301
|
Vucenik I, Shamsuddin AM. Cancer inhibition by inositol hexaphosphate (IP6) and inositol: from laboratory to clinic. J Nutr 2003; 133:3778S-3784S. [PMID: 14608114 DOI: 10.1093/jn/133.11.3778s] [Citation(s) in RCA: 179] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Inositol hexaphosphate (IP6) is a naturally occurring polyphosphorylated carbohydrate that is present in substantial amounts in almost all plant and mammalian cells. It was recently recognized to possess multiple biological functions. A striking anticancer effect of IP6 was demonstrated in different experimental models. Inositol is also a natural constituent possessing moderate anticancer activity. The most consistent and best anticancer results were obtained from the combination of IP6 plus inositol. In addition to reducing cell proliferation, IP6 increases differentiation of malignant cells, often resulting in a reversion to normal phenotype. Exogenously administered IP6 is rapidly taken into the cells and dephosphorylated to lower-phosphate inositol phosphates, which further interfere with signal transduction pathways and cell cycle arrest. Enhanced immunity and antioxidant properties can also contribute to tumor cell destruction. However, the molecular mechanisms underlying this anticancer action are not fully understood. Because it is abundantly present in regular diet, efficiently absorbed from the gastrointestinal tract, and safe, IP6 holds great promise in our strategies for the prevention and treatment of cancer. IP6 plus inositol enhances the anticancer effect of conventional chemotherapy, controls cancer metastases, and improves the quality of life, as shown in a pilot clinical trial. The data strongly argue for the use of IP6 plus inositol in our strategies for cancer prevention and treatment. However, the effectiveness and safety of IP6 plus inositol at therapeutic doses needs to be determined in phase I and phase II clinical trials in humans.
Collapse
Affiliation(s)
- Ivana Vucenik
- Department of Medical and Research Technology, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| | | |
Collapse
|
302
|
Abstract
myo-Inositol-1,2,3,4,5,6-hexakisphosphate (Ins P(6)) was first described as an abundant form of phosphorus in plant seeds and other plant tissues and dubbed "phytic acid". Subsequently it was found to be a common constituent in eukaryotic cells, its metabolism a basic component of cellular housekeeping. In addition to phosphate, myo-inositol (Ins) and mineral storage and retrieval in plant organs and tissues, other roles for Ins P(6) include service as a major metabolic pool in Ins phosphate and pyrophosphate pathways involved in signaling and regulation; possibly as an effector or ligand in these processes; as a form of energy currency and in ATP regeneration; in RNA export and DNA repair; and as an anti-oxidant. The relatively recent demonstration that pyrophosphate-containing derivatives of Ins P(6) can function as phosphate donors in the regeneration of ATP is reminiscent of the proposal, made four decades ago in studies of seed development, that Ins P(6) itself may serve in this function. Studies of Ins P(6) in non-plant systems rarely include the consideration that this compound might represent a significant fraction of cellular P; cellular phosphate nutrition has been viewed as either not interesting or of little importance. However, there may be few fundamental differences among diverse eukaryotes in both the metabolic pathways involving Ins P(6) and the spectrum of possible roles for it and its metabolites.
Collapse
Affiliation(s)
- Victor Raboy
- USDA-ARS, 1691 South 2700 West, Aberdeen, ID 83210, USA.
| |
Collapse
|
303
|
Messenguy F, Dubois E. Role of MADS box proteins and their cofactors in combinatorial control of gene expression and cell development. Gene 2003; 316:1-21. [PMID: 14563547 DOI: 10.1016/s0378-1119(03)00747-9] [Citation(s) in RCA: 196] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
In all organisms, correct development, growth and function depends on the precise and integrated control of the expression of their genes. Often, gene regulation depends upon the cooperative binding of proteins to DNA and upon protein-protein interactions. Eukaryotes have widely exploited combinatorial strategies to create gene regulatory networks. MADS box proteins constitute the perfect example of cellular coordinators. These proteins belong to a large family of transcription factors present in most eukaryotic organisms and are involved in diverse and important biological functions. MADS box proteins are combinatorial transcription factors in that they often derive their regulatory specificity from other DNA binding or accessory factors. This review is aimed at analyzing how MADS box proteins combine with a variety of cofactors to achieve functional diversity.
Collapse
Affiliation(s)
- Francine Messenguy
- Institut de Recherches Microbiologiques J-M Wiame, Université Libre de Bruxelles, Avenue Emile Gryzon 1, 1070 Brussels, Belgium.
| | | |
Collapse
|
304
|
Andriotis VME, Ross JD. Isolation and characterisation of phytase from dormant Corylus avellana seeds. PHYTOCHEMISTRY 2003; 64:689-699. [PMID: 13679091 DOI: 10.1016/s0031-9422(03)00415-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Phytase (myo-inositol-1,2,3,4,5,6-hexakisphosphate phosphohydrolase, EC 3.1.3.26), which catalyses the step-wise hydrolysis of phytic acid, was purified from cotyledons of dormant Corylus avellana L. seeds. The enzyme was separated from the major soluble acid phosphatase by successive (NH4)(2)SO(4) precipitation, gel filtration and cation exchange chromatography resulting in a 300-fold purification and yield of 7.5%. The native enzyme positively interacted with Concanavalin A suggesting that it is putatively glycosylated. After size exclusion chromatography and SDS-PAGE it was found to be a monomeric protein with molecular mass 72+/-2.5 kDa. The hazel enzyme exhibited optimum activity for phytic acid hydrolysis at pH 5 and, like other phytases, had broad substrate specificity. It exhibited the lowest Km (162 microM) and highest specificity constant (V(max)/Km) for phytic acid, indicating that this is the preferred in vivo substrate. It required no metal ion as a co-factor, while inorganic phosphate and fluoride competitively inhibited enzymic activity (Ki=407 microM and Ki=205 microM, respectively).
Collapse
|
305
|
Lackey KH, Pope PM, Johnson MD. Expression of 1L-myoinositol-1-phosphate synthase in organelles. PLANT PHYSIOLOGY 2003; 132:2240-7. [PMID: 12913178 PMCID: PMC181307 DOI: 10.1104/pp.103.020610] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2003] [Revised: 02/20/2003] [Accepted: 02/20/2003] [Indexed: 05/19/2023]
Abstract
We have studied the expression of 1L-myoinositol-1-phosphate synthase (MIPS; EC 5.5.1.4) in developing organs of Phaseolus vulgaris to define genetic controls that spatially regulate inositol phosphate biosynthesis. MIPS, the pivotal biosynthetic enzyme in inositol metabolism, is the only enzyme known to catalyze the conversion of glucose 6-phosphate to inositol phosphate. It is found in unicellular and multicellular eukaryotes and has been isolated as a soluble enzyme from both. Thus, it is widely accepted that inositol phosphate biosynthesis is largely restricted to the cytosol. Here, we report findings that suggest the enzyme is also expressed in membrane-bound organelles. Microscopic and biochemical analyses detected MIPS expression in plasma membranes, plastids, mitochondria, endoplasmic reticula, nuclei, and cell walls of bean. To address mechanisms by which the enzyme could be targeted to or through membranes, MIPS genes were analyzed for sorting signals within primary structures and upstream open reading frames that we discovered through our sequence analyses. Comprehensive computer analyses revealed putative transit peptides that are predicted to target the enzyme to different cellular compartments. Reverse transcriptase PCR experiments suggest that these putative targeting peptides are expressed in bean roots and leaves.
Collapse
Affiliation(s)
- Kimberly Helms Lackey
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, Alabama 35487, USA
| | | | | |
Collapse
|
306
|
Rodriguez MS, Gwizdek C, Haguenauer-Tsapis R, Dargemont C. The HECT ubiquitin ligase Rsp5p is required for proper nuclear export of mRNA in Saccharomyces cerevisiae. Traffic 2003; 4:566-75. [PMID: 12839499 DOI: 10.1034/j.1600-0854.2003.00115.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The nuclear transport of both proteins and RNAs has attracted considerable interest in recent years. However, regulation pathways of the nuclear transport machineries are still not well characterized. Previous studies indicated that ubiquitination is involved in poly(A)+ RNA nuclear export. For this reason, we systematically investigated ubiquitin-protein ligasess from the homologous to E6-AP carboxy terminus (HECT) family for potential individual roles in nuclear transport in Saccharomyces cerevisiae. Here we report that Rsp5, an essential yeast ubiquitin ligase involved in many cellular functions, when deleted or mutated in ligase activity, blocks the nuclear export of mRNAs. Affected messenger RNAs include both total poly(A)+ mRNA and heat-shock mRNAs. Mutation of Rsp5 does not affect nuclear protein import or export. Deletion of RSP5 blocks mRNA export, even under conditions where its essential role in unsaturated fatty acids biosynthesis is bypassed. Using domain mapping, we find that the ligase activity is required for proper mRNA export, indicating that ubiquitination by Rsp5 acts directly or indirectly to affect RNA export. The finding that Rsp5p ligase mutations cause a more pronounced defect at high temperatures suggests that ubiquitination of transport factors by Rsp5p may also be essential during stress conditions.
Collapse
Affiliation(s)
- M S Rodriguez
- Institut Jacques Monod, Unité Mixte de Recherche 7592, CNRS, Universités Paris VI et VII. 2 Place Jussieu, Tour 43, 75251 Paris Cedex 05, France.
| | | | | | | |
Collapse
|
307
|
El Alami M, Messenguy F, Scherens B, Dubois E. Arg82p is a bifunctional protein whose inositol polyphosphate kinase activity is essential for nitrogen and PHO gene expression but not for Mcm1p chaperoning in yeast. Mol Microbiol 2003; 49:457-68. [PMID: 12828642 DOI: 10.1046/j.1365-2958.2003.03562.x] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In Saccharomyces cerevisiae, the synthesis of inositol pyrophosphates is essential for vacuole biogenesis and the cell's response to certain environmental stresses. The kinase activity of Arg82p and Kcs1p is required for the production of soluble inositol phosphates. To define physiologically relevant targets of the catalytic products of Arg82p and Kcs1p, we used DNA microarray technology. In arg82delta or kcs1delta cells, we observed a derepressed expression of genes regulated by phosphate (PHO) on high phosphate medium and a strong decrease in the expression of genes regulated by the quality of nitrogen source (NCR). Arg82p and Kcs1p are required for activation of NCR-regulated genes in response to nitrogen availability, mainly through Nil1p, and for repression of PHO genes by phosphate. Only the catalytic activity of both kinases was required for PHO gene repression by phosphate and for NCR gene activation in response to nitrogen availability, indicating a role for inositol pyrophosphates in these controls. Arg82p also controls expression of arginine-responsive genes by interacting with Arg80p and Mcm1p, and expression of Mcm1-dependent genes by interacting with Mcm1p. We show here that Mcm1p and Arg80p chaperoning by Arg82p does not involve the inositol polyphosphate kinase activity of Arg82p, but requires its polyaspartate domain. Our results indicate that Arg82p is a bifunctional protein whose inositol kinase activity plays a role in multiple signalling cascades, and whose acidic domain protects two MADS-box proteins against degradation.
