301
|
Pütz G, Schmider W, Nitschke R, Kurz G, Blum HE. Synthesis of phospholipid-conjugated bile salts and interaction of bile salt-coated liposomes with cultured hepatocytes. J Lipid Res 2005; 46:2325-38. [PMID: 16150831 DOI: 10.1194/jlr.m500144-jlr200] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
To examine the possibility of targeting liposomes to hepatocytes via bile salts, the bile salt lithocholyltaurine was covalently linked to a phospholipid. The isomeric compounds disodium 3alpha-(2-(1,2-O-distearoyl-sn-glycero-3-phospho-2'-ethanolamidosuccinyloxy)ethoxy)-5beta-cholan-24-oyl-2'-aminoethansulfonate and disodium 3beta-(2-(1,2-O-distearoyl-sn-glycero-3-phospho-2'-ethanolamidosuccinyloxy)ethoxy-5beta-cholan-24-oyl-2'-aminoethansulfonate (DSPE-3beta-LCT) were synthesized and incorporated into liposomal membranes. Confocal laser scanning microscopy studies showed that bile salt-bearing liposomes (BSLs) attach to the surface of rat hepatocytes in culture. Studies with radioactively labeled liposomes revealed that the bile salt linked via the 3beta-conformation resulted in a higher attachment efficiency than that with the 3alpha-derivative. In the presence of BSLs corresponding to 2 mM liposomal phosphatidylcholine, uptake of 50 microM cholyltaurine (CT) into hepatocytes was reduced by approximately 40% by the 3beta-derivative and by approximately 17% by the 3alpha-derivative. When added simultaneously with the liposomes, CT up to 75 microM inhibited the binding of DSPE-3beta-LCT-bearing liposomes. By contrast, increasing concentrations reversed this inhibition and resulted in an increased bile salt-mediated binding. The same was true when CT was added 10 min before the liposomes were added. The attachment of BSLs to the surface of hepatocytes opens up promising possibilities for hepatocyte-specific drug delivery. More generally, not only substrates for cellular endocytosing receptors but also substrates for cellular carrier proteins should be suitable ligands for the cell-specific targeting of nanoscale particles such as liposomes.
Collapse
Affiliation(s)
- G Pütz
- University Medical Clinic Freiburg, D-79106 Freiburg, Germany.
| | | | | | | | | |
Collapse
|
302
|
Martin G, Atshaves B, Mcintosh A, Mackie J, Kier A, Schroeder F. Liver fatty-acid-binding protein (L-FABP) gene ablation alters liver bile acid metabolism in male mice. Biochem J 2005; 391:549-60. [PMID: 15984932 PMCID: PMC1276955 DOI: 10.1042/bj20050296] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2005] [Revised: 05/17/2005] [Accepted: 06/21/2005] [Indexed: 01/18/2023]
Abstract
Although the physiological roles of the individual bile acid synthetic enzymes have been extensively examined, relatively little is known regarding the function of intracellular bile acid-binding proteins. Male L-FABP (liver fatty-acid-binding protein) gene-ablated mice were used to determine a role for L-FABP, the major liver bile acid-binding protein, in bile acid and biliary cholesterol metabolism. First, in control-fed mice L-FABP gene ablation alone increased the total bile acid pool size by 1.5-fold, especially in gall-bladder and liver, but without altering the proportions of bile acid, cholesterol and phospholipid. Loss of liver L-FABP was more than compensated by up-regulation of: other liver cytosolic bile acid-binding proteins [GST (glutathione S-transferase), 3alpha-HSD (3alpha-hydroxysteroid dehydrogenase)], key hepatic bile acid synthetic enzymes [CYP7A1 (cholesterol 7alpha-hydroxylase) and CYP27A1 (sterol 27alpha-hydroxylase)], membrane bile acid translocases [canalicular BSEP (bile salt export pump), canalicular MRP2 (multidrug resistance associated protein 2), and basolateral/serosal OATP-1 (organic anion transporting polypeptide 1)], and positive alterations in nuclear receptors [more LXRalpha (liver X receptor alpha) and less SHP (short heterodimer partner)]. Secondly, L-FABP gene ablation reversed the cholesterol-responsiveness of bile acid metabolic parameters such that total bile acid pool size, especially in gall-bladder and liver, was reduced 4-fold, while the mass of biliary cholesterol increased 1.9-fold. The dramatically reduced bile acid levels in cholesterol-fed male L-FABP (-/-) mice were associated with reduced expression of: (i) liver cytosolic bile acid-binding proteins (L-FABP, GST and 3alpha-HSD), (ii) hepatic bile acid synthetic enzymes [CYP7A1, CYP27A1 and SCP-x (sterol carrier protein-x/3-ketoacyl-CoA thiolase)] concomitant with decreased positive nuclear receptor alterations (i.e. less LXRalpha and more SHP), and (iii) membrane bile acid transporters (BSEP, MRP2 and OATP-1). These are the first results suggesting a physiological role for the major cytosolic bile acid-binding protein (L-FABP) in influencing liver bile metabolic phenotype and gall-bladder bile lipids of male mice, especially in response to dietary cholesterol.
Collapse
Key Words
- bile acid
- cholesterol
- cholesteryl ester
- fatty-acid-binding protein
- gene ablation
- liver
- 3α-hsd, 3α-hydroxysteroid dehydrogenase
- acat, acyl-coa:cholesterol acyltransferase
- acbp, acyl-coa-binding protein
- apo a1, apolipoprotein a1
- bsep, bile salt export pump
- cyp27a1, sterol 27α-hydroxylase
- cyp7a1, cholesterol 7α-hydroxylase
- dexa, dual-energy x-ray absorptiometry
- ftm, fat tissue mass
- fxr, farnesoid x receptor
- gst, glutathione s-transferase
- hmg-coa, 3-hydroxy-3-methylglutaryl-coa
- ldl, low-density lipoprotein
- l-fabp, liver fatty-acid-binding protein
- ltm, lean tissue mass
- lxrα, liver x receptor α
- mrp2, multidrug resistance associated protein 2
- oatp-1, organic anion transporting polypeptide 1
- pparα, peroxisome-proliferator-activated receptor α
- scp-2, sterol carrier protein-2
- scp-x, sterol carrier protein-x/3-ketoacyl-coa thiolase
- shp, short heterodimer partner
- srb-1, scavenger receptor class b type i
- srebp-1, sterol-regulatory-element-binding protein 1
Collapse
Affiliation(s)
- Gregory G. Martin
- *Department of Physiology and Pharmacology, Texas A&M University, TVMC, College Station, TX 77843-4467, U.S.A
| | - Barbara P. Atshaves
- *Department of Physiology and Pharmacology, Texas A&M University, TVMC, College Station, TX 77843-4467, U.S.A
| | - Avery L. Mcintosh
- *Department of Physiology and Pharmacology, Texas A&M University, TVMC, College Station, TX 77843-4467, U.S.A
| | - John T. Mackie
- †Department of Pathobiology, Texas A&M University, TVMC, College Station, TX 77843-4467, U.S.A
| | - Ann B. Kier
- †Department of Pathobiology, Texas A&M University, TVMC, College Station, TX 77843-4467, U.S.A
| | - Friedhelm Schroeder
- *Department of Physiology and Pharmacology, Texas A&M University, TVMC, College Station, TX 77843-4467, U.S.A
| |
Collapse
|
303
|
Colombo S, Soranzo N, Rotger M, Sprenger R, Bleiber G, Furrer H, Buclin T, Goldstein D, Décosterd L, Telenti A. Influence of ABCB1, ABCC1, ABCC2, and ABCG2 haplotypes on the cellular exposure of nelfinavir in vivo. Pharmacogenet Genomics 2005; 15:599-608. [PMID: 16041239 DOI: 10.1097/01.fpc.0000172241.42546.d3] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
OBJECTIVES The human immunodeficiency virus protease inhibitor nelfinavir is substrate of polyspecific drug transporters encoded by ABCB1 (P-glycoprotein), ABCC1 (MRP1) and ABCC2 (MRP2), and an inhibitor of BCRP, encoded by ABCG2. Genetic polymorphism in these genes may be associated with changes in transport function. METHODS A comprehensive evaluation of single nucleotide polymorphisms (39 SNPs in ABCB1, 7 in ABCC1, 27 in ABCC2, and 16 in ABCG2), and inferred haplotypes was done to assess possible associations of genetic variants with cellular exposure of nelfinavir in vivo. Analysis used peripheral mononuclear cells from individuals receiving nelfinavir (n=28). Key results were re-examined in a larger sample size (n=129) contributing data on plasma drug levels. RESULTS AND CONCLUSIONS There was no significant association between cellular nelfinavir area under the curve (AUC) and SNPs or haplotypes at ABCC1, ABCC2, ABCG2. There was an association with cellular exposure for two loci in strong linkage disequilibrium: ABCB1 3435C>T; AUCTT>AUCCT>AUCCC (ratio 2.1, 1.4, 1, Ptrend=0.01), and intron 26 +80T>C; AUCCC> AUCCT > AUCTT (ratio 2.4, 1.3, 1, Ptrend=0.006). Haplotypic analysis using tagging SNPs did not improve the single SNP association values.
