301
|
Trossini GHG, Guido RVC, Oliva G, Ferreira EI, Andricopulo AD. Quantitative structure-activity relationships for a series of inhibitors of cruzain from Trypanosoma cruzi: molecular modeling, CoMFA and CoMSIA studies. J Mol Graph Model 2009; 28:3-11. [PMID: 19376735 DOI: 10.1016/j.jmgm.2009.03.001] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2008] [Revised: 02/27/2009] [Accepted: 03/02/2009] [Indexed: 11/28/2022]
Abstract
Human parasitic diseases are the foremost threat to human health and welfare around the world. Trypanosomiasis is a very serious infectious disease against which the currently available drugs are limited and not effective. Therefore, there is an urgent need for new chemotherapeutic agents. One attractive drug target is the major cysteine protease from Trypanosoma cruzi, cruzain. In the present work, comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA) studies were conducted on a series of thiosemicarbazone and semicarbazone derivatives as inhibitors of cruzain. Molecular modeling studies were performed in order to identify the preferred binding mode of the inhibitors into the enzyme active site, and to generate structural alignments for the three-dimensional quantitative structure-activity relationship (3D QSAR) investigations. Statistically significant models were obtained (CoMFA, r2=0.96 and q2=0.78; CoMSIA, r2=0.91 and q2=0.73), indicating their predictive ability for untested compounds. The models were externally validated employing a test set, and the predicted values were in good agreement with the experimental results. The final QSAR models and the information gathered from the 3D CoMFA and CoMSIA contour maps provided important insights into the chemical and structural basis involved in the molecular recognition process of this family of cruzain inhibitors, and should be useful for the design of new structurally related analogs with improved potency.
Collapse
Affiliation(s)
- Gustavo H G Trossini
- Laboratório de Planejamento e Síntese de Quimioterápicos Potenciais Contra Endemias Tropicais, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, Av. Professor Lineu Prestes 580, 05508-900, São Paulo, SP, Brazil
| | | | | | | | | |
Collapse
|
302
|
Jung M, Park WH, Jung JC, Lim E, Lee Y, Oh S, Moon HI. Synthesis, Structural Characterization and Biological Evaluation of Novel Stilbene Derivatives as Potential Antimalarial Agents. Chem Biol Drug Des 2009; 73:346-54. [DOI: 10.1111/j.1747-0285.2009.00775.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
303
|
Lategan CA, Campbell WE, Seaman T, Smith PJ. The bioactivity of novel furanoterpenoids isolated from Siphonochilus aethiopicus. JOURNAL OF ETHNOPHARMACOLOGY 2009; 121:92-97. [PMID: 18996179 DOI: 10.1016/j.jep.2008.10.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2008] [Revised: 09/12/2008] [Accepted: 10/03/2008] [Indexed: 05/27/2023]
Abstract
AIM OF THE STUDY This study investigated the medicinal plant Siphonochilus aethiopicus (Zingiberaceae) for antiplasmodial activity. MATERIALS AND METHODS The ethyl acetate extract of Siphonochilus aethiopicus rhizomes was fractionated using solid phase extraction (SPE) and purified by high performance liquid chromatography. Structure elucidation was performed with nuclear magnetic resonance and mass spectrometry. The in vitro cytotoxicity and antiplasmodial activity was determined. In vivo schizontocidal activity was performed in a malaria mouse-model. Additional in vitro testing was done against Staphylococcus aureus, Klebsiella pneumoniae and Mycobacterium tuberculosis. RESULTS AND DISCUSSION The ethyl acetate extract showed in vitro activity against the chloroquine-sensitive (CQS) and chloroquine-resistant (CQR) strains of Plasmodium falciparum with IC(50)-values of 2.9 microg/ml and 1.4 microg/ml, respectively. Bioassay-guided fractionation led to the isolation of three novel furanoterpenoids with moderate in vitro antiplasmodial activity. The crude extract showed very good in vivo activity. The compounds and crude extract were more active against the CQR strain than the CQS strain of Plasmodium falciparum. The SPE fractions were more active than the isolated compounds. The compounds did not show good activity against the micro-organisms tested. No in vitro cytotoxicity was observed. CONCLUSION This study provides evidence of antiplasmodial compounds present in Siphonochilus aethiopicus.
Collapse
Affiliation(s)
- Carmen A Lategan
- Division of Pharmacology, Department of Medicine, University of Cape Town, K-45 OMB GSH, Observatory 7925, South Africa
| | | | | | | |
Collapse
|
304
|
Jonville MC, Kodja H, Humeau L, Fournel J, De Mol P, Cao M, Angenot L, Frédérich M. Screening of medicinal plants from Reunion Island for antimalarial and cytotoxic activity. JOURNAL OF ETHNOPHARMACOLOGY 2008; 120:382-386. [PMID: 18848979 DOI: 10.1016/j.jep.2008.09.005] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2008] [Revised: 09/04/2008] [Accepted: 09/05/2008] [Indexed: 05/26/2023]
Abstract
AIM OF THE STUDY Nine plants from Reunion Island, selected using ethnopharmacology and chemotaxonomy, were investigated for their potential antimalarial value. MATERIALS AND METHODS Thirty-eight extracts were prepared by maceration using CH(2)Cl(2) and MeOH, and were tested for in vitro activity against the 3D7 and W2 strain of Plasmodium falciparum. The most active extracts were then tested for in vitro cytotoxicity on human WI-38 fibroblasts to determine the selectivity index. Those extracts were also investigated in vivo against Plasmodium berghei infected mice. RESULTS Most active of the extracts tested were the dichloromethane leaves extracts of Nuxia verticillata Lam. (Buddlejaceae), Psiadia arguta Voigt. (Asteraceae), Lantana camara L. (Verbenaceae), the methanol extracts from Aphloia theiformis (Vahl) Benn. (Aphloiaceae) bark, and Terminalia bentzoe L. (Combretaceae) leaves displaying in vitro IC(50) values ranging from 5.7 to 14.1mug/ml. Extracts from Psiadia, Aphloia at 200mg/(kgday) and Teminalia at 50mg/(kgday) also exhibited significant (p<0.0005) parasite inhibition in mice: 75.5%, 65.6% and 83.5%, respectively. CONCLUSION Two plants showed interesting antimalarial activity with good selectivity: Aphloia theiformis and Terminalia bentzoe. Nuxia verticillata still needs to be tested in vivo, with a new batch of plant material.
Collapse
Affiliation(s)
- M C Jonville
- Université de Liège, CIRM, Laboratoire de Pharmacognosie (B36), Av de l'Hôpital, 1, 4000 Liège, Belgium.
| | | | | | | | | | | | | | | |
Collapse
|
305
|
Durand PM, Naidoo K, Coetzer TL. Evolutionary patterning: a novel approach to the identification of potential drug target sites in Plasmodium falciparum. PLoS One 2008; 3:e3685. [PMID: 18997863 PMCID: PMC2577034 DOI: 10.1371/journal.pone.0003685] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2008] [Accepted: 10/17/2008] [Indexed: 11/19/2022] Open
Abstract
Malaria continues to be the most lethal protozoan disease of humans. Drug development programs exhibit a high attrition rate and parasite resistance to chemotherapeutic drugs exacerbates the problem. Strategies that limit the development of resistance and minimize host side-effects are therefore of major importance. In this study, a novel approach, termed evolutionary patterning (EP), was used to identify suitable drug target sites that would minimize the emergence of parasite resistance. EP uses the ratio of non-synonymous to synonymous substitutions (ω) to assess the patterns of evolutionary change at individual codons in a gene and to identify codons under the most intense purifying selection (ω≤0.1). The extreme evolutionary pressure to maintain these residues implies that resistance mutations are highly unlikely to develop, which makes them attractive chemotherapeutic targets. Method validation included a demonstration that none of the residues providing pyrimethamine resistance in the Plasmodium falciparum dihydrofolate reductase enzyme were under extreme purifying selection. To illustrate the EP approach, the putative P. falciparum glycerol kinase (PfGK) was used as an example. The gene was cloned and the recombinant protein was active in vitro, verifying the database annotation. Parasite and human GK gene sequences were analyzed separately as part of protozoan and metazoan clades, respectively, and key differences in the evolutionary patterns of the two molecules were identified. Potential drug target sites containing residues under extreme evolutionary constraints were selected. Structural modeling was used to evaluate the functional importance and drug accessibility of these sites, which narrowed down the number of candidates. The strategy of evolutionary patterning and refinement with structural modeling addresses the problem of targeting sites to minimize the development of drug resistance. This represents a significant advance for drug discovery programs in malaria and other infectious diseases.
