301
|
An Update on Sexual Transmission of Zika Virus. Pathogens 2018; 7:pathogens7030066. [PMID: 30081445 PMCID: PMC6161238 DOI: 10.3390/pathogens7030066] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 07/02/2018] [Accepted: 08/01/2018] [Indexed: 02/06/2023] Open
Abstract
Zika virus (ZIKV) is a single-stranded RNA virus belonging to the arthropod-borne flaviviruses (arboviruses) which are mainly transmitted by blood-sucking mosquitoes of the genus Aedes. ZIKV infection has been known to be rather asymptomatic or presented as febrile self-limited disease; however, during the last decade the manifestation of ZIKV infection has been associated with a variety of neuroimmunological disorders including Guillain–Barré syndrome, microcephaly and other central nervous system abnormalities. More recently, there is accumulating evidence about sexual transmission of ZIKV, a trait that has never been observed in any other mosquito-borne flavivirus before. This article reviews the latest information regarding the latter and emerging role of ZIKV, focusing on the consequences of ZIKV infection on the male reproductive system and the epidemiology of human-to-human sexual transmission.
Collapse
|
302
|
Chiramel AI, Best SM. Role of autophagy in Zika virus infection and pathogenesis. Virus Res 2018; 254:34-40. [PMID: 28899653 PMCID: PMC5844781 DOI: 10.1016/j.virusres.2017.09.006] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 09/08/2017] [Accepted: 09/09/2017] [Indexed: 12/26/2022]
Abstract
Autophagy is an evolutionarily conserved cellular pathway that culminates in lysosomal degradation of selected substrates. Autophagy can serve dual roles in virus infection with either pro- or antiviral functions depending on the virus and the stage of the viral replication cycle. Recent studies have suggested a role for autophagy in Zika virus (ZIKV) replication by demonstrating the accumulation of autophagic vesicles following ZIKV infection in both in vitro and in vivo models. In human fetal neural stem cells, ZIKV inhibits Akt-mTOR signaling to induce autophagy, increase virus replication and impede neurogenesis. However, autophagy also has the potential to limit ZIKV replication, with separate studies demonstrating antiviral roles for autophagy at the maternal-placental-fetal interface, and more specifically, at the endoplasmic reticulum where virus replication is established in an infected cell. Interestingly, ZIKV (and related flaviviruses) has evolved specific mechanisms to overcome autophagy at the ER, thus demonstrating important roles for these autophagic pathways in virus replication and host response. This review summarizes the known roles of autophagy in ZIKV replication and how they might influence virus tissue tropism and disease.
Collapse
Affiliation(s)
- Abhilash I Chiramel
- Laboratory of Virology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA.
| | - Sonja M Best
- Laboratory of Virology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA.
| |
Collapse
|
303
|
Molecular Recognition Features in Zika Virus Proteome. J Mol Biol 2018; 430:2372-2388. [DOI: 10.1016/j.jmb.2017.10.018] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 10/18/2017] [Accepted: 10/18/2017] [Indexed: 12/23/2022]
|
304
|
Khachatoorian R, Cohn W, Buzzanco A, Riahi R, Arumugaswami V, Dasgupta A, Whitelegge JP, French SW. HSP70 Copurifies with Zika Virus Particles. Virology 2018; 522:228-233. [PMID: 30053656 DOI: 10.1016/j.virol.2018.07.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 07/06/2018] [Accepted: 07/08/2018] [Indexed: 12/23/2022]
Abstract
Zika virus (ZIKV) has been identified as a cause of neurologic diseases in infants and Guillain-Barré Syndrome, and currently, no therapeutics or vaccines are approved. In this study, we sought to identify potential host proteins interacting with ZIKV particles to gain better insights into viral infectivity. Viral particles were purified through density-gradient centrifugation and subsequently, size-exclusion chromatography (SEC). Mass spectrometric analyses revealed viral envelope protein and HSP70 to comigrate in only one SEC fraction. Neither of these proteins were found in any other SEC fractions. We then performed neutralization assays and found that incubating viral particles with antibody against HSP70 indeed significantly reduced viral infectivity, while HSC70 antibody did not. Preincubating cells with recombinant HSP70 also decreased viral infectivity. Knockdown and inhibition of HSP70 also significantly diminished viral production. These results implicate HSP70 in the pathogenesis of ZIKV and identify HSP70 as a potential host therapeutic target against ZIKV infection.
Collapse
Affiliation(s)
- Ronik Khachatoorian
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at University of California, Los Angeles, CA, United States.
| | - Whitaker Cohn
- Pasarow Mass Spectrometry Laboratory, Semel Institute for Neuroscience & Human Behavior, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States.
| | - Anthony Buzzanco
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at University of California, Los Angeles, CA, United States.
| | - Rana Riahi
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at University of California, Los Angeles, CA, United States.
| | - Vaithilingaraja Arumugaswami
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at University of California, Los Angeles, CA, United States.
| | - Asim Dasgupta
- Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine at University of California, Los Angeles, CA, United States; Jonsson Comprehensive Cancer Center, David Geffen School of Medicine at University of California, Los Angeles, CA, United States; UCLA AIDS Institute, David Geffen School of Medicine at University of California, Los Angeles, CA, United States.
| | - Julian P Whitelegge
- Pasarow Mass Spectrometry Laboratory, Semel Institute for Neuroscience & Human Behavior, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States.
| | - Samuel W French
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at University of California, Los Angeles, CA, United States; Jonsson Comprehensive Cancer Center, David Geffen School of Medicine at University of California, Los Angeles, CA, United States; UCLA AIDS Institute, David Geffen School of Medicine at University of California, Los Angeles, CA, United States.
| |
Collapse
|
305
|
Rothan HA, Fang S, Mahesh M, Byrareddy SN. Zika Virus and the Metabolism of Neuronal Cells. Mol Neurobiol 2018; 56:2551-2557. [PMID: 30043260 DOI: 10.1007/s12035-018-1263-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2018] [Accepted: 07/18/2018] [Indexed: 02/07/2023]
Abstract
Zika virus (ZIKV) infection is associated with abnormal functions of neuronal cells causing neurological disorders such as microcephaly in the newborns and Guillain-Barré syndrome in the adults. Typically, healthy brain growth is associated with normal neural stem cell proliferation, differentiation, and maturation. This process requires a controlled cellular metabolism that is essential for normal migration, axonal elongation, and dendrite morphogenesis of newly generated neurons. Thus, the remarkable changes in the cellular metabolism during early stages of neuronal stem cell differentiation are crucial for brain development. Recent studies show that ZIKV directly infects neuronal stem cells in the fetus and impairs brain growth. In this review, we highlighted the fact that the activation of P53 and inhibition of the mTOR pathway by ZIKV infection to neuronal stem cells induces early shifting from glycolysis to oxidative phosphorylation (OXPHOS) may induce immature differentiation, apoptosis, and stem cell exhaustion. We hypothesize that ZIKV infection to mature myelin-producing cells and resulting metabolic shift may lead to the development of neurological diseases, such as Guillain-Barré syndrome. Thus, the effects of ZIKV on the cellular metabolism of neuronal cells may lead to the incidence of neurological disorders as observed recently during ZIKV infection.
Collapse
Affiliation(s)
- Hussin A Rothan
- Center for Biomedical Engineering & Technology, School of Medicine, University of Maryland, Baltimore, MD, USA. .,Department of Physiology, School of Medicine, University of Maryland, Baltimore, MD, USA.
| | - Shengyun Fang
- Center for Biomedical Engineering & Technology, School of Medicine, University of Maryland, Baltimore, MD, USA.,Department of Physiology, School of Medicine, University of Maryland, Baltimore, MD, USA
| | - Mohan Mahesh
- Division of Comparative Pathology, Tulane National Primate Research Center, Covington, LA, 70433, USA
| | - Siddappa N Byrareddy
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA. .,Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE, USA. .,Department of Pharmacology and Experimental Neuroscience, College of Medicine, University of Nebraska Medical Centre (UNMC), Omaha, NE, 68198-5800, USA.
| |
Collapse
|
306
|
Yun SP, Han YS, Lee JH, Kim SM, Lee SH. Melatonin Rescues Mesenchymal Stem Cells from Senescence Induced by the Uremic Toxin p-Cresol via Inhibiting mTOR-Dependent Autophagy. Biomol Ther (Seoul) 2018; 26:389-398. [PMID: 28655071 PMCID: PMC6029684 DOI: 10.4062/biomolther.2017.071] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 04/22/2017] [Accepted: 04/26/2017] [Indexed: 12/19/2022] Open
Abstract
p-Cresol, found at high concentrations in the serum of chronic kidney failure patients, is known to cause cell senescence and other complications in different parts of the body. p-Cresol is thought to mediate cytotoxic effects through the induction of autophagy response. However, toxic effects of p-cresol on mesenchymal stem cells have not been elucidated. Thus, we aimed to investigate whether p-cresol induces senescence of mesenchymal stem cells, and whether melatonin can ameliorate abnormal autophagy response caused by p-cresol. We found that p-cresol concentration-dependently reduced proliferation of mesenchymal stem cells. Pretreatment with melatonin prevented pro-senescence effects of p-cresol on mesenchymal stem cells. We found that by inducing phosphorylation of Akt and activating the Akt signaling pathway, melatonin enhanced catalase activity and thereby inhibited the accumulation of reactive oxygen species induced by p-cresol in mesenchymal stem cells, ultimately preventing abnormal activation of autophagy. Furthermore, preincubation with melatonin counteracted other pro-senescence changes caused by p-cresol, such as the increase in total 5′-AMP-activated protein kinase expression and decrease in the level of phosphorylated mechanistic target of rapamycin. Ultimately, we discovered that melatonin restored the expression of senescence marker protein 30, which is normally suppressed because of the induction of the autophagy pathway in chronic kidney failure patients by p-cresol. Our findings suggest that stem cell senescence in patients with chronic kidney failure could be potentially rescued by the administration of melatonin, which grants this hormone a novel therapeutic role.
Collapse
Affiliation(s)
- Seung Pil Yun
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Yong-Seok Han
- Medical Science Research Institute, Soonchunhyang University Seoul Hospital, Seoul 04401, Republic of Korea
| | - Jun Hee Lee
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham School of Medicine, Birmingham, AL 35294, USA
| | - Sang Min Kim
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Sang Hun Lee
- Medical Science Research Institute, Soonchunhyang University Seoul Hospital, Seoul 04401, Republic of Korea
| |
Collapse
|
307
|
Ma J, Ketkar H, Geng T, Lo E, Wang L, Xi J, Sun Q, Zhu Z, Cui Y, Yang L, Wang P. Zika Virus Non-structural Protein 4A Blocks the RLR-MAVS Signaling. Front Microbiol 2018; 9:1350. [PMID: 29988497 PMCID: PMC6026624 DOI: 10.3389/fmicb.2018.01350] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 06/04/2018] [Indexed: 11/18/2022] Open
Abstract
Flaviviruses have evolved complex mechanisms to evade the mammalian host immune systems including the RIG-I (retinoic acid-inducible gene I) like receptor (RLR) signaling. Zika virus (ZIKV) is a re-emerging flavivirus that is associated with severe neonatal microcephaly and adult Guillain-Barre syndrome. However, the molecular mechanisms underlying ZIKV pathogenesis remain poorly defined. Here we report that ZIKV non-structural protein 4A (NS4A) impairs the RLR-mitochondrial antiviral-signaling protein (MAVS) interaction and subsequent induction of antiviral immune responses. In human trophoblasts, both RIG-I and melanoma differentiation-associated protein 5 (MDA5) contribute to type I interferon (IFN) induction and control ZIKV replication. Type I IFN induction by ZIKV is almost completely abolished in MAVS-/- cells. NS4A represses RLR-, but not Toll-like receptor-mediated immune responses. NS4A specifically binds the N-terminal caspase activation and recruitment domain (CARD) of MAVS and thus blocks its accessibility by RLRs. Our study provides in-depth understanding of the molecular mechanisms of immune evasion by ZIKV and its pathogenesis.
Collapse
Affiliation(s)
- Jinzhu Ma
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, China.,Department of Microbiology and Immunology, New York Medical College, Valhalla, NY, United States
| | - Harshada Ketkar
- Department of Microbiology and Immunology, New York Medical College, Valhalla, NY, United States
| | - Tingting Geng
- Department of Microbiology and Immunology, New York Medical College, Valhalla, NY, United States
| | - Emily Lo
- Department of Microbiology and Immunology, New York Medical College, Valhalla, NY, United States
| | - Leilei Wang
- Department of Microbiology and Immunology, New York Medical College, Valhalla, NY, United States.,Department of Obstetrics and Gynecology, Shengjing Hospital, China Medical University, Shenyang, China
| | - Juemin Xi
- Institute of Medical Biology, Chinese Academy of Medical Sciences, Peking Union Medical College, Kunming, China
| | - Qiangming Sun
- Institute of Medical Biology, Chinese Academy of Medical Sciences, Peking Union Medical College, Kunming, China
| | - Zhanbo Zhu
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Yudong Cui
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Long Yang
- Department of Microbiology and Immunology, New York Medical College, Valhalla, NY, United States
| | - Penghua Wang
- Department of Microbiology and Immunology, New York Medical College, Valhalla, NY, United States
| |
Collapse
|
308
|
Mottin M, Borba JVVB, Braga RC, Torres PHM, Martini MC, Proenca-Modena JL, Judice CC, Costa FTM, Ekins S, Perryman AL, Horta Andrade C. The A-Z of Zika drug discovery. Drug Discov Today 2018; 23:1833-1847. [PMID: 29935345 PMCID: PMC7108251 DOI: 10.1016/j.drudis.2018.06.014] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 05/23/2018] [Accepted: 06/14/2018] [Indexed: 02/07/2023]
Abstract
Despite the recent outbreak of Zika virus (ZIKV), there are still no approved treatments, and early-stage compounds are probably many years away from approval. A comprehensive A-Z review of the recent advances in ZIKV drug discovery efforts is presented, highlighting drug repositioning and computationally guided compounds, including discovered viral and host cell inhibitors. Promising ZIKV molecular targets are also described and discussed, as well as targets belonging to the host cell, as new opportunities for ZIKV drug discovery. All this knowledge is not only crucial to advancing the fight against the Zika virus and other flaviviruses but also helps us prepare for the next emerging virus outbreak to which we will have to respond.
