. Significance of diazotrophic plant growth-promoting Herbaspirillum sp. GW103 on phytoextraction of Pband Zn by Zea mays L. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:3172-3180. [PMID: 27864737 DOI: 10.1007/s11356-016-8066-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 11/07/2016] [Indexed: 06/06/2023]
Abstract
Microbe-assisted phytoremediation has been considered a promising measure for the remediation of heavy metal-polluted soil. The aim of this study was to assess the effect of diazotrophic plant growth-promoting Herbaspirillum sp. GW103 on growth and lead (Pb) and zinc (Zn) accumulation in Zea mays L. The strain GW103 exhibited plant growth-promoting traits such as indole-3-acetic acid, siderophores, and 1-aminocyclopropane-1-carboxylic deaminase. Treatment of Z. mays L. plants with GW103 significantly increased 19, 31, and 52% of plant biomass and 10, 50, and 126% of chlorophyll a contents in Pb, Zn, and Pb + Zn-amended soils, respectively. Similarly, the strain GW103 significantly increased Pb and Zn accumulation in shoots and roots of Z. mays L., which were 77 and 25% in Pb-amended soil, 42 and 73% in Zn-amended soil, and 27 and 84% in Pb + Zn-amended soil. Furthermore, addition of GW103 increased 8, 12, and 7% of total protein content, catalase, and superoxide dismutase levels, respectively, in Z. mays L. plants. The results pointed out that isolate GW103 could potentially reduce the phytotoxicity of metals and increase Pb and Zn accumulation in Z. mays L. plant.
Collapse
Affiliation(s)
- Loganathan Praburaman
- Division of Biotechnology, Advanced Institute of Environment and Bioscience, College of Environmental and Bioresource Sciences, Chonbuk National University, Iksan, 54596, South Korea
| | - Sung-Hee Park
- Department of Rehabilitation Medicine, School of Medicine, Chonbuk National University, Jeonju, Jeonbuk, 54896, South Korea
| | - Min Cho
- Division of Biotechnology, Advanced Institute of Environment and Bioscience, College of Environmental and Bioresource Sciences, Chonbuk National University, Iksan, 54596, South Korea
| | - Kui-Jae Lee
- Division of Biotechnology, Advanced Institute of Environment and Bioscience, College of Environmental and Bioresource Sciences, Chonbuk National University, Iksan, 54596, South Korea
| | - Jeong-Ae Ko
- Department of Horticulture, College of Agriculture and Life Sciences, Chonbuk National University, Jeonju, 54896, South Korea
| | - Sang-Sub Han
- Department of Forest Environment Science, College of Agriculture and Life Science, Chonbuk National University, Jeonju, 54896, South Korea
| | - Sang-Hyun Lee
- Department of Forest Environment Science, College of Agriculture and Life Science, Chonbuk National University, Jeonju, 54896, South Korea
| | - Seralathan Kamala-Kannan
- Division of Biotechnology, Advanced Institute of Environment and Bioscience, College of Environmental and Bioresource Sciences, Chonbuk National University, Iksan, 54596, South Korea.
| | - Byung-Taek Oh
- Division of Biotechnology, Advanced Institute of Environment and Bioscience, College of Environmental and Bioresource Sciences, Chonbuk National University, Iksan, 54596, South Korea.
- Plant Medical Research Center, College of Agricultural and Life Sciences, Chonbuk National University, Jeonju, Jeonbuk, 54896, South Korea.