Collapse
Affiliation(s)
- Sara Colombo
- Division of Clinical Pharmacology, University Hospital, Lausanne, Switzerland
| | | | | | | | | | | | | | | | | | | |
Collapse
|
304
|
Ito S, Fujimori T, Furuya A, Satoh J, Nabeshima Y, Nabeshima YI. Impaired negative feedback suppression of bile acid synthesis in mice lacking betaKlotho. J Clin Invest 2005; 115:2202-8. [PMID: 16075061 PMCID: PMC1180526 DOI: 10.1172/jci23076] [Citation(s) in RCA: 192] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2004] [Accepted: 05/31/2005] [Indexed: 12/12/2022] Open
Abstract
We have generated a line of mutant mouse that lacks betaKlotho, a protein that structurally resembles Klotho. The synthesis and excretion of bile acids were found to be dramatically elevated in these mutants, and the expression of 2 key bile acid synthase genes, cholesterol 7alpha-hydroxylase (Cyp7a1) and sterol 12alpha-hydroxylase (Cyp8b1), was strongly upregulated. Nuclear receptor pathways and the enterohepatic circulation, which regulates bile acid synthesis, seemed to be largely intact; however, bile acid-dependent induction of the small heterodimer partner (SHP) NR0B2, a common negative regulator of Cyp7a1 and Cyp8b1, was significantly attenuated. The expression of Cyp7a1 and Cyp8b1 is known to be repressed by dietary bile acids via both SHP-dependent and -independent regulations. Interestingly, the suppression of Cyp7a1 expression by dietary bile acids was impaired, whereas that of Cyp8b1 expression was not substantially altered in betaklotho mice. Therefore, betaKlotho may stand as a novel contributor to Cyp7a1-selective regulation. Additionally, betaKlotho-knockout mice exhibit resistance to gallstone formation, which suggests the potential future clinical relevance of the betaKlotho system.
Collapse
Affiliation(s)
- Shinji Ito
- Department of Pathology and Tumor Biology, Graduate School of Medicine, and Horizontal Medical Research Organization, Faculty of Medicine, Kyoto University, Kyoto, Japan
| | | | | | | | | | | |
Collapse
|
305
|
Rost D, Kopplow K, Gehrke S, Mueller S, Friess H, Ittrich C, Mayer D, Stiehl A. Gender-specific expression of liver organic anion transporters in rat. Eur J Clin Invest 2005; 35:635-43. [PMID: 16178883 DOI: 10.1111/j.1365-2362.2005.01556.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
BACKGROUND Sex differences in drug pharmacokinetics have been well recognized and gender has been considered a risk factor for adverse events to medications. The aim of this study was to investigate the effect of gender on the expression of hepatocellular transport proteins involved in uptake and secretion of organic anions in rat. MATERIALS AND METHODS Expression of the rat liver organic anion transporting polypeptides (Oatps) and multidrug resistance proteins (Mrps) was analysed by reverse transcription polymerase chain reaction (RT-PCR), immunoblot analysis and immunofluorescence microscopy in male and female rats. Regulation of these transport proteins in response to the steroid dehydroepiandrosterone (DHEA) was investigated. RESULTS In untreated rats, protein expression significantly differed between genders being higher (Mrp2, Mrp3), comparable [Oatp1a1 (Oatp1); Oatp1b2 (Oatp4)] or lower [Oatp1a4 (Oatp2)] in female than in male rat. DHEA treatment over 3 days (100 mg d(-1)) led to a further increase in Mrp3 expression only in female rats. Mrp2 expression was not influenced by DHEA treatment. Oatp1a1 and Oatp1b2 were significantly down-regulated after DHEA treatment in both male and female rats. In contrast, Oatp1a4 was down-regulated in male rats only. CONCLUSIONS In rat, liver transport proteins of the Oatp and Mrp family are expressed and regulated in a gender-specific manner according to sexual differences in the hepatic metabolism of steroids and drugs. These findings may partly explain the well-known sex differences in hepatic handling of organic anions.
Collapse
Affiliation(s)
- D Rost
- Department of Gastroenterology, University of Heidelberg, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
306
|
Landrier JF, Thomas C, Grober J, Zaghini I, Petit V, Poirier H, Niot I, Besnard P. The gene encoding the human ileal bile acid-binding protein (I-BABP) is regulated by peroxisome proliferator-activated receptors. Biochim Biophys Acta Mol Cell Biol Lipids 2005; 1735:41-9. [PMID: 15936983 DOI: 10.1016/j.bbalip.2005.05.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2004] [Revised: 04/11/2005] [Accepted: 05/03/2005] [Indexed: 11/29/2022]
Abstract
Peroxisome proliferator-activator receptors (PPAR) are involved in cholesterol homeostasis through the regulation of bile acids synthesis, composition, and reclamation. As ileal bile acid-binding protein (I-BABP) is thought to play a crucial role in the enterohepatic circulation of bile acids, we investigated whether I-BABP gene expression could also be affected by PPAR. Indeed, treatment with the PPARalpha-PPARbeta/delta agonist bezafibrate led to the up-regulation of I-BABP mRNA levels in the human intestine-derived Caco-2 cells. Cotransfections of the reporter-linked human I-BABP promoter (hI-BABP-2769/+44) together with PPAR and RXR expression vectors demonstrated that the fibrate-mediated induction of the I-BABP gene is dependent on PPARalpha or PPARbeta/delta. Using progressive 5' deletions of the hI-BABP promoter and sequence analysis, we identified a putative PPAR-binding site located at the position -198 and -186 upstream of the transcription initiation site. Electrophoretic mobility shift assays showed that the PPAR/RXR heterodimer can specifically bind to this PPRE-like motif. The deletion of the PPRE within the hI-BABP promoter abolished the PPAR-mediated transactivation in transient transfection assays. The regulation of the I-BABP promoter by PPAR appears species-specific, as the mouse I-BABP promoter, which lacks a conserved PPRE, was not responsive to exogenous PPAR expression in the presence of bezafibrate. Our findings show that the I-BABP gene may be a novel target for PPAR in humans and further emphasize the role for PPAR in the control of bile acid homeostasis.
Collapse
Affiliation(s)
- J F Landrier
- Physiologie de la Nutrition, Ecole Nationale Supérieure de Biologie Appliquée à la Nutrition et à l'Alimentation, UMR 5170 CESG CNRS/INRA/Université de Bourgogne, 1 Esplanade Erasme F-21000, Dijon, France
| | | | | | | | | | | | | | | |
Collapse
|
307
|
Meijer DKF, Lennernäs H. EUFEPS conference on Drug Transporters at Copenhagen: Integrative approaches in ADME research. Eur J Pharm Sci 2005; 26:130-43. [PMID: 16161216 DOI: 10.1016/j.ejps.2005.07.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Dirk K F Meijer
- Department of Pharmacokinetics and Drug Delivery, Groningen Institute for Drug Exploration (GUIDE), The Netherlands
| | | |
Collapse
|
308
|
Noe J, Kullak-Ublick GA, Jochum W, Stieger B, Kerb R, Haberl M, Müllhaupt B, Meier PJ, Pauli-Magnus C. Impaired expression and function of the bile salt export pump due to three novel ABCB11 mutations in intrahepatic cholestasis. J Hepatol 2005; 43:536-43. [PMID: 16039748 DOI: 10.1016/j.jhep.2005.05.020] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2005] [Revised: 05/12/2005] [Accepted: 05/31/2005] [Indexed: 12/04/2022]
Abstract
BACKGROUND/AIMS Inherited dysfunction of the bile salt export pump BSEP (ABCB11) causes a progressive and a benign form of familial intrahepatic cholestasis, denominated as PFIC2 and BRIC2, respectively. We functionally characterized novel ABCB11 mutations encountered in two patients with a PFIC2 and a BRIC2 phenotype, respectively. METHODS BSEP expression was determined in liver biopsies by immunohistochemistry. ABCB11 mutations were functionally characterized by taurocholate transport in SF9 cells transfected with human ABCB11. RESULTS The PFIC2 patient was compound heterozygous for a splicing mutation in intron 4 ((+3)A > C) combined with an early stop codon at position 930 (R930X), while the BRIC2 patient was compound heterozygous for two nonsynonymous mutations in exon 9 (E297G) and exon 12 (R432T), respectively. Hepatic BSEP expression was absent in PFIC2 and preserved in BRIC2. In BRIC2, taurocholate transport was decreased to 13% and 20% of reference levels for R432T and E297G, respectively. CONCLUSIONS The intron 4 (+3)A > C, R930X and R432T represent previously undescribed mutations of the ABCB11 gene that confer a PFIC2 and a BRIC2 phenotype, respectively. By combining functional in-vitro characterization with immunohistochemical detection of variant BSEP we provide direct evidence for the role of ABCB11 mutations in the pathogenesis of different forms of intrahepatic cholestasis.
Collapse
Affiliation(s)
- Johannes Noe
- Division of Clinical Pharmacology and Toxicology, Department of Internal Medicine, University Hospital Zurich, Rämistrasse 100, E RAE 09, 8091 Zürich, Switzerland
| | | | | | | | | | | | | | | | | |
Collapse
|
309
|
Weng Y, DiRusso CC, Reilly AA, Black PN, Ding X. Hepatic Gene Expression Changes in Mouse Models with Liver-specific Deletion or Global Suppression of the NADPH-Cytochrome P450 Reductase Gene. J Biol Chem 2005; 280:31686-98. [PMID: 16006652 DOI: 10.1074/jbc.m504447200] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
NADPH-cytochrome P450 reductase (CPR) is an essential component for the function of many enzymes, including microsomal cytochrome P450 (P450) monooxygenases and heme oxygenases. In liver-Cpr-null (with liver-specific Cpr deletion) and Cpr-low (with reduced CPR expression in all organs examined) mouse models, a reduced serum cholesterol level and an induction of hepatic P450s were observed, whereas hepatomegaly and fatty liver were only observed in the liver-Cpr-null model. Our goal was to identify hepatic gene expression changes related to these phenotypes. Cpr-lox mice (with a floxed Cpr gene and normal CPR expression) were used as the control. Through microarray analysis, we identified many genes that were differentially expressed among the three groups of mice. We also recognized the 12 gene ontology terms that contained the most significantly changed gene expression in at least one of the two mouse models. We further uncovered potential mechanisms, such as an increased activation of constitutive androstane receptor and a decreased activation of peroxisomal proliferator-activated receptor-alpha by precursors of cholesterol biosynthesis, that underlie common changes (e.g. induction of multiple P450s and suppression of genes for fatty acid metabolism) in response to CPR loss in the two mouse models. Additionally, we observed model-specific gene expression changes, such as the induction of a fatty-acid translocase (Cd36 antigen) and the suppression of carnitine O-palmitoyltransferase 1 (Cpt1a) and acyl-CoA synthetase long chain family member 1 (Acsl1), that are potentially responsible for the severe hepatic lipidosis and an altered fatty acid profile observed in liver-Cpr-null mice.