Collapse
Affiliation(s)
- Melina Mottin
- LabMol - Laboratory for Molecular Modeling and Drug Design, Faculdade de Farmacia, Universidade Federal de Goias - UFG, Goiânia, GO 74605-170, Brazil
| | - Joyce V V B Borba
- LabMol - Laboratory for Molecular Modeling and Drug Design, Faculdade de Farmacia, Universidade Federal de Goias - UFG, Goiânia, GO 74605-170, Brazil
| | - Rodolpho C Braga
- LabMol - Laboratory for Molecular Modeling and Drug Design, Faculdade de Farmacia, Universidade Federal de Goias - UFG, Goiânia, GO 74605-170, Brazil
| | - Pedro H M Torres
- Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, RJ 21040-900, Brazil; Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, UK
| | - Matheus C Martini
- Laboratory of Emerging Viruses (LEVE), Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, UNICAMP, Campinas, SP 13083-864, Brazil
| | - Jose Luiz Proenca-Modena
- Laboratory of Emerging Viruses (LEVE), Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, UNICAMP, Campinas, SP 13083-864, Brazil
| | - Carla C Judice
- Laboratory of Tropical Diseases - Prof. Dr. Luiz Jacintho da Silva, Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, UNICAMP, Campinas, SP 13083-864, Brazil
| | - Fabio T M Costa
- Laboratory of Tropical Diseases - Prof. Dr. Luiz Jacintho da Silva, Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, UNICAMP, Campinas, SP 13083-864, Brazil
| | - Sean Ekins
- Collaborations Pharmaceuticals, Inc., 840 Main Campus Drive, Lab 3510, Raleigh, NC 27606, USA
| | - Alexander L Perryman
- Department of Pharmacology, Physiology and Neuroscience, Rutgers University-New Jersey Medical School, Newark, NJ 07103, USA
| | - Carolina Horta Andrade
- LabMol - Laboratory for Molecular Modeling and Drug Design, Faculdade de Farmacia, Universidade Federal de Goias - UFG, Goiânia, GO 74605-170, Brazil; Laboratory of Tropical Diseases - Prof. Dr. Luiz Jacintho da Silva, Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, UNICAMP, Campinas, SP 13083-864, Brazil.
| |
Collapse
|
309
|
Liu Y, Gordesky-Gold B, Leney-Greene M, Weinbren NL, Tudor M, Cherry S. Inflammation-Induced, STING-Dependent Autophagy Restricts Zika Virus Infection in the Drosophila Brain. Cell Host Microbe 2018; 24:57-68.e3. [PMID: 29934091 DOI: 10.1016/j.chom.2018.05.022] [Citation(s) in RCA: 180] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 04/16/2018] [Accepted: 05/11/2018] [Indexed: 12/19/2022]
Abstract
The emerging arthropod-borne flavivirus Zika virus (ZIKV) is associated with neurological complications. Innate immunity is essential for the control of virus infection, but the innate immune mechanisms that impact viral infection of neurons remain poorly defined. Using the genetically tractable Drosophila system, we show that ZIKV infection of the adult fly brain leads to NF-kB-dependent inflammatory signaling, which serves to limit infection. ZIKV-dependent NF-kB activation induces the expression of Drosophila stimulator of interferon genes (dSTING) in the brain. dSTING protects against ZIKV by inducing autophagy in the brain. Loss of autophagy leads to increased ZIKV infection of the brain and death of the infected fly, while pharmacological activation of autophagy is protective. These data suggest an essential role for an inflammation-dependent STING pathway in the control of neuronal infection and a conserved role for STING in antimicrobial autophagy, which may represent an ancestral function for this essential innate immune sensor.
Collapse
Affiliation(s)
- Yuan Liu
- Department of Microbiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Beth Gordesky-Gold
- Department of Microbiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Michael Leney-Greene
- Department of Microbiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Nathan L Weinbren
- Department of Microbiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Matthew Tudor
- Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Sara Cherry
- Department of Microbiology, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
310
|
Wang H. Modeling Neurological Diseases With Human Brain Organoids. Front Synaptic Neurosci 2018; 10:15. [PMID: 29937727 PMCID: PMC6002496 DOI: 10.3389/fnsyn.2018.00015] [Citation(s) in RCA: 107] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Accepted: 05/22/2018] [Indexed: 12/18/2022] Open
Abstract
The complexity and delicacy of human brain make it challenging to recapitulate its development, function and disorders. Brain organoids derived from human pluripotent stem cells (PSCs) provide a new tool to model both normal and pathological human brain, and greatly enhance our ability to study brain biology and diseases. Currently, human brain organoids are increasingly used in modeling neurological disorders and relative therapeutic discovery. This review article focuses on recent advances in human brain organoid system and its application in disease modeling. It also discusses the limitations and future perspective of human brain organoids in modeling neurological diseases.
Collapse
Affiliation(s)
- Hansen Wang
- Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
311
|
Jiang X, Dong X, Li SH, Zhou YP, Rayner S, Xia HM, Gao GF, Yuan H, Tang YP, Luo MH. Proteomic Analysis of Zika Virus Infected Primary Human Fetal Neural Progenitors Suggests a Role for Doublecortin in the Pathological Consequences of Infection in the Cortex. Front Microbiol 2018; 9:1067. [PMID: 29922247 PMCID: PMC5996093 DOI: 10.3389/fmicb.2018.01067] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Accepted: 05/04/2018] [Indexed: 12/26/2022] Open
Abstract
Zika virus (ZIKV) infection is associated with severe neurological defects in fetuses and newborns, such as microcephaly. However, the underlying mechanisms remain to be elucidated. In this study, proteomic analysis on ZIKV-infected primary human fetal neural progenitor cells (NPCs) revealed that virus infection altered levels of cellular proteins involved in NPC proliferation, differentiation and migration. The transcriptional levels of some of the altered targets were also confirmed by qRT-PCR. Among the altered proteins, doublecortin (DCX) plays an important role in NPC differentiation and migration. Results showed that ZIKV infection downregulated DCX, at both mRNA and protein levels, as early as 1 day post infection (1 dpi), and lasted throughout the virus replication cycle (4 days). The downregulation of DCX was also observed in a ZIKV-infected fetal mouse brain model, which displayed decreased body weight, brain size and weight, as well as defective cortex structure. By screening the ten viral proteins of ZIKV, we found that both the expression of NS4A and NS5 were correlated with the downregulation of both mRNA and protein levels of DCX in NPCs. These data suggest that DCX is modulated following infection of the brain by ZIKV. How these observed changes of DCX expression translate in the pathological consequences of ZIKV infection and if other cellular proteins are equally involved remains to be investigated.
Collapse
Affiliation(s)
- Xuan Jiang
- Joint Center of Translational Precision Medicine, Guangzhou Institute of Pediatrics, Guangzhou Women and Children Medical Center, Guangzhou, China.,Joint Center of Translational Precision Medicine, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Xiao Dong
- State Key Laboratory of Virology, CAS Center for Excellence in Brain Science and Intelligence Technology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Shi-Hua Li
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Yue-Peng Zhou
- State Key Laboratory of Virology, CAS Center for Excellence in Brain Science and Intelligence Technology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Simon Rayner
- Department of Medical Genetics, Oslo University Hospital, University of Oslo, Oslo, Norway
| | - Hui-Min Xia
- Joint Center of Translational Precision Medicine, Guangzhou Institute of Pediatrics, Guangzhou Women and Children Medical Center, Guangzhou, China
| | - George F Gao
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,Chinese Center for Disease Control and Prevention, National Institute for Viral Disease Control and Prevention, Beijing, China.,Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China.,Research Network of Immunity and Health, Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, China
| | - Hui Yuan
- Department of Medicine, Medical College, Jianghan University, Wuhan, China
| | - Ya-Ping Tang
- Joint Center of Translational Precision Medicine, Guangzhou Institute of Pediatrics, Guangzhou Women and Children Medical Center, Guangzhou, China
| | - Min-Hua Luo
- Joint Center of Translational Precision Medicine, Guangzhou Institute of Pediatrics, Guangzhou Women and Children Medical Center, Guangzhou, China.,Joint Center of Translational Precision Medicine, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China.,State Key Laboratory of Virology, CAS Center for Excellence in Brain Science and Intelligence Technology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China.,Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
312
|
Pombo JP, Sanyal S. Perturbation of Intracellular Cholesterol and Fatty Acid Homeostasis During Flavivirus Infections. Front Immunol 2018; 9:1276. [PMID: 29915602 PMCID: PMC5994796 DOI: 10.3389/fimmu.2018.01276] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 05/22/2018] [Indexed: 12/11/2022] Open
Abstract
Cellular lipid homeostasis is maintained through an intricately linked array of anabolic and catabolic pathways. Upon flavivirus infections, these are significantly altered: on the one hand, these viruses can co-opt lipid metabolic pathways to generate ATP to facilitate replication, or to synthesize membrane components to generate replication sites; on the other hand, more recent evidence suggests counter strategies employed by host cells, which actively modulate several of these networks in response to infection, enhancing interferon signaling by doing so, and thus creating an antiviral environment. In this review, we discuss recent data on mechanisms of alteration of lipid metabolic pathways during infection by flaviviruses, with a focus on cholesterol and fatty acid biosynthesis, which can be manipulated by the invading viruses to support replication, but can also be modulated by the host immune system itself, as a means to fight infection.
Collapse
Affiliation(s)
- Joao Palma Pombo
- HKU-Pasteur Research Pole, School of Public Health, The University of Hong Kong, Hong Kong, Hong Kong
| | - Sumana Sanyal
- HKU-Pasteur Research Pole, School of Public Health, The University of Hong Kong, Hong Kong, Hong Kong.,School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong
| |
Collapse
|
313
|
Yee DA, DeJesus-Crespo R, Hunter FF, Bai F. Assessing natural infection with Zika virus in the southern house mosquito, Culex quinquefasciatus, during 2016 in Puerto Rico. MEDICAL AND VETERINARY ENTOMOLOGY 2018; 32:255-258. [PMID: 29239003 PMCID: PMC6530778 DOI: 10.1111/mve.12289] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 11/10/2017] [Accepted: 11/20/2017] [Indexed: 05/27/2023]
Abstract
The epidemic of Zika in the Western hemisphere has led to intense investigations of all species important in the transmission of Zika virus (ZikV), including putative mosquito vectors. Although evidence points to Stegomyia (= Aedes) (Diptera: Culicidae) mosquitoes as the primary vectors in nature among humans, there remains the possibility that other common mosquito species may be implicated in the rapid spread of the virus. Herein, field-caught Culex quinquefasciatus (Diptera: Culicidae) collected during June 2016 in different neighbourhoods in San Juan, Puerto Rico were examined for the presence of natural infection with ZikV. Stegomyia aegypti (= Aedes aegypti) from the same locations were also analysed. None of the Cx. quinquefasciatus tested showed natural infection for ZikV, whereas S. aegypti tested positive at seven sites. The present results suggest that Cx. quinquefasciatus was not involved in the transmission of ZikV in San Juan, Puerto Rico in 2016.
Collapse
Affiliation(s)
- Donald A. Yee
- Department of Biological Sciences, University of Southern Mississippi, Hattiesburg, Mississippi, USA
| | - Rebeca DeJesus-Crespo
- Gulf Ecology Division, National Health and Environmental Effects Research Laboratory US EPA, Office of Research and Development, Gulf Breeze, Florida, USA
| | - Fiona F. Hunter
- Department of Biological Sciences, Brock University, St. Catharines, Ontario, Canada
| | - Fengwei Bai
- Department of Biological Sciences, University of Southern Mississippi, Hattiesburg, Mississippi, USA
| |
Collapse
|
314
|
Inaba JI, Nagy PD. Tombusvirus RNA replication depends on the TOR pathway in yeast and plants. Virology 2018; 519:207-222. [PMID: 29734044 DOI: 10.1016/j.virol.2018.04.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 04/09/2018] [Accepted: 04/15/2018] [Indexed: 02/06/2023]
Abstract
Similar to other (+)RNA viruses, tomato bushy stunt virus (TBSV) utilizes metabolites, lipids, membranes, and co-opted host factors during replication. The coordination of cell metabolism and growth with environmental cues is performed by the target of rapamycin (TOR) kinase in eukaryotic cells. In this paper, we find that TBSV replication partially inhibits TOR activity, likely due to recruitment of glycolytic enzymes to the viral replication compartment, which results in reduced ATP levels in the cytosol. Complete inhibition of TOR activity with rapamycin in yeast or AZD8055 inhibitor in plants reduces tombusvirus replication. We find that high glucose concentration, which stimulates TOR activity, enhanced tombusvirus replication in yeast. Depletion of yeast Sch9 or plant S6K1 kinase, a downstream effector of TOR, also inhibited tombusvirus replication in yeast and plant or the assembly of the viral replicase in vitro. Altogether, the TOR pathway is crucial for TBSV to replicate efficiently in hosts.