| |
Collapse
|
341
|
Ancient Heavy Metal Contamination in Soils as a Driver of Tolerant Anthyllis vulneraria Rhizobial Communities. Appl Environ Microbiol 2016; 83:AEM.01735-16. [PMID: 27793823 DOI: 10.1128/aem.01735-16] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Accepted: 10/25/2016] [Indexed: 01/05/2023] Open
Abstract
Anthyllis vulneraria is a legume associated with nitrogen-fixing rhizobia that together offer an adapted biological material for mine-soil phytostabilization by limiting metal pollution. To find rhizobia associated with Anthyllis at a given site, we evaluated the genetic and phenotypic properties of a collection of 137 rhizobia recovered from soils presenting contrasting metal levels. Zn-Pb mine soils largely contained metal-tolerant rhizobia belonging to Mesorhizobium metallidurans or to another sister metal-tolerant species. All of the metal-tolerant isolates harbored the cadA marker gene (encoding a metal-efflux PIB-type ATPase transporter). In contrast, metal-sensitive strains were taxonomically distinct from metal-tolerant populations and consisted of new Mesorhizobium genospecies. Based on the symbiotic nodA marker, the populations comprise two symbiovar assemblages (potentially related to Anthyllis or Lotus host preferences) according to soil geographic locations but independently of metal content. Multivariate analysis showed that soil Pb and Cd concentrations differentially impacted the rhizobial communities and that a rhizobial community found in one geographically distant site was highly divergent from the others. In conclusion, heavy metal levels in soils drive the taxonomic composition of Anthyllis-associated rhizobial populations according to their metal-tolerance phenotype but not their symbiotic nodA diversity. In addition to heavy metals, local soil physicochemical and topoclimatic conditions also impact the rhizobial beta diversity. Mesorhizobium communities were locally adapted and site specific, and their use is recommended for the success of phytostabilization strategies based on Mesorhizobium-legume vegetation. IMPORTANCE Phytostabilization of toxic mine spoils limits heavy metal dispersion and environmental pollution by establishing a sustainable plant cover. This eco-friendly method is facilitated by the use of selected and adapted cover crop legumes living in symbiosis with rhizobia that can stimulate plant growth naturally through biological nitrogen fixation. We studied microsymbiont partners of a metal-tolerant legume, Anthyllis vulneraria, which is tolerant to very highly metal-polluted soils in mining and nonmining sites. Site-specific rhizobial communities were linked to taxonomic composition and metal tolerance capacity. The rhizobial species Mesorhizobium metallidurans was dominant in all Zn-Pb mines but one. It was not detected in unpolluted sites where other distinct Mesorhizobium species occur. Given the different soil conditions at the respective mining sites, including their heavy-metal contamination, revegetation strategies based on rhizobia adapting to local conditions are more likely to succeed over the long term compared to strategies based on introducing less-well-adapted strains.
Collapse
|
342
|
Ma Y, Rajkumar M, Zhang C, Freitas H. Inoculation of Brassica oxyrrhina with plant growth promoting bacteria for the improvement of heavy metal phytoremediation under drought conditions. JOURNAL OF HAZARDOUS MATERIALS 2016; 320:36-44. [PMID: 27508309 DOI: 10.1016/j.jhazmat.2016.08.009] [Citation(s) in RCA: 113] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Revised: 08/02/2016] [Accepted: 08/03/2016] [Indexed: 05/27/2023]
Abstract
The aim of this study was to investigate the effects of drought resistant serpentine rhizobacteria on plant growth and metal uptake by Brassica oxyrrhina under drought stress (DS) condition. Two drought resistant serpentine rhizobacterial strains namely Pseudomonas libanensis TR1 and Pseudomonas reactans Ph3R3 were selected based on their ability to stimulate seedling growth in roll towel assay. Further assessment on plant growth promoting (PGP) parameters revealed their ability to produce indole-3-acetic acid, siderophore and 1-aminocyclopropane-1-carboxylate deaminase. Moreover, both strains exhibited high resistance to various heavy metals, antibiotics, salinity and extreme temperature. Inoculation of TR1 and Ph3R3 significantly increased plant growth, leaf relative water and pigment content of B. oxyrrhina, whereas decreased concentrations of proline and malondialdehyde in leaves under metal stress in the absence and presence of DS. Regardless of soil water conditions, TR1 and Ph3R3 greatly improved organ metal concentrations, translocation and bioconcentration factors of Cu and Zn. The successful colonization and metabolic activities of P. libanensis TR1 and P. reactans Ph3R3 represented positive effects on plant development and metal phytoremediation under DS. These results indicate that these strains could be used as bio-inoculants for the improvement of phytoremediation of metal polluted soils under semiarid conditions.
