301
|
Li JJ, Lee SH, Kim DK, Jin R, Jung DS, Kwak SJ, Kim SH, Han SH, Lee JE, Moon SJ, Ryu DR, Yoo TH, Han DS, Kang SW. Colchicine attenuates inflammatory cell infiltration and extracellular matrix accumulation in diabetic nephropathy. Am J Physiol Renal Physiol 2009; 297:F200-9. [PMID: 19369290 DOI: 10.1152/ajprenal.90649.2008] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Recent studies have demonstrated that an inflammatory mechanism contributes to the pathogenesis of diabetic nephropathy (DN). It is also known that colchicine (Col) can prevent various renal injuries via its anti-inflammatory action. However, the effect of colchicine on DN has never been explored. This study was undertaken to elucidate the effect of colchicine on inflammation and extracellular matrix accumulation in DN. In vivo, 64 rats were injected with diluent (C; n = 32) or streptozotocin intraperitoneally (DM, n = 32). Sixteen rats from each group were treated with Col. In vitro, rat mesangial cells and NRK-52E cells were cultured in media with 5.6 mM glucose (NG) or 30 mM glucose (HG) with or without 10(-8) M Col. Monocyte chemotactic protein-1 (MCP-1) mRNA expression was determined by real-time PCR (RT-PCR), and the levels of MCP-1 in renal tissue and culture media were measured by ELISA. RT-PCR and Western blotting were also performed for intercellular adhesion molecule-1 (ICAM-1) and fibronectin (FN) mRNA and protein expression, respectively, and immunohistochemical staining (IHC) for ICAM-1, FN, and ED-1 with renal tissue. Twenty-four-hour urinary albumin excretion at 6 wk and 3 mo were significantly higher in DM compared with C rats (P < 0.05), and colchicine treatment significantly reduced albuminuria in DM rats (P < 0.05). Col significantly inhibited the increase in MCP-1 mRNA expression and protein levels under diabetic conditions both in vivo and in vitro. ICAM-1 and FN expression showed a similar pattern to the expression of MCP-1. IHC revealed that the number of ED-1(+) cells were significantly higher in DM compared with C kidney (P < 0.005), and this increase was significantly attenuated by Col treatment (P < 0.01). In conclusion, Col prevents not only inflammatory cell infiltration via inhibition of enhanced MCP-1 and ICAM-1 expression but also ECM accumulation in DN. These findings provide a new perspective on the renoprotective effects of Col in DN.
Collapse
Affiliation(s)
- Jin Ji Li
- Department of Internal Medicine, College of Medicine, Brain Korea 21 for Medical Science, Yonsei University, Seoul, Korea 120-752
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
302
|
Abstract
Recent studies suggest that Stat3, a transcription factor that mediates cytokine signaling, plays a critical role in the pathogenesis of diabetic nephropathy. Complete Stat3 gene knockout is embryonic lethal; therefore, we crossed Stat3+/- mice with Stat3 mutant mice (SA/SA) that lack full Stat3 activity. This strategy generated Stat3SA/- mice (25% activity) and Stat3SA/+ mice (75% activity), which were made diabetic using streptozotocin in order to define the role of Stat3 in diabetic kidney disease. While the glomerular number was not different between these two groups of mice, the diabetic SA/- mice had significantly less proteinuria, mesangial expansion, glomerular cell proliferation, and macrophage infiltration than the diabetic SA/+ mice. The reduction in Stat3 activity did not affect glomerular hyperfiltration seen after the induction of diabetes, as it was increased to the same degree in both groups of mice. Phosphorylation of Stat3 was markedly increased in the glomeruli of diabetic SA/+ mice compared to diabetic SA/- mice. The expression of inflammatory markers, IL-6, MCP-1, and activated NF-kappaB; type IV collagen, TGF-beta, and ICAM-1 mRNA; or type IV collagen and TGF-beta protein, were all found to be significantly less in glomeruli isolated from diabetic SA/- mice, as compared with diabetic SA/+ mice. Our study shows that Stat3 plays a critical role in the regulation of inflammation and abnormal matrix synthesis at an early stage of DN.
Collapse
|
303
|
Navarro-González JF, Jarque A, Muros M, Mora C, García J. Tumor necrosis factor-alpha as a therapeutic target for diabetic nephropathy. Cytokine Growth Factor Rev 2009; 20:165-73. [PMID: 19251467 DOI: 10.1016/j.cytogfr.2009.02.005] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
Activation of innate immunity with the subsequent development of a chronic low-grade inflammatory response is now recognized as a critical factor in the pathogenesis of diabetes mellitus and diabetic complications, including diabetic nephropathy. In the setting of diabetic nephropathy, there is now evidence of the relevant contribution of pro-inflammatory cytokines, with special participation of tumor necrosis factor-alpha (TNF-alpha). This new pathogenic perspective leads to new therapeutic implications derived from modulation of inflammation and inflammatory cytokines. Experimental studies have shown the beneficial renal actions derived from TNF-alpha inhibition with the use of soluble TNF-alpha receptor fusion proteins, chimeric monoclonal antibodies and pentoxifylline (PTF). Clinical application of this strategy is nowadays limited to PTF administration, which has demonstrated significant beneficial effects in patients with diabetic nephropathy. Overall, these studies indicate that inhibition of TNF-alpha might be an efficacious treatment for renal disease secondary to diabetes mellitus.
Collapse
Affiliation(s)
- Juan F Navarro-González
- Nephrology Service, Univeristy Hospital Nuestra Señora de Candelaria, 38010 Santa Cruz de Tenerife, Spain.
| | | | | | | | | |
Collapse
|
304
|
Wang QY, Chen FQ. Clinical significance and different levels of urinary monocyte chemoattractant protein-1 in type 2 diabetes mellitus. Diabetes Res Clin Pract 2009; 83:215-9. [PMID: 19097668 DOI: 10.1016/j.diabres.2008.09.048] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2008] [Revised: 09/18/2008] [Accepted: 09/30/2008] [Indexed: 11/23/2022]
Abstract
OBJECTIVE Monocyte chemoattractant protein-1(MCP-1) is a cytokine that exhibits most potent chemotactic activity toward monocytes. It is suggested to be implicated in the development and progression of diabetic nephropathy by playing a role in infiltration of monocyte/macrophage. Recent studies have demonstrated that urinary monocyte chemoattractant protein-1 (uMCP-1) is different at different stages of diabetic nephropathy. Based on these findings, the aim of this study is to examine the level of uMCP-1 and its clinical significance at different stages of diabetic nephropathy and at the same time to describe the relationship between uMCP-1 and the various parameters. METHODS Fifty-nine cases with type 2 diabetes mellitus (T2DM) were divided into three groups according to urine albumin excretion (UAE): normal albuminuria group, microalbuminuria group and macroalbuminuria group. The levels of uMCP-1, protein excretion, blood urea nitrogen (BUN), serum creatinine (s-Cr), glycohemoglobin A1c (HbA1c), blood pressure and blood fat were measured in 59 patients with T2DM and 27 healthy adults as controls. Results Compared with normal control, levels of uMCP-1 in T2DM were significantly high, which were already elevated in normal albuminuria group. Compared with normal albuminuria group, levels of uMCP-1 in microalbuminuria group and macroalbuminuria group were significantly high. Levels of uMCP-1 in macroalbuminuria group were higher than those in microalbuminuria group. The level of uMCP-1 was positively correlated with UAE, systolic blood pressure (SBP), diastolic blood pressure (DBP), total cholesterol (TC), low density lipoprotein cholesterol (LDL-C) in T2DM patients, while it had no significant correlation with HbA1c(,) triglyceride (TG) and high density lipoprotein cholesterol (HDL-C). CONCLUSIONS MCP-1 is suggested to be implicated in the development and progression of diabetic nephropathy. It is very important to measure the level of uMCP-1 in the diagnosis and intervention of early diabetic nephropathy.
