301
|
Xiao M, Chen X, He R, Ye L. Differentiation and Function of Follicular CD8 T Cells During Human Immunodeficiency Virus Infection. Front Immunol 2018; 9:1095. [PMID: 29872434 PMCID: PMC5972284 DOI: 10.3389/fimmu.2018.01095] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 05/02/2018] [Indexed: 11/13/2022] Open
Abstract
The combination antiretroviral therapeutic (cART) regime effectively suppresses human immunodeficiency virus (HIV) replication and prevents progression to acquired immunodeficiency diseases. However, cART is not a cure, and viral rebound will occur immediately after treatment is interrupted largely due to the long-term presence of an HIV reservoir that is composed of latently infected target cells that maintain a quiescent state or persistently produce infectious viruses. CD4 T cells that reside in B-cell follicles within lymphoid tissues, called follicular helper T cells (TFH), have been identified as a major HIV reservoir. Due to their specialized anatomical structure, HIV-specific CD8 T cells are largely insulated from this TFH reservoir. It is increasingly clear that the elimination of TFH reservoirs is a key step toward a functional cure for HIV infection. Recently, several studies have suggested that a fraction of HIV-specific CD8 T cells can differentiate into a CXCR5-expressing subset, which are able to migrate into B-cell follicles and inhibit viral replication. In this review, we discuss the differentiation and functions of this newly identified CD8 T-cell subset and propose potential strategies for purging TFH HIV reservoirs by utilizing this unique population.
Collapse
Affiliation(s)
- Minglu Xiao
- Institute of Immunology, Third Military Medical University, Chongqing, China
| | - Xiangyu Chen
- Institute of Immunology, Third Military Medical University, Chongqing, China
| | - Ran He
- Department of Immunology, School of Basic Medicine, Huazhong University of Science and Technology, Wuhan, China
| | - Lilin Ye
- Institute of Immunology, Third Military Medical University, Chongqing, China
| |
Collapse
|
302
|
Stelekati E, Chen Z, Manne S, Kurachi M, Ali MA, Lewy K, Cai Z, Nzingha K, McLane LM, Hope JL, Fike AJ, Katsikis PD, Wherry EJ. Long-Term Persistence of Exhausted CD8 T Cells in Chronic Infection Is Regulated by MicroRNA-155. Cell Rep 2018; 23:2142-2156. [PMID: 29768211 PMCID: PMC5986283 DOI: 10.1016/j.celrep.2018.04.038] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 02/05/2018] [Accepted: 04/06/2018] [Indexed: 12/16/2022] Open
Abstract
Persistent viral infections and tumors drive development of exhausted T (TEX) cells. In these settings, TEX cells establish an important host-pathogen or host-tumor stalemate. However, TEX cells erode over time, leading to loss of pathogen or cancer containment. We identified microRNA (miR)-155 as a key regulator of sustained TEX cell responses during chronic lymphocytic choriomeningitis virus (LCMV) infection. Genetic deficiency of miR-155 ablated CD8 T cell responses during chronic infection. Conversely, enhanced miR-155 expression promoted expansion and long-term persistence of TEX cells. However, rather than strictly antagonizing exhaustion, miR-155 promoted a terminal TEX cell subset. Transcriptional profiling identified coordinated control of cell signaling and transcription factor pathways, including the key AP-1 family member Fosl2. Overexpression of Fosl2 reversed the miR-155 effects, identifying a link between miR-155 and the AP-1 transcriptional program in regulating TEX cells. Thus, we identify a mechanism of miR-155 regulation of TEX cells and a key role for Fosl2 in T cell exhaustion.
Collapse
Affiliation(s)
- Erietta Stelekati
- Department of Microbiology and Institute for Immunology, University of Pennsylvania Perelman School Medicine, Philadelphia, PA 19104, USA
| | - Zeyu Chen
- Department of Microbiology and Institute for Immunology, University of Pennsylvania Perelman School Medicine, Philadelphia, PA 19104, USA
| | - Sasikanth Manne
- Department of Microbiology and Institute for Immunology, University of Pennsylvania Perelman School Medicine, Philadelphia, PA 19104, USA
| | - Makoto Kurachi
- Department of Microbiology and Institute for Immunology, University of Pennsylvania Perelman School Medicine, Philadelphia, PA 19104, USA
| | - Mohammed-Alkhatim Ali
- Department of Microbiology and Institute for Immunology, University of Pennsylvania Perelman School Medicine, Philadelphia, PA 19104, USA
| | - Keith Lewy
- Department of Microbiology and Institute for Immunology, University of Pennsylvania Perelman School Medicine, Philadelphia, PA 19104, USA
| | - Zhangying Cai
- Department of Microbiology and Institute for Immunology, University of Pennsylvania Perelman School Medicine, Philadelphia, PA 19104, USA; College of Life Sciences, Peking University, Beijing, China
| | - Kito Nzingha
- Department of Microbiology and Institute for Immunology, University of Pennsylvania Perelman School Medicine, Philadelphia, PA 19104, USA
| | - Laura M McLane
- Department of Microbiology and Institute for Immunology, University of Pennsylvania Perelman School Medicine, Philadelphia, PA 19104, USA
| | - Jennifer L Hope
- Department of Microbiology and Immunology, Drexel University College of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Department of Immunology, Erasmus MC University Medical Center, Rotterdam, the Netherlands
| | - Adam J Fike
- Department of Microbiology and Immunology, Drexel University College of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Peter D Katsikis
- Department of Immunology, Erasmus MC University Medical Center, Rotterdam, the Netherlands
| | - E John Wherry
- Department of Microbiology and Institute for Immunology, University of Pennsylvania Perelman School Medicine, Philadelphia, PA 19104, USA.
| |
Collapse
|
303
|
Valentine KM, Davini D, Lawrence TJ, Mullins GN, Manansala M, Al-Kuhlani M, Pinney JM, Davis JK, Beaudin AE, Sindi SS, Gravano DM, Hoyer KK. CD8 Follicular T Cells Promote B Cell Antibody Class Switch in Autoimmune Disease. THE JOURNAL OF IMMUNOLOGY 2018; 201:31-40. [PMID: 29743314 DOI: 10.4049/jimmunol.1701079] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 04/22/2018] [Indexed: 02/04/2023]
Abstract
CD8 T cells can play both a protective and pathogenic role in inflammation and autoimmune development. Recent studies have highlighted the ability of CD8 T cells to function as T follicular helper (Tfh) cells in the germinal center in the context of infection. However, whether this phenomenon occurs in autoimmunity and contributes to autoimmune pathogenesis is largely unexplored. In this study, we show that CD8 T cells acquire a CD4 Tfh profile in the absence of functional regulatory T cells in both the IL-2-deficient and scurfy mouse models. Depletion of CD8 T cells mitigates autoimmune pathogenesis in IL-2-deficient mice. CD8 T cells express the B cell follicle-localizing chemokine receptor CXCR5, a principal Tfh transcription factor Bcl6, and the Tfh effector cytokine IL-21. CD8 T cells localize to the B cell follicle, express B cell costimulatory proteins, and promote B cell differentiation and Ab isotype class switching. These data reveal a novel contribution of autoreactive CD8 T cells to autoimmune disease, in part, through CD4 follicular-like differentiation and functionality.
Collapse
Affiliation(s)
- Kristen M Valentine
- Quantitative and Systems Biology Graduate Program, University of California, Merced, Merced, CA 95343
| | - Dan Davini
- Department of Molecular and Cell Biology, School of Natural Sciences, University of California, Merced, Merced, CA 95343
| | - Travis J Lawrence
- Quantitative and Systems Biology Graduate Program, University of California, Merced, Merced, CA 95343
| | - Genevieve N Mullins
- Quantitative and Systems Biology Graduate Program, University of California, Merced, Merced, CA 95343
| | - Miguel Manansala
- Stem Cell Instrumentation Foundry, University of California, Merced, Merced, CA 95343; and
| | - Mufadhal Al-Kuhlani
- Department of Molecular and Cell Biology, School of Natural Sciences, University of California, Merced, Merced, CA 95343
| | - James M Pinney
- Department of Molecular and Cell Biology, School of Natural Sciences, University of California, Merced, Merced, CA 95343
| | - Jason K Davis
- Department of Applied Mathematics, University of California, Merced, Merced, CA 95343
| | - Anna E Beaudin
- Department of Molecular and Cell Biology, School of Natural Sciences, University of California, Merced, Merced, CA 95343
| | - Suzanne S Sindi
- Department of Applied Mathematics, University of California, Merced, Merced, CA 95343
| | - David M Gravano
- Stem Cell Instrumentation Foundry, University of California, Merced, Merced, CA 95343; and
| | - Katrina K Hoyer
- Department of Molecular and Cell Biology, School of Natural Sciences, University of California, Merced, Merced, CA 95343;
| |
Collapse
|
304
|
Cosma G, Eisenlohr L. CD8 + T-cell responses in vaccination: reconsidering targets and function in the context of chronic antigen stimulation. F1000Res 2018; 7. [PMID: 29770202 PMCID: PMC5931265 DOI: 10.12688/f1000research.14115.1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/20/2018] [Indexed: 12/23/2022] Open
Abstract
Cytotoxic CD8 T cells play important roles in eliminating infected and transformed cells. Owing to their potential for therapeutic applications, significant efforts are dedicated toward developing CD8 T cell–based vaccines. Thus far, CD8 T-cell vaccination strategies have had limited success therapeutically in contrast to those targeting antibody-based immunity. However, if the current challenges and gaps in the understanding of T-cell biology are overcome, the full potential of rational CD8 T-cell vaccine design might be realized. Here, we review recent progress in this direction, focusing on target selection and maintenance of function in the settings of chronic infections and cancers.
Collapse
Affiliation(s)
- Gabriela Cosma
- Department of Microbiology and Immunology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Laurence Eisenlohr
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia Research Institute, Philadelphia, PA, USA
| |
Collapse
|
305
|
Zhang Y, Maksimovic J, Huang B, De Souza DP, Naselli G, Chen H, Zhang L, Weng K, Liang H, Xu Y, Wentworth JM, Huntington ND, Oshlack A, Gong S, Kallies A, Vuillermin P, Yang M, Harrison LC. Cord Blood CD8 + T Cells Have a Natural Propensity to Express IL-4 in a Fatty Acid Metabolism and Caspase Activation-Dependent Manner. Front Immunol 2018; 9:879. [PMID: 29922282 PMCID: PMC5996926 DOI: 10.3389/fimmu.2018.00879] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 04/09/2018] [Indexed: 12/24/2022] Open
Abstract
How T cells differentiate in the neonate may critically determine the ability of the infant to cope with infections, respond to vaccines and avert allergies. Previously, we found that naïve cord blood CD4+ T cells differentiated toward an IL-4-expressing phenotype when activated in the presence of TGF-β and monocyte-derived inflammatory cytokines, the latter are more highly secreted by infants who developed food allergy. Here, we show that in the absence of IL-2 or IL-12, naïve cord blood CD8+ T cells have a natural propensity to differentiate into IL-4-producing non-classic TC2 cells when they are activated alone, or in the presence of TGF-β and/or inflammatory cytokines. Mechanistically, non-classic TC2 development is associated with decreased expression of IL-2 receptor alpha (CD25) and glycolysis, and increased fatty acid metabolism and caspase-dependent cell death. Consequently, the short chain fatty acid, sodium propionate (NaPo), enhanced IL-4 expression, but exogenous IL-2 or pan-caspase inhibition prevented IL-4 expression. In children with endoscopically and histologically confirmed non-inflammatory bowel disease and non-infectious pediatric idiopathic colitis, the presence of TGF-β, NaPo, and IL-1β or TNF-α promoted TC2 differentiation in vitro. In vivo, colonic mucosa of children with colitis had significantly increased expression of IL-4 in CD8+ T cells compared with controls. In addition, activated caspase-3 and IL-4 were co-expressed in CD8+ T cells in the colonic mucosa of children with colitis. Thus, in the context of colonic inflammation and limited IL-2 signaling, CD8+ T cells differentiate into non-classic TC2 that may contribute to the pathology of inflammatory/allergic diseases in children.
Collapse
Affiliation(s)
- Yuxia Zhang
- Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China.,Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Jovana Maksimovic
- Murdoch Children's Research Institute, Royal Children's Hospital, Parkville, VIC, Australia.,Department of Pediatrics, University of Melbourne, Parkville, VIC, Australia
| | - Bing Huang
- Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - David Peter De Souza
- Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia.,Bio21 Institute, University of Melbourne, Parkville, VIC, Australia
| | - Gaetano Naselli
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Huan Chen
- Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Li Zhang
- Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Kai Weng
- Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Hanquan Liang
- School of Data and Computer Science, Sun Yat-sen University, Guangzhou, China
| | - Yanhui Xu
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - John M Wentworth
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Nicholas D Huntington
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Alicia Oshlack
- Murdoch Children's Research Institute, Royal Children's Hospital, Parkville, VIC, Australia.,Department of Pediatrics, University of Melbourne, Parkville, VIC, Australia
| | - Sitang Gong
- Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Axel Kallies
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Peter Vuillermin
- Murdoch Children's Research Institute, Royal Children's Hospital, Parkville, VIC, Australia.,Department of Pediatrics, University of Melbourne, Parkville, VIC, Australia.,Barwon Health, Geelong, VIC, Australia.,Deakin University, Geelong, VIC, Australia
| | - Min Yang
- Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Leonard C Harrison
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
306
|
Hughes CE, Nibbs RJB. A guide to chemokines and their receptors. FEBS J 2018; 285:2944-2971. [PMID: 29637711 PMCID: PMC6120486 DOI: 10.1111/febs.14466] [Citation(s) in RCA: 783] [Impact Index Per Article: 130.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 03/25/2018] [Accepted: 04/03/2018] [Indexed: 12/12/2022]
Abstract
The chemokines (or chemotactic cytokines) are a large family of small, secreted proteins that signal through cell surface G protein-coupled heptahelical chemokine receptors. They are best known for their ability to stimulate the migration of cells, most notably white blood cells (leukocytes). Consequently, chemokines play a central role in the development and homeostasis of the immune system, and are involved in all protective or destructive immune and inflammatory responses. Classically viewed as inducers of directed chemotactic migration, it is now clear that chemokines can stimulate a variety of other types of directed and undirected migratory behavior, such as haptotaxis, chemokinesis, and haptokinesis, in addition to inducing cell arrest or adhesion. However, chemokine receptors on leukocytes can do more than just direct migration, and these molecules can also be expressed on, and regulate the biology of, many nonleukocytic cell types. Chemokines are profoundly affected by post-translational modification, by interaction with the extracellular matrix (ECM), and by binding to heptahelical 'atypical' chemokine receptors that regulate chemokine localization and abundance. This guide gives a broad overview of the chemokine and chemokine receptor families; summarizes the complex physical interactions that occur in the chemokine network; and, using specific examples, discusses general principles of chemokine function, focusing particularly on their ability to direct leukocyte migration.