Collapse
Affiliation(s)
- Ying Ma
- Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal.
| | - Mani Rajkumar
- Department of Life Sciences, Central University of Tamil Nadu, Tiruvarur 610101, India
| | | | - Helena Freitas
- Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal
| |
Collapse
|
343
|
Mongkhonsin B, Nakbanpote W, Hokura A, Nuengchamnong N, Maneechai S. Phenolic compounds responding to zinc and/or cadmium treatments in Gynura pseudochina (L.) DC. extracts and biomass. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2016; 109:549-560. [PMID: 27837723 DOI: 10.1016/j.plaphy.2016.10.027] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 10/26/2016] [Accepted: 10/27/2016] [Indexed: 06/06/2023]
Abstract
Gynura pseudochina (L.) DC. is a Zn/Cd hyperaccumulative plant. In an in vivo system under controlled plant age, this research reveals that phenolic compounds and lignification play beneficial roles in protecting G. pseudochina from exposure to an excess of Zn and/or Cd, and Zn reduces Cd toxicity under the dual treatments. The total phenolic content (TPC), total flavonoid content (TFC), and half-maximal inhibitory concentration (IC50) values correspond to the metal dose-response curves. Liquid chromatography-electrospray ionization-quadrupole time of flight-tandem mass spectrometry (LC-ESI-QTOF-MS/MS) is used to characterize phenolic compounds and their glycosides, which could play roles in antioxidant activities and in the esterification of the cell wall, especially derivatives of p-coumaric and caffeic acid. Confocal laser scanning microscopy (CLSM) and micro X-ray fluorescence (μ-XRF) imaging revealed that the accumulation of Zn and Cd in the cell wall involves flavonoid compounds. Low extractable pools of Cd and Zn in the leaf extracts indicate that these elements are tightly bound to the plant biomass structures. The bulk X-ray absorption near edge structure (XANES) spectra indicate that Zn2+ and Cd2+ dominate with O and S ligands, which could be provided by cell walls, phenolic compounds, and sulphur protein. Consequently, the benefit of these results is to support the growth of G. pseudochina for phytoremediation in a Zn- and/or Cd-contaminated site.
Collapse
Affiliation(s)
- Bodin Mongkhonsin
- Department of Biology, Faculty of Science, Mahasarakham University, Khamriang, Kantarawichai, Maha Sarakham 44150, Thailand
| | - Woranan Nakbanpote
- Department of Biology, Faculty of Science, Mahasarakham University, Khamriang, Kantarawichai, Maha Sarakham 44150, Thailand.
| | - Akiko Hokura
- Department of Green and Sustainable Chemistry, Tokyo Denki University, Senju-Asahicho, Adachi, Tokyo, 120-8551, Japan
| | - Nitra Nuengchamnong
- Science Laboratory Centre, Faculty of Science, Naresuan University, Phitsanulok 65000, Thailand
| | - Suthira Maneechai
- Department of Biology, Faculty of Science, Mahasarakham University, Khamriang, Kantarawichai, Maha Sarakham 44150, Thailand
| |
Collapse
|
344
|
Sathya A, Vijayabharathi R, Srinivas V, Gopalakrishnan S. Plant growth-promoting actinobacteria on chickpea seed mineral density: an upcoming complementary tool for sustainable biofortification strategy. 3 Biotech 2016; 6:138. [PMID: 28330210 PMCID: PMC4919949 DOI: 10.1007/s13205-016-0458-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 06/10/2016] [Indexed: 11/12/2022] Open
Abstract
The present study was evaluated to test the potential of plant growth-promoting actinobacteria in increasing seed mineral density of chickpea under field conditions. Among the 19 isolates of actinobacteria tested, significant (p < 0.05) increase of minerals over the uninoculated control treatments was noticed on all the isolates for Fe (10–38 %), 17 for Zn (13–30 %), 16 for Ca (14–26 %), 9 for Cu (11–54 %) and 10 for Mn (18–35 %) and Mg (14–21 %). The increase might be due to the production of siderophore-producing capacity of the tested actinobacteria, which was confirmed in our previous studies by q-RT PCR on siderophore genes expressing up to 1.4- to 25-fold increased relative transcription levels. The chickpea seeds were subjected to processing to increase the mineral availability during consumption. The processed seeds were found to meet the recommended daily intake of FDA by 24–28 % for Fe, 25–28 % for Zn, 28–35 % for Cu, 12–14 % for Ca, 160–167 % for Mn and 34–37 % for Mg. It is suggested that the microbial inoculum can serve as a complementary sustainable tool for the existing biofortification strategies and substantially reduce the chemical fertilizer inputs.