Collapse
Affiliation(s)
- Qiu-yue Wang
- Department of Endocrinology, The First Affiliated Hospital of China Medical University, Shenyang 110001, China.
| | | |
Collapse
|
305
|
Kuhad A, Chopra K. Attenuation of diabetic nephropathy by tocotrienol: involvement of NFkB signaling pathway. Life Sci 2008; 84:296-301. [PMID: 19162042 DOI: 10.1016/j.lfs.2008.12.014] [Citation(s) in RCA: 157] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2008] [Revised: 12/04/2008] [Accepted: 12/12/2008] [Indexed: 12/16/2022]
Abstract
AIM Diabetic nephropathy is a serious complication for patients with diabetes mellitus. Approximately 30-40% of patients with type I and 15% with type II diabetes mellitus develop end stage renal disease. The study was designed to evaluate the impact of tocotrienol on renal function and reno-inflammatory cascade in streptozotocin-induced diabetes. MAIN METHODS Streptozotocin (STZ)-induced diabetic rats were treated with tocotrienol (25, 50 and 100 mg/kg), alpha-tocopherol (100 mg/kg) or with vehicle form 5th to 8th weeks. After 8 weeks, urine albumin excretion, urine output, serum creatinine, blood urea nitrogen, creatinine and urea clearance were measured. Cytoplasmic and nuclear fractions of kidney was prepared for the quantification of oxidative-nitrosative stress (lipid peroxidation, superoxide dismutase, catalase, non protein thiols, total nitric oxide), tumor necrosis factor-alpha (TNF-alpha), tissue growth factor-1beta (TGF-beta1), p65 subunit of NFkappabeta and caspase-3. KEY FINDINGS After 8 weeks of STZ injection, the rats produced significant alteration in renal function, increased oxidative-nitrosative stress, TNF-alpha, TGF-beta1, caspase-3 activity in cytoplasmic lysate and active p65 subunit of NFkappabeta in nuclear lysate of kidney of diabetic rats. Interestingly, co-administration of tocotrienol significantly and dose-dependently prevented biochemical and molecular changes associated with diabetes. Tocotrienol (100 mg/kg) was demonstrated to be more effective than alpha-tocopherol (100 mg/kg). Moreover, diabetic rats treated with insulin-tocotrienol combination produced more pronounced effect on molecular parameters as compared to their respective groups. SIGNIFICANCE Taken together, the data reveal that tocotrienol modulates the release of profibrotic cytokines, oxidative stress, ongoing chronic inflammation and apoptosis and thus exerts a marked renoprotective effect.
Collapse
Affiliation(s)
- Anurag Kuhad
- Pharmacology Research Laboratory, University Institute of Pharmaceutical Sciences, UGC Centre of Advanced Study, Panjab University, Chandigarh-160 014, India
| | | |
Collapse
|
306
|
Abstract
The epidemic of Type 2 diabetes, and the parallel rising incidence of end-stage renal disease, is progressively increasing worldwide. Kidney disease is one of the major chronic microvascular complications of diabetes, and both metabolic and haemodynamic perturbations participate in its development and progression towards end-stage renal disease. Hypertension and poor metabolic control seem to interact in causing the relentless decline in renal function seen in diabetic patients. Both high circulating glucose levels and increased glomerular capillary pressure act in conjunction in stimulating the different cellular pathways leading to kidney disease. It has been suggested that mechanical forces at the glomerular level may aggravate the metabolic insult by stimulating excessive cellular glucose uptake by up-regulating the facilitative GLUT-1 (glucose transporter-1). We propose the existence of a self-maintaining cellular mechanism whereby a haemodynamic stimulus on glomerular cells induces the up-regulation of GLUT-1, an event followed by greater glucose uptake and activation of intracellular metabolic pathways, resulting in excess TGF-beta1 (transforming growth factor-beta1) production. TGF-beta1, one of the major prosclerotic cytokines in diabetic kidney disease, maintains the up-regulation of GLUT-1, perpetuating a series of cellular events that result, as their ultimate effect, in increased extracellular matrix synthesis and altered permeability of the glomerular filtration barrier. Mechanical and metabolic coupling could represent an important mechanism of injury in the diabetic kidney.
Collapse
|
307
|
Goh SY, Jasik M, Cooper ME. Agents in development for the treatment of diabetic nephropathy. Expert Opin Emerg Drugs 2008; 13:447-63. [PMID: 18764722 DOI: 10.1517/14728214.13.3.447] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
BACKGROUND Nephropathy is a major cause of morbidity and mortality in diabetic patients. Current treatments include optimization of glycemic and blood pressure control, but more innovative strategies are needed for the prevention and treatment of diabetic nephropathy. OBJECTIVES To review emerging therapies for diabetic nephropathy. METHODS This paper discusses the molecular mechanisms of diabetic nephropathy and the potential therapeutic interventions. RESULTS/CONCLUSION New therapies, including those targeting the accumulation of advanced glycation end products (AGEs) and reactive oxygen species (ROS) generation, are likely to feature in future treatment regimens. Other approaches that at this stage do not appear to be progressing include the glycosaminoglycan sulodexide and the protein kinase C-beta (PKC-beta) inhibitor, ruboxistaurin.
Collapse
Affiliation(s)
- Su-Yen Goh
- Albert Einstein Juvenile Diabetes Research Foundation Centre for Diabetes Complications, Diabetes and Metabolism Division, Baker Medical Research Institute, PO Box 6492, St Kilda Road Central, Melbourne, Victoria, 8008, Australia
| | | | | |
Collapse
|
308
|
Park J, Ryu DR, Li JJ, Jung DS, Kwak SJ, Lee SH, Yoo TH, Han SH, Lee JE, Kim DK, Moon SJ, Kim K, Han DS, Kang SW. MCP-1/CCR2 system is involved in high glucose-induced fibronectin and type IV collagen expression in cultured mesangial cells. Am J Physiol Renal Physiol 2008; 295:F749-57. [DOI: 10.1152/ajprenal.00547.2007] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Monocyte chemoattractant protein-1 (MCP-1) is a potent chemokine that plays an important role in the recruitment of macrophages. Although previous studies have demonstrated the importance of MCP-1 in the pathogenesis of diabetic nephropathy (DN) in terms of inflammation, the role of MCP-1 and its receptor (C-C chemokine receptor 2; CCR2) in extracellular matrix (ECM) accumulation under diabetic conditions has been largely unexplored. This study was undertaken to investigate the functional role of the MCP-1/CCR2 system in high glucose-induced ECM (fibronectin and type IV collagen) protein expression in cultured mesangial cells (MCs). Mouse MCs were exposed to medium containing 5.6 mM glucose (NG), NG+24.4 mM mannitol (NG+M), or 30 mM glucose (HG) with or without mutant MCP-1 (mMCP-1), CCR2 small interfering (si)RNA, or CCR2 inhibitor (RS102895). To examine the relationship between MCP-1 and transforming growth factor (TGF)-β1, MCs were also treated with TGF-β1 (2 ng/ml) with or without mMCP-1 or CCR2 siRNA. Transient transfection was performed with Lipofectamine 2000 for 24 h. Cell viability was determined by an MTT assay, mouse and human MCP-1 and TGF-β1 levels by ELISA, and CCR2 and ECM protein expression by Western blotting. Transfections of mMCP-1 and CCR2 siRNA increased human MCP-1 levels and inhibited CCR2 expression, respectively. HG-induced ECM protein expression and TGF-β1 levels were significantly attenuated by mMCP-1, CCR2 siRNA, and RS102895 ( P < 0.05). MCP-1 directly increased ECM protein expression, and this increase was inhibited by an anti-TGF-β1 antibody. In addition, TGF-β1-induced ECM protein expression was significantly abrogated by the inhibition of the MCP-1/CCR2 system ( P < 0.05). These results suggest that an interaction between the MCP-1/CCR2 system and TGF-β1 may contribute to ECM accumulation in DN.
Collapse
|
309
|
The pivotal role of VEGF on glomerular macrophage infiltration in advanced diabetic nephropathy. J Transl Med 2008; 88:949-61. [PMID: 18607348 DOI: 10.1038/labinvest.2008.60] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
A growing body of evidence implicates inflammation in the development of diabetic nephropathy. We recently reported that diabetic endothelial nitric oxide synthase knockout (eNOS KO) mice develop advanced glomerular lesions resembling human diabetic nephropathy. Vascular endothelial growth factor (VEGF) is a major factor in diabetic nephropathy, and is known to be chemotactic for macrophages. Herein, we examined the association of VEGF with macrophage infiltration in experimental diabetic nephropathy. Glomerular macrophage infiltration was markedly increased in diabetic eNOS KO mice compared to diabetic C57BL/6 mice, and correlated with glomerular injury, such as mesangiolysis, glomerular microaneurysm and nodular lesions of glomerular sclerosis. An elevation of podocyte VEGF expression correlated with infiltration of Flt-1-positive macrophage in injured glomeruli in diabetic eNOS KO mice, suggesting that VEGF could contribute to macrophage migration. Neither renal nNOS nor iNOS expression was altered in both C57BL/6 and eNOS KO mice. To determine if lack of NO could affect VEGF activation of macrophages, we examined if exogenous NO can block macrophage migration induced by VEGF in in vitro studies. Exogenous NO blocked macrophage migration and hypertrophy in response to VEGF. NO mediated these effects in part by downregulating Flt-1 expression on the macrophage. In summary, NO negatively regulates VEGF-induced macrophage migration by inhibiting Flt-1 expression. The VEGF-endothelial NO uncoupling pathway might partially explain how VEGF causes glomerular disease in diabetes.