Collapse
Affiliation(s)
- Jun-Ichi Inaba
- Department of Plant Pathology, University of Kentucky, Plant Science Building, Lexington, KY 40546, United States
| | - Peter D Nagy
- Department of Plant Pathology, University of Kentucky, Plant Science Building, Lexington, KY 40546, United States.
| |
Collapse
|
315
|
Sayanthooran S, Gunerathne L, Abeysekera TDJ, Magana-Arachchi DN. Transcriptome analysis supports viral infection and fluoride toxicity as contributors to chronic kidney disease of unknown etiology (CKDu) in Sri Lanka. Int Urol Nephrol 2018; 50:1667-1677. [PMID: 29808448 DOI: 10.1007/s11255-018-1892-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 05/10/2018] [Indexed: 01/22/2023]
Abstract
PURPOSE Chronic kidney disease of unknown etiology (CKDu), having epidemic characteristics, is being diagnosed increasingly in certain tropical regions of the world, mainly Latin America and Sri Lanka. They have been observed primarily in farming communities and current hypotheses point toward many environmental and occupational triggers. CKDu does not have common etiologies of chronic kidney disease (CKD) such as hypertension, diabetes, or autoimmune disease. We aimed to understand the molecular processes underlying CKDu in Sri Lanka using transcriptome analysis. METHODS RNA extracted from whole blood was reverse transcribed and used for microarray analysis using the Human HT-12 v.4 array (Illumina). Pathway analysis was carried out using ingenuity pathway analysis (IPA-Qiagen). Microarray results were validated using real-time PCR of five selected genes. RESULTS Pathways related to innate immune response, including interferon signaling, inflammasome signaling and TREM1 signaling had the most significant positive activation z scores, where as EIF2 signaling and mTOR signaling had the most significant negative activation z scores. Pathways previously linked to fluoride toxicity; G-protein activation, Cdc42 signaling, Rac signaling and RhoA signaling were activated in CKDu patients. The most significantly activated biological functions were cell death, cell movement and antimicrobial response. Significant toxicological functions were mitochondrial dysfunction, oxidative stress and apoptosis. CONCLUSIONS Based on the molecular pathway analysis in CKDu patients and review of literature, viral infections and fluoride toxicity appear to be contributing to the molecular mechanisms underlying CKDu.
Collapse
Affiliation(s)
- Saravanabavan Sayanthooran
- Molecular Microbiology and Human Diseases, National Institute of Fundamental Studies, Kandy, 20000, Sri Lanka
| | | | - Tilak D J Abeysekera
- Centre for Education, Research and Training on Kidney Diseases (CERTKID), Faculty of Medicine, University of Peradeniya, Peradeniya, 20400, Sri Lanka
| | - Dhammika N Magana-Arachchi
- Molecular Microbiology and Human Diseases, National Institute of Fundamental Studies, Kandy, 20000, Sri Lanka.
| |
Collapse
|
316
|
Zika Virus Induces Autophagy in Human Umbilical Vein Endothelial Cells. Viruses 2018; 10:v10050259. [PMID: 29762492 PMCID: PMC5977252 DOI: 10.3390/v10050259] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 05/08/2018] [Accepted: 05/09/2018] [Indexed: 12/19/2022] Open
Abstract
Autophagy is a common strategy for cell protection; however, some viruses can in turn adopt cellular autophagy to promote viral replication. Zika virus (ZIKV) is the pathogen that causes Zika viral disease, and it is a mosquito-borne virus. However, its pathogenesis, especially the interaction between ZIKV and target cells during the early stages of infection, is still unclear. In this study, we demonstrate that infecting human umbilical vein endothelial cells (HUVEC) with ZIKV triggers cellular autophagy. We observed both an increase in the conversion of LC3-I to LC3-II and increased accumulation of fluorescent cells with LC3 dots, which are considered to be the two key indicators of autophagy. The ratio of LC3-II/GAPDH in each group was significantly increased at different times after ZIKV infection at different MOIs, indicating that the production of lipidated LC3-II increased. Moreover, both the ratio of LC3-II/GAPDH and the expression of viral NS3 protein increased with increasing time of viral infection. The expression level of p62 decreased gradually from 12 h post-infection. Expression profile of double fluorescent protein labelling LC3 indicated that the autophagy induced by ZIKV infection was a complete process. We further investigated the role of autophagy in ZIKV replication. We demonstrated that either the treatment with inhibitors of autophagosomes formation or short hairpin RNA targeting the Beclin-1 gene, which is critical for the formation of autophagosomes, significantly reduced viral production. Taken together, our results indicate that ZIKV infection induces autophagy of HUVEC, and inhibition of ZIKV-induced autophagy restrains viral replication.
Collapse
|
317
|
Affiliation(s)
- Hans C. Leier
- Department of Molecular Microbiology & Immunology, Oregon Health & Science University (OHSU), Portland, Oregon, United States of America
| | - William B. Messer
- Department of Molecular Microbiology & Immunology, Oregon Health & Science University (OHSU), Portland, Oregon, United States of America
- Department of Medicine, Division of Infectious Diseases, OHSU, Portland, Oregon, United States of America
| | - Fikadu G. Tafesse
- Department of Molecular Microbiology & Immunology, Oregon Health & Science University (OHSU), Portland, Oregon, United States of America
- * E-mail:
| |
Collapse
|
318
|
Gorman MJ, Caine EA, Zaitsev K, Begley MC, Weger-Lucarelli J, Uccellini MB, Tripathi S, Morrison J, Yount BL, Dinnon KH, Rückert C, Young MC, Zhu Z, Robertson SJ, McNally KL, Ye J, Cao B, Mysorekar IU, Ebel GD, Baric RS, Best SM, Artyomov MN, Garcia-Sastre A, Diamond MS. An Immunocompetent Mouse Model of Zika Virus Infection. Cell Host Microbe 2018; 23:672-685.e6. [PMID: 29746837 PMCID: PMC5953559 DOI: 10.1016/j.chom.2018.04.003] [Citation(s) in RCA: 167] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 03/16/2018] [Accepted: 04/10/2018] [Indexed: 01/08/2023]
Abstract
Progress toward understanding Zika virus (ZIKV) pathogenesis is hindered by lack of immunocompetent small animal models, in part because ZIKV fails to effectively antagonize Stat2-dependent interferon (IFN) responses in mice. To address this limitation, we first passaged an African ZIKV strain (ZIKV-Dak-41525) through Rag1-/- mice to obtain a mouse-adapted virus (ZIKV-Dak-MA) that was more virulent than ZIKV-Dak-41525 in mice treated with an anti-Ifnar1 antibody. A G18R substitution in NS4B was the genetic basis for the increased replication, and resulted in decreased IFN-β production, diminished IFN-stimulated gene expression, and the greater brain infection observed with ZIKV-Dak-MA. To generate a fully immunocompetent mouse model of ZIKV infection, human STAT2 was introduced into the mouse Stat2 locus (hSTAT2 KI). Subcutaneous inoculation of pregnant hSTAT2 KI mice with ZIKV-Dak-MA resulted in spread to the placenta and fetal brain. An immunocompetent mouse model of ZIKV infection may prove valuable for evaluating countermeasures to limit disease.
Collapse
Affiliation(s)
- Matthew J Gorman
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Elizabeth A Caine
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Konstantin Zaitsev
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA; Computer Technologies Department, ITMO University, St. Petersburg, Russia
| | - Matthew C Begley
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Department of Epidemiology, University of North Caroline at Chapel Hill, Chapel Hill, NC, USA
| | - James Weger-Lucarelli
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, USA
| | - Melissa B Uccellini
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Shashank Tripathi
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Juliet Morrison
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Boyd L Yount
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Department of Epidemiology, University of North Caroline at Chapel Hill, Chapel Hill, NC, USA
| | - Kenneth H Dinnon
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Department of Epidemiology, University of North Caroline at Chapel Hill, Chapel Hill, NC, USA
| | - Claudia Rückert
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, USA
| | - Michael C Young
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, USA
| | - Zhe Zhu
- Department of Medicine, Division of Regenerative Medicine, University of California, San Diego, School of Medicine, La Jolla, CA, USA
| | - Shelly J Robertson
- Laboratory of Virology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, NIH, Hamilton, MT, USA
| | - Kristin L McNally
- Laboratory of Virology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, NIH, Hamilton, MT, USA
| | - Jing Ye
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Bin Cao
- Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, MO, USA
| | - Indira U Mysorekar
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA; Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, MO, USA
| | - Gregory D Ebel
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, USA
| | - Ralph S Baric
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Department of Epidemiology, University of North Caroline at Chapel Hill, Chapel Hill, NC, USA
| | - Sonja M Best
- Laboratory of Virology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, NIH, Hamilton, MT, USA
| | - Maxim N Artyomov
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA; The Center of Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St. Louis, MO, USA
| | - Adolfo Garcia-Sastre
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Medicine, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Michael S Diamond
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA; Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA; Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA; The Center of Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
319
|
Lei J, Calvo P, Vigh R, Burd I. Journey to the Center of the Fetal Brain: Environmental Exposures and Autophagy. Front Cell Neurosci 2018; 12:118. [PMID: 29773977 PMCID: PMC5943497 DOI: 10.3389/fncel.2018.00118] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 04/13/2018] [Indexed: 01/28/2023] Open
Abstract
Fetal brain development is known to be affected by adverse environmental exposures during pregnancy, including infection, inflammation, hypoxia, alcohol, starvation, and toxins. These exposures are thought to alter autophagy activity in the fetal brain, leading to adverse perinatal outcomes, such as cognitive and sensorimotor deficits. This review introduces the physiologic autophagy pathways in the fetal brain. Next, methods to detect and monitor fetal brain autophagy activity are outlined. An additional discussion explores possible mechanisms by which environmental exposures during pregnancy alter fetal brain autophagy activity. In the final section, a correlation of fetal autophagy activity with the observed postnatal phenotype is attempted. Our main purpose is to provide the current understanding or a lack thereof mechanisms on autophagy, underlying the fetal brain injury exposed to environmental insults.
Collapse
Affiliation(s)
- Jun Lei
- Department of Gynecology and Obstetrics, Integrated Research Center for Fetal Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Pilar Calvo
- Department of Gynecology and Obstetrics, Integrated Research Center for Fetal Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Richard Vigh
- Department of Gynecology and Obstetrics, Integrated Research Center for Fetal Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Irina Burd
- Department of Gynecology and Obstetrics, Integrated Research Center for Fetal Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| |
Collapse
|
320
|
Lee I, Bos S, Li G, Wang S, Gadea G, Desprès P, Zhao RY. Probing Molecular Insights into Zika Virus⁻Host Interactions. Viruses 2018; 10:v10050233. [PMID: 29724036 PMCID: PMC5977226 DOI: 10.3390/v10050233] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 04/26/2018] [Accepted: 04/28/2018] [Indexed: 12/13/2022] Open
Abstract
The recent Zika virus (ZIKV) outbreak in the Americas surprised all of us because of its rapid spread and association with neurologic disorders including fetal microcephaly, brain and ocular anomalies, and Guillain–Barré syndrome. In response to this global health crisis, unprecedented and world-wide efforts are taking place to study the ZIKV-related human diseases. Much has been learned about this virus in the areas of epidemiology, genetic diversity, protein structures, and clinical manifestations, such as consequences of ZIKV infection on fetal brain development. However, progress on understanding the molecular mechanism underlying ZIKV-associated neurologic disorders remains elusive. To date, we still lack a good understanding of; (1) what virologic factors are involved in the ZIKV-associated human diseases; (2) which ZIKV protein(s) contributes to the enhanced viral pathogenicity; and (3) how do the newly adapted and pandemic ZIKV strains alter their interactions with the host cells leading to neurologic defects? The goal of this review is to explore the molecular insights into the ZIKV–host interactions with an emphasis on host cell receptor usage for viral entry, cell innate immunity to ZIKV, and the ability of ZIKV to subvert antiviral responses and to cause cytopathic effects. We hope this literature review will inspire additional molecular studies focusing on ZIKV–host Interactions.
Collapse
Affiliation(s)
- Ina Lee
- Department of Pathology, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| | - Sandra Bos
- Department of Pathology, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
- Université de la Réunion, INSERM U1187, CNRS UMR 9192, IRD UMR 249, Unité Mixte Processus Infectieux en Milieu Insulaire Tropical, Plateforme Technologique CYROI, 94791 Sainte Clotilde, La Réunion, France.
| | - Ge Li
- Department of Pathology, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| | - Shusheng Wang
- Department of Pathology, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| | - Gilles Gadea
- Université de la Réunion, INSERM U1187, CNRS UMR 9192, IRD UMR 249, Unité Mixte Processus Infectieux en Milieu Insulaire Tropical, Plateforme Technologique CYROI, 94791 Sainte Clotilde, La Réunion, France.
| | - Philippe Desprès
- Université de la Réunion, INSERM U1187, CNRS UMR 9192, IRD UMR 249, Unité Mixte Processus Infectieux en Milieu Insulaire Tropical, Plateforme Technologique CYROI, 94791 Sainte Clotilde, La Réunion, France.
| | - Richard Y Zhao
- Department of Pathology, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
- Institute of Global Health, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| |
Collapse
|
321
|
Larson TA. Sex Steroids, Adult Neurogenesis, and Inflammation in CNS Homeostasis, Degeneration, and Repair. Front Endocrinol (Lausanne) 2018; 9:205. [PMID: 29760681 PMCID: PMC5936772 DOI: 10.3389/fendo.2018.00205] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 04/12/2018] [Indexed: 01/16/2023] Open
Abstract
Sex steroidal hormones coordinate the development and maintenance of tissue architecture in many organs, including the central nervous systems (CNS). Within the CNS, sex steroids regulate the morphology, physiology, and behavior of a wide variety of neural cells including, but not limited to, neurons, glia, endothelial cells, and immune cells. Sex steroids spatially and temporally control distinct molecular networks, that, in turn modulate neural activity, synaptic plasticity, growth factor expression and function, nutrient exchange, cellular proliferation, and apoptosis. Over the last several decades, it has become increasingly evident that sex steroids, often in conjunction with neuroinflammation, have profound impact on the occurrence and severity of neuropsychiatric and neurodegenerative disorders. Here, I review the foundational discoveries that established the regulatory role of sex steroids in the CNS and highlight recent advances toward elucidating the complex interaction between sex steroids, neuroinflammation, and CNS regeneration through adult neurogenesis. The majority of recent work has focused on neuroinflammatory responses following acute physical damage, chronic degeneration, or pharmacological insult. Few studies directly assess the role of immune cells in regulating adult neurogenesis under healthy, homeostatic conditions. As such, I also introduce tractable, non-traditional models for examining the role of neuroimmune cells in natural neuronal turnover, seasonal plasticity of neural circuits, and extreme CNS regeneration.