Collapse
|
345
|
Khan N, Bano A. Modulation of phytoremediation and plant growth by the treatment with PGPR, Ag nanoparticle and untreated municipal wastewater. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2016; 18:1258-69. [PMID: 27348506 DOI: 10.1080/15226514.2016.1203287] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
The present attempt was made to determine the effects of untreated municipal wastewater (MW) on growth and physiology of maize and to evaluate the role of Ag nanoparticle and plant-growth-promoting rhizobacteria (PGPR) when interacting with MW used for irrigation. It was used for the isolation of PGPR. The isolates were identified and characterized based on the colony morphology, C/N source utilization pattern using miniaturized identification system (QTS 24), catalase (CAT) and oxidase tests, and 16S rRNA sequence analyses. The three PGPR isolates were Planomicrobium chinense (accession no. NR042259), Bacillus cereus (accession no. CP003187) and Pseudomonas fluorescens (accession no. GU198110). The isolates solubilized phosphate and exhibited antibacterial activities against pathogenic bacteria i.e., Staphylococcus aureus, Pseudomonas aeruginosa, Bacillus subtilis, Klebsiella pneumoniae and Escherichia coli and antifungal activities against Helminthosporium sativum and Fusarium solani. The untreated MW irrigation as well as Ag nanoparticle treatment resulted in significant accumulation of Ni in the rhizosphere soil. PGPR induced accumulation of Ni and Pb in the rhizosphere soil and maize shoot. Ag nanoparticle also caused Ni and Pb accumulation in maize shoot. Combined treatment with PGPR, Ag nanoparticle and MW resulted in decreased accumulation of Pb and Ni both in the rhizosphere soil and maize shoot. Combined treatment of Ag nanoparticle, MW and PGPR decreased Na accumulation and increased K accumulation. Ag nanoparticle increased Fe and Co accumulation but decreased Zn and Cu accumulation in MW treatment; in combined treatment, it reduced PGPR-induced accumulation of Co and Fe in the rhizosphere and Co accumulation in shoot. PGPR significantly increased root weight, shoot weight, root length, shoot length, leaf area, and proline, chlorophyll and carotenoid content of the maize plant. Ag nanoparticle also enhanced the leaf area, fresh weight, root length and antioxidant activities of maize. Treatment with Ag nanoparticle increased the gibberellic acid (GA) and abscisic acid (ABA) content of maize leaves but decreased the accumulation of GA in the presence of PGPR and MW.
Collapse
Affiliation(s)
- Naeem Khan
- a Phytohormone lab, Department of Plant Sciences, Quaid-i-Azam University , Islamabad , Pakistan
| | - Asghari Bano
- a Phytohormone lab, Department of Plant Sciences, Quaid-i-Azam University , Islamabad , Pakistan
| |
Collapse
|
346
|
Yu X, Li Y, Li Y, Xu C, Cui Y, Xiang Q, Gu Y, Zhao K, Zhang X, Penttinen P, Chen Q. Pongamia pinnata inoculated with Bradyrhizobium liaoningense PZHK1 shows potential for phytoremediation of mine tailings. Appl Microbiol Biotechnol 2016; 101:1739-1751. [DOI: 10.1007/s00253-016-7996-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 10/28/2016] [Accepted: 11/05/2016] [Indexed: 10/20/2022]
|
347
|
Rezania S, Taib SM, Md Din MF, Dahalan FA, Kamyab H. Comprehensive review on phytotechnology: Heavy metals removal by diverse aquatic plants species from wastewater. JOURNAL OF HAZARDOUS MATERIALS 2016; 318:587-599. [PMID: 27474848 DOI: 10.1016/j.jhazmat.2016.07.053] [Citation(s) in RCA: 248] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Revised: 07/19/2016] [Accepted: 07/22/2016] [Indexed: 05/12/2023]
Abstract
Environmental pollution specifically water pollution is alarming both in the developed and developing countries. Heavy metal contamination of water resources is a critical issue which adversely affects humans, plants and animals. Phytoremediation is a cost-effective remediation technology which able to treat heavy metal polluted sites. This environmental friendly method has been successfully implemented in constructed wetland (CWs) which is able to restore the aquatic biosystem naturally. Nowadays, many aquatic plant species are being investigated to determine their potential and effectiveness for phytoremediation application, especially high growth rate plants i.e. macrophytes. Based on the findings, phytofiltration (rhizofiltration) is the sole method which defined as heavy metals removal from water by aquatic plants. Due to specific morphology and higher growth rate, free-floating plants were more efficient to uptake heavy metals in comparison with submerged and emergent plants. In this review, the potential of wide range of aquatic plant species with main focus on four well known species (hyper-accumulators): Pistia stratiotes, Eicchornia spp., Lemna spp. and Salvinia spp. was investigated. Moreover, we discussed about the history, methods and future prospects in phytoremediation of heavy metals by aquatic plants comprehensively.