Collapse
Affiliation(s)
- Mohamed El Alami
- Institut de Recherches Microbiologiques J-M Wiame, Laboratoire de Microbiologie de l'Université Libre de Bruxelles, 1 avenue Emile Gryzon, 1070 Bruxelles, Belgium
| | | | | | | |
Collapse
|
308
|
Quignard JF, Rakotoarisoa L, Mironneau J, Mironneau C. Stimulation of L-type Ca2+ channels by inositol pentakis- and hexakisphosphates in rat vascular smooth muscle cells. J Physiol 2003; 549:729-37. [PMID: 12717004 PMCID: PMC2342985 DOI: 10.1113/jphysiol.2002.037473] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The electrophysiological effects of D-myo-inositol 1,3,4,5,6-pentakisphosphate (InsP5) and D-myo-inositol hexakisphosphate (InsP6), which represent the main cellular inositol polyphosphates, were studied on L-type Ca2+ channels in single myocytes of rat portal vein. Intracellular infusion of InsP5 (up to 50 micro M) or 10 micro M InsP6 had no action on Ba2+ current, whereas 50 micro M InsP6 or 10 micro M InsP5 plus 10 micro M InsP6 (InsP5,6) stimulated the inward current. The stimulatory effect of InsP5,6 was also obtained in external Ca2+-containing solution. The stimulated Ba2+ current retained the properties of L-type Ba2+ current and was oxodipine sensitive. PKC inhibitors Ro 32-0432 (up to 500 nM), GF109203X (5 micro M) or calphostin C (100 nM) abolished the InsP5,6-induced stimulation. Neither the PKA inhibitor H89 (1 micro M) nor the protein phosphatase inhibitors okadaic acid (500 nM) or cypermethrin (1 micro M) prevented or mimicked the InsP5,6-induced stimulation of Ba2+ current. However, InsP5 or InsP6 could mimic some effects of protein phosphatase inhibitor so as to extend after washing-out forskolin the stimulatory effects of the adenylyl cyclase activator on Ba2+ current. These results indicate that InsP5 and InsP6 may act as intracellular messengers in modulating L-type Ca2+ channel activity and so could be implicated in mediator-induced contractions of vascular smooth muscle cells.
Collapse
MESH Headings
- Animals
- Calcium Channels, L-Type/drug effects
- Cell Separation
- Colforsin/pharmacology
- Dose-Response Relationship, Drug
- Electrophysiology
- Enzyme Activators/pharmacology
- Enzyme Inhibitors/pharmacology
- In Vitro Techniques
- Inositol Phosphates/pharmacology
- Membrane Potentials/drug effects
- Membrane Potentials/physiology
- Muscle Cells/drug effects
- Muscle Cells/metabolism
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Okadaic Acid/pharmacology
- Patch-Clamp Techniques
- Phosphoric Monoester Hydrolases/antagonists & inhibitors
- Phytic Acid/pharmacology
- Protein Kinase Inhibitors
- Protein Kinases/metabolism
- Rats
- Rats, Wistar
- Stimulation, Chemical
Collapse
Affiliation(s)
- J F Quignard
- Laboratoire de Signalisation et Interactions Cellulaires, CNRS UMR 5017, UFR Sciences Pharmaceutiques, Université Bordeaux 2, 146 rue Léo Saignat, 33076 Bordeaux, France.
| | | | | | | |
Collapse
|
309
|
Tantivejkul K, Vucenik I, Eiseman J, Shamsuddin AM. Inositol hexaphosphate (IP6) enhances the anti-proliferative effects of adriamycin and tamoxifen in breast cancer. Breast Cancer Res Treat 2003; 79:301-12. [PMID: 12846414 DOI: 10.1023/a:1024078415339] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The current treatment of breast carcinomas recognizes the importance of combination therapy in order to increase efficacy and decrease side effects of conventional chemotherapy. Inositol hexaphosphate (IP6), a naturally occurring polyphosphorylated carbohydrate, has shown a significant anti-cancer effect in various in vivo and in vitro models, including breast cancer. In this study, we investigated the in vitro growth inhibitory activity of IP6 in combination with adriamycin or tamoxifen, against three human breast cancer cell lines: estrogen receptor (ER) alpha-positive MCF-7, ER alpha-negative MDA-MB 231 and adriamycin-resistant MCF-7 (MCF-7/Adr) using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Much lower concentrations of IP6 were required after 96 h of treatment to inhibit the growth of MCF-7/Adr cells than MCF-7 cells; the IC50 for MCF-7/Adr cells was 1.26 mM compared to 4.18 mM for MCF-7 cells. The ER-negative MDA-MB 231 cells were also highly sensitive to IP6 with IC50 being 1.32 mM. To determine the effects of IP6 in combination with either adriamycin or tamoxifen, the median effect principle and Webb's fraction method were used to determine the combination index (CI) and the statistical differences. Growth suppression was markedly increased when IP6 was administered prior to the addition of adriamycin, especially against MCF-7 cells (CI = 0.175 and p < 0.0001). Synergism was also observed when IP6 was administered after tamoxifen in all three cell lines studied (CI = 0.343, 0.701 and 0.819; p < 0.0001, p = 0.0003 and 0.0241 for MCF-7/Adr, MCF-7 and MDA-MB 231, respectively). The growth of primary culture of breast cancer cells from patients was inhibited by IP6 with LC50 values ranging from 0.91 to 5.75 mM (n = 10). Our data not only confirm that IP6 alone inhibits the growth of breast cancer cells; but it also acts synergistically with adriamycin or tamoxifen, being particularly effective against ER alpha-negative cells and adriamycin-resistant cell lines.
Collapse
Affiliation(s)
- Kwanchanit Tantivejkul
- Department of Pathology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | | | | | | |
Collapse
|
310
|
Abstract
Nuclear pore complexes (NPCs) are large proteinaceous assemblies that provide the only known portals for exchanging macromolecules between the nucleus and cytoplasm. This includes the movement of small molecules and the selective, facilitated transport of large proteins and RNAs. Faithful, continuous NPC assembly is key for maintaining normal physiological function and is closely tied to proper cell division. This review focuses on the most outstanding issues involving NPC structure, assembly, and function.
Collapse
Affiliation(s)
- Mythili Suntharalingam
- Department of Cell and Developmental Biology, Vanderbilt University Medical Center, 3120A MRBIII, 465 21st Avenue South, Nashville, TN 37232, USA
| | | |
Collapse
|
311
|
Abstract
The efficient repair of double-strand breaks in DNA is critical for the maintenance of genome stability and cell survival. Homologous recombination provides an efficient and faithful pathway of repair, especially in replicating cells, in which it plays a major role in tumour avoidance. Many of the enzymes that are involved in recombination have been isolated, and the details of this pathway are now being unravelled at the molecular level.
Collapse
Affiliation(s)
- Stephen C West
- Cancer Research UK, London Research Institute, Clare Hall Laboratories, South Mimms, Hertfordshire EN6 3LD, UK.
| |
Collapse
|
312
|
Faenza I, Bavelloni A, Fiume R, Lattanzi G, Maraldi NM, Gilmour RS, Martelli AM, Suh PG, Billi AM, Cocco L. Up-regulation of nuclear PLCbeta1 in myogenic differentiation. J Cell Physiol 2003; 195:446-52. [PMID: 12704654 DOI: 10.1002/jcp.10264] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Phospholipase C beta(1) (PLCbeta(1)) signaling in both cell proliferation and differentiation has been largely investigated, but its role in myoblast differentiation is still unclear. The C2C12 myogenic cell line has been used in this study in order to find out the role of the two subtypes of PLCbeta(1), i.e., a and b in this process. C2C12 myoblast proliferate in response to mitogens and upon mitogen withdrawal differentiates into multinucleated myotubes. We found that differentiation of C2C12 skeletal muscle cells is characterized by a marked increase in the amount of nuclear PLCbeta(1)a and PLCbeta(1)b. Indeed, treatment with insulin induces a dramatic rise of both PLCbeta(1) subtypes expression and activity, as determined by immunochemical and enzymatic assays. Immunofluorescence experiments with anti-PLCbeta(1) specific monoclonal antibody showed a low level of cytoplasmatic and nuclear staining during the initial 12 h of differentiation whilst a massive nuclear staining is appreciable in differentiating cells. The time course of PLCbeta(1) expression versus Troponin T expression clearly indicates that the increase in the amount of PLCbeta(1) takes place 24 h earlier than that of Troponin T. Moreover, the overexpression of the PLCbeta(1)M2b mutant, lacking the nuclear localization signal and entirely located in the cytoplasm, represses the formation of mature multinucleated myotube. Taken together these results suggest that nuclear PLCbeta(1) is a key player in myoblast differentiation, functioning as a positive regulator of this process.
