301
|
Albrecht U. Timing to perfection: the biology of central and peripheral circadian clocks. Neuron 2012; 74:246-60. [PMID: 22542179 DOI: 10.1016/j.neuron.2012.04.006] [Citation(s) in RCA: 585] [Impact Index Per Article: 48.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/06/2012] [Indexed: 12/11/2022]
Abstract
The mammalian circadian system, which is comprised of multiple cellular clocks located in the organs and tissues, orchestrates their regulation in a hierarchical manner throughout the 24 hr of the day. At the top of the hierarchy are the suprachiasmatic nuclei, which synchronize subordinate organ and tissue clocks using electrical, endocrine, and metabolic signaling pathways that impact the molecular mechanisms of cellular clocks. The interplay between the central neural and peripheral tissue clocks is not fully understood and remains a major challenge in determining how neurological and metabolic homeostasis is achieved across the sleep-wake cycle. Disturbances in the communication between the plethora of body clocks can desynchronize the circadian system, which is believed to contribute to the development of diseases such as obesity and neuropsychiatric disorders. This review will highlight the relationship between clocks and metabolism, and describe how cues such as light, food, and reward mediate entrainment of the circadian system.
Collapse
Affiliation(s)
- Urs Albrecht
- Department of Biology, Unit of Biochemistry, University of Fribourg, Chemin du Musée 5, CH-1700 Fribourg, Switzerland.
| |
Collapse
|
302
|
Photoperiod regulates corticosterone rhythms by altered adrenal sensitivity via melatonin-independent mechanisms in Fischer 344 rats and C57BL/6J mice. PLoS One 2012; 7:e39090. [PMID: 22720039 PMCID: PMC3376106 DOI: 10.1371/journal.pone.0039090] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2012] [Accepted: 05/18/2012] [Indexed: 11/19/2022] Open
Abstract
Most species living in temperate zones adapt their physiology and behavior to seasonal changes in the environment by using the photoperiod as a primary cue. The mechanisms underlying photoperiodic regulation of stress-related functions are not well understood. In this study, we analyzed the effects of photoperiod on the hypothalamic-pituitary-adrenal axis in photoperiod-sensitive Fischer 344 rats. We first examined how photoperiod affects diurnal variations in plasma concentrations of adrenocorticotropic hormone (ACTH) and corticosterone. ACTH levels did not exhibit diurnal variations under long- and short-day conditions. On the other hand, corticosterone levels exhibited a clear rhythm under short-day condition with a peak during dark phase. This peak was not observed under long-day condition in which a significant rhythm was not detected. To analyze the mechanisms responsible for the photoperiodic regulation of corticosterone rhythms, ACTH was intraperitoneally injected at the onset of the light or dark phase in dexamethasone-treated rats maintained under long- and short-day conditions. ACTH induced higher corticosterone levels in rats examined at dark onset under short-day condition than those maintained under long-day condition. Next, we asked whether melatonin signals are involved in photoperiodic regulation of corticosterone rhythms, and rats were intraperitoneally injected with melatonin at late afternoon under long-day condition for 3 weeks. However, melatonin injections did not affect the corticosterone rhythms. In addition, photoperiodic changes in the amplitude of corticosterone rhythms were also observed in melatonin-deficient C57BL/6J mice, in which expression profiles of several clock genes and steroidgenesis genes in adrenal gland were modified by the photoperiod. Our data suggest that photoperiod regulates corticosterone rhythms by altered adrenal sensitivity through melatonin-independent mechanisms that may involve the adrenal clock.
Collapse
|
303
|
Barclay JL, Husse J, Bode B, Naujokat N, Meyer-Kovac J, Schmid SM, Lehnert H, Oster H. Circadian desynchrony promotes metabolic disruption in a mouse model of shiftwork. PLoS One 2012; 7:e37150. [PMID: 22629359 PMCID: PMC3357388 DOI: 10.1371/journal.pone.0037150] [Citation(s) in RCA: 191] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2012] [Accepted: 04/13/2012] [Indexed: 11/23/2022] Open
Abstract
Shiftwork is associated with adverse metabolic pathophysiology, and the rising incidence of shiftwork in modern societies is thought to contribute to the worldwide increase in obesity and metabolic syndrome. The underlying mechanisms are largely unknown, but may involve direct physiological effects of nocturnal light exposure, or indirect consequences of perturbed endogenous circadian clocks. This study employs a two-week paradigm in mice to model the early molecular and physiological effects of shiftwork. Two weeks of timed sleep restriction has moderate effects on diurnal activity patterns, feeding behavior, and clock gene regulation in the circadian pacemaker of the suprachiasmatic nucleus. In contrast, microarray analyses reveal global disruption of diurnal liver transcriptome rhythms, enriched for pathways involved in glucose and lipid metabolism and correlating with first indications of altered metabolism. Although altered food timing itself is not sufficient to provoke these effects, stabilizing peripheral clocks by timed food access can restore molecular rhythms and metabolic function under sleep restriction conditions. This study suggests that peripheral circadian desynchrony marks an early event in the metabolic disruption associated with chronic shiftwork. Thus, strengthening the peripheral circadian system by minimizing food intake during night shifts may counteract the adverse physiological consequences frequently observed in human shift workers.
Collapse
Affiliation(s)
| | - Jana Husse
- Max Planck Institute of Biophysical Chemistry, Göttingen, Germany
| | - Brid Bode
- Max Planck Institute of Biophysical Chemistry, Göttingen, Germany
| | - Nadine Naujokat
- Max Planck Institute of Biophysical Chemistry, Göttingen, Germany
| | | | | | - Hendrik Lehnert
- Department of Internal Medicine I, University of Lübeck, Lübeck, Germany
| | - Henrik Oster
- Max Planck Institute of Biophysical Chemistry, Göttingen, Germany
- Department of Internal Medicine I, University of Lübeck, Lübeck, Germany
- * E-mail:
| |
Collapse
|
304
|
Noguchi T, Ikeda M, Ohmiya Y, Nakajima Y. A dual-color luciferase assay system reveals circadian resetting of cultured fibroblasts by co-cultured adrenal glands. PLoS One 2012; 7:e37093. [PMID: 22615906 PMCID: PMC3352896 DOI: 10.1371/journal.pone.0037093] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2012] [Accepted: 04/17/2012] [Indexed: 11/22/2022] Open
Abstract
In mammals, circadian rhythms of various organs and tissues are synchronized by pacemaker neurons in the suprachiasmatic nucleus (SCN) of the hypothalamus. Glucocorticoids released from the adrenal glands can synchronize circadian rhythms in other tissues. Many hormones show circadian rhythms in their plasma concentrations; however, whether organs outside the SCN can serve as master synchronizers to entrain circadian rhythms in target tissues is not well understood. To further delineate the function of the adrenal glands and the interactions of circadian rhythms in putative master synchronizing organs and their target tissues, here we report a simple co-culture system using a dual-color luciferase assay to monitor circadian rhythms separately in various explanted tissues and fibroblasts. In this system, circadian rhythms of organs and target cells were simultaneously tracked by the green-emitting beetle luciferase from Pyrearinus termitilluminans (ELuc) and the red-emitting beetle luciferase from Phrixothrix hirtus (SLR), respectively. We obtained tissues from the adrenal glands, thyroid glands, and lungs of transgenic mice that expressed ELuc under control of the promoter from a canonical clock gene, mBmal1. The tissues were co-cultured with Rat-1 fibroblasts as representative target cells expressing SLR under control of the mBmal1 promoter. Amplitudes of the circadian rhythms of Rat-1 fibroblasts were potentiated when the fibroblasts were co-cultured with adrenal gland tissue, but not when co-cultured with thyroid gland or lung tissue. The phases of Rat-1 fibroblasts were reset by application of adrenal gland tissue, whereas the phases of adrenal gland tissue were not influenced by Rat-1 fibroblasts. Furthermore, the effect of the adrenal gland tissue on the fibroblasts was blocked by application of a glucocorticoid receptor (GR) antagonist. These results demonstrate that glucocorticoids are strong circadian synchronizers for fibroblasts and that this co-culture system is a useful tool to analyze humoral communication between different tissues or cell populations.
Collapse
Affiliation(s)
- Takako Noguchi
- Health Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Ikeda, Osaka, Japan
| | - Masaaki Ikeda
- Molecular Clock Project, Research Center for Genomic Medicine, Saitama Medical University, Hidaka, Saitama, Japan
- Department of Physiology, Saitama Medical University, Moroyama, Saitama, Japan
| | - Yoshihiro Ohmiya
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, Japan
| | - Yoshihiro Nakajima
- Health Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Ikeda, Osaka, Japan
- * E-mail:
| |
Collapse
|
305
|
Abstract
The circadian system of mammals is composed of a hierarchy of oscillators that function at the cellular, tissue, and systems levels. A common molecular mechanism underlies the cell-autonomous circadian oscillator throughout the body, yet this clock system is adapted to different functional contexts. In the central suprachiasmatic nucleus (SCN) of the hypothalamus, a coupled population of neuronal circadian oscillators acts as a master pacemaker for the organism to drive rhythms in activity and rest, feeding, body temperature, and hormones. Coupling within the SCN network confers robustness to the SCN pacemaker, which in turn provides stability to the overall temporal architecture of the organism. Throughout the majority of the cells in the body, cell-autonomous circadian clocks are intimately enmeshed within metabolic pathways. Thus, an emerging view for the adaptive significance of circadian clocks is their fundamental role in orchestrating metabolism.
