301
|
Seok S, Kim YC, Byun S, Choi S, Xiao Z, Iwamori N, Zhang Y, Wang C, Ma J, Ge K, Kemper B, Kemper JK. Fasting-induced JMJD3 histone demethylase epigenetically activates mitochondrial fatty acid β-oxidation. J Clin Invest 2018; 128:3144-3159. [PMID: 29911994 DOI: 10.1172/jci97736] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 04/24/2018] [Indexed: 12/21/2022] Open
Abstract
Jumonji D3 (JMJD3) histone demethylase epigenetically regulates development and differentiation, immunity, and tumorigenesis by demethylating a gene repression histone mark, H3K27-me3, but a role for JMJD3 in metabolic regulation has not been described. SIRT1 deacetylase maintains energy balance during fasting by directly activating both hepatic gluconeogenic and mitochondrial fatty acid β-oxidation genes, but the underlying epigenetic and gene-specific mechanisms remain unclear. In this study, JMJD3 was identified unexpectedly as a gene-specific transcriptional partner of SIRT1 and epigenetically activated mitochondrial β-oxidation, but not gluconeogenic, genes during fasting. Mechanistically, JMJD3, together with SIRT1 and the nuclear receptor PPARα, formed a positive autoregulatory loop upon fasting-activated PKA signaling and epigenetically activated β-oxidation-promoting genes, including Fgf21, Cpt1a, and Mcad. Liver-specific downregulation of JMJD3 resulted in intrinsic defects in β-oxidation, which contributed to hepatosteatosis as well as glucose and insulin intolerance. Remarkably, the lipid-lowering effects by JMJD3 or SIRT1 in diet-induced obese mice were mutually interdependent. JMJD3 histone demethylase may serve as an epigenetic drug target for obesity, hepatosteatosis, and type 2 diabetes that allows selective lowering of lipid levels without increasing glucose levels.
Collapse
Affiliation(s)
- Sunmi Seok
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Young-Chae Kim
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Sangwon Byun
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Sunge Choi
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Zhen Xiao
- Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Naoki Iwamori
- Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka, Japan
| | - Yang Zhang
- Computational Biology Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA
| | - Chaochen Wang
- National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), NIH, Bethesda, Maryland, USA
| | - Jian Ma
- Computational Biology Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA
| | - Kai Ge
- National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), NIH, Bethesda, Maryland, USA
| | - Byron Kemper
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Jongsook Kim Kemper
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| |
Collapse
|
302
|
Chen S, Bin P, Ren W, Gao W, Liu G, Yin J, Duan J, Li Y, Yao K, Huang R, Tan B, Yin Y. Alpha-ketoglutarate (AKG) lowers body weight and affects intestinal innate immunity through influencing intestinal microbiota. Oncotarget 2018; 8:38184-38192. [PMID: 28465471 PMCID: PMC5503525 DOI: 10.18632/oncotarget.17132] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Accepted: 04/04/2017] [Indexed: 12/17/2022] Open
Abstract
Alpha-ketoglutarate (AKG), a precursor of glutamate and a critical intermediate in the tricarboxylic acid cycle, shows beneficial effects on intestinal function. However, the influence of AKG on the intestinal innate immune system and intestinal microbiota is unknown. This study explores the effect of oral AKG administration in drinking water (10 g/L) on intestinal innate immunity and intestinal microbiota in a mouse model. Mouse water intake, feed intake and body weight were recorded throughout the entire experiment. The ileum was collected for detecting the expression of intestinal proinflammatory cytokines and innate immune factors by Real-time Polymerase Chain Reaction. Additionally, the ileal luminal contents and feces were collected for 16S rDNA sequencing to analyze the microbial composition. The intestinal microbiota in mice was disrupted with an antibiotic cocktail. The results revealed that AKG supplementation lowered body weight, promoted ileal expression of mammalian defensins of the alpha subfamily (such as cryptdins-1, cryptdins-4, and cryptdins-5) while influencing the intestinal microbial composition (i.e., lowering the Firmicutes to Bacteroidetes ratio). In the antibiotic-treated mouse model, AKG supplementation failed to affect mouse body weight and inhibited the expression of cryptdins-1 and cryptdins-5 in the ileum. We concluded that AKG might affect body weight and intestinal innate immunity through influencing intestinal microbiota.
Collapse
Affiliation(s)
- Shuai Chen
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Engineering Research Center of Healthy Livestock, Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Hunan Co-Innovation Center of Animal Production Safety, Changsha, Hunan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Peng Bin
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Engineering Research Center of Healthy Livestock, Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Hunan Co-Innovation Center of Animal Production Safety, Changsha, Hunan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Wenkai Ren
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Engineering Research Center of Healthy Livestock, Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Hunan Co-Innovation Center of Animal Production Safety, Changsha, Hunan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Wei Gao
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Engineering Research Center of Healthy Livestock, Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Hunan Co-Innovation Center of Animal Production Safety, Changsha, Hunan, China
| | - Gang Liu
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Engineering Research Center of Healthy Livestock, Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Hunan Co-Innovation Center of Animal Production Safety, Changsha, Hunan, China
| | - Jie Yin
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Engineering Research Center of Healthy Livestock, Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Hunan Co-Innovation Center of Animal Production Safety, Changsha, Hunan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Jielin Duan
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Engineering Research Center of Healthy Livestock, Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Hunan Co-Innovation Center of Animal Production Safety, Changsha, Hunan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yinghui Li
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Engineering Research Center of Healthy Livestock, Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Hunan Co-Innovation Center of Animal Production Safety, Changsha, Hunan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Kang Yao
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Engineering Research Center of Healthy Livestock, Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Hunan Co-Innovation Center of Animal Production Safety, Changsha, Hunan, China
| | - Ruilin Huang
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Engineering Research Center of Healthy Livestock, Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Hunan Co-Innovation Center of Animal Production Safety, Changsha, Hunan, China
| | - Bie Tan
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Engineering Research Center of Healthy Livestock, Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Hunan Co-Innovation Center of Animal Production Safety, Changsha, Hunan, China
| | - Yulong Yin
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Engineering Research Center of Healthy Livestock, Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Hunan Co-Innovation Center of Animal Production Safety, Changsha, Hunan, China
| |
Collapse
|
303
|
Goldberg J, Currais A, Prior M, Fischer W, Chiruta C, Ratliff E, Daugherty D, Dargusch R, Finley K, Esparza‐Moltó PB, Cuezva JM, Maher P, Petrascheck M, Schubert D. The mitochondrial ATP synthase is a shared drug target for aging and dementia. Aging Cell 2018; 17:e12715. [PMID: 29316249 PMCID: PMC5847861 DOI: 10.1111/acel.12715] [Citation(s) in RCA: 100] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/22/2017] [Indexed: 12/31/2022] Open
Abstract
Aging is a major driving force underlying dementia, such as that caused by Alzheimer's disease (AD). While the idea of targeting aging as a therapeutic strategy is not new, it remains unclear how closely aging and age-associated diseases are coupled at the molecular level. Here, we discover a novel molecular link between aging and dementia through the identification of the molecular target for the AD drug candidate J147. J147 was developed using a series of phenotypic screening assays mimicking disease toxicities associated with the aging brain. We have previously demonstrated the therapeutic efficacy of J147 in several mouse models of AD. Here, we identify the mitochondrial α-F1 -ATP synthase (ATP5A) as a target for J147. By targeting ATP synthase, J147 causes an increase in intracellular calcium leading to sustained calcium/calmodulin-dependent protein kinase kinase β (CAMKK2)-dependent activation of the AMPK/mTOR pathway, a canonical longevity mechanism. Accordingly, modulation of mitochondrial processes by J147 prevents age-associated drift of the hippocampal transcriptome and plasma metabolome in mice and extends lifespan in drosophila. Our results link aging and age-associated dementia through ATP synthase, a molecular drug target that can potentially be exploited for the suppression of both. These findings demonstrate that novel screens for new AD drug candidates identify compounds that act on established aging pathways, suggesting an unexpectedly close molecular relationship between the two.
Collapse
Affiliation(s)
- Joshua Goldberg
- Cellular NeurobiologyThe Salk Institute for Biological StudiesLa JollaCAUSA
| | - Antonio Currais
- Cellular NeurobiologyThe Salk Institute for Biological StudiesLa JollaCAUSA
| | - Marguerite Prior
- Cellular NeurobiologyThe Salk Institute for Biological StudiesLa JollaCAUSA
| | - Wolfgang Fischer
- Cellular NeurobiologyThe Salk Institute for Biological StudiesLa JollaCAUSA
| | | | - Eric Ratliff
- Donald P. Shiley BioScience CenterSan Diego State UniversitySan DiegoCAUSA
| | - Daniel Daugherty
- Cellular NeurobiologyThe Salk Institute for Biological StudiesLa JollaCAUSA
| | - Richard Dargusch
- Cellular NeurobiologyThe Salk Institute for Biological StudiesLa JollaCAUSA
| | - Kim Finley
- Donald P. Shiley BioScience CenterSan Diego State UniversitySan DiegoCAUSA
| | | | - José M. Cuezva
- Centro de Biología MolecularCIBERER, Universidad Autónoma de MadridMadridSpain
| | - Pamela Maher
- Cellular NeurobiologyThe Salk Institute for Biological StudiesLa JollaCAUSA
| | | | - David Schubert
- Cellular NeurobiologyThe Salk Institute for Biological StudiesLa JollaCAUSA
| |
Collapse
|
304
|
Liu S, He L, Yao K. The Antioxidative Function of Alpha-Ketoglutarate and Its Applications. BIOMED RESEARCH INTERNATIONAL 2018; 2018:3408467. [PMID: 29750149 PMCID: PMC5884300 DOI: 10.1155/2018/3408467] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 02/19/2018] [Indexed: 12/26/2022]
Abstract
Alpha-ketoglutarate (AKG) is a crucial intermediate of the Krebs cycle and plays a critical role in multiple metabolic processes in animals and humans. Of note, AKG contributes to the oxidation of nutrients (i.e., amino acids, glucose, fatty acids) and then provides energy for cell processes. As a precursor of glutamate and glutamine, AKG acts as an antioxidant agent as it directly reacts with hydrogen peroxide with formation of succinate, water, and carbon dioxide; meanwhile, it discharges plenty of ATP by oxidative decarboxylation. Recent studies also show that AKG has alleviative effect on oxidative stress as a source of energy and an antioxidant in mammalian cells. In this review, we highlight recent advances in the antioxidative function of AKG and its applications in animals and humans.
Collapse
Affiliation(s)
- Shaojuan Liu
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Changsha, Hunan 410125, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Liuqin He
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Changsha, Hunan 410125, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kang Yao
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Changsha, Hunan 410125, China
| |
Collapse
|
305
|
Noureldein MH, Eid AA. Gut microbiota and mTOR signaling: Insight on a new pathophysiological interaction. Microb Pathog 2018; 118:98-104. [PMID: 29548696 DOI: 10.1016/j.micpath.2018.03.021] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 03/12/2018] [Indexed: 02/08/2023]
Abstract
The gut microbiota plays a substantial role in regulating the host metabolic and immune functions. Dysbiosis, resulting from disruption of gut microbiota, predisposes many morbid pathologies like obesity and its associated comorbidities, diabetes and inflammatory conditions including some types of cancer. There are numerous proposed signaling pathways through which alterations in gut microbiota and its metabolites can disturb the host's normal physiological functions. Interestingly, many of these processes happen to be controlled by the mammalian target of rapamycin (mTOR). The mTOR pathway responds to environmental changes and regulates accordingly many intracellular processes such as transcription, translation, cell growth, cytoskeletal organization and autophagy. In this review, we aim to highlight the cross-talk between the gut microbiota and the mTOR pathway and discuss how this emerging field of research gives a beautiful insight into how the mentioned cross-talk impacts the body's homeostasis thus leading to undesirable complications including obesity, diabetes, colon and pancreatic cancer, immune system malfunctioning and ageing. Although there are a limited number of studies investigating the crosstalk between the gut microbiota and the mTOR pathway, the results obtained so far are enough to elucidate the key role of the mTOR signaling in microbiota-associated metabolic and immune regulations.