Collapse
Affiliation(s)
- Irene Faenza
- Cellular Signalling Laboratory, Department of Anatomical Science, University of Bologna, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
313
|
Nalaskowski MM, Bertsch U, Fanick W, Stockebrand MC, Schmale H, Mayr GW. Rat inositol 1,4,5-trisphosphate 3-kinase C is enzymatically specialized for basal cellular inositol trisphosphate phosphorylation and shuttles actively between nucleus and cytoplasm. J Biol Chem 2003; 278:19765-76. [PMID: 12649294 DOI: 10.1074/jbc.m211059200] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The calcium-liberating second messenger inositol 1,4,5-trisphosphate (Ins(1,4,5)P3) is converted to inositol 1,3,4,5-tetrakisphosphate (Ins(1,3,4,5)P4) by Ins(1,4,5)P3 3-kinases (IP3Ks) that add a fourth phosphate group to the 3-position of the inositol ring. Two isoforms of IP3Ks (named A and B) from different vertebrate species have been well studied. Recently the cloning and examination of a human full-length cDNA encoding a novel isoform, termed human IP3K-C (HsIP3K-C), has been reported. In the present study we report the cloning of a full-length cDNA encoding a rat homologue of HsIP3K-C with a unique mRNA expression pattern, which differs remarkably from the tissue distribution of HsIP3K-C. Of the rat tissues examined, rat IP3K-C (RnIP3K-C) is mainly present in heart, brain, and testis and shows the strongest expression in an epidermal tissue, namely tongue epithelium. RnIP3K-C has a calculated molecular mass of approximately 74.5 kDa and shows an overall identity of approximately 75% with HsIP3K-C. A bacterially expressed, enzymatically active and Ca2+-calmodulin-regulated fragment of this isoform displays remarkable enzymatic properties like a very low Km for Ins(1,4,5)P3 ( approximately 0.2 microm), substrate inhibition by high concentrations of Ins(1,4,5)P3, allosteric product activation by Ins(1,3,4,5)P4 in absence of Ca2+-calmodulin (Ka(app) 0.52 microm), and the ability to efficiently phosphorylate a second InsP3 substrate, inositol 2,4,5-trisphosphate, to inositol 2,4,5,6-tetrakisphosphate in the presence of Ins(1,3,4,5)P4. Furthermore, the RnIP3K-C fused with a fluorescent protein tag is actively transported into and out of the nucleus when transiently expressed in mammalian cells. A leucine-rich nuclear export signal and an uncharacterized nuclear import activity are localized in the N-terminal domain of the protein and determine its nucleocytoplasmic shuttling. These findings point to a particular role of RnIP3K-C in nuclear inositol trisphosphate phosphorylation and cellular growth.
Collapse
Affiliation(s)
- Marcus M Nalaskowski
- Institute for Cellular Signal Transduction, University Hospital Hamburg-Eppendorf, Martinistrasse 52, Germany
| | | | | | | | | | | |
Collapse
|
314
|
Bentsink L, Yuan K, Koornneef M, Vreugdenhil D. The genetics of phytate and phosphate accumulation in seeds and leaves of Arabidopsis thaliana, using natural variation. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2003; 106:1234-1243. [PMID: 12748774 DOI: 10.1007/s00122-002-1177-9] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2002] [Accepted: 10/21/2002] [Indexed: 05/24/2023]
Abstract
Phytate (myo-inositol-1,2,3,4,5,6-hexakisphosphate, InsP6) is the most abundant P-containing compound in plants, and an important anti-nutritional factor, due to its ability to complex essential micro-nutrients, e.g. iron and zinc. Analysis of natural variation for InsP6 and Pi accumulation in seeds and leaves for a large number of accessions of Arabidopsis thaliana, using a novel method for InsP6 detection, revealed a wide range of variation in InsP6 and Pi levels, varying from 7.0 mg to 23.1 mg of InsP6 per gram of seed. Quantitative trait locus (QTL) analysis of InsP6 and Pi levels in seeds and leaves, using an existing recombinant inbred line population, was performed in order to identify a gene(s) that is (are) involved in the regulation of InsP6 accumulation. Five genomic regions affecting the quantity of the InsP6 and Pi in seeds and leaves were identified. One of them, located on top of chromosome 3, affects all four traits. This QTL appears as the major locus responsible for the observed variation in InsP6 and Pi contents in the L er/Cvi RIL population; the L er allele decreases the content of both InsP6 and Pi in seeds and in leaves. The InsP6/Pi locus was further fine-mapped to a 99-kb region, containing 13 open reading frames. The maternal inheritance of the QTL and the positive correlation between InsP6 and total Pi levels both in seeds and in leaves indicate that the difference in InsP6 level between L er and Cvi is likely to be caused by a difference in transport rather than by an alteration in the biosynthesis. Therefore, we consider the vacuolar membrane ATPase subunit G, located in the region of interest, as the most likely candidate gene for InsP6/Pi.
Collapse
Affiliation(s)
- L Bentsink
- Laboratory of Genetics, Wageningen University, Arboretumaan 4, The Netherlands
| | | | | | | |
Collapse
|
315
|
DeLillo N, Romero C, Lin H, Vancura A. Genetic evidence for a role of phospholipase C at the budding yeast kinetochore. Mol Genet Genomics 2003; 269:261-70. [PMID: 12756538 DOI: 10.1007/s00438-003-0832-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2002] [Accepted: 02/12/2003] [Indexed: 10/25/2022]
Abstract
Chromosome segregation during mitosis requires kinetochores, specialized organelles that mediate chromosome attachment to spindle microtubules. We have shown previously that in budding yeast, Plc1p (phosphoinositide-specific phospholipase C) localizes to centromeric loci, associates with the kinetochore proteins Ndc10p and Cep3p, and affects the function of kinetochores. Deletion of PLC1 results in nocodazole sensitivity, mitotic delay, and a higher frequency of chromosome loss. We report here that despite the nocodazole sensitivity of plc1Delta cells, Plc1p is not required for the spindle checkpoint. However, plc1Delta cells require a functional BUB1/BUB3-dependent spindle checkpoint for viability. PLC1 displays strong genetic interactions with genes encoding components of the inner kinetochore, including NDC10, SKP1, MIF2, CEP1, CEP3, and CTF13. Furthermore, plc1Delta cells display alterations in chromatin structure in the core centromere. Chromatin immunoprecipitation experiments indicate that Plc1p localizes to centromeric loci independently of microtubules, and accumulates at the centromeres during G(2)/M stage of cell cycle. These results are consistent with the view that Plc1p affects kinetochore function, possibly by modulating the structure of centromeric chromatin.
Collapse
Affiliation(s)
- N DeLillo
- Department of Biological Sciences, St. John's University, 8000 Utopia Parkway, Jamaicam New York, NY 11439, USA
| | | | | | | |
Collapse
|
316
|
Abstract
During the past twenty years, evidence has accumulated for the presence of phospholipids within the nuclei of eukaryotic cells. These phospholipids are distinct from those that are obviously present in the nuclear envelope. The best characterized of the intranuclear lipids are the inositol lipids that form the components of a phosphoinositide-phospholipase C cycle. However, exactly as has been discovered in the cytoplasm, this is just part of a complex picture that involves many other lipids and functions.
Collapse
Affiliation(s)
- Robin F Irvine
- Department of Pharmacology, Tennis Court Road, Cambridge CB2 1QJ, UK.
| |
Collapse
|
317
|
Kendirgi F, Barry DM, Griffis ER, Powers MA, Wente SR. An essential role for hGle1 nucleocytoplasmic shuttling in mRNA export. J Cell Biol 2003; 160:1029-40. [PMID: 12668658 PMCID: PMC2172758 DOI: 10.1083/jcb.200211081] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Gle1 is required for mRNA export in yeast and human cells. Here, we report that two human Gle1 (hGle1) isoforms are expressed in HeLa cells (hGle1A and B). The two encoded proteins are identical except for their COOH-terminal regions. hGle1A ends with a unique four-amino acid segment, whereas hGle1B has a COOH-terminal 43-amino acid span. Only hGle1B, the more abundant isoform, localizes to the nuclear envelope (NE) and pore complex. To test whether hGle1 is a dynamic shuttling transport factor, we microinjected HeLa cells with recombinant hGle1 and conducted photobleaching studies of live HeLa cells expressing EGFP-hGle1. Both strategies show that hGle1 shuttles between the nucleus and cytoplasm. An internal 39-amino acid domain is necessary and sufficient for mediating nucleocytoplasmic transport. Using a cell-permeable peptide strategy, we document a role for hGle1 shuttling in mRNA export. An hGle1 shuttling domain (SD) peptide impairs the export of both total poly(A)+ RNA and the specific dihydrofolate reductase mRNA. Coincidentally, SD peptide-treated cells show decreased endogenous hGle1 localization at the NE and reduced nucleocytoplasmic shuttling of microinjected, recombinant hGle1. These findings pinpoint the first functional motif in hGle1 and link hGle1 to the dynamic mRNA export mechanism.
Collapse
Affiliation(s)
- Frederic Kendirgi
- Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, TN 37232-8240, USA
| | | | | | | | | |
Collapse
|
318
|
Zewail A, Xie MW, Xing Y, Lin L, Zhang PF, Zou W, Saxe JP, Huang J. Novel functions of the phosphatidylinositol metabolic pathway discovered by a chemical genomics screen with wortmannin. Proc Natl Acad Sci U S A 2003; 100:3345-50. [PMID: 12615994 PMCID: PMC152295 DOI: 10.1073/pnas.0530118100] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We report a novel connection between the phosphatidylinositol (PI) metabolic pathway and the DNA replication and damage checkpoint pathway discovered from an unbiased chemical genomics screen. Substrates and products of PI kinases are important signaling molecules that affect a wide range of biological processes. The full collection of yeast deletion strains was screened to identify genes that confer altered sensitivity to the natural product wortmannin, a PI kinase inhibitor. These experiments have allowed us to explore metabolomic and proteomic implications of PI synthesis and turnover. This study also uncovers other biological processes affected by wortmannin treatment, including proteasome-mediated degradation and chromatin remodeling. Bioinformatic analyses were used to reveal the relative distances among cellular processes affected by wortmannin and protein-protein interactions in the wortmannin-sensitive proteomic subnetwork. These results illustrate the great utility of using a whole-genome approach in annotating the biological effects of small molecules and have clear implications for pharmacogenomics. Furthermore, our discovery points to a route to overcoming genome instability, a result of defective DNA damage signaling/repair and a hallmark of cancer.