Collapse
Affiliation(s)
- Pierre M Durand
- Department of Molecular Medicine and Haematology, University of the Witwatersrand and National Health Laboratory Service, Johannesburg, South Africa.
| | | | | |
Collapse
|
306
|
Pillay P, Maharaj VJ, Smith PJ. Investigating South African plants as a source of new antimalarial drugs. JOURNAL OF ETHNOPHARMACOLOGY 2008; 119:438-454. [PMID: 18687395 DOI: 10.1016/j.jep.2008.07.003] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2008] [Revised: 06/30/2008] [Accepted: 07/08/2008] [Indexed: 05/26/2023]
Abstract
Based on the historical success of natural products as antimalarial drugs and the urgent need for new antimalarials, a number of South African medicinal plants have been evaluated for their antimalarial properties. This paper reviews the major studies conducted and their findings. Overall three ethnobotanical screening programmes have been conducted on South African plants while there have been a few studies adopting a more direct approach, where plants within a particular genus were screened for antiplasmodial activity. The paper also summarizes the bioactive molecules identified from selected plants having antiplasmodial activity. Overall the results of all studies conducted to date confirm the potential of South African medicinal plants in antimalarial drug discovery and identified a number of promising taxa and compounds for further investigation as plant-based antimalarial agents.
Collapse
Affiliation(s)
- P Pillay
- Biosciences, CSIR, P.O. Box 395, Pretoria 0002, South Africa.
| | | | | |
Collapse
|
307
|
Krungkrai J, Krungkrai SR, Supuran CT. Carbonic anhydrase inhibitors: Inhibition of Plasmodium falciparum carbonic anhydrase with aromatic/heterocyclic sulfonamides—in vitro and in vivo studies. Bioorg Med Chem Lett 2008; 18:5466-71. [DOI: 10.1016/j.bmcl.2008.09.030] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2008] [Revised: 09/05/2008] [Accepted: 09/06/2008] [Indexed: 11/25/2022]
|
308
|
Flores N, Jiménez IA, Giménez A, Ruiz G, Gutiérrez D, Bourdy G, Bazzocchi IL. Benzoic acid derivatives from Piper species and their antiparasitic activity. JOURNAL OF NATURAL PRODUCTS 2008; 71:1538-1543. [PMID: 18712933 DOI: 10.1021/np800104p] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Piper glabratum and P. acutifolium were analyzed for their content of main secondary constituents, affording nine new benzoic acid derivatives (1, 2, 4, 5, 7, and 10-13), in addition to four known compounds (3, 6, 8, and 9). Their structures were elucidated on the basis of spectroscopic data. Riguera ester reactions and optical rotation measurements established the new compounds as racemates. In the search for antiparasitic agents, the compounds were evaluated in vitro against the promastigote forms of Leishmania spp., Trypanosoma cruzi, and Plasmodium falciparum. Among the evaluated compounds, methyl 3,4-dihydroxy-5-(3'-methyl-2'-butenyl)benzoate (7) exhibited leishmanicidal effect (IC50 13.8-18.5 microg/mL) against the three Leishmania strains used, and methyl 3,4-dihydroxy-5-(2-hydroxy-3-methylbutenyl)benzoate (1), methyl 4-hydroxy-3-(2-hydroxy-3-methyl-3-butenyl)benzoate (3), and methyl 3,4-dihydroxy-5-(3-methyl-2-butenyl) benzoate (7) showed significant trypanocidal activity, with IC50 values of 16.4, 15.6, and 18.5 microg/mL, respectively.
Collapse
Affiliation(s)
- Ninoska Flores
- Instituto Universitario de Bio-Orgánica Antonio González, Universidad de La Laguna, Avenida Astrofísico Francisco Sánchez 2, La Laguna, 38206 Tenerife, Canary Islands, Spain
| | | | | | | | | | | | | |
Collapse
|
309
|
Fernández-Calienes Valdés A, Mendiola Martínez J, Scull Lizama R, Vermeersch M, Cos P, Maes L. In vitro anti-microbial activity of the Cuban medicinal plants Simarouba glauca DC, Melaleuca leucadendron L and Artemisia absinthium L. Mem Inst Oswaldo Cruz 2008; 103:615-8. [DOI: 10.1590/s0074-02762008000600019] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2008] [Accepted: 08/07/2008] [Indexed: 11/21/2022] Open
|
310
|
Oliveira K, Takahata Y. QSAR Modeling of Nucleosides Against Amastigotes ofLeishmania donovaniUsing Logistic Regression and Classification Tree. ACTA ACUST UNITED AC 2008. [DOI: 10.1002/qsar.200710172] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
311
|
Glycogen synthase kinase 3 is a potential drug target for African trypanosomiasis therapy. Antimicrob Agents Chemother 2008; 52:3710-7. [PMID: 18644955 DOI: 10.1128/aac.00364-08] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Development of a safe, effective, and inexpensive therapy for African trypanosomiasis is an urgent priority. In this study, we evaluated the validity of Trypanosoma brucei glycogen synthase kinase 3 (GSK-3) as a potential drug target. Interference with the RNA of either of two GSK-3 homologues in bloodstream-form T. brucei parasites led to growth arrest and altered parasite morphology, demonstrating their requirement for cell survival. Since the growth arrest after RNA interference appeared to be more profound for T. brucei GSK-3 "short" (Tb10.161.3140) than for T. brucei GSK-3 "long" (Tb927.7.2420), we focused on T. brucei GSK-3 short for further studies. T. brucei GSK-3 short with an N-terminal maltose-binding protein fusion was cloned, expressed, and purified in a functional form. The potency of a GSK-3-focused inhibitor library against the recombinant enzyme of T. brucei GSK-3 short, as well as bloodstream-form parasites, was evaluated with the aim of determining if compounds that inhibit enzyme activity could also block the parasites' growth and proliferation. Among the compounds active against the cell, there was an excellent correlation between activity inhibiting the T. brucei GSK-3 short enzyme and the inhibition of T. brucei growth. Thus, there is reasonable genetic and chemical validation of GSK-3 short as a drug target for T. brucei. Finally, selective inhibition may be required for therapy targeting the GSK-3 enzyme, and a molecular model of the T. brucei GSK-3 short enzyme suggests that compounds that selectively inhibit T. brucei GSK-3 short over the human GSK-3 enzymes can be found.
Collapse
|
312
|
Phillips MA, Gujjar R, Malmquist NA, White J, El Mazouni F, Baldwin J, Rathod PK. Triazolopyrimidine-based dihydroorotate dehydrogenase inhibitors with potent and selective activity against the malaria parasite Plasmodium falciparum. J Med Chem 2008; 51:3649-53. [PMID: 18522386 PMCID: PMC2624570 DOI: 10.1021/jm8001026] [Citation(s) in RCA: 149] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
A Plasmodium falciparum dihydroorotate dehydrogenase ( PfDHODH) inhibitor that is potent ( KI = 15 nM) and species-selective (>5000-fold over the human enzyme) was identified by high-throughput screening. The substituted triazolopyrimidine and its structural analogues were produced by an inexpensive three-step synthesis, and the series showed good association between PfDHODH inhibition and parasite toxicity. This study has identified the first nanomolar PfDHODH inhibitor with potent antimalarial activity in whole cells (EC50 = 79 nM).