Collapse
Affiliation(s)
- Catherine E Hughes
- Institute of Infection, Inflammation & Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, UK
| | - Robert J B Nibbs
- Institute of Infection, Inflammation & Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, UK
| |
Collapse
|
307
|
Dave RS, Jain P, Byrareddy SN. Follicular Dendritic Cells of Lymph Nodes as Human Immunodeficiency Virus/Simian Immunodeficiency Virus Reservoirs and Insights on Cervical Lymph Node. Front Immunol 2018; 9:805. [PMID: 29725333 PMCID: PMC5916958 DOI: 10.3389/fimmu.2018.00805] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 04/03/2018] [Indexed: 01/16/2023] Open
Abstract
A hallmark feature of follicular dendritic cells (FDCs) within the lymph nodes (LNs) is their ability to retain antigens and virions for a prolonged duration. FDCs in the cervical lymph nodes (CLNs) are particularly relevant in elucidating human immunodeficiency virus (HIV)-1 infection within the cerebrospinal fluid (CSF) draining LNs of the central nervous system. The FDC viral reservoir in both peripheral LN and CLN, like the other HIV reservoirs, contribute to both low-level viremia and viral resurgence upon cessation or failure of combined antiretroviral therapy (cART). Besides prolonged virion retention on FDCs in LNs and CLNs, the suboptimal penetration of cART at these anatomical sites is another factor contributing to establishing and maintaining this viral reservoir. Unlike the FDCs within the peripheral LNs, the CLN FDCs have only recently garnered attention. This interest in CLN FDCs has been driven by detailed characterization of the meningeal lymphatic system. As the CSF drains through the meningeal lymphatics and nasal lymphatics via the cribriform plate, CLN FDCs may acquire HIV after capturing them from T cells, antigen-presenting cells, or cell-free virions. In addition, CD4+ T follicular helper cells within the CLNs are productively infected as a result of acquiring the virus from the FDCs. In this review, we outline the underlying mechanisms of viral accumulation on CLN FDCs and its potential impact on viral resurgence or achieving a cure for HIV infection.
Collapse
Affiliation(s)
- Rajnish S. Dave
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, United States
| | - Pooja Jain
- Department of Microbiology and Immunology, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, United States
| | - Siddappa N. Byrareddy
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, United States
| |
Collapse
|
308
|
Huot N, Bosinger SE, Paiardini M, Reeves RK, Müller-Trutwin M. Lymph Node Cellular and Viral Dynamics in Natural Hosts and Impact for HIV Cure Strategies. Front Immunol 2018; 9:780. [PMID: 29725327 PMCID: PMC5916971 DOI: 10.3389/fimmu.2018.00780] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 03/28/2018] [Indexed: 01/03/2023] Open
Abstract
Combined antiretroviral therapies (cARTs) efficiently control HIV replication leading to undetectable viremia and drastic increases in lifespan of people living with HIV. However, cART does not cure HIV infection as virus persists in cellular and anatomical reservoirs, from which the virus generally rebounds soon after cART cessation. One major anatomical reservoir are lymph node (LN) follicles, where HIV persists through replication in follicular helper T cells and is also trapped by follicular dendritic cells. Natural hosts of SIV, such as African green monkeys and sooty mangabeys, generally do not progress to disease although displaying persistently high viremia. Strikingly, these hosts mount a strong control of viral replication in LN follicles shortly after peak viremia that lasts throughout infection. Herein, we discuss the potential interplay between viral control in LNs and the resolution of inflammation, which is characteristic for natural hosts. We furthermore detail the differences that exist between non-pathogenic SIV infection in natural hosts and pathogenic HIV/SIV infection in humans and macaques regarding virus target cells and replication dynamics in LNs. Several mechanisms have been proposed to be implicated in the strong control of viral replication in natural host's LNs, such as NK cell-mediated control, that will be reviewed here, together with lessons and limitations of in vivo cell depletion studies that have been performed in natural hosts. Finally, we discuss the impact that these insights on viral dynamics and host responses in LNs of natural hosts have for the development of strategies toward HIV cure.
Collapse
Affiliation(s)
- Nicolas Huot
- HIV Inflammation and Persistence Unit, Institut Pasteur, Paris, France.,Vaccine Research Institute, Créteil, France
| | - Steven E Bosinger
- Yerkes National Primate Research Center, Emory University School of Medicine, Atlanta, GA, United States.,Yerkes Nonhuman Primate Genomics Core, Yerkes National Primate Research Center, Atlanta, GA, United States
| | - Mirko Paiardini
- Yerkes National Primate Research Center, Emory University School of Medicine, Atlanta, GA, United States
| | - R Keith Reeves
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center (BIDMC), Harvard Medical School, Boston, MA, United States.,Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, United States
| | - Michaela Müller-Trutwin
- HIV Inflammation and Persistence Unit, Institut Pasteur, Paris, France.,Vaccine Research Institute, Créteil, France
| |
Collapse
|
309
|
Research progress of follicular cytotoxic T cells in HIV infection. INFECTION INTERNATIONAL 2018. [DOI: 10.2478/ii-2018-0006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
Recently, a new type of CD8+ T-cell subset, namely, the chemokine (C-X-C motif) receptor 5 (CXCR5+) cluster of differentiation (CD8+) T-cell subset (also called the follicular cytotoxic T-cell (TFC) subgroup), has been discovered around B-cell follicles. The discovery has aroused widespread interest. However, the processes and mechanisms of TFCs taking part in the immune response of the germinal center and their specific roles must still be clearly identified. This article reviews domestic and foreign studies on factors regulating the phenotype, physiological functions, maturity, and differentiation of TFCs and roles and clinical significance of these cells in HIV infection. This review has shown good application prospects for TFCs. The author believes that further studies on TFCs can provide another tool for cytotherapy to control or cure chronic viral infections or tumors.
Collapse
|
310
|
Haran KP, Hajduczki A, Pampusch MS, Mwakalundwa G, Vargas-Inchaustegui DA, Rakasz EG, Connick E, Berger EA, Skinner PJ. Simian Immunodeficiency Virus (SIV)-Specific Chimeric Antigen Receptor-T Cells Engineered to Target B Cell Follicles and Suppress SIV Replication. Front Immunol 2018; 9:492. [PMID: 29616024 PMCID: PMC5869724 DOI: 10.3389/fimmu.2018.00492] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 02/26/2018] [Indexed: 11/13/2022] Open
Abstract
There is a need to develop improved methods to treat and potentially cure HIV infection. During chronic HIV infection, replication is concentrated within T follicular helper cells (Tfh) located within B cell follicles, where low levels of virus-specific CTL permit ongoing viral replication. We previously showed that elevated levels of simian immunodeficiency virus (SIV)-specific CTL in B cell follicles are linked to both decreased levels of viral replication in follicles and decreased plasma viral loads. These findings provide the rationale to develop a strategy for targeting follicular viral-producing (Tfh) cells using antiviral chimeric antigen receptor (CAR) T cells co-expressing the follicular homing chemokine receptor CXCR5. We hypothesize that antiviral CAR/CXCR5-expressing T cells, when infused into an SIV-infected animal or an HIV-infected individual, will home to B cell follicles, suppress viral replication, and lead to long-term durable remission of SIV and HIV. To begin to test this hypothesis, we engineered gammaretroviral transduction vectors for co-expression of a bispecific anti-SIV CAR and rhesus macaque CXCR5. Viral suppression by CAR/CXCR5-transduced T cells was measured in vitro, and CXCR5-mediated migration was evaluated using both an in vitro transwell migration assay, as well as a novel ex vivo tissue migration assay. The functionality of the CAR/CXCR5 T cells was demonstrated through their potent suppression of SIVmac239 and SIVE660 replication in in vitro and migration to the ligand CXCL13 in vitro, and concentration in B cell follicles in tissues ex vivo. These novel antiviral immunotherapy products have the potential to provide long-term durable remission (functional cure) of HIV and SIV infections.
Collapse
Affiliation(s)
- Kumudhini Preethi Haran
- Department of Veterinary and Biomedical Sciences, University of Minnesota, St. Paul, MN, United States
| | - Agnes Hajduczki
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Mary S Pampusch
- Department of Veterinary and Biomedical Sciences, University of Minnesota, St. Paul, MN, United States
| | - Gwantwa Mwakalundwa
- Department of Veterinary and Biomedical Sciences, University of Minnesota, St. Paul, MN, United States
| | - Diego A Vargas-Inchaustegui
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Eva G Rakasz
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI, United States
| | - Elizabeth Connick
- Division of Infectious Diseases, University of Arizona, Tucson, AZ, United States
| | - Edward A Berger
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Pamela J Skinner
- Department of Veterinary and Biomedical Sciences, University of Minnesota, St. Paul, MN, United States
| |
Collapse
|
311
|
E J, Yan F, Kang Z, Zhu L, Xing J, Yu E. CD8 +CXCR5 + T cells in tumor-draining lymph nodes are highly activated and predict better prognosis in colorectal cancer. Hum Immunol 2018; 79:446-452. [PMID: 29544815 DOI: 10.1016/j.humimm.2018.03.003] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2017] [Revised: 02/14/2018] [Accepted: 03/09/2018] [Indexed: 01/04/2023]
Abstract
Tumor-draining lymph nodes (TDLNs) are the primary sites of tumor antigen presentation, as well as the origin of metastasis in most cases. Hence, the type and function of immune cells in TDLNs are critical to the microenvironment and potentially affect the clinical outcome of the malignancy. CD8+CXCR5+ T cells are recently described to present high effector functions in infectious diseases, but their role in colorectal cancer (CRC) remains unclear. In forty-four Stage III CRC patients, we examined the CD8+CXCR5+ T cells in blood, tumor, and TDLN. CD8+CXCR5+ T cells represented lass than 2% of CD3+ T cells in blood, but a much larger population in tumor. In TDLN, the CD8+CXCR5+ T cells represented the vast majority of CD8+ T cells and between 9.3% and 32.9% of CD3+ T cells. The prevalence of CD8+CXCR5+ T cells in tumor was not associated with their frequency in peripheral blood, but was positively correlated with their frequency in TDLN. The transcription of effector genes, including IFNG, TNF, IL2, PRF1, and GZMB, and exhaustion markers, including PD1, TIM3, 2B4, and LAG3, were examined in CD8+CXCR5+ T cells and CD8+CXCR5- T cells. With a few exceptions, CD8+CXCR5+ T cell presented significantly higher effector gene expression, and significantly lower exhaustion marker expression than their CXCR5- counterparts. In addition, the prognosis of CRC patients was positively associated with the frequency of TDLN CD8+CXCR5+ T cells, and with the expression of IFNG, PRF1, and GZMB expression by tumor and TDLN CD8+CXCR5+ T cells. Together, these results demonstrated that CD8+CXCR5+ T cells were significant participants of CRC-associated immunity and could potentially serve as therapeutic options.
Collapse
Affiliation(s)
- Jifu E
- Department of Colorectal Surgery, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Feihu Yan
- Department of Colorectal Surgery, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Zhengchun Kang
- Department of Colorectal Surgery, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Liangliang Zhu
- Department of Colorectal Surgery, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Junjie Xing
- Department of Colorectal Surgery, Changhai Hospital, Second Military Medical University, Shanghai, China.
| | - Enda Yu
- Department of Colorectal Surgery, Changhai Hospital, Second Military Medical University, Shanghai, China.
| |
Collapse
|
312
|
Rahman MA, McKinnon KM, Karpova TS, Ball DA, Venzon DJ, Fan W, Kang G, Li Q, Robert-Guroff M. Associations of Simian Immunodeficiency Virus (SIV)-Specific Follicular CD8 + T Cells with Other Follicular T Cells Suggest Complex Contributions to SIV Viremia Control. THE JOURNAL OF IMMUNOLOGY 2018; 200:2714-2726. [PMID: 29507105 DOI: 10.4049/jimmunol.1701403] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 02/07/2018] [Indexed: 11/19/2022]
Abstract
Follicular CD8+ T (fCD8) cells reside within B cell follicles and are thought to be immune-privileged sites of HIV/SIV infection. We have observed comparable levels of fCD8 cells between chronically SIV-infected rhesus macaques with low viral loads (LVL) and high viral loads (HVL), raising the question concerning their contribution to viremia control. In this study, we sought to clarify the role of SIV-specific fCD8 cells in lymph nodes during the course of SIV infection in rhesus macaques. We observed that fCD8 cells, T follicular helper (Tfh) cells, and T follicular regulatory cells (Tfreg) were all elevated in chronic SIV infection. fCD8 cells of LVL animals tended to express more Gag-specific granzyme B and exhibited significantly greater killing than did HVL animals, and their cell frequencies were negatively correlated with viremia, suggesting a role in viremia control. Env- and Gag-specific IL-21+ Tfh of LVL but not HVL macaques negatively correlated with viral load, suggesting better provision of T cell help to fCD8 cells. Tfreg positively correlated with fCD8 cells in LVL animals and negatively correlated with viremia, suggesting a potential benefit of Tfreg via suppression of chronic inflammation. In contrast, in HVL macaques, Tfreg and fCD8 cell frequencies tended to be negatively correlated, and a positive correlation was seen between Tfreg number and viremia, suggesting possible dysfunction and suppression of an effective fCD8 cell immune response. Our data suggest that control of virus-infected cells in B cell follicles not only depends on fCD8 cell cytotoxicity but also on complex fCD8 cell associations with Tfh cells and Tfreg.