Collapse
Affiliation(s)
- Amani Zewail
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | | | | | | | | | | | | | | |
Collapse
|
319
|
Dorsch JA, Cook A, Young KA, Anderson JM, Bauman AT, Volkmann CJ, Murthy PPN, Raboy V. Seed phosphorus and inositol phosphate phenotype of barley low phytic acid genotypes. PHYTOCHEMISTRY 2003; 62:691-706. [PMID: 12620321 DOI: 10.1016/s0031-9422(02)00610-6] [Citation(s) in RCA: 108] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
myo-Inositol-1,2,3,4,5,6-hexakisphosphate (Ins P(6) or "phytic acid") typically represents approximately 75% of the total phosphorus and >80% of soluble myo-inositol (Ins) phosphates in seeds. The seed phosphorus and Ins phosphate phenotypes of four non-lethal barley (Hordeum vulgare L.) low phytic acid mutations are described. In seeds homozygous for M 635 and M 955 reductions in Ins P(6), approximately 75 and >90% respectively, are accompanied by reductions in other Ins phosphates and molar-equivalent increases in Pi. This phenotype suggests a block in supply of substrate Ins. In seeds homozygous for barley low phytic acid 1-1 (lpa1-1), a 45% decrease in Ins P(6) is mostly matched by an increase in Pi but also accompanied by small increases in Ins(1,2,3,4,6)P(5). In seeds homozygous for barley lpa2-1, reductions in seed Ins P(6) are accompanied by increases in both Pi and in several Ins phosphates, a phenotype that suggests a lesion in Ins phosphate metabolism, rather than Ins supply. The increased Ins phosphates in barley lpa2-1 seed are: Ins(1,2,3,4,6)P(5); Ins(1,2,4,6)P(4) and/or its enantiomer Ins(2,3,4,6)P(4); Ins(1,2,3,4)P(4) and/or its enantiomer Ins(1,2,3,6)P(4); Ins(1,2,6)P(3) and/or its enantiomer Ins(2,3,4)P(3); Ins(1,5,6)P(3) and/or its enantiomer Ins(3,4,5)P(3) (the methods used here cannot distinguish between enantiomers). This primarily "5-OH" series of Ins phosphates differs from the "1-/3-OH" series observed at elevated levels in seed of the maize lpa2 genotype, but previous chromosomal mapping data indicated that the maize and barley lpa2 loci might be orthologs of a single ancestral gene. Therefore one hypothesis that might explain the differing lpa2 phenotypes is that their common ancestral gene encodes a multi-functional, Ins phosphate kinase with both "1-/-3-" and "5-kinase" activities. A putative pyrophosphate-containing Ins phosphate, possibly an Ins P(7), was also observed in the mature seed of all barley genotypes except lpa2-1. Barley M 955 indicates that at least for this species, the ability to accumulate Ins P(6) can be nearly abolished while retaining at least short-term ( approximately 1.0 years) viability.
Collapse
Affiliation(s)
- John A Dorsch
- USDA-ARS, 1691 South 2700 West, Aberdeen, ID 83210, USA
| | | | | | | | | | | | | | | |
Collapse
|
320
|
Navarro-Aviñó JP, Bellés JM, Serrano R. Yeast inositol mono- and trisphosphate levels are modulated by inositol monophosphatase activity and nutrients. Biochem Biophys Res Commun 2003; 302:41-5. [PMID: 12593845 DOI: 10.1016/s0006-291x(03)00051-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Yeast lithium-sensitive inositol monophosphatase (IMPase) is encoded by a non-essential gene pair (IMP1 and IMP2). Inhibition of IMPase with either Li(+) or Na(+) or a double null mutation imp1 imp2 causes increased levels of inositol monophosphates and reduced level of inositol 1,4,5-trisphosphate. Overexpression of the IMP2 gene has the opposite effects and these results suggest that IMPase activity is limiting for the inositol cycle. Addition of ammonium to cells starved for this nutrient results in a decrease of inositol monophosphates and an increase of inositol 1,4,5-triphosphate, pointing to simultaneous regulation of both inositol 1,4,5-triphosphate production and IMPase activity.
Collapse
Affiliation(s)
- Juan P Navarro-Aviñó
- Instituto de Biologia Molecular y Celular de Plantas, Universidad Politécnica de Valencia-C.S.I.C., Camino de Vera s/n, Valencia 46022, Spain
| | | | | |
Collapse
|
321
|
Affiliation(s)
- Brian Q Phillippy
- United States Department of Agriculture, Agricultural Research Service, Southern Regional Research Center, New Orleans, LA 70124, USA
| |
Collapse
|
322
|
Ingram SW, Safrany ST, Barnes LD. Disruption and overexpression of the Schizosaccharomyces pombe aps1 gene, and effects on growth rate, morphology and intracellular diadenosine 5',5"'-P1,P5-pentaphosphate and diphosphoinositol polyphosphate concentrations. Biochem J 2003; 369:519-28. [PMID: 12387729 PMCID: PMC1223115 DOI: 10.1042/bj20020733] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2002] [Revised: 08/30/2002] [Accepted: 10/21/2002] [Indexed: 11/17/2022]
Abstract
Schizosaccharomyces pombe Aps1 is an enzyme that degrades both diadenosine oligophosphates (Ap(n)A, n =5 or 6) and diphosphoinositol polyphosphates [diphosphoinositol pentakisphosphate (PP-InsP(5)) and bisdiphosphoinositol tetrakisphosphate ([PP](2)-InsP(4))] in vitro. The in vivo substrates of Aps1 are unknown. We report here the identification of Ap(5)A, PP-InsP(5), [PP](2)-InsP(4) and a novel diphosphoinositol polyphosphate ([PP](x)-InsP(x)) in S. pombe using HPLC methods. Ap(5)A was present at 0.06 pmol/mg of protein (approx. 4 nM). PP-InsP(5), [PP](x)-InsP(x) and [PP](2)-InsP(4) were present at 15 pmol/mg (approx. 1.1 microM), 15 pmol/mg (approx. 1.1 microM) and 30 pmol/mg (approx. 2.2 microM) respectively, while the intracellular concentration of InsP(6) was 0.5 nmol/mg of protein (approx. 36 microM). Disruption of aps1 resulted in a 52% decrease in Ap(6)A hydrolase activity in vitro, no detectable change in the intracellular Ap(5)A concentration, and 3-fold increased intracellular concentrations of PP-Ins P(5) and [PP](x)-InsP(x). Disruption of aps1 resulted in no detectable change in morphology or growth rate in minimal or rich media at 30 degrees C. Overexpression of aps1 via two different plasmids that resulted in 60% and 6-fold increases above wild-type enzymic activity in vitro caused no detectable changes in the intracellular concentrations of [PP](2)-InsP(4), [PP](x)-InsP(x) or PP-InsP(5), but paradoxical increases of approx. 2.5- and 55-fold respectively in the intracellular Ap(5)A concentration. Overexpression of aps1 also resulted in a reduced growth rate and in morphological changes, including swollen, rounded and multiseptate cells. No phenotypic changes or changes in intracellular Ap(5)A occurred upon overexpression of aps1 E93Q, which encodes a mutated Aps1 lacking significant enzymic activity. We conclude that Aps1 degrades PP-InsP(5) and [PP](x)-InsP(x) in vivo.
Collapse
Affiliation(s)
- Stephen W Ingram
- Department of Biochemistry, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229-3900, USA
| | | | | |
Collapse
|
323
|
Steger DJ, Haswell ES, Miller AL, Wente SR, O'Shea EK. Regulation of chromatin remodeling by inositol polyphosphates. Science 2003; 299:114-6. [PMID: 12434012 PMCID: PMC1458531 DOI: 10.1126/science.1078062] [Citation(s) in RCA: 288] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Chromatin remodeling is required for efficient transcription of eukaryotic genes. In a genetic selection for budding yeast mutants that were defective in induction of the phosphate-responsive PHO5 gene, we identified mutations in ARG82/IPK2, which encodes a nuclear inositol polyphosphate kinase. In arg82 mutant strains, remodeling of PHO5 promoter chromatin is impaired, and the adenosine triphosphate-dependent chromatin-remodeling complexes SWI/SNF and INO80 are not efficiently recruited to phosphate-responsive promoters. These results suggest a role for the small molecule inositol polyphosphate in the regulation of chromatin remodeling and transcription.
Collapse
Affiliation(s)
- David J Steger
- Department of Biochemistry and Biophysics, Howard Hughes Medical Institute, University of California, San Francisco, 513 Parnassus Avenue, San Francisco, CA 94143-0448, USA
| | | | | | | | | |
Collapse
|
324
|
Shen X, Xiao H, Ranallo R, Wu WH, Wu C. Modulation of ATP-dependent chromatin-remodeling complexes by inositol polyphosphates. Science 2003; 299:112-4. [PMID: 12434013 DOI: 10.1126/science.1078068] [Citation(s) in RCA: 288] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Eukaryotes use adenosine triphosphate (ATP)-dependent chromatin-remodeling complexes to regulate gene expression. Here, we show that inositol polyphosphates can modulate the activities of several chromatin-remodeling complexes in vitro. Inositol hexakisphosphate (IP6) inhibits nucleosome mobilization by NURF, ISW2, and INO80 complexes. In contrast, nucleosome mobilization by the yeast SWI/SNF complex is stimulated by inositol tetrakisphosphate (IP4) and inositol pentakisphosphate (IP5). We demonstrate that mutations in genes encoding inositol polyphosphate kinases that produce IP4, IP5, and IP6 impair transcription in vivo. These results provide a link between inositol polyphosphates, chromatin remodeling, and gene expression.
Collapse
Affiliation(s)
- Xuetong Shen
- Laboratory of Molecular Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892-4255, USA
| | | | | | | | | |
Collapse
|
325
|
Bregoli L, Tu-Sekine B, Raben DM. DGK and nuclear signaling nuclear diacylglycerol kinases in IIC9 cells. ADVANCES IN ENZYME REGULATION 2002; 42:213-26. [PMID: 12123717 DOI: 10.1016/s0065-2571(01)00032-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Lisa Bregoli
- Department of Physiology, Johns Hopkins University School of Medicine, 725 North Wolfe Street, Baltimore, MD 21205, USA
| | | | | |
Collapse
|
326
|
Yagisawa H, Yamaga M, Okada M, Sasaki K, Fujii M. Regulation of the intracellular localization of phosphoinositide-specific phospholipase Cdelta(1). ADVANCES IN ENZYME REGULATION 2002; 42:261-84. [PMID: 12123720 DOI: 10.1016/s0065-2571(01)00040-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Hitoshi Yagisawa
- Department of Life Science, Himeji Institute of Technology, Harima Science Garden City, Kamigori-cho, Ako-gun, Hyogo 678-1297, Japan.
| | | | | | | | | |
Collapse
|
327
|
Abstract
The existence and function of actin in the nucleus has been hotly debated for forty years. Recently, beta-actin was found to be a component of mammalian SWI/SNF-like BAF chromatin remodeling complexes and still more recently other SWI/SNF-related chromatin remodeling complexes in yeast, flies, and man. Although the function of actin in these chromatin remodeling complexes is only starting to be explored, the fact that actin is one of the most regulated proteins in the cell suggests that control of nuclear actin may be a critical regulatory point in the control of chromatin remodeling. Actin rapidly shuttles between the nucleus and the cytoplasm offering additional sites and modes of regulation. In addition, actin-related proteins (Arps) are also components of these chromatin remodeling complexes and have been implicated in transcriptional control in yeast. The observation that the BAF chromatin remodeling complex in which actin was originally identified, is also a human tumor suppressor complex necessary for the actions of the retinoblastoma protein indicates that the study of nuclear actin is likely to contribute to understanding cell growth control.