Collapse
Affiliation(s)
- Jennifer A Mohawk
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9111, USA.
| | | | | |
Collapse
|
306
|
Sarabdjitsingh R, Joëls M, de Kloet E. Glucocorticoid pulsatility and rapid corticosteroid actions in the central stress response. Physiol Behav 2012; 106:73-80. [DOI: 10.1016/j.physbeh.2011.09.017] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2011] [Revised: 09/12/2011] [Accepted: 09/13/2011] [Indexed: 02/05/2023]
|
307
|
Fan W, Downes M, Atkins A, Yu R, Evans RM. Nuclear receptors and AMPK: resetting metabolism. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2012; 76:17-22. [PMID: 22411605 PMCID: PMC3870013 DOI: 10.1101/sqb.2012.76.010470] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Obesity, and in particular central adiposity, is a key feature of metabolic syndrome, which includes trends toward increased triglycerides, insulin resistance, high blood pressure, hypercholesterolemia, and heart disease. It has a prevalence of 25% or more and is a dominant component of the health care budgets in Western societies. In addition to genetic causes, high-fat diets and disrupted sleep patterns have major influences on the development of metabolic syndrome. Recent studies have demonstrated active roles for the nuclear receptor superfamily and the energy-sensing kinase adenosine monophosphate (AMP)-activated protein kinase (AMPK) in regulating metabolism and circadian rhythm. In this chapter, we review these findings and attempt to develop a better understanding of the interplay between metabolism and circadian rhythm and their coordinated regulation by nuclear receptors and AMPK. This supraregulatory network may be considered a target for novel therapeutic applications against metabolic syndrome.
Collapse
Affiliation(s)
- W Fan
- Gene Expression Laboratory, Howard Hughes Medical Institute, The Salk Institute for Biological Studies, La Jolla, California 92037, USA
| | | | | | | | | |
Collapse
|
308
|
Kalsbeek A, van der Spek R, Lei J, Endert E, Buijs RM, Fliers E. Circadian rhythms in the hypothalamo-pituitary-adrenal (HPA) axis. Mol Cell Endocrinol 2012; 349:20-9. [PMID: 21782883 DOI: 10.1016/j.mce.2011.06.042] [Citation(s) in RCA: 255] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2011] [Revised: 06/29/2011] [Accepted: 06/30/2011] [Indexed: 01/06/2023]
Abstract
The pronounced daily variation in the release of adrenal hormones has been at the heart of the deciphering and understanding of the circadian timing system. Indeed, the first demonstration of an endocrine day/night rhythm was provided by Pincus (1943), by showing a daily pattern of 17-keto-steroid excretion in the urine of 7 healthy males. Twenty years later the adrenal gland was one of the very first organs to show, in vitro, that circadian rhythmicity was maintained. In the seventies, experimental manipulation of the daily corticosterone rhythm served as evidence for the identification of respectively the light- and food-entrainable oscillator. Another 20 years later the hypothalamo-pituitary-adrenal (HPA)-axis was key in furthering our understanding of the way in which rhythmic signals generated by the central pacemaker in the hypothalamic suprachiasmatic nuclei (SCN) are forwarded to the rest of the brain and to the organism as a whole. To date, the adrenal gland is still of prime importance for understanding how the oscillations of clock genes in peripheral tissues result in functional rhythms of these tissues, whereas it has become even more evident that adrenal glucocorticoids are key in the resetting of the circadian system after a phase-shift. The HPA-axis thus still is an excellent model for studying the transmission of circadian information in the body.
Collapse
Affiliation(s)
- A Kalsbeek
- Department of Endocrinology and Metabolism, Academic Medical Center, University of Amsterdam, The Netherlands.
| | | | | | | | | | | |
Collapse
|
309
|
Tonsfeldt KJ, Chappell PE. Clocks on top: the role of the circadian clock in the hypothalamic and pituitary regulation of endocrine physiology. Mol Cell Endocrinol 2012; 349:3-12. [PMID: 21787834 PMCID: PMC3242828 DOI: 10.1016/j.mce.2011.07.003] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2011] [Revised: 07/01/2011] [Accepted: 07/01/2011] [Indexed: 01/24/2023]
Abstract
Recent strides in circadian biology over the last several decades have allowed researchers new insight into how molecular circadian clocks influence the broader physiology of mammals. Elucidation of transcriptional feedback loops at the heart of endogenous circadian clocks has allowed for a deeper analysis of how timed cellular programs exert effects on multiple endocrine axes. While the full understanding of endogenous clocks is currently incomplete, recent work has re-evaluated prior findings with a new understanding of the involvement of these cellular oscillators, and how they may play a role in constructing rhythmic hormone synthesis, secretion, reception, and metabolism. This review addresses current research into how multiple circadian clocks in the hypothalamus and pituitary receive photic information from oscillators within the hypothalamic suprachiasmatic nucleus (SCN), and how resultant hypophysiotropic and pituitary hormone release is then temporally gated to produce an optimal result at the cognate target tissue. Special emphasis is placed not only on neural communication among the SCN and other hypothalamic nuclei, but also how endogenous clocks within the endocrine hypothalamus and pituitary may modulate local hormone synthesis and secretion in response to SCN cues. Through evaluation of a larger body of research into the impact of circadian biology on endocrinology, we can develop a greater appreciation into the importance of timing in endocrine systems, and how understanding of these endogenous rhythms can aid in constructing appropriate therapeutic treatments for a variety of endocrinopathies.
Collapse
Affiliation(s)
- Karen J Tonsfeldt
- Department of Biomedical Sciences, College of Veterinary Medicine, Oregon State University, Corvallis, OR 97331, United States
| | | |
Collapse
|
310
|
Ota T, Fustin JM, Yamada H, Doi M, Okamura H. Circadian clock signals in the adrenal cortex. Mol Cell Endocrinol 2012; 349:30-7. [PMID: 21871948 DOI: 10.1016/j.mce.2011.08.010] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2011] [Revised: 08/02/2011] [Accepted: 08/11/2011] [Indexed: 01/25/2023]
Abstract
Circadian secretion of steroid hormones by the adrenal cortex is required to maintain whole body homeostasis and to adequately respond to or anticipate environmental changes. The richly vascularized zona glomerulosa (ZG) cells in the pericapsular region regulate osmotic balance of body fluid by secreting mineralocorticoids responding to circulating bioactive substances, and more medially located zona fasciculata (ZF) cells regulate energy supply and consumption by secreting glucocorticoids under neuronal and hormonal regulation. The circadian clock regulates both steroidogenic pathways: the clock within the ZG regulates mineralocorticoid production via controlling rate-limiting synthetic enzymes, and the ZF secretes glucocorticoid hormones into the systemic circulation under the control of central clock in the suprachiasmatic nucleus. A functional biological clock at the systemic and cellular levels is therefore necessary for steroid synthesis and secretion.
Collapse
Affiliation(s)
- Takumi Ota
- Department of Systems Biology, School of Pharmaceutical Science, Kyoto University, Kyoto 606, Japan
| | | | | | | | | |
Collapse
|
311
|
Engeland WC, Yoder JM. The suprachiasmatic nucleus gets split: why does cortisol respond but not ACTH? Endocrinology 2012; 153:546-8. [PMID: 22267683 DOI: 10.1210/en.2011-2082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
- William C Engeland
- Department of Neuroscience, University of Minnesota, 6-145 Jackson Hall, 321 Church Street, Minneapolis, Minnesota 55455, USA.
| | | |
Collapse
|
312
|
Zubidat AE, Nelson RJ, Haim A. Spectral and duration sensitivity to light-at-night in 'blind' and sighted rodent species. ACTA ACUST UNITED AC 2012; 214:3206-17. [PMID: 21900468 DOI: 10.1242/jeb.058883] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Light-at-night (LAN) has become a defining feature of human and animal ecosystems and may possibly compromise human and animal physiology and health. Spectral and acclimation duration (AD) sensitivity were compared between social voles (Microtus socialis) and 'blind' mole rats (Spalax ehrenbergi) in four increasing ADs (0, 1, 7 and 21 days) to LAN (1×30 min, 293 μW cm(-2)) of three different monochromatic lights [blue (479 nm), yellow (586 nm) and red (697 nm)]. Animals were sampled for urine and oxygen consumption (V(O(2))) promptly after each LAN-AD. Urine samples were analyzed for production rate, urinary 6-sulfatoxymelatonin and urinary metabolites of adrenalin and cortisol. Overall, the blue light elicited the greatest effects on the biological markers of M. socialis, whereas similar effects were detected for S. ehrenbergi in response to red light. The increasing LAN-AD resulted in a dose-dependent decrement of all markers tested, except of stress hormones, which showed a direct positive correlation with LAN-AD. Our results suggest that: (1) photoperiod is an important cue for entraining physiological functions in the 'blind' S. ehrenbergi, which is essentially characterized by red-shifted sensitivity compared with the blue-shifted sensitivity detected for the sighted counterpart species, and (2) there is a strong association between LAN of the appropriate wavelength and adrenal endocrine responses, suggesting that LAN is a potential environmental stressor.
Collapse
Affiliation(s)
- Abed E Zubidat
- Department of Evolution and Environmental Biology, University of Haifa, Mount Carmel, Haifa 31905, Israel.
| | | | | |
Collapse
|
313
|
Barclay JL, Tsang AH, Oster H. Interaction of central and peripheral clocks in physiological regulation. PROGRESS IN BRAIN RESEARCH 2012; 199:163-181. [DOI: 10.1016/b978-0-444-59427-3.00030-7] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
314
|
Blum I, Lamont EW, Abizaid A. Competing clocks: Metabolic status moderates signals from the master circadian pacemaker. Neurosci Biobehav Rev 2012; 36:254-70. [DOI: 10.1016/j.neubiorev.2011.06.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2011] [Revised: 05/27/2011] [Accepted: 06/02/2011] [Indexed: 11/28/2022]
|
315
|
Christ E, Korf HW, von Gall C. When does it start ticking? Ontogenetic development of the mammalian circadian system. PROGRESS IN BRAIN RESEARCH 2012; 199:105-118. [PMID: 22877661 DOI: 10.1016/b978-0-444-59427-3.00006-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Circadian rhythms in physiology and behavior ensure that vital functions are temporally synchronized with cyclic environmental changes. In mammals, the circadian system is conducted by a central circadian rhythm generator that resides in the hypothalamic suprachiasmatic nucleus (SCN) and controls multiple subsidiary circadian oscillators in the periphery. The molecular clockwork in SCN and peripheral oscillators consists of autoregulatory transcriptional/translational feedback loops of clock genes. The adult circadian system is synchronized to the astrophysical day by light whereas the fetal and neonatal circadian system entrains to nonphotic rhythmic maternal signals. This chapter reviews maturation and entrainment of the central circadian rhythm generator in the SCN and of peripheral oscillators during ontogenetic development.