Collapse
Affiliation(s)
- Mohammad Arif Rahman
- Vaccine Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Katherine M McKinnon
- Vaccine Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Tatiana S Karpova
- Center for Cancer Research Core Fluorescence Imaging Facility, Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - David A Ball
- Center for Cancer Research Core Fluorescence Imaging Facility, Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - David J Venzon
- Biostatistics and Data Management Section, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892; and
| | - Wenjin Fan
- Nebraska Center for Virology, School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE 68588
| | - Guobin Kang
- Nebraska Center for Virology, School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE 68588
| | - Qingsheng Li
- Nebraska Center for Virology, School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE 68588
| | - Marjorie Robert-Guroff
- Vaccine Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892;
| |
Collapse
|
313
|
Estes JD, LeGrand R, Petrovas C. Visualizing the Immune System: Providing Key Insights into HIV/SIV Infections. Front Immunol 2018; 9:423. [PMID: 29552017 PMCID: PMC5840205 DOI: 10.3389/fimmu.2018.00423] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 02/16/2018] [Indexed: 12/23/2022] Open
Abstract
Immunological inductive tissues, such as secondary lymphoid organs, are composed of distinct anatomical microenvironments for the generation of immune responses to pathogens and immunogens. These microenvironments are characterized by the compartmentalization of highly specialized immune and stromal cell populations, as well as the presence of a complex network of soluble factors and chemokines that direct the intra-tissue trafficking of naïve and effector cell populations. Imaging platforms have provided critical contextual information regarding the molecular and cellular interactions that orchestrate the spatial microanatomy of relevant cells and the development of immune responses against pathogens. Particularly in HIV/SIV disease, imaging technologies are of great importance in the investigation of the local interplay between the virus and host cells, with respect to understanding viral dynamics and persistence, immune responses (i.e., adaptive and innate inflammatory responses), tissue structure and pathologies, and changes to the surrounding milieu and function of immune cells. Merging imaging platforms with other cutting-edge technologies could lead to novel findings regarding the phenotype, function, and molecular signatures of particular immune cell targets, further promoting the development of new antiviral treatments and vaccination strategies.
Collapse
Affiliation(s)
- Jacob D Estes
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, OR, United States.,Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, United States
| | - Roger LeGrand
- CEA, Université Paris Sud 11, INSERM U1184, Center for Immunology of Viral Infections and Autoimmune Diseases, IDMIT Department, IBFJ, Fontenay-aux-Roses, France
| | - Constantinos Petrovas
- Tissue Analysis Core, Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID) National Institutes of Health (NIH), Bethesda, MD, United States
| |
Collapse
|
314
|
Abstract
Germinal centers (GCs) are organized lymphoid tissue microstructures where B cells proliferate and differentiate into memory B cells and plasma cells. A few distinctive subsets of highly specialized T cells gain access to the GCs by expressing the B cell zone–homing C-X-C chemokine receptor type 5 (CXCR5) while losing the T cell zone–homing chemokine receptor CCR7. Help from T cells is critical to induce B cell proliferation and somatic hyper mutation and to limit GC reactions. CD4+ T follicular helper (TFH) cells required for the formation of GCs and for the generation of long-lived, high-affinity B cells. Regulatory CD4+ (TFR) and CD8+ T cells co-localize with TFH cells and keep their expansion in check, thus limiting GC reactions. A cytotoxic CXCR5pos CD8+ T cell subset has been described in GCs in humans: although low in number, GC CD8+ T cells can expand rapidly during certain viral infections. Because these subsets find their home in secondary lymphoid tissues (lymph nodes and spleen) that are difficult to obtain in humans, GC–homing T cells have been extensively studied in mice. Nevertheless, significant limitations in using this model, such as evolutionary divergences between mice and humans and the lack of an optimal mouse model for certain human diseases, have prompted investigators to characterize GC–homing T cells in macaques instead. This review will focus on discoveries made in macaques, particularly in the non-human primate models of simian immunodeficiency virus and simian–human immunodeficiency virus infection. Indeed, experimental studies in these models have allowed researchers to gain insight into the relative role of follicular T cell subsets in HIV progression, virus persistence, and specific B cell responses induced by HIV vaccines. These discoveries have prompted the testing of novel approaches aimed to manipulate follicular T cells to increase the efficacy of HIV vaccines and to eliminate HIV reservoirs.
Collapse
Affiliation(s)
- Monica Vaccari
- Animal Models and Vaccine Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, United States
| | - Genoveffa Franchini
- Animal Models and Vaccine Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, United States
| |
Collapse
|
315
|
Omilusik KD, Nadjsombati MS, Shaw LA, Yu B, Milner JJ, Goldrath AW. Sustained Id2 regulation of E proteins is required for terminal differentiation of effector CD8 + T cells. J Exp Med 2018; 215:773-783. [PMID: 29440362 PMCID: PMC5839762 DOI: 10.1084/jem.20171584] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 12/07/2017] [Accepted: 01/18/2018] [Indexed: 02/01/2023] Open
Abstract
CD8+ T cells responding to infection differentiate into short-lived effector cells destined to die or memory cells that provide long-lived protection. Omilusik et al. demonstrate that commitment to an effector cell fate is not necessarily terminal and that sustained transcriptional regulation is required to maintain subset-specific properties. CD8+ T cells responding to infection differentiate into a heterogeneous population composed of progeny that are short-lived and participate in the immediate, acute response and those that provide long-lasting host protection. Although it is appreciated that distinct functional and phenotypic CD8+ T cell subsets persist, it is unclear whether there is plasticity among subsets and what mechanisms maintain subset-specific differences. Here, we show that continued Id2 regulation of E-protein activity is required to maintain the KLRG1hi CD8+ T cell population after lymphocytic choriomeningitis virus infection. Induced deletion of Id2 phenotypically and transcriptionally transformed the KLRG1hi “terminal” effector/effector-memory CD8+ T cell population into a KLRG1lo memory-like population, promoting a gene-expression program that resembled that of central memory T cells. Our results question the idea that KLRG1hi CD8+ T cells are necessarily terminally programmed and suggest that sustained regulation is required to maintain distinct CD8+ T cell states.
Collapse
Affiliation(s)
- Kyla D Omilusik
- Department of Biological Sciences, University of California, San Diego, La Jolla, CA
| | - Marija S Nadjsombati
- Department of Biological Sciences, University of California, San Diego, La Jolla, CA
| | - Laura A Shaw
- Department of Biological Sciences, University of California, San Diego, La Jolla, CA
| | - Bingfei Yu
- Department of Biological Sciences, University of California, San Diego, La Jolla, CA
| | - J Justin Milner
- Department of Biological Sciences, University of California, San Diego, La Jolla, CA
| | - Ananda W Goldrath
- Department of Biological Sciences, University of California, San Diego, La Jolla, CA
| |
Collapse
|
316
|
Abstract
The upregulation of immune checkpoint molecules, such as programmed cell death protein 1 (PD1) and cytotoxic T lymphocyte antigen 4 (CTLA4), on immune cells occurs during acute infections, such as malaria, as well as during chronic persistent viral infections, including HIV and hepatitis B virus. These pathways are important for preventing immune-driven pathology but can also limit immune-mediated clearance of the infection. The recent success of immune checkpoint blockade in cancer therapy suggests that targeting these pathways would also be effective for preventing and treating a range of infectious diseases. Here, we review our current understanding of immune checkpoint pathways in the pathogenesis of infectious diseases and discuss the potential for therapeutically targeting these pathways in this setting.
Collapse
Affiliation(s)
- Michelle N Wykes
- QIMR Berghofer Medical Research Institute, 300 Herston Road, Herston, Brisbane, Queensland 4006, Australia
| | - Sharon R Lewin
- The Peter Doherty Institute for Infection and Immunity, The University of Melbourne and Royal Melbourne Hospital, Melbourne, Victoria 3000, Australia
- Department of Infectious Diseases, Alfred Hospital and Monash University, Melbourne, Victoria 3004, Australia
| |
Collapse
|
317
|
Watson DC, Moysi E, Valentin A, Bergamaschi C, Devasundaram S, Fortis SP, Bear J, Chertova E, Bess J, Sowder R, Venzon DJ, Deleage C, Estes JD, Lifson JD, Petrovas C, Felber BK, Pavlakis GN. Treatment with native heterodimeric IL-15 increases cytotoxic lymphocytes and reduces SHIV RNA in lymph nodes. PLoS Pathog 2018; 14:e1006902. [PMID: 29474450 PMCID: PMC5825155 DOI: 10.1371/journal.ppat.1006902] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 01/24/2018] [Indexed: 12/31/2022] Open
Abstract
B cell follicles in secondary lymphoid tissues represent an immune privileged sanctuary for AIDS viruses, in part because cytotoxic CD8+ T cells are mostly excluded from entering the follicles that harbor infected T follicular helper (TFH) cells. We studied the effects of native heterodimeric IL-15 (hetIL-15) treatment on uninfected rhesus macaques and on macaques that had spontaneously controlled SHIV infection to low levels of chronic viremia. hetIL-15 increased effector CD8+ T lymphocytes with high granzyme B content in blood, mucosal sites and lymph nodes, including virus-specific MHC-peptide tetramer+ CD8+ cells in LN. Following hetIL-15 treatment, multiplexed quantitative image analysis (histo-cytometry) of LN revealed increased numbers of granzyme B+ T cells in B cell follicles and SHIV RNA was decreased in plasma and in LN. Based on these properties, hetIL-15 shows promise as a potential component in combination immunotherapy regimens to target AIDS virus sanctuaries and reduce long-term viral reservoirs in HIV-1 infected individuals. TRIAL REGISTRATION ClinicalTrials.gov NCT02452268.
Collapse
Affiliation(s)
- Dionysios C. Watson
- Human Retrovirus Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, Maryland, United States of America
| | - Eirini Moysi
- Human Retrovirus Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, Maryland, United States of America
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, United States of America
| | - Antonio Valentin
- Human Retrovirus Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, Maryland, United States of America
| | - Cristina Bergamaschi
- Human Retrovirus Pathogenesis Section; Vaccine Branch, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, Maryland, United States of America
| | - Santhi Devasundaram
- Human Retrovirus Pathogenesis Section; Vaccine Branch, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, Maryland, United States of America
| | - Sotirios P. Fortis
- Human Retrovirus Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, Maryland, United States of America
| | - Jenifer Bear
- Human Retrovirus Pathogenesis Section; Vaccine Branch, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, Maryland, United States of America
| | - Elena Chertova
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
| | - Julian Bess
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
| | - Ray Sowder
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
| | - David J. Venzon
- Biostatistics and Data Management Section, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Rockville, Maryland, United States of America
| | - Claire Deleage
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
| | - Jacob D. Estes
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
| | - Jeffrey D. Lifson
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
| | - Constantinos Petrovas
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, United States of America
| | - Barbara K. Felber
- Human Retrovirus Pathogenesis Section; Vaccine Branch, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, Maryland, United States of America
| | - George N. Pavlakis
- Human Retrovirus Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, Maryland, United States of America
| |
Collapse
|
318
|
Hashimoto M, Kamphorst AO, Im SJ, Kissick HT, Pillai RN, Ramalingam SS, Araki K, Ahmed R. CD8 T Cell Exhaustion in Chronic Infection and Cancer: Opportunities for Interventions. Annu Rev Med 2018; 69:301-318. [PMID: 29414259 DOI: 10.1146/annurev-med-012017-043208] [Citation(s) in RCA: 429] [Impact Index Per Article: 71.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Antigen-specific CD8 T cells are central to the control of chronic infections and cancer, but persistent antigen stimulation results in T cell exhaustion. Exhausted CD8 T cells have decreased effector function and proliferative capacity, partly caused by overexpression of inhibitory receptors such as programmed cell death (PD)-1. Blockade of the PD-1 pathway has opened a new therapeutic avenue for reinvigorating T cell responses, with positive outcomes especially for patients with cancer. Other strategies to restore function in exhausted CD8 T cells are currently under evaluation-many in combination with PD-1-targeted therapy. Exhausted CD8 T cells comprise heterogeneous cell populations with unique differentiation and functional states. A subset of stem cell-like PD-1+ CD8 T cells responsible for the proliferative burst after PD-1 therapy has been recently described. A greater understanding of T cell exhaustion is imperative to establish rational immunotherapeutic interventions.