Collapse
Affiliation(s)
- Shahabaldin Rezania
- Centre for Environmental Sustainability and Water Security (IPASA), Research Institute for Environmental Sustainability, Block C07, Level 2, Universiti Teknologi Malaysia, 81310 Johor Bahru, Malaysia; Department of Environmental Engineering, Faculty of Civil Engineering, Universiti Teknologi Malaysia (UTM), 81310 Johor, Malaysia.
| | - Shazwin Mat Taib
- Department of Environmental Engineering, Faculty of Civil Engineering, Universiti Teknologi Malaysia (UTM), 81310 Johor, Malaysia.
| | - Mohd Fadhil Md Din
- Centre for Environmental Sustainability and Water Security (IPASA), Research Institute for Environmental Sustainability, Block C07, Level 2, Universiti Teknologi Malaysia, 81310 Johor Bahru, Malaysia; Department of Environmental Engineering, Faculty of Civil Engineering, Universiti Teknologi Malaysia (UTM), 81310 Johor, Malaysia
| | - Farrah Aini Dahalan
- Water Research Group, The School of Environmental Engineering, Universiti Malaysia Perlis (UniMAP), Kompleks Pengajian Jejawi 3, 02600 Arau, Perlis, Malaysia
| | - Hesam Kamyab
- Centre for Environmental Sustainability and Water Security (IPASA), Research Institute for Environmental Sustainability, Block C07, Level 2, Universiti Teknologi Malaysia, 81310 Johor Bahru, Malaysia; Department of Environmental Engineering, Faculty of Civil Engineering, Universiti Teknologi Malaysia (UTM), 81310 Johor, Malaysia
| |
Collapse
|
348
|
Luo ZB, He J, Polle A, Rennenberg H. Heavy metal accumulation and signal transduction in herbaceous and woody plants: Paving the way for enhancing phytoremediation efficiency. Biotechnol Adv 2016; 34:1131-1148. [DOI: 10.1016/j.biotechadv.2016.07.003] [Citation(s) in RCA: 202] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2015] [Revised: 05/24/2016] [Accepted: 07/12/2016] [Indexed: 11/26/2022]
|
349
|
Benidire L, Pereira SIA, Castro PML, Boularbah A. Assessment of plant growth promoting bacterial populations in the rhizosphere of metallophytes from the Kettara mine, Marrakech. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:21751-21765. [PMID: 27522210 DOI: 10.1007/s11356-016-7378-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Accepted: 08/02/2016] [Indexed: 06/06/2023]
Abstract
Soil heavy metal contamination resulting from mining activities constitutes a major environmental problem worldwide. The spread of heavy metals is often facilitated by scarce vegetation cover, so there is an urgent need to improve plant survival and establishment in these metalliferous areas. This study is aimed at the isolation and analysis of the phylogenetic relationship of culturable bacteria from the rhizosphere of metallophyte plants growing in the Kettara mine, in Marrakech, in order to select plant growth-promoting rhizobacteria (PGPR), which could be used in assisted-phytoremediation. Bacterial isolates were grouped by random amplified polymorphic DNA analysis and identified by 16S rRNA gene sequencing. Strains were further characterized for the production of plant growth-promoting (PGP) substances, such as NH3, siderophores, indol-3-acetic acid (IAA), hydrogen cyanide, and extracellular enzymes, for ACC-deaminase activity, their capacity to solubilize phosphate, and for their tolerance to heavy metals and acidic pH. Rhizosphere soils were highly contaminated with Cu and Zn and presented low fertility. Phylogenetic analysis showed that the rhizobacteria were affiliated to three major groups: γ-Proteobacteria (48 %), β-Proteobacteria (17 %), and Bacilli (17 %). The most represented genera were Pseudomonas (38 %), Bacillus (10 %), Streptomyces (10 %), and Tetrathiobacter (10 %). Overall, rhizobacterial strains showed an ability to produce multiple, important PGP traits, which may be helpful when applied as plant growth promoter agents in contaminated soils. PGPR were also able to withstand high levels of metals (up to 2615.2 mg Zn l-1, 953.29 mg Cu l-1, and 1124.6 mg Cd l-1) and the order of metal toxicity was Cd > Cu > Zn. The rhizobacterial strains isolated in the present study have the potential to be used as efficient bioinoculants in phytoremediation strategies for the recovery of Kettara mine soils.