Collapse
Affiliation(s)
- Elmar Christ
- Dr. Senckenbergische Anatomie II, Fachbereich Medizin, Goethe-Universität Frankfurt, Frankfurt am Main, Germany.
| | - Horst-Werner Korf
- Dr. Senckenbergische Anatomie II, Fachbereich Medizin, Goethe-Universität Frankfurt, Frankfurt am Main, Germany; Dr. Senckenbergisches Chronomedizinisches Institut, Goethe-Universität Frankfurt, Frankfurt am Main, Germany
| | - Charlotte von Gall
- Dr. Senckenbergische Anatomie II, Fachbereich Medizin, Goethe-Universität Frankfurt, Frankfurt am Main, Germany; Dr. Senckenbergisches Chronomedizinisches Institut, Goethe-Universität Frankfurt, Frankfurt am Main, Germany
| |
Collapse
|
316
|
Bollinger T, Leutz A, Leliavski A, Skrum L, Kovac J, Bonacina L, Benedict C, Lange T, Westermann J, Oster H, Solbach W. Circadian clocks in mouse and human CD4+ T cells. PLoS One 2011; 6:e29801. [PMID: 22216357 PMCID: PMC3247291 DOI: 10.1371/journal.pone.0029801] [Citation(s) in RCA: 131] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2011] [Accepted: 12/05/2011] [Indexed: 11/19/2022] Open
Abstract
Though it has been shown that immunological functions of CD4+ T cells are time of day-dependent, the underlying molecular mechanisms remain largely obscure. To address the question whether T cells themselves harbor a functional clock driving circadian rhythms of immune function, we analyzed clock gene expression by qPCR in unstimulated CD4+ T cells and immune responses of PMA/ionomycin stimulated CD4+ T cells by FACS analysis purified from blood of healthy subjects at different time points throughout the day. Molecular clock as well as immune function was further analyzed in unstimulated T cells which were cultured in serum-free medium with circadian clock reporter systems. We found robust rhythms of clock gene expression as well as, after stimulation, IL-2, IL-4, IFN-γ production and CD40L expression in freshly isolated CD4+ T cells. Further analysis of IFN-γ and CD40L in cultivated T cells revealed that these parameters remain rhythmic in vitro. Moreover, circadian luciferase reporter activity in CD4+ T cells and in thymic sections from PER2::LUCIFERASE reporter mice suggest that endogenous T cell clock rhythms are self-sustained under constant culture conditions. Microarray analysis of stimulated CD4+ T cell cultures revealed regulation of the NF-κB pathway as a candidate mechanism mediating circadian immune responses. Collectively, these data demonstrate for the first time that CD4+ T cell responses are regulated by an intrinsic cellular circadian oscillator capable of driving rhythmic CD4+ T cell immune responses.
Collapse
Affiliation(s)
- Thomas Bollinger
- Institute of Medical Microbiology and Hygiene, University of Lübeck, Lübeck, Germany.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
317
|
Fortier EE, Rooney J, Dardente H, Hardy MP, Labrecque N, Cermakian N. Circadian variation of the response of T cells to antigen. THE JOURNAL OF IMMUNOLOGY 2011; 187:6291-300. [PMID: 22075697 DOI: 10.4049/jimmunol.1004030] [Citation(s) in RCA: 131] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Circadian clocks regulate many important aspects of physiology, and their disturbance leads to various medical conditions. Circadian variations have been found in immune system variables, including daily rhythms in circulating WBC numbers and serum concentration of cytokines. However, control of immune functional responses by the circadian clock has remained relatively unexplored. In this study, we show that mouse lymph nodes exhibit rhythmic clock gene expression. T cells from lymph nodes collected over 24 h show a circadian variation in proliferation after stimulation via the TCR, which is blunted in Clock gene mutant mice. The tyrosine kinase ZAP70, which is just downstream of the TCR in the T cell activation pathway and crucial for T cell function, exhibits rhythmic protein expression. Lastly, mice immunized with OVA peptide-loaded dendritic cells in the day show a stronger specific T cell response than mice immunized at night. These data reveal circadian control of the Ag-specific immune response and a novel regulatory mode of T cell proliferation, and may provide clues for more efficient vaccination strategies.
Collapse
Affiliation(s)
- Erin E Fortier
- Douglas Mental Health University Institute, Montreal, Quebec H4H 1R3, Canada
| | | | | | | | | | | |
Collapse
|
318
|
Husse J, Zhou X, Shostak A, Oster H, Eichele G. Synaptotagmin10-Cre, a driver to disrupt clock genes in the SCN. J Biol Rhythms 2011; 26:379-89. [PMID: 21921292 DOI: 10.1177/0748730411415363] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Surgical lesion of the suprachiasmatic nuclei (SCN) profoundly affects the circadian timing system. A complication of SCN ablations is the concomitant scission of SCN afferents and efferents. Genetic disruption of the molecular clockwork in the SCN provides a complementary, less invasive experimental approach. The authors report the generation and functional analysis of a new Cre recombinase driver mouse that evokes homologous recombination with high efficiency in the SCN. They inserted the Cre recombinase cDNA into the Synaptotagmin10 (Syt10) locus, a gene strongly expressed in the SCN. Heterozygous Synaptotagmin10-Cre (Syt10(Cre)) mice have no obvious circadian locomotor phenotype, and homozygous animals show slightly reduced light-induced phase delays. Crosses of Syt10(Cre) mice with β-galactosidase reporter animals revealed strong Cre activity in the vast majority of SCN cells. Cre activity is not detected in nonneuronal tissues with the exception of the testis. The authors demonstrate that conditionally deleting the clock gene Bmal1 using the Syt10(Cre) driver renders animals arrhythmic.
Collapse
Affiliation(s)
- Jana Husse
- Genes and Behavior Department, Max Planck Institute for Biophysical Chemistry, Goettingen, Germany
| | | | | | | | | |
Collapse
|
319
|
Son GH, Chung S, Kim K. The adrenal peripheral clock: glucocorticoid and the circadian timing system. Front Neuroendocrinol 2011; 32:451-65. [PMID: 21802440 DOI: 10.1016/j.yfrne.2011.07.003] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2010] [Revised: 04/25/2011] [Accepted: 07/06/2011] [Indexed: 12/27/2022]
Abstract
The mammalian circadian timing system is organized in a hierarchy, with the master clock residing in the suprachiasmatic nucleus (SCN) of the hypothalamus and subsidiary peripheral clocks in other brain regions as well as peripheral tissues. Since the local oscillators in most cells contain a similar molecular makeup to that in the central pacemaker, determining the role of the peripheral clocks in the regulation of rhythmic physiology and behavior is an important issue. Glucocorticoids (GCs) are a class of multi-functional adrenal steroid hormones, which exhibit a robust circadian rhythm, with a peak linked with the onset of the daily activity phase. It has long been believed that the production and secretion of GC is primarily governed through the hypothalamus-pituitary-adrenal (HPA) neuroendocrine axis in mammals. Growing evidence, however, strongly supports the notion that the periodicity of GC involves the integrated activity of multiple regulatory mechanisms related to circadian timing system along with the classical HPA neuroendocrine regulation. The adrenal-intrinsic oscillator as well as the central pacemaker plays a pivotal role in its rhythmicity. GC influences numerous biological processes, such as metabolic, cardiovascular, immune and even higher brain functions, and also acts as a resetting signal for the ubiquitous peripheral clocks, suggesting its importance in harmonizing circadian physiology and behavior. In this review, we will therefore focus on the recent advances in our understanding of the circadian regulation of adrenal GC and its functional relevance.
Collapse
Affiliation(s)
- Gi Hoon Son
- Department of Biological Sciences, Seoul National University, Brain Research Center for the 21st Century Frontier Program in Neuroscience, Seoul 151-742, Republic of Korea
| | | | | |
Collapse
|
320
|
Košir R, Zmrzljak UP, Bele T, Acimovic J, Perse M, Majdic G, Prehn C, Adamski J, Rozman D. Circadian expression of steroidogenic cytochromes P450 in the mouse adrenal gland - involvement of cAMP-responsive element modulator in epigenetic regulation of Cyp17a1. FEBS J 2011; 279:1584-93. [DOI: 10.1111/j.1742-4658.2011.08317.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
321
|
Barclay J, Husse J, Oster H. Adrenal glucocorticoids as a target for jet lag therapies. Expert Rev Endocrinol Metab 2011; 6:673-679. [PMID: 30780875 DOI: 10.1586/eem.11.56] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
When traveling across time zones, our physiological functions lose synchrony relative to the external day. The endogenous circadian clocks that usually prepare our body for times of eating, sleeping and other rhythmic behavioral and physiological processes become temporally disrupted. Owing to the fact that these clocks cannot immediately realign, we experience jet lag, which is characterized by multiple physiological and psychological symptoms. Despite recent advances in understanding circadian clock function and the mechanisms of jet lag, limited therapy is available at present for the treatment of disorders associated with long-distance travel. Recent studies demonstrate that adrenal glucocorticoids are central mediators of circadian clock re-entrainment and are themselves under circadian regulation. It is therefore attractive to consider glucocorticoid signaling as a promising target for therapeutic intervention in the treatment of jet lag.