Collapse
Affiliation(s)
- Masao Hashimoto
- Emory Vaccine Center and Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia 30322, USA; , , , ,
| | - Alice O Kamphorst
- Emory Vaccine Center and Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia 30322, USA; , , , ,
| | - Se Jin Im
- Emory Vaccine Center and Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia 30322, USA; , , , ,
| | - Haydn T Kissick
- Emory Vaccine Center and Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia 30322, USA; , , , ,
- Department of Urology, Emory University School of Medicine, Atlanta, Georgia 30322, USA;
| | - Rathi N Pillai
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia 30322, USA; ,
| | - Suresh S Ramalingam
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia 30322, USA; ,
| | - Koichi Araki
- Emory Vaccine Center and Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia 30322, USA; , , , ,
| | - Rafi Ahmed
- Emory Vaccine Center and Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia 30322, USA; , , , ,
| |
Collapse
|
319
|
Bronnimann MP, Skinner PJ, Connick E. The B-Cell Follicle in HIV Infection: Barrier to a Cure. Front Immunol 2018; 9:20. [PMID: 29422894 PMCID: PMC5788973 DOI: 10.3389/fimmu.2018.00020] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 01/04/2018] [Indexed: 12/29/2022] Open
Abstract
The majority of HIV replication occurs in secondary lymphoid organs (SLOs) such as the spleen, lymph nodes, and gut-associated lymphoid tissue. Within SLOs, HIV RNA+ cells are concentrated in the B-cell follicle during chronic untreated infection, and emerging data suggest that they are a major source of replication in treated disease as well. The concentration of HIV RNA+ cells in the B-cell follicle is mediated by several factors. Follicular CD4+ T-cell subsets including T-follicular helper cells and T-follicular regulatory cells are significantly more permissive to HIV than extrafollicular subsets. The B cell follicle also contains a large reservoir of extracellular HIV virions, which accumulate on the surface of follicular dendritic cells (FDCs) in germinal centers. FDC-bound HIV virions remain infectious even in the presence of neutralizing antibodies and can persist for months or even years. Moreover, the B-cell follicle is semi-immune privileged from CTL control. Frequencies of HIV- and SIV-specific CTL are lower in B-cell follicles compared to extrafollicular regions as the majority of CTL do not express the follicular homing receptor CXCR5. Additionally, CTL in the B-cell follicle may be less functional than extrafollicular CTL as many exhibit the recently described CD8 T follicular regulatory phenotype. Other factors may also contribute to the follicular concentration of HIV RNA+ cells. Notably, the contribution of NK cells and γδ T cells to control and/or persistence of HIV RNA+ cells in secondary lymphoid tissue remains poorly characterized. As HIV research moves increasingly toward the development of cure strategies, a greater understanding of the barriers to control of HIV infection in B-cell follicles is critical. Although no strategy has as of yet proven to be effective, a range of novel therapies to address these barriers are currently being investigated including genetically engineered CTL or chimeric antigen receptor T cells that express the follicular homing molecule CXCR5, treatment with IL-15 or an IL-15 superagonist, use of bispecific antibodies to harness the killing power of the follicular CD8+ T cell population, and disruption of the follicle through treatments such as rituximab.
Collapse
Affiliation(s)
- Matthew P Bronnimann
- Division of Infectious Disease, Department of Medicine, University of Arizona, Tucson, AZ, United States
| | - Pamela J Skinner
- Department of Veterinary and Biomedical Sciences, University of Minnesota, St. Paul, MN, United States
| | - Elizabeth Connick
- Division of Infectious Disease, Department of Medicine, University of Arizona, Tucson, AZ, United States
| |
Collapse
|
320
|
Webb GM, Li S, Mwakalundwa G, Folkvord JM, Greene JM, Reed JS, Stanton JJ, Legasse AW, Hobbs T, Martin LD, Park BS, Whitney JB, Jeng EK, Wong HC, Nixon DF, Jones RB, Connick E, Skinner PJ, Sacha JB. The human IL-15 superagonist ALT-803 directs SIV-specific CD8 + T cells into B-cell follicles. Blood Adv 2018; 2:76-84. [PMID: 29365313 PMCID: PMC5787870 DOI: 10.1182/bloodadvances.2017012971] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 11/30/2017] [Indexed: 01/01/2023] Open
Abstract
Sequestering of latent HIV in follicular helper T cells within B-cell follicles that largely exclude cytotoxic T cells is a major barrier to cellular immune-based approaches to eradicate HIV. Here, we show that the clinical-grade human interleukin-15 (IL-15) superagonist ALT-803 activates and redirects simian immunodeficiency virus (SIV)-specific CD8+ T cells from the peripheral blood into B-cell follicles. In agreement with the increased trafficking of SIV-specific cytotoxic T cells to sites of cryptic viral replication, lymph nodes of elite controlling macaques contained fewer cells expressing SIV RNA or harboring SIV DNA post-ALT-803 treatment. These data establish ALT-803 as an immunotherapeutic for HIV and other chronic viral pathogens that evade host immunity by persisting in B-cell follicles.
Collapse
Affiliation(s)
- Gabriela M Webb
- Vaccine and Gene Therapy Institute and
- Oregon National Primate Research Center, Oregon Health & Science University, Portland, OR
| | - Shengbin Li
- Department of Veterinary and Biomedical Sciences, University of Minnesota, St. Paul, MN
| | - Gwantwa Mwakalundwa
- Department of Veterinary and Biomedical Sciences, University of Minnesota, St. Paul, MN
| | - Joy M Folkvord
- Division of Infectious Diseases, University of Arizona, Tucson, AZ
| | - Justin M Greene
- Vaccine and Gene Therapy Institute and
- Oregon National Primate Research Center, Oregon Health & Science University, Portland, OR
| | - Jason S Reed
- Vaccine and Gene Therapy Institute and
- Oregon National Primate Research Center, Oregon Health & Science University, Portland, OR
| | - Jeffery J Stanton
- Oregon National Primate Research Center, Oregon Health & Science University, Portland, OR
| | - Alfred W Legasse
- Oregon National Primate Research Center, Oregon Health & Science University, Portland, OR
| | - Theodore Hobbs
- Oregon National Primate Research Center, Oregon Health & Science University, Portland, OR
| | - Lauren D Martin
- Oregon National Primate Research Center, Oregon Health & Science University, Portland, OR
| | - Byung S Park
- Oregon National Primate Research Center, Oregon Health & Science University, Portland, OR
| | - James B Whitney
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA
| | | | - Hing C Wong
- Altor BioScience Corporation, Miramar, FL; and
| | - Douglas F Nixon
- Department of Microbiology Immunology and Tropical Medicine, The George Washington University, Washington, DC
| | - R Brad Jones
- Department of Microbiology Immunology and Tropical Medicine, The George Washington University, Washington, DC
| | | | - Pamela J Skinner
- Department of Veterinary and Biomedical Sciences, University of Minnesota, St. Paul, MN
| | - Jonah B Sacha
- Vaccine and Gene Therapy Institute and
- Oregon National Primate Research Center, Oregon Health & Science University, Portland, OR
| |
Collapse
|
321
|
Deleage C, Chan CN, Busman-Sahay K, Estes JD. Next-generation in situ hybridization approaches to define and quantify HIV and SIV reservoirs in tissue microenvironments. Retrovirology 2018; 15:4. [PMID: 29316956 PMCID: PMC5761108 DOI: 10.1186/s12977-017-0387-9] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 12/23/2017] [Indexed: 01/25/2023] Open
Abstract
The development of increasingly safe and effective antiretroviral treatments for human immunodeficiency virus (HIV) over the past several decades has led to vastly improved patient survival when treatment is available and affordable, an outcome that relies on uninterrupted adherence to combination antiretroviral therapy for life. Looking to the future, the discovery of an elusive 'cure' for HIV will necessitate highly sensitive methods for detecting, understanding, and eliminating viral reservoirs. Next-generation, in situ hybridization (ISH) approaches offer unique and complementary insights into viral reservoirs within their native tissue environments with a high degree of specificity and sensitivity. In this review, we will discuss how modern ISH techniques can be used, either alone or in conjunction with phenotypic characterization, to probe viral reservoir establishment and maintenance. In addition to focusing on how these techniques have already furthered our understanding of HIV reservoirs, we discuss potential avenues for how high-throughput, next-generation ISH may be applied. Finally, we will review how ISH could allow deeper phenotypic and contextual insights into HIV reservoir biology that should prove instrumental in moving the field closer to viral reservoir elimination needed for an 'HIV cure' to be realized.
Collapse
Affiliation(s)
- Claire Deleage
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, MD 21702 USA
| | - Chi N. Chan
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, MD 21702 USA
- Present Address: Vaccine and Gene Therapy Institute, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006 USA
| | - Kathleen Busman-Sahay
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, MD 21702 USA
- Present Address: Vaccine and Gene Therapy Institute, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006 USA
| | - Jacob D. Estes
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, MD 21702 USA
- Present Address: Vaccine and Gene Therapy Institute, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006 USA
| |
Collapse
|
322
|
Jenkins RW, Barbie DA, Flaherty KT. Mechanisms of resistance to immune checkpoint inhibitors. Br J Cancer 2018; 118:9-16. [PMID: 29319049 PMCID: PMC5765236 DOI: 10.1038/bjc.2017.434] [Citation(s) in RCA: 936] [Impact Index Per Article: 156.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2017] [Revised: 09/13/2017] [Accepted: 09/18/2017] [Indexed: 02/07/2023] Open
Abstract
Immune checkpoint inhibitors (ICI) targeting CTLA-4 and the PD-1/PD-L1 axis have shown unprecedented clinical activity in several types of cancer and are rapidly transforming the practice of medical oncology. Whereas cytotoxic chemotherapy and small molecule inhibitors (‘targeted therapies’) largely act on cancer cells directly, immune checkpoint inhibitors reinvigorate anti-tumour immune responses by disrupting co-inhibitory T-cell signalling. While resistance routinely develops in patients treated with conventional cancer therapies and targeted therapies, durable responses suggestive of long-lasting immunologic memory are commonly seen in large subsets of patients treated with ICI. However, initial response appears to be a binary event, with most non-responders to single-agent ICI therapy progressing at a rate consistent with the natural history of disease. In addition, late relapses are now emerging with longer follow-up of clinical trial populations, suggesting the emergence of acquired resistance. As robust biomarkers to predict clinical response and/or resistance remain elusive, the mechanisms underlying innate (primary) and acquired (secondary) resistance are largely inferred from pre-clinical studies and correlative clinical data. Improved understanding of molecular and immunologic mechanisms of ICI response (and resistance) may not only identify novel predictive and/or prognostic biomarkers, but also ultimately guide optimal combination/sequencing of ICI therapy in the clinic. Here we review the emerging clinical and pre-clinical data identifying novel mechanisms of innate and acquired resistance to immune checkpoint inhibition.
Collapse
Affiliation(s)
- Russell W Jenkins
- Division of Medical Oncology, Massachusetts General Hospital Cancer Center, Harvard Medical School, 55 Fruit Street, Boston, MA 02114, USA.,Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215 USA
| | - David A Barbie
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215 USA
| | - Keith T Flaherty
- Division of Medical Oncology, Massachusetts General Hospital Cancer Center, Harvard Medical School, 55 Fruit Street, Boston, MA 02114, USA
| |
Collapse
|
323
|
Jiao YM, Yang HG, Huang HH, Tu B, Xing SJ, Mao L, Xia W, He R, Zhang JY, Xu RN, Jin L, Shi M, Xu Z, Qin EQ, Wang XC, Wu H, Ye L, Wang FS. Dichotomous Roles of Programmed Cell Death 1 on HIV-Specific CXCR5 + and CXCR5 - CD8 + T Cells during Chronic HIV Infection. Front Immunol 2017; 8:1786. [PMID: 29312314 PMCID: PMC5732951 DOI: 10.3389/fimmu.2017.01786] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2017] [Accepted: 11/29/2017] [Indexed: 12/31/2022] Open
Abstract
Background CXCR5+CD8+ T cells have been demonstrated to play an important role in the control of chronic viral replication; however, the relationship between CXCR5+CD8+ T cells, HIV disease progression, and programmed cell death 1 (PD-1) expression profile on CXCR5+CD8+ T cells during HIV infection remain poorly understood. Methods We enrolled a total of 101 HIV patients, including 62 typical progressors, 26 complete responders (CRs), and 13 immune non-responders (INRs). Flow cytometric analysis, immunohistochemical staining, and relative function (i.e., cytokine secretion and PD-1 blockade) assays were performed to analyze the properties of CXCR5+CD8+ T cells. Results HIV-specific CXCR5+CD8+ T cells in the peripheral blood and distribution of CXCR5+CD8+ T cells in the lymph node (LN) were negatively correlated with disease progression during chronic HIV infection. PD-1 was highly expressed on CXCR5+CD8+ T cells and positively associated with peripheral CD4+ T cell counts. Functionally, IFN-γ and TNF-α production of CXCR5+CD8+ T cells were reduced by PD-1 pathway blockade, but the production of IFN-γ and TNF-α from CXCR5-CD8+ T cells increased in response to TCR stimulation. Interestingly, PD-1 expression was constantly retained on CXCR5+CD8+ T cells while significantly decreased on CXCR5-CD8+ T cells after successful antiretroviral treatment in chronic HIV-infected patients. Conclusion PD-1+CXCR5+CD8+ T cells are functional cytotoxic T cells during chronic HIV infection. PD-1+CXCR5+CD8+ T cells may represent a novel therapeutic strategy for the disease.