Collapse
Affiliation(s)
- Yan Weng
- Wadsworth Center, New York State Department of Health, and School of Public Health, State University of New York, Albany, New York 12201, USA
| | | | | | | | | |
Collapse
|
310
|
Pauli-Magnus C, Stieger B, Meier Y, Kullak-Ublick GA, Meier PJ. Enterohepatic transport of bile salts and genetics of cholestasis. J Hepatol 2005; 43:342-57. [PMID: 15975683 DOI: 10.1016/j.jhep.2005.03.017] [Citation(s) in RCA: 109] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2005] [Revised: 03/29/2005] [Accepted: 03/29/2005] [Indexed: 12/24/2022]
Affiliation(s)
- Christiane Pauli-Magnus
- Division of Clinical Pharmacology and Toxicology, University Hospital Zurich, Rämistrasse 100, E RAE 09, 8091 Zurich, Switzerland.
| | | | | | | | | |
Collapse
|
311
|
Hung DY, Siebert GA, Chang P, Roberts MS. Hepatic pharmacokinetics of taurocholate in the normal and cholestatic rat liver. Br J Pharmacol 2005; 145:57-65. [PMID: 15711588 PMCID: PMC1576117 DOI: 10.1038/sj.bjp.0706148] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The disposition kinetics of [3H]taurocholate ([3H]TC) in perfused normal and cholestatic rat livers were studied using the multiple indicator dilution technique and several physiologically based pharmacokinetic models. The serum biochemistry levels, the outflow profiles and biliary recovery of [3H]TC were measured in three experimental groups: (i) control; (ii) 17 alpha-ethynylestradiol (EE)-treated (low dose); and (iii) EE-treated (high dose) rats. EE treatment caused cholestasis in a dose-dependent manner. A hepatobiliary TC transport model, which recognizes capillary mixing, active cellular uptake, and active efflux into bile and plasma described the disposition of [3H]TC in the normal and cholestatic livers better than the other pharmacokinetic models. An estimated five- and 18-fold decrease in biliary elimination rate constant, 1.7- and 2.7-fold increase in hepatocyte to plasma efflux rate constant, and 1.8- and 2.8-fold decrease in [3H]TC biliary recovery ratio was found in moderate and severe cholestasis, respectively, relative to normal. There were good correlations between the predicted and observed pharmacokinetic parameters of [3H]TC based on liver pathophysiology (e.g. serum bilirubin level and biliary excretion of [3H]TC). In conclusion, these results show that altered hepatic TC pharmacokinetics in cholestatic rat livers can be correlated with the relevant changes in liver pathophysiology in cholestasis.
Collapse
Affiliation(s)
- Daniel Y Hung
- Department of Medicine, Princess Alexandra Hospital, University of Queensland, Woolloongabba, Queensland 4102, Australia
| | - Gerhard A Siebert
- Department of Medicine, Princess Alexandra Hospital, University of Queensland, Woolloongabba, Queensland 4102, Australia
| | - Ping Chang
- Department of Medicine, Princess Alexandra Hospital, University of Queensland, Woolloongabba, Queensland 4102, Australia
| | - Michael S Roberts
- Department of Medicine, Princess Alexandra Hospital, University of Queensland, Woolloongabba, Queensland 4102, Australia
- Author for correspondence:
| |
Collapse
|
312
|
Liu L, Mak E, Tirona RG, Tan E, Novikoff PM, Wang P, Wolkoff AW, Pang KS. Vascular binding, blood flow, transporter, and enzyme interactions on the processing of digoxin in rat liver. J Pharmacol Exp Ther 2005; 315:433-48. [PMID: 15994370 DOI: 10.1124/jpet.105.088039] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The roles of vascular binding, flow, transporters, and enzymes as determinants of the clearance of digoxin were examined in the rat liver. Digoxin is metabolized by Cyp3a and utilizes the organic anion transporting polypeptide 2 (Oatp2) and P-glycoprotein (Pgp) for influx and excretion, respectively. Uptake of digoxin was found to be similar among rat periportal (PP) and perivenous (PV) hepatocytes isolated by the digitonin-collagenase method. The Km values for uptake were 180 +/- 112 and 390 +/- 406 nM, Vmax values were 13 +/- 8 and 18 +/- 4.9 pmol/min/mg protein, and nonsaturable components were 9.2 +/- 1.3 and 10.7 +/- 2.5 microl/min/mg for PP and PV, respectively. The evenness of distribution of Oatp2 and Pgp was confirmed by Western blotting and confocal immunofluorescent microscopy. When digoxin was recirculated to the rat liver preparation in Krebs-Henseleit bicarbonate (KHB) for 3 h in absence or presence of 1% bovine serum albumin (BSA) and 20% red blood cell (rbc) at flow rates of 40 and 10 ml/min, respectively, biexponential decays were observed. Fitted results based on compartmental analyses revealed a higher clearance (0.244 +/- 0.082 ml/min/g) for KHB-perfused livers over the rbc-albumin-perfused livers (0.114 +/- 0.057 ml/min/g) (P < 0.05). We further found that binding of digoxin to 1% BSA was modest (unbound fraction = 0.64), whereas binding to rbc was associated with slow on (0.468 +/- 0.021 min(-1)) and off (1.81 +/- 0.12 min(-1)) rate constants. We then used a zonal, physiologically based pharmacokinetic model to show that the difference in digoxin clearance was attributed to binding to BSA and rbc and not to the difference in flow rate and that clearance was unaffected by transporter or enzyme heterogeneity.
Collapse
Affiliation(s)
- Lichuan Liu
- Department of Pharmaceutical Sciences, University of Toronto, Toronto, ON, Canada
| | | | | | | | | | | | | | | |
Collapse
|
313
|
Su Y, Zhang X, Sinko PJ. Human organic anion-transporting polypeptide OATP-A (SLC21A3) acts in concert with P-glycoprotein and multidrug resistance protein 2 in the vectorial transport of Saquinavir in Hep G2 cells. Mol Pharm 2005; 1:49-56. [PMID: 15832500 DOI: 10.1021/mp0340136] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Saquinavir mesylate (SQV) is the first-in-class and prototypical HIV protease inhibitor (PI) used in the treatment of HIV infection. SQV undergoes extensive hepatic metabolism and intestinal and bile secretion, and has poor and variable oral bioavailability. In previous studies, our group and others have described the interactions between SQV and absorptive and secretory efflux transporters such as MRP1, MRP2, and P-gp. However, the potential role of absorptive influx transporters such as OATP-A (SLC21A3) has not yet been reported for SQV. In the study presented here, the role of OATP-A in the influx transport of SQV was studied using a hepatic cell model, Hep G2, and Xenopus laevis oocytes overexpressing human OATP-A. In Hep G2 cells, SQV transport was found to be (i) concentration-dependent and saturable, (ii) temperature-sensitive, and (iii) proton (pH)- and sodium-independent. While GF120918, a specific inhibitor of P-gp, and MK571, a MRP transporter family inhibitor, significantly enhanced SQV uptake, estrone 3-sulfate, a substrate of OATP-A, significantly inhibited SQV uptake by Hep G2 cells. The observation that inhibitors of P-gp, MRP, or OATP-A have opposite effects on SQV uptake in polarized Hep G2 cells is consistent with their functions as hepatic efflux or influx transporters. In X. laevis oocytes into which OATP-A cRNA had been injected, the level of uptake of SQV was significantly greater than the level of uptake by oocytes into which water had been injected and was concentration-dependent and saturable (Km = 36.4+/-21.8 microM). This is the first report showing that SQV influx transport is directly facilitated by OATP-A. Given the wide body distribution of OATP-A, the current results suggest a potentially important role for OATP-A in the absorption and disposition of SQV in vivo. The data also suggest that in human hepatocytes basolaterally located OATP-A (influx transporter) may act in concert with apically located P-gp and/or MRP2 (efflux transporters) for the vectorial transport and excretion of SQV into bile.
Collapse
Affiliation(s)
- Yaming Su
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, USA
| | | | | |
Collapse
|
314
|
Sundaram SS, Whitington PF, Green RM. Steatohepatitis develops rapidly in transgenic mice overexpressing Abcb11 and fed a methionine-choline-deficient diet. Am J Physiol Gastrointest Liver Physiol 2005; 288:G1321-7. [PMID: 15650132 DOI: 10.1152/ajpgi.00455.2004] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Nonalcoholic fatty liver disease is the most common reason for abnormal liver chemistries in the United States. The factors that lead from benign steatosis to nonalcoholic steatohepatitis are poorly understood. Transthyretin-Abcb11 (TTR-Abcb11) transgenic mice overexpress the bile salt transporter Abcb11 and hypersecrete biliary lipids. Thus the aim of this study is to employ feeding of the methionine-choline-deficient (MCD) diet to TTR-Abcb11 transgenic mice to further determine the mechanisms responsible for the development of steatohepatitis. FVB/NJ and TTR-Abcb11 mice were fed control or MCD diets for up to 30 days. Serum aminotransferase levels, serum and hepatic triglyceride content, cytokines, markers of oxidative stress, and expression of selective genes were examined. MCD diet-fed TTR-Abcb11, but not wild-type, mice have elevated serum aminotransferase levels when compared after 7 days. They also have significantly lower hepatic triglyceride levels at all time points studied. After 14 days on the MCD diet, TTR-Abcb11 mice have 3-fold increases in TNF-alpha mRNA and 3.9-fold increases in IL-6 mRNA compared with FVB/NJ mice. TTR-Abcb11 mice also had a greater increase in cytochrome P-450 2E1 expression. A greater decrease in sterol regulatory element binding protein-1c and fatty acid synthase mRNA expression was also seen in TTR-Abcb11 compared with wild-type mice fed an MCD diet. They also have enhanced TNF-alpha, IL-6, and cytochrome P-450 2E1 expression. We conclude that TTR-Abcb11 mice develop a more rapid hepatitis with less steatosis.