Collapse
Affiliation(s)
- Ivan A Olave
- Department of Developmental Biology and Department of Pathology, Howard Hughes Medical Institute at Stanford University, Stanford, California 94305, USA.
| | | | | |
Collapse
|
328
|
Chang SC, Miller AL, Feng Y, Wente SR, Majerus PW. The human homolog of the rat inositol phosphate multikinase is an inositol 1,3,4,6-tetrakisphosphate 5-kinase. J Biol Chem 2002; 277:43836-43. [PMID: 12223481 DOI: 10.1074/jbc.m206134200] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have demonstrated that the human homolog of the rat inositol phosphate multikinase is an inositol 1,3,4,6-tetrakisphosphate 5-kinase (InsP(4) 5-kinase). The cDNA of the human gene contained a putative open reading frame of 1251 bp encoding 416 amino acids with 83.6% identity compared with the rat protein. The substrate specificity of the recombinant human protein demonstrated preference for Ins(1,3,4,6)P(4) with a catalytic efficiency (V(max)/K(m)) 43-fold greater than that of Ins(1,3,4,5)P(4) and 2-fold greater than that of Ins(1,4,5)P(3). The apparent V(max) was 114 nmol of Ins(1,3,4,5,6)P(5) formed/min/mg of protein, and the apparent K(m) was 0.3 microm Ins(1,3,4,6)P(4). The functional homolog in yeast is Ipk2p, and ipk2-null yeast strains do not synthesize Ins(1,3,4,5,6)P(5) or InsP(6). Synthesis of these compounds was restored by transformation with wild-type yeast IPK2 but not with human InsP(4) 5-kinase. Thus the human gene does not complement for the loss of the yeast gene because yeast cells do not contain the substrate Ins(1,3,4,6)P(4), and the reaction of the human protein with Ins(1,3,4,5)P(4) is insufficient to effect rescue or synthesis of InsP(5) and InsP(6). Therefore the major activity of human InsP(4) 5-kinase is phosphorylation at the D-5 position, and the pathways for synthesis of Ins(1,3,4,5,6)P(5) in yeast versus humans are different.
Collapse
Affiliation(s)
- Shao-Chun Chang
- Department of Internal Medicine, Division of Hematology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | | | | | |
Collapse
|
329
|
Stevenson-Paulik J, Odom AR, York JD. Molecular and biochemical characterization of two plant inositol polyphosphate 6-/3-/5-kinases. J Biol Chem 2002; 277:42711-8. [PMID: 12226109 DOI: 10.1074/jbc.m209112200] [Citation(s) in RCA: 111] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Despite the high deposition of inositol hexakisphosphate (IP(6)), also known as phytate or phytin, in certain plant tissues little is known at the molecular level about the pathway(s) involved in its production. In budding yeast, IP(6) synthesis occurs through the sequential phosphorylation of I(1,4,5)P(3) by two gene products, Ipk2 and Ipk1, a IP(3)/IP(4) dual-specificity 6-/3-kinase and an inositol 1,3,4,5,6-pentakisphosphate 2-kinase, respectively. Here we report the identification and characterization of two inositol polyphosphate kinases from Arabidopsis thaliana, designated AtIpk2alpha and AtIpk2beta that are encoded by distinct genes on chromosome 5 and that are ubiquitously expressed in mature tissue. The primary structures of AtIpk2alpha and AtIpk2beta are 70% identical to each other and 12-18% identical to Ipk2s from yeast and mammals. Similar to yeast Ipk2, purified recombinant AtIpk2alpha and AtIpk2beta have 6-/3-kinase activities that sequentially phosphorylate I(1,4,5)P(3) to generate I(1,3,4,5,6)P(5) predominantly via an I(1,4,5,6)P(4) intermediate. While I(1,3,4,5)P(4) is a substrate for the plant Ipk2s, it does not appear to be a detectable product of the IP(3) reaction. Additionally, we report that the plant and yeast Ipk2 have a novel 5-kinase activity toward I(1,3,4,6)P(4) and I(1,2,3,4,6)P(5), which would allow these proteins to participate in at least two proposed pathways in the synthesis of IP(6). Heterologous expression of either plant isoform in an ipk2 mutant yeast strain restores IP(4) and IP(5) production in vivo and rescues its temperature-sensitive growth defects. Collectively our results provide a molecular basis for the synthesis of higher inositol polyphosphates in plants through multiple routes and indicate that the 6-/3-/5-kinase activities found in plant extracts may be encoded by the IPK2 gene class.
Collapse
Affiliation(s)
- Jill Stevenson-Paulik
- Department of Pharmacology and Cancer Biology, Howard Hughes Medical Institute, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | |
Collapse
|
330
|
Shamsher MK, Ploski J, Radu A. Karyopherin beta 2B participates in mRNA export from the nucleus. Proc Natl Acad Sci U S A 2002; 99:14195-9. [PMID: 12384575 PMCID: PMC137860 DOI: 10.1073/pnas.212518199] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Transport of macromolecules between the cell nucleus and cytoplasm occurs through the nuclear pores and is mediated by soluble carriers known as karyopherins (Kaps), transportins, importins, or exportins. We report that Kap beta2B (transportin-2) forms complexes with the mRNA export factor TAP in the presence of RanGTP, as shown by coimmunoprecipitation from HeLa cells. The interaction strictly depends on the presence of RanGTP. In digitonin-permeabilized cells, Kap beta2B mediates TAP-GFP export from the nuclei in the presence of RanGTP. A TAP mutant that does not coimmunoprecipitate with Kap beta2B is also not exported by Kap beta2B. In the permeabilized cells assay, TAP is also exported independently of Kap beta2B by direct interaction with nucleoporins, in agreement with previous reports. The export rate is, however, significantly lower than the Kap beta2B-mediated pathway. Both Kap beta2B and TAP are present and enriched in the poly(A)(+) RNA complexes isolated from HeLa cell nuclear lysates. Poly(A)(+) RNA strongly accumulates in the nuclei of HeLa cells treated with Kap beta2B short interfering RNA, indicating that Kap beta2B is involved in the export of at least a large proportion of the mRNA species. The export of beta-actin and GAPDH mRNA is also inhibited, whereas 28S RNA is not affected. The data support the conclusion that Kap beta2B participates directly in the export of a large proportion of cellular mRNAs, and TAP connects Kap beta2B to the mRNAs to be exported.
Collapse
Affiliation(s)
- Monee K Shamsher
- The Carl C. Icahn Institute for Gene Therapy and Molecular Medicine, Mount Sinai School of Medicine, Box 1496, 1425 Madison Avenue, New York, NY 10029, USA
| | | | | |
Collapse
|
331
|
Saiardi A, Sciambi C, McCaffery JM, Wendland B, Snyder SH. Inositol pyrophosphates regulate endocytic trafficking. Proc Natl Acad Sci U S A 2002; 99:14206-11. [PMID: 12391334 PMCID: PMC137862 DOI: 10.1073/pnas.212527899] [Citation(s) in RCA: 140] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The high energy potential and rapid turnover of the recently discovered inositol pyrophosphates, such as diphosphoinositol-pentakisphosphate and bis-diphosphoinositol-tetrakisphosphate, suggest a dynamic cellular role, but no specific functions have yet been established. Using several yeast mutants with defects in inositol phosphate metabolism, we identify dramatic membrane defects selectively associated with deficient formation of inositol pyrophosphates. We show that this phenotype reflects specific abnormalities in endocytic pathways and not other components of membrane trafficking. Thus, inositol pyrophosphates are major regulators of endocytosis.
Collapse
Affiliation(s)
- Adolfo Saiardi
- Department of Neuroscience, Johns Hopkins University School of Medicine, 725 North Wolfe Street, Baltimore, MD 21205, USA
| | | | | | | | | |
Collapse
|
332
|
Abstract
Summary Inositol hexaphosphate (InsP6 a.k.a. phytic acid or IP6) is ubiquitous. In the plant kingdom it is particularly abundant in cereals and legumes; in much smaller amounts IP6 and its lower phosphorylated forms (IP1−5) are contained in most mammalian cells, where they are important in regulating vital cellular functions. Both in vivo and in vitro experiments have demonstrated striking anticancer (preventive as well as therapeutic) effects of IP6. Inositol also is anti‐carcinogenic, albeit to a lesser extent; it acts synergistically IP6 in inhibiting cancer. In addition to reduction in cell proliferation, IP6 increases differentiation of malignant cells often resulting in reversion to the normal phenotype. IP6 is quickly absorbed from the rat stomach and upper intestine and distributed as inositol and IP1. In vitro, it is instantaneously taken up by malignant cells undergoing variable dephosphorylation to inositol and IP1−5, pointing towards their role in mediating the action of IP6. In humans, IP6 has recently been detected in urine, plasma and other biological fluids; the levels fluctuating with ingestion or deprivation of IP6 or IP6‐rich diet. As IP6 is high in high‐fibre diets, these also may explain, at least in part, the epidemiological observation showing the association of ingesting high‐fibre diets with a lower incidence of certain cancers. Along with safety, the reproducible efficacy of IP6 and inositol in the prevention of cancer in laboratory animals warrant their inclusion in our strategies for cancer prevention and perhaps therapy in humans. Aside from the anticancer action, IP6 and inositol also have numerous other health benefits. All these facts of normal physiological presence of IP6 in our body the level of which fluctuates with intake, association of an IP6‐rich diet with low incidence of several diseases and vice versa, and finally reversal of some of these conditions, at least in part, by IP6 supplementation strongly argue in favour of its inclusion as an essential nutrient or perhaps a vitamin.