Collapse
Affiliation(s)
- Yan-Mei Jiao
- Treatment and Research Center for Infectious Diseases, Beijing 302 Hospital, Beijing, China
| | - Hong-Ge Yang
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
| | - Hui-Huang Huang
- Treatment and Research Center for Infectious Diseases, Beijing 302 Hospital, Beijing, China
| | - Bo Tu
- Treatment and Research Center for Infectious Diseases, Beijing 302 Hospital, Beijing, China
| | - Shao-Jun Xing
- Department of Microbiology, Carver College of Medicine, University of Iowa, Iowa City, IA, United States
| | - Lin Mao
- Yunnan Provincial Hospital of Infectious Diseases, Kunming, China
| | - Wei Xia
- Center for Infectious Diseases, Beijing You'an Hospital, Capital Medical University, Beijing, China
| | - Ran He
- Institute of Immunology, Third Military Medical University, Chongqing, China
| | - Ji-Yuan Zhang
- Treatment and Research Center for Infectious Diseases, Beijing 302 Hospital, Beijing, China
| | - Ruo-Nan Xu
- Treatment and Research Center for Infectious Diseases, Beijing 302 Hospital, Beijing, China
| | - Lei Jin
- Treatment and Research Center for Infectious Diseases, Beijing 302 Hospital, Beijing, China
| | - Ming Shi
- Treatment and Research Center for Infectious Diseases, Beijing 302 Hospital, Beijing, China
| | - Zhe Xu
- Treatment and Research Center for Infectious Diseases, Beijing 302 Hospital, Beijing, China
| | - En-Qiang Qin
- Treatment and Research Center for Infectious Diseases, Beijing 302 Hospital, Beijing, China
| | - Xi-Cheng Wang
- Yunnan Provincial Hospital of Infectious Diseases, Kunming, China
| | - Hao Wu
- Center for Infectious Diseases, Beijing You'an Hospital, Capital Medical University, Beijing, China
| | - Lilin Ye
- Institute of Immunology, Third Military Medical University, Chongqing, China
| | - Fu-Sheng Wang
- Treatment and Research Center for Infectious Diseases, Beijing 302 Hospital, Beijing, China
| |
Collapse
|
324
|
Man K, Gabriel SS, Liao Y, Gloury R, Preston S, Henstridge DC, Pellegrini M, Zehn D, Berberich-Siebelt F, Febbraio MA, Shi W, Kallies A. Transcription Factor IRF4 Promotes CD8 + T Cell Exhaustion and Limits the Development of Memory-like T Cells during Chronic Infection. Immunity 2017; 47:1129-1141.e5. [PMID: 29246443 DOI: 10.1016/j.immuni.2017.11.021] [Citation(s) in RCA: 312] [Impact Index Per Article: 44.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Revised: 08/08/2017] [Accepted: 11/28/2017] [Indexed: 01/30/2023]
Abstract
During chronic stimulation, CD8+ T cells acquire an exhausted phenotype characterized by expression of inhibitory receptors, down-modulation of effector function, and metabolic impairments. T cell exhaustion protects from excessive immunopathology but limits clearance of virus-infected or tumor cells. We transcriptionally profiled antigen-specific T cells from mice infected with lymphocytic choriomeningitis virus strains that cause acute or chronic disease. T cell exhaustion during chronic infection was driven by high amounts of T cell receptor (TCR)-induced transcription factors IRF4, BATF, and NFATc1. These regulators promoted expression of inhibitory receptors, including PD-1, and mediated impaired cellular metabolism. Furthermore, they repressed the expression of TCF1, a transcription factor required for memory T cell differentiation. Reducing IRF4 expression restored the functional and metabolic properties of antigen-specific T cells and promoted memory-like T cell development. These findings indicate that IRF4 functions as a central node in a TCR-responsive transcriptional circuit that establishes and sustains T cell exhaustion during chronic infection.
Collapse
Affiliation(s)
- Kevin Man
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia; The Department of Medical Biology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Sarah S Gabriel
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia; Department of Microbiology and Immunology, The University of Melbourne, Parkville, VIC 3010, Australia; The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC 3000, Australia
| | - Yang Liao
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia; The Department of Medical Biology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Renee Gloury
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia; Department of Microbiology and Immunology, The University of Melbourne, Parkville, VIC 3010, Australia; The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC 3000, Australia
| | - Simon Preston
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia; The Department of Medical Biology, University of Melbourne, Parkville, VIC 3010, Australia
| | | | - Marc Pellegrini
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia; The Department of Medical Biology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Dietmar Zehn
- Division of Animal Physiology and Immunology, School of Life Sciences Weihenstephan, Technical University of Munich, 85354 Freising, Germany
| | - Friederike Berberich-Siebelt
- Institute of Pathology, University of Würzburg, 97080 Würzburg, Germany; Comprehensive Cancer Center Mainfranken, University of Würzburg, 97080 Würzburg, Germany
| | - Mark A Febbraio
- Cellular and Molecular Metabolism, Garvan Institute, Sydney, NSW 2010, Australia
| | - Wei Shi
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia; The Department of Medical Biology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Axel Kallies
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia; Department of Microbiology and Immunology, The University of Melbourne, Parkville, VIC 3010, Australia; The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC 3000, Australia.
| |
Collapse
|
325
|
Vella LA, Herati RS, Wherry EJ. CD4 + T Cell Differentiation in Chronic Viral Infections: The Tfh Perspective. Trends Mol Med 2017; 23:1072-1087. [PMID: 29137933 PMCID: PMC5886740 DOI: 10.1016/j.molmed.2017.10.001] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 10/11/2017] [Accepted: 10/16/2017] [Indexed: 12/18/2022]
Abstract
CD4+ T cells play a critical role in the response to chronic viral infections during the acute phase and in the partial containment of infections once chronic infection is established. As infection persists, the virus-specific CD4+ T cell response begins to shift in phenotype. The predominant change described in both mouse and human studies of chronic viral infection is a decrease in detectable T helper type (Th)1 responses. Some Th1 loss is due to decreased proliferative potential and decreased cytokine production in the setting of chronic antigen exposure. However, recent data suggest that Th1 dysfunction is accompanied by a shift in the differentiation pathway of virus-specific CD4+ T cells, with enrichment for cells with a T follicular helper cell (Tfh) phenotype. A Tfh-like program during chronic infection has now been identified in virus-specific CD8+ T cells as well. In this review, we discuss what is known about CD4+ T cell differentiation in chronic viral infections, with a focus on the emergence of the Tfh program and the implications of this shift with respect to Tfh function and the host-pathogen interaction.
Collapse
Affiliation(s)
- Laura A Vella
- Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA, USA; Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.
| | - Ramin S Herati
- Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA; Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - E John Wherry
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA; Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.
| |
Collapse
|
326
|
CD8 + T Lymphocyte Self-Renewal during Effector Cell Determination. Cell Rep 2017; 17:1773-1782. [PMID: 27829149 DOI: 10.1016/j.celrep.2016.10.032] [Citation(s) in RCA: 93] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Revised: 10/03/2016] [Accepted: 10/12/2016] [Indexed: 12/31/2022] Open
Abstract
Selected CD8+ T cells must divide, produce differentiated effector cells, and self-renew, often repeatedly. We now show that silencing expression of the transcription factor TCF1 marks loss of self-renewal by determined effector cells and that this requires cell division. In acute infections, the first three CD8+ T cell divisions produce daughter cells with unequal proliferative signaling but uniform maintenance of TCF1 expression. The more quiescent initial daughter cells resemble canonical central memory cells. The more proliferative, effector-prone cells from initial divisions can subsequently undergo division-dependent production of a TCF1-negative effector daughter cell along with a self-renewing TCF1-positive daughter cell, the latter also contributing to the memory cell pool upon resolution of infection. Self-renewal in the face of effector cell determination may promote clonal amplification and memory cell formation in acute infections, sustain effector regeneration during persistent subclinical infections, and be rate limiting, but remediable, in chronic active infections and cancer.
Collapse
|
327
|
Khan S, Telwatte S, Trapecar M, Yukl S, Sanjabi S. Differentiating Immune Cell Targets in Gut-Associated Lymphoid Tissue for HIV Cure. AIDS Res Hum Retroviruses 2017; 33:S40-S58. [PMID: 28882067 PMCID: PMC5685216 DOI: 10.1089/aid.2017.0153] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The single greatest challenge to an HIV cure is the persistence of latently infected cells containing inducible, replication-competent proviral genomes, which constitute only a small fraction of total or infected cells in the body. Although resting CD4+ T cells in the blood are a well-known source of viral rebound, more than 90% of the body's lymphocytes reside elsewhere. Many are in gut tissue, where HIV DNA levels per million CD4+ T cells are considerably higher than in the blood. Despite the significant contribution of gut tissue to viral replication and persistence, little is known about the cell types that support persistence of HIV in the gut; importantly, T cells in the gut have phenotypic, functional, and survival properties that are distinct from T cells in other tissues. The mechanisms by which latency is established and maintained will likely depend on the location and cytokine milieu surrounding the latently infected cells in each compartment. Therefore, successful HIV cure strategies require identification and characterization of the exact cell types that support viral persistence, particularly in the gut. In this review, we describe the seeding of the latent HIV reservoir in the gut mucosa; highlight the evidence for compartmentalization and depletion of T cells; summarize the immunologic consequences of HIV infection within the gut milieu; propose how the damaged gut environment may promote the latent HIV reservoir; and explore several immune cell targets in the gut and their place on the path toward HIV cure.
Collapse
Affiliation(s)
- Shahzada Khan
- Gladstone Institute of Virology and Immunology, Gladstone Institutes, San Francisco, California
| | - Sushama Telwatte
- San Francisco VA Health Care System and University of California, San Francisco (UCSF), San Francisco, California
| | - Martin Trapecar
- Gladstone Institute of Virology and Immunology, Gladstone Institutes, San Francisco, California
| | - Steven Yukl
- San Francisco VA Health Care System and University of California, San Francisco (UCSF), San Francisco, California
| | - Shomyseh Sanjabi
- Gladstone Institute of Virology and Immunology, Gladstone Institutes, San Francisco, California
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, California
| |
Collapse
|
328
|
Natural killer cells migrate into and control simian immunodeficiency virus replication in lymph node follicles in African green monkeys. Nat Med 2017; 23:1277-1286. [PMID: 29035370 DOI: 10.1038/nm.4421] [Citation(s) in RCA: 101] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 09/08/2017] [Indexed: 02/06/2023]
Abstract
Natural killer (NK) cells play an essential role in antiviral immunity, but knowledge of their function in secondary lymphoid organs is incomplete. Lymph node follicles constitute a major viral reservoir during infections with HIV-1 and simian immunodeficiency virus of macaques (SIVmac). In contrast, during nonpathogenic infection with SIV from African green monkeys (SIVagm), follicles remain generally virus free. We show that NK cells in secondary lymphoid organs from chronically SIVagm-infected African green monkeys (AGMs) were frequently CXCR5+ and entered and persisted in lymph node follicles throughout the follow-up (240 d post-infection). These follicles were strongly positive for IL-15, which was primarily presented in its membrane-bound form by follicular dendritic cells. NK cell depletion through treatment with anti-IL-15 monoclonal antibody during chronic SIVagm infection resulted in high viral replication rates in follicles and the T cell zone and increased viral DNA in lymph nodes. Our data suggest that, in nonpathogenic SIV infection, NK cells migrate into follicles and play a major role in viral reservoir control in lymph nodes.
Collapse
|
329
|
CXCR5 +CD8 + T cells could induce the death of tumor cells in HBV-related hepatocellular carcinoma. Int Immunopharmacol 2017; 53:42-48. [PMID: 29032029 DOI: 10.1016/j.intimp.2017.10.009] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 09/16/2017] [Accepted: 10/07/2017] [Indexed: 12/30/2022]
Abstract
The follicular CXCR5+CD8+ T cells have recently emerged as a critical cell type in mediating peripheral tolerance as well as antiviral immune responses during chronic infections. In this study, we investigated the function of CXCR5+CD8+ T cells in HBV-related hepatocellular carcinoma patients. Compared to CXCR5-CD8+ T cells, CXCR5+CD8+ T cells presented elevated PD-1 expression but reduced Tim-3 and CTLA-4 expression. Upon anti-CD3/CD28 stimulation, CXCR5+CD8+ T cells demonstrated higher proliferation potency than CXCR5-CD8+ T cells, especially after PD-1 blockade. CXCR5+CD8+ T cells also demonstrated significantly higher granzyme B synthesis and release, as well as higher level of degranulation. Tumor cells were more readily eliminated by CXCR5+CD8+ T cells than by CXCR5-CD8+ T cells. Interestingly, we found that B cells were more resistant to CXCR5+CD8+ T cell-mediated killing than tumor cells, possibly through IL-10-mediated protection. In addition, the CXCR5+CD8+ T cell-mediated cytotoxic effects on tumor cells could be significantly enhanced by PD-L1 blockade. Together, we presented that in patients with in HBV-related hepatocellular carcinoma, CXCR5+CD8+ T cells could mediate tumor cell death more potently than the CXCR5-CD8+ T cells in vitro while the autologous B cells were protected.
Collapse
|
330
|
Perdomo-Celis F, Taborda NA, Rugeles MT. Follicular CD8 + T Cells: Origin, Function and Importance during HIV Infection. Front Immunol 2017; 8:1241. [PMID: 29085360 PMCID: PMC5649150 DOI: 10.3389/fimmu.2017.01241] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 09/19/2017] [Indexed: 12/14/2022] Open
Abstract
The lymphoid follicle is critical for the development of humoral immune responses. Cell circulation to this site is highly regulated by the differential expression of chemokine receptors. This feature contributes to the establishment of viral reservoirs in lymphoid follicles and the development of some types of malignancies that are able to evade immune surveillance, especially conventional CD8+ T cells. Interestingly, a subtype of CD8+ T cells located within the lymphoid follicle (follicular CD8+ T cells) was recently described; these cells have been proposed to play an important role in viral and tumor control, as well as to modulate humoral and T follicular helper cell responses. In this review, we summarize the knowledge on this novel CD8+ T cell population, its origin, function, and potential role in health and disease, in particular, in the context of the infection by the human immunodeficiency virus.
Collapse
Affiliation(s)
- Federico Perdomo-Celis
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia (UdeA), Medellín, Colombia
| | - Natalia Andrea Taborda
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia (UdeA), Medellín, Colombia.,Grupo de Investigaciones Biomédicas Uniremington, Programa de Medicina, Facultad de Ciencias de la Salud, Corporación Universitaria Remington, Medellín, Colombia
| | - María Teresa Rugeles
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia (UdeA), Medellín, Colombia
| |
Collapse
|
331
|
Araki K, Morita M, Bederman AG, Konieczny BT, Kissick HT, Sonenberg N, Ahmed R. Translation is actively regulated during the differentiation of CD8 + effector T cells. Nat Immunol 2017; 18:1046-1057. [PMID: 28714979 PMCID: PMC5937989 DOI: 10.1038/ni.3795] [Citation(s) in RCA: 114] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 06/16/2017] [Indexed: 12/15/2022]
Abstract
Translation is a critical process in protein synthesis, but translational regulation in antigen-specific T cells in vivo has not been well defined. Here we have characterized the translatome of virus-specific CD8+ effector T cells (Teff cells) during acute infection of mice with lymphocytic choriomeningitis virus (LCMV). Antigen-specific T cells exerted dynamic translational control of gene expression that correlated with cell proliferation and stimulation via the T cell antigen receptor (TCR). The translation of mRNAs that encode translation machinery, including ribosomal proteins, was upregulated during the T cell clonal-expansion phase, followed by inhibition of the translation of those transcripts when the CD8+ Teff cells stopped dividing just before the contraction phase. That translational suppression was more pronounced in terminal effector cells than in memory precursor cells and was regulated by antigenic stimulation and signals from the kinase mTOR. Our studies show that translation of transcripts encoding ribosomal proteins is regulated during the differentiation of CD8+ Teff cells and might have a role in fate 'decisions' involved in the formation of memory cells.