Collapse
Affiliation(s)
- Shikha S Sundaram
- Division of Gastroenterology and Hepatology and Nutrition, Departments of Pediatrics, Department of Internal Medicine, Northwestern University, Feinberg School of Medicine, Chicago, Illinois 60611, USA
| | | | | |
Collapse
|
315
|
Jones BR, Li W, Cao J, Hoffman TA, Gerk PM, Vore M. The role of protein synthesis and degradation in the post-transcriptional regulation of rat multidrug resistance-associated protein 2 (Mrp2, Abcc2). Mol Pharmacol 2005; 68:701-10. [PMID: 15917434 DOI: 10.1124/mol.105.013144] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Multidrug resistance-associated protein 2 (Mrp2, Abcc2), an organic anion transporter present in the apical membrane of hepatocytes, renal epithelial cells, and enterocytes, is postulated to undergo post-transcriptional regulation. We hypothesized that Mrp2 protein undergoes altered rates of protein synthesis or degradation consistent with different Mrp2 protein expression. We analyzed Mrp2 synthesis, expression, and degradation in control female, 19- and 20-day pregnant, and pregnenolone-16alpha-carbonitrile (PCN)-treated rats using in vivo metabolic-labeling studies with [35S]cysteine/methionine or [14C]NaHCO3, polysomal distribution analyses and ribonuclease protection assays (RPA). Mrp2 protein was significantly increased in rats treated with PCN for 2 days but significantly decreased in 19-day pregnant rats relative to controls; no significant differences were observed in Mrp2 mRNA expression among these groups. The measured half-lives of 14C-labeled Mrp2 in control, pregnant, and PCN-treated rats were 27, 36, and 22 h, respectively, and were not significantly different. The rate of incorporation of 35S into Mrp2 was highest in PCN-treated rats. Polysomal distribution analysis of Mrp2 mRNA was consistent with increased Mrp2 protein synthesis after PCN treatment. The major transcription-initiation site for rat liver determined by RPA was -98 nucleotides (nt), with other start sites observed at -213, -163, -132, and -71 nt; use of transcription sites did not differ among the groups. Differences in the degradation of Mrp2 protein cannot explain the post-transcriptional regulation of Mrp2 in control, pregnant, and PCN-treated rats. Rather, the observed difference in protein synthesis suggests an intrinsic role for the translational regulation of rat Mrp2 protein.
Collapse
Affiliation(s)
- B R Jones
- Graduate Center for Toxicology, 306 Health Sciences Research Building, University of Kentucky, Lexington, KY 40536-0305, USA
| | | | | | | | | | | |
Collapse
|
316
|
Monte MJ, Fernandez-Tagarro M, Marin JJG. Transient changes in the expression pattern of key enzymes for bile acid synthesis during rat liver regeneration. Biochim Biophys Acta Mol Cell Biol Lipids 2005; 1734:127-35. [PMID: 15904869 DOI: 10.1016/j.bbalip.2005.02.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2004] [Revised: 02/17/2005] [Accepted: 02/18/2005] [Indexed: 12/23/2022]
Abstract
Changes in the expression patterns of genes involved in bile acid (BA) synthesis were investigated during rat liver regeneration that follows two-thirds partial hepatectomy. BAs in bile were measured by GC-MS and the absolute and relative abundance of specific mRNAs in the liver by RT-real-time quantitative PCR. Cyclin E mRNA, used as an indicator of liver cell proliferation, peaked at day 1. The levels of mRNA of alpha-fetoprotein transcription factor (FTF) and small heterodimer partner (SHP) were first reduced (day 1) and then (days 2-3) increased, when those of farnesoid X receptor (FXR) were also transiently enhanced. The early (day 1) up-regulation of Cyp7a1, and Cyp8b1, together with the down-regulation of Cyp27, was consistent with an increased proportion of cholic acid versus chenodeoxycholic acid and a progressive recovery in total BAs secretion. The transient appearance of flat BAs (allo-BAs plus Delta4-unsaturated-BAs) during rat liver regeneration was probably due to the changes in the expression ratio of steroid 5alpha- versus 5beta-reductase. Both were first (day 1) down-regulated and then up-regulated (5alpha-reductase more than 5beta-reductase). In conclusion, changes in the expression patterns of nuclear receptors and enzymes involved in BA synthesis are consistent with the transient modifications that occur in BA pool during rat liver regeneration.
Collapse
Affiliation(s)
- Maria J Monte
- Department of Physiology and Pharmacology, Campus Miguel de Unamuno E.I.D. S-09, University of Salamanca, 37007 Salamanca, Spain
| | | | | |
Collapse
|
317
|
Ballatori N, Hammond CL, Cunningham JB, Krance SM, Marchan R. Molecular mechanisms of reduced glutathione transport: role of the MRP/CFTR/ABCC and OATP/SLC21A families of membrane proteins. Toxicol Appl Pharmacol 2005; 204:238-55. [PMID: 15845416 DOI: 10.1016/j.taap.2004.09.008] [Citation(s) in RCA: 179] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2004] [Accepted: 09/14/2004] [Indexed: 12/30/2022]
Abstract
The initial step in reduced glutathione (GSH) turnover in all mammalian cells is its transport across the plasma membrane into the extracellular space; however, the mechanisms of GSH transport are not clearly defined. GSH export is required for the delivery of its constituent amino acids to other tissues, detoxification of drugs, metals, and other reactive compounds of both endogenous and exogenous origin, protection against oxidant stress, and secretion of hepatic bile. Recent studies indicate that some members of the multidrug resistance-associated protein (MRP/CFTR or ABCC) family of ATP-binding cassette (ABC) proteins, as well as some members of the organic anion transporting polypeptide (OATP or SLC21A) family of transporters contribute to this process. In particular, five of the 12 members of the MRP/CFTR family appear to mediate GSH export from cells namely, MRP1, MRP2, MRP4, MRP5, and CFTR. Additionally, two members of the OATP family, rat Oatp1 and Oatp2, have been identified as GSH transporters. For the Oatp1 transporter, efflux of GSH may provide the driving force for the uptake of extracellular substrates. In humans, OATP-B and OATP8 do not appear to transport GSH; however, other members of this family have yet to be characterized in regards to GSH transport. In yeast, the ABC proteins Ycf1p and Bpt1p transport GSH from the cytosol into the vacuole, whereas Hgt1p mediates GSH uptake across the plasma membrane. Because transport is a key step in GSH homeostasis and is intimately linked to its biological functions, GSH export proteins are likely to modulate essential cellular functions.
Collapse
Affiliation(s)
- Nazzareno Ballatori
- Department of Environmental Medicine, University of Rochester School of Medicine, Rochester, NY 14642, USA.
| | | | | | | | | |
Collapse
|
318
|
Tietz P, Jefferson J, Pagano R, Larusso NF. Membrane microdomains in hepatocytes: potential target areas for proteins involved in canalicular bile secretion. J Lipid Res 2005; 46:1426-32. [PMID: 15834130 DOI: 10.1194/jlr.m400412-jlr200] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The formation of hepatic bile requires that water be transported across liver epithelia. Rat hepatocytes express three aquaporins (AQPs): AQP8, AQP9, and AQP0. Recognizing that cholesterol and sphingolipids are thought to promote the assembly of proteins into specialized membrane microdomains, we hypothesized that canalicular bile secretion involves the trafficking of vesicles to and from localized lipid-enriched microdomains in the canalicular plasma membrane. Hepatocyte plasma membranes were sonicated in Triton and centrifuged overnight on a sucrose gradient to yield a Triton-soluble pellet and a Triton-insoluble, sphingolipid-enriched microdomain fraction at the 5%/30% sucrose interface. The detergent-insoluble portion of the hepatocyte plasma membrane was enriched in alkaline phosphatase (a microdomain-positive marker) and devoid of amino-peptidase N (a microdomain-negative marker), enriched in caveolin, both AQP8 and AQP9, but negative for clathrin. The microdomain fractions contained chloride-bicarbonate anion exchanger isoform 2 and multidrug resistance-associated protein 2. Exposure of isolated hepatocytes to glucagon increased the expression of AQP8 but not AQP9 in the microdomain fractions. Sphingolipid analysis of the insoluble fraction showed the predominant species to be sphingomyelin. These data support the presence of sphingolipid-enriched microdomains of the hepatocyte membrane that represent potential localized target areas for the clustering of AQPs and functionally related proteins involved in canalicular bile secretion.