Collapse
Affiliation(s)
- Johanna Barclay
- a Circadian Rhythms Group, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Jana Husse
- b Genes & Behavior Department, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Henrik Oster
- a Circadian Rhythms Group, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
- c
| |
Collapse
|
322
|
Clock genes and sleep. Pflugers Arch 2011; 463:3-14. [DOI: 10.1007/s00424-011-1003-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2011] [Revised: 07/08/2011] [Accepted: 07/22/2011] [Indexed: 11/26/2022]
|
323
|
Melatonin: both master clock output and internal time-giver in the circadian clocks network. ACTA ACUST UNITED AC 2011; 105:170-82. [PMID: 21914478 DOI: 10.1016/j.jphysparis.2011.07.001] [Citation(s) in RCA: 207] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Daily rhythms in physiological and behavioral processes are controlled by a network of circadian clocks, reset by inputs and delivering circadian signals to the brain and peripheral organs. In mammals, at the top of the network is a master clock located in the suprachiasmatic nuclei (SCN) of the hypothalamus, mainly reset by ambient light. The nocturnal synthesis and release of melatonin by the pineal gland are tightly controlled by the SCN clock and inhibited by light exposure. Several roles of melatonin in the circadian system have been identified. As a major hormonal output, melatonin distributes temporal cues generated by the SCN to the multitude of tissue targets expressing melatonin receptors. In some target structures, like the Pars tuberalis of the adenohypophysis, these melatonin signals can drive daily rhythmicity that would otherwise be lacking. In other target structures, melatonin signals are used for the synchronization (i.e., adjustment of the timing of existing oscillations) of peripheral oscillators, such as the fetal adrenal gland. Due to the expression of melatonin receptors in the SCN, endogenous melatonin is also able to feedback onto the master clock, although its physiological significance needs further characterization. Of note, pharmacological treatment with exogenous melatonin can synchronize the SCN clock. From a clinical point of view, provided that the subject is not exposed to light at night, the daily profile of circulating melatonin provides a reliable estimate of the timing of the human SCN. During the past decade, a number of melatonin agonists have been developed for treating circadian, psychiatric and sleep disorders. These drugs may target the SCN for improving circadian timing or act indirectly at some downstream level of the circadian network to restore proper internal synchronization.
Collapse
|
324
|
Cho YH, Kim D, Choi I, Bae K. Identification of transcriptional regulatory elements required for the Mup2 expression in circadian clock mutant mice. Biochem Biophys Res Commun 2011; 410:834-40. [PMID: 21703244 DOI: 10.1016/j.bbrc.2011.06.074] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2011] [Accepted: 06/08/2011] [Indexed: 11/27/2022]
Abstract
The suprachiasmatic nuclei in the mammalian brain function as the regulators of circadian rhythm and coordinate the peripheral oscillators. Losses of clock genes alter gene expression and behavior. Here, we investigated whether disruption of the circadian clock and glucocorticoid signals would influence the gene expression of major urinary protein (Mup) in mice. Both Mup2 mRNA and protein showed biphasic rhythms with similar phase relationships. However, the peak of the rhythm is shifted in mPeriod2 circadian clock mutant mice. We identified two E-boxes and one glucocorticoid response element (GRE) as regulatory elements for Mup2 transcription. While CLOCK binds to the E-boxes constantly, glucocorticoid receptor was capable of binding to the GRE in a timely manner. All together, our results indicate that Mup2 expression is regulated by both the circadian clock and glucocorticoid.
Collapse
Affiliation(s)
- Yun-Hee Cho
- Division of Biological Science and Technology, Yonsei University, Wonju 220-710, Republic of Korea
| | | | | | | |
Collapse
|
325
|
Loh DH, Dragich JM, Kudo T, Schroeder AM, Nakamura TJ, Waschek JA, Block GD, Colwell CS. Effects of vasoactive intestinal peptide genotype on circadian gene expression in the suprachiasmatic nucleus and peripheral organs. J Biol Rhythms 2011; 26:200-9. [PMID: 21628547 PMCID: PMC3942163 DOI: 10.1177/0748730411401740] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The neuropeptide vasoactive intestinal polypeptide (VIP) has emerged as a key candidate molecule mediating the synchronization of rhythms in clock gene expression within the suprachiasmatic nucleus (SCN). In addition, neurons expressing VIP are anatomically well positioned to mediate communication between the SCN and peripheral oscillators. In this study, we examined the temporal expression profile of 3 key circadian genes: Per1, Per2 , and Bmal1 in the SCN, the adrenal glands and the liver of mice deficient for the Vip gene (VIP KO), and their wild-type counterparts. We performed these measurements in mice held in a light/dark cycle as well as in constant darkness and found that rhythms in gene expression were greatly attenuated in the VIP-deficient SCN. In the periphery, the impact of the loss of VIP varied with the tissue and gene measured. In the adrenals, rhythms in Per1 were lost in VIP-deficient mice, while in the liver, the most dramatic impact was on the phase of the diurnal expression rhythms. Finally, we examined the effects of the loss of VIP on ex vivo explants of the same central and peripheral oscillators using the PER2::LUC reporter system. The VIP-deficient mice exhibited low amplitude rhythms in the SCN as well as altered phase relationships between the SCN and the peripheral oscillators. Together, these data suggest that VIP is critical for robust rhythms in clock gene expression in the SCN and some peripheral organs and that the absence of this peptide alters both the amplitude of circadian rhythms as well as the phase relationships between the rhythms in the SCN and periphery.
Collapse
Affiliation(s)
- Dawn H. Loh
- Department of Psychiatry and Biobehavioral Sciences, University of California–Los Angeles, Los Angeles, CA
| | - Joanna M. Dragich
- Department of Psychiatry and Biobehavioral Sciences, University of California–Los Angeles, Los Angeles, CA
| | - Takashi Kudo
- Department of Psychiatry and Biobehavioral Sciences, University of California–Los Angeles, Los Angeles, CA
| | - Analyne M. Schroeder
- Department of Psychiatry and Biobehavioral Sciences, University of California–Los Angeles, Los Angeles, CA
| | - Takahiro J. Nakamura
- Department of Psychiatry and Biobehavioral Sciences, University of California–Los Angeles, Los Angeles, CA
| | - James A. Waschek
- Department of Psychiatry and Biobehavioral Sciences, University of California–Los Angeles, Los Angeles, CA
| | - Gene D. Block
- Department of Psychiatry and Biobehavioral Sciences, University of California–Los Angeles, Los Angeles, CA
| | - Christopher S. Colwell
- Department of Psychiatry and Biobehavioral Sciences, University of California–Los Angeles, Los Angeles, CA
| |
Collapse
|
326
|
Huang W, Ramsey KM, Marcheva B, Bass J. Circadian rhythms, sleep, and metabolism. J Clin Invest 2011; 121:2133-41. [PMID: 21633182 DOI: 10.1172/jci46043] [Citation(s) in RCA: 469] [Impact Index Per Article: 36.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The discovery of the genetic basis for circadian rhythms has expanded our knowledge of the temporal organization of behavior and physiology. The observations that the circadian gene network is present in most living organisms from eubacteria to humans, that most cells and tissues express autonomous clocks, and that disruption of clock genes results in metabolic dysregulation have revealed interactions between metabolism and circadian rhythms at neural, molecular, and cellular levels. A major challenge remains in understanding the interplay between brain and peripheral clocks and in determining how these interactions promote energy homeostasis across the sleep-wake cycle. In this Review, we evaluate how investigation of molecular timing may create new opportunities to understand and develop therapies for obesity and diabetes.
Collapse
Affiliation(s)
- Wenyu Huang
- Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, USA
| | | | | | | |
Collapse
|
327
|
Pantazopoulos H, Dolatshad H, Davis FC. A fear-inducing odor alters PER2 and c-Fos expression in brain regions involved in fear memory. PLoS One 2011; 6:e20658. [PMID: 21655193 PMCID: PMC3105109 DOI: 10.1371/journal.pone.0020658] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2011] [Accepted: 05/06/2011] [Indexed: 12/04/2022] Open
Abstract
Evidence demonstrates that rodents learn to associate a foot shock with time of day, indicating the formation of a fear related time-stamp memory, even in the absence of a functioning SCN. In addition, mice acquire and retain fear memory better during the early day compared to the early night. This type of memory may be regulated by circadian pacemakers outside of the SCN. As a first step in testing the hypothesis that clock genes are involved in the formation of a time-stamp fear memory, we exposed one group of mice to fox feces derived odor (TMT) at ZT 0 and one group at ZT 12 for 4 successive days. A separate group with no exposure to TMT was also included as a control. Animals were sacrificed one day after the last exposure to TMT, and PER2 and c-Fos protein were quantified in the SCN, amygdala, hippocampus, and piriform cortex. Exposure to TMT had a strong effect at ZT 0, decreasing PER2 expression at this time point in most regions except the SCN, and reversing the normal rhythm of PER2 expression in the amygdala and piriform cortex. These changes were accompanied by increased c-Fos expression at ZT0. In contrast, exposure to TMT at ZT 12 abolished the rhythm of PER2 expression in the amygdala. In addition, increased c-Fos expression at ZT 12 was only detected in the central nucleus of the amygdala in the TMT12 group. TMT exposure at either time point did not affect PER2 or c-Fos in the SCN, indicating that under a light-dark cycle, the SCN rhythm is stable in the presence of repeated exposure to a fear-inducing stimulus. Taken together, these results indicate that entrainment to a fear-inducing stimulus leads to changes in PER2 and c-Fos expression that are detected 24 hours following the last exposure to TMT, indicating entrainment of endogenous oscillators in these regions. The observed effects on PER2 expression and c-Fos were stronger during the early day than during the early night, possibly to prepare appropriate systems at ZT 0 to respond to a fear-inducing stimulus.