Collapse
Affiliation(s)
- Koichi Araki
- Emory Vaccine Center and Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Masahiro Morita
- Department of Biochemistry, McGill University, Montreal, QC H3A 1A3, Canada
- Goodman Cancer Research Centre, McGill University, Montreal, QC H3A 1A3, Canada
| | - Annelise G. Bederman
- Emory Vaccine Center and Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Bogumila T Konieczny
- Emory Vaccine Center and Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Haydn T. Kissick
- Emory Vaccine Center and Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA 30322, USA
- Department of Urology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Nahum Sonenberg
- Department of Biochemistry, McGill University, Montreal, QC H3A 1A3, Canada
- Goodman Cancer Research Centre, McGill University, Montreal, QC H3A 1A3, Canada
| | - Rafi Ahmed
- Emory Vaccine Center and Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA 30322, USA
| |
Collapse
|
332
|
Shin HM, Kapoor VN, Kim G, Li P, Kim HR, Suresh M, Kaech SM, Wherry EJ, Selin LK, Leonard WJ, Welsh RM, Berg LJ. Transient expression of ZBTB32 in anti-viral CD8+ T cells limits the magnitude of the effector response and the generation of memory. PLoS Pathog 2017; 13:e1006544. [PMID: 28827827 PMCID: PMC5578684 DOI: 10.1371/journal.ppat.1006544] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 08/31/2017] [Accepted: 07/20/2017] [Indexed: 01/02/2023] Open
Abstract
Virus infections induce CD8+ T cell responses comprised of a large population of terminal effector cells and a smaller subset of long-lived memory cells. The transcription factors regulating the relative expansion versus the long-term survival potential of anti-viral CD8+ T cells are not completely understood. We identified ZBTB32 as a transcription factor that is transiently expressed in effector CD8+ T cells. After acute virus infection, CD8+ T cells deficient in ZBTB32 showed enhanced virus-specific CD8+ T cell responses, and generated increased numbers of virus-specific memory cells; in contrast, persistent expression of ZBTB32 suppressed memory cell formation. The dysregulation of CD8+ T cell responses in the absence of ZBTB32 was catastrophic, as Zbtb32-/- mice succumbed to a systemic viral infection and showed evidence of severe lung pathology. We found that ZBTB32 and Blimp-1 were co-expressed following CD8+ T cell activation, bound to each other, and cooperatively regulated Blimp-1 target genes Eomes and Cd27. These findings demonstrate that ZBTB32 is a key transcription factor in CD8+ effector T cells that is required for the balanced regulation of effector versus memory responses to infection. CD8+ T lymphocytes are essential for immune protection against viruses. In response to an infection, these cells are activated, proliferate, and generate antiviral effector cells that eradicate the infection. Following this, the majority of these effector cells die, leaving a small subset of long-lived virus-specific memory T cells. Our study identifies a transcription factor, ZBTB32, that is required for the regulation of CD8+ T cell responses. In its absence, antiviral CD8+ T cell numbers increase to abnormally high levels, and generate an overabundance of memory T cells. When this dysregulated response occurs following infection with a virus that cannot be rapidly eliminated by the immune system, the infected animals die from immune-mediated tissue damage, indicating the importance of this pathway.
Collapse
Affiliation(s)
- Hyun Mu Shin
- Dept of Pathology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
- Department of Anatomy and Cell Biology, Department of Biomedical Sciences, and BK21Plus Biomedical Science Project, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Varun N. Kapoor
- Dept of Pathology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Gwanghun Kim
- Department of Anatomy and Cell Biology, Department of Biomedical Sciences, and BK21Plus Biomedical Science Project, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Peng Li
- Laboratory of Molecular Immunology and the Immunology Center, National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health, Bethesda, Maryland, United States of America
| | - Hang-Rae Kim
- Department of Anatomy and Cell Biology, Department of Biomedical Sciences, and BK21Plus Biomedical Science Project, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - M. Suresh
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Susan M. Kaech
- Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - E. John Wherry
- Department of Microbiology and Institute for Immunology, University of Pennsylvania Perelman School Medicine, Philadelphia, Pennsylvania, United States of America
| | - Liisa K. Selin
- Dept of Pathology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Warren J. Leonard
- Laboratory of Molecular Immunology and the Immunology Center, National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health, Bethesda, Maryland, United States of America
| | - Raymond M. Welsh
- Dept of Pathology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Leslie J. Berg
- Dept of Pathology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
333
|
Borrow P, Moody MA. Immunologic characteristics of HIV-infected individuals who make broadly neutralizing antibodies. Immunol Rev 2017; 275:62-78. [PMID: 28133804 PMCID: PMC5299500 DOI: 10.1111/imr.12504] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Induction of broadly neutralizing antibodies (bnAbs) capable of inhibiting infection with diverse variants of human immunodeficiency virus type 1 (HIV‐1) is a key, as‐yet‐unachieved goal of prophylactic HIV‐1 vaccine strategies. However, some HIV‐infected individuals develop bnAbs after approximately 2‐4 years of infection, enabling analysis of features of these antibodies and the immunological environment that enables their induction. Distinct subsets of CD4+ T cells play opposing roles in the regulation of humoral responses: T follicular helper (Tfh) cells support germinal center formation and provide help for affinity maturation and the development of memory B cells and plasma cells, while regulatory CD4+ (Treg) cells including T follicular regulatory (Tfr) cells inhibit the germinal center reaction to limit autoantibody production. BnAbs exhibit high somatic mutation frequencies, long third heavy‐chain complementarity determining regions, and/or autoreactivity, suggesting that bnAb generation is likely to be highly dependent on the activity of CD4+ Tfh cells, and may be constrained by host tolerance controls. This review discusses what is known about the immunological environment during HIV‐1 infection, in particular alterations in CD4+ Tfh, Treg, and Tfr populations and autoantibody generation, and how this is related to bnAb development, and considers the implications for HIV‐1 vaccine design.
Collapse
Affiliation(s)
- Persephone Borrow
- Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - M Anthony Moody
- Duke University Human Vaccine Institute and Departments of Pediatrics and Immunology, Duke University School of Medicine, Durham, NC, USA
| |
Collapse
|
334
|
Ma CS, Phan TG. Here, there and everywhere: T follicular helper cells on the move. Immunology 2017; 152:382-387. [PMID: 28704588 DOI: 10.1111/imm.12793] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Revised: 07/03/2017] [Accepted: 07/05/2017] [Indexed: 12/25/2022] Open
Abstract
T follicular helper (Tfh) cells have the important function of providing B-cell help for the induction of antigen-specific antibody production. As such, it is important to determine the factors that regulate the development, differentiation and function of Tfh cells. This review highlights some of the recent advances in our understanding of Tfh cell migration, Tfh cell memory and the origins and fate of circulating Tfh cells in the blood, that have been revealed from studies in humans and mice.
Collapse
Affiliation(s)
- Cindy S Ma
- Immunology Division, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia.,St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Darlinghurst, NSW, Australia
| | - Tri Giang Phan
- Immunology Division, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia.,St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Darlinghurst, NSW, Australia
| |
Collapse
|
335
|
Granier C, De Guillebon E, Blanc C, Roussel H, Badoual C, Colin E, Saldmann A, Gey A, Oudard S, Tartour E. Mechanisms of action and rationale for the use of checkpoint inhibitors in cancer. ESMO Open 2017; 2:e000213. [PMID: 28761757 PMCID: PMC5518304 DOI: 10.1136/esmoopen-2017-000213] [Citation(s) in RCA: 224] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 05/05/2017] [Indexed: 12/25/2022] Open
Abstract
The large family of costimulatory molecules plays a crucial role in regulation of the immune response. These molecules modulate TCR signalling via phosphorylation cascades. Some of the coinhibitory members of this family, such as PD-1 and CTLA-4, already constitute approved targets in cancer therapy and, since 2011, have opened a new area of antitumour immunotherapy. Many antibodies targeting other inhibitory receptors (Tim-3, VISTA, Lag-3 and so on) or activating costimulatory molecules (OX40, GITR and so on) are under evaluation. These antibodies have multiple mechanisms of action. At the cellular level, these antibodies restore the activation signalling pathway and reprogram T cell metabolism. Tumour cells become resistant to apoptosis when an intracellular PD-L1 signalling is blocked. CD8+ T cells are considered to be the main effectors of the blockade of inhibitory receptors. Certain CD8+ T cell subsets, such as non-hyperexhausted (CD28+, T-bethigh, PD-1int), follicular-like (CXCR-5+) or resident memory CD8+ T cells, are more prone to be reactivated by anti-PD-1/PD-L1 monoclonal antibody (mAb). In the future, the challenge will be to rationally combine drugs able to make the tumour microenvironment more permissive to immunotherapy in order to potentiate its clinical activity.
Collapse
Affiliation(s)
- Clemence Granier
- INSERM U970, Université Paris Descartes Sorbonne Paris-Cité, Paris, France.,Equipe Labellisée Ligue Contre le Cancer, Paris, France
| | - Eleonore De Guillebon
- INSERM U970, Université Paris Descartes Sorbonne Paris-Cité, Paris, France.,Equipe Labellisée Ligue Contre le Cancer, Paris, France.,Department of medical oncology, Hopital Européen Georges Pompidou, Paris, France
| | - Charlotte Blanc
- INSERM U970, Université Paris Descartes Sorbonne Paris-Cité, Paris, France.,Equipe Labellisée Ligue Contre le Cancer, Paris, France
| | - Helene Roussel
- INSERM U970, Université Paris Descartes Sorbonne Paris-Cité, Paris, France.,Equipe Labellisée Ligue Contre le Cancer, Paris, France.,Department of Pathology, Hôpital Européen Georges Pompidou, Paris, France
| | - Cecile Badoual
- INSERM U970, Université Paris Descartes Sorbonne Paris-Cité, Paris, France.,Equipe Labellisée Ligue Contre le Cancer, Paris, France.,Department of Pathology, Hôpital Européen Georges Pompidou, Paris, France
| | - Elia Colin
- INSERM U970, Université Paris Descartes Sorbonne Paris-Cité, Paris, France.,Equipe Labellisée Ligue Contre le Cancer, Paris, France
| | - Antonin Saldmann
- INSERM U970, Université Paris Descartes Sorbonne Paris-Cité, Paris, France.,Equipe Labellisée Ligue Contre le Cancer, Paris, France.,Department of Immunology, Hôpital Européen Georges Pompidou, Paris, France
| | - Alain Gey
- INSERM U970, Université Paris Descartes Sorbonne Paris-Cité, Paris, France.,Equipe Labellisée Ligue Contre le Cancer, Paris, France.,Department of Immunology, Hôpital Européen Georges Pompidou, Paris, France
| | - Stephane Oudard
- INSERM U970, Université Paris Descartes Sorbonne Paris-Cité, Paris, France.,Equipe Labellisée Ligue Contre le Cancer, Paris, France.,Department of medical oncology, Hopital Européen Georges Pompidou, Paris, France
| | - Eric Tartour
- INSERM U970, Université Paris Descartes Sorbonne Paris-Cité, Paris, France.,Department of Immunology, Hôpital Européen Georges Pompidou, Paris, France
| |
Collapse
|
336
|
Tang J, Zha J, Guo X, Shi P, Xu B. CXCR5 +CD8 + T cells present elevated capacity in mediating cytotoxicity toward autologous tumor cells through interleukin 10 in diffuse large B-cell lymphoma. Int Immunopharmacol 2017; 50:146-151. [PMID: 28662433 DOI: 10.1016/j.intimp.2017.06.020] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 06/19/2017] [Accepted: 06/20/2017] [Indexed: 12/25/2022]
Abstract
Diffuse large B-cell lymphoma (DLBCL) is a common and aggressive subtype of non-Hodgkin's lymphomas, with limited treatment options in refractory and relapsed patients. Growing evidence supports the notion that CD8+ T cell immunity could be utilized to eliminate B cell lymphomas. CXCR5+CD8+ T cell is a novel cell subtype and share CXCR5 expression with CD19+ tumor cells. In this study, we investigated the frequency and function of existing CXCR5+CD8+ T cells in DLBCL patients. We found that DLBCL patients as a group demonstrated significantly higher level of CXCR5+CD8+ T cells than healthy individuals, with huge variability in each patient. Using anti-CD3/CD28-stimulated CD8+ T cells as effector (E) cells and autologous CD19+ tumor cells as target (T) cells, at high E:T ratio, no difference between the intensities of CXCR5+CD8+ T cell- and CXCR5-CD8+ T cell-mediated cytotoxicity were observed. However, at intermediate and low E:T ratios, the CXCR5+CD8+ T cells presented stronger cytotoxicity than CXCR5-CD8+ T cells. The expressions of granzyme A, granzyme B, and perforin were significantly higher in CXCR5+CD8+ T cells than in CXCR5-CD8+ T cells, with no significant difference in the level of degranulation. Tumor cells in DLBCL were known to secrete high level of interleukin 10 (IL-10). We therefore blocked the IL-10/IL-10R pathway, and found that the expressions of granzyme A, granzyme B, and perforin by CXCR5+CD8+ T cells were significantly elevated. Together, these results suggest that CXCR5+CD8+ T cells are potential candidates of CD8+ T cell-based immunotherapies, could mediate elimination of autologous tumor cells in DLBCL patients, but are also susceptible to IL-10-mediated suppression.