Collapse
|
310
|
So EJ, Kim HJ, Kim CW. Proteomic analysis of human proximal tubular cells exposed to high glucose concentrations. Proteomics Clin Appl 2008; 2:1118-26. [DOI: 10.1002/prca.200780151] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2007] [Indexed: 11/06/2022]
|
311
|
Yamagishi SI, Nakamura K, Matsui T, Ueda S, Fukami K, Okuda S. Agents that block advanced glycation end product (AGE)-RAGE (receptor for AGEs)-oxidative stress system: a novel therapeutic strategy for diabetic vascular complications. Expert Opin Investig Drugs 2008; 17:983-96. [DOI: 10.1517/13543784.17.7.983] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Sho-ichi Yamagishi
- Kurume University School of Medicine, Department of Pathophysiology and Therapeutics of Diabetic Vascular Complications, Kurume, 67 Asahi-machi, Kurume 830-0011, Japan ;
| | - Kazuo Nakamura
- Kurume University School of Medicine, Department of Pathophysiology and Therapeutics of Diabetic Vascular Complications, Kurume, 67 Asahi-machi, Kurume 830-0011, Japan ;
| | - Takanori Matsui
- Kurume University School of Medicine, Department of Pathophysiology and Therapeutics of Diabetic Vascular Complications, Kurume, 67 Asahi-machi, Kurume 830-0011, Japan ;
| | - Seiji Ueda
- Kurume University School of Medicine, Department of Medicine, Division of Nephrology, Kurume, Japan
| | - Kei Fukami
- Kurume University School of Medicine, Department of Medicine, Division of Nephrology, Kurume, Japan
| | - Seiya Okuda
- Kurume University School of Medicine, Department of Medicine, Division of Nephrology, Kurume, Japan
| |
Collapse
|
312
|
Qian Y, Feldman E, Pennathur S, Kretzler M, Brosius FC. From fibrosis to sclerosis: mechanisms of glomerulosclerosis in diabetic nephropathy. Diabetes 2008; 57:1439-45. [PMID: 18511444 PMCID: PMC4239998 DOI: 10.2337/db08-0061] [Citation(s) in RCA: 246] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Ying Qian
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan
| | - Eva Feldman
- Department of Neurology, University of Michigan Medical School, Ann Arbor, Michigan
| | - Subramanian Pennathur
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan
| | - Matthias Kretzler
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan
| | - Frank C. Brosius
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan
- Department of Physiology, University of Michigan Medical School, Ann Arbor, Michigan
| |
Collapse
|
313
|
Tesch GH. MCP-1/CCL2: a new diagnostic marker and therapeutic target for progressive renal injury in diabetic nephropathy. Am J Physiol Renal Physiol 2008; 294:F697-701. [PMID: 18272603 DOI: 10.1152/ajprenal.00016.2008] [Citation(s) in RCA: 321] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Despite current therapies, many diabetic patients will suffer from declining renal function in association with progressive kidney inflammation. Recently, animal model studies have demonstrated that kidney macrophage accumulation is a critical factor in the development of diabetic nephropathy. However, specific anti-inflammatory strategies are not yet being considered for the treatment of patients with diabetic renal injury. This review highlights the chemokine monocyte chemoattractant protein-1 (MCP-1)/CC-chemokine ligand 2 as a major promoter of inflammation, renal injury, and fibrosis in diabetic nephropathy. Researchers have found that diabetes induces kidney MCP-1 production and that urine MCP-1 levels can be used to assess renal inflammation in this disease. In addition, genetic deletion and molecular blocking studies in rodents have identified MCP-1 as an important therapeutic target for treating diabetic nephropathy. Evidence also suggests that a polymorphism in the human MCP-1 gene is associated with progressive kidney failure in type 2 diabetes, which may identify patients at higher risk who need additional therapy. These findings provide a strong rationale for developing specific therapies against MCP-1 and inflammation in diabetic nephropathy.
Collapse
Affiliation(s)
- G H Tesch
- Dept. of Nephrology, Monash Medical Centre, 246 Clayton Rd., Clayton, Victoria 3168, Australia.
| |
Collapse
|
314
|
Ninichuk V, Clauss S, Kulkarni O, Schmid H, Segerer S, Radomska E, Eulberg D, Buchner K, Selve N, Klussmann S, Anders HJ. Late onset of Ccl2 blockade with the Spiegelmer mNOX-E36-3'PEG prevents glomerulosclerosis and improves glomerular filtration rate in db/db mice. THE AMERICAN JOURNAL OF PATHOLOGY 2008; 172:628-37. [PMID: 18258851 DOI: 10.2353/ajpath.2008.070601] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Diabetic kidney disease is associated with monocyte chemoattractant CC chemokine ligand 2 (CCL2)-dependent glomerular and interstitial macrophage recruitment. In addition, nephropathy is delayed in Ccl2 mutant diabetic mice. However, whether the late onset of therapeutic Ccl2 blockade modulates the progression of advanced diabetic nephropathy remains unknown. We addressed this question by antagonizing Ccl2 with mNOX-E36-3'PEG, an anti-Ccl2 L-enantiomeric RNA aptamer (ie, a Spiegelmer), which binds murine Ccl2 and blocks the recruitment of ex vivo-labeled macrophages to the kidneys of db/db mice with type 2 diabetes. We injected mNOX-E36-3'PEG subcutaneously at a dose of 50 mg/kg three times per week into uninephrectomized (1K) db/db mice with advanced glomerulopathy from 4 to 6 months of age. mNOX-E36-3'PEG reduced the number of glomerular macrophages by 40% compared with nonfunctional (control) Spiegelmer-treated 1K db/db mice. This result was associated with protection from diffuse glomerulosclerosis and significantly improved the glomerular filtration rate. mNOX-E36-3'PEG also reduced renal Ccl2 mRNA and protein expression compared with control Spiegelmer-treated 1K db/db mice of the same age. Together, the late onset of therapeutic Ccl2 blockade, eg, with specific Spiegelmers, offers protection from diffuse glomerulosclerosis in type 2 diabetic db/db mice and, thus, may represent a novel therapeutic strategy for advanced glomerulosclerosis.
Collapse
Affiliation(s)
- Volha Ninichuk
- Nephrological Center,Medical Policlinic, University of Munich, Munich, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
315
|
Wolkow PP, Niewczas MA, Perkins B, Ficociello LH, Lipinski B, Warram JH, Krolewski AS. Association of urinary inflammatory markers and renal decline in microalbuminuric type 1 diabetics. J Am Soc Nephrol 2008; 19:789-97. [PMID: 18256362 DOI: 10.1681/asn.2007050556] [Citation(s) in RCA: 114] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Progressive renal function decline begins in one third of patients with microalbuminuria and type 1 diabetes. This study examined whether this decline is associated with elevated excretion of inflammatory markers in urine. Five inflammatory markers (IL-6, IL-8, monocyte chemoattractant protein-1, interferon-gamma-inducible protein (IP-10), and macrophage inflammatory protein-1delta) were measured in urine samples from the First Joslin Study of the Natural History of Microalbuminuria in Type 1 Diabetes, a cohort recruited in 1991. Samples were obtained from 43 participants with microalbuminuria and stable renal function (nondecliners), from 28 with microalbuminuria and early progressive renal function decline (decliners), and from 74 with normoalbuminuria and stable renal function (reference). Urinary concentrations of all five inflammatory markers were significantly higher in decliners than in nondecliners, who were similar to the reference group. Multivariate analysis revealed that those with more than two markers elevated were more than five times as likely to have early progressive decline of renal function. In contrast, serum concentrations of C-reactive protein, IL-8, and macrophage inflammatory protein-1delta did not differ between decliners and nondecliners. These results support the hypothesis that inflammatory processes in the kidney contribute to the progression of nephropathy in patients with type 1 diabetes.