Collapse
Affiliation(s)
- Harry Pantazopoulos
- Department of Biology, Northeastern University, Boston, Massachusetts, United States of America.
| | | | | |
Collapse
|
328
|
Torres-Farfan C, Mendez N, Abarzua-Catalan L, Vilches N, Valenzuela GJ, Seron-Ferre M. A circadian clock entrained by melatonin is ticking in the rat fetal adrenal. Endocrinology 2011; 152:1891-900. [PMID: 21363938 DOI: 10.1210/en.2010-1260] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The adrenal gland in the adult is a peripheral circadian clock involved in the coordination of energy intake and expenditure, required for adaptation to the external environment. During fetal life, a peripheral circadian clock is present in the nonhuman primate adrenal gland. Whether this extends to the fetal adrenal gland like the rat is unknown. Here we explored in vivo and in vitro whether the rat fetal adrenal is a peripheral circadian clock entrained by melatonin. We measured the 24-h changes in adrenal content of corticosterone and in the expression of clock genes Per-2 and Bmal-1 and of steroidogenic acute regulatory protein (StAR), Mt1 melatonin receptor, and early growth response protein 1 (Egr-1) expression. In culture, we explored whether oscillatory expression of these genes persisted during 48 h and the effect of a 4-h melatonin pulse on their expression. In vivo, the rat fetal adrenal gland showed circadian expression of Bmal-1 and Per-2 in antiphase (acrophases at 2200 and 1300 h, respectively) as well as of Mt1 and Egr-1. This was accompanied by circadian rhythms of corticosterone content and of StAR expression both peaking at 0600 h. The 24-h oscillatory expression of Bmal-1, Per-2, StAR, Mt1, and Egr-1 persisted during 48 h in culture; however, the antiphase between Per-2 and Bmal-1 was lost. The pulse of melatonin shifted the acrophases of all the genes studied and restored the antiphase between Per-2 and Bmal-1. Thus, in the rat, the fetal adrenal is a strong peripheral clock potentially amenable to regulation by maternal melatonin.
Collapse
Affiliation(s)
- C Torres-Farfan
- Departamento de Fisiopatología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Casilla 16038, Santiago 9, Santiago, Chile.
| | | | | | | | | | | |
Collapse
|
329
|
Chung S, Son GH, Kim K. Circadian rhythm of adrenal glucocorticoid: Its regulation and clinical implications. Biochim Biophys Acta Mol Basis Dis 2011; 1812:581-91. [DOI: 10.1016/j.bbadis.2011.02.003] [Citation(s) in RCA: 154] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2010] [Revised: 01/31/2011] [Accepted: 02/07/2011] [Indexed: 10/18/2022]
|
330
|
Kino T, Chrousos GP. Acetylation-mediated epigenetic regulation of glucocorticoid receptor activity: circadian rhythm-associated alterations of glucocorticoid actions in target tissues. Mol Cell Endocrinol 2011; 336:23-30. [PMID: 21146585 PMCID: PMC3057275 DOI: 10.1016/j.mce.2010.12.001] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2010] [Revised: 11/30/2010] [Accepted: 12/02/2010] [Indexed: 11/25/2022]
Abstract
Glucocorticoids influence organ functions through the glucocorticoid receptor, a protein acetylated and deacetylated by several histone acetyltransferases and deacetylases. We reported that the circadian rhythm-related transcription factor "Clock", a key component of the biological CLOCK with inherent histone acetyltransferase activity, acetylates glucocorticoid receptor lysines within its hinge region--a "lysine cluster" containing a KXKK motif--and represses its transcriptional activity. This Clock-induced repression of the glucocorticoid receptor activity is inversely phased to the diurnally circulating glucocorticoids and may act as a local counter regulatory mechanism to the actions of these hormones. Importantly, uncoupling of the central CLOCK-regulated hypothalamic-pituitary-adrenal axis and peripheral CLOCK-mediated alterations of glucocorticoid action, such as chronic stress and frequent trans-time zone travel or night-shift work, may cause functional hypercortisolism and contribute to various pathologies. Thus, acetylation-mediated epigenetic regulation of the glucocorticoid receptor may be essential for the maintenance of proper time-integrated glucocorticoid action, significantly influencing human well-being and longevity.
Collapse
Affiliation(s)
- Tomoshige Kino
- Unit on Molecular Hormone Action, Program in Reproductive and Adult Endocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bldg. 10, CRC, Rm. 1-3140, 10 Center Drive MSC 1109, Bethesda, MD 20892-1109, USA.
| | | |
Collapse
|
331
|
Chung S, Son GH, Kim K. Adrenal peripheral oscillator in generating the circadian glucocorticoid rhythm. Ann N Y Acad Sci 2011; 1220:71-81. [DOI: 10.1111/j.1749-6632.2010.05923.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
332
|
Rahman SA, Marcu S, Shapiro CM, Brown TJ, Casper RF. Spectral modulation attenuates molecular, endocrine, and neurobehavioral disruption induced by nocturnal light exposure. Am J Physiol Endocrinol Metab 2011; 300:E518-27. [PMID: 21177289 DOI: 10.1152/ajpendo.00597.2010] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The human eye serves distinctly dual roles in image forming (IF) and non-image-forming (NIF) responses when exposed to light. Whereas IF responses mediate vision, the NIF responses affect various molecular, neuroendocrine, and neurobehavioral variables. NIF responses can have acute and circadian phase-shifting effects on physiological variables. Both the acute and phase-shifting effects induced by photic stimuli demonstrate short-wavelength sensitivity peaking ≈450-480 nm. In the current study, we examined the molecular, neuroendocrine, and neurobehavioral effects of completely filtering (0% transmission) all short wavelengths <480 nm and all short wavelengths <460 nm or partially filtering (~30% transmission) <480 nm from polychromatic white light exposure between 2000 and 0800 in healthy individuals. Filtering short wavelengths <480 nm prevented nocturnal light-induced suppression of melatonin secretion, increased cortisol secretion, and disrupted peripheral clock gene expression. Furthermore, subjective alertness, mood, and errors on an objective vigilance task were significantly less impaired at 0800 by filtering wavelengths <480 nm compared with unfiltered nocturnal light exposure. These changes were not associated with significantly increased sleepiness or fatigue compared with unfiltered light exposure. The changes in molecular, endocrine, and neurobehavioral processes were not significantly improved by completely filtering <460 nm or partially filtering <480 nm compared with unfiltered nocturnal light exposure. Repeated light-dark cycle alterations as in rotating nightshifts can disrupt circadian rhythms and induce health disorders. The current data suggest that spectral modulation may provide an effective method of regulating the effects of light on physiological processes.
Collapse
Affiliation(s)
- Shadab A Rahman
- Samuel Lunenfeld Research Institute, 25 Orde St., Mount Sinai Hospital, Toronto, Ontario, Canada
| | | | | | | | | |
Collapse
|
333
|
Handa RJ, Sharma D, Uht R. A role for the androgen metabolite, 5alpha androstane 3beta, 17beta diol (3β-diol) in the regulation of the hypothalamo-pituitary-adrenal axis. Front Endocrinol (Lausanne) 2011; 2:65. [PMID: 22649380 PMCID: PMC3355903 DOI: 10.3389/fendo.2011.00065] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2011] [Accepted: 10/13/2011] [Indexed: 01/22/2023] Open
Abstract
Activation of the hypothalamo-pituitary-adrenal (HPA) axis is a basic reaction of animals to environmental perturbations that threaten homeostasis. These responses are ultimately regulated by neurons residing within the paraventricular nucleus (PVN) of the hypothalamus. Within the PVN, corticotrophin-releasing hormone (CRH), vasopressin (AVP), and oxytocin (OT) expressing neurons are critical as they can regulate both neuroendocrine and autonomic responses. Estradiol (E2) and testosterone (T) are well known reproductive hormones; however, they have also been shown to modulate stress reactivity. In rodent models, evidence shows that under some conditions E2 enhances stress activated adrenocorticotropic hormone (ACTH) and corticosterone secretion. In contrast, T decreases the gain of the HPA axis. The modulatory role of testosterone was originally thought to be via 5 alpha reduction to the potent androgen dihydrotestosterone (DHT) and its subsequent binding to the androgen receptor, whereas E2 effects were thought to be mediated by estrogen receptors alpha (ERalpha) and beta (ERbeta). However, DHT has been shown to be metabolized to the ERbeta agonist, 5α- androstane 3β, 17β Diol (3β-Diol). The actions of 3β-Diol on the HPA axis are mediated by ERbeta which inhibits the PVN response to stressors. In gonadectomized rats, ERbeta agonists reduce CORT and ACTH responses to restraint stress, an effect that is also present in wild-type but not ERbeta-knockout mice. The neurobiological mechanisms underlying the ability of ERbeta to alter HPA reactivity are not currently known. CRH, AVP, and OT have all been shown to be regulated by estradiol and recent studies indicate an important role of ERbeta in these regulatory processes. Moreover, activation of the CRH and AVP promoters has been shown to occur by 3β-Diol binding to ERbeta and this is thought to occur through alternate pathways of gene regulation. Based on available data, a novel and important role of 3β-Diol in the regulation of the HPA axis is suggested.