Collapse
Affiliation(s)
- Mohamed H Noureldein
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine and Medical Center, American University of Beirut, Beirut, Lebanon
| | - Assaad A Eid
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine and Medical Center, American University of Beirut, Beirut, Lebanon.
| |
Collapse
|
306
|
Kuo CJ, Wang ST, Lin CM, Chiu HC, Huang CR, Lee DY, Chang GD, Chou TC, Chen JW, Chen CS. A multi-omic analysis reveals the role of fumarate in regulating the virulence of enterohemorrhagic Escherichia coli. Cell Death Dis 2018. [PMID: 29515100 PMCID: PMC5841434 DOI: 10.1038/s41419-018-0423-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The enteric pathogen enterohemorrhagic Escherichia coli (EHEC) is responsible for outbreaks of bloody diarrhea and hemolytic uremic syndrome (HUS) worldwide. Several molecular mechanisms have been described for the pathogenicity of EHEC; however, the role of bacterial metabolism in the virulence of EHEC during infection in vivo remains unclear. Here we show that aerobic metabolism plays an important role in the regulation of EHEC virulence in Caenorhabditis elegans. Our functional genomic analyses showed that disruption of the genes encoding the succinate dehydrogenase complex (Sdh) of EHEC, including the sdhA gene, attenuated its toxicity toward C. elegans animals. Sdh converts succinate to fumarate and links the tricarboxylic acid (TCA) cycle and the electron transport chain (ETC) simultaneously. Succinate accumulation and fumarate depletion in the EHEC sdhA mutant cells were also demonstrated to be concomitant by metabolomic analyses. Moreover, fumarate replenishment to the sdhA mutant significantly increased its virulence toward C. elegans. These results suggest that the TCA cycle, ETC, and alteration in metabolome all account for the attenuated toxicity of the sdhA mutant, and Sdh catabolite fumarate in particular plays a critical role in the regulation of EHEC virulence. In addition, we identified the tryptophanase (TnaA) as a downstream virulence determinant of SdhA using a label-free proteomic method. We demonstrated that expression of tnaA is regulated by fumarate in EHEC. Taken together, our multi-omic analyses demonstrate that sdhA is required for the virulence of EHEC, and aerobic metabolism plays important roles in the pathogenicity of EHEC infection in C. elegans. Moreover, our study highlights the potential targeting of SdhA, if druggable, as alternative preventive or therapeutic strategies by which to combat EHEC infection.
Collapse
Affiliation(s)
- Cheng-Ju Kuo
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Sin-Tian Wang
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chia-Mei Lin
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Hao-Chieh Chiu
- Department of Clinical Laboratory Sciences and Medical Biotechnology, National Taiwan University, Taipei, Taiwan
| | - Cheng-Rung Huang
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Der-Yen Lee
- The Graduate Institute of Integrated Medicine, China Medical University, Taichung, Taiwan.,Graduate Institute of Biochemical Sciences, Technology Commons, Center for Systems Biology, National Taiwan University, Taipei, Taiwan
| | - Geen-Dong Chang
- Graduate Institute of Biochemical Sciences, Technology Commons, Center for Systems Biology, National Taiwan University, Taipei, Taiwan
| | - Ting-Chen Chou
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Jenn-Wei Chen
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan. .,Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
| | - Chang-Shi Chen
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan, Taiwan. .,Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
| |
Collapse
|
307
|
Esparza-Moltó PB, Cuezva JM. The Role of Mitochondrial H +-ATP Synthase in Cancer. Front Oncol 2018; 8:53. [PMID: 29564224 PMCID: PMC5845864 DOI: 10.3389/fonc.2018.00053] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 02/20/2018] [Indexed: 01/23/2023] Open
Abstract
Cancer cells reprogram energy metabolism by boosting aerobic glycolysis as a main pathway for the provision of metabolic energy and of precursors for anabolic purposes. Accordingly, the relative expression of the catalytic subunit of the mitochondrial H+-ATP synthase—the core hub of oxidative phosphorylation—is downregulated in human carcinomas when compared with its expression in normal tissues. Moreover, some prevalent carcinomas also upregulate the ATPase inhibitory factor 1 (IF1), which is the physiological inhibitor of the H+-ATP synthase. IF1 overexpression, both in cells in culture and in tissue-specific mouse models, is sufficient to reprogram energy metabolism to an enhanced glycolysis by limiting ATP production by the H+-ATP synthase. Furthermore, the IF1-mediated inhibition of the H+-ATP synthase promotes the production of mitochondrial ROS (mtROS). mtROS modulate signaling pathways favoring cellular proliferation and invasion, the activation of antioxidant defenses, resistance to cell death, and modulation of the tissue immune response, favoring the acquisition of several cancer traits. Consistently, IF1 expression is an independent marker of cancer prognosis. By contrast, inhibition of the H+-ATP synthase by α-ketoglutarate and the oncometabolite 2-hydroxyglutarate, reduces mTOR signaling, suppresses cancer cell growth, and contributes to lifespan extension in several model organisms. Hence, the H+-ATP synthase appears as a conserved hub in mitochondria-to-nucleus signaling controlling cell fate. Unraveling the molecular mechanisms responsible for IF1 upregulation in cancer and the signaling cascades that are modulated by the H+-ATP synthase are of utmost interest to decipher the metabolic and redox circuits contributing to cancer origin and progression.
Collapse
Affiliation(s)
- Pau B Esparza-Moltó
- Departamento de Biología Molecular, Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Centro de Investigación Biomédica en Red de Enfermedades Raras CIBERER-ISCIII, Instituto de Investigación Hospital 12 de Octubre (i+12), Universidad Autónoma de Madrid, Madrid, Spain
| | - José M Cuezva
- Departamento de Biología Molecular, Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Centro de Investigación Biomédica en Red de Enfermedades Raras CIBERER-ISCIII, Instituto de Investigación Hospital 12 de Octubre (i+12), Universidad Autónoma de Madrid, Madrid, Spain
| |
Collapse
|
308
|
Abstract
2-Oxoglutarate (2OG)-dependent oxygenases (2OGXs) catalyze a remarkably diverse range of oxidative reactions. In animals, these comprise hydroxylations and N-demethylations proceeding via hydroxylation; in plants and microbes, they catalyze a wider range including ring formations, rearrangements, desaturations, and halogenations. The catalytic flexibility of 2OGXs is reflected in their biological functions. After pioneering work identified the roles of 2OGXs in collagen biosynthesis, research revealed they also function in plant and animal development, transcriptional regulation, nucleic acid modification/repair, fatty acid metabolism, and secondary metabolite biosynthesis, including of medicinally important antibiotics. In plants, 2OGXs are important agrochemical targets and catalyze herbicide degradation. Human 2OGXs, particularly those regulating transcription, are current therapeutic targets for anemia and cancer. Here, we give an overview of the biochemistry of 2OGXs, providing examples linking to biological function, and outline how knowledge of their enzymology is being exploited in medicine, agrochemistry, and biocatalysis.
Collapse
Affiliation(s)
- Md Saiful Islam
- The Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford OX1 3TA, United Kingdom;
| | - Thomas M Leissing
- The Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford OX1 3TA, United Kingdom;
| | - Rasheduzzaman Chowdhury
- The Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford OX1 3TA, United Kingdom;
| | - Richard J Hopkinson
- The Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford OX1 3TA, United Kingdom; .,Current affiliation for Richard J. Hopkinson: Leicester Institute of Structural and Chemical Biology and Department of Chemistry, University of Leicester, Leicester LE1 7RH, United Kingdom;
| | - Christopher J Schofield
- The Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford OX1 3TA, United Kingdom;
| |
Collapse
|
309
|
Wu L, Zhao J, Cao K, Liu X, Cai H, Wang J, Li W, Chen Z. Oxidative phosphorylation activation is an important characteristic of DOX resistance in hepatocellular carcinoma cells. Cell Commun Signal 2018; 16:6. [PMID: 29402287 PMCID: PMC5799923 DOI: 10.1186/s12964-018-0217-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 01/24/2018] [Indexed: 12/22/2022] Open
Abstract
Background Despite the implications for tumor growth and cancer drug resistance, the mechanisms underlying differences in energy metabolism among cells remain unclear. Methods To analyze differences between cell types, cell viability, ATP and α-ketoglutaric acid levels, the oxygen consumption rate and extracellular acidification rate, and the expression of key enzymes involved in α-KG metabolism and transfer were examined. Additionally, UPLC-MS/MS was used to determine the doxorubicin (DOX) content in SMMC-7721 and SMMC-7721/DOX cells. Results We found that energy metabolism in SMMC-7721 cells is mainly dependent on the glycolysis pathway, whereas SMMC-7721/DOX cells depend more heavily on the oxidative phosphorylation pathway. Cell viability and intracellular ATP levels in SMMC-7721/DOX cells were significantly reduced by rotenone and oligomycin, inhibitors of oxidative phosphorylation. However, SMMC-7721 cell properties were more strongly influenced by an inhibitor of glycolysis, 2-deoxy-d-glucose. Furthermore, the suppressive effect of α-KG on ATP synthase plays an important role in the low levels of oxidative phosphorylation in SMMC-7721 cells; this effect could be strengthened by the metabolic poison methotrexate and reversed by l-(−)-malic acid, an accelerator of the malate-aspartate cycle. Conclusions The inhibitory effect of α-KG on ATP synthase was uncoupled with the tricarboxylic acid cycle and oxidative phosphorylation in SMMC-7721 cells; accordingly, energy metabolism was mainly determined by glycolysis. In drug-resistant cells, a remarkable reduction in the inhibitory effects of α-KG on ATP synthase resulted in better coordination among the TCA cycle, oxidative phosphorylation, and glycolysis, providing novel potential strategies for clinical treatment of liver cancer resistance.
Collapse
Affiliation(s)
- Li Wu
- Department of Pharmacology, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, People's Republic of China. .,Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, People's Republic of China. .,Engineering Center of State Ministry of Education for Standardization of Chinese Medicine Processing, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, People's Republic of China.
| | - Jiayu Zhao
- Department of Pharmacology, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, People's Republic of China.,Engineering Center of State Ministry of Education for Standardization of Chinese Medicine Processing, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, People's Republic of China
| | - Kexin Cao
- Department of Pharmacology, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, People's Republic of China
| | - Xiao Liu
- Department of Pharmacology, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, People's Republic of China.,Engineering Center of State Ministry of Education for Standardization of Chinese Medicine Processing, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, People's Republic of China
| | - Hao Cai
- Department of Pharmacology, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, People's Republic of China.,Engineering Center of State Ministry of Education for Standardization of Chinese Medicine Processing, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, People's Republic of China
| | - Jiaqi Wang
- Department of Pharmacology, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, People's Republic of China.,Affiliated Hospital of Integrated Traditional Chinese and Western Medicine in Jiangsu Province, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, People's Republic of China
| | - Weidong Li
- Department of Pharmacology, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, People's Republic of China.,Engineering Center of State Ministry of Education for Standardization of Chinese Medicine Processing, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, People's Republic of China
| | - Zhipeng Chen
- Department of Pharmacology, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, People's Republic of China. .,Engineering Center of State Ministry of Education for Standardization of Chinese Medicine Processing, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, People's Republic of China.
| |
Collapse
|
310
|
Larrick JW, Larrick JW, Mendelsohn AR. ATP Synthase, a Target for Dementia and Aging? Rejuvenation Res 2018; 21:61-66. [DOI: 10.1089/rej.2018.2056] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Affiliation(s)
- James W. Larrick
- Panorama Research Institute, Sunnyvale, California
- Regenerative Sciences Institute, Sunnyvale, California
| | | | - Andrew R. Mendelsohn
- Panorama Research Institute, Sunnyvale, California
- Regenerative Sciences Institute, Sunnyvale, California
| |
Collapse
|
311
|
HIF-1-alpha links mitochondrial perturbation to the dynamic acquisition of breast cancer tumorigenicity. Oncotarget 2018; 7:34052-69. [PMID: 27058900 PMCID: PMC5085137 DOI: 10.18632/oncotarget.8570] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Accepted: 03/10/2016] [Indexed: 12/20/2022] Open
Abstract
Up-regulation of hypoxia-inducible factor-1α (HIF-1α), even in normoxia, is a common feature of solid malignancies. However, the mechanisms of increased HIF-1α abundance, and its role in regulating breast cancer plasticity are not fully understood. We have previously demonstrated that dimethyl-2-ketoglutarate (DKG), a widely used cell membrane-permeable α-ketoglutarate (α-KG) analogue, transiently stabilizes HIF-1α by inhibiting prolyl hydroxylase 2. Here, we report that breast cancer tumorigenicity can be acquired through prolonged treatment with DKG. Our results indicate that, in response to prolonged DKG treatment, mitochondrial respiration becomes uncoupled, leading to the accumulation of succinate and fumarate in breast cancer cells. Further, we found that an early increase in the oxygen flux rate was accompanied by a delayed enhancement of glycolysis. Together, our results indicate that these events trigger a dynamic enrichment for cells with pluripotent/stem-like cell markers and tumorsphere-forming capacity. Moreover, DKG-mediated metabolic reprogramming results in HIF-1α induction and reductive carboxylation pathway activation. Both HIF-1α accumulation and the tumor-promoting metabolic state are required for DKG-promoted tumor repopulation capacity in vivo. Our data suggest that mitochondrial adaptation to DKG elevates the ratio of succinate or fumarate to α-KG, which in turn stabilizes HIF-1α and reprograms breast cancer cells into a stem-like state. Therefore, our results demonstrate that metabolic regulation, with succinate and/or fumarate accumulation, governs the dynamic transition of breast cancer tumorigenic states and we suggest that HIF-1α is indispensable for breast cancer tumorigenicity.