Collapse
Affiliation(s)
- Pawel P Wolkow
- Section on Genetics & Epidemiology, Joslin Diabetes Center, One Joslin Place, Boston, MA 02215, USA
| | | | | | | | | | | | | |
Collapse
|
316
|
Navarro-González JF, Mora-Fernández C. The role of inflammatory cytokines in diabetic nephropathy. J Am Soc Nephrol 2008; 19:433-42. [PMID: 18256353 DOI: 10.1681/asn.2007091048] [Citation(s) in RCA: 637] [Impact Index Per Article: 37.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Cytokines act as pleiotropic polypeptides regulating inflammatory and immune responses through actions on cells. They provide important signals in the pathophysiology of a range of diseases, including diabetes mellitus. Chronic low-grade inflammation and activation of the innate immune system are closely involved in the pathogenesis of diabetes and its microvascular complications. Inflammatory cytokines, mainly IL-1, IL-6, and IL-18, as well as TNF-alpha, are involved in the development and progression of diabetic nephropathy. In this context, cytokine genetics is of special interest to combinatorial polymorphisms among cytokine genes, their functional variations, and general susceptibility to diabetic nephropathy. Finally, the recognition of these molecules as significant pathogenic mediators in diabetic nephropathy leaves open the possibility of new potential therapeutic targets.
Collapse
Affiliation(s)
- Juan F Navarro-González
- Servicio de Nefrología, Hospital Universitario Nuestra Señora de Candelaria, Carretera del Rosario, 145, 38010 Santa Cruz de Tenerife, Spain.
| | | |
Collapse
|
317
|
Ogawa S, Mori T, Nako K, Ishizuka T, Ito S. Reduced albuminuria with sarpogrelate is accompanied by a decrease in monocyte chemoattractant protein-1 levels in type 2 diabetes. Clin J Am Soc Nephrol 2008; 3:362-8. [PMID: 18235151 DOI: 10.2215/cjn.03450807] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
BACKGROUND AND OBJECTIVES Sarpogrelate has been shown to reduce albuminuria in diabetic nephropathy. For examination of whether this is based on the same mechanisms as angiotensin II receptor blockers or thiazolidinedione, effects of sarpogrelate on atherosclerotic inflammatory molecules and their relations to albuminuria in patients who had diabetes and had already been treated with angiotensin II receptor blockers and with or without thiazolidinedione were examined. DESIGN, SETTING, PARTICIPANTS, & MEASUREMENTS Forty patients who had diabetes with nephropathy and arteriosclerosis obliterans and had already been treated with angiotensin II receptor blocker (n = 40) were randomly assigned to sarpogrelate (300 mg/d; n = 20) or aspirin group (100 mg/d; n = 20). Plasma monocyte chemoattractant protein-1 and urinary albumin-to-creatinine ratio and monocyte chemoattractant protein-1 were measured at baseline and 16 wk after administration. RESULTS Only the sarpogrelate group showed increases in plasma adiponectin and decreases in both plasma and urinary monocyte chemoattractant protein-1 and albumin-to-creatinine ratio levels. Moreover, percentage change of monocyte chemoattractant protein-1 level correlated positively to that of albumin-to-creatinine ratio. Even when the sarpogrelate group was further divided into two groups with (n = 9) or without thiazolidinedione (n = 11), changes in monocyte chemoattractant protein-1 or albumin-to-creatinine ratio did not differ. CONCLUSIONS Sarpogrelate can reduce albuminuria and plasma and urinary monocyte chemoattractant protein-1 levels while increasing plasma adiponectin in diabetic nephropathy. These effects seem to be mediated via mechanisms that are different from those of angiotensin II receptor blocker or thiazolidinedione.
Collapse
Affiliation(s)
- Susumu Ogawa
- Division of Nephrology, Endocrinology and Vascular Medicine, Tohoku University School of Medicine, 1-1 Seiryo-cho, Aoba-ku, Sendai 980-8574, Japan.
| | | | | | | | | |
Collapse
|
318
|
Karalliedde J, Gnudi L. Future strategies to prevent renal microvascular disease complications in diabetes. Future Cardiol 2008; 4:77-83. [DOI: 10.2217/14796678.4.1.77] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Nephropathy is one of the major chronic microvascular complications of diabetes. The epidemic of Type 2 diabetes and related incidence of end-stage renal disease is progressively increasing worldwide and represents a major public health concern that will seriously challenge any healthcare provider in the world. Despite a number of improvements in patient care, we are still unable to ameliorate or prevent the progression towards end-stage renal disease in the diabetic population. Hypertension and metabolic control appear to interact, resulting in the relentless decline in renal function observed in diabetic patients. Further understanding of the underlying mechanisms, and the development of new treatments against newly identified targets, is crucial for the prevention of this deadly microvascular diabetic complication.
Collapse
Affiliation(s)
- Janaka Karalliedde
- King’s College London, Unit for Metabolic Medicine, Department of Diabetes & Endocrinology, Cardiovascular Division, Guy’s Hospital, London, SE1 9RT, UK
| | - Luigi Gnudi
- King’s College London, Unit for Metabolic Medicine, Department of Diabetes & Endocrinology, Cardiovascular Division, Guy’s Hospital, London, SE1 9RT, UK
| |
Collapse
|
319
|
Giunti S, Tesch GH, Pinach S, Burt DJ, Cooper ME, Cavallo-Perin P, Camussi G, Gruden G. Monocyte chemoattractant protein-1 has prosclerotic effects both in a mouse model of experimental diabetes and in vitro in human mesangial cells. Diabetologia 2008; 51:198-207. [PMID: 17968528 DOI: 10.1007/s00125-007-0837-3] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2007] [Accepted: 08/03/2007] [Indexed: 10/22/2022]
Abstract
AIMS/HYPOTHESIS Diabetic nephropathy is characterised by mesangial extracellular matrix accumulation. Monocyte chemoattractant protein-1 (MCP-1), a chemokine promoting monocyte infiltration, is upregulated in the diabetic glomerulus. We performed in vitro and in vivo studies to examine whether MCP-1 may have prosclerotic actions in the setting of diabetes, presumably via its receptor, chemokine (C-C motif) receptor 2 (CCR2), which has been described in mesangial cells. METHODS Human mesangial cells were exposed to recombinant human (rh)-MCP-1 (100 ng/ml) for 12, 24 and 48 h and to rh-MCP-1 (10, 100 and 200 ng/ml) for 24 h. Fibronectin, collagen IV and transforming growth factor, beta 1 (TGF-beta1) protein levels were measured by ELISA and pericellular polymeric fibronectin levels by western blotting. The intracellular mechanisms were investigated using specific inhibitors for CCR2, nuclear factor kappa B (NF-kappaB), p38 mitogen-activated protein kinase and protein kinase C, and an anti-TGF-beta1 blocking antibody. In both non-diabetic and streptozotocin-induced diabetic mice that were deficient or not in MCP-1, glomerular fibronectin accumulation was examined by immunohistochemistry, while cortical Tgf-beta1 (also known as Tgfb1) and fibronectin mRNA and protein levels were examined by real-time PCR and western blotting. RESULTS In mesangial cells, MCP-1 binding to CCR2 induced a 2.5-fold increase in fibronectin protein levels at 24 h followed by a rise in pericellular fibronectin, whereas no changes were seen in collagen IV production. MCP-1-induced fibronectin production was TGF-beta1- and NF-kappaB-dependent. In diabetic mice, loss of MCP-1 diminished glomerular fibronectin protein production and both renal cortical Tgf-beta1 and fibronectin mRNA and protein levels. CONCLUSIONS/INTERPRETATION Our in vitro and in vivo findings indicate a role for the MCP-1/CCR2 system in fibronectin deposition in the diabetic glomerulus, providing a new therapeutic target for diabetic nephropathy.