Collapse
Affiliation(s)
- Robert J. Handa
- Department of Basic Medical Sciences, University of Arizona College of Medicine – PhoenixPhoenix, AZ, USA
- *Correspondence: Robert J. Handa, Department of Basic Medical Sciences, University of Arizona College of Medicine – Phoenix, 425 N. 5th Street, Phoenix, AZ 85004, USA. e-mail:
| | - Dharmendra Sharma
- Department of Pharmacology and Neuroscience and Institute for Aging and Alzheimers Disease Research, University of North Texas Health Sciences CenterFort Worth, TX, USA
| | - Rosalie Uht
- Department of Pharmacology and Neuroscience and Institute for Aging and Alzheimers Disease Research, University of North Texas Health Sciences CenterFort Worth, TX, USA
| |
Collapse
|
334
|
Abstract
Intrinsically photosensitive retinal ganglion cells (ipRGCs) respond to light in the absence of all rod and cone photoreceptor input. The existence of these ganglion cell photoreceptors, although predicted from observations scattered over many decades, was not established until it was shown that a novel photopigment, melanopsin, was expressed in retinal ganglion cells of rodents and primates. Phototransduction in mammalian ipRGCs more closely resembles that of invertebrate than vertebrate photoreceptors and appears to be mediated by transient receptor potential channels. In the retina, ipRGCs provide excitatory drive to dopaminergic amacrine cells and ipRGCs are coupled to GABAergic amacrine cells via gap junctions. Several subtypes of ipRGC have been identified in rodents based on their morphology, physiology and expression of molecular markers. ipRGCs convey irradiance information centrally via the optic nerve to influence several functions including photoentrainment of the biological clock located in the hypothalamus, the pupillary light reflex, sleep and perhaps some aspects of vision. In addition, ipRGCs may also contribute irradiance signals that interface directly with the autonomic nervous system to regulate rhythmic gene activity in major organs of the body. Here we review the early work that provided the motivation for searching for a new mammalian photoreceptor, the ground-breaking discoveries, current progress that continues to reveal the unusual properties of these neuron photoreceptors, and directions for future investigation.
Collapse
Affiliation(s)
- Gary E Pickard
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska, Lincoln, NE 68583, USA.
| | | |
Collapse
|
335
|
Variations in daily expression of the circadian clock protein, PER2, in the rat limbic forebrain during stable entrainment to a long light cycle. J Mol Neurosci 2010; 45:154-61. [PMID: 21063915 DOI: 10.1007/s12031-010-9469-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2010] [Accepted: 10/28/2010] [Indexed: 10/18/2022]
Abstract
The circadian clock in the mammalian suprachiasmatic nucleus (SCN) can be entrained by light cycles longer than the normal 24-h light/dark (LD) cycle, but little is known about the effect of such cycles on circadian clocks outside the SCN. Here we examined the effect of exposure to a 26-h T cycle (T26, 1 h:25 h LD) on patterns of expression of the clock protein, PERIOD2 (PER2), in the SCN and in four regions of the limbic forebrain known to exhibit robust circadian oscillations in PER2: the oval nucleus of the bed nucleus of the stria terminalis (BNSTov), central nucleus of the amygdala (CEA), basolateral amygdala (BLA), and dentate gyrus (DG). All rats showed stable entrainment of running wheel activity rhythms to the T26 cycle. As previously shown, PER2 expression in the SCN was stably entrained, peaking around the onset of locomotor activity. In contrast, exposure to the T26 cycle uncoupled the rhythms of PER2 expression in the BNSTov and CEA from that of the SCN, whereas PER2 rhythms in the BLA and DG were unaffected. These results show that exposure to long light cycles can uncouple circadian oscillators in select nuclei of the limbic forebrain from the SCN clock and suggest that such cycles may be used to study the functional consequences of coupling and uncoupling of brain circadian oscillators.
Collapse
|
336
|
Wang Q, Maillard M, Schibler U, Burnier M, Gachon F. Cardiac hypertrophy, low blood pressure, and low aldosterone levels in mice devoid of the three circadian PAR bZip transcription factors DBP, HLF, and TEF. Am J Physiol Regul Integr Comp Physiol 2010; 299:R1013-9. [DOI: 10.1152/ajpregu.00241.2010] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The cardiovascular system is under the control of the circadian clock, and disturbed circadian rhythms can induce cardiovascular pathologies. This cyclic regulation is probably brought about by the circadian expression of genes encoding enzymes and regulators involved in cardiovascular functions. We have previously shown that the rhythmic transcription of output genes is, in part, regulated by the clock-controlled PAR bZip transcription factors DBP (albumin D-site binding protein), HLF (hepatic leukemia factor), and TEF (thyrotroph embryonic factor). The simultaneous deletion of all three PAR bZip transcription factors leads to increased morbidity and shortened life span. In the present study, we demonstrate that Dbp/ Tef/ Hlf triple knockout mice develop cardiac hypertrophy and left ventricular dysfunction associated with a low blood pressure. These dysfunctions are exacerbated by an abnormal response to this low blood pressure characterized by low aldosterone levels. The phenotype of PAR bZip knockout mice highlights the importance of circadian regulators in the modulation of cardiovascular functions.
Collapse
Affiliation(s)
- Qing Wang
- Service of Nephrology and Hypertension, Centre Hospitalier Universitaire Vaudois, Lausanne
- Huazhong University of Science and Technology, Wuhan, China
| | - Marc Maillard
- Service of Nephrology and Hypertension, Centre Hospitalier Universitaire Vaudois, Lausanne
| | - Ueli Schibler
- Department of Molecular Biology and National Center of Competence Research Frontiers in Genetics, University of Geneva, Geneva
| | - Michel Burnier
- Service of Nephrology and Hypertension, Centre Hospitalier Universitaire Vaudois, Lausanne
| | - Frédéric Gachon
- Department of Molecular Biology and National Center of Competence Research Frontiers in Genetics, University of Geneva, Geneva
- Department of Pharmacology and Toxicology, University of Lausanne, Lausanne, Switzerland; and
| |
Collapse
|
337
|
Kiessling S, Eichele G, Oster H. Adrenal glucocorticoids have a key role in circadian resynchronization in a mouse model of jet lag. J Clin Invest 2010; 120:2600-9. [PMID: 20577050 DOI: 10.1172/jci41192] [Citation(s) in RCA: 206] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2009] [Accepted: 05/05/2010] [Indexed: 12/19/2022] Open
Abstract
Jet lag encompasses a range of psycho- and physiopathological symptoms that arise from temporal misalignment of the endogenous circadian clock with external time. Repeated jet lag exposure, encountered by business travelers and airline personnel as well as shift workers, has been correlated with immune deficiency, mood disorders, elevated cancer risk, and anatomical anomalies of the forebrain. Here, we have characterized the molecular response of the mouse circadian system in an established experimental paradigm for jet lag whereby mice entrained to a 12-hour light/12-hour dark cycle undergo light phase advancement by 6 hours. Unexpectedly, strong heterogeneity of entrainment kinetics was found not only between different organs, but also within the molecular clockwork of each tissue. Manipulation of the adrenal circadian clock, in particular phase-shifting of adrenal glucocorticoid rhythms, regulated the speed of behavioral reentrainment. Blocking adrenal corticosterone either prolonged or shortened jet lag, depending on the time of administration. This key role of adrenal glucocorticoid phasing for resetting of the circadian system provides what we believe to be a novel mechanism-based approach for possible therapies for jet lag and jet lag-associated diseases.
Collapse
Affiliation(s)
- Silke Kiessling
- Department Genes and Behavior, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany
| | | | | |
Collapse
|
338
|
Chan S, Debono M. Replication of cortisol circadian rhythm: new advances in hydrocortisone replacement therapy. Ther Adv Endocrinol Metab 2010; 1:129-38. [PMID: 23148157 PMCID: PMC3475279 DOI: 10.1177/2042018810380214] [Citation(s) in RCA: 148] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Cortisol has one of the most distinct and fascinating circadian rhythms in human physiology. This is regulated by the central clock located in the suprachiasmatic nucleus of the hypothalamus. It has been suggested that cortisol acts as a secondary messenger between central and peripheral clocks, hence its importance in the synchronization of body circadian rhythms. Conventional immediate-release hydrocortisone, either at twice- or thrice-daily doses, is not capable of replicating physiological cortisol circadian rhythm and patients with adrenal insufficiency or congenital adrenal hyperplasia still suffer from a poor quality of life and increased mortality. Novel treatments for replacement therapy are therefore essential. Proof-of-concept studies using hydrocortisone infusions suggest that the circadian delivery of hydrocortisone may improve biochemical control and life quality in patients lacking cortisol with an impaired cortisol rhythm. Recently oral formulations of modified-release hydrocortisone are being developed and it has been shown that it is possible to replicate cortisol circadian rhythm and also achieve better control of morning androgen levels. These new drug therapies are promising and potentially offer a more effective treatment with less adverse effects. Definite improvements clearly need to be established in future clinical trials.
Collapse
Affiliation(s)
- Sharon Chan
- Dr Sharon Chan, MBChB Department of Medicine, Royal Hallamshire Hospital, Glossop Road, Sheffield, S10 2JF, UK
| | - Miguel Debono
- Correspondence to: Dr Miguel Debono, MD, MRCP M Floor, Room 110, Academic Unit of Endocrinology, Department of Human Metabolism, University of Sheffield, Beech Hill Road, Sheffield S10 2RX, UK
| |
Collapse
|
339
|
Abstract
The circadian clock organizes biochemical and physiological processes of an organism in a temporal fashion. This temporal organization is crucial to avoid interference of processes that have adverse effects on each other. Thus, disruption of temporal organization can lead to health problems and behavioral disorders related to mood alterations. To alleviate the consequences of a disrupted temporal organization in the body, it is of importance to understand the processes involved in the synchronization of all body clocks and their phase relationship to the environmental day/night cycle at the mechanistic level. This review will focus on internal and external factors affecting synchronization and function of the circadian system and highlight connections to mood-related behavior.