Collapse
|
312
|
Inhibition of mitochondrial 2-oxoglutarate dehydrogenase impairs viability of cancer cells in a cell-specific metabolism-dependent manner. Oncotarget 2018; 7:26400-21. [PMID: 27027236 PMCID: PMC5041988 DOI: 10.18632/oncotarget.8387] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2015] [Accepted: 03/11/2016] [Indexed: 12/31/2022] Open
Abstract
2-Oxoglutarate dehydrogenase (OGDH) of the tricarboxylic acid (TCA) cycle is often implied to be inactive in cancer, but this was not experimentally tested. We addressed the question through specific inhibition of OGDH by succinyl phosphonate (SP). SP action on different cancer cells was investigated using indicators of cellular viability and reactive oxygen species (ROS), metabolic profiling and transcriptomics. Relative sensitivity of various cancer cells to SP changed with increasing SP exposure and could differ in the ATP- and NAD(P)H-based assays. Glioblastoma responses to SP revealed metabolic sub-types increasing or decreasing cellular ATP/NAD(P)H ratio under OGDH inhibition. Cancer cell homeostasis was perturbed also when viability indicators were SP-resistant, e.g. in U87 and N2A cells. The transcriptomics database analysis showed that the SP-sensitive cells, such as A549 and T98G, exhibit the lowest expression of OGDH compared to other TCA cycle enzymes, associated with higher expression of affiliated pathways utilizing 2-oxoglutarate. Metabolic profiling confirmed the dependence of cellular SP reactivity on cell-specific expression of the pathways. Thus, oxidative decarboxylation of 2-oxoglutarate is significant for the interdependent homeostasis of NAD(P)H, ATP, ROS and key metabolites in various cancer cells. Assessment of cell-specific responses to OGDH inhibition is of diagnostic value for anticancer strategies.
Collapse
|
313
|
Mitohormesis, an Antiaging Paradigm. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2018; 340:35-77. [DOI: 10.1016/bs.ircmb.2018.05.002] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
314
|
Which is the Most Reasonable Anti-aging Strategy: Meta-analysis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1086:267-282. [DOI: 10.1007/978-981-13-1117-8_17] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
315
|
Bayliak MM, Lylyk MP, Sorochynska OM. Dietary alpha-ketoglutarate partially prevents age-related decline in locomotor activity and cold tolerance in Drosophila melanogaster. Biologia (Bratisl) 2017. [DOI: 10.1515/biolog-2017-0042] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
316
|
Hallan S, Afkarian M, Zelnick LR, Kestenbaum B, Sharma S, Saito R, Darshi M, Barding G, Raftery D, Ju W, Kretzler M, Sharma K, de Boer IH. Metabolomics and Gene Expression Analysis Reveal Down-regulation of the Citric Acid (TCA) Cycle in Non-diabetic CKD Patients. EBioMedicine 2017; 26:68-77. [PMID: 29128444 PMCID: PMC5832558 DOI: 10.1016/j.ebiom.2017.10.027] [Citation(s) in RCA: 106] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 10/27/2017] [Accepted: 10/28/2017] [Indexed: 01/17/2023] Open
Abstract
Chronic kidney disease (CKD) is a public health problem with very high prevalence and mortality. Yet, there is a paucity of effective treatment options, partly due to insufficient knowledge of underlying pathophysiology. We combined metabolomics (GCMS) with kidney gene expression studies to identify metabolic pathways that are altered in adults with non-diabetic stage 3-4 CKD versus healthy adults. Urinary excretion rate of 27 metabolites and plasma concentration of 33 metabolites differed significantly in CKD patients versus controls (estimate range-68% to +113%). Pathway analysis revealed that the citric acid cycle was the most significantly affected, with urinary excretion of citrate, cis-aconitate, isocitrate, 2-oxoglutarate and succinate reduced by 40-68%. Reduction of the citric acid cycle metabolites in urine was replicated in an independent cohort. Expression of genes regulating aconitate, isocitrate, 2-oxoglutarate and succinate were significantly reduced in kidney biopsies. We observed increased urine citrate excretion (+74%, p=0.00009) and plasma 2-oxoglutarate concentrations (+12%, p=0.002) in CKD patients during treatment with a vitamin-D receptor agonist in a randomized trial. In conclusion, urinary excretion of citric acid cycle metabolites and renal expression of genes regulating these metabolites were reduced in non-diabetic CKD. This supports the emerging view of CKD as a state of mitochondrial dysfunction.
Collapse
Affiliation(s)
- Stein Hallan
- Center for Renal Translational Medicine/Institute for Metabolomic Medicine, University of California San Diego, San Diego, CA, United States; Department of Clinical and Molecular Medicine, Faculty of Medicine, Norwegian University of Science and Technology, Trondheim, Norway; Department of Nephrology, St. Olav Hospital, Trondheim, Norway.
| | - Maryam Afkarian
- Kidney Research Institute, University of Washington, Seattle, WA, United States; Division of Nephrology, Department of Medicine, University of California, Davis, CA, United States
| | - Leila R Zelnick
- Kidney Research Institute, University of Washington, Seattle, WA, United States; Division of Nephrology, Department of Medicine, University of Washington, Seattle, WA, United States
| | - Bryan Kestenbaum
- Kidney Research Institute, University of Washington, Seattle, WA, United States; Division of Nephrology, Department of Medicine, University of Washington, Seattle, WA, United States
| | - Shoba Sharma
- University of Texas Health San Antonio, San Antonio, TX, United States
| | - Rintaro Saito
- Center for Renal Translational Medicine/Institute for Metabolomic Medicine, University of California San Diego, San Diego, CA, United States
| | - Manjula Darshi
- Center for Renal Translational Medicine/Institute for Metabolomic Medicine, University of California San Diego, San Diego, CA, United States
| | - Gregory Barding
- Northwest Metabolomics Research Center, University of Washington, Seattle, WA, United States
| | - Daniel Raftery
- Northwest Metabolomics Research Center, University of Washington, Seattle, WA, United States
| | - Wenjun Ju
- Division of Nephrology, Department of Medicine, University of Michigan, Ann Arbor, MI, United States; Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, United States
| | - Matthias Kretzler
- Division of Nephrology, Department of Medicine, University of Michigan, Ann Arbor, MI, United States; Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, United States
| | - Kumar Sharma
- Center for Renal Translational Medicine/Institute for Metabolomic Medicine, University of California San Diego, San Diego, CA, United States; Department of Nephrology and Hypertension, Veterans Administration San Diego HealthCare System, San Diego, CA, United States
| | - Ian H de Boer
- Kidney Research Institute, University of Washington, Seattle, WA, United States; Division of Nephrology, Department of Medicine, University of Washington, Seattle, WA, United States
| |
Collapse
|
317
|
Effects of Long-Term Cultivation on Medium with Alpha-Ketoglutarate Supplementation on Metabolic Processes of Saccharomyces cerevisiae. J Aging Res 2017; 2017:8754879. [PMID: 29181198 PMCID: PMC5664334 DOI: 10.1155/2017/8754879] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 09/09/2017] [Accepted: 09/17/2017] [Indexed: 11/29/2022] Open
Abstract
During last years, alpha-ketoglutarate (AKG), an important intermediate in the Krebs cycle, has been intensively studied as a dietary supplement with stress-protective and potential antiaging effects. Here, we examined the effects of exogenous AKG on metabolic processes and survival of yeast Saccharomyces cerevisiae during long-term cultivation. Growth on AKG had no effect on the total cell number but increased the number of reproductively active cells at the late days of cultivation (from day 7 to day 15). A gradual increase in levels of total protein, glycogen, and trehalose was found over 7-day cultivation with more pronounced effects in AKG-grown cells. In control cells, metabolic activity and the activities of superoxide dismutase and catalase decreased, whereas levels of carbonyl proteins and low-molecular-mass thiols increased during 7-day cultivation. This suggests development of oxidative stress in stationary phase cells. Meanwhile, stationary phase cells cultured on AKG possessed higher levels of low-molecular-mass thiols and lower levels of carbonyl proteins and α-dicarbonyl compounds when compared to control ones. Collectively, higher levels of storage carbohydrates and an activation of antioxidant defense with diminishing oxidative protein damage can prevent a loss of reproductive ability in yeast cells during long-term cultivation on AKG-supplemented medium.
Collapse
|
318
|
Nguyen TT, Caito SW, Zackert WE, West JD, Zhu S, Aschner M, Fessel JP, Roberts LJ. Scavengers of reactive γ-ketoaldehydes extend Caenorhabditis elegans lifespan and healthspan through protein-level interactions with SIR-2.1 and ETS-7. Aging (Albany NY) 2017; 8:1759-80. [PMID: 27514077 PMCID: PMC5032694 DOI: 10.18632/aging.101011] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 07/20/2016] [Indexed: 11/25/2022]
Abstract
Isoketals (IsoKs) are highly reactive γ-ketoaldehyde products of lipid peroxidation that covalently adduct lysine side chains in proteins, impairing their function. Using C. elegans as a model organism, we sought to test the hypothesis that IsoKs contribute to molecular aging through adduction and inactivation of specific protein targets, and that this process can be abrogated using salicylamine (SA), a selective IsoK scavenger. Treatment with SA extends adult nematode longevity by nearly 56% and prevents multiple deleterious age-related biochemical and functional changes. Testing of a variety of molecular targets for SA's action revealed the sirtuin SIR-2.1 as the leading candidate. When SA was administered to a SIR-2.1 knockout strain, the effects on lifespan and healthspan extension were abolished. The SIR-2.1-dependent effects of SA were not mediated by large changes in gene expression programs or by significant changes in mitochondrial function. However, expression array analysis did show SA-dependent regulation of the transcription factor ets-7 and associated genes. In ets-7 knockout worms, SA's longevity effects were abolished, similar to sir-2.1 knockouts. However, SA dose-dependently increases ets-7 mRNA levels in non-functional SIR-2.1 mutant, suggesting that both are necessary for SA's complete lifespan and healthspan extension.
Collapse
Affiliation(s)
- Thuy T Nguyen
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA
| | - Samuel W Caito
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, USA.,Department of Environmental Medicine, University of Rochester, Rochester, NY 14642, USA
| | - William E Zackert
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University, Nashville, TN 37232, USA
| | - James D West
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Shijun Zhu
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Michael Aschner
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA.,Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Joshua P Fessel
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA.,Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA.,Department of Cancer Biology, Vanderbilt University, Nashville, TN 37232, USA
| | - L Jackson Roberts
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA.,Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| |
Collapse
|
319
|
Reid MA, Dai Z, Locasale JW. The impact of cellular metabolism on chromatin dynamics and epigenetics. Nat Cell Biol 2017; 19:1298-1306. [PMID: 29058720 PMCID: PMC5886854 DOI: 10.1038/ncb3629] [Citation(s) in RCA: 333] [Impact Index Per Article: 47.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 09/15/2017] [Indexed: 12/12/2022]
Abstract
The substrates used to modify nucleic acids and chromatin are affected by nutrient availability and the activity of metabolic pathways. Thus, cellular metabolism constitutes a fundamental component of chromatin status and thereby of genome regulation. Here we describe the biochemical and genetic principles of how metabolism can influence chromatin biology and epigenetics, discuss the functional roles of this interplay in developmental and cancer biology, and present future directions in this rapidly emerging area.
Collapse
Affiliation(s)
- Michael A. Reid
- Department of Pharmacology and Cancer Biology, Duke Cancer Institute, Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, North Carolina, 27710, USA
| | - Ziwei Dai
- Department of Pharmacology and Cancer Biology, Duke Cancer Institute, Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, North Carolina, 27710, USA
| | - Jason W. Locasale
- Department of Pharmacology and Cancer Biology, Duke Cancer Institute, Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, North Carolina, 27710, USA
| |
Collapse
|
320
|
Qiu S, Zhang A, Zhang T, Sun H, Guan Y, Yan G, Wang X. Dissect new mechanistic insights for geniposide efficacy on the hepatoprotection using multiomics approach. Oncotarget 2017; 8:108760-108770. [PMID: 29312565 PMCID: PMC5752478 DOI: 10.18632/oncotarget.21897] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 09/18/2017] [Indexed: 12/14/2022] Open
Abstract
A multi-omics approach could yield in-depth mechanistic insights. Here, we performed an integrated analysis of miRNAome, proteome and metabolome, aimed to investigate the underlying mechanism of active product geniposide in ethanol-induced apoptosis. We found that integrative meta-analysis identified 28 miRNAs, 20 proteins and 7 metabolites significantly differentially expressed, respectively. Further analysis identified geniposide extensively regulated multiple metabolism pathways and the most important related pathway was citrate cycle (TCA cycle). In addition, geniposide can improve energy metabolism benefits using the Extracellular Flux Analyzer. Of particular significance, miR-144-5p exhibits a high positive correlation with oxoglutaric acid, isocitrate dehydrogenase (IDH) 1 and 2 that involved in the TCA cycle. Furthermore,we discovered that miR-144-5p regulates TCA cycle metabolism through IDH1 and IDH2. Collectively, we describe for the first time the hepatoprotective effect of geniposide decreased miR-144-5p level, capable of regulating TCA cycle by directly targeting IDH1 and IDH2 and promoting functional consequences in cells. Integrating metabolomics, miRNAomics and proteomics approach and thereby analyzing microRNAs and proteins as well as metabolites can give valuable information about the functional regulation pattern and action mechanism of natural products.