Collapse
Affiliation(s)
- S Giunti
- Department of Internal Medicine, University of Turin, C.so AM Dogliotti, 14, 10126, Turin, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
320
|
|
321
|
Kang ES, Lee GT, Kim BS, Kim CH, Seo GH, Han SJ, Hur KY, Ahn CW, Ha H, Jung M, Ahn YS, Cha BS, Lee HC. Lithospermic acid B ameliorates the development of diabetic nephropathy in OLETF rats. Eur J Pharmacol 2008; 579:418-25. [DOI: 10.1016/j.ejphar.2007.10.070] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2007] [Revised: 10/17/2007] [Accepted: 10/22/2007] [Indexed: 10/22/2022]
|
322
|
Shertzer HG, Schneider SN, Kendig EL, Clegg DJ, D'Alessio DA, Genter MB. Acetaminophen normalizes glucose homeostasis in mouse models for diabetes. Biochem Pharmacol 2007; 75:1402-10. [PMID: 18237716 DOI: 10.1016/j.bcp.2007.12.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2007] [Revised: 12/05/2007] [Accepted: 12/06/2007] [Indexed: 11/28/2022]
Abstract
Loss of pancreatic beta cell insulin secretion is the most important element in the progression of type 1 and type 2 diabetes. Since oxidative stress is involved in the progressive loss of beta cell function, we evaluated the potential for the over-the-counter analgesic drug and antioxidant, acetaminophen (APAP), to intervene in the diabetogenic process. We used mouse models for type 1 diabetes (streptozotocin) and type 2 diabetes (high-fat diet) to examine the ability of APAP to intervene in the progression of diabetes. In C57BL/6J mice, streptozotocin caused a dosage dependent increase in fasting blood glucose (FBG), from 100 to >600mg/dl. Daily APAP (20mg/kg BW, gastric gavage), significantly prevented and partially reversed the increase in FBG levels produced by streptozotocin. After 10 weeks on a high-fat diet, mice developed fasting hyperinsulemia and impaired glucose tolerance compared to animals fed a control diet. APAP largely prevented these changes in insulin and glucose tolerance. Furthermore, APAP prevented most of the increase in body fat in mice fed the high-fat diet. One protective mechanism for APAP is suggested by studies using isolated liver mitochondria, where low micromolar concentrations abolished the production of reactive oxygen that might otherwise contribute to the destruction of pancreatic beta-cells. These findings suggest that administration of APAP to mice, in a dosage used safely by humans, reduces the production of mitochondrial reactive oxygen and concomitantly prevents the development of type 1 and type 2 diabetes in established animal models.
Collapse
Affiliation(s)
- Howard G Shertzer
- Department of Environmental Health and Center for Environmental Genetics, University of Cincinnati Medical Center, Cincinnati, OH 45267, USA
| | | | | | | | | | | |
Collapse
|
323
|
Burt D, Salvidio G, Tarabra E, Barutta F, Pinach S, Dentelli P, Camussi G, Perin PC, Gruden G. The monocyte chemoattractant protein-1/cognate CC chemokine receptor 2 system affects cell motility in cultured human podocytes. THE AMERICAN JOURNAL OF PATHOLOGY 2007; 171:1789-99. [PMID: 18055544 DOI: 10.2353/ajpath.2007.070398] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In crescentic glomerulonephritis (GN), monocyte chemoattractant protein-1 (MCP-1) is overexpressed within the glomeruli, and MCP-1 blockade has renoprotective effects. Adult podocytes are in a quiescent state, but acquisition of a migratory/proliferative phenotype has been described in crescentic GN and implicated in crescent formation. The cognate CC chemokine receptor 2 (CCR2), the MCP-1 receptor, is expressed by other cell types besides monocytes and has been implicated in both cell proliferation and migration. We investigated whether MCP-1 binding to CCR2 can induce a migratory/proliferative response in cultured podocytes. MCP-1 binding to CCR2 enhanced podocyte chemotaxis/haptotaxis in a concentration-dependent manner and had a modest effect on cell proliferation. Closure of a wounded podocyte monolayer was delayed by CCR2 blockade, and CCR2 was overexpressed at the wound edge, suggesting a role for CCR2 in driving podocyte migration. Immunohistochemical analysis of kidney biopsies from patients with crescentic GN demonstrated CCR2 expression in both podocytes and cellular crescents, confirming the clinical relevance of our in vitro findings. In conclusion, the MCP-1/CCR2 system is functionally active in podocytes and may be implicated in the migratory events triggered by podocyte injury in crescentic GN and other glomerular diseases.
Collapse
Affiliation(s)
- Davina Burt
- Diabetic Nephropathy Laboratory, Department of Internal Medicine, University of Turin, Turin, 10126, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
324
|
Matsui T, Yamagishi S, Ueda S, Nakamura K, Imaizumi T, Takeuchi M, Inoue H. Telmisartan, an angiotensin II type 1 receptor blocker, inhibits advanced glycation end-product (AGE)-induced monocyte chemoattractant protein-1 expression in mesangial cells through downregulation of receptor for AGEs via peroxisome proliferator-activated receptor-gamma activation. J Int Med Res 2007; 35:482-9. [PMID: 17697525 DOI: 10.1177/147323000703500407] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Interaction between advanced glycation end-products (AGEs) and their receptor (RAGE) plays a central role in diabetic nephropathy pathogenesis. Pathophysiological crosstalk between the AGEs-RAGE system and angiotensin II (Ang II) is also involved in this disease. This study investigated the role of proliferator-activated receptor-gamma (PPAR-gamma)-modulating activity on inhibition of monocyte chemoattractant protein (MCP-1) expression. Telmisartan, an Ang II type 1 receptor blocker, downregulated RAGE mRNA and inhibited superoxide generation and MCP-1 gene expression in mesangial cells; these processes were blocked by GW9662, a PPAR-gamma inhibitor. Candesartan, an Ang II type 1 receptor blocker, did not suppress AGEs-induced superoxide generation. Telmisartan and the antioxidant, N-acetylcysteine, completely inhibited AGEs-induced MCP-1 overproduction by mesangial cells. These results suggest that telmisartan inhibits AGEs-signalling to MCP-1 expression in mesangial cells by downregulating RAGE gene expression and subsequent oxidative stress generation via PPAR-gamma activation. This study has demonstrated a unique benefit of telmisartan in that it may function as an anti-inflammatory agent against AGEs via PPAR-gamma activation and may play a protective role in diabetic nephropathy.
Collapse
Affiliation(s)
- T Matsui
- Department of Medicine, Institute for Basic and Clinical Medicine, Kurume University School of Medicine, Kurume, Japan
| | | | | | | | | | | | | |
Collapse
|
325
|
Kosugi T, Yuzawa Y, Sato W, Arata-Kawai H, Suzuki N, Kato N, Matsuo S, Kadomatsu K. Midkine is involved in tubulointerstitial inflammation associated with diabetic nephropathy. J Transl Med 2007; 87:903-13. [PMID: 17607302 DOI: 10.1038/labinvest.3700599] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The concept that inflammation plays a crucial role in the pathogenesis of diabetic nephropathy has been recently emerging, although the principal pathology of diabetic nephropathy comprises glomerular sclerosis and associated changes in nephrons. Here, we identified the growth factor midkine (MK) as a novel key molecule involved in inflammation associated with Streptozotocin-induced diabetic nephropathy. The tubulointerstitial damage, as assessed as morphological changes, osteopontin expression, collagen I deposition and macrophage infiltration, were strikingly less in MK-deficient (Mdk(-/-)) mice than in Mdk(+/+) mice. Monocyte chemoattractant protein (MCP)-1 expression, but not that of intercellular adhesion molecule-1, was also lower in Mdk(-/-) mice. High glucose upregulated MK expression in primary-cultured tubular epithelial cells, and induced MCP-1 to a larger extent in Mdk(+/+) cells than in Mdk(-/-) cells. Correspondingly, the combination of exogenous MK and high glucose enhanced MCP-1 expression in Mdk(-/-) cells. Furthermore, high glucose and oxidant stress enhanced MK expression in macrophages. Consistent with the findings in the mouse model, MK expression was detected in the glomeruli, tubular epithelium and interstitium of kidneys from patients with diabetic nephropathy. Our data indicate that MK plays a critical role in the tubulointerstitial inflammation associated with diabetic nephropathy through activation of the MCP-1 pathway.
Collapse
Affiliation(s)
- Tomoki Kosugi
- Department of Biochemistry, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | | | | | | | | | | | | | | |
Collapse
|
326
|
Friedman DJ, Rennke HG, Csizmadia E, Enjyoji K, Robson SC. The vascular ectonucleotidase ENTPD1 is a novel renoprotective factor in diabetic nephropathy. Diabetes 2007; 56:2371-9. [PMID: 17473221 DOI: 10.2337/db06-1593] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Ectonucleoside triphosphate diphosphohydrolase 1 (ENTPD1) (also known as CD39) is the dominant vascular ectonucleotidase. By hydrolyzing ATP and ADP to AMP, ENTPD1 regulates ligand availability to a large family of P2 (purinergic) receptors. Modulation of extracellular nucleotide metabolism is an important factor in several acute and subacute models of vascular injury. We hypothesized that aberrant nucleotide signaling would promote chronic glomerular injury in diabetic nephropathy. Inducing diabetes in ENTPD1-null mice with streptozotocin resulted in increased proteinuria and more severe glomerular sclerosis compared with matched diabetic wild-type mice. Diabetic ENTPD1-null mice also had more glomerular fibrin deposition and glomerular plasminogen activator inhibitor-1 (PAI-1) staining than wild-type controls. In addition, ENTPD1-null mice showed increased glomerular inflammation, in association with higher levels of monocyte chemoattractant protein-1 (MCP-1) expression. Mesangial cell PAI-1 and MCP-1 mRNA expression were upregulated by ATP and UTP but not ADP or adenosine in vitro. The stable nucleotide analog ATPgammaS stimulated sustained expression of PAI-1 and MCP-1 in vitro, whereas the stable adenosine analog NECA [5'-(N-ethylcarboxamido)adenosine] downregulated expression of both genes. Extracellular nucleotide-stimulated upregulation of MCP-1 is, at least in part, protein kinase C dependent. We conclude that ENTPD1 is a vascular protective factor in diabetic nephropathy that modulates glomerular inflammation and thromboregulation.