Collapse
Affiliation(s)
- Margaret A Phillips
- Department of Pharmacology, University of Texas Southwestern Medical Center at Dallas, 6001 Forest Park Boulevard, Dallas, TX 75390-9041, USA.
| | | | | | | | | | | | | |
Collapse
|
313
|
Torres-Gómez H, Hernández-Núñez E, León-Rivera I, Guerrero-Alvarez J, Cedillo-Rivera R, Moo-Puc R, Argotte-Ramos R, Carmen Rodríguez-Gutiérrez MD, Chan-Bacab MJ, Navarrete-Vázquez G. Design, synthesis and in vitro antiprotozoal activity of benzimidazole-pentamidine hybrids. Bioorg Med Chem Lett 2008; 18:3147-51. [DOI: 10.1016/j.bmcl.2008.05.009] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2008] [Revised: 04/25/2008] [Accepted: 05/01/2008] [Indexed: 11/25/2022]
|
314
|
Porcal W, Hernández P, Boiani L, Boiani M, Ferreira A, Chidichimo A, Cazzulo JJ, Olea-Azar C, González M, Cerecetto H. New trypanocidal hybrid compounds from the association of hydrazone moieties and benzofuroxan heterocycle. Bioorg Med Chem 2008; 16:6995-7004. [PMID: 18547811 DOI: 10.1016/j.bmc.2008.05.038] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2008] [Revised: 05/16/2008] [Accepted: 05/16/2008] [Indexed: 11/30/2022]
Abstract
Hybrid compounds containing hydrazones and benzofuroxan pharmacophores were designed as potential Trypanosoma cruzi-enzyme inhibitors. The majority of the designed compounds was successfully synthesized and biologically evaluated displaying remarkable in vitro activity against different strains of T. cruzi. Unspecific cytotoxicity was evaluated using mouse macrophages, displaying isothiosemicarbazone 10 and thiosemicarbazone 12 selectivity indexes (macrophage/parasite) of 21 and 27, respectively. In addition, the mode of anti-trypanosomal action of the derivatives was investigated. Some of these derivatives were moderate inhibitors of cysteinyl active site enzymes of T. cruzi, cruzipain and trypanothione reductase. ESR experiments using T. cruzi microsomal fraction suggest that the main mechanism of action of the trypanocidal effects is the production of oxidative stress into the parasite.
Collapse
Affiliation(s)
- Williams Porcal
- Departamento de Química Orgánica, Facultad de Ciencias-Facultad de Química, Igua 4225, 11400 Montevideo, Uruguay
| | | | | | | | | | | | | | | | | | | |
Collapse
|
315
|
Hughes B. Fighting back against resistant worms. Nat Rev Drug Discov 2008. [DOI: 10.1038/nrd2574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
316
|
Bolognesi ML, Lizzi F, Perozzo R, Brun R, Cavalli A. Synthesis of a small library of 2-phenoxy-1,4-naphthoquinone and 2-phenoxy-1,4-anthraquinone derivatives bearing anti-trypanosomal and anti-leishmanial activity. Bioorg Med Chem Lett 2008; 18:2272-6. [DOI: 10.1016/j.bmcl.2008.03.009] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2008] [Revised: 03/03/2008] [Accepted: 03/03/2008] [Indexed: 11/17/2022]
|
317
|
Brenk R, Schipani A, James D, Krasowski A, Gilbert IH, Frearson J, Wyatt PG. Lessons learnt from assembling screening libraries for drug discovery for neglected diseases. ChemMedChem 2008; 3:435-44. [PMID: 18064617 PMCID: PMC2628535 DOI: 10.1002/cmdc.200700139] [Citation(s) in RCA: 352] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2007] [Revised: 09/21/2007] [Indexed: 11/11/2022]
Abstract
To enable the establishment of a drug discovery operation for neglected diseases, out of 2.3 million commercially available compounds 222 552 compounds were selected for an in silico library, 57 438 for a diverse general screening library, and 1 697 compounds for a focused kinase set. Compiling these libraries required a robust strategy for compound selection. Rules for unwanted groups were defined and selection criteria to enrich for lead-like compounds which facilitate straightforward structure-activity relationship exploration were established. Further, a literature and patent review was undertaken to extract key recognition elements of kinase inhibitors ("core fragments") to assemble a focused library for hit discovery for kinases. Computational and experimental characterisation of the general screening library revealed that the selected compounds 1) span a broad range of lead-like space, 2) show a high degree of structural integrity and purity, and 3) demonstrate appropriate solubility for the purposes of biochemical screening. The implications of this study for compound selection, especially in an academic environment with limited resources, are considered.
Collapse
Affiliation(s)
- Ruth Brenk
- University of Dundee, College of Life Sciences, James Black Centre, Dow Street, Dundee DD1 5EH, UK.
| | | | | | | | | | | | | |
Collapse
|
318
|
Too K, Brown DM, Loakes D, Bongard E, Vivas L. In vitro anti-malarial activity of N6-modified purine analogs. NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2008; 26:579-83. [PMID: 18066859 DOI: 10.1080/15257770701490134] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
A library of N6-hydroxy-, methoxy-, or amino-adenosine analogs was prepared and screened for anti-malarial properties. We found three compounds that possess anti-plasmodial activity in the low micromolar range against the multi-drug resistant VS1 strain, namely N6-hydroxy-9H-purin-6-amine (IC50 5.57 micro M), 2-amino-N6-amino-adenosine (IC50 12.2 micro M), and 2-amino-N6-amino-N6-methyladenosine (IC50 0.29 micro M). More importantly, the compounds were non-toxic, with 2-amino-N6-amino-N6-methyladenosine showing a selectivity index of 5008.
Collapse
Affiliation(s)
- Kathleen Too
- Medical Research Council, Laboratory of Molecular Biology, Cambridge, UK
| | | | | | | | | |
Collapse
|
319
|
Siddiqui AA, Ahmad G, Damian RT, Kennedy RC. Experimental vaccines in animal models for schistosomiasis. Parasitol Res 2008; 102:825-33. [PMID: 18259777 DOI: 10.1007/s00436-008-0887-6] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2007] [Accepted: 01/13/2008] [Indexed: 01/06/2023]
Abstract
Considerable morbidity and mortality results from the affliction of an estimated 200 million people worldwide by several species of schistosomes; 779 million are exposed to the disease in 74 different countries. Even though anti-parasitic drugs and other control measures, including public hygiene and snail control are available, the advent of an effective vaccine still remains the most potentially powerful means for the control of this disease. The putative vaccine could be administered to small children prior to the time when their contact with infected water is maximal, so as to prevent severe infection in the subsequent years. This review attempts to summarize the status of schistosome vaccine development with special emphasis on functionally important vaccine candidates. The importance of utilizing both murine and nonhuman primate models as a prerequisite for clinical trials is discussed.
Collapse
Affiliation(s)
- Afzal A Siddiqui
- Department of Microbiology and Immunology, Texas Tech University Health Sciences Center, 3601 4th Street, Stop 6591, Lubbock, TX 79430-6591, USA.
| | | | | | | |
Collapse
|
320
|
Birkholtz L, van Brummelen A, Clark K, Niemand J, Maréchal E, Llinás M, Louw A. Exploring functional genomics for drug target and therapeutics discovery in Plasmodia. Acta Trop 2008; 105:113-23. [PMID: 18083131 DOI: 10.1016/j.actatropica.2007.10.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2007] [Revised: 10/17/2007] [Accepted: 10/30/2007] [Indexed: 02/04/2023]
Abstract
Functional genomics approaches are indispensable tools in the drug discovery arena and have recently attained increased attention in antibacterial drug discovery research. However, the application of functional genomics to post-genomics research of Plasmodia is still in comparatively early stages. Nonetheless, with this genus having the most species sequenced of any eukaryotic organism so far, the Plasmodia could provide unique opportunities for the study of intracellular eukaryotic pathogens. This review presents the status quo of functional genomics of the malaria parasite including descriptions of the transcriptome, proteome and interactome. We provide examples for the in silico mining of the X-ome data sets and illustrate how X-omic data from drug challenged parasites might be used in elucidating amongst others, the mode-of-action of inhibitory compounds, validate potential targets and discover novel targets/therapeutics.