Collapse
|
333
|
Okada M, Fujii M, Yamaga M, Sugimoto H, Sadano H, Osumi T, Kamata H, Hirata H, Yagisawa H. Carboxyl-terminal basic amino acids in the X domain are essential for the nuclear import of phospholipase C δ1. Genes Cells 2002; 7:985-96. [PMID: 12296828 DOI: 10.1046/j.1365-2443.2002.00577.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND Although phospholipase C (PLC)delta1 containing a functional nuclear export signal (NES) is normally localized at the plasma membrane and in the cytoplasm, it shuttles between the nucleus and the cytoplasm. Since nucleocytoplasmic shuttling of a molecule is generally regulated by a balance between its NES and the nuclear localization signal (NLS), we examined whether PLCdelta1 contains an NLS sequence. RESULTS A region corresponding to the C terminus of the X domain and the XY-linker, which contains clusters of basic amino acid residues, was essential for the nuclear import of PLCdelta1 in Madin-Darby canine kidney cells. A series of point mutations on lysine residues in this region revealed that K432 and K434 in combination were important for the nuclear import. A short synthetic peptide corresponding to residues 429-442, however, was not able to function as an NLS sequence when they were injected into the cytoplasm in a carrier-conjugated form. Neither a longer peptide equivalent to PLCdelta1 412-498 fused to a protein tag consisting of glutathione S-transferase and green fluorescent protein was imported to the nucleus after microinjection into the cytoplasm. CONCLUSION The nuclear import of PLCdelta1 requires the C-terminus of the X domain, particularly the amino acid residues K432 and K434, and the XY-linker. The region alone, however, cannot serve as a functional NLS. The machinery for nuclear transport may require additional structural component(s) of the enzyme.
Collapse
Affiliation(s)
- Masashi Okada
- Department of Life Science, Faculty of Science, Himeji Institute of Technology, Harima Science Garden City, Hyogo 678-1297, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
334
|
Nalaskowski MM, Deschermeier C, Fanick W, Mayr GW. The human homologue of yeast ArgRIII protein is an inositol phosphate multikinase with predominantly nuclear localization. Biochem J 2002; 366:549-56. [PMID: 12027805 PMCID: PMC1222796 DOI: 10.1042/bj20020327] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2002] [Revised: 05/23/2002] [Accepted: 05/23/2002] [Indexed: 11/17/2022]
Abstract
The function of the transcription regulator ArgRIII in the expression of several genes involved in the metabolism of arginine in yeast has been well studied. It was previously reported that it is also an inositol phosphate multikinase and an important factor of the mRNA export pathway [reviewed by Shears (2000) Bioessays 22, 786-789]. In the present study we report the cloning of a full-length 1248-bp cDNA encoding a human inositol phosphate multikinase (IPMK). This protein has a calculated molecular mass of 47.219 kDa. Functionally important motifs [inositol phosphate-binding site, ATP-binding site, catalytically important SSLL (Ser-Ser-Leu-Leu) domain] are conserved between the human IPMK and yeast ArgRIII. Bacterially expressed protein demonstrated an inositol phosphate multikinase activity similar to that of yeast ArgRIII. Ins(1,4,5)P3 is phosphorylated at positions 3 and 6 up to Ins(1,3,4,5,6)P5. The human IPMK fused with a fluorescent protein tag is localized predominantly in the nucleus when transiently expressed in mammalian cells. A basic cluster in the protein's C-terminus is positively involved in nuclear targeting. These findings are consistent with the concept of a nuclear inositol phosphate signalling and phosphorylation pathway in mammalian cells.
Collapse
Affiliation(s)
- Marcus M Nalaskowski
- Universitaetsklinikum Hamburg-Eppendorf, Institut für Medizinische Biochemie und Molekularbiologie, Abteilung für Zellulaere Signaltransduktion, Martinistrasse 52, 20246 Hamburg, Germany
| | | | | | | |
Collapse
|
335
|
Verbsky JW, Wilson MP, Kisseleva MV, Majerus PW, Wente SR. The synthesis of inositol hexakisphosphate. Characterization of human inositol 1,3,4,5,6-pentakisphosphate 2-kinase. J Biol Chem 2002; 277:31857-62. [PMID: 12084730 DOI: 10.1074/jbc.m205682200] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The enzyme(s) responsible for the production of inositol hexakisphosphate (InsP(6)) in vertebrate cells are unknown. In fungal cells, a 2-kinase designated Ipk1 is responsible for synthesis of InsP(6) by phosphorylation of inositol 1,3,4,5,6-pentakisphosphate (InsP(5)). Based on limited conserved sequence motifs among five Ipk1 proteins from different fungal species, we have identified a human genomic DNA sequence on chromosome 9 that encodes human inositol 1,3,4,5,6-pentakisphosphate 2-kinase (InsP(5) 2-kinase). Recombinant human enzyme was produced in Sf21 cells, purified, and shown to catalyze the synthesis of InsP(6) or phytic acid in vitro. The recombinant protein converted 31 nmol of InsP(5) to InsP(6)/min/mg of protein (V(max)). The Michaelis-Menten constant for InsP(5) was 0.4 microM and for ATP was 21 microM. Saccharomyces cerevisiae lacking IPK1 do not produce InsP(6) and show lethality in combination with a gle1 mutant allele. Here we show that expression of the human InsP(5) 2-kinase in a yeast ipk1 null strain restored the synthesis of InsP(6) and rescued the gle1-2 ipk1-4 lethal phenotype. Northern analysis on human tissues showed expression of the human InsP(5) 2-kinase mRNA predominantly in brain, heart, placenta, and testis. The isolation of the gene responsible for InsP(6) synthesis in mammalian cells will allow for further studies of the InsP(6) signaling functions.
Collapse
Affiliation(s)
- John W Verbsky
- Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | | | | | |
Collapse
|
336
|
Grases F, Simonet BM, Vucenik I, Perelló J, Prieto RM, Shamsuddin AM. Effects of exogenous inositol hexakisphosphate (InsP(6)) on the levels of InsP(6) and of inositol trisphosphate (InsP(3)) in malignant cells, tissues and biological fluids. Life Sci 2002; 71:1535-46. [PMID: 12127908 DOI: 10.1016/s0024-3205(02)01927-6] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
InsP(6) is abundant in cereals and legumes. InsP(6) and lower inositol phosphates, in particular InsP(3), participate in important intracellular processes. In addition, InsP(6) possess significant health benefits, such as anti-cancer effect, kidney stones prevention, lowering serum cholesterol. Because of the insensitivity of existing methods for determination of non-radiolabeled inositol phosphates, little is known about the natural occurrence, much less on the concentrations of InsP(6) and InsP(3) in biological samples. Using gas chromatography-mass detection analysis of HPLC chromatographic fractions, we report a measurement of unlabeled total InsP(3) and InsP(6) (a) as they occur within cells culture, tissues, and plasma, and (b) their changes depending on the presence of exogenous InsP(6). When rats were fed on a purified diet in which InsP(6) was undetectable (AIN-76A) the levels of InsP(6) in brain were 3.35 +/- 0.57 (SE) micromol.kg(-1) and in plasma 0.023 +/- 0.008 (SE) micromol.l(-1). The presence of InsP(6) in diet dramatically influenced its levels in brain and in plasma. When rats were given an InsP(6)-sufficient diet (AIN-76A + 1% InsP(6)), the levels of InsP(6) were about 100-fold higher in brain tissues (36.8 +/- 1.8 (SE)) than in plasma (0.29 +/- 0.02 (SE)); InsP(6) concentrations were 8.5-fold higher than total InsP(3) concentrations in either plasma (0.033 +/- 0.012 (SE)) and brain (4.21 +/- 0.55 (SE)). When animals were given an InsP(6)-poor diet (AIN-76A only), there was a 90% decrease in InsP(6) content in both brain tissue and plasma (p < 0.001); however, there was no change in the level of total InsP(3). In non-stimulated malignant cells (MDA-MB 231 and K562) the InsP(6) contents were 16.2 +/- 9.1 (SE) micromol.kg(-1) for MDA-MB 231 cells and 15.6 +/- 2.7 (SE) for K 562 cells. These values were around 3-fold higher than those of InsP(3) (4.8 +/- 0.5 micromol.kg(-1) and 6.9 +/- 0.1 (SE) for MDA-MB 231 and K562 cells respectively). Treatment of malignant cells with InsP(6) resulted in a 2-fold increase in the intracellular concentrations of total InsP(3) (9.5 +/- 1.3 (SE) and 10.8 +/- 1.0 (SE) micromol.kg(-1) for MDA-MB 231 and K562 cells respectively, p < 0.05), without changes in InsP(6) levels. These results indicate that exogenous InsP(6) directly affects its physiological levels in plasma and brain of normal rats without changes on the total InsP(3) levels. Although a similar fluctuation of InsP(6) concentration was not seen in human malignant cell lines following InsP(6) treatment, an increased intracellular levels of total InsP(3) was clearly observed.
Collapse
Affiliation(s)
- Felix Grases
- Laboratory of Renal Lithiasis Research, Faculty of Science, University of Balearic Islands, Ctra. Valldemossa Km 7.5, 07071 Palma de Mallorca, Spain.
| | | | | | | | | | | |
Collapse
|
337
|
Fisher SK, Novak JE, Agranoff BW. Inositol and higher inositol phosphates in neural tissues: homeostasis, metabolism and functional significance. J Neurochem 2002; 82:736-54. [PMID: 12358779 DOI: 10.1046/j.1471-4159.2002.01041.x] [Citation(s) in RCA: 476] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Inositol phospholipids and inositol phosphates mediate well-established functions in signal transduction and in Ca2+ homeostasis in the CNS and non-neural tissues. More recently, there has been renewed interest in other roles that both myo-inositol and its highly phosphorylated forms may play in neural function. We review evidence that myo-inositol serves as a clinically relevant osmolyte in the CNS, and that its hexakisphosphate and pyrophosphorylated derivatives may play roles in such diverse cellular functions as DNA repair, nuclear RNA export and synaptic membrane trafficking.