Collapse
Affiliation(s)
- Jiahong Tang
- Department of Hematology, Nanfang Hospital, Southern medical University, Guangzhou 510515, China
| | - Jie Zha
- Department of Hematology, The First Affiliated Hospital of Xiamen University, Xiamen 361003, China
| | - Xutao Guo
- Department of Hematology, Nanfang Hospital, Southern medical University, Guangzhou 510515, China
| | - Pengcheng Shi
- Department of Hematology, Nanfang Hospital, Southern medical University, Guangzhou 510515, China
| | - Bing Xu
- Department of Hematology, Nanfang Hospital, Southern medical University, Guangzhou 510515, China; Department of Hematology, The First Affiliated Hospital of Xiamen University, Xiamen 361003, China.
| |
Collapse
|
337
|
Wang C, Singer M, Anderson AC. Molecular Dissection of CD8 + T-Cell Dysfunction. Trends Immunol 2017; 38:567-576. [PMID: 28662970 DOI: 10.1016/j.it.2017.05.008] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Revised: 05/06/2017] [Accepted: 05/31/2017] [Indexed: 12/31/2022]
Abstract
Chronic viral infections and cancer often lead to the emergence of dysfunctional or 'exhausted' CD8+ T cells, and the restoration of their functions is currently the focus of therapeutic interventions. In this review, we detail recent advances in the annotation of the gene modules and the epigenetic landscape associated with T-cell dysfunction. Together with analysis of single-cell transcriptomes, these findings have enabled a deeper and more precise understanding of the transcriptional mechanisms that induce and maintain the dysfunctional state and highlight the heterogeneity of CD8+ T-cell phenotypes present in chronically inflamed tissue. We discuss the relevance of these findings for understanding the transcriptional and spatial regulation of dysfunctional T cells and for the design of therapeutics.
Collapse
Affiliation(s)
- Chao Wang
- Evergrande Center for Immunologic Diseases and Ann Romney Center for Neurologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Meromit Singer
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Ana C Anderson
- Evergrande Center for Immunologic Diseases and Ann Romney Center for Neurologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115, USA.
| |
Collapse
|
338
|
The transcription factor Runx3 guards cytotoxic CD8 + effector T cells against deviation towards follicular helper T cell lineage. Nat Immunol 2017; 18:931-939. [PMID: 28604718 PMCID: PMC5564218 DOI: 10.1038/ni.3773] [Citation(s) in RCA: 109] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 05/18/2017] [Indexed: 12/24/2022]
Abstract
Activated CD8+ T cells differentiate into cytotoxic effector (TEFF) cells that eliminate target cells. How TEFF cell identity is established and maintained is not fully understood. We found that Runx3 deficiency limited clonal expansion and impaired upregulation of cytotoxic molecules in TEFF cells. Runx3-deficient CD8+ TEFF cells aberrantly upregulated genes characteristic of follicular helper T (TFH) cell lineage, including Bcl6, Tcf7 and Cxcr5. Mechanistically, the Runx3-CBFβ transcription factor complex deployed H3K27me3 to Bcl6 and Tcf7 genes to suppress the TFH program. Ablating Tcf7 in Runx3-deficient CD8+ TEFF cells prevented the upregulation of TFH genes and ameliorated their defective induction of cytotoxic genes. As such, Runx3-mediated Tcf7 repression coordinately enforced acquisition of cytotoxic functions and protected the cytotoxic lineage integrity by preventing TFH-lineage deviation.
Collapse
|
339
|
Ayala VI, Deleage C, Trivett MT, Jain S, Coren LV, Breed MW, Kramer JA, Thomas JA, Estes JD, Lifson JD, Ott DE. CXCR5-Dependent Entry of CD8 T Cells into Rhesus Macaque B-Cell Follicles Achieved through T-Cell Engineering. J Virol 2017; 91:e02507-16. [PMID: 28298605 PMCID: PMC5432868 DOI: 10.1128/jvi.02507-16] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2017] [Accepted: 03/01/2017] [Indexed: 02/07/2023] Open
Abstract
Follicular helper CD4 T cells, TFH, residing in B-cell follicles within secondary lymphoid tissues, are readily infected by AIDS viruses and are a major source of persistent virus despite relative control of viral replication. This persistence is due at least in part to a relative exclusion of effective antiviral CD8 T cells from B-cell follicles. To determine whether CD8 T cells could be engineered to enter B-cell follicles, we genetically modified unselected CD8 T cells to express CXC chemokine receptor 5 (CXCR5), the chemokine receptor implicated in cellular entry into B-cell follicles. Engineered CD8 T cells expressing human CXCR5 (CD8hCXCR5) exhibited ligand-specific signaling and chemotaxis in vitro Six infected rhesus macaques were infused with differentially fluorescent dye-labeled autologous CD8hCXCR5 and untransduced CD8 T cells and necropsied 48 h later. Flow cytometry of both spleen and lymph node samples revealed higher frequencies of CD8hCXCR5 than untransduced cells, consistent with preferential trafficking to B-cell follicle-containing tissues. Confocal fluorescence microscopy of thin-sectioned lymphoid tissues demonstrated strong preferential localization of CD8hCXCR5 T cells within B-cell follicles with only rare cells in extrafollicular locations. CD8hCXCR5 T cells were present throughout the follicles with some observed near infected TFH In contrast, untransduced CD8 T cells were found in the extrafollicular T-cell zone. Our ability to direct localization of unselected CD8 T cells into B-cell follicles using CXCR5 expression provides a strategy to place highly effective virus-specific CD8 T cells into these AIDS virus sanctuaries and potentially suppress residual viral replication.IMPORTANCE AIDS virus persistence in individuals under effective drug therapy or those who spontaneously control viremia remains an obstacle to definitive treatment. Infected follicular helper CD4 T cells, TFH, present inside B-cell follicles represent a major source of this residual virus. While effective CD8 T-cell responses can control viral replication in conjunction with drug therapy or in rare cases spontaneously, most antiviral CD8 T cells do not enter B-cell follicles, and those that do fail to robustly control viral replication in the TFH population. Thus, these sites are a sanctuary and a reservoir for replicating AIDS viruses. Here, we demonstrate that engineering unselected CD8 T cells to express CXCR5, a chemokine receptor on TFH associated with B-cell follicle localization, redirects them into B-cell follicles. These proof of principle results open a pathway for directing engineered antiviral T cells into these viral sanctuaries to help eliminate this source of persistent virus.
Collapse
Affiliation(s)
- Victor I Ayala
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Claire Deleage
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Matthew T Trivett
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Sumiti Jain
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Lori V Coren
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Matthew W Breed
- Laboratory Animal Science Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Joshua A Kramer
- Laboratory Animal Science Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - James A Thomas
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Jacob D Estes
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Jeffrey D Lifson
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - David E Ott
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| |
Collapse
|
340
|
Leong YA, Atnerkar A, Yu D. Human Immunodeficiency Virus Playing Hide-and-Seek: Understanding the T FH Cell Reservoir and Proposing Strategies to Overcome the Follicle Sanctuary. Front Immunol 2017; 8:622. [PMID: 28620380 PMCID: PMC5449969 DOI: 10.3389/fimmu.2017.00622] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Accepted: 05/10/2017] [Indexed: 12/20/2022] Open
Abstract
Human immunodeficiency virus (HIV) infects millions of people worldwide, and new cases continue to emerge. Once infected, the virus cannot be cleared by the immune system and causes acquired immunodeficiency syndrome. Combination antiretroviral therapeutic regimen effectively suppresses viral replication and halts disease progression. The treatment, however, does not eliminate the virus-infected cells, and interruption of treatment inevitably leads to viral rebound. The rebound virus originates from a group of virus-infected cells referred to as the cellular reservoir of HIV. Identifying and eliminating the HIV reservoir will prevent viral rebound and cure HIV infection. In this review, we focus on a recently discovered HIV reservoir in a subset of CD4+ T cells called the follicular helper T (TFH) cells. We describe the potential mechanisms for the emergence of reservoir in TFH cells, and the strategies to target and eliminate this viral reservoir.
Collapse
Affiliation(s)
- Yew Ann Leong
- Infection and Immunity Program, Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Anurag Atnerkar
- Infection and Immunity Program, Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Di Yu
- Infection and Immunity Program, Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia.,Department of Immunology and Infectious Disease, John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia
| |
Collapse
|
341
|
Leal L, Lucero C, Gatell JM, Gallart T, Plana M, García F. New challenges in therapeutic vaccines against HIV infection. Expert Rev Vaccines 2017; 16:587-600. [PMID: 28431490 DOI: 10.1080/14760584.2017.1322513] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
INTRODUCTION There is a growing interest in developing curative strategies for HIV infection. Therapeutic vaccines are one of the most promising approaches. We will review the current knowledge and the new challenges in this research field. Areas covered: PubMed and ClinicalTrial.gov databases were searched to review the progress and prospects for clinical development of immunotherapies aimed to cure HIV infection. Dendritic cells (DC)-based vaccines have yielded the best results in the field. However, major immune-virologic barriers may hamper current vaccine strategies. We will focus on some new challenges as the antigen presentation by DCs, CTL escape mutations, B cell follicle sanctuary, host immune environment (inflammation, immune activation, tolerance), latent reservoir and the lack of surrogate markers of response. Finally, we will review the rationale for designing new therapeutic vaccine candidates to be used alone or in combination with other strategies to improve their effectiveness. Expert commentary: In the next future, the combination of DCs targeting candidates, inserts to redirect responses to unmutated parts of the virus, adjuvants to redirect responses to sanctuaries or improve the balance between activation/tolerance (IL-15, anti-PD1 antibodies) and latency reversing agents could be necessary to finally achieve the remission of HIV-1 infection.
Collapse
Affiliation(s)
- Lorna Leal
- a Infectious Diseases Unit, HIVACAT, Hospital Clínic, IDIBAPS , University of Barcelona , Barcelona , Spain
| | - Constanza Lucero
- a Infectious Diseases Unit, HIVACAT, Hospital Clínic, IDIBAPS , University of Barcelona , Barcelona , Spain
| | - Josep M Gatell
- a Infectious Diseases Unit, HIVACAT, Hospital Clínic, IDIBAPS , University of Barcelona , Barcelona , Spain
| | - Teresa Gallart
- b Retrovirology and Viral Immunopathology Laboratories, HIVACAT, Hospital Clínic, IDIBAPS , University of Barcelona , Barcelona , Spain
| | - Montserrat Plana
- b Retrovirology and Viral Immunopathology Laboratories, HIVACAT, Hospital Clínic, IDIBAPS , University of Barcelona , Barcelona , Spain
| | - Felipe García
- a Infectious Diseases Unit, HIVACAT, Hospital Clínic, IDIBAPS , University of Barcelona , Barcelona , Spain
| |
Collapse
|
342
|
Wieland D, Kemming J, Schuch A, Emmerich F, Knolle P, Neumann-Haefelin C, Held W, Zehn D, Hofmann M, Thimme R. TCF1 + hepatitis C virus-specific CD8 + T cells are maintained after cessation of chronic antigen stimulation. Nat Commun 2017; 8:15050. [PMID: 28466857 PMCID: PMC5418623 DOI: 10.1038/ncomms15050] [Citation(s) in RCA: 156] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2016] [Accepted: 02/23/2017] [Indexed: 12/22/2022] Open
Abstract
Differentiation and fate of virus-specific CD8+ T cells after cessation of chronic antigen stimulation is unclear. Here we show that a TCF1+CD127+PD1+ hepatitis C virus (HCV)-specific CD8+ T-cell subset exists in chronically infected patients with phenotypic features of T-cell exhaustion and memory, both before and after treatment with direct acting antiviral (DAA) agents. This subset is maintained during, and for a long duration after, HCV elimination. After antigen re-challenge the less differentiated TCF1+CD127+PD1+ population expands, which is accompanied by emergence of terminally exhausted TCF1-CD127-PD1hi HCV-specific CD8+ T cells. These results suggest the TCF1+CD127+PD1+ HCV-specific CD8+ T-cell subset has memory-like characteristics, including antigen-independent survival and recall proliferation. We thus provide evidence for the establishment of memory-like virus-specific CD8+ T cells in a clinically relevant setting of chronic viral infection and we uncover their fate after cessation of chronic antigen stimulation, implicating a potential strategy for antiviral immunotherapy.