Collapse
|
321
|
Calogeropoulou T, Angelou P, Detsi A, Fragiadaki I, Scoulica E. Design and synthesis of potent antileishmanial cycloalkylidene-substituted ether phospholipid derivatives. J Med Chem 2008; 51:897-908. [PMID: 18220332 DOI: 10.1021/jm701166b] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Two series of novel ether phospholipids (EPs) have been synthesized. The first includes cyclodecylidene- or cyclopentadecylidene-substituted EPs carrying N,N,N-trimethylammonium or N-methylpiperidino or N-methylmorpholino head groups. The second series encompasses more rigid head groups in combination with cycloalkylidene moieties in the lipid portion. In addition, hydrogenated derivatives were obtained. All the new analogues, except 33, were 1.5- to 62-fold more potent than miltefosine against the intracellular L. infantum, and the most active ones were also less cytotoxic against the human monocytic cell line THP1 and less hemolytic than miltefosine. The analogues that combine high potency with low cytotoxicity and hemolytic activity were 19, 37, 21 23, 38, 39, and 40. Cyclopentadecylpentylphosphocholine (38) possesses an IC50 of 0.7 microM against L. infantum amastigotes and is the least cytotoxic analogue, since it does not present toxicity against THP1 macrophages, even at a concentration that is 800-fold the antiparasitic IC50 value, and does not present significant hemolytic activity.
Collapse
Affiliation(s)
- Theodora Calogeropoulou
- Institute of Organic and Pharmaceutical Chemistry, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, 11635 Athens, Greece.
| | | | | | | | | |
Collapse
|
322
|
Van Hoof S, Lacey CJ, Röhrich RC, Wiesner J, Jomaa H, Van Calenbergh S. Synthesis of Analogues of (E)-1-Hydroxy-2-methylbut-2-enyl 4-Diphosphate, an Isoprenoid Precursor and Human γδ T Cell Activator. J Org Chem 2008; 73:1365-70. [DOI: 10.1021/jo701873t] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Steven Van Hoof
- Laboratory for Medicinal Chemistry, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium, and Institut für Klinische Immunologie und Transfusionsmedizin, Justus-Liebig-Universität Giessen, Giessen, Germany
| | - Carl Jeffrey Lacey
- Laboratory for Medicinal Chemistry, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium, and Institut für Klinische Immunologie und Transfusionsmedizin, Justus-Liebig-Universität Giessen, Giessen, Germany
| | - René C. Röhrich
- Laboratory for Medicinal Chemistry, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium, and Institut für Klinische Immunologie und Transfusionsmedizin, Justus-Liebig-Universität Giessen, Giessen, Germany
| | - Jochen Wiesner
- Laboratory for Medicinal Chemistry, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium, and Institut für Klinische Immunologie und Transfusionsmedizin, Justus-Liebig-Universität Giessen, Giessen, Germany
| | - Hassan Jomaa
- Laboratory for Medicinal Chemistry, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium, and Institut für Klinische Immunologie und Transfusionsmedizin, Justus-Liebig-Universität Giessen, Giessen, Germany
| | - Serge Van Calenbergh
- Laboratory for Medicinal Chemistry, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium, and Institut für Klinische Immunologie und Transfusionsmedizin, Justus-Liebig-Universität Giessen, Giessen, Germany
| |
Collapse
|
323
|
Bello AM, Poduch E, Liu Y, Wei L, Crandall I, Wang X, Dyanand C, Kain KC, Pai EF, Kotra LP. Structure-activity relationships of C6-uridine derivatives targeting plasmodia orotidine monophosphate decarboxylase. J Med Chem 2008; 51:439-48. [PMID: 18189347 DOI: 10.1021/jm7010673] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Malaria, caused by Plasmodia parasites, has re-emerged as a major problem, imposing its fatal effects on human health, especially due to multidrug resistance. In Plasmodia, orotidine 5'-monophosphate decarboxylase (ODCase) is an essential enzyme for the de novo synthesis of uridine 5'-monophosphate. Impairing ODCase in these pathogens is a promising strategy to develop novel classes of therapeutics. Encouraged by our recent discovery that 6-iodo uridine is a potent inhibitor of P. falciparum, we investigated the structure-activity relationships of various C6 derivatives of UMP. 6-Cyano, 6-azido, 6-amino, 6-methyl, 6- N-methylamino, and 6- N, N-dimethylamino derivatives of uridine were evaluated against P. falciparum. The mononucleotides of 6-cyano, 6-azido, 6-amino, and 6-methyl uridine derivatives were studied as inhibitors of plasmodial ODCase. 6-Azidouridine 5'-monophosphate is a potent covalent inhibitor of P. falciparum ODCase. 6-Methyluridine exhibited weak antimalarial activity against P. falciparum 3D7 isolate. 6- N-Methylamino and 6- N, N-dimethylamino uridine derivatives exhibited moderate antimalarial activities.
Collapse
Affiliation(s)
- Angelica M Bello
- Center for Molecular Design and Preformulations and Division of Cell and Molecular Biology, Toronto General Research Institute/University Health Network, MaRS/TMDT, Toronto, ON, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
324
|
Majumder HK. Searching the Tritryp genomes for drug targets. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2008; 625:133-40. [PMID: 18365664 PMCID: PMC7123030 DOI: 10.1007/978-0-387-77570-8_11] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The recent publication of the complete genome sequences of Leishmania major, Trypanosoma brucei and Trypanosoma cruzi revealed that each genome contains 8300-12,000 protein-coding genes, of which approximately 6500 are common to all three genomes, and ushers in a new, post-genomic, era for trypanosomatid drug discovery. This vast amount of new information makes possible more comprehensive and accurate target identification using several new computational approaches, including identification of metabolic "choke-points", searching the parasite proteomes for orthologues of known drug targets, and identification of parasite proteins likely to interact with known drugs and drug-like small molecules. In this chapter, we describe several databases (such as GENEDB, BRENDA, KEGG, METACYC, the THERAPEUTIC TARGET DATABASE, and CHEMBANK) and algorithms (including PATHOLOGIC, PATHWAY HUNTER TOOL, AND AUToDOCK) which have been developed to facilitate the bioinformatic analyses underlying these approaches. While target identification is only the first step in the drug development pipeline, these new approaches give rise to renewed optimism for the discovery of new drugs to combat the devastating diseases caused by these parasites. Traditionally, drug discovery in the trypanosomatids (and other organisms) has proceeded from two different starting points: screening large numbers of existing compounds for activity against whole parasites or more focused screening of compounds for activity against defined molecular targets. Most existing anti-trypanosomatids drugs were developed using the former approach, although the latter has gained much attention in the last twenty years under the rubric of "rational drug design". Until recently, one of the major bottlenecks in anti-trypanosomatid drug development has been our ability to identify good targets, since only a very small percentage of the total number of trypanosomatid genes were known. That has now changed forever, with the recent (July, 2005) publication of the "Tritryp" (Trypanosoma brucei, Trypanosoma cruzi and Leishmania major) genome sequences. This vast amount of information now makes possible several new approaches for target identification and ushers in a post-genomic era for trypanosomatid drug discovery.