Collapse
Affiliation(s)
- Shi Qiu
- Sino-America Chinmedomics Technology Collaboration Center, National TCM Key Laboratory of Serum Pharmacochemistry, Chinmedomics Research Center of State Administration of TCM, Heilongjiang University of Chinese Medicine, Harbin, China.,Laboratory of Metabolomics, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Aihua Zhang
- Sino-America Chinmedomics Technology Collaboration Center, National TCM Key Laboratory of Serum Pharmacochemistry, Chinmedomics Research Center of State Administration of TCM, Heilongjiang University of Chinese Medicine, Harbin, China.,Laboratory of Metabolomics, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Tianlei Zhang
- Sino-America Chinmedomics Technology Collaboration Center, National TCM Key Laboratory of Serum Pharmacochemistry, Chinmedomics Research Center of State Administration of TCM, Heilongjiang University of Chinese Medicine, Harbin, China.,Laboratory of Metabolomics, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Hui Sun
- Sino-America Chinmedomics Technology Collaboration Center, National TCM Key Laboratory of Serum Pharmacochemistry, Chinmedomics Research Center of State Administration of TCM, Heilongjiang University of Chinese Medicine, Harbin, China.,Laboratory of Metabolomics, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Yu Guan
- Sino-America Chinmedomics Technology Collaboration Center, National TCM Key Laboratory of Serum Pharmacochemistry, Chinmedomics Research Center of State Administration of TCM, Heilongjiang University of Chinese Medicine, Harbin, China.,Laboratory of Metabolomics, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Guangli Yan
- Sino-America Chinmedomics Technology Collaboration Center, National TCM Key Laboratory of Serum Pharmacochemistry, Chinmedomics Research Center of State Administration of TCM, Heilongjiang University of Chinese Medicine, Harbin, China.,Laboratory of Metabolomics, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Xijun Wang
- Sino-America Chinmedomics Technology Collaboration Center, National TCM Key Laboratory of Serum Pharmacochemistry, Chinmedomics Research Center of State Administration of TCM, Heilongjiang University of Chinese Medicine, Harbin, China.,Laboratory of Metabolomics, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Harbin, China.,State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau
| |
Collapse
|
321
|
Kaweeteerawat C, Na Ubol P, Sangmuang S, Aueviriyavit S, Maniratanachote R. Mechanisms of antibiotic resistance in bacteria mediated by silver nanoparticles. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2017; 80:1276-1289. [PMID: 29020531 DOI: 10.1080/15287394.2017.1376727] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 08/07/2017] [Accepted: 09/04/2017] [Indexed: 06/07/2023]
Abstract
Silver nanoparticles (AgNPs) are widely used in industry, consumer products, and medical appliances due to their efficient antimicrobial properties. However, information on environmental toxicity and bacterial impact of these particles is not completely elucidated. Results showed that AgNPs produced growth inhibition and oxidative stress in bacteria Escherichia coli (gram negative) and Staphylococcus aureus (gram positive), with half-maximal inhibitory concentrations (IC50) of 12 and 7 mg/L, respectively. Surprisingly, bacteria pre-exposed to sublethal dose of AgNPs exhibited increased resistance toward antibiotics (ampicillin and Pen-Strep) with IC50 elevated by 3-13-fold. Further, AgNP pre-exposure raised the minimal inhibitory concentration and minimal biocidal concentration by two- to eightfold when cells were challenged with antibiotics with diverse mechanisms of action (penicillin, chloramphenicol, and kanamycin). Interestingly, we found that upon exposure to ampicillin, strains pretreated with AgNPs exhibited lower levels of membrane damage and oxidative stress, together with elevated levels of intracellular ATP relative to untreated cells. Bacterial reverse mutation assay (Ames test) showed that AgNPs are highly mutagenic, consistent with further assays demonstrating abiotic reactive oxygen species (ROS) generation and intrinsic DNA cleavage activity in vitro of AgNPs. Overall, our results suggest that AgNPs enhance bacterial resistance to antibiotics by promoting stress tolerance through induction of intracellular ROS. Our data suggest potential consequences of incidental environmental exposure of bacteria to AgNPs and indicate the need to regulate use and disposal of AgNPs in industry and consumer products.
Collapse
Affiliation(s)
- Chitrada Kaweeteerawat
- a Nano Safety and Risk Assessment Laboratory , National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA) , Khlong Luang , Pathum Thani , Thailand
| | - Preeyawis Na Ubol
- a Nano Safety and Risk Assessment Laboratory , National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA) , Khlong Luang , Pathum Thani , Thailand
| | - Sanirat Sangmuang
- a Nano Safety and Risk Assessment Laboratory , National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA) , Khlong Luang , Pathum Thani , Thailand
| | - Sasitorn Aueviriyavit
- a Nano Safety and Risk Assessment Laboratory , National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA) , Khlong Luang , Pathum Thani , Thailand
| | - Rawiwan Maniratanachote
- a Nano Safety and Risk Assessment Laboratory , National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA) , Khlong Luang , Pathum Thani , Thailand
| |
Collapse
|
322
|
Ritterhoff J, Tian R. Metabolism in cardiomyopathy: every substrate matters. Cardiovasc Res 2017; 113:411-421. [PMID: 28395011 DOI: 10.1093/cvr/cvx017] [Citation(s) in RCA: 189] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 02/01/2017] [Indexed: 12/12/2022] Open
Abstract
Cardiac metabolism is highly adaptive to changes in fuel availability and the energy demand of the heart. This metabolic flexibility is key for the heart to maintain its output during the development and in response to stress. Alterations in substrate preference have been observed in multiple disease states; a clear understanding of their impact on cardiac function in the long term is critical for the development of metabolic therapies. In addition, the contribution of cellular metabolism to growth, survival, and other signalling pathways through the generation of metabolic intermediates has been increasingly noted, adding another layer of complexity to the impact of metabolism on cardiac function. In a quest to understand the complexity of the cardiac metabolic network, genetic tools have been engaged to manipulate cardiac metabolism in a variety of mouse models. The ability to engineer cardiac metabolism in vivo has provided tremendous insights and brought about conceptual innovations. In this review, we will provide an overview of the cardiac metabolic network and highlight alterations observed during cardiac development and pathological hypertrophy. We will focus on consequences of altered substrate preference on cardiac response to chronic stresses through energy providing and non-energy providing pathways.
Collapse
|
323
|
Diether M, Sauer U. Towards detecting regulatory protein–metabolite interactions. Curr Opin Microbiol 2017; 39:16-23. [DOI: 10.1016/j.mib.2017.07.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 07/21/2017] [Accepted: 07/27/2017] [Indexed: 01/20/2023]
|
324
|
Ding AJ, Zheng SQ, Huang XB, Xing TK, Wu GS, Sun HY, Qi SH, Luo HR. Current Perspective in the Discovery of Anti-aging Agents from Natural Products. NATURAL PRODUCTS AND BIOPROSPECTING 2017; 7:335-404. [PMID: 28567542 PMCID: PMC5655361 DOI: 10.1007/s13659-017-0135-9] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2017] [Accepted: 05/16/2017] [Indexed: 05/18/2023]
Abstract
Aging is a process characterized by accumulating degenerative damages, resulting in the death of an organism ultimately. The main goal of aging research is to develop therapies that delay age-related diseases in human. Since signaling pathways in aging of Caenorhabditis elegans (C. elegans), fruit flies and mice are evolutionarily conserved, compounds extending lifespan of them by intervening pathways of aging may be useful in treating age-related diseases in human. Natural products have special resource advantage and with few side effect. Recently, many compounds or extracts from natural products slowing aging and extending lifespan have been reported. Here we summarized these compounds or extracts and their mechanisms in increasing longevity of C. elegans or other species, and the prospect in developing anti-aging medicine from natural products.
Collapse
Affiliation(s)
- Ai-Jun Ding
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
- University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Shan-Qing Zheng
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
- University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Xiao-Bing Huang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
- University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Ti-Kun Xing
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
- University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Gui-Sheng Wu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
- Key Laboratory for Aging and Regenerative Medicine, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Hua-Ying Sun
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
| | - Shu-Hua Qi
- Guangdong Key Laboratory of Marine Material Medical, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, Guangdong, China
| | - Huai-Rong Luo
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China.
- Key Laboratory for Aging and Regenerative Medicine, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, China.
- Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, 134 Lanhei Road, Kunming, 650201, Yunnan, China.
| |
Collapse
|
325
|
Formentini L, Ryan AJ, Gálvez-Santisteban M, Carter L, Taub P, Lapek JD, Gonzalez DJ, Villarreal F, Ciaraldi TP, Cuezva JM, Henry RR. Mitochondrial H +-ATP synthase in human skeletal muscle: contribution to dyslipidaemia and insulin resistance. Diabetologia 2017; 60:2052-2065. [PMID: 28770317 PMCID: PMC6572787 DOI: 10.1007/s00125-017-4379-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 05/25/2017] [Indexed: 12/20/2022]
Abstract
AIMS/HYPOTHESIS Mitochondria are important regulators of the metabolic phenotype in type 2 diabetes. A key factor in mitochondrial physiology is the H+-ATP synthase. The expression and activity of its physiological inhibitor, ATPase inhibitory factor 1 (IF1), controls tissue homeostasis, metabolic reprogramming and signalling. We aimed to characterise the putative role of IF1 in mediating skeletal muscle metabolism in obesity and diabetes. METHODS We examined the 'mitochondrial signature' of obesity and type 2 diabetes in a cohort of 100 metabolically characterised human skeletal muscle biopsy samples. The expression and activity of H+-ATP synthase, IF1 and key mitochondrial proteins were characterised, including their association with BMI, fasting plasma insulin, fasting plasma glucose and HOMA-IR. IF1 was also overexpressed in primary cultures of human myotubes derived from the same biopsies to unveil the possible role played by the pathological inhibition of the H+-ATP synthase in skeletal muscle. RESULTS The results indicate that type 2 diabetes and obesity act via different mechanisms to impair H+-ATP synthase activity in human skeletal muscle (76% reduction in its catalytic subunit vs 280% increase in IF1 expression, respectively) and unveil a new pathway by which IF1 influences lipid metabolism. Mechanistically, IF1 altered cellular levels of α-ketoglutarate and L-carnitine metabolism in the myotubes of obese (84% of control) and diabetic (76% of control) individuals, leading to limited β-oxidation of fatty acids (60% of control) and their cytosolic accumulation (164% of control). These events led to enhanced release of TNF-α (10 ± 2 pg/ml, 27 ± 5 pg/ml and 35 ± 4 pg/ml in control, obese and type 2 diabetic participants, respectively), which probably contributes to an insulin resistant phenotype. CONCLUSIONS/INTERPRETATION Overall, our data highlight IF1 as a novel regulator of lipid metabolism and metabolic disorders, and a possible target for therapeutic intervention.
Collapse
Affiliation(s)
- Laura Formentini
- VA San Diego Healthcare System, San Diego, CA, USA.
- Departamento de Biología Molecular, CIBER Enfermedades Raras, Centro de Biología Molecular 'Severo Ochoa' (CBMSO), c/ Nicolás Cabrera 1, Universidad Autónoma de Madrid, 28049, Madrid, Spain.