Collapse
Affiliation(s)
- P Tietz
- Center for Basic Research in Digestive Diseases, Mayo Medical School, Clinic, and Foundation, Rochester, MN, USA
| | | | | | | |
Collapse
|
319
|
Dietrich D, Hoeger S. Guidance values for microcystins in water and cyanobacterial supplement products (blue-green algal supplements): a reasonable or misguided approach? Toxicol Appl Pharmacol 2005; 203:273-89. [PMID: 15737681 DOI: 10.1016/j.taap.2004.09.005] [Citation(s) in RCA: 222] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2004] [Accepted: 09/08/2004] [Indexed: 10/26/2022]
Abstract
This article reviews current scientific knowledge on the toxicity and carcinogenicity of microcystins and compares this to the guidance values proposed for microcystins in water by the World Health Organization, and for blue-green algal food supplements by the Oregon State Department of Health. The basis of the risk assessment underlying these guidance values is viewed as being critical due to overt deficiencies in the data used for its generation: (i) use of one microcystin congener only (microcystin-LR), while the other presently known nearly 80 congeners are largely disregarded, (ii) new knowledge regarding potential neuro and renal toxicity of microcystins in humans and (iii) the inadequacies of assessing realistic microcystin exposures in humans and especially in children via blue-green algal food supplements. In reiterating the state-of-the-art toxicology database on microcystins and in the light of new data on the high degree of toxin contamination of algal food supplements, this review clearly demonstrates the need for improved kinetic data of microcystins in humans and for discussion concerning uncertainty factors, which may result in a lowering of the present guidance values and an increased routine control of water bodies and food supplements for toxin contamination. Similar to the approach taken previously by authorities for dioxin or PCB risk assessment, the use of a toxin equivalent approach to the risk assessment of microcystins is proposed.
Collapse
Affiliation(s)
- Daniel Dietrich
- University of Konstanz, Environmental Toxicology, 78457 Konstanz, Germany
| | | |
Collapse
|
320
|
Abstract
The secretion of bile is the result of active hepatocellular transport processes, most of which occur across the canalicular membrane of liver cells. Disturbance of the function and/or expression of these transporters leads to the intracellular accumulation of toxic bile acids, thereby promoting cholestatic liver cell injury. Genetically determined alterations of hepatobiliary transporter function are increasingly recognized as important risk factors for an individual's susceptibility to develop cholestasis. It has become evident that, besides the established pathogenic role of mutations in canalicular transporter genes in progressive and benign forms of familial intrahepatic cholestasis, genetics may also play an important role in acquired cholestatic syndromes, such as intrahepatic cholestasis of pregnancy or drug-induced cholestasis. This overview summarizes the physiologic function and regulation of human hepatobiliary transport systems and discusses the impact of their genetic variations for the pathophysiology of different cholestatic syndromes.
Collapse
Affiliation(s)
- Christiane Pauli-Magnus
- Division of Clinical Pharmacology and Toxicology, University Hospital Zurich, Zurich, Switzerland.
| | | |
Collapse
|
321
|
Katsura T, Inui KI. Intestinal absorption of drugs mediated by drug transporters: mechanisms and regulation. Drug Metab Pharmacokinet 2005; 18:1-15. [PMID: 15618714 DOI: 10.2133/dmpk.18.1] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The absorption of drugs from the gastrointestinal tract is one of the important determinants for oral bioavailability. Development of in vitro experimental techniques such as isolated membrane vesicles and cell culture systems has allowed us to elucidate the transport mechanisms of various drugs across the plasma membrane. Recent introduction of molecular biological techniques resulted in the successful identification of drug transporters responsible for the intestinal absorption of a wide variety of drugs. Each transporter exhibits its own substrate specificity, though it usually shows broad substrate specificity. In this review, we first summarize the recent advances in the characterization of drug transporters in the small intestine, classified into peptide transporters, organic cation transporters and organic anion transporters. In particular, peptide transporter (PEPT1) is the best-characterized drug transporter in the small intestine, and therefore its utilization to improve the oral absorption of poorly absorbed drugs is briefly described. In addition, regulation of the activity and expression levels of drug transporters seems to be an important aspect, because alterations in the functional characteristics and/or expression levels of drug transporters in the small intestine could be responsible for the intra- and interindividual variability of oral bioavailability of drugs. As an example, regulation of the activity and expression of PEPT1 is summarized.
Collapse
Affiliation(s)
- Toshiya Katsura
- Department of Pharmacy, Kyoto University Hospital, Faculty of Medicine, Kyoto University, Japan
| | | |
Collapse
|
322
|
Gao B, Huber RD, Wenzel A, Vavricka SR, Ismair MG, Remé C, Meier PJ. Localization of organic anion transporting polypeptides in the rat and human ciliary body epithelium. Exp Eye Res 2005; 80:61-72. [PMID: 15652527 DOI: 10.1016/j.exer.2004.08.013] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2004] [Revised: 08/11/2004] [Accepted: 08/11/2004] [Indexed: 11/18/2022]
Abstract
PURPOSE To identify and localize the expression of multispecific organic anion transporting polypeptides (Oatps/OATPs) in the ciliary body epithelium and to investigate their possible involvement in the transport of the antiglaucoma agent unoprostone. METHODS Oatps/OATPs were detected by immunoblot analysis and by immunofluorescence microscopy in homogenized and fixed rat and human ciliary body samples using specific polyclonal antibodies. Transport of 3H-labelled unoprostone was measured in Oatp/OATP expressing Xenopus laevis oocytes. RESULTS Immunoblots of ciliary body extracts were positive for rat Oatp1a4, Oatp1a5 and Oatp1b2 and for human OATP1A2, OATP1C1, OATP2B1, OATP3A1 and OATP4A1. Confocal immunofluorescence microscopy localized Oatp1a4 and Oatp1b2 as well as all immunoblot positive human OATPs at the basolateral plasma membrane of the non-pigmented rat and human ciliary body epithelium, respectively. However, for human OATPs additional regional differences in expression were found with OATP1A2 and OATP1C1 being expressed only in the pars plana of human ciliary body epithelium. Furthermore, OATP1C1, OATP3A1 and OATP4A1 were also expressed at the basolateral plasma membrane of the pars plana pigmented epithelium. And finally, deesterified unoprostone carboxylate was found to be transported by OATP1A2, OATP2B1 and OATP4A1 with approximate K(m)-values of 93, 91 and 132 microm, respectively. CONCLUSIONS Several multispecific organic anion transporting polypeptides are expressed at the basolateral plasma membrane of the non-pigmented, and to a lesser extent also of the pigmented, epithelium in rat and human ciliary body. These Oatps/OATPs can account for the previously suggested 'liver-like' transport functions of mammalian ciliary body epithelium.
Collapse
Affiliation(s)
- Bo Gao
- Division of Clinical Pharmacology and Toxicology, Department of Medicine, University Hospital Zurich, CH-8091 Zurich, Switzerland
| | | | | | | | | | | | | |
Collapse
|
323
|
Bauer B, Hartz AMS, Fricker G, Miller DS. Modulation of p-glycoprotein transport function at the blood-brain barrier. Exp Biol Med (Maywood) 2005; 230:118-27. [PMID: 15673560 DOI: 10.1177/153537020523000206] [Citation(s) in RCA: 108] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The central nervous system (CNS) effects of many therapeutic drugs are blunted because of restricted entry into the brain. The basis for this poor permeability is the brain capillary endothelium, which comprises the blood-brain barrier. This tissue exhibits very low paracellular (tight-junctional) permeability and expresses potent, multispecific, drug export pumps. Together, these combine to limit use of pharmacotherapy to treat CNS disorders such as brain cancer and bacterial or viral infections. Of all the xenobiotic efflux pumps highly expressed in brain capillary endothelial cells, p-glycoprotein handles the largest fraction of commonly prescribed drugs and thus is an obvious target for manipulation. Here we review recent studies focused on understanding the mechanisms by which p-glycoprotein activity in the blood-brain barrier can be modulated. These include (i) direct inhibition by specific competitors, (ii) functional modulation, and (iii) transcriptional modulation. Each has the potential to specifically reduce p-glycoprotein function and thus selectively increase brain permeability of p-glycoprotein substrates.
Collapse
Affiliation(s)
- Björn Bauer
- Laboratory of Pharmacology and Chemistry, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | | | | | | |
Collapse
|
324
|
|
325
|
Little D, White CE, Young KM, Blikslager AT. Faecal bile loss in horses following small intestinal resection. Equine Vet J 2005; 37:92-4. [PMID: 15651742 DOI: 10.2746/0425164054406883] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
- D Little
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, 4700 Hillsborough Street, Raleigh, North Carolina 27606, USA
| | | | | | | |
Collapse
|
326
|
Uppal H, Toma D, Saini SPS, Ren S, Jones TJ, Xie W. Combined loss of orphan receptors PXR and CAR heightens sensitivity to toxic bile acids in mice. Hepatology 2005; 41:168-76. [PMID: 15619241 DOI: 10.1002/hep.20512] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Efficient detoxification of bile acids is necessary to avoid pathological conditions such as cholestatic liver damage and colon cancer. The orphan nuclear receptors PXR and CAR have been proposed to play an important role in the detoxification of xeno- and endo-biotics by regulating the expression of detoxifying enzymes and transporters. In this report, we showed that the combined loss of PXR and CAR resulted in a significantly heightened sensitivity to bile acid toxicity in a sex-sensitive manner. A regimen of lithocholic acid treatment, which was tolerated by wild-type and PXR null mice, caused a marked accumulation of serum bile acids and histological liver damage as well as an increased hepatic lipid deposition in double knockout males. The increased sensitivity in males was associated with genotype-specific suppression of bile acid transporters and loss of bile acid-mediated downregulation of small heterodimer partner, whereas the transporter suppression was modest or absent in females. The double knockout mice also exhibited gene- and tissue-specific dysregulation of PXR and CAR target genes in response to PXR and CAR agonists. In conclusion, althoughthe cross-regulation of target genes by PXR and CAR has b een proposed, the current study represents in vivo evidence of the combined loss of both receptors causing a unique pattern of gene regulation that can be translated into physiological events such as sensitivity to toxic bile acids.