Collapse
Affiliation(s)
- Stephen K Fisher
- Mental Health Research Institute, and Department of Pharmacology, University of Michigan, Ann Arbor, Michigan 48109, USA.
| | | | | |
Collapse
|
338
|
Dubois E, Scherens B, Vierendeels F, Ho MMW, Messenguy F, Shears SB. In Saccharomyces cerevisiae, the inositol polyphosphate kinase activity of Kcs1p is required for resistance to salt stress, cell wall integrity, and vacuolar morphogenesis. J Biol Chem 2002; 277:23755-63. [PMID: 11956213 DOI: 10.1074/jbc.m202206200] [Citation(s) in RCA: 99] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A problem for inositol signaling is to understand the significance of the kinases that convert inositol hexakisphosphate to diphosphoinositol polyphosphates. This kinase activity is catalyzed by Kcs1p in the yeast Saccharomyces cerevisiae. A kcs1Delta yeast strain that was transformed with a specifically "kinase-dead" kcs1p mutant did not synthesize diphosphoinositol polyphosphates, and the cells contained a fragmented vacuolar compartment. Biogenesis of the yeast vacuole also required another functional domain in Kcs1p, which contains two leucine heptad repeats. The kinase activity of Kcs1p was also found to sustain cell growth and integrity of the cell wall and to promote adaptive responses to salt stress. Thus, the synthesis of diphosphoinositol polyphosphates has wide ranging physiological significance. Furthermore, we showed that these phenotypic responses to Kcs1p deletion also arise when synthesis of precursor material for the diphosphoinositol polyphosphates is blocked in arg82Delta cells. This metabolic block was partially bypassed, and the phenotype was partially rescued, when Kcs1p was overexpressed in the arg82Delta cells. This was due, in part, to the ability of Kcs1p to phosphorylate a wider range of substrates than previously appreciated. Our results show that diphosphoinositol polyphosphate synthase activity is essential for biogenesis of the yeast vacuole and the cell's responses to certain environmental stresses.
Collapse
Affiliation(s)
- Evelyne Dubois
- Institut de Recherches Microbiologiques Jean-Marie Wiame, Université Libre de Bruxelles, Brussels, Belgium B-1070.
| | | | | | | | | | | |
Collapse
|
339
|
Woodcock EA, Wang BH, Arthur JF, Lennard A, Matkovich SJ, Du XJ, Brown JH, Hannan RD. Inositol polyphosphate 1-phosphatase is a novel antihypertrophic factor. J Biol Chem 2002; 277:22734-42. [PMID: 11932254 DOI: 10.1074/jbc.m110405200] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Activation of G(q)-coupled alpha(1)-adrenergic receptors leads to hypertrophic growth of neonatal rat ventricular cardiomyocytes that is associated with increased expression of hypertrophy-related genes, including atrial natriuretic peptide (ANP) and myosin light chain-2 (MLC), as well as increased ribosome synthesis. The role of inositol phosphates in signaling pathways involved in these changes in gene expression was examined by overexpressing inositol phosphate-metabolizing enzymes and determining effects on ANP, MLC, and 45 S ribosomal gene expression following co-transfection of appropriate reporter gene constructs. Overexpression of enzymes that metabolize inositol 1,4,5-trisphosphate did not reduce ANP or MLC responses, but overexpression of the enzyme primarily responsible for metabolism of inositol 4,5-bisphosphate (Ins(1,4)P(2)), inositol polyphosphate 1-phosphatase (INPP), reduced ANP and MLC responses associated with alpha(1)-adrenergic receptor-mediated hypertrophy. Similarly overexpressed INPP reduced ANP and MLC responses associated with contraction-induced hypertrophy. In addition, overexpression of INPP reduced the increase in ribosomal DNA transcription associated with both hypertrophic models. Hypertrophied cells from both cell models as well as ventricular tissue from mouse hearts hypertrophied by pressure overload in vivo contained heightened levels of Ins(1,4)P(2), suggesting reduced INPP activity in three different models of hypertrophy. These studies provide evidence for an involvement of Ins(1,4)P(2) in hypertrophic signaling pathways in ventricular myocytes.
Collapse
MESH Headings
- Animals
- Atrial Natriuretic Factor/metabolism
- Blotting, Western
- CHO Cells
- Cardiac Myosins/metabolism
- Cells, Cultured
- Cloning, Molecular
- Cricetinae
- DNA, Complementary/metabolism
- DNA, Ribosomal/metabolism
- Electrophoresis, Polyacrylamide Gel
- Gene Library
- Genes, Reporter
- Humans
- Hypertrophy/drug therapy
- Inositol Phosphates/metabolism
- Mice
- Mice, Inbred C57BL
- Models, Chemical
- Myocardium/metabolism
- Myocardium/pathology
- Myosin Light Chains/metabolism
- Phosphoric Monoester Hydrolases/chemistry
- Phosphoric Monoester Hydrolases/pharmacology
- Promoter Regions, Genetic
- Protein Binding
- Protein Kinase C/metabolism
- Rats
- Signal Transduction
- Time Factors
- Transcription, Genetic
- Transfection
Collapse
Affiliation(s)
- Elizabeth A Woodcock
- Cellular Biochemistry Laboratory, Baker Medical Research Institute, PO Box 6492, St. Kilda Road Central, Melbourne, 8008, Victoria, Australia.
| | | | | | | | | | | | | | | |
Collapse
|
340
|
Divecha N, Roefs M, Los A, Halstead J, Bannister A, D'Santos C. Type I PIPkinases interact with and are regulated by the retinoblastoma susceptibility gene product-pRB. Curr Biol 2002; 12:582-7. [PMID: 11937028 DOI: 10.1016/s0960-9822(02)00769-8] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Inositide signaling at the plasma membrane has been implicated in the regulation of numerous cellular processes including cytoskeletal dynamics, vesicle trafficking, and gene transcription. Studies have also shown that a distinct inositide pathway exists in nuclei, where it may regulate nuclear processes such as mRNA export, cell cycle progression, gene transcription, and DNA repair. We previously demonstrated that nuclear PtdIns(4,5)P(2) synthesis is stimulated during progression from G1 through S phase, although mechanistic details of how cell cycle progression impinges on the regulation of nuclear inositides is unknown. In this study, we demonstrate that pRB, which regulates progression of cells from G1 through S phase interacts both in vitro and in vivo with Type I PIPkinases, the enzymes responsible for nuclear PtdIns(4,5)P(2) synthesis. Moreover, this interaction stimulates the activity of Type Ialpha PIPkinase in an in vitro assay. Using murine erythroleukamia (MEL) cells expressing a temperature-sensitive mutant of large T antigen (LTA), we demonstrate changes in vivo in nuclear PtdIns(4,5)P(2) levels that are consistent with the ability of LTA to disrupt pRB/Type I interactions. This study, for the first time, provides a potential mechanism for how cell cycle progression could regulate the levels of nuclear inositides.
Collapse
Affiliation(s)
- Nullin Divecha
- Department of Cellular Biochemistry, The Netherlands Cancer Institute, 121 Plesmanlaan, 1066CX, Amsterdam, The Netherlands.
| | | | | | | | | | | |
Collapse
|
341
|
Abstract
The 2002 Keystone Symposium on "Regulation of Cellular Responses by Lipid Mediators" provided a lively and active forum to discuss research in lipid signaling. This meeting review can provide only a glimpse into the diversity of research presented. Here we have chosen to highlight a group of exciting presentations describing novel features of the temporal and spatial regulation of phosphoinositides and their downstream targets.
Collapse
Affiliation(s)
- Seth J Field
- Division of Signal Transduction, Beth Israel Deaconess Medical Center and Department of Cell Biology, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA.
| | | | | | | |
Collapse
|
342
|
Abstract
The nonhomologous DNA end joining (NHEJ) pathway is responsible for repairing a major fraction of double strand DNA breaks in somatic cells of all multicellular eukaryotes. As an indispensable protein in the NHEJ pathway, Ku has been hypothesized to be the first protein to bind at the DNA ends generated at a double strand break being repaired by this pathway. When bound to a DNA end, Ku improves the affinity of another DNA end-binding protein, DNA-PK(cs), to that end. The Ku.DNA-PK(cs) complex is often termed the DNA-PK holoenzyme. It was recently shown that myo-inositol hexakisphosphate (IP(6)) stimulates the joining of complementary DNA ends in a cell free system. Moreover, the binding data suggested that IP(6) bound to DNA-PK(cs) (not to Ku). Here we clearly show that, in fact, IP(6) associates not with DNA-PK(cs), but rather with Ku. Furthermore, the binding of DNA ends and IP(6) to Ku are independent of each other. The possible relationship between inositol phosphate metabolism and DNA repair is discussed in light of these findings.
Collapse
Affiliation(s)
- Yunmei Ma
- Norris Comprehensive Cancer Center, Department of Pathology, University of Southern California Keck School of Medicine, Los Angeles, California 90089-9176, USA
| | | |
Collapse
|
343
|
Morrison BH, Bauer JA, Hu J, Grane RW, Ozdemir AM, Chawla-Sarkar M, Gong B, Almasan A, Kalvakolanu DV, Lindner DJ. Inositol hexakisphosphate kinase 2 sensitizes ovarian carcinoma cells to multiple cancer therapeutics. Oncogene 2002; 21:1882-9. [PMID: 11896621 PMCID: PMC2043497 DOI: 10.1038/sj.onc.1205265] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2001] [Revised: 12/11/2001] [Accepted: 12/18/2001] [Indexed: 12/29/2022]
Abstract
We recently identified inositol hexakisphosphate kinase 2 (IP6K2) as a positive regulator of apoptosis. Overexpression of IP6K2 enhances apoptosis induced by interferon-beta (IFN-beta) and cytotoxic agents in NIH-OVCAR-3 ovarian carcinoma cells. In this study, we contrast and compare IFN-beta and radiation-induced death, and show that IP6K2 expression sensitizes tumor cells. Unirradiated NIH-OVCAR-3 cells transfected with IP6K2 formed fewer colonies compared to unirradiated vector-expressing cells. IP6K2 overexpression caused increased radiosensitivity, evidenced by decreased colony forming units (CFU). Both IFN-beta and radiation induced caspase 8. IFN-beta, but not gamma-irradiation, induced TRAIL in NIH-OVCAR-3 cells. Gamma irradiation, but not IFN-beta, induced DR4 mRNA. Apoptotic effects of IFN-beta or gamma-irradiation were blocked by expression of a dominant negative mutant death receptor 5 (DR5Delta) or by Bcl-2. Caspase-8 mRNA induction was more pronounced in IP6K2-expressing cells compared to vector-expressing cells. These data suggest that overexpression of IP6K2 enhances sensitivity of some ovarian carcinomas to radiation and IFN-beta. IP6K2 may function to enhance the expression and/or function of caspase 8 and DR4 following cell injury. Both IFN-beta and gamma-irradiation induce apoptosis through the extrinsic, receptor-mediated pathway, IFN-beta through TRAIL, radiation through DR4, and both through caspase 8. The function of both death inducers is positively regulated by IP6K2.