Collapse
Affiliation(s)
- David J Friedman
- Renal Division, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215, USA.
| | | | | | | | | |
Collapse
|
327
|
Vesey DA, Kruger WA, Poronnik P, Gobé GC, Johnson DW. Proinflammatory and proliferative responses of human proximal tubule cells to PAR-2 activation. Am J Physiol Renal Physiol 2007; 293:F1441-9. [PMID: 17699557 DOI: 10.1152/ajprenal.00088.2007] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Despite the abundant expression of protease-activated receptor (PAR)-2 in the kidney, its relevance to renal physiology is not well understood. A role for this receptor in inflammation and cell proliferation has recently been suggested in nonrenal tissues. The aims of this study were to demonstrate that human proximal tubule cells (PTC) express functional PAR-2 and to investigate whether its activation can mediate proinflammatory and proliferative responses in these cells. Primary human PTC were cultured under serum-free conditions with or without the PAR-2-activating peptide SLIGKV-NH2 (up to 800 microM), a control peptide, VKGILS-NH2 (200 microM), or trypsin (0.01-100 nM). PAR-2 expression (RT-PCR), intracellular Ca2+ mobilization (fura-2 fluorimetry), DNA synthesis (thymidine incorporation), fibronectin production (ELISA, Western blotting), and monocyte chemotactic protein (MCP)-1 secretion (ELISA) were measured. Trypsinogen expression in kidney and PTC cultures was determined by immunohistochemistry and Western blotting. In the kidney PTC were the predominant cell type expressing PAR-2. SLIGKV-NH2, but not VKGILS-NH2, stimulated a rapid concentration-dependent mobilization of intracellular Ca2+ and ERK1/2 phosphorylation and, by 24 h, increases in DNA synthesis, fibronectin secretion, and MCP-1 secretion. These delayed responses appeared to be independent of ERK1/2. Trypsin produced similar rapid but not delayed responses. Trypsinogen was weakly expressed by PTC in the kidney and in culture. In summary, PTC are the main site of PAR-2 expression in the human kidney. In PTC cultures SLIGKV-NH2 initiates proinflammatory and proliferative responses. Trypsinogen expressed within the kidney has the potential to contribute to PAR-2 activation in certain circumstances.
Collapse
Affiliation(s)
- David A Vesey
- 1Centre for Kidney Disease Research, University of Queensland Department of Medicine, Princess Alexandra Hospital, Brisbane, Qld 4102, Australia.
| | | | | | | | | |
Collapse
|
328
|
Qi W, Chen X, Gilbert RE, Zhang Y, Waltham M, Schache M, Kelly DJ, Pollock CA. High glucose-induced thioredoxin-interacting protein in renal proximal tubule cells is independent of transforming growth factor-beta1. THE AMERICAN JOURNAL OF PATHOLOGY 2007; 171:744-54. [PMID: 17675577 PMCID: PMC1959480 DOI: 10.2353/ajpath.2007.060813] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Hyperglycemia is a causative factor in the pathogenesis of diabetic nephropathy. Here, we demonstrate the transcriptional profiles of the human proximal tubule cell line (HK-2 cells) exposed to high glucose using cDNA microarray analysis. Thioredoxin-interacting protein (Txnip) was the gene most significantly increased among 10 strongly up-regulated and 15 down-regulated genes. Txnip, heat shock proteins 70 and 90, chemokine (C-C motif) ligand 20, and matrix metalloproteinase-7 were chosen for verification of gene expression. Real-time reverse transcriptase-polymerase chain reaction confirmed the mRNA expression levels of these five genes, consistent with microarray analysis. The increased protein expression of Txnip, CCL20, and MMP7 were also verified by Western blotting and enzyme-linked immunosorbent assay. Increased expression of Txnip and of nitrotyrosine, as a marker of oxidative stress, were confirmed in vivo in diabetic Ren-2 rats. Subsequent studies focused on the dependence of Txnip expression on up-regulation of transforming growth factor (TGF)-beta1 under high-glucose conditions. Overexpression of Txnip and up-regulation of Txnip promoter activity were observed in cells in which the TGF-beta1 gene was silenced in HK-2 cells using short interfering RNA technology. High glucose further increased both Txnip expression and its promoter activity in TGF-beta1 silenced cells compared with wild-type cells exposed to high glucose, suggesting that high glucose induced Txnip through a TGF-beta1-indepen-dent pathway.
Collapse
Affiliation(s)
- Weier Qi
- Dept. of Medicine, University of Sydney, Sydney, New South Wales, Australia
| | | | | | | | | | | | | | | |
Collapse
|
329
|
Abstract
Renal inflammation may result from a myriad of insults and often is characterized by the presence of infiltrating inflammatory leukocytes within the glomerulus or tubulointerstitium. Accumulating evidence indicates that infiltrating leukocytes are key players in the induction of renal injury. Although renal inflammation often is followed by the development of fibrosis with loss of renal function, it can resolve. Resolution may be spontaneous as in poststreptococcal glomerulonephritis or after the administration of effective treatment such as immunosuppressive agents. The mechanisms and cells underlying the resolution process and the exact temporal sequence remains uncertain at present but likely involves the removal of injurious leukocytes, the down-regulation of immune responses, and the alteration of the phenotype of infiltrating macrophages from proinflammatory to prorepair. In this review we examine the role of leukocytes in both renal inflammation and repair.
Collapse
Affiliation(s)
- David Ferenbach
- MRC Centre for Inflammation Research, University of Edinburgh, Queens Medical Research Centre, Edinburgh, United Kingdom
| | | | | |
Collapse
|
330
|
Joo KW, Hwang YH, Kim JH, Oh KH, Kim H, Shin HD, Chung WK, Yang J, Park KS, Ahn C. MCP-1 and RANTES polymorphisms in Korean diabetic end-stage renal disease. J Korean Med Sci 2007; 22:611-5. [PMID: 17728497 PMCID: PMC2693807 DOI: 10.3346/jkms.2007.22.4.611] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Macrophage infiltration has been observed in the renal biopsy specimens of diabetic nephropathy (DN), and hyperglycemic state stimulates the renal expression of RANTES (regulated upon activation, normal T-cell expressed and secreted) and MCP- 1 (monocyte chemoattractant protein-1). Upregulation of RANTES and MCP-1 with infiltrating macrophages may play a crucial role in the development and progression of DN. Genetic polymorphisms of RANTES and its receptors were reported to be independent risk factors for DN. We genotyped single nucleotide polymorphism (SNPs) in the MCP-1 G-2518A, CCR2 G46295A, RANTES C-28G and G-403A in 177 diabetic end-stage renal disease (ESRD) patients and 184 patients without renal involvement (controls) in order to investigate the effects of these SNPs on DN in Korean patients with type 2 DM. There were no differences in the frequencies of SNPs and the distribution of haplotypes of RANTES promoter SNPs between two groups. In conclusion, there were no associations of MCP-1, CCR2 and RANTES promoter SNPs with diabetic ESRD in Korean population. Prospective studies with clearly-defined, homogenous cohorts are needed to confirm the effect of these genetic polymorphisms on DN.