Collapse
Affiliation(s)
- Hirdesh Uppal
- Center for Pharmacogenetics, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | | | | | | | | | | |
Collapse
|
327
|
Abstract
Bile secretion is conveyed by a large set of transporter proteins. Their activity is controlled on long- and short-term timescales. Short-term regulation of transcellular transport has to guarantee intra- and extracellular molecular homeostasis and has to meet the actual cellular metabolic needs. As transport activity depends not only on transporter expression, measurements of mRNA or protein levels will not fully predict functionality. Transporter activity is also determined by covalent modifications (e.g., phosphorylation), substrate competition, and subcellular transporter localization. The latter is a major target of short-term regulation of bile secretion and involves rapid endo- and exocytosis of transporter-bearing vesicles from and into the respective cell membrane. In liver parenchymal cells, several signaling pathways were identified that govern these processes; however, the underlying molecular mechanisms still need to be characterized. Different techniques have been employed in studies on transporter retrieval and insertion, which are discussed in this chapter.
Collapse
Affiliation(s)
- Ralf Kubitz
- Clinic for Gastroenterology, Hepatology and Infectiology, Heinrich-Heine University Düsseldorf, Germany
| | | | | |
Collapse
|
328
|
Kühlkamp T, Keitel V, Helmer A, Häussinger D, Kubitz R. Degradation of the sodium taurocholate cotransporting polypeptide (NTCP) by the ubiquitin-proteasome system. Biol Chem 2005; 386:1065-74. [PMID: 16218878 DOI: 10.1515/bc.2005.122] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The sodium taurocholate cotransporting polypeptide (Ntcp, Slc10a1) is the major uptake system for bile acids into liver cells. This study investigated the degradation of rat Ntcp and human NTCP by the ubiquitin-proteasome system (UPS). In stably transfected HepG2 cells, rat Ntcp was complex-glycosylated and localized at the plasma membrane. Inhibition of proteasomes by MG-132 or lactacystin led to the accumulation of intracellular Ntcp, a process dependent on de novo protein synthesis. Intracellular Ntcp was core-glycosylated, indicating an endoplasmic reticulum (ER) origin. Core-glycosylated Ntcp was found in cytosolic, detergent-insoluble deposits with characteristics of aggresomes: they co-localized with ubiquitin at the microtubule organization center and Ntcp from these deposits was polyubiquitinated. Transient transfections of Ntcp/NTCP induced intracellular deposits that co-localized with ubiquitin, even in the absence of proteasome inhibitors. Similarly, in livers of patients with progressive familial intrahepatic cholestasis, NTCP could be detected co-localized with ubiquitin in hepatocytes. We conclude that maturing Ntcp/NTCP is degraded by the ubiquitin-proteasome system at the level of ER-associated degradation (ERAD). An imbalance in the synthesis and degradation of NTCP at the level of the ER or alterations in the ERAD machinery might be the cause of intracellular NTCP deposits in transient transfections and in cholestatic livers.
Collapse
Affiliation(s)
- Thomas Kühlkamp
- Department of Gastroenterology, Hepatology and Infectiology, Heinrich-Heine University, D-40225 Düsseldorf, Germany
| | | | | | | | | |
Collapse
|
329
|
Mita S, Suzuki H, Akita H, Stieger B, Meier PJ, Hofmann AF, Sugiyama Y. Vectorial transport of bile salts across MDCK cells expressing both rat Na+-taurocholate cotransporting polypeptide and rat bile salt export pump. Am J Physiol Gastrointest Liver Physiol 2005; 288:G159-67. [PMID: 15297262 DOI: 10.1152/ajpgi.00360.2003] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Bile salts are predominantly taken up by hepatocytes via the basolateral Na(+)-taurocholate cotransporting polypeptide (NTCP/SLC10A1) and secreted into the bile by the bile salt export pump (BSEP/ABCB11). In the present study, we transfected rat Ntcp and rat Bsep into polarized Madin-Darby canine kidney cells and characterized the transport properties of these cells for eight bile salts. Immunohistochemical staining demonstrated that Ntcp was expressed at the basolateral domains, whereas Bsep was expressed at the apical domains. Basal-to-apical transport of taurocholate across the monolayer expressing only Ntcp and that coexpressing Ntcp/Bsep was observed, whereas the flux across the monolayer of control and Bsep-expressing cells was symmetrical. Basal-to-apical transport of taurocholate across Ntcp/Bsep-coexpressing monolayers was significantly higher than that across monolayers expressing only Ntcp. Kinetic analysis of this vectorial transport of taurocholate gave an apparent K(m) value of 13.9 +/- 4.7 microM for cells expressing Ntcp alone, which is comparable with 22.2 +/- 4.5 microM for cells expressing both Ntcp and Bsep and V(max) values of 15.8 +/- 4.2 and 60.8 +/- 9.0 pmol.min(-1).mg protein(-1) for Ntcp alone and Ntcp and Bsep-coexpressing cells, respectively. Transcellular transport of cholate, glycocholate, taurochenodeoxycholate, chenodeoxycholate, glycochenodeoxycholate, tauroursodeoxycholate, ursodeoxycholate, and glycoursodeoxycholate, but not that of lithocholate was also observed across the double transfectant. This double-expressing system can be used as a model to clarify vectorial transport of bile salts across hepatocytes under physiological conditions.
Collapse
Affiliation(s)
- Sachiko Mita
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | | | | | | | | | | | | |
Collapse
|
330
|
Eloranta JJ, Meier PJ, Kullak-Ublick GA. Coordinate transcriptional regulation of transport and metabolism. Methods Enzymol 2005; 400:511-30. [PMID: 16399367 DOI: 10.1016/s0076-6879(05)00028-5] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Intestinal absorption and hepatic clearance of drugs, xenobiotics, and bile acids are mediated by transporter proteins expressed at the plasma membranes of intestinal epithelial cells and liver parenchymal cells in a polarized manner. Within enterocytes and hepatocytes, these exogenous or endogenous, potentially toxic compounds may be metabolized by phase I cytochrome P450 (CYP) and phase II conjugating enzymes. Many transporter proteins and metabolizing enzymes are subject to direct translational modification, enabling very rapid changes in their activity. However, to achieve intermediate and longer term changes in transport and enzyme activities, the genes encoding drug and bile acid transporters, as well as the CYP and conjugating enzymes, are regulated by a complex network of transcriptional cascades. These are typically mediated by specific members of the nuclear receptor family of transcription factors, particularly FXR, SHP, PXR, CAR, and HNF-4alpha. Most nuclear receptors are activated by specific ligands, including numerous xenobiotics (PXR, CAR) and bile acids (FXR). The fine-tuning of transcriptional control of drug and bile acid homeostasis depends on regulated interactions of specific nuclear receptors with their target genes.
Collapse
Affiliation(s)
- Jyrki J Eloranta
- Division of Gastroenterology and Hepatology, University Hospital, Zürich, Switzerland
| | | | | |
Collapse
|
331
|
Mikkaichi T, Suzuki T, Tanemoto M, Ito S, Abe T. The organic anion transporter (OATP) family. Drug Metab Pharmacokinet 2004; 19:171-9. [PMID: 15499184 DOI: 10.2133/dmpk.19.171] [Citation(s) in RCA: 154] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
In the last decade, many organic anion transporters have been isolated, characterized their distribution and substrates. The recently identified organic anion transporter family OATP (organic anion transporting polypeptide)/LST (liver-specific transporter) family, transport bile acids, hormones as well as eicosanoids, various compounds (BSP, HMG-CoA reductase inhibitor, angiotensin converting enzyme inhibitor, etc.). The isolation of the family revealed that not only hydrophilic compounds, drugs and hormones of lipophilic nature need a membrane transport system to penetrate cell membrane. In this family, the nomenclature becomes very complicated and the physiological role of this family is still unclear except about few organs such as the brain, liver and kidney. Even in such organs, the co-existence of the OATP/LST family and similar substrate specificity hamper the progress and clear characterization identifying the real role of the transporter family. Here, recent progress and an insight of this field are reviewed.
Collapse
Affiliation(s)
- Tsuyoshi Mikkaichi
- Department of Clinical Pharmacy, Tohoku University Graduate School of Pharmaceutical Sciences, Japan
| | | | | | | | | |
Collapse
|
332
|
Palmeira CM, Rolo AP. Mitochondrially-mediated toxicity of bile acids. Toxicology 2004; 203:1-15. [PMID: 15363577 DOI: 10.1016/j.tox.2004.06.001] [Citation(s) in RCA: 127] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2004] [Revised: 05/26/2004] [Accepted: 06/02/2004] [Indexed: 01/14/2023]
Abstract
In the healthy hepatocyte, uptake of bile acids across the basolateral membrane and export via the canalicular export pump, are tightly coupled. Impairment of bile formation or excretion results in cholestasis, characterized by accumulation of bile acids in systemic blood and within the hepatocyte. When the concentration of bile acids exceeds the binding capacity of the binding protein located in the cytosol of the hepatocyte, bile acids induce apoptosis and necrosis, by damage to mitochondria. Mitochondria play a central role on the toxicity of bile acids. In this article, we review the published literature regarding bile acid effects on cell function, especially at the mitochondrial level. In patients with cholestatic liver disease, the extent of hepatocyte damage caused by intracellular accumulation of bile acids appears to be delayed by ingesting a hydrophilic bile acid. However, its effects on disease progression are not completely clarified. Therefore, identification of the mechanisms of cell injury will be of clinical utility, helping in the development of new therapeutic strategies. The goal of this review is to include a fresh consideration of all possible targets and integrating pathways that are involved in cholestasis, as well as in the benefits of bile acid therapy.