- Department of Medicine, University of California, San Diego, La Jolla, CA, USA.
| | - Alexander J Ryan
- VA San Diego Healthcare System, San Diego, CA, USA
- Department of Medicine, University of California, San Diego, La Jolla, CA, USA
- Division of Diabetes, Endocrinology and Gastroenterology, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | | | | | - Pam Taub
- VA San Diego Healthcare System, San Diego, CA, USA
- Department of Cardiology, University of California, San Diego, La Jolla, CA, USA
| | - John D Lapek
- Department of Pharmacology and Pharmacy, University of California, San Diego, La Jolla, CA, USA
| | - David J Gonzalez
- Department of Pharmacology and Pharmacy, University of California, San Diego, La Jolla, CA, USA
| | | | - Theodore P Ciaraldi
- VA San Diego Healthcare System, San Diego, CA, USA
- Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - José M Cuezva
- Departamento de Biología Molecular, CIBER Enfermedades Raras, Centro de Biología Molecular 'Severo Ochoa' (CBMSO), c/ Nicolás Cabrera 1, Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | - Robert R Henry
- VA San Diego Healthcare System, San Diego, CA, USA
- Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| |
Collapse
|
326
|
Epigallocatechin-3-gallate promotes healthy lifespan through mitohormesis during early-to-mid adulthood in Caenorhabditis elegans. Redox Biol 2017; 14:305-315. [PMID: 28992589 PMCID: PMC5635249 DOI: 10.1016/j.redox.2017.09.019] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 09/26/2017] [Accepted: 09/27/2017] [Indexed: 11/23/2022] Open
Abstract
The green tea polyphenol epigallocatechin-3-gallate (EGCG) is widely consumed as a dietary supplement. Its potential properties include slowing aging and extending lifespan, although how exactly this is achieved remains unclear. Here, we report that EGCG promoted healthy lifespan in Caenorhabditis elegans when administered throughout or only at early-to-mid adulthood. Specifically, EGCG extended lifespan in an inverted U-shaped dose-response manner. The life-extending mechanism was stimulated by EGCG-induced production of reactive oxygen species (ROS). Additionally, EGCG triggered mitochondrial biogenesis to restore mitochondrial function. The EGCG-induced increase in lifespan depends on known energy sensors such as AMPK/AAK-2, as well as SIRT1/SIR-2.1 and FOXO/DAF-16. Interestingly, aging decreased the response to EGCG and progressively neutralized its beneficial effects on longevity. Collectively, our findings link EGCG to the process of mitohormesis and suggest an inducible, AMPK/SIRT1/FOXO-dependent redox signaling module that could be invoked in different contexts to extend healthy lifespan. Its effectiveness is higher in younger adults and declines with age.
Collapse
|
327
|
Abstract
Mitochondria are essential organelles for many aspects of cellular homeostasis, including energy harvesting through oxidative phosphorylation. Alterations of mitochondrial function not only impact on cellular metabolism but also critically influence whole-body metabolism, health, and life span. Diseases defined by mitochondrial dysfunction have expanded from rare monogenic disorders in a strict sense to now also include many common polygenic diseases, including metabolic, cardiovascular, neurodegenerative, and neuromuscular diseases. This has led to an intensive search for new therapeutic and preventive strategies aimed at invigorating mitochondrial function by exploiting key components of mitochondrial biogenesis, redox metabolism, dynamics, mitophagy, and the mitochondrial unfolded protein response. As such, new findings linking mitochondrial function to the progression or outcome of this ever-increasing list of diseases has stimulated the discovery and development of the first true mitochondrial drugs, which are now entering the clinic and are discussed in this review.
Collapse
Affiliation(s)
- Vincenzo Sorrentino
- Laboratory of Integrative and Systems Physiology, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland;
| | - Keir J Menzies
- Interdisciplinary School of Health Sciences, University of Ottawa Brain and Mind Research Institute and Centre for Neuromuscular Disease, Ottawa K1H 8M5, Canada;
| | - Johan Auwerx
- Laboratory of Integrative and Systems Physiology, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland;
| |
Collapse
|
328
|
Brejc K, Bian Q, Uzawa S, Wheeler BS, Anderson EC, King DS, Kranzusch PJ, Preston CG, Meyer BJ. Dynamic Control of X Chromosome Conformation and Repression by a Histone H4K20 Demethylase. Cell 2017; 171:85-102.e23. [PMID: 28867287 PMCID: PMC5678999 DOI: 10.1016/j.cell.2017.07.041] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Revised: 06/25/2017] [Accepted: 07/25/2017] [Indexed: 02/07/2023]
Abstract
Chromatin modification and higher-order chromosome structure play key roles in gene regulation, but their functional interplay in controlling gene expression is elusive. We have discovered the machinery and mechanism underlying the dynamic enrichment of histone modification H4K20me1 on hermaphrodite X chromosomes during C. elegans dosage compensation and demonstrated H4K20me1's pivotal role in regulating higher-order chromosome structure and X-chromosome-wide gene expression. The structure and the activity of the dosage compensation complex (DCC) subunit DPY-21 define a Jumonji demethylase subfamily that converts H4K20me2 to H4K20me1 in worms and mammals. Selective inactivation of demethylase activity eliminates H4K20me1 enrichment in somatic cells, elevates X-linked gene expression, reduces X chromosome compaction, and disrupts X chromosome conformation by diminishing the formation of topologically associating domains (TADs). Unexpectedly, DPY-21 also associates with autosomes of germ cells in a DCC-independent manner to enrich H4K20me1 and trigger chromosome compaction. Our findings demonstrate the direct link between chromatin modification and higher-order chromosome structure in long-range regulation of gene expression.
Collapse
Affiliation(s)
- Katjuša Brejc
- Howard Hughes Medical Institute and Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720-3204, USA
| | - Qian Bian
- Howard Hughes Medical Institute and Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720-3204, USA
| | - Satoru Uzawa
- Howard Hughes Medical Institute and Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720-3204, USA
| | - Bayly S Wheeler
- Howard Hughes Medical Institute and Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720-3204, USA
| | - Erika C Anderson
- Howard Hughes Medical Institute and Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720-3204, USA
| | - David S King
- HHMI Mass Spectrometry Laboratory, University of California, Berkeley, Berkeley, California 94720-3204, USA
| | - Philip J Kranzusch
- Howard Hughes Medical Institute and Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720-3204, USA
| | - Christine G Preston
- Howard Hughes Medical Institute and Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720-3204, USA
| | - Barbara J Meyer
- Howard Hughes Medical Institute and Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720-3204, USA.
| |
Collapse
|
329
|
Li J, Wang J, Wang D, Guo G, Yeung KWK, Zhang X, Liu X. Band Gap Engineering of Titania Film through Cobalt Regulation for Oxidative Damage of Bacterial Respiration and Viability. ACS APPLIED MATERIALS & INTERFACES 2017; 9:27475-27490. [PMID: 28748698 DOI: 10.1021/acsami.7b06867] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Biomaterial-related bacterial infections cause patient suffering, mortality, and extended periods of hospitalization and impose a substantial burden on medical systems. In this context, understanding the interactions between nanomaterials and bacteria is clinically significant. Herein, TiO2-based heterojunctions, including Co-TiO2, CoO-TiO2, and Co3O4-TiO2, were first designed by optimizing magnetron sputtering to establish a platform to explore the interactions between nanomaterials and bacteria. We found that the energy band bending and band gap narrowing were effectively promoted at the contact interface of the heterojunctions, which have the ability to induce abiotic reactive oxygen species formation. Using methicillin-resistant Staphylococcus aureus and Staphylococcus epidermidis, in vitro studies showed that the heterojunctions of Co-TiO2, CoO-TiO2, and especially Co3O4-TiO2 can effectively downregulate the expression levels of bacterial respiratory genes and cause oxidative damage to bacterial membrane respiration and viability. As a result, the surfaces of the heterojunctions possess a favorable antiadherent bacterial activity. Moreover, using an osteomyelitis model, the preclinical study on rats further confirmed the favorable anti-infection effect of the elaborately designed heterojunctions (especially Co3O4-TiO2). We hope this study can provide new insights into the surface antibacterial design of biomaterials using energy band engineering for both basic research and clinical needs. Meanwhile, this attempt may also contribute to expanding the biomedical applications of cobalt-based nanoparticles for the treatment of antibiotic-resistant infections.
Collapse
Affiliation(s)
- Jinhua Li
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences , Shanghai 200050, China
- Department of Orthopaedics and Traumatology, Li Ka Shing Faculty of Medicine, The University of Hong Kong , Pokfulam, Hong Kong 999077, China
- Shenzhen Key Laboratory for Innovative Technology in Orthopaedic Trauma, The University of Hong Kong-Shenzhen Hospital , Shenzhen 518053, China
- University of Chinese Academy of Sciences , Beijing 100049, China
| | - Jiaxing Wang
- Department of Orthopaedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Jiao Tong University , Shanghai 200233, China
| | - Donghui Wang
- Department of Orthopaedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Jiao Tong University , Shanghai 200233, China
| | - Geyong Guo
- Department of Orthopaedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Jiao Tong University , Shanghai 200233, China
| | - Kelvin W K Yeung
- Department of Orthopaedics and Traumatology, Li Ka Shing Faculty of Medicine, The University of Hong Kong , Pokfulam, Hong Kong 999077, China
- Shenzhen Key Laboratory for Innovative Technology in Orthopaedic Trauma, The University of Hong Kong-Shenzhen Hospital , Shenzhen 518053, China
| | - Xianlong Zhang
- Department of Orthopaedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Jiao Tong University , Shanghai 200233, China
| | - Xuanyong Liu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences , Shanghai 200050, China
| |
Collapse
|
330
|
Donati S, Sander T, Link H. Crosstalk between transcription and metabolism: how much enzyme is enough for a cell? WILEY INTERDISCIPLINARY REVIEWS-SYSTEMS BIOLOGY AND MEDICINE 2017; 10. [DOI: 10.1002/wsbm.1396] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 06/20/2017] [Accepted: 07/05/2017] [Indexed: 12/11/2022]
Affiliation(s)
- Stefano Donati
- Max Planck Institute for Terrestrial Microbiology; Marburg Germany
| | - Timur Sander
- Max Planck Institute for Terrestrial Microbiology; Marburg Germany
| | - Hannes Link
- Max Planck Institute for Terrestrial Microbiology; Marburg Germany
| |
Collapse
|
331
|
Scialò F, Fernández-Ayala DJ, Sanz A. Role of Mitochondrial Reverse Electron Transport in ROS Signaling: Potential Roles in Health and Disease. Front Physiol 2017; 8:428. [PMID: 28701960 PMCID: PMC5486155 DOI: 10.3389/fphys.2017.00428] [Citation(s) in RCA: 311] [Impact Index Per Article: 44.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 06/02/2017] [Indexed: 12/20/2022] Open
Abstract
Reactive Oxygen Species (ROS) can cause oxidative damage and have been proposed to be the main cause of aging and age-related diseases including cancer, diabetes and Parkinson's disease. Accordingly, mitochondria from old individuals have higher levels of ROS. However, ROS also participate in cellular signaling, are instrumental for several physiological processes and boosting ROS levels in model organisms extends lifespan. The current consensus is that low levels of ROS are beneficial, facilitating adaptation to stress via signaling, whereas high levels of ROS are deleterious because they trigger oxidative stress. Based on this model the amount of ROS should determine the physiological effect. However, recent data suggests that the site at which ROS are generated is also instrumental in determining effects on cellular homeostasis. The best example of site-specific ROS signaling is reverse electron transport (RET). RET is produced when electrons from ubiquinol are transferred back to respiratory complex I, reducing NAD+ to NADH. This process generates a significant amount of ROS. RET has been shown to be instrumental for the activation of macrophages in response to bacterial infection, re-organization of the electron transport chain in response to changes in energy supply and adaptation of the carotid body to changes in oxygen levels. In Drosophila melanogaster, stimulating RET extends lifespan. Here, we review what is known about RET, as an example of site-specific ROS signaling, and its implications for the field of redox biology.
Collapse
Affiliation(s)
- Filippo Scialò
- Institute for Cell and Molecular Biosciences, Newcastle University Institute for Ageing, Newcastle UniversityNewcastle upon Tyne, United Kingdom
| | - Daniel J Fernández-Ayala
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide-CSIC and CIBERER-ISCIIISeville, Spain
| | - Alberto Sanz
- Institute for Cell and Molecular Biosciences, Newcastle University Institute for Ageing, Newcastle UniversityNewcastle upon Tyne, United Kingdom
| |
Collapse
|
332
|
Differential Metabolic Profiles during the Developmental Stages of Plant-Parasitic Nematode Meloidogyne incognita. Int J Mol Sci 2017; 18:ijms18071351. [PMID: 28672815 PMCID: PMC5535844 DOI: 10.3390/ijms18071351] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 06/17/2017] [Accepted: 06/20/2017] [Indexed: 12/27/2022] Open
Abstract
Meloidogyne incognita is a common root-knot nematode with a wide range of plant hosts. We aimed to study the metabolites produced at each stage of the nematode life cycle to understand its development. Metabolites of Meloidogyne incognita were extracted at egg, J2, J3, J4, and female stages and 110 metabolites with available standards were quantified using CE-TOF/MS. Analyses indicated abundance of stage-specific metabolites with the exception of J3 and J4 stages which shared similar metabolic profiles. The egg stage showed increased abundance in glycolysis and energy metabolism related metabolites while the J2 metabolites are associated with tissue formation, motility, and neurotransmission. The J3 and J4 stages indicated amino acid metabolism and urea cycle- related metabolites. The female stage was characterized with polyamine synthesis, antioxidant activity, and synthesis of reproduction related metabolites. Such metabolic profiling helps us understand the dynamic physiological changes related to each developmental stage of the root-knot nematode life cycle.