Collapse
Affiliation(s)
- Hemanta K. Majumder
- Molecular Parasitology Laboratory, Indian Institute of Chemical Biology, Kolkata, India
| |
Collapse
|
325
|
Osorio EJ, Robledo SM, Bastida J. Alkaloids with antiprotozoal activity. THE ALKALOIDS. CHEMISTRY AND BIOLOGY 2008; 66:113-90. [PMID: 19025098 DOI: 10.1016/s1099-4831(08)00202-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Edison J Osorio
- Grupo de Investigación en Sustancias Bioactivas, Facultad de Química-Farmacéutica, Universidad de Antioquia, A. A. 1226, Medellín, Colombia.
| | | | | |
Collapse
|
326
|
Carvalho SA, Lopes FAS, Salomão K, Romeiro NC, Wardell SMSV, de Castro SL, da Silva EF, Fraga CAM. Studies toward the structural optimization of new brazilizone-related trypanocidal 1,3,4-thiadiazole-2-arylhydrazone derivatives. Bioorg Med Chem 2008; 16:413-21. [PMID: 17904851 DOI: 10.1016/j.bmc.2007.09.027] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2007] [Revised: 09/11/2007] [Accepted: 09/13/2007] [Indexed: 11/27/2022]
Abstract
Megazol is a highly active compound against Trypanosoma cruzi, and has become a core structure for the design of new trypanocidal agents. Recently, we have identified the new potent trypanocide agent Brazilizone A, which presents an IC(50) twofold more potent than the prototype megazol. This result has encouraged us to further explore structurally-related 1,3,4-thiadiazole-2-arylhydrazone derivatives, in order to get a better understanding of their structural and antiprotozoal activity relationships. Herein we report the synthesis and trypanocidal profile of thirteen new Brazilizone A analogues, which supported the construction of 3D-QSAR models used for its structural optimization.
Collapse
Affiliation(s)
- Samir A Carvalho
- Fundação Oswaldo Cruz, Instituto de Tecnologia em Fármacos - Far-Manguinhos, Laboratório de Síntese IV, 21041-250 Rio de Janeiro, RJ, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
327
|
Frearson JA, Wyatt PG, Gilbert IH, Fairlamb AH. Target assessment for antiparasitic drug discovery. Trends Parasitol 2007; 23:589-95. [PMID: 17962072 PMCID: PMC2979298 DOI: 10.1016/j.pt.2007.08.019] [Citation(s) in RCA: 105] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2007] [Revised: 08/02/2007] [Accepted: 08/10/2007] [Indexed: 01/29/2023]
Abstract
Drug discovery is a high-risk, expensive and lengthy process taking at least 12 years and costing upwards of US$500 million per drug to reach the clinic. For neglected diseases, the drug discovery process is driven by medical need and guided by pre-defined target product profiles. Assessment and prioritisation of the most promising targets for entry into screening programmes is crucial for maximising the chances of success. Here, we describe criteria used in our drug discovery unit for target assessment and introduce the 'traffic-light' system as a prioritisation and management tool. We hope this brief review will stimulate basic scientists to acquire additional information necessary for drug discovery.
Collapse
Affiliation(s)
- Julie A Frearson
- Drug Discovery Unit, College of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | | | | | | |
Collapse
|
328
|
|
329
|
Grant WN, Behm CA. Target identification and validation for anthelmintic discovery. Expert Opin Drug Discov 2007; 2:S91-8. [DOI: 10.1517/17460441.2.s1.s91] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
330
|
Keiser J, Utzinger J. Advances in the discovery and development of trematocidal drugs. Expert Opin Drug Discov 2007; 2:S9-S23. [DOI: 10.1517/17460441.2.s1.s9] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
331
|
Woynarowski JM, Krugliak M, Ginsburg H. Pharmacogenomic analyses of targeting the AT-rich malaria parasite genome with AT-specific alkylating drugs. Mol Biochem Parasitol 2007; 154:70-81. [PMID: 17524501 DOI: 10.1016/j.molbiopara.2007.04.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2007] [Revised: 04/01/2007] [Accepted: 04/13/2007] [Indexed: 10/23/2022]
Abstract
UNLABELLED Human malaria parasites, including the most lethal Plasmodium falciparum, are increasingly resistant to existing antimalarial drugs. One remarkable opportunity to selectively target P. falciparum stems from the unique AT-richness of its genome (80% A/T, relative to 60% in human DNA). To rationally explore this opportunity, we used drugs (adozelesin and bizelesin) which distinctly target AT-rich minisatellites and an in silico approach for genome-wide analysis previously experimentally validated in human cells [Woynarowski JM, Trevino AV, Rodriguez KA, Hardies SC, Benham CJ. AT-rich islands in genomic DNA as a novel target for AT-specific DNA-reactive antitumor drugs. J Biol Chem 2001;276:40555-66]. Both drugs demonstrate a potent, rapid and irreversible inhibition of the cultured P. falciparum (50% inhibition at 110 and 10+/-2.3 pM, respectively). This antiparasital activity reflects most likely drug binding to specific super-AT-rich regions. Relative to the human genome, the P. falciparum genome shows 3.9- and 7-fold higher frequency of binding sites for adozelesin and bizelesin, respectively. The distribution of these sites is non-random with the most prominent clusters found in large unique minisatellites [median size 3.5 kbp of nearly pure A/T, with multiple converging repeats but no shared consensus other than (A/T)(n)]. Each of the fourteen P. falciparum chromosomes contains only one such "super-AT island" located within approximately 3-7.5 kbp of gene-free and nucleosome-free loci. Important functions of super-AT islands are suggested by their exceptional predicted potential to serve as matrix attachment regions (MARs) and a precise co-localization with the putative centromeres. CONCLUSION Super-AT islands, identified as unique domains in the P. falciparum genome with presumably crucial functions, offer therapeutically exploitable opportunity for new antimalarial strategies.
Collapse
Affiliation(s)
- Jan M Woynarowski
- Department of Radiation Oncology, The University of Texas Health Science Center at San Antonio, San Antonio, TX 78245, USA.
| | | | | |
Collapse
|
332
|
Pillay P, Vleggaar R, Maharaj VJ, Smith PJ, Lategan CA. Isolation and identification of antiplasmodial sesquiterpene lactones from Oncosiphon piluliferum. JOURNAL OF ETHNOPHARMACOLOGY 2007; 112:71-6. [PMID: 17350777 DOI: 10.1016/j.jep.2007.02.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2006] [Accepted: 02/05/2007] [Indexed: 05/14/2023]
Abstract
Oncosiphon piluliferum (Asteraceae) is used traditionally to treat a variety of ailments, mainly fevers. This prompted the screening of this plant for antiplasmodial properties. The dichloromethane extract of the aerial parts of the plant showed activity in vitro against the chloroquine-sensitive (IC(50) 2.6microg/ml) and the chloroquine-resistant (IC(50) 3.1microg/ml) strains of Plasmodium falciparum. Through conventional chromatographic techniques and bioassay-guided fractionation, sesquiterpene lactones of the germacranolide and eudesmanolide type displaying significant in vitro antiplasmodial activity (IC(50) values ranging from 0.4 to 4.4microg/ml) were isolated and identified by spectroscopic data. In addition, the cytotoxic effects of the active compounds against Chinese Hamster Ovarian (CHO) cells were evaluated and the compounds were found to be toxic to mammalian cells at similar concentrations. Structure-activity relationships were assessed.