Collapse
Affiliation(s)
- L Benidire
- Faculté des Sciences et Techniques, Laboratoire Aliments, Environnement et Santé, Université Cadi Ayyad, Boulevard Abdelkrim Khattabi, BP 549, 40000, Marrakech, Morocco
| | - S I A Pereira
- CBQF-Centro de Biotecnologia e Química Fina-Laboratório Associado, Escola Superior de Biotecnologia, Rua Arquiteto Lobão Vital, Universidade Católica Portuguesa, Apartado 2511, 4202-401, Porto, Portugal
| | - P M L Castro
- CBQF-Centro de Biotecnologia e Química Fina-Laboratório Associado, Escola Superior de Biotecnologia, Rua Arquiteto Lobão Vital, Universidade Católica Portuguesa, Apartado 2511, 4202-401, Porto, Portugal
| | - A Boularbah
- Faculté des Sciences et Techniques, Laboratoire Aliments, Environnement et Santé, Université Cadi Ayyad, Boulevard Abdelkrim Khattabi, BP 549, 40000, Marrakech, Morocco.
| |
Collapse
|
350
|
Kartik VP, Jinal HN, Amaresan N. Characterization of cadmium-resistant bacteria for its potential in promoting plant growth and cadmium accumulation in Sesbania bispinosa root. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2016; 18:1061-6. [PMID: 27185302 DOI: 10.1080/15226514.2016.1183576] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
The cadmium (Cd) resistant bacteria were isolated from soils of Damanganga river, Vapi, and identified 11 potential Cd resistant bacteria based on 16S rDNA sequences. The Cd resistant bacteria belonged to four different genera: Providencia spp., Morganella sp., Stenotrophomonas sp., and Bacillus spp. The assessment of plant growth-promoting (PGP) parameters revealed that the Cd tolerant bacteria showed one or more PGP properties. Further, a pot experiment was conducted to elucidate the effects of Cd resistant bacteria on the plant growth and the uptake of Cd by Sesbania bispinosa. The bacterized seedlings recorded 36.0-74.8% and 21.2-32.9% higher root and shoot lengths, respectively, in Cd amended soil compared with control. The Cd mobilization in the root of S. bispinosa by microbial inoculants ranged from 0.02 ± 0.01 to 1.11 ± 0.06 ppm. The enhanced concentrations of Cd accumulation in S. bispinosa roots correspond to the effect of the bacterial strains on metal mobilization in soil. The present observations showed that the Cd resistant strains protect the plants against the inhibitory effects of Cd, probably due to the production of PGP properties. The present results provided a new insight into the phytoremediation of Cd contaminated soil.
Collapse
Affiliation(s)
- V P Kartik
- a C. G. Bhakta Institute of Biotechnology, Uka Tarsadia University , Bardoli , India
| | - H N Jinal
- a C. G. Bhakta Institute of Biotechnology, Uka Tarsadia University , Bardoli , India
| | - N Amaresan
- a C. G. Bhakta Institute of Biotechnology, Uka Tarsadia University , Bardoli , India
| |
Collapse
|