Collapse
Affiliation(s)
- Tracy A. Larson
- Department of Biology, University of Virginia, Charlottesville, VA, United States
| |
Collapse
|
322
|
Khandia R, Munjal A, Dhama K, Karthik K, Tiwari R, Malik YS, Singh RK, Chaicumpa W. Modulation of Dengue/Zika Virus Pathogenicity by Antibody-Dependent Enhancement and Strategies to Protect Against Enhancement in Zika Virus Infection. Front Immunol 2018; 9:597. [PMID: 29740424 PMCID: PMC5925603 DOI: 10.3389/fimmu.2018.00597] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 03/09/2018] [Indexed: 12/25/2022] Open
Abstract
Antibody-dependent enhancement (ADE) is a phenomenon in which preexisting poorly neutralizing antibodies leads to enhanced infection. It is a serious concern with mosquito-borne flaviviruses such as Dengue virus (DENV) and Zika virus (ZIKV). In vitro experimental evidences have indicated the preventive, as well as a pathogenicity-enhancing role, of preexisting DENV antibodies in ZIKV infections. ADE has been confirmed in DENV but not ZIKV infections. Principally, the Fc region of the anti-DENV antibody binds with the fragment crystallizable gamma receptor (FcγR), and subsequent C1q interactions and immune effector functions are responsible for the ADE. In contrast to normal DENV infections, with ADE in DENV infections, inhibition of STAT1 phosphorylation and a reduction in IRF-1 gene expression, NOS2 levels, and RIG-1 and MDA-5 expression levels occurs. FcγRIIA is the most permissive FcγR for DENV-ADE, and under hypoxic conditions, hypoxia-inducible factor-1 alpha transcriptionally enhances expression levels of FcγRIIA, which further enhances ADE. To produce therapeutic antibodies with broad reactivity to different DENV serotypes, as well as to ZIKV, bispecific antibodies, Fc region mutants, modified Fc regions, and anti-idiotypic antibodies may be engineered. An in-depth understanding of the immunological and molecular mechanisms of DENV-ADE of ZIKV pathogenicity will be useful for the design of common and safe therapeutics and prophylactics against both viral pathogens. The present review discusses the role of DENV antibodies in modulating DENV/ZIKV pathogenicity/infection and strategies to counter ADE to protect against Zika infection.
Collapse
Affiliation(s)
- Rekha Khandia
- Department of Biochemistry and Genetics, Barkatullah University, Bhopal, India
| | - Ashok Munjal
- Department of Biochemistry and Genetics, Barkatullah University, Bhopal, India
| | - Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Bareilly, India
| | - Kumaragurubaran Karthik
- Central University Laboratory, Tamil Nadu Veterinary and Animal Sciences University, Chennai, India
| | - Ruchi Tiwari
- Department of Veterinary Microbiology and Immunology, College of Veterinary Sciences, Uttar Pradesh Pandit Deen Dayal Upadhyaya Pashu Chikitsa Vigyan Vishwavidyalaya Evam Go-Anusandhan Sansthan (DUVASU), Mathura, India
| | - Yashpal Singh Malik
- Division of Biological Standardization, ICAR-Indian Veterinary Research Institute, Bareilly, India
| | | | - Wanpen Chaicumpa
- Center of Research Excellence on Therapeutic Proteins and Antibody Engineering, Department of Parasitology, Faculty of Medicine SIriraj Hospital, Mahidol University, Bangkok, Thailand
| |
Collapse
|
323
|
Subverting the mechanisms of cell death: flavivirus manipulation of host cell responses to infection. Biochem Soc Trans 2018; 46:609-617. [DOI: 10.1042/bst20170399] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 03/15/2018] [Accepted: 03/26/2018] [Indexed: 12/11/2022]
Abstract
Viruses exploit host metabolic and defence machinery for their own replication. The flaviviruses, which include Dengue (DENV), Yellow Fever (YFV), Japanese Encephalitis (JEV), West Nile (WNV) and Zika (ZIKV) viruses, infect a broad range of hosts, cells and tissues. Flaviviruses are largely transmitted by mosquito bites and humans are usually incidental, dead-end hosts, with the notable exceptions of YFV, DENV and ZIKV. Infection by flaviviruses elicits cellular responses including cell death via necrosis, pyroptosis (involving inflammation) or apoptosis (which avoids inflammation). Flaviviruses exploit these mechanisms and subvert them to prolong viral replication. The different effects induced by DENV, WNV, JEV and ZIKV are reviewed. Host cell surface proteoglycans (PGs) bearing glycosaminoglycan (GAG) polysaccharides — heparan/chondroitin sulfate (HS/CS) — are involved in initial flavivirus attachment and during the expression of non-structural viral proteins play a role in disease aetiology. Recent work has shown that ZIKV-infected cells are protected from cell death by exogenous heparin (a GAG structurally similar to host cell surface HS), raising the possibility of further subtle involvement of HS PGs in flavivirus disease processes. The aim of this review is to synthesize information regarding DENV, WNV, JEV and ZIKV from two areas that are usually treated separately: the response of host cells to infection by flaviviruses and the involvement of cell surface GAGs in response to those infections.
Collapse
|
324
|
mTORC1 Negatively Regulates the Replication of Classical Swine Fever Virus Through Autophagy and IRES-Dependent Translation. iScience 2018; 3:87-101. [PMID: 30428332 PMCID: PMC6137324 DOI: 10.1016/j.isci.2018.04.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 03/06/2018] [Accepted: 03/29/2018] [Indexed: 02/07/2023] Open
Abstract
Classical swine fever virus (CSFV) can utilize diverse host signaling pathways for its replication; however, the cross talk between mammalian target of rapamycin (mTOR) and CSFV remains unknown. Here, we describe the potential role of mTOR complex 1 (mTORC1) in promoting CSFV replication via virus-induced hypophosphorylation of the Akt/mTORC1/S6 pathway, especially at an early stage of viral infection. Conversely, activation of mTORC1 inhibited the replication of CSFV. Furthermore, we revealed the underlying mechanisms of mTORC1 pathway in mediating CSFV replication; in addition, our data also showed that CSFV-induced transient inhibition of mTORC1 elicited a negative feedback activation of PI3K/Akt/mTORC1pathway, likely contributing to maintain the dynamic balance between viral replication and host cell survival. This study has provided strong evidence showing how CSFV utilizes mTORC1 pathway for viral replication at an early stage in the viral replicative cycle and how the mTORC1 rescues itself by eliciting a feedback loop to limit viral replication and maintain cell survival. Akt/mTORC1 pathway negatively regulates the replication of CSFV CSFV induces autophagy for viral replication in an mTORC1/ULK1-dependent manner CSFV enhances the translation of viral proteins in an mTORC1/S6K1/eIF3-dependent manner Feedback activation of Akt/mTORC1 equilibrates viral replication and cell survival
Collapse
|
325
|
Acosta-Ampudia Y, Monsalve DM, Castillo-Medina LF, Rodríguez Y, Pacheco Y, Halstead S, Willison HJ, Anaya JM, Ramírez-Santana C. Autoimmune Neurological Conditions Associated With Zika Virus Infection. Front Mol Neurosci 2018; 11:116. [PMID: 29695953 PMCID: PMC5904274 DOI: 10.3389/fnmol.2018.00116] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 03/26/2018] [Indexed: 12/20/2022] Open
Abstract
Zika virus (ZIKV) is an emerging flavivirus rapidly spreading throughout the tropical Americas. Aedes mosquitoes is the principal way of transmission of the virus to humans. ZIKV can be spread by transplacental, perinatal, and body fluids. ZIKV infection is often asymptomatic and those with symptoms present minor illness after 3 to 12 days of incubation, characterized by a mild and self-limiting disease with low-grade fever, conjunctivitis, widespread pruritic maculopapular rash, arthralgia and myalgia. ZIKV has been linked to a number of central and peripheral nervous system injuries such as Guillain-Barré syndrome (GBS), transverse myelitis (TM), meningoencephalitis, ophthalmological manifestations, and other neurological complications. Nevertheless, mechanisms of host-pathogen neuro-immune interactions remain incompletely elucidated. This review provides a critical discussion about the possible mechanisms underlying the development of autoimmune neurological conditions associated with Zika virus infection.
Collapse
Affiliation(s)
- Yeny Acosta-Ampudia
- Center for Autoimmune Diseases Research, School of Medicine and Health Sciences, Universidad del Rosario, Bogota, Colombia
| | - Diana M Monsalve
- Center for Autoimmune Diseases Research, School of Medicine and Health Sciences, Universidad del Rosario, Bogota, Colombia
| | - Luis F Castillo-Medina
- Center for Autoimmune Diseases Research, School of Medicine and Health Sciences, Universidad del Rosario, Bogota, Colombia
| | - Yhojan Rodríguez
- Center for Autoimmune Diseases Research, School of Medicine and Health Sciences, Universidad del Rosario, Bogota, Colombia
| | - Yovana Pacheco
- Center for Autoimmune Diseases Research, School of Medicine and Health Sciences, Universidad del Rosario, Bogota, Colombia
| | - Susan Halstead
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Hugh J Willison
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Juan-Manuel Anaya
- Center for Autoimmune Diseases Research, School of Medicine and Health Sciences, Universidad del Rosario, Bogota, Colombia
| | - Carolina Ramírez-Santana
- Center for Autoimmune Diseases Research, School of Medicine and Health Sciences, Universidad del Rosario, Bogota, Colombia
| |
Collapse
|
326
|
Sustained Specific and Cross-Reactive T Cell Responses to Zika and Dengue Virus NS3 in West Africa. J Virol 2018; 92:JVI.01992-17. [PMID: 29321308 DOI: 10.1128/jvi.01992-17] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Accepted: 12/21/2017] [Indexed: 01/05/2023] Open
Abstract
Recent studies on the role of T cells in Zika virus (ZIKV) infection have shown that T cell responses to Asian ZIKV infection are important for protection, and that previous dengue virus (DENV) exposure amplifies the protective T cell response to Asian ZIKV. Human T cell responses to African ZIKV infection, however, remain unexplored. Here, we utilized the modified anthrax toxin delivery system to develop a flavivirus enzyme-linked immunosorbent spot (ELISPOT) assay. Using human ZIKV and DENV samples from Senegal, West Africa, our results demonstrate specific and cross-reactive T cell responses to nonstructural protein 3 (NS3). Specifically, we found that T cell responses to NS3 protease are ZIKV and DENV specific, but responses to NS3 helicase are cross-reactive. Sequential sample analyses revealed immune responses sustained many years after infection. These results have important implications for African ZIKV/DENV vaccine development, as well as for potential flavivirus diagnostics based on T cell responses.IMPORTANCE The recent Zika virus (ZIKV) epidemic in Latin America and the associated congenital microcephaly and Guillain-Barré syndrome have raised questions as to why we have not recognized these distinct clinical diseases in Africa. The human immunologic response to ZIKV and related flaviviruses in Africa represents a research gap that may shed light on the mechanisms contributing to protection. The goal of our study was to develop an inexpensive assay to detect and characterize the T cell response to African ZIKV and DENV. Our data show long-term specific and cross-reactive human immune responses against African ZIKV and DENV, suggesting the usefulness of a diagnostic based on the T cell response. Additionally, we show that prior flavivirus exposure influences the magnitude of the T cell response. The identification of immune responses to African ZIKV and DENV is of relevance to vaccine development.
Collapse
|
327
|
Abstract
Despite being discovered approximately 70 years ago, Zika virus (ZIKV) has received little attention, until the occurrence of alarming epidemics in the Pacific Islands and Latin America between 2013 and 2016. These series of outbreaks resulted in crippling neurological complications in adults, and congenital deformities in new-borns. The dire outcomes marked ZIKV as a re-emerging pathogen of public health concern. Over a period of two years, extensive studies have been conducted to understand different aspects of ZIKV from pathogen biology to infection, including the immune response during virus-host interplay in established animal models, as well as potential therapeutics against ZIKV infection. The vast diversity of novel findings has added value to ZIKV research, and a strategic consolidation is crucial to encompass the latest advances and developments, as well as missing pieces of the puzzle. This review thus aims to provide a concise yet extensive update on current ZIKV studies.