Collapse
Affiliation(s)
- Urs Albrecht
- Department of Medicine, Unit of Biochemistry, University of Fribourg, 1700 Fribourg, Switzerland.
| |
Collapse
|
340
|
Nader N, Chrousos GP, Kino T. Interactions of the circadian CLOCK system and the HPA axis. Trends Endocrinol Metab 2010; 21:277-86. [PMID: 20106676 PMCID: PMC2862789 DOI: 10.1016/j.tem.2009.12.011] [Citation(s) in RCA: 284] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2009] [Revised: 12/18/2009] [Accepted: 12/30/2009] [Indexed: 12/21/2022]
Abstract
Organisms have developed concurrent behavioral and physiological adaptations to the strong influence of day/night cycles, as well as to unforeseen, random stress stimuli. These circadian and stress-related responses are achieved by two highly conserved and interrelated regulatory networks, the circadian CLOCK and stress systems, which respectively consist of oscillating molecular pacemakers, the Clock/Bmal1 transcription factors, and the hypothalamic-pituitary-adrenal (HPA) axis and its end-effector, the glucocorticoid receptor. These systems communicate with one another at different signaling levels and dysregulation of either system can lead to development of pathologic conditions. In this review, we summarize the mutual physiologic interactions between the circadian CLOCK system and the HPA axis, and discuss their clinical implications.
Collapse
Affiliation(s)
- Nancy Nader
- Unit on Molecular Hormone Action, Program in Reproductive and Adult Endocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - George P. Chrousos
- 1st Department of Pediatrics, University of Athens Medical School, Athens 11527, Greece
| | - Tomoshige Kino
- Unit on Molecular Hormone Action, Program in Reproductive and Adult Endocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
- Corresponding author Address correspondence and requests for materials and reprints to: Tomoshige Kino, M.D., Ph.D., Unit on Molecular Hormone Action, Program in Reproductive and Adult Endocrinology, Eunice Kennedy Shriver National Institute of Child Health, and Human Development, National Institutes of Health, Bldg. 10, Clinical Research Center, Rm. 1-3140, 10 Center Drive MSC 1109, Bethesda, MD 20892-1109, USA, hone: 301-496-6417, Fax: 301-402-0884,
| |
Collapse
|
341
|
Chen GL, Novak MA, Meyer JS, Kelly BJ, Vallender EJ, Miller GM. TPH2 5'- and 3'-regulatory polymorphisms are differentially associated with HPA axis function and self-injurious behavior in rhesus monkeys. GENES, BRAIN, AND BEHAVIOR 2010; 9:335-47. [PMID: 20059554 PMCID: PMC2990963 DOI: 10.1111/j.1601-183x.2010.00564.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Tryptophan hydroxylase-2 (TPH2) synthesizes neuronal serotonin and is linked to numerous behavioral traits. We have previously characterized the functionality of polymorphisms (especially 2051A>C) in 3'-untranslated region (3'-UTR) of rhesus monkey TPH2 (rhTPH2). This study further assessed the functionality of additional polymorphisms (-1605T>C, -1491Tn, -1485(AT)n, -1454A>G, -1325In>Del and -363T>G) in rhTPH2 5'-flanking region (5'-FR), and evaluated the effects of rhTPH2 5' and 3' genotypes on central serotonin turnover, hypothalamic-pituitary-adrenal (HPA) axis function and self-injurious behavior (SIB) in 32 unrelated adult male monkeys of Indian origin. Haplotypes of the rhTPH2 5'-FR polymorphisms exert a significant, cell-dependent effect on reporter gene expression, primarily conferred by -1485(AT)n. The -1485(AT)n and 2051A>C polymorphisms interact to influence cerebrospinal fluid (CSF) 5-HIAA and plasma adrenocorticotropic hormone (ACTH) in the afternoon. While -1485(AT)n exerts significant main effects on the afternoon cortisol level and nocturnal HPA negative feedback, 2051A>C has significant main effects on the morning cortisol level and cortisol response to ACTH challenge, as well as marginally significant main effects on the daytime HPA negative feedback and self-biting rate. In addition, the genotype/allele frequency of the 5'-FR -1325Ins>Del differed significantly between the self-wounders and non-wounders, whereas 3'-UTR 2128S>L polymorphism differed significantly in genotype/allele frequency between the high- and low-frequency biters. This study shows the functionality of rhTPH2 5'-FR polymorphisms, and provides evidence for the differential association of rhTPH2 5'-FR and 3'-UTR polymorphisms with HPA axis function and SIB. Our findings shed light on the role of TPH2 gene variance in physiology and behavioral traits, and also contribute to the understanding of the pathophysiology and genetics of SIB.
Collapse
Affiliation(s)
- Guo-Lin Chen
- Harvard Medical School, New England Primate Research Center, Division of Neurochemistry, One Pine Hill Drive, Southborough, MA 01772–9102, USA
| | - Melinda A. Novak
- Harvard Medical School, New England Primate Research Center, Division of Neurochemistry, One Pine Hill Drive, Southborough, MA 01772–9102, USA
- Department of Psychology, University of Massachusetts at Amherst, Amherst, MA, USA
| | - Jerrold S. Meyer
- Department of Psychology, University of Massachusetts at Amherst, Amherst, MA, USA
| | - Brian J. Kelly
- Harvard Medical School, New England Primate Research Center, Division of Neurochemistry, One Pine Hill Drive, Southborough, MA 01772–9102, USA
| | - Eric J. Vallender
- Harvard Medical School, New England Primate Research Center, Division of Neurochemistry, One Pine Hill Drive, Southborough, MA 01772–9102, USA
| | - Gregory M. Miller
- Harvard Medical School, New England Primate Research Center, Division of Neurochemistry, One Pine Hill Drive, Southborough, MA 01772–9102, USA
| |
Collapse
|
342
|
Dibner C, Schibler U, Albrecht U. The Mammalian Circadian Timing System: Organization and Coordination of Central and Peripheral Clocks. Annu Rev Physiol 2010; 72:517-49. [DOI: 10.1146/annurev-physiol-021909-135821] [Citation(s) in RCA: 1626] [Impact Index Per Article: 116.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Most physiology and behavior of mammalian organisms follow daily oscillations. These rhythmic processes are governed by environmental cues (e.g., fluctuations in light intensity and temperature), an internal circadian timing system, and the interaction between this timekeeping system and environmental signals. In mammals, the circadian timekeeping system has a complex architecture, composed of a central pacemaker in the brain's suprachiasmatic nuclei (SCN) and subsidiary clocks in nearly every body cell. The central clock is synchronized to geophysical time mainly via photic cues perceived by the retina and transmitted by electrical signals to SCN neurons. In turn, the SCN influences circadian physiology and behavior via neuronal and humoral cues and via the synchronization of local oscillators that are operative in the cells of most organs and tissues. Thus, some of the SCN output pathways serve as input pathways for peripheral tissues. Here we discuss knowledge acquired during the past few years on the complex structure and function of the mammalian circadian timing system.
Collapse
Affiliation(s)
- Charna Dibner
- Division of Endocrinology, Diabetes and Nutrition, Geneva University Hospital (HUG), CH-1211 Geneva-14, Switzerland
| | - Ueli Schibler
- Department of Molecular Biology & NCCR Frontiers in Genetics, Sciences III, University of Geneva, CH-1211 Geneva-4, Switzerland
| | - Urs Albrecht
- Department of Medicine, Division of Biochemistry, University of Fribourg, CH-1700 Fribourg, Switzerland
| |
Collapse
|
343
|
Abstract
In mammals, many physiological processes present diurnal variations, and most of these rhythms persist even in absence of environmental timing cues. These endogenous circadian rhythms are generated by intracellular timing mechanisms termed circadian clocks. In mammals, the master clock is located in the suprachiasmatic nuclei (SCN), but other brain regions and most peripheral tissues contain circadian clocks. These clocks are responsive to environmental cues, in particular light/dark and feeding/fasting cycles. In the last few years, tissue-specific knock-out and transgenic mouse models have helped to define the physiological roles of specific clocks. Recent reports indicate that the clock-physiology connection is bi-directional, and physiological cues, in particular the energetic status of the cell, can feed into the clockwork. This effect was discovered unexpectedly in molecular analyses of clock protein modifications. Beyond the positive and negative transcription/translation feedback loops of the molecular oscillator lies another level of complexity. Post-translational modifications of clock proteins are both critical for the timing of the clock feedback mechanism and to provide regulatory fine-tuning. This review summarizes recent advances in our understanding of the roles of peripheral clocks and of post-translational modifications occurring on clock proteins. These two matters are at the intersection of physiology, metabolism, and the circadian system.
Collapse
Affiliation(s)
- David Duguay
- Laboratory of Molecular Chronobiology, Douglas Mental Health University Institute, 6875 LaSalle Blvd., Montreal, QC, Canada
| | | |
Collapse
|
344
|
Segall LA, Amir S. Glucocorticoid regulation of clock gene expression in the mammalian limbic forebrain. J Mol Neurosci 2010; 42:168-75. [PMID: 20191328 DOI: 10.1007/s12031-010-9341-1] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2010] [Accepted: 02/08/2010] [Indexed: 11/30/2022]
Abstract
Glucocorticoids regulate a wide variety of functions, including synaptic plasticity, hypothalamic-pituitary-adrenal axis activation, conditional fear learning, metabolism, and sensitization to drugs of abuse. The diurnal secretion of glucocorticoids, driven by the mammalian master clock located in the suprachiasmatic nucleus of the hypothalamus, has been shown to induce and entrain clock gene expression in peripheral tissues. However, little attention has been given to the form and function of centrally located subordinate oscillators, and the synchronizing factors that influence them. Here we review findings that implicate glucocorticoids in the circadian regulation of clock genes in select oscillators in the limbic forebrain and propose mechanisms whereby glucocorticoids can feed back on rhythms downstream from the master clock and possibly alter the functional output of these nuclei.