Collapse
Affiliation(s)
- Carlos M Palmeira
- Department of Zoology, Center for Neurosciences and Cell Biology of Coimbra, University of Coimbra, 3004-517, Portugal.
| | | |
Collapse
|
333
|
Dubrac S, Lear SR, Ananthanarayanan M, Balasubramaniyan N, Bollineni J, Shefer S, Hyogo H, Cohen DE, Blanche PJ, Krauss RM, Batta AK, Salen G, Suchy FJ, Maeda N, Erickson SK. Role of CYP27A in cholesterol and bile acid metabolism. J Lipid Res 2004; 46:76-85. [PMID: 15520450 DOI: 10.1194/jlr.m400219-jlr200] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The CYP27A gene encodes a mitochondrial cytochrome P450 enzyme, sterol 27-hydroxylase, that is expressed in many different tissues and plays an important role in cholesterol and bile acid metabolism. In humans, CYP27A deficiency leads to cerebrotendinous xanthomatosis. To gain insight into the roles of CYP27A in the regulation of cholesterol and bile acid metabolism, cyp27A gene knockout heterozygous, homozygous, and wild-type littermate mice were studied. In contrast to homozygotes, heterozygotes had increased body weight and were mildly hypercholesterolemic, with increased numbers of lipoprotein particles in the low density lipoprotein size range. Cyp7A expression was not increased in heterozygotes but was in homozygotes, suggesting that parts of the homozygous phenotype are secondary to increased cyp7A expression and activity. Homozygotes exhibited pronounced hepatomegaly and dysregulation in hepatic cholesterol, bile acid, and fatty acid metabolism. Hepatic cholesterol synthesis and synthesis of bile acid intermediates were increased; however, side chain cleavage was impaired, leading to decreased bile salt concentrations in gallbladder bile. Expression of Na-taurocholate cotransporting polypeptide, the major sinusoidal bile salt transporter, was increased, and that of bile salt export pump, the major canalicular bile salt transporter, was decreased. Gender played a modifying role in the homozygous response to cyp27A deficiency, with females being generally more severely affected. Thus, both cyp27A genotype and gender affected the regulation of hepatic bile acid, cholesterol, and fatty acid metabolism.
Collapse
Affiliation(s)
- Sandrine Dubrac
- Department of Medicine, University of California, San Francisco, CA 94143, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
334
|
Simon FR, Fortune J, Iwahashi M, Qadri I, Sutherland E. Multihormonal regulation of hepatic sinusoidal Ntcp gene expression. Am J Physiol Gastrointest Liver Physiol 2004; 287:G782-94. [PMID: 15361361 DOI: 10.1152/ajpgi.00379.2003] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Bile acids are efficiently removed from sinusoidal blood by a number of transporters including the Na+-taurocholate-cotransporting polypeptide (Ntcp). Na+-dependent bile salt uptake, as well as Ntcp, are expressed twofold higher in male compared with female rat livers. Also, estrogen administration to male rats decreases Ntcp expression. The aims of this study were to determine the hormonal mechanism(s) responsible for this sexually dimorphic expression of Ntcp. We examined castrated and hypophysectomized rats of both sexes. Sex steroid hormones, growth hormone, thyroid, and glucocorticoids were administered, and livers were examined for changes in Ntcp messenger RNA (mRNA). Ntcp mRNA and protein content were selectively increased in males. Estradiol selectively decreased Ntcp expression in males, whereas ovariectomy increased Ntcp in females, confirming the importance of estrogens in regulating Ntcp. Hypophysectomy decreased Ntcp mRNA levels in males and prevented estrogen administration from decreasing Ntcp, indicating the importance of pituitary hormones. Although constant infusion of growth hormone to intact males reduced Ntcp, its replacement alone after hypophysectomy did not restore the sex differences. In contrast, thyroid hormone and corticosterone increased Ntcp mRNA in hypophysectomized rats. Sex differences in Ntcp mRNA levels were produced only when the female pattern of growth hormone was administered to animals also receiving thyroid and corticosterone. Thyroid and dexamethasone also increased Ntcp mRNA in isolated rat hepatocytes, whereas growth hormone decreased Ntcp. These findings demonstrate the essential role that pituitary hormones play in the sexually dimorphic control of Ntcp expression in adult rat liver and in the mediation of estrogen effects.
Collapse
Affiliation(s)
- Francis R Simon
- Univ. of Colorado Health Sciences Center, Dept. of Medicine B-145 4200 E. 9th Ave., Denver, CO 80262, USA.
| | | | | | | | | |
Collapse
|
335
|
Shoji T, Suzuki H, Kusuhara H, Watanabe Y, Sakamoto S, Sugiyama Y. ATP-dependent transport of organic anions into isolated basolateral membrane vesicles from rat intestine. Am J Physiol Gastrointest Liver Physiol 2004; 287:G749-56. [PMID: 15217779 DOI: 10.1152/ajpgi.00065.2003] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The mechanism for the cellular extrusion of organic anions across the intestinal basolateral membrane was examined using isolated membrane vesicles from rat jejunum, ileum, and colon. It was found that 17beta-estradiol 17beta-D-glucuronide (E217betaG) is taken up in an ATP-dependent manner into the basolateral membrane vesicles (BLMVs) but not into the brush-border or microsomal counterparts. The ATP-dependent uptake of E217betaG into BLMVs from jejunum and ileum was described by a single component with a Km value of 23.5 and 8.31 microM, respectively, whereas that into the BLMVs from colon was described by assuming the presence of high (Km=0.82 microM)- and low-affinity (Km=35.4 microM) components. Taurocholate, 6-hydroxy-5,7-dimethyl-2-methylamino-4-(3-pyridylmethyl) benzothiazole glucuronide and taurolithocholate sulfate, but not leukotriene C4, were significantly taken up by the BLMVs. In addition to such substrate specificity, the inhibitor sensitivity of the ATP-dependent transport in BLMVs was similar to that of rat multidrug resistance-associated protein 3 (Mrp3), which is located on the basolateral membrane of enterocytes. Together with the fact that the rank order of the extent of the expression of Mrp3 (jejunum < ileum << colon) is in parallel with that of the extent of the transport of ligands, these results suggest that the ATP-dependent uptake of organic anions into isolated intestinal BLMVs is at least partly mediated by Mrp3.
Collapse
Affiliation(s)
- Takahiro Shoji
- Dept. of Molecular Pharmacokinetics, Graduate School of Pharmaceutical Sciences, The Univ. of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | | | | | | | | | | |
Collapse
|
336
|
Vellonen KS, Honkakoski P, Urtti A. Substrates and inhibitors of efflux proteins interfere with the MTT assay in cells and may lead to underestimation of drug toxicity. Eur J Pharm Sci 2004; 23:181-8. [PMID: 15451006 DOI: 10.1016/j.ejps.2004.07.006] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2004] [Revised: 06/28/2004] [Accepted: 07/05/2004] [Indexed: 10/26/2022]
Abstract
The MTT (3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide) assay is a widely used method in assessment of cytotoxicity and cell viability, and also in anti-cancer drug studies with tumour cells. These cells often express efflux proteins, such as P-glycoprotein (MDR1) or multidrug resistance (MDR) protein 1 (MRP1). MDCKII cells that overexpress these proteins (MDCKII-MDR1 or MDCKII-MRP1) and normal cells (MDCKII-wt) were used to investigate the effects of efflux pump activity on the results of MTT assay. Efflux protein activity was confirmed with calcein-AM efflux assay, and MTT assay was compared to another cytotoxicity test, the LDH release assay. Inhibition of MRP and MDR1 efflux proteins in MDCKII cell lines was associated paradoxically with increased reduction of MTT, implying an apparent increase in cell viability. This effect was seen when MK 571 (MRP1 and MRP2 inhibitor) or verapamil (MRP1 and MDR1 inhibitor) were used to block efflux protein activity. The calcein-AM efflux assay also showed that the MTT reagent inhibits the function of MDR1 in the MDCKII-MDR1 cell line. This study shows that MDR1 and possibly MRP proteins interfere with the MTT assay. Due to wide substrate specificity of efflux proteins and popularity of the MTT assay this interference is not trivial. Presence of any efflux protein substrate may therefore lead to underestimated results in MTT assay, thereby causing potential bias and erroneous conclusions in cytotoxicity studies.
Collapse
Affiliation(s)
- Kati-Sisko Vellonen
- Department of Pharmaceutics, University of Kuopio, Kuopio, PO Box 1627, 70211 Kuopio, Finland
| | | | | |
Collapse
|
337
|
Pauli-Magnus C, Lang T, Meier Y, Zodan-Marin T, Jung D, Breymann C, Zimmermann R, Kenngott S, Beuers U, Reichel C, Kerb R, Penger A, Meier PJ, Kullak-Ublick GA. Sequence analysis of bile salt export pump (ABCB11) and multidrug resistance p-glycoprotein 3 (ABCB4, MDR3) in patients with intrahepatic cholestasis of pregnancy. ACTA ACUST UNITED AC 2004; 14:91-102. [PMID: 15077010 DOI: 10.1097/00008571-200402000-00003] [Citation(s) in RCA: 180] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Intrahepatic cholestasis of pregnancy (ICP) is a liver disorder associated with increased risk of intrauterine fetal death and prematurity. There is increasing evidence that genetically determined dysfunction in the canalicular ABC transporters bile salt export pump (BSEP, ABCB11) and multidrug resistance protein 3 (MDR3, ABCB4) might be risk factors for ICP development. This study aimed to (i). describe the extent of genetic variability in BSEP and MDR3 in ICP and (ii). identify new disease-causing mutations. Twenty-one women with ICP and 40 women with uneventful pregnancies were recruited between April 2001 and April 2003. Sequencing of BSEP and MDR3 spanned 8-10 kb per gene and comprised the promoter region and 100-350 bp of the flanking intronic region around each exon. DNA sequencing of polymerase chain reaction fragments was performed on an ABI3700 capillary sequencer. MDR3 promoter activity of promoter constructs carrying different ICP-specific mutations was studied using reporter assays. A total of 37 and 51 variant sites were detected in BSEP and MDR3, respectively. Three non-synonymous sites in codons for evolutionarily conserved amino acids were specific for the ICP collective (BSEP, N591S; MDR3, S320F and G762E). Furthermore, four ICP-specific splicing mutations were detected in MDR3 [intron 21, G(+1)A; intron 25, G(+5)C and C(-3)G; and intron 26, T(+2)A]. Activity of the mutated MDR3 promoter was similar to that observed for the wild-type promoter. Our data further support an involvement of MDR3 genetic variation in the pathogenesis of ICP, whereas analysis of BSEP sequence variation indicates that this gene is probably less important for the development of pregnancy-associated cholestasis.