Collapse
Affiliation(s)
- Kwon Wook Joo
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Young-Hwan Hwang
- Department of Internal Medicine, Eulji General Hospital, Eulji University, Seoul, Korea
| | - Jae Hyeon Kim
- Department of Internal Medicine, Seoul National University Boramae Hospital, Seoul, Korea
- Genome Research Center for Diabetes and Endocrine Disease, Clinical Research Institute, Seoul National University Hospital, Seoul, Korea
| | - Kook-Hwan Oh
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Hyunho Kim
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
- Cancer Research Institute, Seoul National University, Seoul, Korea
| | - Hyoung Doo Shin
- Department of Genetic Epidemiology, SNP genetics, Inc., Seoul, Korea
| | - Woo-Kyung Chung
- Department of Internal Medicine, Gil Medical Center, Gachon University, Incheon, Korea
| | - Jaeseok Yang
- Department of Internal Medicine, Gil Medical Center, Gachon University, Incheon, Korea
| | - Kyong Soo Park
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
- Genome Research Center for Diabetes and Endocrine Disease, Clinical Research Institute, Seoul National University Hospital, Seoul, Korea
| | - Curie Ahn
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
- Transplantation Research Institute, Seoul National University, Seoul, Korea
- Cancer Research Institute, Seoul National University, Seoul, Korea
| |
Collapse
|
331
|
Zhang Z, Yuan W, Sun L, Szeto FL, Wong KE, Li X, Kong J, Li YC. 1,25-Dihydroxyvitamin D3 targeting of NF-kappaB suppresses high glucose-induced MCP-1 expression in mesangial cells. Kidney Int 2007; 72:193-201. [PMID: 17507908 DOI: 10.1038/sj.ki.5002296] [Citation(s) in RCA: 144] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Macrophages accumulate in kidney glomeruli and interstitium of patients with diabetic nephropathy in response to monocyte chemoattractant protein-1 (MCP-1); a chemokine produced by both tubular epithelial and mesangial cells (MCs). Vitamin D and its analogs have been shown to have renoprotective effects; however, there are few studies involving diabetic nephropathy. We explored mechanisms by which 1,25-dihydroxyvitamin D3 (1,25(OH)2D3) can be renoprotective by measuring MCP-1 expression in MCs. Using a luciferase reporter assay, we found that high glucose (HG)-induced MCP-1 transcription and that this induction is blocked by 1,25(OH)2D3. Electrophoretic mobility shift and chromatin immunoprecipitation assays showed that HG increased the p65/p50 binding to the two NF-kappaB sites within the promoter. This was suppressed by 1,25(OH)2D3, but this decrease was reversed by overexpression of p65. 1,25(OH)2D3 was found to stabilize IkappaBalpha leading to an inhibition of p65 translocation to the nucleus and subsequent reduction of NF-kappaB binding. In primary MCs prepared from vitamin D receptor knockout animals, basal MCP-1 levels were elevated but not affected by 1,25(OH)2D3. The analog paricalcitol inhibited the induction and activity of MCP-1 while ameliorating glomerulosclerosis in streptozotocin-diabetic mice. Our results suggest that 1,25(OH)2D3 might block hyperglycemia-induced renal injury by blunting NF-kappaB activation.
Collapse
Affiliation(s)
- Z Zhang
- Department of Medicine and Committee on Molecular Metabolism and Nutrition, Division of Biological Sciences, The University of Chicago, Chicago, Illinois 60637, USA
| | | | | | | | | | | | | | | |
Collapse
|
332
|
Ninichuk V, Khandoga AG, Segerer S, Loetscher P, Schlapbach A, Revesz L, Feifel R, Khandoga A, Krombach F, Nelson PJ, Schlöndorff D, Anders HJ. The role of interstitial macrophages in nephropathy of type 2 diabetic db/db mice. THE AMERICAN JOURNAL OF PATHOLOGY 2007; 170:1267-76. [PMID: 17392166 PMCID: PMC1829460 DOI: 10.2353/ajpath.2007.060937] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Diabetic nephropathy is associated with interstitial macrophage infiltrates, but their contribution to disease progression is unclear. We addressed this question by blockade of chemokine receptor (CCR)1 because CCR1 mediates the macrophage recruitment to the renal interstitium. In fact, when CCR1 was blocked with BL5923, a novel orally available CCR1 antagonist, the interstitial recruitment of ex vivo labeled macrophages was markedly decreased in uninephrectomized male db/db mice with advanced diabetic nephropathy. Likewise, BL5923 (60 mg/kg, twice a day) orally administered from months 5 to 6 of life reduced the numbers of interstitial macrophages in uninephrectomized db/db mice. This was associated with reduced numbers of Ki-67 proliferating tubular epithelial and interstitial cells, tubular atrophy, and interstitial fibrosis in uninephrectomized db/db mice. Glomerular pathology and proteinuria were not affected by the CCR1 antagonist. BL5923 reduced renal mRNA expression of Ccl2, Ccr1, Ccr2, Ccr5, transforming growth factor-beta1, and collagen I-alpha1 when compared with untreated uninephrectomized male db/db mice of the same age. Thus, we identified a previously unrecognized role for interstitial macrophages for tubulointerstitial injury, loss of peritubular microvasculature, interstitial inflammation, and fibrosis in type 2 diabetic db/db mice. These data identify oral treatment with the CCR1 antagonist BL5923 as a potential therapy for late-stage diabetic nephropathy.
Collapse
MESH Headings
- Administration, Oral
- Animals
- Antigens, Differentiation/analysis
- Cell Line
- Cells, Cultured
- Diabetes Mellitus, Type 2/complications
- Diabetic Neuropathies/etiology
- Diabetic Neuropathies/pathology
- Gene Expression/drug effects
- Immunohistochemistry
- Kidney/drug effects
- Kidney/metabolism
- Kidney/pathology
- Kidney Glomerulus/drug effects
- Kidney Glomerulus/metabolism
- Kidney Glomerulus/pathology
- Kidney Tubules/drug effects
- Kidney Tubules/metabolism
- Kidney Tubules/pathology
- Macrophages/metabolism
- Macrophages/pathology
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Obese
- Microscopy, Fluorescence
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Receptors, CCR1
- Receptors, CCR2
- Receptors, Chemokine/antagonists & inhibitors
- Receptors, Chemokine/genetics
- Receptors, Chemokine/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Transforming Growth Factor beta1/genetics
Collapse
Affiliation(s)
- Volha Ninichuk
- Medizinische Poliklinik, Klinikum der Universität München-Innenstadt, Pettenkoferstr. 8a, 80336 Munchen, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
333
|
Chow FY, Nikolic-Paterson DJ, Ma FY, Ozols E, Rollins BJ, Tesch GH. Monocyte chemoattractant protein-1-induced tissue inflammation is critical for the development of renal injury but not type 2 diabetes in obese db/db mice. Diabetologia 2007; 50:471-80. [PMID: 17160673 DOI: 10.1007/s00125-006-0497-8] [Citation(s) in RCA: 190] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2006] [Accepted: 09/05/2006] [Indexed: 01/12/2023]
Abstract
AIMS/HYPOTHESIS Tissue macrophage accumulation is thought to induce insulin resistance during obesity and stimulate the progression of diabetic nephropathy. Monocyte chemoattractant protein-1 (MCP-1) is a potent stimulator of macrophage recruitment. It is increased in adipose tissue during obesity and in diabetic kidneys, suggesting that inflammation of these tissues may be MCP-1-dependent. Based on these findings, the aim of this study was to examine whether a deficiency in MCP-1 would alter the development of type 2 diabetes and its renal complications. MATERIALS AND METHODS The role of MCP-1 in the progression of type 2 diabetes and its associated renal injury was assessed in obese db/db mice that were deficient in the gene encoding MCP-1 (Ccl2). RESULTS The incidence and development of type 2 diabetes were similar in Ccl2(+/+) and Ccl2(-/-) db/db mice between 8 and 32 weeks of age. Body mass, hyperglycaemia, hyperinsulinaemia, glucose and insulin tolerance, plasma triacylglycerol and serum NEFA were not different between these strains. Pathological changes in epididymal adipose tissue, including increases in macrophage accumulation and Tnfa mRNA and reductions in Adipoq mRNA, were unaffected by the absence of MCP-1. In contrast, kidney macrophage accumulation and the progression of diabetic renal injury (albuminuria, histopathology, renal fibrosis) were substantially reduced in Ccl2(-/-) compared with Ccl2(+/+) db/db mice with equivalent diabetes. CONCLUSIONS/INTERPRETATION Our study demonstrates that MCP-1 promotes type 2 diabetic renal injury but does not influence the development of obesity, insulin resistance or type 2 diabetes in db/db mice. MCP-1 plays a critical role in inflammation of the kidney, but not adipose tissue, during the progression of type 2 diabetes.