Collapse
|
333
|
Mitochondrial form, function and signalling in aging. Biochem J 2017; 473:3421-3449. [PMID: 27729586 DOI: 10.1042/bcj20160451] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 06/17/2016] [Indexed: 02/07/2023]
Abstract
Aging is often accompanied by a decline in mitochondrial mass and function in different tissues. Additionally, cell resistance to stress is frequently found to be prevented by higher mitochondrial respiratory capacity. These correlations strongly suggest mitochondria are key players in aging and senescence, acting by regulating energy homeostasis, redox balance and signalling pathways central in these processes. However, mitochondria display a wide array of functions and signalling properties, and the roles of these different characteristics are still widely unexplored. Furthermore, differences in mitochondrial properties and responses between tissues and cell types, and how these affect whole body metabolism are also still poorly understood. This review uncovers aspects of mitochondrial biology that have an impact upon aging in model organisms and selected mammalian cells and tissues.
Collapse
|
334
|
Qi B, Kniazeva M, Han M. A vitamin-B2-sensing mechanism that regulates gut protease activity to impact animal's food behavior and growth. eLife 2017; 6:e26243. [PMID: 28569665 PMCID: PMC5478268 DOI: 10.7554/elife.26243] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 05/30/2017] [Indexed: 01/22/2023] Open
Abstract
To survive challenging environments, animals acquired the ability to evaluate food quality in the intestine and respond to nutrient deficiencies with changes in food-response behavior, metabolism and development. However, the regulatory mechanisms underlying intestinal sensing of specific nutrients, especially micronutrients such as vitamins, and the connections to downstream physiological responses in animals remain underexplored. We have established a system to analyze the intestinal response to vitamin B2 (VB2) deficiency in Caenorhabditis elegans, and demonstrated that VB2 level critically impacts food uptake and foraging behavior by regulating specific protease gene expression and intestinal protease activity. We show that this impact is mediated by TORC1 signaling through reading the FAD-dependent ATP level. Thus, our study in live animals uncovers a VB2-sensing/response pathway that regulates food-uptake, a mechanism by which a common signaling pathway translates a specific nutrient signal into physiological activities, and the importance of gut microbiota in supplying micronutrients to animals.
Collapse
Affiliation(s)
- Bin Qi
- Department of Molecular, Cellular and Developmental Biology, Howard Hughes Medical Institute, University of Colorado Boulder, Boulder, United States
| | - Marina Kniazeva
- Department of Molecular, Cellular and Developmental Biology, Howard Hughes Medical Institute, University of Colorado Boulder, Boulder, United States
| | - Min Han
- Department of Molecular, Cellular and Developmental Biology, Howard Hughes Medical Institute, University of Colorado Boulder, Boulder, United States
| |
Collapse
|
335
|
Esparza-Moltó PB, Nuevo-Tapioles C, Cuezva JM. Regulation of the H +-ATP synthase by IF1: a role in mitohormesis. Cell Mol Life Sci 2017; 74:2151-2166. [PMID: 28168445 PMCID: PMC5425498 DOI: 10.1007/s00018-017-2462-8] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Revised: 01/09/2017] [Accepted: 01/10/2017] [Indexed: 01/18/2023]
Abstract
The mitochondrial H+-ATP synthase is a primary hub of cellular homeostasis by providing the energy required to sustain cellular activity and regulating the production of signaling molecules that reprogram nuclear activity needed for adaption to changing cues. Herein, we summarize findings regarding the regulation of the activity of the H+-ATP synthase by its physiological inhibitor, the ATPase inhibitory factor 1 (IF1) and their functional role in cellular homeostasis. First, we outline the structure and the main molecular mechanisms that regulate the activity of the enzyme. Next, we describe the molecular biology of IF1 and summarize the regulation of IF1 expression and activity as an inhibitor of the H+-ATP synthase emphasizing the role of IF1 as a main driver of energy rewiring and cellular signaling in cancer. Findings in transgenic mice in vivo indicate that the overexpression of IF1 is sufficient to reprogram energy metabolism to an enhanced glycolysis and activate reactive oxygen species (ROS)-dependent signaling pathways that promote cell survival. These findings are placed in the context of mitohormesis, a program in which a mild mitochondrial stress triggers adaptive cytoprotective mechanisms that improve lifespan. In this regard, we emphasize the role played by the H+-ATP synthase in modulating signaling pathways that activate the mitohormetic response, namely ATP, ROS and target of rapamycin (TOR). Overall, we aim to highlight the relevant role of the H+-ATP synthase and of IF1 in cellular physiology and the need of additional studies to decipher their contributions to aging and age-related diseases.
Collapse
Affiliation(s)
- Pau B Esparza-Moltó
- Departamento de Biología Molecular, Centro de Biología Molecular Severo Ochoa, (CSIC-UAM), Centro de Investigación Biomédica en Red de Enfermedades Raras CIBERER-ISCIII, Instituto de Investigación Hospital 12 de Octubre, Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | - Cristina Nuevo-Tapioles
- Departamento de Biología Molecular, Centro de Biología Molecular Severo Ochoa, (CSIC-UAM), Centro de Investigación Biomédica en Red de Enfermedades Raras CIBERER-ISCIII, Instituto de Investigación Hospital 12 de Octubre, Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | - José M Cuezva
- Departamento de Biología Molecular, Centro de Biología Molecular Severo Ochoa, (CSIC-UAM), Centro de Investigación Biomédica en Red de Enfermedades Raras CIBERER-ISCIII, Instituto de Investigación Hospital 12 de Octubre, Universidad Autónoma de Madrid, 28049, Madrid, Spain.
| |
Collapse
|
336
|
Lüddecke J, Francois L, Spät P, Watzer B, Chilczuk T, Poschet G, Hell R, Radlwimmer B, Forchhammer K. P II Protein-Derived FRET Sensors for Quantification and Live-Cell Imaging of 2-Oxoglutarate. Sci Rep 2017; 7:1437. [PMID: 28469248 PMCID: PMC5431102 DOI: 10.1038/s41598-017-01440-w] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 03/30/2017] [Indexed: 12/21/2022] Open
Abstract
The citric acid cycle intermediate 2-oxoglutarate (2-OG, a.k.a. alpha-ketoglutarate) links the carbon and nitrogen metabolic pathways and can provide information on the metabolic status of cells. In recent years, it has become exceedingly clear that 2-OG also acts as a master regulator of diverse biologic processes in all domains of life. Consequently, there is a great demand for time-resolved data on 2-OG fluctuations that can’t be adequately addressed using established methods like mass spectrometry-based metabolomics analysis. Therefore, we set out to develop a novel intramolecular 2-OG FRET sensor based on the signal transduction protein PII from Synechococcus elongatus PCC 7942. We created two variants of the sensor, with a dynamic range for 2-OG from 0.1 µM to 0.1 mM or from 10 µM to 10 mM. As proof of concept, we applied the sensors to determine in situ glutamine:2-oxoglutarate aminotransferase (GOGAT) activity in Synechococcus elongatus PCC 7942 cells and measured 2-OG concentrations in cell extracts from Escherichia coli in vitro. Finally, we could show the sensors’ functionality in living human cell lines, demonstrating their potential in the context of mechanistic studies and drug screening.
Collapse
Affiliation(s)
- Jan Lüddecke
- Interfaculty Institute for Microbiology and Infection Medicine, Division Organismic Interactions, University of Tübingen, Tübingen, Germany
| | - Liliana Francois
- Division of Molecular Genetics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Philipp Spät
- Interfaculty Institute for Microbiology and Infection Medicine, Division Organismic Interactions, University of Tübingen, Tübingen, Germany
| | - Björn Watzer
- Interfaculty Institute for Microbiology and Infection Medicine, Division Organismic Interactions, University of Tübingen, Tübingen, Germany
| | - Tomasz Chilczuk
- Interfaculty Institute for Microbiology and Infection Medicine, Division Organismic Interactions, University of Tübingen, Tübingen, Germany
| | - Gernot Poschet
- Centre for Organismal Studies Heidelberg, Rupprecht-Karls-Universität Heidelberg, Heidelberg, Germany
| | - Rüdiger Hell
- Centre for Organismal Studies Heidelberg, Rupprecht-Karls-Universität Heidelberg, Heidelberg, Germany
| | - Bernhard Radlwimmer
- Division of Molecular Genetics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Karl Forchhammer
- Interfaculty Institute for Microbiology and Infection Medicine, Division Organismic Interactions, University of Tübingen, Tübingen, Germany.
| |
Collapse
|
337
|
Singh K, Krug L, Basu A, Meyer P, Treiber N, Vander Beken S, Wlaschek M, Kochanek S, Bloch W, Geiger H, Maity P, Scharffetter-Kochanek K. Alpha-Ketoglutarate Curbs Differentiation and Induces Cell Death in Mesenchymal Stromal Precursors with Mitochondrial Dysfunction. Stem Cells 2017; 35:1704-1718. [PMID: 28398002 DOI: 10.1002/stem.2629] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Revised: 03/03/2017] [Accepted: 03/28/2017] [Indexed: 12/19/2022]
Abstract
Increased concentrations of reactive oxygen species (ROS) originating from dysfunctional mitochondria contribute to diverse aging-related degenerative disorders. But so far little is known about the impact of distinct ROS on metabolism and fate of stromal precursor cells. Here, we demonstrate that an increase in superoxide anion radicals due to superoxide dismutase 2 (Sod2) deficiency in stromal precursor cells suppress osteogenic and adipogenic differentiation through fundamental changes in the global metabolite landscape. Our data identify impairment of the pyruvate and l-glutamine metabolism causing toxic accumulation of alpha-ketoglutarate in the Sod2-deficient and intrinsically aged stromal precursor cells as a major cause for their reduced lineage differentiation. Alpha-ketoglutarate accumulation led to enhanced nucleocytoplasmic vacuolation and chromatin condensation-mediated cell death in Sod2-deficient stromal precursor cells as a consequence of DNA damage, Hif-1α instability, and reduced histone H3 (Lys27) acetylation. These findings hold promise for prevention and treatment of mitochondrial disorders commonly associated with aged individuals. Stem Cells 2017;35:1704-1718.
Collapse
Affiliation(s)
- Karmveer Singh
- Department of Dermatology and Allergic Diseases.,Aging Research Center (ARC), Ulm, Germany
| | - Linda Krug
- Department of Dermatology and Allergic Diseases.,Aging Research Center (ARC), Ulm, Germany
| | | | - Patrick Meyer
- Department of Dermatology and Allergic Diseases.,Aging Research Center (ARC), Ulm, Germany
| | - Nicolai Treiber
- Department of Dermatology and Allergic Diseases.,Aging Research Center (ARC), Ulm, Germany
| | | | - Meinhard Wlaschek
- Department of Dermatology and Allergic Diseases.,Aging Research Center (ARC), Ulm, Germany
| | | | | | - Hartmut Geiger
- Department of Dermatology and Allergic Diseases.,Aging Research Center (ARC), Ulm, Germany.,Institute of Molecular Medicine and Stem Cell Aging, University of Ulm, Ulm, Germany.,Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center and University of Cincinnati, Cincinnati, Ohio, USA
| | - Pallab Maity
- Department of Dermatology and Allergic Diseases.,Aging Research Center (ARC), Ulm, Germany
| | | |
Collapse
|
338
|
2-HG Inhibits Necroptosis by Stimulating DNMT1-Dependent Hypermethylation of the RIP3 Promoter. Cell Rep 2017; 19:1846-1857. [DOI: 10.1016/j.celrep.2017.05.012] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 03/31/2017] [Accepted: 05/02/2017] [Indexed: 01/07/2023] Open
|
339
|
Formentini L, Santacatterina F, Núñez de Arenas C, Stamatakis K, López-Martínez D, Logan A, Fresno M, Smits R, Murphy MP, Cuezva JM. Mitochondrial ROS Production Protects the Intestine from Inflammation through Functional M2 Macrophage Polarization. Cell Rep 2017; 19:1202-1213. [DOI: 10.1016/j.celrep.2017.04.036] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 03/03/2017] [Accepted: 04/12/2017] [Indexed: 01/06/2023] Open
|
340
|
Lee D, Son HG, Jung Y, Lee SJV. The role of dietary carbohydrates in organismal aging. Cell Mol Life Sci 2017; 74:1793-1803. [PMID: 27942749 PMCID: PMC11107617 DOI: 10.1007/s00018-016-2432-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2016] [Revised: 11/21/2016] [Accepted: 12/05/2016] [Indexed: 12/22/2022]
Abstract
Carbohydrates are essential nutrients that are used as a primary source of energy. Carbohydrate utilization should be properly controlled, as abnormal regulation of carbohydrate metabolism is associated with diseases, such as diabetes, cardiovascular diseases, and stroke. These metabolic syndromes have become a serious problem in developed countries, and there is an increased need for research examining the influence of carbohydrates on animal physiology. Diets enriched in glucose, a major carbohydrate, are also associated with accelerated aging in several model organisms, including yeast and Caenorhabditis elegans (C. elegans). Genetic factors that mediate the effects of high glucose diets on aging have been identified during the last decade, mostly through the use of C. elegans. In this review, we describe studies that determine the effects of carbohydrate-enriched diets on aging by focusing on the mechanisms through which evolutionarily conserved pathways mediate the lifespan-altering effects of glucose in C. elegans. These include the insulin/insulin-like growth factor-1, sterol-regulatory element-binding protein, and AMP-activated protein kinase signaling pathways. We also discuss the effects of various carbohydrates and carbohydrate-derived metabolites on aging in model organisms and cultured mammalian cells. Finally, we discuss how dietary carbohydrates influence health and aging in humans.