Collapse
Affiliation(s)
- Pamisha Pillay
- Biosciences, CSIR, P.O. Box 395, Pretoria 0002, South Africa.
| | | | | | | | | |
Collapse
|
333
|
Pillay P, Vleggaar R, Maharaj VJ, Smith PJ, Lategan CA, Chouteau F, Chibale K. Antiplasmodial hirsutinolides from Vernonia staehelinoides and their utilization towards a simplified pharmacophore. PHYTOCHEMISTRY 2007; 68:1200-5. [PMID: 17408709 DOI: 10.1016/j.phytochem.2007.02.019] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2006] [Revised: 02/14/2007] [Accepted: 02/16/2007] [Indexed: 05/14/2023]
Abstract
The dichloromethane extract of the leaves of Vernonia staehelinoides Harv. (Asteraceae) showed in vitro activity (IC(50) approximately 3 microg/ml) against the chloroquine-sensitive (D10) and the chloroquine-resistant (K1) strains of Plasmodium falciparum. Through conventional chromatographic techniques and bioassay-guided fractionation two structurally-related hirsutinolides displaying in vitro antiplasmodial activity (IC(50) approximately 0.2 microg/ml against D10) were isolated and identified by spectroscopic data. Compounds 1, 8 alpha-(2-methylacryloyloxy)-3-oxo-1-desoxy-1,2-dehydrohirsutinolide-13-O-acetate, and 2, 8 alpha-(5'-acetoxysenecioyloxy)-3-oxo-1-desoxy-1,2-dehydrohirsutinolide-13-O-acetate were found to be cytotoxic to mammalian Chinese Hamster Ovarian (CHO) cells at similar concentrations but proved to be attractive scaffolds for structure-activity relationship studies. Two main privileged substructures, a 2(5H)-furanone unit and a dihydrofuran-4-one unit, were identified as potential pharmacophores which may be responsible for the observed biological activity. Mucochloric and mucobromic acids were selected as appropriate 2(5H)-furanone substructures and these were shown to have comparable activity against the D10 and superior activity against the K1 strains relative to the hirsutinolide natural product. Mucochloric and mucobromic acids also show selective cytotoxicity to the malaria parasites compared to mammalian (CHO) cells in vitro. The antiplasmodial data obtained in respect of these two acids suggests that the 2(5H)-furanone substructure is a key pharmacophore in the observed antiplasmodial activity.
Collapse
Affiliation(s)
- Pamisha Pillay
- Biosciences, CSIR, RSA, P.O. Box 395, Pretoria 0001, South Africa.
| | | | | | | | | | | | | |
Collapse
|
334
|
Chung MC, Ferreira EI, Santos JL, Giarolla J, Rando DG, Almeida AE, Bosquesi PL, Menegon RF, Blau L. Prodrugs for the treatment of neglected diseases. Molecules 2007; 13:616-77. [PMID: 18463559 PMCID: PMC6245083 DOI: 10.3390/molecules13030616] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2008] [Revised: 03/12/2008] [Accepted: 03/12/2008] [Indexed: 11/16/2022] Open
Abstract
Recently, World Health Organization (WHO) and Medicins San Frontieres (MSF) proposed a classification of diseases as global, neglected and extremely neglected. Global diseases, such as cancer, cardiovascular and mental (CNS) diseases represent the targets of the majority of the R&D efforts of pharmaceutical companies. Neglected diseases affect millions of people in the world yet existing drug therapy is limited and often inappropriate. Furthermore, extremely neglected diseases affect people living under miserable conditions who barely have access to the bare necessities for survival. Most of these diseases are excluded from the goals of the R&D programs in the pharmaceutical industry and therefore fall outside the pharmaceutical market. About 14 million people,mainly in developing countries, die each year from infectious diseases. From 1975 to 1999,1393 new drugs were approved yet only 1% were for the treatment of neglected diseases[3]. These numbers have not changed until now, so in those countries there is an urgent need for the design and synthesis of new drugs and in this area the prodrug approach is a very interesting field. It provides, among other effects, activity improvements and toxicity decreases for current and new drugs, improving market availability. It is worth noting that it is essential in drug design to save time and money, and prodrug approaches can be considered of high interest in this respect. The present review covers 20 years of research on the design of prodrugs for the treatment of neglected and extremely neglected diseases such as Chagas' disease (American trypanosomiasis), sleeping sickness (African trypanosomiasis), malaria, sickle cell disease, tuberculosis, leishmaniasis and schistosomiasis.
Collapse
Affiliation(s)
- Man Chin Chung
- Lapdesf - Laboratório de Desenvolvimento de Fármacos, Departamento de Fármacos e Medicamentos, Faculdade de Ciências Farmacêuticas - UNESP Rodovia Araraquara-Jaú Km 1, 14801-902, Brazil
| | - Elizabeth Igne Ferreira
- LAPEN – Laboratório de Planejamento e Síntese de Quimioterápicos Potencialmente Ativos em Endemias Tropicais, Departamento de Farmácia, Faculdade de Ciências Farmacêuticas – USP/SP, R. Prof. Lineu Prestes, 580, B-13S, Cidade Universitária, São Paulo, 05508-900, Brazil; E-mail:
| | - Jean Leandro Santos
- Lapdesf - Laboratório de Desenvolvimento de Fármacos, Departamento de Fármacos e Medicamentos, Faculdade de Ciências Farmacêuticas - UNESP Rodovia Araraquara-Jaú Km 1, 14801-902, Brazil
- LAPEN – Laboratório de Planejamento e Síntese de Quimioterápicos Potencialmente Ativos em Endemias Tropicais, Departamento de Farmácia, Faculdade de Ciências Farmacêuticas – USP/SP, R. Prof. Lineu Prestes, 580, B-13S, Cidade Universitária, São Paulo, 05508-900, Brazil; E-mail:
| | - Jeanine Giarolla
- LAPEN – Laboratório de Planejamento e Síntese de Quimioterápicos Potencialmente Ativos em Endemias Tropicais, Departamento de Farmácia, Faculdade de Ciências Farmacêuticas – USP/SP, R. Prof. Lineu Prestes, 580, B-13S, Cidade Universitária, São Paulo, 05508-900, Brazil; E-mail:
| | - Daniela Gonçales Rando
- LAPEN – Laboratório de Planejamento e Síntese de Quimioterápicos Potencialmente Ativos em Endemias Tropicais, Departamento de Farmácia, Faculdade de Ciências Farmacêuticas – USP/SP, R. Prof. Lineu Prestes, 580, B-13S, Cidade Universitária, São Paulo, 05508-900, Brazil; E-mail:
| | - Adélia Emília Almeida
- Lapdesf - Laboratório de Desenvolvimento de Fármacos, Departamento de Fármacos e Medicamentos, Faculdade de Ciências Farmacêuticas - UNESP Rodovia Araraquara-Jaú Km 1, 14801-902, Brazil
| | - Priscila Longhin Bosquesi
- Lapdesf - Laboratório de Desenvolvimento de Fármacos, Departamento de Fármacos e Medicamentos, Faculdade de Ciências Farmacêuticas - UNESP Rodovia Araraquara-Jaú Km 1, 14801-902, Brazil
| | - Renato Farina Menegon
- Lapdesf - Laboratório de Desenvolvimento de Fármacos, Departamento de Fármacos e Medicamentos, Faculdade de Ciências Farmacêuticas - UNESP Rodovia Araraquara-Jaú Km 1, 14801-902, Brazil
| | - Lorena Blau
- Lapdesf - Laboratório de Desenvolvimento de Fármacos, Departamento de Fármacos e Medicamentos, Faculdade de Ciências Farmacêuticas - UNESP Rodovia Araraquara-Jaú Km 1, 14801-902, Brazil
| |
Collapse
|
335
|
Arakaki T, Neely H, Boni E, Mueller N, Buckner FS, Van Voorhis WC, Lauricella A, DeTitta G, Luft J, Hol WGJ, Merritt EA. The structure of Plasmodium vivax phosphatidylethanolamine-binding protein suggests a functional motif containing a left-handed helix. Acta Crystallogr Sect F Struct Biol Cryst Commun 2007; 63:178-82. [PMID: 17329808 PMCID: PMC2330187 DOI: 10.1107/s1744309107007580] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2006] [Accepted: 02/13/2007] [Indexed: 11/10/2022]
Abstract
The structure of a putative Raf kinase inhibitor protein (RKIP) homolog from the eukaryotic parasite Plasmodium vivax has been studied to a resolution of 1.3 A using multiple-wavelength anomalous diffraction at the Se K edge. This protozoan protein is topologically similar to previously studied members of the phosphatidylethanolamine-binding protein (PEBP) sequence family, but exhibits a distinctive left-handed alpha-helical region at one side of the canonical phospholipid-binding site. Re-examination of previously determined PEBP structures suggests that the P. vivax protein and yeast carboxypeptidase Y inhibitor may represent a structurally distinct subfamily of the diverse PEBP-sequence family.