Collapse
Affiliation(s)
- F Y Chow
- Department of Nephrology, Monash Medical Centre, Clayton, VIC, 3168, Australia
| | | | | | | | | | | |
Collapse
|
334
|
Gu L, Ni Z, Qian J, Tomino Y. Pravastatin Inhibits Carboxymethyllysine-Induced Monocyte Chemoattractant Protein 1 Expression in Podocytes via Prevention of Signalling Events. ACTA ACUST UNITED AC 2007; 106:e1-10. [PMID: 17347584 DOI: 10.1159/000100498] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2006] [Accepted: 12/14/2006] [Indexed: 11/19/2022]
Abstract
BACKGROUND Up-regulation of local monocyte chemoattractant protein 1 (MCP-1) production is involved in glomerular damage through macrophage recruitment and activation in diabetic nephropathy. Advanced glycation end-products induced chemokine production in cultured mesangial cells and podocytes. Statins prevented recruitment of macrophages to the glomeruli, suggesting that statins may have the ability of anti-inflammation. In the present studies, we investigated the effects of pravastatin in the carboxymethyllysine (CML)-induced MCP-1 expression in mouse differentiated podocytes. METHODS MCP-1 gene and protein expressions were examined using RT-PCR and ELISA. Dichlorofluorescein-sensitive intracellular reactive oxygen species (ROS) generation was measured by confocal microscopy. Activation of extracellular signal-regulated kinase (ERK), nuclear factor (NF) kappaB and Sp1 were studied using Western blotting and immunocytochemistry. RESULTS MCP-1 was induced by CML in a time- and dose-dependent manner. CML-induced MCP-1 mRNA and protein production were inhibited by 0.1 or 1 mM pravastatin. CML rapidly generated intracellular ROS in podocytes. Pravastatin did not have any ability of blocking ROS generation. Phosphorylated ERK was found in podocytes incubated with CML and was prevented by pravastatin in a dose-dependent manner. Both Western blotting and immunocytochemistry results suggested that pretreatment of podocytes with pravastatin prevented the CML-induced NF-kappaB and Sp1 translocation. CONCLUSION These results suggest that pravastatin prevents CML to induce MCP-1 expression in podocytes via modulation of the intracellular ERK/NF-kappaB and Sp1 signalling pathway.
Collapse
Affiliation(s)
- Leyi Gu
- Renal Division, Renji Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai, China.
| | | | | | | |
Collapse
|
335
|
Yasui N, Kajimoto K, Sumiya T, Okuda T, Iwai N. The Monocyte Chemotactic Protein-1 Gene May Contribute to Hypertension in Dahl Salt-Sensitive Rats. Hypertens Res 2007; 30:185-93. [PMID: 17460389 DOI: 10.1291/hypres.30.185] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
In a previous study, we performed a genome-wide quantitative trait loci (QTLs) analysis for blood pressure using F2 rats derived from Dahl salt-sensitive (DS) and Lewis (LEW) rats and identified two QTLs that influenced blood pressure levels. Although we determined that one of the causative genes in the chromosome (Ch) 1 region seemed to be Klk1, we did not perform detailed analyses on the Ch10 QTL region. The purpose of the present study was to identify candidate genes that influence blood pressure in the Ch10 QTL region. Using microarray analysis, we compiled a list of the genes that are differentially expressed between the two strains and that were localized to the Ch10 QTL region. Subsequent reverse transcription-polymerase chain reaction (RT-PCR) and Northern blot analysis identified that, while the expression levels of Ccl2 mRNA were not different between the kidneys of DS and LEW rats fed a normal diet, those in DS were 10-fold higher than those in LEW under a high-salt diet. Although the promoter reporter assay failed to identify causative nucleotide changes that led to the differential expression, monocyte chemotactic protein-1 (MCP-1) release from isolated monocytes were significantly higher in DS than in LEW. Intriguingly, this Ch10 QTL for blood pressure was also a possible QTL for urinary albumin excretion. Since Ccl2 is well known to be involved in various types of renal injury, it is likely that a higher expression of Ccl2 might aggravate macrophage infiltration, which in turn could aggravate tubulointerstitial injury, and thereby accelerate salt-sensitive hypertension. Thus, Ccl2 appears to be a interesting candidate gene for salt-sensitive hypertension in DS.
Collapse
Affiliation(s)
- Naomi Yasui
- Research Institute, National Cardiovascular Center, Japan
| | | | | | | | | |
Collapse
|
336
|
Abstract
Diabetic nephropathy has become the main cause of renal failure, but unfortunately the intimate mechanisms leading to the development and progression of renal injury are not yet fully known. Activated innate immunity and inflammation are relevant factors in the pathogenesis of diabetes. Moreover, different inflammatory molecules, including chemokines, adhesion molecules, and proinflammatory cytokines, may be critical factors in the development of microvascular diabetic complications, including nephropathy. This new pathogenic perspective leads to important therapeutic considerations, with new pathogenic pathways becoming important therapeutic targets that can be translated into clinical treatments for diabetic nephropathy.
Collapse
|
337
|
Abstract
The possibility that proteinuria may accelerate kidney disease progression to end-stage renal failure has received support from the results of increasing numbers of experimental and clinical studies. Evidence indicating that this process occurs through multiple pathways, including induction of tubular chemokine expression and complement activation that lead to inflammatory cell infiltration in the interstitium and sustained fibrogenesis, is reviewed. Macrophages are prominent in the interstitial inflammatory infiltrate. This cell type mediates progression of renal injury to the extent that macrophage numbers in renal biopsy predict renal survival in patients with chronic renal disease. Chemoattractants and adhesive molecules for inflammatory cells are upregulated by excess ultrafiltered protein load of proximal tubular cells via activation of NF-kappaB-dependent and NF-kappaB-independent pathways. This mechanism is a potential target for therapeutic approaches, as shown by beneficial effects of manipulations with inhibitory molecules of NF-kappaB activation or of chemokine receptors in experimental studies. Targeting complement synthesis or activation in proximal tubule might offer novel therapeutic opportunities. Finally, proximal tubular cell receptors for uptake of plasma proteins that are under investigation may provide activation signals on excess tubular protein handling.
Collapse
Affiliation(s)
- Mauro Abbate
- Mario Negri Institute for Pharmacological Research, Bergamo, Italy
| | | | | |
Collapse
|
338
|
Affiliation(s)
- Sara Giunti
- Baker Medical Research Institute, 75 Commercial Rd, Prahran VIC 3181, Melbourne, Australia
| | | | | |
Collapse
|
339
|
Soma J, Sato K, Saito H, Tsuchiya Y. Effect of tranilast in early-stage diabetic nephropathy. Nephrol Dial Transplant 2006; 21:2795-9. [PMID: 16820373 DOI: 10.1093/ndt/gfl325] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Tranilast is an antifibrotic drug known to suppress collagen synthesis by fibroblasts by interfering with the effects of TGF-beta. We recently reported that it slowed the progression rate of advanced diabetic nephropathy (DN) by reducing the accumulation of collagens in renal tissue. The present study was undertaken to examine the effect of tranilast on early-stage DN. METHODS Among out-patients with diabetes mellitus, we selected patients with (i) urinary albumin excretion of 30-1000 mg/g creatinine (/gCr) in the first morning urine, (ii) serum creatinine (SCr) < or =1.2 mg/dl and no haematuria and (iii) currently taking an angiotensin-converting enzyme inhibitor or angiotensin receptor blocker. Twenty patients fulfilled the criteria, of whom 10 were selected at random and commenced on tranilast [100 mg, 3 times daily; T(+) group]. The remaining 10 patients comprised the T(-) group. Excretion of both urinary type IV collagen (U-IV) and albumin (U-A) in the first morning urine was measured every 3 months. The follow-up period was 1 year. RESULTS At baseline, no significant differences were observed in SCr, HbA(1c), blood pressure and U-A excretion between the T(+) and T(-) groups, but U-IV excretion in the T(+) group was higher than in the T(-) group (6.4 +/- 0.66 vs 3.7 +/- 0.36 microg/gCr, mean +/- SEM, P < 0.01). At 1 year, SCr was not different from the baseline in either group. In the T(+) group, however, excretion rates of both U-IV and U-A tended to decrease with time, and after 1 year, were significantly decreased compared with excretion at baseline (U-A: 279 +/- 78 to 191 +/- 62 mg/gCr; P = 0.049, U-IV: 6.4 +/- 0.66 to 4.4 +/- 0.99 microg/gCr; P = 0.02). In contrast, in the T(-) group, excretion of both U-A and U-IV tended to increase with time. The changes of both U-A and U-IV excretions in the two groups took statistically different trends through tranilast treatment (P = 0.01 and P = 0.04, respectively). CONCLUSIONS Our results suggest that tranilast could be therapeutically beneficial in early-stage DN.
Collapse
Affiliation(s)
- Jun Soma
- Department of Nephrology, Iwate Prefectural Central Hospital, 1-4-1 Ueda, Morioka 020-0066, Japan.
| | | | | | | |
Collapse
|