Collapse
Affiliation(s)
- Cheryl Yi-Pin Lee
- Singapore Immunology Network, Agency for Science, Technology and Research (A*STAR), Singapore; NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore
| | - Lisa F P Ng
- Singapore Immunology Network, Agency for Science, Technology and Research (A*STAR), Singapore; Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Institute of Infection and Global Health, University of Liverpool, UK.
| |
Collapse
|
328
|
Montagne A, Nikolakopoulou AM, Zhao Z, Sagare AP, Si G, Lazic D, Barnes SR, Daianu M, Ramanathan A, Go A, Lawson EJ, Wang Y, Mack WJ, Thompson PM, Schneider JA, Varkey J, Langen R, Mullins E, Jacobs RE, Zlokovic BV. Pericyte degeneration causes white matter dysfunction in the mouse central nervous system. Nat Med 2018; 24:326-337. [PMID: 29400711 PMCID: PMC5840035 DOI: 10.1038/nm.4482] [Citation(s) in RCA: 273] [Impact Index Per Article: 45.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 01/04/2018] [Indexed: 02/07/2023]
Abstract
Diffuse white-matter disease associated with small-vessel disease and dementia is prevalent in the elderly. The biological mechanisms, however, remain elusive. Using pericyte-deficient mice, magnetic resonance imaging, viral-based tract-tracing, and behavior and tissue analysis, we found that pericyte degeneration disrupted white-matter microcirculation, resulting in an accumulation of toxic blood-derived fibrin(ogen) deposits and blood-flow reductions, which triggered a loss of myelin, axons and oligodendrocytes. This disrupted brain circuits, leading to white-matter functional deficits before neuronal loss occurs. Fibrinogen and fibrin fibrils initiated autophagy-dependent cell death in oligodendrocyte and pericyte cultures, whereas pharmacological and genetic manipulations of systemic fibrinogen levels in pericyte-deficient, but not control mice, influenced the degree of white-matter fibrin(ogen) deposition, pericyte degeneration, vascular pathology and white-matter changes. Thus, our data indicate that pericytes control white-matter structure and function, which has implications for the pathogenesis and treatment of human white-matter disease associated with small-vessel disease.
Collapse
Affiliation(s)
- Axel Montagne
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
- Department of Physiology and Neuroscience, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Angeliki M. Nikolakopoulou
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
- Department of Physiology and Neuroscience, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Zhen Zhao
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
- Department of Physiology and Neuroscience, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Abhay P. Sagare
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
- Department of Physiology and Neuroscience, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Gabriel Si
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Divna Lazic
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
- Department of Physiology and Neuroscience, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
- Department of Neurobiology, Institute for Biological Research, University of Belgrade, Belgrade, Republic of Serbia
| | - Samuel R. Barnes
- Biological Imaging Center, Beckman Institute, California Institute of Technology, Pasadena, CA 91101, USA
| | - Madelaine Daianu
- Imaging Genetics Center, Mark & Mary Stevens Neuroimaging & Informatics Institute, University of Southern California, Marina del Rey, CA 90292, USA
| | - Anita Ramanathan
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
- Department of Physiology and Neuroscience, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Ariel Go
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Erica J. Lawson
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
- Department of Physiology and Neuroscience, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Yaoming Wang
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
- Department of Physiology and Neuroscience, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - William J. Mack
- Department of Neurological Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Paul M. Thompson
- Imaging Genetics Center, Mark & Mary Stevens Neuroimaging & Informatics Institute, University of Southern California, Marina del Rey, CA 90292, USA
| | - Julie A. Schneider
- Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL 60612, USA
| | - Jobin Varkey
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
- Department of Physiology and Neuroscience, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Ralf Langen
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
- Department of Physiology and Neuroscience, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Eric Mullins
- Division of Hematology and Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH 45229-3039
| | - Russell E. Jacobs
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
- Department of Physiology and Neuroscience, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
- Biological Imaging Center, Beckman Institute, California Institute of Technology, Pasadena, CA 91101, USA
| | - Berislav V. Zlokovic
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
- Department of Physiology and Neuroscience, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| |
Collapse
|
329
|
Counotte MJ, Egli-Gany D, Riesen M, Abraha M, Porgo TV, Wang J, Low N. Zika virus infection as a cause of congenital brain abnormalities and Guillain-Barré syndrome: From systematic review to living systematic review. F1000Res 2018; 7:196. [PMID: 30631437 PMCID: PMC6290976 DOI: 10.12688/f1000research.13704.1] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/25/2018] [Indexed: 01/16/2023] Open
Abstract
Background. The Zika virus (ZIKV) outbreak in the Americas has caused international concern due to neurological sequelae linked to the infection, such as microcephaly and Guillain-Barré syndrome (GBS). The World Health Organization stated that there is “sufficient evidence to conclude that Zika virus is a cause of congenital abnormalities and is a trigger of GBS”. This conclusion was based on a systematic review of the evidence published until 30.05.2016. Since then, the body of evidence has grown substantially, leading to this update of that systematic review with new evidence published from 30.05.2016 – 18.01.2017, update 1. Methods. We review evidence on the causal link between ZIKV infection and adverse congenital outcomes and the causal link between ZIKV infection and GBS or immune-mediated thrombocytopaenia purpura. We also describe the transition of the review into a living systematic review, a review that is continually updated. Results. Between 30.05.2016 and 18.01.2017, we identified 2413 publications, of which 101 publications were included. The evidence added in this update confirms the conclusion of a causal association between ZIKV and adverse congenital outcomes. New findings expand the evidence base in the dimensions of biological plausibility, strength of association, animal experiments and specificity. For GBS, the body of evidence has grown during the search period for update 1, but only for dimensions that were already populated in the previous version. There is still a limited understanding of the biological pathways that potentially cause the occurrence of autoimmune disease following ZIKV infection. Conclusions. This systematic review confirms previous conclusions that ZIKV is a cause of congenital abnormalities, including microcephaly, and is a trigger of GBS. The transition to living systematic review techniques and methodology provides a proof of concept for the use of these methods to synthesise evidence about an emerging pathogen such as ZIKV.
Collapse
Affiliation(s)
| | - Dianne Egli-Gany
- Institute of Social and Preventive Medicine, University of Bern, Bern, Switzerland
| | - Maurane Riesen
- Institute of Social and Preventive Medicine, University of Bern, Bern, Switzerland
| | - Million Abraha
- Institute of Social and Preventive Medicine, University of Bern, Bern, Switzerland
| | | | - Jingying Wang
- Institute of Social and Preventive Medicine, University of Bern, Bern, Switzerland
| | - Nicola Low
- Institute of Social and Preventive Medicine, University of Bern, Bern, Switzerland
| |
Collapse
|
330
|
Koppolu V, Shantha Raju T. Zika virus outbreak: a review of neurological complications, diagnosis, and treatment options. J Neurovirol 2018; 24:255-272. [PMID: 29441490 DOI: 10.1007/s13365-018-0614-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Accepted: 01/18/2018] [Indexed: 02/07/2023]
Abstract
Zika virus (ZIKV) is an arbovirus transmitted mainly by mosquitos of Aedes species. The virus has emerged in recent years and spread throughout North and South Americas. The recent outbreak of ZIKV started in Brazil (2015) has resulted in infections surpassing a million mark. Contrary to the previous beliefs that Zika causes mildly symptomatic infections fever, headache, rash, arthralgia, and conjunctivitis, the recent outbreak associated ZIKV to serious neurological complications such as microcephaly, Guillain-Barré syndrome, and eye infections. The recent outbreak has resulted in an astonishing number of microcephaly cases in fetus and infants. Consequently, numerous studies were conducted using in vitro cell and in vivo animal models. These studies showed clear links between ZIKV infections and neurological abnormalities. Diagnosis methods based on nucleic acid and serological detection facilitated rapid and accurate identification of ZIKV infections. New transmission modalities such as sexual and transplacental transmission were uncovered. Given the seriousness of ZIKV infections, WHO declared the development of safe and effective vaccines and new antiviral drugs as an urgent global health priority. Rapid work in this direction has led to the identification of several vaccine and antiviral drug candidates. Here, we review the remarkable progress made in understanding the molecular links between ZIKV infections and neurological irregularities, new diagnosis methods, potential targets for antiviral drugs, and the current state of vaccine development.
Collapse
Affiliation(s)
- Veerendra Koppolu
- Global Bioassay Development and Quality, Biopharmaceutical Development, MedImmune, Gaithersburg, MD, USA
| | - T Shantha Raju
- Global Bioassay Development and Quality, Biopharmaceutical Development, MedImmune, Gaithersburg, MD, USA.
| |
Collapse
|
331
|
Kim JA, Seong RK, Kumar M, Shin OS. Favipiravir and Ribavirin Inhibit Replication of Asian and African Strains of Zika Virus in Different Cell Models. Viruses 2018; 10:v10020072. [PMID: 29425176 PMCID: PMC5850379 DOI: 10.3390/v10020072] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Revised: 01/29/2018] [Accepted: 02/08/2018] [Indexed: 11/16/2022] Open
Abstract
Zika virus (ZIKV) has recently emerged as a new public health threat. ZIKV infections have caused a wide spectrum of neurological diseases, such as Guillain-Barré syndrome, myelitis, meningoencephalitis, and congenital microcephaly. No effective therapies currently exist for treating patients infected with ZIKV. Herein, we evaluated the anti-viral activity of favipiravir (T-705) and ribavirin against Asian and African strains of ZIKV using different cell models, including human neuronal progenitor cells (hNPCs), human dermal fibroblasts (HDFs), human lung adenocarcinoma cells (A549) and Vero cells. Cells were treated with favipiravir or ribavirin and effects on ZIKV replication were determined using quantitative real-time PCR and plaque assay. Our results demonstrate that favipiravir or ribavirin treatment significantly inhibited ZIKV replication in a dose-dependent manner. Moreover, favipiravir treatment of ZIKV-infected hNPCs led to reduced cell death, enhanced AKT pathway phosphorylation, and increased expression of anti-apoptotic factor B cell lymphoma 2. In conclusion, our results demonstrate conclusively that favipiravir inhibits ZIKV replication and prevents cell death, and can be a promising intervention for ZIKV-associated disease.
Collapse
Affiliation(s)
- Ji-Ae Kim
- Department of Biomedical Sciences, College of Medicine, Korea University Guro Hospital, Seoul 08308, Korea.
| | - Rak-Kyun Seong
- Department of Biomedical Sciences, College of Medicine, Korea University Guro Hospital, Seoul 08308, Korea.
| | - Mukesh Kumar
- Department of Tropical Medicine, Medical Microbiology and Pharmacology, Pacific Center for Emerging Infectious Diseases Research, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI 96813, USA.
| | - Ok Sarah Shin
- Department of Biomedical Sciences, College of Medicine, Korea University Guro Hospital, Seoul 08308, Korea.
| |
Collapse
|
332
|
Caires-Júnior LC, Goulart E, Melo US, Araujo BHS, Alvizi L, Soares-Schanoski A, de Oliveira DF, Kobayashi GS, Griesi-Oliveira K, Musso CM, Amaral MS, daSilva LF, Astray RM, Suárez-Patiño SF, Ventini DC, Gomes da Silva S, Yamamoto GL, Ezquina S, Naslavsky MS, Telles-Silva KA, Weinmann K, van der Linden V, van der Linden H, de Oliveira JRM, Arrais NMR, Melo A, Figueiredo T, Santos S, Meira JGC, Passos SD, de Almeida RP, Bispo AJB, Cavalheiro EA, Kalil J, Cunha-Neto E, Nakaya H, Andreata-Santos R, de Souza Ferreira LC, Verjovski-Almeida S, Ho PL, Passos-Bueno MR, Zatz M. Discordant congenital Zika syndrome twins show differential in vitro viral susceptibility of neural progenitor cells. Nat Commun 2018; 9:475. [PMID: 29396410 PMCID: PMC5797251 DOI: 10.1038/s41467-017-02790-9] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 12/28/2017] [Indexed: 12/28/2022] Open
Abstract
Congenital Zika syndrome (CZS) causes early brain development impairment by affecting neural progenitor cells (NPCs). Here, we analyze NPCs from three pairs of dizygotic twins discordant for CZS. We compare by RNA-Seq the NPCs derived from CZS-affected and CZS-unaffected twins. Prior to Zika virus (ZIKV) infection the NPCs from CZS babies show a significantly different gene expression signature of mTOR and Wnt pathway regulators, key to a neurodevelopmental program. Following ZIKV in vitro infection, cells from affected individuals have significantly higher ZIKV replication and reduced cell growth. Whole-exome analysis in 18 affected CZS babies as compared to 5 unaffected twins and 609 controls excludes a monogenic model to explain resistance or increased susceptibility to CZS development. Overall, our results indicate that CZS is not a stochastic event and depends on NPC intrinsic susceptibility, possibly related to oligogenic and/or epigenetic mechanisms. Zika virus (ZIKV) infection can cause congenital Zika syndrome (CZS), but the underlying mechanisms are poorly understood. Here, the authors generate neural progenitor cells from dizygotic twins with a discordant phenotype regarding CZS and study their response to ZIKV infection.