Collapse
Affiliation(s)
- Dominik Wieland
- Department of Medicine II, University Hospital Freiburg - Faculty of Medicine, University of Freiburg, Hugstetter Straße 55, Freiburg 79106, Germany.,Spemann Graduate School of Biology and Medicine, University of Freiburg, Freiburg 79104, Germany.,Faculty of Biology, University of Freiburg, Freiburg 79104, Germany
| | - Janine Kemming
- Department of Medicine II, University Hospital Freiburg - Faculty of Medicine, University of Freiburg, Hugstetter Straße 55, Freiburg 79106, Germany.,Faculty of Biology, University of Freiburg, Freiburg 79104, Germany
| | - Anita Schuch
- Department of Medicine II, University Hospital Freiburg - Faculty of Medicine, University of Freiburg, Hugstetter Straße 55, Freiburg 79106, Germany.,Faculty of Biology, University of Freiburg, Freiburg 79104, Germany
| | - Florian Emmerich
- Institute for Cell and Gene Therapy, University Hospital Freiburg, Hugstetter Straße 55, 79106 Freiburg, Germany
| | - Percy Knolle
- Institute of Molecular Immunology and Experimental Oncology, Technische Universität München, Klinikum rechts der Isar, Ismaningerstr. 22, München 81675, Germany
| | - Christoph Neumann-Haefelin
- Department of Medicine II, University Hospital Freiburg - Faculty of Medicine, University of Freiburg, Hugstetter Straße 55, Freiburg 79106, Germany
| | - Werner Held
- Ludwig Center for Cancer Research, Department of Fundamental Oncology, University of Lausanne, 155, Ch. Des Boveresses, Epalinges 1066, Switzerland
| | - Dietmar Zehn
- Division of Animal Physiology and Immunology, School of Life Sciences Weihenstephan, Technical University Munich, Freising, Weihenstephaner Berg 3, Freising 85354, Germany
| | - Maike Hofmann
- Department of Medicine II, University Hospital Freiburg - Faculty of Medicine, University of Freiburg, Hugstetter Straße 55, Freiburg 79106, Germany
| | - Robert Thimme
- Department of Medicine II, University Hospital Freiburg - Faculty of Medicine, University of Freiburg, Hugstetter Straße 55, Freiburg 79106, Germany
| |
Collapse
|
343
|
Elements of cancer immunity and the cancer-immune set point. Nature 2017; 541:321-330. [PMID: 28102259 DOI: 10.1038/nature21349] [Citation(s) in RCA: 3331] [Impact Index Per Article: 475.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 11/11/2016] [Indexed: 02/06/2023]
Abstract
Immunotherapy is proving to be an effective therapeutic approach in a variety of cancers. But despite the clinical success of antibodies against the immune regulators CTLA4 and PD-L1/PD-1, only a subset of people exhibit durable responses, suggesting that a broader view of cancer immunity is required. Immunity is influenced by a complex set of tumour, host and environmental factors that govern the strength and timing of the anticancer response. Clinical studies are beginning to define these factors as immune profiles that can predict responses to immunotherapy. In the context of the cancer-immunity cycle, such factors combine to represent the inherent immunological status - or 'cancer-immune set point' - of an individual.
Collapse
|
344
|
Ruffin N, Hani L, Seddiki N. From dendritic cells to B cells dysfunctions during HIV-1 infection: T follicular helper cells at the crossroads. Immunology 2017; 151:137-145. [PMID: 28231392 DOI: 10.1111/imm.12730] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 02/10/2017] [Accepted: 02/14/2017] [Indexed: 12/12/2022] Open
Abstract
T follicular helper (Tfh) cells are essential for B-cell differentiation and the subsequent antibody responses. Their numbers and functions are altered during human and simian immunodeficiency virus (HIV/SIV) infections. In lymphoid tissues, Tfh cells are present in germinal centre, where they are the main source of replicative HIV-1 and represent a major reservoir. Paradoxically, Tfh cell numbers are increased in chronically infected individuals. Understanding the fate of Tfh cells in the course of HIV-1 infection is essential for the design of efficient strategies toward a protective HIV vaccine or a cure. The purpose of this review is to summarize the recent advance in our understanding of Tfh cell dynamics during HIV/SIV infection. In particular, to explore the possible causes of their expansion in lymphoid tissues by discussing the impact of HIV-1 infection on dendritic cells, to identify the molecular players rendering Tfh cells highly susceptible to HIV-1 infection, and to consider the contribution of regulatory follicular T cells in shaping Tfh cell functions.
Collapse
Affiliation(s)
- Nicolas Ruffin
- Institut Curie, INSERM U932, PSL Research University, Paris, France
| | - Lylia Hani
- Vaccine Research Institute (VRI), Faculté de médecine, INSERM U955, Université Paris Est, Créteil Cedex, France
| | - Nabila Seddiki
- Vaccine Research Institute (VRI), Faculté de médecine, INSERM U955, Université Paris Est, Créteil Cedex, France
| |
Collapse
|
345
|
Paris RM, Milagres LG, Moysi E, Okulicz JF, Agan BK, Ganesan A, Petrovas C, Koup RA. Lower Baseline Germinal Center Activity and Preserved Th1 Immunity Are Associated With Hepatitis B Vaccine Response in Treated HIV Infection. Pathog Immun 2017; 2:66-88. [PMID: 28580437 PMCID: PMC5450971 DOI: 10.20411/pai.v2i1.175] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Why HIV-infected individuals have poor responses to standard dose and schedule hepatitis B virus immunization is not well understood. METHODS We compared the serologic and cellular immune profiles of treated HIV-infected individuals with similar durations of infection and preserved CD4 counts (> 350 cells/microliter) by hepatitis B vaccine (HBV) response before and after vaccination. RESULTS Similar levels of immune activation and plasma cytokine profile were found between non-responders and responders. The baseline plasma levels of CXCL-13, a surrogate of germinal center reactivity, were significantly lower in HBV responders compared to HBV non-responders and were a predictor of both vaccine response and titer. Furthermore, response to HBV vaccination was associated with a significantly higher frequency of circulating IgGhigh memory B cells post vaccination and preserved Th1 antigen-specific T-cell responses. CONCLUSIONS Taken together, our data suggest that preserved Th1 responses are associated with hepatitis B vaccine response in treated HIV infection.
Collapse
Affiliation(s)
- Robert M Paris
- US Military Malaria Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland.,Immunology Laboratory, Vaccine Research Center, NIAID, NIH, Bethesda, Maryland
| | - Lucimar G Milagres
- Immunology Laboratory, Vaccine Research Center, NIAID, NIH, Bethesda, Maryland.,Department of Microbiology and Immunology, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Eirini Moysi
- Tissue Analysis Core, Immunology Laboratory, Vaccine Research Center, NIAID, NIH, Bethesda, Maryland
| | - Jason F Okulicz
- Infectious Diseases Service and HIV Medical Evaluation Unit, San Antonio Military Medical Center, San Antonio, Texas
| | - Brian K Agan
- Infectious Diseases Clinical Research Program, Department of Preventive Medicine and Biostatistics, Uniformed Services University of the Health Sciences, Bethesda, Maryland.,Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland
| | - Anu Ganesan
- Infectious Diseases Clinical Research Program, Department of Preventive Medicine and Biostatistics, Uniformed Services University of the Health Sciences, Bethesda, Maryland.,Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland
| | - Constantinos Petrovas
- Tissue Analysis Core, Immunology Laboratory, Vaccine Research Center, NIAID, NIH, Bethesda, Maryland
| | - Richard A Koup
- Immunology Laboratory, Vaccine Research Center, NIAID, NIH, Bethesda, Maryland
| |
Collapse
|
346
|
He R, Yang X, Liu C, Chen X, Wang L, Xiao M, Ye J, Wu Y, Ye L. Efficient control of chronic LCMV infection by a CD4 T cell epitope-based heterologous prime-boost vaccination in a murine model. Cell Mol Immunol 2017; 15:815-826. [PMID: 28287115 DOI: 10.1038/cmi.2017.3] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Revised: 12/08/2016] [Accepted: 12/08/2016] [Indexed: 02/07/2023] Open
Abstract
CD4+ T cells are essential for sustaining CD8+ T cell responses during a chronic infection. The adoptive transfer of virus-specific CD4+ T cells has been shown to efficiently rescue exhausted CD8+ T cells. However, the question of whether endogenous virus-specific CD4+ T cell responses can be enhanced by certain vaccination strategies and subsequently reinvigorate exhausted CD8+ T cells remains unexplored. In this study, we developed a CD4+ T cell epitope-based heterologous prime-boost immunization strategy and examined the efficacy of this strategy using a mouse model of chronic lymphocytic choriomeningitis virus (LCMV) infection. We primed chronically LCMV-infected mice with a Listeria monocytogenes vector that expressed the LCMV glycoprotein-specific I-Ab-restricted CD4+ T cell epitope GP61-80 (LM-GP61) and subsequently boosted the primed mice with an influenza virus A (PR8 strain) vector that expressed the same CD4+ T cell epitope (IAV-GP61). This heterologous prime-boost vaccination strategy elicited strong anti-viral CD4+ T cell responses, which further improved both the quantity and quality of the virus-specific CD8+ T cells and led to better control of the viral loads. The combination of this strategy and the blockade of the programmed cell death-1 (PD-1) inhibitory pathway further enhanced the anti-viral CD8+ T cell responses and viral clearance. Thus, a heterologous prime-boost immunization that selectively induces virus-specific CD4+ T cell responses in conjunction with blockade of the inhibitory pathway may represent a promising therapeutic approach to treating patients with chronic viral infections.
Collapse
Affiliation(s)
- Ran He
- Center for Clinical Laboratory, Zhujiang Hospital, Southern Medical University, 510515, Guangzhou, China.,Institute of Immunology, Medical School, Third Military Medical University, 400038, Chongqing, China
| | - Xinxin Yang
- Institute of Immunology, Medical School, Third Military Medical University, 400038, Chongqing, China
| | - Cheng Liu
- Institute of Immunology, Medical School, Third Military Medical University, 400038, Chongqing, China
| | - Xiangyu Chen
- Institute of Immunology, Medical School, Third Military Medical University, 400038, Chongqing, China
| | - Lin Wang
- Institute of Immunology, Medical School, Third Military Medical University, 400038, Chongqing, China
| | - Minglu Xiao
- Institute of Immunology, Medical School, Third Military Medical University, 400038, Chongqing, China
| | - Jianqiang Ye
- Ministry of Education Key Laboratory for Avian Preventive Medicine, College of Veterinary Medicine, Yangzhou University, 225009, Yangzhou, China, Jiangsu.,Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, 225009, Yangzhou, China, Jiangsu
| | - Yuzhang Wu
- Center for Clinical Laboratory, Zhujiang Hospital, Southern Medical University, 510515, Guangzhou, China.,Institute of Immunology, Medical School, Third Military Medical University, 400038, Chongqing, China
| | - Lilin Ye
- Institute of Immunology, Medical School, Third Military Medical University, 400038, Chongqing, China.
| |
Collapse
|
347
|
Kallies A, Good-Jacobson KL. Transcription Factor T-bet Orchestrates Lineage Development and Function in the Immune System. Trends Immunol 2017; 38:287-297. [PMID: 28279590 DOI: 10.1016/j.it.2017.02.003] [Citation(s) in RCA: 107] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Revised: 02/02/2017] [Accepted: 02/08/2017] [Indexed: 12/11/2022]
Abstract
T-bet was originally described as the key transcription factor defining type 1 T helper (Th) cells. However, it is now clear that it drives the orchestrated generation of effector and memory cells in multiple different lymphocyte lineages. In addition to Th1 cells, CD8 T cells, B cells and some innate lymphocyte populations require T-bet for their development or differentiation in response to antigen. Furthermore, other Th cell populations, including T follicular helper and Th17, as well as regulatory T cells can co-opt T-bet expression to promote functional diversification and colocalization. Thus, T-bet broadly regulates transcriptional programs in response to type 1 inflammatory signals and mediates the coordinated differentiation, function, migration and survival of effector and memory lymphocyte subsets in the affected tissue. Therefore, T-bet expression is essential for effective clearance of pathogens and maintenance of immunity.
Collapse
Affiliation(s)
- Axel Kallies
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia; Department of Medical Biology, University of Melbourne, Parkville, Victoria 3010, Australia.
| | - Kim L Good-Jacobson
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia.
| |
Collapse
|
348
|
Dynamics of SIV-specific CXCR5+ CD8 T cells during chronic SIV infection. Proc Natl Acad Sci U S A 2017; 114:1976-1981. [PMID: 28159893 DOI: 10.1073/pnas.1621418114] [Citation(s) in RCA: 98] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
A significant challenge to HIV eradication is the elimination of viral reservoirs in germinal center (GC) T follicular helper (Tfh) cells. However, GCs are considered to be immune privileged for antiviral CD8 T cells. Here, we show a population of simian immunodeficiency virus (SIV)-specific CD8 T cells express CXCR5 (C-X-C chemokine receptor type 5, a chemokine receptor required for homing to GCs) and expand in lymph nodes (LNs) following pathogenic SIV infection in a cohort of vaccinated macaques. This expansion was greater in animals that exhibited superior control of SIV. The CXCR5+ SIV-specific CD8 T cells demonstrated enhanced polyfunctionality, restricted expansion of antigen-pulsed Tfh cells in vitro, and possessed a unique gene expression pattern related to Tfh and Th2 cells. The increase in CXCR5+ CD8 T cells was associated with the presence of higher frequencies of SIV-specific CD8 T cells in the GC. Following TCR-driven stimulation in vitro, CXCR5+ but not CXCR5- CD8 T cells generated both CXCR5+ as well as CXCR5- cells. However, the addition of TGF-β to CXCR5- CD8 T cells induced a population of CXCR5+ CD8 T cells, suggesting that this cytokine may be important in modulating these CXCR5+ CD8 T cells in vivo. Thus, CXCR5+ CD8 T cells represent a unique subset of antiviral CD8 T cells that expand in LNs during chronic SIV infection and may play a significant role in the control of pathogenic SIV infection.
Collapse
|
349
|
Thornhill JP, Fidler S, Klenerman P, Frater J, Phetsouphanh C. The Role of CD4+ T Follicular Helper Cells in HIV Infection: From the Germinal Center to the Periphery. Front Immunol 2017; 8:46. [PMID: 28194154 PMCID: PMC5277018 DOI: 10.3389/fimmu.2017.00046] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Accepted: 01/11/2017] [Indexed: 01/01/2023] Open
Abstract
T follicular helper cells (TFh) are key components of the adaptive immune system; they are primarily found in germinal centers (GCs) where their interaction with B cells supports humoral immune responses and efficient antibody production. They are defined by the expression of CXC receptor 5, program death-1, ICOS, and secretion of IL-21. Their differentiation is regulated by B-cell lymphoma 6. The relationship and function of circulating TFh to bona fide TFh resident in the GC is much debated. HIV infection impacts the TFh response with evidence of aberrant TFh function observed in acute and chronic infection. Effective TFh responses are associated with the development of broadly neutralizing antibody responses to HIV and may be important for viral control. In addition, TFh are preferentially infected and act as a key reservoir for latent HIV infection. This review explores recent developments in our understanding of TFh differentiation, regulation, function, and the relationship between cTFh and those in GCs, and the complex interaction between TFh and HIV infection.
Collapse
|
350
|
|