Collapse
Affiliation(s)
- Lauren A Segall
- Center for Studies in Behavioral Neurobiology/Groupe de Recherche en Neurobiologie Comportementale, Department of Psychology, Concordia University, SP-244, 7141 Sherbrooke St. West, Montreal, QC H4B1R6, Canada
| | | |
Collapse
|
345
|
Intrinsically photosensitive retinal ganglion cells. SCIENCE CHINA-LIFE SCIENCES 2010; 53:58-67. [PMID: 20596956 DOI: 10.1007/s11427-010-0024-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2009] [Accepted: 12/30/2009] [Indexed: 01/13/2023]
Abstract
A new mammalian photoreceptor was recently discovered to reside in the ganglion cell layer of the inner retina. These intrinsically photosensitive retinal ganglion cells (ipRGCs) express a photopigment, melanopsin that confers upon them the ability to respond to light in the absence of all rod and cone photoreceptor input. Although relatively few in number, ipRGCs extend their dendrites across large expanses of the retina making them ideally suited to function as irradiance detectors to assess changes in ambient light levels. Phototransduction in ipRGCs appears to be mediated by transient receptor potential channels more closely resembling the phototransduction cascade of invertebrate than vertebrate photoreceptors. ipRGCs convey irradiance information centrally via the optic nerve to influence several functions. ipRGCs are the primary retinal input to the hypothalamic suprachiasmatic nucleus (SCN), a circadian oscillator and biological clock, and this input entrains the SCN to the day/night cycle. ipRGCs contribute irradiance signals that regulate pupil size and they also provide signals that interface with the autonomic nervous system to regulate rhythmic gene activity in major organs of the body. ipRGCs also provide excitatory drive to dopaminergic amacrine cells in the retina, providing a novel basis for the restructuring of retinal circuits by light. Here we review the ground-breaking discoveries, current progress and directions for future investigation.
Collapse
|
346
|
Chen GL, Novak MA, Meyer JS, Kelly BJ, Vallender EJ, Miller GM. The effect of rearing experience and TPH2 genotype on HPA axis function and aggression in rhesus monkeys: a retrospective analysis. Horm Behav 2010; 57:184-91. [PMID: 19900455 PMCID: PMC2815197 DOI: 10.1016/j.yhbeh.2009.10.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2009] [Revised: 10/28/2009] [Accepted: 10/29/2009] [Indexed: 01/14/2023]
Abstract
Gene-environment (GxE) interactions contribute to the development of many neuropsychiatric disorders. Tryptophan hydroxylase-2 (TPH2) synthesizes neuronal serotonin and is closely related to the hypothalamic-pituitary-adrenal (HPA) axis, while early life experience is a critical environmental factor programming the HPA axis response to stress. This retrospective study investigated GxE interaction at the TPH2 locus in rhesus monkeys. Twenty-eight adult, male rhesus monkeys of Indian origin, either mother-reared or peer-reared as infants, were involved in this study. These monkeys have been previously genotyped for the functional A2051C polymorphism in rhTPH2, and had been physiologically and behaviorally characterized. rhTPH2 A2051C exerted a significant main effect (CC>AA&AC) on the cerebrospinal fluid (CSF) level of 5-hydroxyindole-3-acetic acid (5-HIAA; F((1,14))=6.42, p=0.024), plasma cortisol level in the morning (F((1,18))=14.63, p=0.002) and cortisol response to ACTH challenge (F((1,17))=6.87, p=0.018), while the rearing experience showed a significant main effect (PR>MR) on CSF CRH (F((1,20))=11.66, p=0.003) and cage shaking behavior (F((1,27))=4.45, p=0.045). The effects of rhTPH2 A2051C on the afternoon cortisol level, plasma ACTH level, dexamethasone suppression of urinary cortisol excretion, and aggression were dependent upon the rearing experience. These results were not confounded by the functional C77G polymorphism in the mu-opioid receptor (MOR). The present study supports the hypothesis that rearing experience and rhTPH2 A2051C interact to influence central 5-HT metabolism, HPA axis function, and aggressive behaviors. Our findings strengthen the involvement of G x E interactions at the loci of serotonergic genes and the utility of the nonhuman primate to model G x E interactions in the development of human neuropsychiatric diseases.
Collapse
Affiliation(s)
- Guo-Lin Chen
- Harvard Medical School, New England Primate Research Center, Division of Neurochemistry, One Pine Hill Drive, Southborough, MA 01772, USA
| | - Melinda A. Novak
- Harvard Medical School, New England Primate Research Center, Division of Neurochemistry, One Pine Hill Drive, Southborough, MA 01772, USA
- Department of Psychology, University of Massachusetts at Amherst, Amherst, MA 01003, USA
| | - Jerrold S. Meyer
- Department of Psychology, University of Massachusetts at Amherst, Amherst, MA 01003, USA
| | - Brian J. Kelly
- Harvard Medical School, New England Primate Research Center, Division of Neurochemistry, One Pine Hill Drive, Southborough, MA 01772, USA
- Department of Psychology, University of Massachusetts at Amherst, Amherst, MA 01003, USA
| | - Eric J. Vallender
- Harvard Medical School, New England Primate Research Center, Division of Neurochemistry, One Pine Hill Drive, Southborough, MA 01772, USA
| | - Gregory M. Miller
- Harvard Medical School, New England Primate Research Center, Division of Neurochemistry, One Pine Hill Drive, Southborough, MA 01772, USA
| |
Collapse
|
347
|
Figueiro MG, Rea MS. The effects of red and blue lights on circadian variations in cortisol, alpha amylase, and melatonin. Int J Endocrinol 2010; 2010:829351. [PMID: 20652045 PMCID: PMC2905913 DOI: 10.1155/2010/829351] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2010] [Revised: 04/17/2010] [Accepted: 04/22/2010] [Indexed: 11/17/2022] Open
Abstract
The primary purpose of the present study was to expand our understanding of the impact of light exposures on the endocrine and autonomic systems as measured by acute cortisol, alpha amylase, and melatonin responses. We utilized exposures from narrowband long-wavelength (red) and from narrow-band short-wavelength (blue) lights to more precisely understand the role of the suprachiasmatic nuclei (SCN) in these responses. In a within-subjects experimental design, twelve subjects periodically received one-hour corneal exposures of 40 lux from the blue or from the red lights while continuously awake for 27 hours. Results showed-that, as expected, only the blue light reduced nocturnal melatonin. In contrast, both blue and red lights affected cortisol levels and, although less clear, alpha amylase levels as well. The present data bring into question whether the nonvisual pathway mediating nocturnal melatonin suppression is the same as that mediating other responses to light exhibited by the endocrine and the autonomic nervous systems.
Collapse
Affiliation(s)
- Mariana G. Figueiro
- Lighting Research Center, Rensselaer Polytechnic Institute, 21 Union Street, 3rd Floor, Troy, New York, NY 12180, USA
- *Mariana G. Figueiro:
| | - Mark S. Rea
- Lighting Research Center, Rensselaer Polytechnic Institute, 21 Union Street, 3rd Floor, Troy, New York, NY 12180, USA
| |
Collapse
|
348
|
|
349
|
Abstract
Circadian rhythms in mammalian behaviour and physiology rely on daily oscillations in the expression of canonical clock genes. Circadian rhythms in clock gene expression are observed in the master circadian clock, the suprachiasmatic nucleus but are also observed in many other brain regions that have diverse roles, including influences on motivational and emotional state, learning, hormone release and feeding. Increasingly, important links between circadian rhythms and metabolism are being uncovered. In particular, restricted feeding (RF) schedules which limit food availability to a single meal each day lead to the induction and entrainment of circadian rhythms in food-anticipatory activities in rodents. Food-anticipatory activities include increases in core body temperature, activity and hormone release in the hours leading up to the predictable mealtime. Crucially, RF schedules and the accompanying food-anticipatory activities are also associated with shifts in the daily oscillation of clock gene expression in diverse brain areas involved in feeding, energy balance, learning and memory, and motivation. Moreover, lesions of specific brain nuclei can affect the way rats will respond to RF, but have generally failed to eliminate all food-anticipatory activities. As a consequence, it is likely that a distributed neural system underlies the generation and regulation of food-anticipatory activities under RF. Thus, in the future, we would suggest that a more comprehensive approach should be taken, one that investigates the interactions between multiple circadian oscillators in the brain and body, and starts to report on potential neural systems rather than individual and discrete brain areas.
Collapse
Affiliation(s)
- M Verwey
- Center for Studies in Behavioral Neurobiology/Groupe de Recherche en Neurobiologie Comportementale, Department of Psychology, Concordia University, SP-244, 7141 Sherbrooke St West, Montreal, QC, Canada
| | | |
Collapse
|
350
|
Kovac J, Husse J, Oster H. A time to fast, a time to feast: the crosstalk between metabolism and the circadian clock. Mol Cells 2009; 28:75-80. [PMID: 19714310 DOI: 10.1007/s10059-009-0113-0] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2009] [Accepted: 07/11/2009] [Indexed: 01/02/2023] Open
Abstract
The cyclic environmental conditions brought about by the 24 h rotation of the earth have allowed the evolution of endogenous circadian clocks that control the temporal alignment of behaviour and physiology, including the uptake and processing of nutrients. Both metabolic and circadian regulatory systems are built upon a complex feedback network connecting centres of the central nervous system and different peripheral tissues. Emerging evidence suggests that circadian clock function is closely linked to metabolic homeostasis and that rhythm disruption can contribute to the development of metabolic disease. At the same time, metabolic processes feed back into the circadian clock, affecting clock gene expression and timing of behaviour. In this review, we summarize the experimental evidence for this bimodal interaction, with a focus on the molecular mechanisms mediating this exchange, and outline the implications for clock-based and metabolic diseases.
Collapse
Affiliation(s)
- Judit Kovac
- Circadian Rhythms Group, Max Planck Institute of Biophysical Chemistry, 37077, Göttingen, Germany
| | | | | |
Collapse
|