Collapse
Affiliation(s)
- Luiz Carlos Caires-Júnior
- Department of Genetics and Evolutionary Biology, Human Genome and Stem Cell Research Center, Biosciences Institute, University of São Paulo (USP), São Paulo - SP, 05508-900, Brazil
| | - Ernesto Goulart
- Department of Genetics and Evolutionary Biology, Human Genome and Stem Cell Research Center, Biosciences Institute, University of São Paulo (USP), São Paulo - SP, 05508-900, Brazil
| | - Uirá Souto Melo
- Department of Genetics and Evolutionary Biology, Human Genome and Stem Cell Research Center, Biosciences Institute, University of São Paulo (USP), São Paulo - SP, 05508-900, Brazil
| | - Bruno Henrique Silva Araujo
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas - SP, 13083-970, Brazil.,Neuroscience laboratory, Department of Neurology and Neurosurgery, Federal University of São Paulo-UNIFESP/EPM, São Paulo - SP, 04039-002, Brazil
| | - Lucas Alvizi
- Department of Genetics and Evolutionary Biology, Human Genome and Stem Cell Research Center, Biosciences Institute, University of São Paulo (USP), São Paulo - SP, 05508-900, Brazil
| | | | - Danyllo Felipe de Oliveira
- Department of Genetics and Evolutionary Biology, Human Genome and Stem Cell Research Center, Biosciences Institute, University of São Paulo (USP), São Paulo - SP, 05508-900, Brazil
| | - Gerson Shigeru Kobayashi
- Department of Genetics and Evolutionary Biology, Human Genome and Stem Cell Research Center, Biosciences Institute, University of São Paulo (USP), São Paulo - SP, 05508-900, Brazil
| | - Karina Griesi-Oliveira
- Department of Genetics and Evolutionary Biology, Human Genome and Stem Cell Research Center, Biosciences Institute, University of São Paulo (USP), São Paulo - SP, 05508-900, Brazil.,Albert Einstein Hospital, São Paulo - SP, 05652-900, Brazil
| | - Camila Manso Musso
- Department of Genetics and Evolutionary Biology, Human Genome and Stem Cell Research Center, Biosciences Institute, University of São Paulo (USP), São Paulo - SP, 05508-900, Brazil
| | | | - Lucas Ferreira daSilva
- Department of Biochemistry, Institute of Chemistry, University of São Paulo (USP), São Paulo - SP, 05508-900, Brazil
| | | | | | | | - Sérgio Gomes da Silva
- Albert Einstein Hospital, São Paulo - SP, 05652-900, Brazil.,Universidade de Mogi das Cruzes, Mogi das Cruzes - SP, 08780-911, Brazil
| | - Guilherme Lopes Yamamoto
- Department of Genetics and Evolutionary Biology, Human Genome and Stem Cell Research Center, Biosciences Institute, University of São Paulo (USP), São Paulo - SP, 05508-900, Brazil
| | - Suzana Ezquina
- Department of Genetics and Evolutionary Biology, Human Genome and Stem Cell Research Center, Biosciences Institute, University of São Paulo (USP), São Paulo - SP, 05508-900, Brazil
| | - Michel Satya Naslavsky
- Department of Genetics and Evolutionary Biology, Human Genome and Stem Cell Research Center, Biosciences Institute, University of São Paulo (USP), São Paulo - SP, 05508-900, Brazil
| | - Kayque Alves Telles-Silva
- Department of Genetics and Evolutionary Biology, Human Genome and Stem Cell Research Center, Biosciences Institute, University of São Paulo (USP), São Paulo - SP, 05508-900, Brazil
| | - Karina Weinmann
- Department of Genetics and Evolutionary Biology, Human Genome and Stem Cell Research Center, Biosciences Institute, University of São Paulo (USP), São Paulo - SP, 05508-900, Brazil
| | | | | | - João Ricardo Mendes de Oliveira
- Neuropsychiatry Department and KeizoAsami Laboratory, Federal University of Pernambuco (UFPE), Recife - PE, 50670-901, Brazil
| | | | | | - Thalita Figueiredo
- Department of Genetics and Evolutionary Biology, Human Genome and Stem Cell Research Center, Biosciences Institute, University of São Paulo (USP), São Paulo - SP, 05508-900, Brazil
| | - Silvana Santos
- Department of Biology, Paraíba State University (UEPB), Campina Grande - PB, 58429-500, Brazil
| | | | - Saulo Duarte Passos
- Infectious pediatric laboratory, Medicine School of Jundiaí, Jundiaí - SP, 13202-550, Brazil
| | - Roque Pacheco de Almeida
- Division of Immunology and Molecular Biology Laboratory, Federal University of Sergipe (UFS), Aracaju - SP, 49100-000, Brazil
| | - Ana Jovina Barreto Bispo
- Division of Immunology and Molecular Biology Laboratory, Federal University of Sergipe (UFS), Aracaju - SP, 49100-000, Brazil
| | - Esper Abrão Cavalheiro
- Neuroscience laboratory, Department of Neurology and Neurosurgery, Federal University of São Paulo-UNIFESP/EPM, São Paulo - SP, 04039-002, Brazil
| | - Jorge Kalil
- Butantan Institute, São Paulo - SP, 05503-900, Brazil
| | - Edécio Cunha-Neto
- Heart Institute, Faculty of Medicine, University of São Paulo (USP), São Paulo - SP, 05403-900, Brazil
| | - Helder Nakaya
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo (USP), São Paulo - SP, 05508-900, Brazil
| | - Robert Andreata-Santos
- Vaccine Development Laboratory, Department of Microbiology, Institute of Biomedical Science, University of São Paulo (USP), São Paulo - SP, 05508-900, Brazil
| | - Luis Carlos de Souza Ferreira
- Vaccine Development Laboratory, Department of Microbiology, Institute of Biomedical Science, University of São Paulo (USP), São Paulo - SP, 05508-900, Brazil
| | - Sergio Verjovski-Almeida
- Butantan Institute, São Paulo - SP, 05503-900, Brazil.,Department of Biochemistry, Institute of Chemistry, University of São Paulo (USP), São Paulo - SP, 05508-900, Brazil
| | - Paulo Lee Ho
- Butantan Institute, São Paulo - SP, 05503-900, Brazil
| | - Maria Rita Passos-Bueno
- Department of Genetics and Evolutionary Biology, Human Genome and Stem Cell Research Center, Biosciences Institute, University of São Paulo (USP), São Paulo - SP, 05508-900, Brazil
| | - Mayana Zatz
- Department of Genetics and Evolutionary Biology, Human Genome and Stem Cell Research Center, Biosciences Institute, University of São Paulo (USP), São Paulo - SP, 05508-900, Brazil.
| |
Collapse
|
333
|
Cairns DM, Boorgu DSSK, Levin M, Kaplan DL. Niclosamide rescues microcephaly in a humanized in vivo model of Zika infection using human induced neural stem cells. Biol Open 2018; 7:7/1/bio031807. [PMID: 29378701 PMCID: PMC5829514 DOI: 10.1242/bio.031807] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Zika virus (ZIKV) is a mosquito-transmitted flavivirus with a causative link to microcephaly, a condition resulting in reduced cranial size and brain abnormalities. Despite recent progress, there is a current lack of in vivo models that permit the study of systemic virus on human neurons in a developing organism that replicates the pathophysiology of human disease. Furthermore, no treatment to date has been reported to reduce ZIKV-induced microcephaly. We tested the effects of ZIKV on human induced neural stem cells (hiNSCs) in vitro and found that infected hiNSCs secrete inflammatory cytokines, display altered differentiation, and become apoptotic. We also utilized this in vitro system to assess the therapeutic effects of niclosamide, an FDA-approved anthelminthic, and found that it decreases ZIKV production, partially restores differentiation, and prevents apoptosis in hiNSCs. We intracranially injected hiNSCs into developing chicks, subjected them to systemic ZIKV infection via the chorioallantoic membrane (CAM), a tissue similar in structure and function to the mammalian placenta, and found that humanized ZIKV-infected embryos developed severe microcephaly including smaller crania, decreased forebrain volume and enlarged ventricles. Lastly, we utilized this humanized model to show that CAM-delivery of niclosamide can partially rescue ZIKV-induced microcephaly and attenuate infection of hiNSCs in vivoThis article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Dana M Cairns
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA
| | | | - Michael Levin
- Department of Biology, Tufts University, Medford, MA 02155, USA.,Allen Discovery Center, Tufts University, Medford, MA 02155, USA
| | - David L Kaplan
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA .,Allen Discovery Center, Tufts University, Medford, MA 02155, USA
| |
Collapse
|
334
|
Zheng T, Xu C, Mao C, Mou X, Wu F, Wang X, Bu L, Zhou Y, Luo X, Lu Q, Liu H, Yuan G, Wang S, Chen D, Xiao Y. Increased Interleukin-23 in Hashimoto's Thyroiditis Disease Induces Autophagy Suppression and Reactive Oxygen Species Accumulation. Front Immunol 2018; 9:96. [PMID: 29434604 PMCID: PMC5796905 DOI: 10.3389/fimmu.2018.00096] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2017] [Accepted: 01/12/2018] [Indexed: 02/01/2023] Open
Abstract
Hashimoto’s thyroiditis (HT) represents the most common organ-specific autoimmune disease. Inflammatory factors and reactive oxygen species (ROS) play detrimental roles during the pathogenesis of HT. In this study, we found that thyroid follicular cells (TFCs) from HT patients expressed an elevated level of interleukin-23 (IL-23), which contributed to autophagy suppression and ROS accumulation. Additionally, IL-23-induced autophagy suppression and ROS accumulation in human TFCs was attributed to AKT/mTOR/NF-κB signaling pathway activation. Inhibition of either IL-23 by a specific neutralization antibody, or mTOR by rapamycin, or NF-κB by IKK-16, significantly reversed the autophagy suppression and ROS accumulation. These results demonstrate a key role for IL-23 in HT pathogenesis and provide a potential therapeutic strategy against IL-23 or its signaling pathway in HT.
Collapse
Affiliation(s)
- Tingting Zheng
- Department of Nuclear Medicine, The Affiliated Hospital of Jiangsu University, Zhenjiang, China.,Institute of Oncology, The Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Chengcheng Xu
- Department of Nuclear Medicine, The Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Chaoming Mao
- Department of Nuclear Medicine, The Affiliated Hospital of Jiangsu University, Zhenjiang, China.,Institute of Oncology, The Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Xiao Mou
- Department of Nuclear Medicine, The Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Fei Wu
- Department of Nuclear Medicine, The Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Xuefeng Wang
- Department of Nuclear Medicine, The Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Ling Bu
- Department of Nuclear Medicine, The Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Yuepeng Zhou
- Institute of Oncology, The Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Xuan Luo
- Department of Nuclear Medicine, The Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Qingyan Lu
- Department of Nuclear Medicine, The Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Hongli Liu
- Department of Nuclear Medicine, The Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Guoyue Yuan
- Department of Nuclear Medicine, The Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Shengjun Wang
- Department of Laboratory Immunology, Jiangsu University School of Medicine, Zhenjiang, China
| | - Deyu Chen
- Institute of Oncology, The Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Yichuan Xiao
- Department of Nuclear Medicine, The Affiliated Hospital of Jiangsu University, Zhenjiang, China.,Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences and Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
335
|
Cao B, Sheth MN, Mysorekar IU. To Zika and destroy: an antimalarial drug protects fetuses from Zika infection. Future Microbiol 2018; 13:137-139. [PMID: 29302996 DOI: 10.2217/fmb-2017-0213] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Affiliation(s)
- Bin Cao
- Department of Obstetrics & Gynecology, Washington University School of Medicine, 660 South Euclid Avenue, St Louis, MO 63110, USA.,Center for Reproductive Health Sciences, Washington University School of Medicine, 660 South Euclid Avenue, St Louis, MO 63110, USA
| | - Meghal N Sheth
- Department of Obstetrics & Gynecology, Washington University School of Medicine, 660 South Euclid Avenue, St Louis, MO 63110, USA.,Center for Reproductive Health Sciences, Washington University School of Medicine, 660 South Euclid Avenue, St Louis, MO 63110, USA
| | - Indira U Mysorekar
- Department of Obstetrics & Gynecology, Washington University School of Medicine, 660 South Euclid Avenue, St Louis, MO 63110, USA.,Center for Reproductive Health Sciences, Washington University School of Medicine, 660 South Euclid Avenue, St Louis, MO 63110, USA.,Department of Pathology & Immunology, Washington University School of Medicine, 660 South Euclid Avenue, St Louis, MO 63110, USA
| |
Collapse
|
336
|
Cedillo-Barrón L, García-Cordero J, Shrivastava G, Carrillo-Halfon S, León-Juárez M, Bustos Arriaga J, León Valenzuela P, Gutiérrez Castañeda B. The Role of Flaviviral Proteins in the Induction of Innate Immunity. Subcell Biochem 2018; 88:407-442. [PMID: 29900506 DOI: 10.1007/978-981-10-8456-0_17] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Flaviviruses are positive, single-stranded, enveloped cytoplasmic sense RNA viruses that cause a variety of important diseases worldwide. Among them, Zika virus, West Nile virus, Japanese encephalitis virus, and Dengue virus have the potential to cause severe disease. Extensive studies have been performed to elucidate the structure and replication strategies of flaviviruses, and current studies are aiming to unravel the complex molecular interactions between the virus and host during the very early stages of infection. The outcomes of viral infection and rapid establishment of the antiviral state, depends on viral detection by pathogen recognition receptors and rapid initiation of signalling cascades to induce an effective innate immune response. Extracellular and intracellular pathogen recognition receptors play a crucial role in detecting flavivirus infection and inducing a robust antiviral response. One of the main hallmarks of flaviviral nonstructural proteins is their multiple strategies to antagonise the interferon system. In this chapter, we summarize the molecular characteristics of flaviviral proteins and discuss how viral proteins target different components of the interferon signalling pathway by blocking phosphorylation, enhancing degradation, and downregulating the expression of major components of the Janus kinase/signal transducer and activator of transcription pathway. We also discuss how the interactions of viral proteins with host proteins facilitate viral pathogenesis. Due to the lack of antivirals or prophylactic treatments for many flaviviral infections, it is necessary to fully elucidate how these viruses disrupt cellular processes to influence pathogenesis and disease outcomes.