Collapse
Affiliation(s)
- Tracy Arakaki
- Structural Genomics of Pathogenic Protozoa (SGPP) Consortium, USA
- Department of Biochemistry, University of Washington, Seattle, WA 98195-7742, USA
| | - Helen Neely
- Structural Genomics of Pathogenic Protozoa (SGPP) Consortium, USA
- Department of Biochemistry, University of Washington, Seattle, WA 98195-7742, USA
| | - Erica Boni
- Structural Genomics of Pathogenic Protozoa (SGPP) Consortium, USA
- Department of Biochemistry, University of Washington, Seattle, WA 98195-7742, USA
| | - Natasha Mueller
- Structural Genomics of Pathogenic Protozoa (SGPP) Consortium, USA
- Department of Biochemistry, University of Washington, Seattle, WA 98195-7742, USA
| | - Frederick S. Buckner
- Structural Genomics of Pathogenic Protozoa (SGPP) Consortium, USA
- Department of Medicine, University of Washington, Seattle, WA 98195-7185, USA
| | - Wesley C. Van Voorhis
- Structural Genomics of Pathogenic Protozoa (SGPP) Consortium, USA
- Department of Medicine, University of Washington, Seattle, WA 98195-7185, USA
| | - Angela Lauricella
- Structural Genomics of Pathogenic Protozoa (SGPP) Consortium, USA
- Hauptman–Woodward Institute, Buffalo, NY 14203, USA
| | - George DeTitta
- Structural Genomics of Pathogenic Protozoa (SGPP) Consortium, USA
- Hauptman–Woodward Institute, Buffalo, NY 14203, USA
| | - Joseph Luft
- Structural Genomics of Pathogenic Protozoa (SGPP) Consortium, USA
- Hauptman–Woodward Institute, Buffalo, NY 14203, USA
| | - Wim G. J. Hol
- Structural Genomics of Pathogenic Protozoa (SGPP) Consortium, USA
- Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA
| | - Ethan A. Merritt
- Structural Genomics of Pathogenic Protozoa (SGPP) Consortium, USA
- Department of Biochemistry, University of Washington, Seattle, WA 98195-7742, USA
- Correspondence e-mail:
| |
Collapse
|
336
|
Milani M, Balconi E, Aliverti A, Mastrangelo E, Seeber F, Bolognesi M, Zanetti G. Ferredoxin-NADP+ reductase from Plasmodium falciparum undergoes NADP+-dependent dimerization and inactivation: functional and crystallographic analysis. J Mol Biol 2007; 367:501-13. [PMID: 17258767 DOI: 10.1016/j.jmb.2007.01.005] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2006] [Revised: 12/22/2006] [Accepted: 01/03/2007] [Indexed: 11/30/2022]
Abstract
The completion of the Plasmodium falciparum genome sequence has recently promoted the search for new antimalarial drugs. More specifically, metabolic pathways of the apicoplast, a key organelle for survival of the parasite, have been recognized as potential targets for the development of specific new antimalarial agents. As most apicomplexan parasites, P. falciparum displays a plant-type ferredoxin-NADP(+) reductase, yielding reduced ferredoxin for essential biosynthetic pathways in the apicoplast. Here we report a molecular, kinetic and ligand binding characterization of the recombinant ferredoxin-NADP(+) reductase from P. falciparum, in the light of current data available for plant ferredoxin-NADP(+) reductases. In parallel with the functional characterization, we describe the crystal structures of P. falciparum ferredoxin-NADP(+) reductase in free form and in complex with 2'-phospho-AMP (at 2.4 and 2.7 A resolution, respectively). The enzyme displays structural properties likely to be unique to plasmodial reductases. In particular, the two crystal structures highlight a covalent dimer, which relies on the oxidation of residue Cys99 in two opposing subunits, and a helix-coil transition that occurs in the NADP-binding domain, triggered by 2'-phospho-AMP binding. Studies in solution show that NADP(+), as well as 2'-phospho-AMP, promotes the formation of the disulfide-stabilized dimer. The isolated dimer is essentially inactive, but full activity is recovered upon disulfide reduction. The occurrence of residues unique to the plasmodial enzyme, and the discovery of specific conformational properties, highlight the NADP-binding domain of P. falciparum ferredoxin-NADP(+) reductase as particularly suited for the rational development of antimalarial compounds.
Collapse
Affiliation(s)
- Mario Milani
- CNR-INFM, Department of Biomolecular Sciences and Biotechnology, University of Milano, Via Celoria 26, 20133-Milano, Italy
| | | | | | | | | | | | | |
Collapse
|
337
|
Heikkilä T, Ramsey C, Davies M, Galtier C, Stead AMW, Johnson AP, Fishwick CWG, Boa AN, McConkey GA. Design and Synthesis of Potent Inhibitors of the Malaria Parasite Dihydroorotate Dehydrogenase. J Med Chem 2006; 50:186-91. [PMID: 17228860 DOI: 10.1021/jm060687j] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Pyrimidine biosynthesis presents an attractive drug target in malaria parasites due to the absence of a pyrimidine salvage pathway. A set of compounds designed to inhibit the Plasmodium falciparum pyrimidine biosynthetic enzyme dihydroorotate dehydrogenase (PfDHODH) was synthesized. PfDHODH-specific inhibitors with low nanomolar binding affinities were identified that bind in the N-terminal hydrophobic channel of dihydroorotate dehydrogenase, the presumed site of ubiquinone binding during oxidation of dihydroorotate to orotate. These compounds also prevented growth of cultured parasites at low micromolar concentrations. Models that suggest the mode of inhibitor binding is based on shape complementarity, matching hydrophobic regions of inhibitor and enzyme, and interaction of inhibitors with amino acid residues F188, H185, and R265 are supported by mutagenesis data. These results further highlight PfDHODH as a promising new target for chemotherapeutic intervention in prevention of malaria and provide better understanding of the factors that determine specificity over human dihydroorotate dehydrogenase.
Collapse
Affiliation(s)
- Timo Heikkilä
- School of Chemistry and the Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
338
|
Abstract
Lead discovery is currently a key bottleneck in the pipeline for much-needed novel drugs for tropical diseases such as malaria, tuberculosis, African sleeping sickness, leishmaniasis and Chagas disease. Here, we discuss the different approaches to lead discovery for tropical diseases and emphasize a coordination strategy that involves highly integrated partnerships and networks between scientists in academic institutions and industry in both wealthy industrialized countries and disease-endemic countries. This strategy offers the promise of reducing the inherently high attrition rate of the early stages of discovery research, thereby increasing the chances of success and enhancing cost-effectiveness.
Collapse
Affiliation(s)
- Solomon Nwaka
- Special Programme for Research and Training in Tropical Diseases (TDR), World Health Organization Geneva, Switzerland.
| | | |
Collapse
|
339
|
Abstract
The well-known problems of classic treatment of the leishmaniases with pentavalent antimony (reduced efficacy), difficulties of administration and increasing frequency and severity of adverse events have stimulated the search for new drugs to treat these diseases. Other injectable, oral and topical drugs have not been consistently effective, especially in the modern World. Beginning in 1998, Indian researchers conducted several trials with hexadecylphosphocholine (miltefosine) in patients with visceral leishmaniasis, and in 1999, clinical studies were initiated in Colombia for cutaneous disease. More than 2500 patients have been treated, including patients with diffuse cutaneous leishmaniasis, mucosal disease and patients coinfected with HIV. Cure rates between 91 and 100% were reached with a dose of 2.5 mg/kg/day for 28 days, with no difference between treatment-naive and relapsing patients. Mild gastrointestinal events were present in 35-60% of patients and 10-20% had mild transaminase and creatinine elevations. Miltefosine has potent leishmanicidal activity as a consequence of its interference in parasite metabolic pathways and the induction of apoptosis. Miltefosine is the first effective and safe oral agent with the potential to treat all major clinical presentations of leishmaniasis.