Collapse
Affiliation(s)
- Dongyeop Lee
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, 37673, Gyeongbuk, South Korea
| | - Heehwa G Son
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, 37673, Gyeongbuk, South Korea
| | - Yoonji Jung
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, 37673, Gyeongbuk, South Korea
| | - Seung-Jae V Lee
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, 37673, Gyeongbuk, South Korea.
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, Pohang, 37673, Gyeongbuk, South Korea.
| |
Collapse
|
341
|
Abstract
Mitochondria are one of most characterized metabolic hubs of the cell. Here, crucial biochemical reactions occur and most of the cellular adenosine triphosphate (ATP) is produced. In addition, mitochondria act as signalling platforms and communicate with the rest of the cell by modulating calcium fluxes, by producing free radicals, and by releasing bioactive proteins. It is emerging that mitochondrial metabolites can also act as second messengers and can elicit profound (epi)genetic changes. This review describes the many signalling functions of mitochondrial metabolites under normal and stress conditions, focusing on metabolites of the tricarboxylic acid cycle. We provide a new framework for understanding the role of mitochondrial metabolism in cellular pathophysiology.
Collapse
|
342
|
Campero‐Basaldua C, Quezada H, Riego‐Ruíz L, Márquez D, Rojas E, González J, El‐Hafidi M, González A. Diversification of the kinetic properties of yeast NADP-glutamate-dehydrogenase isozymes proceeds independently of their evolutionary origin. Microbiologyopen 2017; 6:e00419. [PMID: 27864882 PMCID: PMC5387307 DOI: 10.1002/mbo3.419] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Revised: 09/23/2016] [Accepted: 09/28/2016] [Indexed: 02/02/2023] Open
Abstract
In the yeast Saccharomyces cerevisiae, the ScGDH1 and ScGDH3 encoded glutamate dehydrogenases (NADP-GDHs) catalyze the synthesis of glutamate from ammonium and α-ketoglutarate (α-KG). Previous kinetic characterization showed that these enzymes displayed different allosteric properties and respectively high or low rate of α-KG utilization. Accordingly, the coordinated action of ScGdh1 and ScGdh3, regulated balanced α-KG utilization for glutamate biosynthesis under either fermentative or respiratory conditions, safeguarding energy provision. Here, we have addressed the question of whether there is a correlation between the regulation and kinetic properties of the NADP-GDH isozymes present in S. cerevisiae (ScGdh1 and ScGdh3), Kluyveromyces lactis (KlGdh1), and Lachancea kluyveri (LkGdh1) and their evolutionary history. Our results show that the kinetic properties of K. lactis and L. kluyveri single NADP-GDHs are respectively similar to either ScGDH3 or ScGDH1, which arose from the whole genome duplication event of the S. cerevisiae lineage, although, KlGDH1 and LkGDH1 originated from a GDH clade, through an ancient interspecies hybridization event that preceded the divergence between the Saccharomyces clade and the one containing the genera Kluyveromyces, Lachancea, and Eremothecium. Thus, the kinetic properties which determine the NADP-GDHs capacity to utilize α-KG and synthesize glutamate do not correlate with their evolutionary origin.
Collapse
Affiliation(s)
- Carlos Campero‐Basaldua
- Departamento de Bioquímica y Biología EstructuralInstituto de Fisiología CelularUniversidad Nacional Autónoma de MéxicoMexico CityMéxico
| | - Héctor Quezada
- Laboratorio de Inmunología y ProteómicaHospital Infantil de México Federico GómezMexico CityMéxico
| | | | - Dariel Márquez
- Departamento de Bioquímica y Biología EstructuralInstituto de Fisiología CelularUniversidad Nacional Autónoma de MéxicoMexico CityMéxico
| | - Erendira Rojas
- Departamento de Bioquímica y Biología EstructuralInstituto de Fisiología CelularUniversidad Nacional Autónoma de MéxicoMexico CityMéxico
| | - James González
- Departamento de Bioquímica y Biología EstructuralInstituto de Fisiología CelularUniversidad Nacional Autónoma de MéxicoMexico CityMéxico
| | - Mohammed El‐Hafidi
- Departamento de Biomedicina CardiovascularInstituto Nacional de Cardiología Ignacio ChávezMexico CityMéxico
| | - Alicia González
- Departamento de Bioquímica y Biología EstructuralInstituto de Fisiología CelularUniversidad Nacional Autónoma de MéxicoMexico CityMéxico
| |
Collapse
|
343
|
Šimić G, Babić Leko M, Wray S, Harrington CR, Delalle I, Jovanov-Milošević N, Bažadona D, Buée L, de Silva R, Di Giovanni G, Wischik CM, Hof PR. Monoaminergic neuropathology in Alzheimer's disease. Prog Neurobiol 2017; 151:101-138. [PMID: 27084356 PMCID: PMC5061605 DOI: 10.1016/j.pneurobio.2016.04.001] [Citation(s) in RCA: 184] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Revised: 03/09/2016] [Accepted: 04/05/2016] [Indexed: 01/02/2023]
Abstract
None of the proposed mechanisms of Alzheimer's disease (AD) fully explains the distribution patterns of the neuropathological changes at the cellular and regional levels, and their clinical correlates. One aspect of this problem lies in the complex genetic, epigenetic, and environmental landscape of AD: early-onset AD is often familial with autosomal dominant inheritance, while the vast majority of AD cases are late-onset, with the ε4 variant of the gene encoding apolipoprotein E (APOE) known to confer a 5-20 fold increased risk with partial penetrance. Mechanisms by which genetic variants and environmental factors influence the development of AD pathological changes, especially neurofibrillary degeneration, are not yet known. Here we review current knowledge of the involvement of the monoaminergic systems in AD. The changes in the serotonergic, noradrenergic, dopaminergic, histaminergic, and melatonergic systems in AD are briefly described. We also summarize the possibilities for monoamine-based treatment in AD. Besides neuropathologic AD criteria that include the noradrenergic locus coeruleus (LC), special emphasis is given to the serotonergic dorsal raphe nucleus (DRN). Both of these brainstem nuclei are among the first to be affected by tau protein abnormalities in the course of sporadic AD, causing behavioral and cognitive symptoms of variable severity. The possibility that most of the tangle-bearing neurons of the LC and DRN may release amyloid β as well as soluble monomeric or oligomeric tau protein trans-synaptically by their diffuse projections to the cerebral cortex emphasizes their selective vulnerability and warrants further investigations of the monoaminergic systems in AD.
Collapse
Affiliation(s)
- Goran Šimić
- Department of Neuroscience, Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia.
| | - Mirjana Babić Leko
- Department of Neuroscience, Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Selina Wray
- Reta Lila Weston Institute and Department of Molecular Neuroscience, UCL Institute of Neurology, London, UK
| | | | - Ivana Delalle
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, MA, USA
| | - Nataša Jovanov-Milošević
- Department of Neuroscience, Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Danira Bažadona
- Department of Neurology, University Hospital Center Zagreb, Zagreb, Croatia
| | - Luc Buée
- University of Lille, Inserm, CHU-Lille, UMR-S 1172, Alzheimer & Tauopathies, Lille, France
| | - Rohan de Silva
- Reta Lila Weston Institute and Department of Molecular Neuroscience, UCL Institute of Neurology, London, UK
| | - Giuseppe Di Giovanni
- Department of Physiology and Biochemistry, Faculty of Medicine and Surgery, University of Malta, Msida, Malta
| | - Claude M Wischik
- School of Medicine and Dentistry, University of Aberdeen, Aberdeen, UK
| | - Patrick R Hof
- Fishberg Department of Neuroscience, Ronald M. Loeb Center for Alzheimer's Disease, and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
344
|
Ward LJ, Ljunggren SA, Karlsson H, Li W, Yuan XM. Exposure to atheroma-relevant 7-oxysterols causes proteomic alterations in cell death, cellular longevity, and lipid metabolism in THP-1 macrophages. PLoS One 2017; 12:e0174475. [PMID: 28350877 PMCID: PMC5370125 DOI: 10.1371/journal.pone.0174475] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 03/09/2017] [Indexed: 12/30/2022] Open
Abstract
The 7-oxysterols are recognised as strong enhancers of inflammatory processes in foamy macrophages. Atheroma-relevant 7-oxysterol mixtures induce a mixed type of cell death in macrophages, and trigger cellular oxidative stress responses, which mimic oxidative exposures observed in atherosclerotic lesions. However, the macrophage proteome has not previously been determined in the 7-oxysterol treated cell model. The aim of the present study was to determine the specific effects of an atheroma-relevant 7-oxysterol mixture on human macrophage proteome. Human THP-1 macrophages were exposed to an atheroma-relevant mixture of 7β-hydroxycholesterol and 7-ketocholesterol. Two-dimensional gel electrophoresis and mass spectrometry techniques were used to analyse the alterations in macrophage proteome, which resulted in the identification of 19 proteins with significant differential expression upon oxysterol loading; 8 increased and 11 decreased. The expression patterns of 11 out of 19 identified significant proteins were further confirmed by tandem-mass spectrometry, including further validation of increased histone deacetylase 2 and macrophage scavenger receptor types I and II expressions by western blot analysis. Identified proteins with differential expression in the cell model have been associated with i) signalling imbalance in cell death and cellular longevity; ii) lipid uptake and metabolism in foam cells; and iii) inflammatory proteins. The presented findings highlight a new proteomic platform for further studies into the functional roles of macrophages in atherosclerosis, and present a cell model for future studies to modulate the macrophage proteome by potential anti-atherosclerotic agents.
Collapse
Affiliation(s)
- Liam J. Ward
- Occupational and Environmental Medicine Center, and Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
- Division of Obstetrics and Gynaecology, and Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
- * E-mail: (LJW); (X-MY)
| | - Stefan A. Ljunggren
- Occupational and Environmental Medicine Center, and Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Helen Karlsson
- Occupational and Environmental Medicine Center, and Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Wei Li
- Division of Obstetrics and Gynaecology, and Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Xi-Ming Yuan
- Occupational and Environmental Medicine Center, and Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
- * E-mail: (LJW); (X-MY)
| |
Collapse
|
345
|
Kuschelewski J, Schnellbaecher A, Pering S, Wehsling M, Zimmer A. Antioxidant effect of thiazolidine molecules in cell culture media improves stability and performance. Biotechnol Prog 2017; 33:759-770. [PMID: 28268250 DOI: 10.1002/btpr.2458] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 02/13/2017] [Indexed: 01/05/2023]
Abstract
The ability of cell culture media components to generate reactive species as well as their sensitivity to oxidative degradation, affects the overall stability of media and the behavior of cells cultured in vitro. This study investigates the influence of thiazolidine molecules, formed from the condensation between cysteine and alpha-ketoacids, on the stability of these complex mixtures and on the performance of cell culture processes aiming to produce therapeutically relevant monoclonal antibodies. Results presented in this study indicate that 2-methyl-1,3-thiazolidine-2,4-dicarboxylic acid and 2-(2-carboxyethyl)-1,3-thiazolidine-2,4-dicarboxylic acid, obtained by condensation of cysteine with pyruvate or alpha-ketoglutarate, respectively, are able to stabilize cell culture media formulations, in particular redox sensitive molecules like folic acid, thiamine, l-methionine (met) and l-tryptophan (trp). The use of thiazolidine containing feeds in Chinese hamster ovary fed-batch processes showed prolonged culture duration and increased productivity. This enhanced performance was correlated with lower reactive species generation, extracellularly and intracellularly. Moreover, an anti-oxidative response was triggered via the induction of superoxide dismutase and an increase in the total glutathione pool, the major intracellular antioxidant. In total, the results confirm that cells in vitro are not cultured in an oxidant-free environment, a concept that has to be considered when studying the influence of reactive species in human diseases. Furthermore, this study indicates that thiazolidines are an interesting class of antioxidant molecules, capable of increasing cell culture media stability and process performance. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 33:759-770, 2017.