Collapse
Affiliation(s)
- L Cedillo-Barrón
- Departamento de Biomedicina Molecular, CINVESTAV IPN, México, D.F, Mexico.
| | - J García-Cordero
- Departamento de Biomedicina Molecular, CINVESTAV IPN, México, D.F, Mexico
| | - G Shrivastava
- Departamento de Biomedicina Molecular, CINVESTAV IPN, México, D.F, Mexico
| | - S Carrillo-Halfon
- Departamento de Biomedicina Molecular, CINVESTAV IPN, México, D.F, Mexico
| | - M León-Juárez
- Department of Immunobiochemistry, National Institute of Perinatology, México City, Mexico
| | - J Bustos Arriaga
- Unidad de Biomedicina. Facultad de Estudios Superiores-Iztacala, Universidad Nacional Autonoma de México, Edo. de México, Mexico
| | - Pc León Valenzuela
- Departamento de Biomedicina Molecular, CINVESTAV IPN, México, D.F, Mexico
| | - B Gutiérrez Castañeda
- Immunology Department UMF Facultad de Estudios Superiores-Iztacala, Universidad Nacional Autonoma de México, Edo. de México, Mexico
| |
Collapse
|
337
|
Kong W, Li H, Zhu J. Zika virus: The transboundary pathogen from mosquito and updates. Microb Pathog 2018; 114:476-482. [DOI: 10.1016/j.micpath.2017.12.031] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 12/08/2017] [Accepted: 12/09/2017] [Indexed: 01/01/2023]
|
338
|
Gurumayum S, Brahma R, Naorem LD, Muthaiyan M, Gopal J, Venkatesan A. ZikaBase: An integrated ZIKV- Human Interactome Map database. Virology 2018; 514:203-210. [DOI: 10.1016/j.virol.2017.11.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 10/08/2017] [Accepted: 11/09/2017] [Indexed: 02/05/2023]
|
339
|
Jun SR, Wassenaar TM, Wanchai V, Patumcharoenpol P, Nookaew I, Ussery DW. Suggested mechanisms for Zika virus causing microcephaly: what do the genomes tell us? BMC Bioinformatics 2017; 18:471. [PMID: 29297281 PMCID: PMC5751795 DOI: 10.1186/s12859-017-1894-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Background Zika virus (ZIKV) is an emerging human pathogen. Since its arrival in the Western hemisphere, from Africa via Asia, it has become a serious threat to pregnant women, causing microcephaly and other neuropathies in developing fetuses. The mechanisms behind these teratogenic effects are unknown, although epidemiological evidence suggests that microcephaly is not associated with the original, African lineage of ZIKV. The sequences of 196 published ZIKV genomes were used to assess whether recently proposed mechanistic explanations for microcephaly are supported by molecular level changes that may have increased its virulence since the virus left Africa. For this we performed phylogenetic, recombination, adaptive evolution and tetramer frequency analyses, and compared protein sequences for the presence of protease cleavage sites, Pfam domains, glycosylation sites, signal peptides, trans-membrane protein domains, and phosphorylation sites. Results Recombination events within or between Asian and Brazilian lineages were not observed, and likewise there were no differences in protease cleavage, glycosylation sites, signal peptides or trans-membrane domains between African and Brazilian strains. The frequency of Retinoic Acid Response Element (RARE) sequences was increased in Brazilian strains. Genetic adaptation was also apparent by tetramer signatures that had undergone major changes in the past but has stabilized in the Brazilian lineage despite subsequent geographic spread, suggesting the viral population presently propagates in the same host species in various regions. Evidence for selection pressure was recognized for several amino acid sites in the Brazilian lineage compared to the African lineage, mainly in nonstructural proteins, especially protein NS4B. A number of these positively selected mutations resulted in an increased potential to be phosphorylated in the Brazilian lineage compared to the African linage, which may have increased their potential to interfere with neural fetal development. Conclusions ZIKV seems to have adapted to a limited number of hosts, including humans, during which its virulence increased. Its protein NS4B, together with NS4A, has recently been shown to inhibit Akt-mTOR signaling in human fetal neural stem cells, a key pathway for brain development. We hypothesize that positive selection of novel phosphorylation sites in the protein NS4B of the Brazilian lineage could interfere with phosphorylation of Akt and mTOR, impairing Akt-mTOR signaling and this may result in an increased risk for developmental neuropathies. Electronic supplementary material The online version of this article (10.1186/s12859-017-1894-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Se-Ran Jun
- Department of Biomedical Informatics, University of Arkansas for Medical Sciences, Little Rock, AR, USA.
| | - Trudy M Wassenaar
- Molecular Microbiology and Genomics Consultants, Zotzenheim, Germany
| | - Visanu Wanchai
- Department of Biomedical Informatics, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Preecha Patumcharoenpol
- Department of Biomedical Informatics, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Intawat Nookaew
- Department of Biomedical Informatics, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - David W Ussery
- Department of Biomedical Informatics, University of Arkansas for Medical Sciences, Little Rock, AR, USA.
| |
Collapse
|
340
|
Scarante FF, Vila-Verde C, Detoni VL, Ferreira-Junior NC, Guimarães FS, Campos AC. Cannabinoid Modulation of the Stressed Hippocampus. Front Mol Neurosci 2017; 10:411. [PMID: 29311804 PMCID: PMC5742214 DOI: 10.3389/fnmol.2017.00411] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Accepted: 11/27/2017] [Indexed: 12/31/2022] Open
Abstract
Exposure to stressful situations is one of the risk factors for the precipitation of several psychiatric disorders, including Major Depressive Disorder, Posttraumatic Stress Disorder and Schizophrenia. The hippocampal formation is a forebrain structure highly associated with emotional, learning and memory processes; being particularly vulnerable to stress. Exposure to stressful stimuli leads to neuroplastic changes and imbalance between inhibitory/excitatory networks. These changes have been associated with an impaired hippocampal function. Endocannabinoids (eCB) are one of the main systems controlling both excitatory and inhibitory neurotransmission, as well as neuroplasticity within the hippocampus. Cannabinoids receptors are highly expressed in the hippocampus, and several lines of evidence suggest that facilitation of cannabinoid signaling within this brain region prevents stress-induced behavioral changes. Also, chronic stress modulates hippocampal CB1 receptors expression and endocannabinoid levels. Moreover, cannabinoids participate in mechanisms related to synaptic plasticity and adult neurogenesis. Here, we discussed the main findings supporting the involvement of hippocampal cannabinoid neurotransmission in stress-induced behavioral and neuroplastic changes.
Collapse
Affiliation(s)
- Franciele F Scarante
- Department of Pharmacology, School of Medicine of Ribeirão Preto, Centre for Interdisciplinary Research on Applied Neurosciences (NAPNA), Cannabinoid Research Institute, University of São Paulo, São Paulo, Brazil
| | - Carla Vila-Verde
- Department of Pharmacology, School of Medicine of Ribeirão Preto, Centre for Interdisciplinary Research on Applied Neurosciences (NAPNA), Cannabinoid Research Institute, University of São Paulo, São Paulo, Brazil
| | - Vinícius L Detoni
- Department of Pharmacology, School of Medicine of Ribeirão Preto, Centre for Interdisciplinary Research on Applied Neurosciences (NAPNA), Cannabinoid Research Institute, University of São Paulo, São Paulo, Brazil
| | - Nilson C Ferreira-Junior
- Department of Pharmacology, School of Medicine of Ribeirão Preto, Centre for Interdisciplinary Research on Applied Neurosciences (NAPNA), Cannabinoid Research Institute, University of São Paulo, São Paulo, Brazil
| | - Francisco S Guimarães
- Department of Pharmacology, School of Medicine of Ribeirão Preto, Centre for Interdisciplinary Research on Applied Neurosciences (NAPNA), Cannabinoid Research Institute, University of São Paulo, São Paulo, Brazil
| | - Alline C Campos
- Department of Pharmacology, School of Medicine of Ribeirão Preto, Centre for Interdisciplinary Research on Applied Neurosciences (NAPNA), Cannabinoid Research Institute, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
341
|
Kim SJ, Ahn DG, Syed GH, Siddiqui A. The essential role of mitochondrial dynamics in antiviral immunity. Mitochondrion 2017; 41:21-27. [PMID: 29246869 PMCID: PMC5988924 DOI: 10.1016/j.mito.2017.11.007] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 11/29/2017] [Accepted: 11/29/2017] [Indexed: 01/17/2023]
Abstract
Viruses alter cellular physiology and function to establish cellular environment conducive for viral proliferation. Viral immune evasion is an essential aspect of viral persistence and proliferation. The multifaceted mitochondria play a central role in many cellular events such as metabolism, bioenergetics, cell death, and innate immune signaling. Recent findings accentuate that viruses regulate mitochondrial function and dynamics to facilitate viral proliferation. In this review, we will discuss how viruses exploit mitochondrial dynamics to modulate mitochondria-mediated antiviral innate immune response during infection. This review will provide new insight to understanding the virus-mediated alteration of mitochondrial dynamics and functions to perturb host antiviral immune signaling.
Collapse
Affiliation(s)
- Seong-Jun Kim
- Center for Convergent Research of Emerging Virus Infection, Korea Research Institute of Chemical Technology, Yuseong, Daejeon 34114, South Korea
| | - Dae-Gyun Ahn
- Center for Convergent Research of Emerging Virus Infection, Korea Research Institute of Chemical Technology, Yuseong, Daejeon 34114, South Korea
| | - Gulam H Syed
- Institute of Life Sciences, Bhubaneswar, Odisha 751023, India
| | - Aleem Siddiqui
- Division of Infectious Diseases, Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
342
|
Slomnicki LP, Chung DH, Parker A, Hermann T, Boyd NL, Hetman M. Ribosomal stress and Tp53-mediated neuronal apoptosis in response to capsid protein of the Zika virus. Sci Rep 2017; 7:16652. [PMID: 29192272 PMCID: PMC5709411 DOI: 10.1038/s41598-017-16952-8] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Accepted: 11/20/2017] [Indexed: 02/07/2023] Open
Abstract
We report here that in rat and human neuroprogenitor cells as well as rat embryonic cortical neurons Zika virus (ZIKV) infection leads to ribosomal stress that is characterized by structural disruption of the nucleolus. The anti-nucleolar effects were most pronounced in postmitotic neurons. Moreover, in the latter system, nucleolar presence of ZIKV capsid protein (ZIKV-C) was associated with ribosomal stress and apoptosis. Deletion of 22 C-terminal residues of ZIKV-C prevented nucleolar localization, ribosomal stress and apoptosis. Consistent with a casual relationship between ZIKV-C-induced ribosomal stress and apoptosis, ZIKV-C-overexpressing neurons were protected by loss-of-function manipulations targeting the ribosomal stress effector Tp53 or knockdown of the ribosomal stress mediator RPL11. Finally, capsid protein of Dengue virus, but not West Nile virus, induced ribosomal stress and apoptosis. Thus, anti-nucleolar and pro-apoptotic effects of protein C are flavivirus-species specific. In the case of ZIKV, capsid protein-mediated ribosomal stress may contribute to neuronal death, neurodevelopmental disruption and microcephaly.
Collapse
Affiliation(s)
- Lukasz P Slomnicki
- Kentucky Spinal Cord Injury Research Center and the Department of Neurological Surgery, University of Louisville, Louisville, Kentucky, 40292, USA
| | - Dong-Hoon Chung
- Center of Predictive Medicine and the Department of Microbiology & Immunology, University of Louisville, Louisville, Kentucky, 40292, USA
| | - Austin Parker
- Kentucky Spinal Cord Injury Research Center and the Department of Neurological Surgery, University of Louisville, Louisville, Kentucky, 40292, USA
| | - Taylor Hermann
- Kentucky Spinal Cord Injury Research Center and the Department of Neurological Surgery, University of Louisville, Louisville, Kentucky, 40292, USA
| | - Nolan L Boyd
- Cardiovascular Innovation Institute and the Department of Physiology, University of Louisville, Louisville, Kentucky, 40292, USA
| | - Michal Hetman
- Kentucky Spinal Cord Injury Research Center and the Department of Neurological Surgery, University of Louisville, Louisville, Kentucky, 40292, USA.
- Pharmacology & Toxicology, University of Louisville, Louisville, Kentucky, 40292, USA.
| |
Collapse
|
343
|
Javed F, Manzoor KN, Ali M, Haq IU, Khan AA, Zaib A, Manzoor S. Zika virus: what we need to know? J Basic Microbiol 2017; 58:3-16. [DOI: 10.1002/jobm.201700398] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2017] [Revised: 09/19/2017] [Accepted: 09/03/2017] [Indexed: 01/22/2023]
Affiliation(s)
- Farakh Javed
- Department of Microbiology; University of Haripur; Haripur Pakistan
| | | | - Mubashar Ali
- Department of Microbiology; University of Haripur; Haripur Pakistan
| | - Irshad U. Haq
- Department of Microbiology; University of Haripur; Haripur Pakistan
| | - Abid A. Khan
- Department of Biosciences; COMSATS Institute of Information Technology; Islamabad Pakistan
| | - Assad Zaib
- Department of Medical Lab Technology; University of Haripur; Haripur Pakistan
| | - Sobia Manzoor
- Atta-ur-Rehman School of Applied Bio-Sciences; National University of Science and Technology; Islamabad Pakistan
| |
Collapse
|
344
|
Sil P, Muse G, Martinez J. A ravenous defense: canonical and non-canonical autophagy in immunity. Curr Opin Immunol 2017; 50:21-31. [PMID: 29125936 DOI: 10.1016/j.coi.2017.10.004] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 10/04/2017] [Indexed: 12/29/2022]
Abstract
While classically considered a survival mechanism employed during nutrient scarcity, the autophagy pathway operates in multiple scenarios wherein a return to homeostasis or degradative removal of an invader is required. Now recognized as a pathway with vast immunoregulatory power, autophagy can no longer serve as a 'one size fits all' term, as its machinery can be recruited to different pathogens, at different times, with different outcomes. Both canonical autophagy and the molecularly related, yet divergent pathways non-canonical autophagy are key players in proper host defense and allow us an opportunity to tailor infectious disease intervention and treatment to its specific pathway.