Collapse
Affiliation(s)
- Jaime Soto
- CIBIC, Centro de Investigaciones Bioclínicas de la Fundación FADER, Bogotá, Colombia.
| | | |
Collapse
|
340
|
Cos P, Vlietinck AJ, Berghe DV, Maes L. Anti-infective potential of natural products: how to develop a stronger in vitro 'proof-of-concept'. JOURNAL OF ETHNOPHARMACOLOGY 2006; 106:290-302. [PMID: 16698208 DOI: 10.1016/j.jep.2006.04.003] [Citation(s) in RCA: 754] [Impact Index Per Article: 41.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2006] [Revised: 04/01/2006] [Accepted: 04/03/2006] [Indexed: 05/09/2023]
Abstract
Natural products, either as pure compounds or as standardized plant extracts, provide unlimited opportunities for new drug leads because of the unmatched availability of chemical diversity. To secure this, a number of pivotal quality standards need to be set at the level of extract processing and primary evaluation in pharmacological screening models. This review provides a number of recommendations that will help to define a more sound 'proof-of-concept' for antibacterial, antifungal, antiviral and antiparasitic potential in natural products. An integrated panel of pathogens is proposed for antimicrobial profiling, using accessible standard in vitro experimental procedures, endpoint parameters and efficacy criteria. Primary requirements include: (1) use of reference strains or fully characterized clinical isolates, (2) in vitro models on the whole organism and if possible cell-based, (3) evaluation of selectivity by parallel cytotoxicity testing and/or integrated profiling against unrelated micro-organisms, (4) adequately broad dose range, enabling dose-response curves, (5) stringent endpoint criteria with IC(50)-values generally below 100microug/ml for extracts and below 25microM for pure compounds, (6) proper preparation, storage and in-test processing of extracts, (7) inclusion of appropriate controls in each in vitro test replicate (blanks, infected and reference controls) and (8) follow-up of in vitro activity ('hit'-status) in matching animal models ('lead'-status).
Collapse
Affiliation(s)
- Paul Cos
- Laboratory for Microbiology, Parasitology and Hygiene (LMPH), Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Universiteitsplein 1, 2610 Antwerp, Belgium.
| | | | | | | |
Collapse
|
341
|
Winter RW, Kelly JX, Smilkstein MJ, Dodean R, Bagby GC, Rathbun RK, Levin JI, Hinrichs D, Riscoe MK. Evaluation and lead optimization of anti-malarial acridones. Exp Parasitol 2006; 114:47-56. [PMID: 16828746 DOI: 10.1016/j.exppara.2006.03.014] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2005] [Revised: 03/27/2006] [Accepted: 03/28/2006] [Indexed: 02/06/2023]
Abstract
With 2-methoxy-6-chloroacridone as a lead compound, we synthesized and tested acridone derivatives to develop a better understanding of the anti-malarial structure-activity relationships. Over 30 acridone derivatives were synthesized. The most potent compounds contained extended alkyl chains terminated by trifluoromethyl groups and located at the 3-position of the tricyclic system. Acridones optimized in the length of the side chain and the nature of the terminal fluorinated moiety exhibited in vitro anti-malarial IC(50) values in the low nanomolar and picomolar range and were without cytotoxic effects on the proliferation and differentiation of human bone marrow progenitors or mitogen-activated murine lymphocytes at concentrations up to 100,000-fold higher. Based on a structural similarity to known anti-malarial agents it is proposed that the haloalkoxyacridones exert their anti-malarial effects through inhibition of the Plasmodium cytochrome bc(1) complex. Haloalkoxyacridones represent an extraordinarily potent novel class of chemical compounds with the potential for development as therapeutic agents to treat or prevent malaria in humans.
Collapse
Affiliation(s)
- Rolf W Winter
- Medical Research Service, RD-33, VA Medical Center, 3710 SW U.S. Veterans Hospital Road, Portland, OR 97239, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
342
|
Biot C, Daher W, Ndiaye CM, Melnyk P, Pradines B, Chavain N, Pellet A, Fraisse L, Pelinski L, Jarry C, Brocard J, Khalife J, Forfar-Bares I, Dive D. Probing the Role of the Covalent Linkage of Ferrocene into a Chloroquine Template. J Med Chem 2006; 49:4707-14. [PMID: 16854077 DOI: 10.1021/jm060259d] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A new therapeutic approach to malaria led to the discovery of ferroquine (FQ, SR97276). To assess the importance of the linkage of the ferrocenyl group to a 4-aminoquinoline scaffold, two series of 4-aminoquinolines, structurally related to FQ, were synthesized. Evaluation of antimalarial activity, physicochemical parameters, and the beta-hematin inhibition property indicate that the ferrocene moiety has to be covalently flanked by a 4-aminoquinoline and an alkylamine. Current data reinforced our choice of FQ as a drug candidate.
Collapse
Affiliation(s)
- Christophe Biot
- Unité de Catalyse et Chimie du Solide - UMR CNRS 8181, ENSCL, Bâtiment C7, USTL, B.P. 90108, 59652, Villeneuve d' Ascq Cedex, France.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
343
|
Biot C, Daher W, Chavain N, Fandeur T, Khalife J, Dive D, De Clercq E. Design and synthesis of hydroxyferroquine derivatives with antimalarial and antiviral activities. J Med Chem 2006; 49:2845-9. [PMID: 16640347 DOI: 10.1021/jm0601856] [Citation(s) in RCA: 219] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Three ferroquine (FQ) derivatives, closely mimicking the antimalarial drug hydroxychloroquine (HCQ), have been prepared. Whereas these organometallic compounds provide the expected reduced cytotoxic effects compared to FQ, they inhibit in vitro growth of Plasmodium falciparum far better than chloroquine (CQ). Moreover, this new class of bioorganometallic compounds exert antiviral effects with some selectivity toward SARS-CoV infection. These new drugs may offer an interesting alternative for Asia where SARS originated and malaria has remained endemic.
Collapse
Affiliation(s)
- Christophe Biot
- Unité de Catalyse et Chimie du Solide - UMR CNRS 8181, ENSCL, Bâtiment C7, USTL, B.P. 90108, 59652 Villeneuve d' Ascq Cedex, France.
| | | | | | | | | | | | | |
Collapse
|
344
|
Abstract
Complete or partial genome sequences have recently become available for several medically and evolutionarily important parasitic protozoa. Through the application of bioinformatics complete metabolic repertoires for these parasites can be predicted. For experimentally intractable parasites insight provided by metabolic maps generated in silico has been startling. At its more extreme end, such bioinformatics reckoning facilitated the discovery in some parasites of mitochondria remodelled beyond previous recognition, and the identification of a non-photosynthetic chloroplast relic in malarial parasites. However, for experimentally tractable parasites, mapping of the general metabolic terrain is only a first step in understanding how the parasite modulates its streamlined, yet still often puzzlingly complex, metabolism in order to complete life cycles within host, vector, or environment. This review provides a comparative overview and discussion of metabolic strategies used by several different parasitic protozoa in order to subvert and survive host defences, and illustrates how genomic data contribute to the elucidation of parasite metabolism.
Collapse
Affiliation(s)
- Michael L Ginger
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK.
| |
Collapse
|