Collapse
Affiliation(s)
- Bei H Morrison
- Center for Cancer Drug Discovery and Development, Taussig Cancer Center, The Cleveland Clinic Foundation, Cleveland, Ohio, OH 44195, USA
| | - Joseph A Bauer
- Center for Cancer Drug Discovery and Development, Taussig Cancer Center, The Cleveland Clinic Foundation, Cleveland, Ohio, OH 44195, USA
| | - Jiadi Hu
- Department of Microbiology and Immunology, Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland, MD 21201, USA
| | - Ronald W Grane
- Center for Cancer Drug Discovery and Development, Taussig Cancer Center, The Cleveland Clinic Foundation, Cleveland, Ohio, OH 44195, USA
| | - Aylin M Ozdemir
- Center for Cancer Drug Discovery and Development, Taussig Cancer Center, The Cleveland Clinic Foundation, Cleveland, Ohio, OH 44195, USA
| | - Mamta Chawla-Sarkar
- Center for Cancer Drug Discovery and Development, Taussig Cancer Center, The Cleveland Clinic Foundation, Cleveland, Ohio, OH 44195, USA
| | - Bendi Gong
- Department of Cancer Biology, Lerner Research Institute, The Cleveland Clinic Foundation, Cleveland, Ohio, OH 44195, USA
| | - Alex Almasan
- Department of Cancer Biology, Lerner Research Institute, The Cleveland Clinic Foundation, Cleveland, Ohio, OH 44195, USA
- Department of Radiation Oncology, The Cleveland Clinic Foundation, Cleveland, Ohio, OH 44195, USA
| | - Dhananjaya V Kalvakolanu
- Department of Microbiology and Immunology, Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland, MD 21201, USA
| | - Daniel J Lindner
- Center for Cancer Drug Discovery and Development, Taussig Cancer Center, The Cleveland Clinic Foundation, Cleveland, Ohio, OH 44195, USA
- Department of Cancer Biology, Lerner Research Institute, The Cleveland Clinic Foundation, Cleveland, Ohio, OH 44195, USA
- Correspondence: DJ Lindner, 9500 Euclid Avenue, R40, Cleveland, OH 44195, USA; E-mail:
| |
Collapse
|
344
|
Irigoín F, Ferreira F, Fernández C, Sim RB, Díaz A. myo-Inositol hexakisphosphate is a major component of an extracellular structure in the parasitic cestode Echinococcus granulosus. Biochem J 2002; 362:297-304. [PMID: 11853537 PMCID: PMC1222389 DOI: 10.1042/0264-6021:3620297] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
myo-Inositol hexakisphosphate (IP(6)) is an abundant intracellular component of animal cells. In this study we describe the presence of extracellular IP(6) in the hydatid cyst wall (HCW) of the larval stage of the cestode parasite Echinococcus granulosus. The HCW comprises an inner cellular layer and an outer, acellular (laminated) layer up to 2 mm in thickness that protects the parasite from host immune cells. A compound, subsequently identified as IP(6), was detected in and purified from an HCW extract on the basis of its capacity to inhibit complement activation. The identification of the isolated compound was carried out by a combination of NMR, MS and TLC. The majority of IP(6) in the HCW was found in the acellular layer, with only a small fraction of the compound being extracted from cells. In the laminated layer, IP(6) was present in association with calcium, and accounted for up to 15% of the total dry mass of the HCW. IP(6) was not detected in any other structures or stages of the parasite. Our results imply that IP(6) is secreted by the larval stage of the parasite in a polarized fashion towards the interface with the host. This is the first report of the secretion of IP(6), and the possible implications beyond the biology of E. granulosus are discussed.
Collapse
Affiliation(s)
- Florencia Irigoín
- Cátedra de Inmunología, Facultad de Química/Ciencias, Universidad de la República, Avenida Alfredo Navarro 3051, piso 2, CP 11600, Montevideo, Uruguay
| | | | | | | | | |
Collapse
|
345
|
Abstract
Recent advances have led to a new understanding of how mRNAs are exported from the nucleus to the cytoplasm. This process requires a heterodimeric mRNA export receptor that is part of an elaborate machinery conserved from yeast to humans. Export of mRNAs is coupled to upstream steps in gene expression, such as pre-mRNA splicing, and to downstream events, including nonsense-mediated decay.
Collapse
Affiliation(s)
- Robin Reed
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA.
| | | |
Collapse
|
346
|
Abstract
A central aspect of cellular function is the proper regulation of nucleocytoplasmic transport. In recent years, significant progress has been made in identifying and characterizing the essential components of the transport machinery. Despite these advances, some facets of this process are still unclear. Furthermore, recent work has uncovered novel molecules and mechanisms of nuclear transport. This review focuses on the unresolved and novel aspects of nuclear transport and explores issues in tRNA, snRNA, and mRNA export that highlight the diversity of nuclear transport mechanisms.
Collapse
Affiliation(s)
- A Komeili
- Department of Biochemistry and Biophysics, Howard Hughes Medical Institute, University of California, San Francisco, California 94143, USA.
| | | |
Collapse
|
347
|
Tisi R, Coccetti P, Banfi S, Martegani E. 3-Nitrocoumarin is an efficient inhibitor of budding yeast phospholipase-C. Cell Biochem Funct 2001; 19:229-35. [PMID: 11746203 DOI: 10.1002/cbf.918] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
3-Nitrocoumarin is described in the literature as a specific inhibitor of mammalian phospholipase-C and here we studied the effect of 3-nitrocoumarin on budding yeast phosphatidylinositol-specific phospholipase-C and its effect on yeast growth. 3-Nitrocoumarin is a powerful inhibitor in vitro of the yeast Plc1 protein with an IC(50) of 57 nM and it is also an inhibitor of yeast growth in minimal media at comparable concentrations. Moreover at the same concentration it inhibits the glucose-induced PI-turnover. Since the effects of 3-nitrocoumarin on yeast growth are superimposable on the growth phenotype caused by PLC1 gene deletion we can conclude that 3-nitrocoumarin is a specific and selective inhibitor of yeast phospholipase-C. In addition we show that 3-nitrocoumarin was also an effective inhibitor of the pathogenic yeast Candida albicans.
Collapse
Affiliation(s)
- R Tisi
- Dipartimento di Biotecnologie e Bioscienze, Università di Milano, Bicocca Piazza delle Scienze 2, 20126-Milano, Italy
| | | | | | | |
Collapse
|
348
|
Abstract
A defining characteristic of eukaryotic cells is the possession of a nuclear envelope. Transport of macromolecules between the nuclear and cytoplasmic compartments occurs through nuclear pore complexes that span the double membrane of this envelope. The molecular basis for transport has been revealed only within the last few years. The transport mechanism lacks motors and pumps and instead operates by a process of facilitated diffusion of soluble carrier proteins, in which vectoriality is provided by compartment-specific assembly and disassembly of cargo-carrier complexes. The carriers recognize localization signals on the cargo and can bind to pore proteins. They also bind a small GTPase, Ran, whose GTP-bound form is predominantly nuclear. Ran-GTP dissociates import carriers from their cargo and promotes the assembly of export carriers with cargo. The ongoing discovery of numerous carriers, Ran-independent transport mechanisms, and cofactors highlights the complexity of the nuclear transport process. Multiple regulatory mechanisms are also being identified that control cargo-carrier interactions. Circadian rhythms, cell cycle, transcription, RNA processing, and signal transduction are all regulated at the level of nucleocytoplasmic transport. This review focuses on recent discoveries in the field, with an emphasis on the carriers and cofactors involved in transport and on possible mechanisms for movement through the nuclear pores.
Collapse
Affiliation(s)
- I G Macara
- Center for Cell Signaling, University of Virginia, Charlottesville, Virginia 22908-0577, USA.
| |
Collapse
|
349
|
Raboy V. Seeds for a better future: 'low phytate' grains help to overcome malnutrition and reduce pollution. TRENDS IN PLANT SCIENCE 2001; 6:458-62. [PMID: 11590064 DOI: 10.1016/s1360-1385(01)02104-5] [Citation(s) in RCA: 169] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
myo-Inositol(1,2,3,4,5,6)hexakisphosphate (InsP(6) or 'phytic acid') was first known as the storage form of phosphorus in seeds. Seed-derived dietary InsP(6) can contribute to iron and zinc deficiency in human populations. Excretion of 'phytic acid phosphorus' by non-ruminants such as poultry, swine and fish can contribute to water pollution. Sustainable solutions to these important problems might depend on progress in the molecular biology and genetics of InsP(6) accumulation during seed development. The development of 'low phytate' grain and legume genotypes could help advance our understanding of this biology, and when used in foods and feeds might help to reduce human malnutrition and reduce animal waste phosphorus.
Collapse
Affiliation(s)
- V Raboy
- US Department of Agriculture, Agricultural Research Service, 1691 So. 2700 W, PO Box 307, Aberdeen, ID 83210, USA.
| |
Collapse
|
350
|
Liu C, Riley AM, Yang X, Shears SB, Potter BV. Synthesis and biological activity of D- and L-chiro-inositol 2,3,4,5-tetrakisphosphate: design of a novel and potent inhibitor of Ins(3,4,5,6)P4 1-kinase/Ins(1,3,4)P3 5/6-kinase. J Med Chem 2001; 44:2984-9. [PMID: 11520207 DOI: 10.1021/jm000553k] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The synthesis of a novel and potent Ins(3,4,5,6)P4 1-kinase/Ins(1,3,4)P3 5/6 kinase inhibitor and its enantiomer is described. D-chiro-Inositol 2,3,4,5-tetrakisphosphate [D-chiro-Ins(2,3,4,5)P4, 3, Figure 1] and L-chiro-inositol 2,3,4,5-tetrakisphosphate [L-chiro-Ins(2,3,4,5)P4, ent-3] were synthesized from D-1,6-di-O-benzyl-chiro-inositol and L-1,6-di-O-benzyl-chiro-inositol, respectively. We examined inhibition of the multifunctional Ins(3,4,5,6)P4 1-kinase/Ins(1,3,4)P3 5/6-kinase from bovine aorta by 3 and ent-3. Compound 3 was a potent inhibitor with an IC(50) of 1.5 microM, and ent-3 was more than 20-fold less active. The results are compared to those for other inhibitory inositol polyphosphates with structure-activity relationship discussion. Compound 3 is a useful lead for development of further inhibitors of this important enzyme, and ent-3 should find applications in the newly emerging Ins(1,4,5,6)P4 signaling pathway.
Collapse
Affiliation(s)
- C Liu
- Wolfson Laboratory of Medicinal Chemistry, Department of Pharmacy and Pharmacology, University of Bath, Claverton Down, Bath BA2 7AY, UK
| | | | | | | | | |
Collapse
|