Collapse
Affiliation(s)
- Payel Sil
- Immunity, Inflammation, and Disease Laboratory, NIEHS, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Ginger Muse
- Immunity, Inflammation, and Disease Laboratory, NIEHS, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Jennifer Martinez
- Immunity, Inflammation, and Disease Laboratory, NIEHS, National Institutes of Health, Research Triangle Park, NC 27709, USA.
| |
Collapse
|
345
|
Lin MY, Wang YL, Wu WL, Wolseley V, Tsai MT, Radic V, Thornton ME, Grubbs BH, Chow RH, Huang IC. Zika Virus Infects Intermediate Progenitor Cells and Post-mitotic Committed Neurons in Human Fetal Brain Tissues. Sci Rep 2017; 7:14883. [PMID: 29093521 PMCID: PMC5665882 DOI: 10.1038/s41598-017-13980-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Accepted: 10/05/2017] [Indexed: 12/20/2022] Open
Abstract
Zika virus (ZIKV) infection is associated with microcephaly in fetuses, but the pathogenesis of ZIKV-related microcephaly is not well understood. Here we show that ZIKV infects the subventricular zone in human fetal brain tissues and that the tissue tropism broadens with the progression of gestation. Our research demonstrates also that intermediate progenitor cells (IPCs) are the main target cells for ZIKV. Post-mitotic committed neurons become susceptible to ZIKV infection as well at later stages of gestation. Furthermore, activation of microglial cells, DNA fragmentation, and apoptosis of infected or uninfected cells could be found in ZIKV-infected brain tissues. Our studies identify IPCs as the main target cells for ZIKV. They also suggest that immune activation after ZIKV infection may play an important role in the pathogenesis of ZIKV-related microcephaly.
Collapse
Affiliation(s)
- Ming-Yi Lin
- Department of Physiology & Biophysics, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Yi-Ling Wang
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Wan-Lin Wu
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Victoria Wolseley
- Department of Physiology & Biophysics, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Ming-Ting Tsai
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Vladimir Radic
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Matthew E Thornton
- Department of Obstetrics and Gynecology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Brendan H Grubbs
- Department of Obstetrics and Gynecology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Robert H Chow
- Department of Physiology & Biophysics, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.
| | - I-Chueh Huang
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
346
|
Aktepe TE, Liebscher S, Prier JE, Simmons CP, Mackenzie JM. The Host Protein Reticulon 3.1A Is Utilized by Flaviviruses to Facilitate Membrane Remodelling. Cell Rep 2017; 21:1639-1654. [DOI: 10.1016/j.celrep.2017.10.055] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 09/24/2017] [Accepted: 10/12/2017] [Indexed: 02/07/2023] Open
|
347
|
Kozak RA, Majer A, Biondi MJ, Medina SJ, Goneau LW, Sajesh BV, Slota JA, Zubach V, Severini A, Safronetz D, Hiebert SL, Beniac DR, Booth TF, Booth SA, Kobinger GP. MicroRNA and mRNA Dysregulation in Astrocytes Infected with Zika Virus. Viruses 2017; 9:v9100297. [PMID: 29036922 PMCID: PMC5691648 DOI: 10.3390/v9100297] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 09/30/2017] [Accepted: 10/10/2017] [Indexed: 12/31/2022] Open
Abstract
The Zika virus (ZIKV) epidemic is an ongoing public health concern. ZIKV is a flavivirus reported to be associated with microcephaly, and recent work in animal models demonstrates the ability of the virus to cross the placenta and affect fetal brain development. Recent findings suggest that the virus preferentially infects neural stem cells and thereby deregulates gene expression, cell cycle progression, and increases cell death. However, neuronal stem cells are not the only brain cells that are susceptible to ZIKV and infection of other brain cells may contribute to disease progression. Herein, we characterized ZIKV replication in astrocytes, and profiled temporal changes in host microRNAs (miRNAs) and transcriptomes during infection. We observed the deregulation of numerous processes known to be involved in flavivirus infection, including genes involved in the unfolded protein response pathway. Moreover, a number of miRNAs were upregulated, including miR-30e-3p, miR-30e-5p, and, miR-17-5p, which have been associated with other flavivirus infections. This study highlights potential miRNAs that may be of importance in ZIKV pathogenesis.
Collapse
Affiliation(s)
- Robert A Kozak
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada.
| | - Anna Majer
- Molecular Patho Biology, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB R3E 3R2, Canada.
- Viral Diseases Division, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB R3E 3R2, Canada.
| | - Mia J Biondi
- Special Pathogens Program, National Microbiology Laboratory, Public Health Agency of Canada; Winnipeg, MB R3E 3R2, Canada, .
| | - Sarah J Medina
- Molecular Patho Biology, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB R3E 3R2, Canada.
| | - Lee W Goneau
- Medical Microbiology, Public Health Ontario Laboratory, Toronto, ON M5G 1M1, Canada.
| | - Babu V Sajesh
- Research Institute in Oncology and Hematology, Cancer Care Manitoba, Winnipeg, MB R3E 0V9, Canada.
| | - Jessy A Slota
- Molecular Patho Biology, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB R3E 3R2, Canada.
| | - Vanessa Zubach
- Viral Exanthemata and STD, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB R3E 3R2, Canada.
| | - Alberto Severini
- Viral Exanthemata and STD, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB R3E 3R2, Canada.
| | - David Safronetz
- Viral Zoonoses, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB R3E 3R2, Canada.
| | - Shannon L Hiebert
- Viral Diseases Division, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB R3E 3R2, Canada.
| | - Daniel R Beniac
- Viral Diseases Division, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB R3E 3R2, Canada.
| | - Timothy F Booth
- Viral Diseases Division, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB R3E 3R2, Canada.
| | - Stephanie A Booth
- Molecular Patho Biology, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB R3E 3R2, Canada.
| | - Gary P Kobinger
- Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA.
- Infectious Diseases Research Centre, Université Laval, Quebec, QC G1V 4G2, Canada.
| |
Collapse
|
348
|
Asif A, Manzoor S, Tuz-Zahra F, Saalim M, Ashraf M, Ishtiyaq J, Khalid M. Zika Virus: Immune Evasion Mechanisms, Currently Available Therapeutic Regimens, and Vaccines. Viral Immunol 2017; 30:682-690. [PMID: 29028178 DOI: 10.1089/vim.2017.0046] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The sudden emergence of infectious pathogens such as Zika virus (ZIKV) holds global health concerns. Recent dissemination of ZIKV from Pacific to Americas with an upsurge of congenital anomalies and Guillain Barre Syndrome (GBS) in adults has created an alarming situation. High-throughput studies are in progress to understand ZIKV's mode of pathogenesis and mechanism of immune escape, yet the pathogenesis remains obscure. Mainly ZIKV's envelope (E) protein and nonstructural proteins (mainly NS1 and NS5) manipulate host cell to support viral immune escape by modulation of the interferon pathway and complement antagonism. The development of direct therapeutics for ZIKV infection is required to overcome the rapidly evolving viral threat. Currently, the existing strategies for ZIKV treatment are only supportive. Although, there is no prophylactic or therapeutic vaccine presently available, however, recent efforts have brought up ZIKV vaccines into clinical trial phase 1. This review presents the highlights of recent advances in understanding immune evasion strategies adapted by ZIKV and existing therapies against the virus.
Collapse
Affiliation(s)
- Arun Asif
- Atta-ur-Rahman School of Applied Bio-Sciences, National University of Sciences and Technology , Islamabad, Pakistan
| | - Sobia Manzoor
- Atta-ur-Rahman School of Applied Bio-Sciences, National University of Sciences and Technology , Islamabad, Pakistan
| | - Fatima Tuz-Zahra
- Atta-ur-Rahman School of Applied Bio-Sciences, National University of Sciences and Technology , Islamabad, Pakistan
| | - Muhammad Saalim
- Atta-ur-Rahman School of Applied Bio-Sciences, National University of Sciences and Technology , Islamabad, Pakistan
| | - Maliha Ashraf
- Atta-ur-Rahman School of Applied Bio-Sciences, National University of Sciences and Technology , Islamabad, Pakistan
| | - Javeria Ishtiyaq
- Atta-ur-Rahman School of Applied Bio-Sciences, National University of Sciences and Technology , Islamabad, Pakistan
| | - Madiha Khalid
- Atta-ur-Rahman School of Applied Bio-Sciences, National University of Sciences and Technology , Islamabad, Pakistan
| |
Collapse
|
349
|
Melo CFOR, Delafiori J, de Oliveira DN, Guerreiro TM, Esteves CZ, Lima EDO, Pando-Robles V, Catharino RR. Serum Metabolic Alterations upon Zika Infection. Front Microbiol 2017; 8:1954. [PMID: 29067015 PMCID: PMC5641361 DOI: 10.3389/fmicb.2017.01954] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 09/22/2017] [Indexed: 12/13/2022] Open
Abstract
Zika virus (ZIKV) infection has recently emerged as a major concern worldwide due to its strong association with nervous system malformation (microcephaly) of fetuses in pregnant women infected by the virus. Signs and symptoms of ZIKV infection are often mistaken with other common viral infections. Since transmission may occur through biological fluids exchange and coitus, in addition to mosquito bite, this condition is an important infectious disease. Thus, understanding the mechanism of viral infection has become an important research focus, as well as providing potential targets for assertive clinical diagnosis and quality screening for hemoderivatives. Within this context, the present work analyzed blood plasma from 79 subjects, divided as a control group and a ZIKV-infected group. Samples underwent direct-infusion mass spectrometry and statistical analysis, where eight markers related to the pathophysiological process of ZIKV infection were elected and characterized. Among these, Angiotensin (1-7) and Angiotensin I were upregulated under infection, showing an attempt to induce autophagy of the infected cells. However, this finding is concerning about hypertensive individuals under treatment with inhibitors of the Renin-Angiotensin System (RAS), which could reduce this response against the virus and exacerbate the symptoms of the infection. Moreover, one of the most abundant glycosphingolipids in the nervous tissue, Ganglioside GM2, was also elected in the present study as an infection biomarker. Considered an important pathogen receptor at membrane's outer layer, this finding represents the importance of gangliosides for ZIKV infection and its association with brain tropism. Furthermore, a series of phosphatidylinositols were also identified as biomarkers, implying a significant role of the PI3K-AKT-mTOR Pathway in this mechanism. Finally, these pathways may also be understood as potential targets to be considered in pharmacological intervention studies on ZIKV infection management.
Collapse
Affiliation(s)
- Carlos Fernando O R Melo
- INNOVARE Biomarkers Laboratory, School of Pharmaceutical Sciences, University of Campinas, Campinas, Brazil
| | - Jeany Delafiori
- INNOVARE Biomarkers Laboratory, School of Pharmaceutical Sciences, University of Campinas, Campinas, Brazil
| | - Diogo N de Oliveira
- INNOVARE Biomarkers Laboratory, School of Pharmaceutical Sciences, University of Campinas, Campinas, Brazil
| | - Tatiane M Guerreiro
- INNOVARE Biomarkers Laboratory, School of Pharmaceutical Sciences, University of Campinas, Campinas, Brazil
| | - Cibele Z Esteves
- INNOVARE Biomarkers Laboratory, School of Pharmaceutical Sciences, University of Campinas, Campinas, Brazil
| | - Estela de O Lima
- INNOVARE Biomarkers Laboratory, School of Pharmaceutical Sciences, University of Campinas, Campinas, Brazil
| | | | - Rodrigo R Catharino
- INNOVARE Biomarkers Laboratory, School of Pharmaceutical Sciences, University of Campinas, Campinas, Brazil
| | | |
Collapse
|
350
|
Gharbaran R, Somenarain L. Insights into the molecular roles of Zika virus in human reproductive complications and congenital neuropathologies. Pathology 2017; 49:707-714. [PMID: 29017720 DOI: 10.1016/j.pathol.2017.07.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 07/17/2017] [Accepted: 07/24/2017] [Indexed: 02/04/2023]
Abstract
The recent upsurge in the association of congenital neurological disorders and infection by the Zika virus (ZIKV) has resulted in increased research focus on the biology of this flavivirus. Studies in animal models indicate that ZIKV can breach the placental barrier and selectively infect and deplete neuroprogenitor cells (NPCs) of the developing fetus, resulting in changes of brain structures, reminiscent of human microcephaly. In vitro and ex vivo studies using human cells and tissues showed that human NPCs and placental cells are targeted by ZIKV. Also of concern is the impact of ZIKV on human reproductive structures, with the potential to cause infertility, as the virus appears to remain in the genital tract for extended periods of time. This review discusses the putative roles of ZIKV on human reproductive complications and congenital neuropathologies.
Collapse
Affiliation(s)
- Rajendra Gharbaran
- Department of Biological Sciences, Bronx Community College/The City University of New York, Bronx, NY United States.
| | - Latchman Somenarain
- Department of Biological Sciences, Bronx Community College/The City University of New York, Bronx, NY United States
| |
Collapse
|