Collapse
Affiliation(s)
- Jennifer Kuschelewski
- Merck Life Sciences, Upstream R&D, Frankfurter Strasse 250, Darmstadt, 64293, Germany
| | - Alisa Schnellbaecher
- Merck Life Sciences, Upstream R&D, Frankfurter Strasse 250, Darmstadt, 64293, Germany
| | - Sascha Pering
- Merck Life Sciences, Upstream R&D, Frankfurter Strasse 250, Darmstadt, 64293, Germany
| | - Maria Wehsling
- Merck Life Sciences, Upstream R&D, Frankfurter Strasse 250, Darmstadt, 64293, Germany
| | - Aline Zimmer
- Merck Life Sciences, Upstream R&D, Frankfurter Strasse 250, Darmstadt, 64293, Germany
| |
Collapse
|
346
|
He L, Huang N, Li H, Tian J, Zhou X, Li T, Yao K, Wu G, Yin Y. AMPK/α-Ketoglutarate Axis Regulates Intestinal Water and Ion Homeostasis in Young Pigs. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:2287-2298. [PMID: 28241728 DOI: 10.1021/acs.jafc.7b00324] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Water and ion absorption via sensitive aquaporins (AQPs) and ion channels is of critical importance in intestinal health. However, whether α-ketoglutarate (AKG) could improve intestinal water and ion homeostasis in lipopolysaccharide (LPS)-challenged piglets and whether the AMP-activated protein kinase (AMPK) pathway is involved remains largely unknown. This study was conducted to investigate the effect of dietary AKG supplementation on the small intestinal water and ion homeostasis through modulating the AMPK pathway in a piglet diarrhea model. A total of 32 weaned piglets were used in a 2 × 2 factorial design; the major factors were diet (basal diet or 1% AKG diet) and challenge (Escherichia coli LPS or saline). The results showed that LPS challenge increased the diarrhea index and affected the concentrations of serum Na+, K+, Cl-, glucose, and AKG and its metabolites in piglets fed the basal or AKG diet. However, the addition of AKG attenuated diarrhea incidence and reversed these serum parameter concentrations. Most AQPs (e.g., AQP1, AQP3, AQP4, AQP5, AQP8, AQP10, and AQP11) and ion transporters (NHE3, ENaC, and DRA/PAT1) were widely distributed in the duodenum and jejunum of piglets. We also found that AKG up-regulated the expression of intestinal epithelial AQPs while inhibiting the expression of ion transporters. LPS challenge decreased (P < 0.05) the gene and protein expression of the AMPK pathway (AMPKα1, AMPKα2, SIRT1, PGC-1α, ACC, and TORC2) in the jejunum and ileum. Notably, AKG supplementation enhanced the abundance of these proteins in the LPS-challenged piglets. Collectively, AKG plays an important role in increasing water and ion homeostasis through modulating the AMPK pathway. Our novel finding has important implications for the prevention and treatment of gut dysfunction in neonates.
Collapse
Affiliation(s)
- Liuqin He
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences; Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production , Changsha, Hunan 410125, China
- University of the Chinese Academy of Sciences , Beijing 10008, China
| | - Niu Huang
- College of Animal Science and Technology, Hunan Agricultural University , Changsha, Hunan 410128, China
| | - Huan Li
- College of Animal Science and Technology, Hunan Agricultural University , Changsha, Hunan 410128, China
| | - Junquan Tian
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences; Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production , Changsha, Hunan 410125, China
- University of the Chinese Academy of Sciences , Beijing 10008, China
| | - Xihong Zhou
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences; Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production , Changsha, Hunan 410125, China
| | - Tiejun Li
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences; Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production , Changsha, Hunan 410125, China
| | - Kang Yao
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences; Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production , Changsha, Hunan 410125, China
- College of Animal Science and Technology, Hunan Agricultural University , Changsha, Hunan 410128, China
| | - Guoyao Wu
- Department of Animal Science, Texas A&M University , College Station, Texas 77843, United States
| | - Yulong Yin
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences; Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production , Changsha, Hunan 410125, China
| |
Collapse
|
347
|
Lucanic M, Plummer WT, Chen E, Harke J, Foulger AC, Onken B, Coleman-Hulbert AL, Dumas KJ, Guo S, Johnson E, Bhaumik D, Xue J, Crist AB, Presley MP, Harinath G, Sedore CA, Chamoli M, Kamat S, Chen MK, Angeli S, Chang C, Willis JH, Edgar D, Royal MA, Chao EA, Patel S, Garrett T, Ibanez-Ventoso C, Hope J, Kish JL, Guo M, Lithgow GJ, Driscoll M, Phillips PC. Impact of genetic background and experimental reproducibility on identifying chemical compounds with robust longevity effects. Nat Commun 2017; 8:14256. [PMID: 28220799 PMCID: PMC5321775 DOI: 10.1038/ncomms14256] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 12/13/2016] [Indexed: 12/19/2022] Open
Abstract
Limiting the debilitating consequences of ageing is a major medical challenge of our time. Robust pharmacological interventions that promote healthy ageing across diverse genetic backgrounds may engage conserved longevity pathways. Here we report results from the Caenorhabditis Intervention Testing Program in assessing longevity variation across 22 Caenorhabditis strains spanning 3 species, using multiple replicates collected across three independent laboratories. Reproducibility between test sites is high, whereas individual trial reproducibility is relatively low. Of ten pro-longevity chemicals tested, six significantly extend lifespan in at least one strain. Three reported dietary restriction mimetics are mainly effective across C. elegans strains, indicating species and strain-specific responses. In contrast, the amyloid dye ThioflavinT is both potent and robust across the strains. Our results highlight promising pharmacological leads and demonstrate the importance of assessing lifespans of discrete cohorts across repeat studies to capture biological variation in the search for reproducible ageing interventions.
Collapse
Affiliation(s)
- Mark Lucanic
- The Buck Institute for Research on Aging, 8001 Redwood Boulevard, Novato, California 94945, USA
| | - W Todd Plummer
- The Buck Institute for Research on Aging, 8001 Redwood Boulevard, Novato, California 94945, USA
| | - Esteban Chen
- Nelson Biological Laboratories, Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, New Jersey 08854, USA
| | - Jailynn Harke
- Institute of Ecology and Evolution, University of Oregon, Eugene, Oregon 97403, USA
| | - Anna C Foulger
- The Buck Institute for Research on Aging, 8001 Redwood Boulevard, Novato, California 94945, USA
| | - Brian Onken
- Nelson Biological Laboratories, Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, New Jersey 08854, USA
| | | | - Kathleen J Dumas
- The Buck Institute for Research on Aging, 8001 Redwood Boulevard, Novato, California 94945, USA
| | - Suzhen Guo
- Nelson Biological Laboratories, Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, New Jersey 08854, USA
| | - Erik Johnson
- Institute of Ecology and Evolution, University of Oregon, Eugene, Oregon 97403, USA
| | - Dipa Bhaumik
- The Buck Institute for Research on Aging, 8001 Redwood Boulevard, Novato, California 94945, USA
| | - Jian Xue
- Nelson Biological Laboratories, Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, New Jersey 08854, USA
| | - Anna B Crist
- Institute of Ecology and Evolution, University of Oregon, Eugene, Oregon 97403, USA
| | - Michael P Presley
- The Buck Institute for Research on Aging, 8001 Redwood Boulevard, Novato, California 94945, USA
| | - Girish Harinath
- Nelson Biological Laboratories, Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, New Jersey 08854, USA
| | - Christine A Sedore
- Institute of Ecology and Evolution, University of Oregon, Eugene, Oregon 97403, USA
| | - Manish Chamoli
- The Buck Institute for Research on Aging, 8001 Redwood Boulevard, Novato, California 94945, USA
| | - Shaunak Kamat
- Nelson Biological Laboratories, Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, New Jersey 08854, USA
| | - Michelle K Chen
- Institute of Ecology and Evolution, University of Oregon, Eugene, Oregon 97403, USA
| | - Suzanne Angeli
- The Buck Institute for Research on Aging, 8001 Redwood Boulevard, Novato, California 94945, USA
| | - Christina Chang
- Nelson Biological Laboratories, Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, New Jersey 08854, USA
| | - John H Willis
- Institute of Ecology and Evolution, University of Oregon, Eugene, Oregon 97403, USA
| | - Daniel Edgar
- The Buck Institute for Research on Aging, 8001 Redwood Boulevard, Novato, California 94945, USA
| | - Mary Anne Royal
- Nelson Biological Laboratories, Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, New Jersey 08854, USA
| | - Elizabeth A Chao
- The Buck Institute for Research on Aging, 8001 Redwood Boulevard, Novato, California 94945, USA
| | - Shobhna Patel
- Nelson Biological Laboratories, Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, New Jersey 08854, USA
| | - Theo Garrett
- The Buck Institute for Research on Aging, 8001 Redwood Boulevard, Novato, California 94945, USA
| | - Carolina Ibanez-Ventoso
- Nelson Biological Laboratories, Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, New Jersey 08854, USA
| | - June Hope
- The Buck Institute for Research on Aging, 8001 Redwood Boulevard, Novato, California 94945, USA
| | - Jason L Kish
- The Buck Institute for Research on Aging, 8001 Redwood Boulevard, Novato, California 94945, USA
| | - Max Guo
- Division of Aging Biology, National Institute on Aging, 7201 Wisconsin Avenue, Bethesda, Maryland 20892-9205, USA
| | - Gordon J Lithgow
- The Buck Institute for Research on Aging, 8001 Redwood Boulevard, Novato, California 94945, USA
| | - Monica Driscoll
- Nelson Biological Laboratories, Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, New Jersey 08854, USA
| | - Patrick C Phillips
- Institute of Ecology and Evolution, University of Oregon, Eugene, Oregon 97403, USA
| |
Collapse
|
348
|
Vatrinet R, Leone G, De Luise M, Girolimetti G, Vidone M, Gasparre G, Porcelli AM. The α-ketoglutarate dehydrogenase complex in cancer metabolic plasticity. Cancer Metab 2017; 5:3. [PMID: 28184304 PMCID: PMC5289018 DOI: 10.1186/s40170-017-0165-0] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 01/18/2017] [Indexed: 02/07/2023] Open
Abstract
Deregulated metabolism is a well-established hallmark of cancer. At the hub of various metabolic pathways deeply integrated within mitochondrial functions, the α-ketoglutarate dehydrogenase complex represents a major modulator of electron transport chain activity and tricarboxylic acid cycle (TCA) flux, and is a pivotal enzyme in the metabolic reprogramming following a cancer cell’s change in bioenergetic requirements. By contributing to the control of α-ketoglutarate levels, dynamics, and oxidation state, the α-ketoglutarate dehydrogenase is also essential in modulating the epigenetic landscape of cancer cells. In this review, we will discuss the manifold roles that this TCA enzyme and its substrate play in cancer.
Collapse
Affiliation(s)
- Renaud Vatrinet
- Dipartimento Farmacia e Biotecnologie (FABIT), Università di Bologna, Via Selmi 3, 40126 Bologna, Italy.,Dipartimento Scienze Mediche e Chirurgiche (DIMEC), U.O. Genetica Medica, Pol. Universitario S. Orsola-Malpighi, Università di Bologna, Via Massarenti 9, 40138 Bologna, Italy
| | - Giulia Leone
- Dipartimento Farmacia e Biotecnologie (FABIT), Università di Bologna, Via Selmi 3, 40126 Bologna, Italy
| | - Monica De Luise
- Dipartimento Scienze Mediche e Chirurgiche (DIMEC), U.O. Genetica Medica, Pol. Universitario S. Orsola-Malpighi, Università di Bologna, Via Massarenti 9, 40138 Bologna, Italy
| | - Giulia Girolimetti
- Dipartimento Scienze Mediche e Chirurgiche (DIMEC), U.O. Genetica Medica, Pol. Universitario S. Orsola-Malpighi, Università di Bologna, Via Massarenti 9, 40138 Bologna, Italy
| | - Michele Vidone
- Dipartimento Scienze Mediche e Chirurgiche (DIMEC), U.O. Genetica Medica, Pol. Universitario S. Orsola-Malpighi, Università di Bologna, Via Massarenti 9, 40138 Bologna, Italy
| | - Giuseppe Gasparre
- Dipartimento Scienze Mediche e Chirurgiche (DIMEC), U.O. Genetica Medica, Pol. Universitario S. Orsola-Malpighi, Università di Bologna, Via Massarenti 9, 40138 Bologna, Italy
| | - Anna Maria Porcelli
- Dipartimento Farmacia e Biotecnologie (FABIT), Università di Bologna, Via Selmi 3, 40126 Bologna, Italy
| |
Collapse
|
349
|
Bayliak MM, Lylyk MP, Shmihel HV, Sorochynska OM, Semchyshyn OI, Storey JM, Storey KB, Lushchak VI. Dietary alpha-ketoglutarate promotes higher protein and lower triacylglyceride levels and induces oxidative stress in larvae and young adults but not in middle-aged Drosophila melanogaster. Comp Biochem Physiol A Mol Integr Physiol 2017; 204:28-39. [DOI: 10.1016/j.cbpa.2016.11.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 10/31/2016] [Accepted: 11/09/2016] [Indexed: 11/16/2022]
|
350
|
PHB Associates with the HIRA Complex to Control an Epigenetic-Metabolic Circuit in Human ESCs. Cell Stem Cell 2017; 20:274-289.e7. [DOI: 10.1016/j.stem.2016.11.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Revised: 08/30/2016] [Accepted: 10/28/2016] [Indexed: 02/07/2023]
|