Collapse
MESH Headings
- ATP Binding Cassette Transporter, Subfamily B/genetics
- ATP Binding Cassette Transporter, Subfamily B, Member 11
- ATP-Binding Cassette Transporters/genetics
- Amino Acid Sequence
- Carcinoma, Hepatocellular/metabolism
- Carcinoma, Hepatocellular/pathology
- Cholestasis, Intrahepatic/genetics
- Drug Resistance, Multiple/genetics
- Female
- Genotype
- Germany/epidemiology
- Humans
- Liver Neoplasms/metabolism
- Liver Neoplasms/pathology
- Molecular Sequence Data
- Mutation/genetics
- Polymerase Chain Reaction
- Pregnancy
- Pregnancy Complications
- Promoter Regions, Genetic/genetics
- Sequence Analysis, Protein
- Transfection
- Tumor Cells, Cultured
Collapse
|
338
|
Besnard P, Landrier JF, Grober J, Niot I. [Is the ileal bile acid-binding protein (I-BABP) gene involved in cholesterol homeostasis?]. Med Sci (Paris) 2004; 20:73-7. [PMID: 14770367 DOI: 10.1051/medsci/200420173] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
In the body, cholesterol balance results from an equilibrium between supplies (diet and cellular de novo synthesis), and losses (cellular use and elimination in feces, essentially as bile acids). Bile acids are synthesized from cholesterol in the liver. After conjugation to glycine or taurine, bile acids are secreted with bile in the intestinal lumen where they actively participate to the digestion and absorption of dietary fat and lipid-soluble vitamins. In healthy subjects, more than 95% of bile acids are reabsorbed throughout the small intestine and returned by the portal vein to the liver, where they are secreted again into bile. This enterohepatic circulation is essential for maintenance of bile acids balance, and hence, for cholesterol homeostasis. Indeed, the bile acids not reclaimed by intestinal absorption constitute the main physiological way to eliminate a cholesterol excess. Little is known about the molecular mechanisms controlling bile acids reabsorption by the small intestine. The intestinal bile acids uptake mainly takes place through an active transport located in the distal part of the small intestine. To date, four unrelated proteins exhibiting a high affinity for bile acids have been identified in the ileum, and only one, the ileal bile acid-binding protein (I-BABP) is a soluble protein. Therefore, it is thought to be essential for efficient bile acids desorption from the apical plasma membrane, as well as for bile acids intracellular trafficking and targeting towards the basolateral membrane. If this assumption is correct, the I-BABP expression level might be rate limiting for the enterohepatic bile acids circulation, and hence, for cholesterol homeostasis. It was found that both bile acids and cholesterol, probably via oxysterols, are able to up-regulate the transcription rate of I-BABP gene. The fact that intracellular sterol sensors (FXR, LXR, and SREBP1c) are involved in the control of the I-BABP gene expression strongly suggests that I-BABP exerts an important role in maintenance of cholesterol balance.
Collapse
Affiliation(s)
- Philippe Besnard
- Laboratoire de physiologie de la nutrition, Ecole nationale supérieure de biologie appliquée à la nutrition et à l'alimentation (ENSBANA), UMR 5170-CESG Cnrs/INRA/Université de Bourgogne, 1, esplanade Erasme, 21000 Dijon, France.
| | | | | | | |
Collapse
|
339
|
Sidler Pfändler MA, Höchli M, Inderbitzin D, Meier PJ, Stieger B. Small hepatocytes in culture develop polarized transporter expression and differentiation. J Cell Sci 2004; 117:4077-87. [PMID: 15280430 DOI: 10.1242/jcs.01279] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Rat small hepatocytes have been shown to proliferate in culture and to form organoids with differentiated hepatocytes in vitro. To evaluate the degree of polarized transporter differentiation of rat small hepatocytes during 9 weeks of culturing, we studied the time-dependent expression and subcellular localization of the major bile salt and organic anion transport systems of hepatocytes [i.e. the basolateral sodium-taurocholate co-transporting protein (Ntcp), organic-anion-transporting polypeptide 1b2 (Oatp1b2), the canalicular bile-salt export pump (Bsep) and multidrug-resistance-associated protein 2 (Mrp2)]. Small hepatocytes proliferated and differentiated in culture and formed sharply demarcated colonies as assessed by morphology, α-fetoprotein, albumin and Mrp1 expression. Polarized surface transporter expression was evident after 5 weeks of culturing for Ntcp, Oatp1b2 and Mrp2, and after 7 weeks for Bsep. After 9 weeks in culture, the vast majority of matured hepatocytes expressed Ntcp/Oatp1b2 at the basolateral and Bsep/Mrp2 at the canalicular plasma-membrane domains. This polarized transporter expression was accompanied by canalicular secretion of fluorescein-diacetate and cholylglycyl-fluorescein. Furthermore, an anastomizing three-dimensional network of bile canaliculi developed within piling-up colonies. These data demonstrate that cultured rat small hepatocytes acquire a fully differentiated transporter expression phenotype during their development into hepatic `organoid-like' clusters of mature hepatocytes. Thereby, the time-dependent sequence of transporter expression mirrored the ontogenesis of transporter expression in developing rat liver, supporting the concept that small hepatocytes correspond to the hepatocyte lineage derived from embryonic hepatoblasts and/or from a different pool of `committed hepatocyte progenitor cells'.
Collapse
|
340
|
Meier-Abt F, Faulstich H, Hagenbuch B. Identification of phalloidin uptake systems of rat and human liver. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2004; 1664:64-9. [PMID: 15238259 DOI: 10.1016/j.bbamem.2004.04.004] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2004] [Revised: 04/07/2004] [Accepted: 04/16/2004] [Indexed: 10/26/2022]
Abstract
To determine whether the liver toxin phalloidin is transported into hepatocytes by one of the known bile salt transporters, we expressed the sodium-dependent Na+/taurocholate cotransporting polypeptide (Ntcp) and several sodium-independent bile salt transporters of the organic anion transporting polypeptide (OATP/SLCO) superfamily in Xenopus laevis oocytes and measured uptake of the radiolabeled phalloidin derivative [3H]demethylphalloin. We found that rat Oatp1b2 (previously called Oatp4 (Slc21a10)) as well as human OATP1B1 (previously called OATP-C (SLC21A6)) and OATP1B3 (previously called OATP8 (SLC21A8)) mediate uptake of [3H]demethylphalloin when expressed in X. laevis oocytes. Transport of increasing [3H]demethylphalloin concentrations was saturable with apparent Km values of 5.7 microM (Oatp1b2), 17 microM (OATP1B1) and 7.5 microM (OATP1B3). All other tested Oatps/OATPs as well as the rat liver Ntcp did not transport [3H]demethylphalloin. Therefore, we conclude that rat Oatp1b2 as well as human OATP1B1 and OATP1B3 are responsible for phalloidin uptake into rat and human hepatocytes.
Collapse
Affiliation(s)
- Fabienne Meier-Abt
- Department of Medicine, Division of Clinical Pharmacology and Toxicology, University Hospital, Ramistr. 100, CH-8091, Zurich, Switzerland
| | | | | |
Collapse
|
341
|
Xia X, Roundtree M, Merikhi A, Lu X, Shentu S, Lesage G. Degradation of the apical sodium-dependent bile acid transporter by the ubiquitin-proteasome pathway in cholangiocytes. J Biol Chem 2004; 279:44931-7. [PMID: 15304498 DOI: 10.1074/jbc.m400969200] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
To attenuate injury during cholestasis, adaptive changes in bile acid transporter expression in the liver provide alternative bile acid excretory pathways. Apical sodium-dependent bile acid transporter (ASBT) (SLC10A2), only expressed in the liver on the cholangiocyte apical membrane, is rapidly regulated in response to inflammation and bile acids. Here, we studied the mechanisms controlling ASBT protein levels in cholangiocytes to determine whether ASBT expression is regulated by ubiquitination and disposal through the proteasome. Protein turnover assays demonstrated that ASBT is an unstable and short-lived protein. Treatment with MG-132, a proteasome inhibitor, causes time-dependent increased ASBT levels and increased intracellular accumulation of ASBT. In cells cotransfected with green fluorescent protein-tagged ASBT and hemagglutinin-tagged ubiquitin, we demonstrated coimmunoprecipitation and colocalization of ASBT and ubiquitin. Interleukin-1beta (IL-1beta) induced down-regulation of ASBT is abrogated by a JNK inhibitor and is accompanied by an increase in ASBT polyubiquitin conjugates and a reduced ASBT half-life. In phosphorylation-deficient S335A and T339A mutants, the ASBT half-life is markedly prolonged, IL-1beta-induced ASBT ubiquitination is significantly reduced, and IL-1beta fails to increase ASBT turnover. These results indicate that ASBT undergoes ubiquitin-proteasome degradation under basal conditions and that ASBT proteasome disposal is increased by IL-1beta due to JNK-regulated serine/threonine phosphorylation of ASBT protein at both Ser-335 and Thr-339. These studies are the first report of regulation of a bile acid transporter expression by the ubiquitin-proteasome pathway.
Collapse
Affiliation(s)
- Xuefeng Xia
- Division of Gastroenterology, Hepatology and Nutrition, Department of Internal Medicine, University of Texas at Houston Medical School, Houston, Texas 70030, USA
| | | | | | | | | | | |
Collapse
|
342
|
Wright SH, Dantzler WH. Molecular and cellular physiology of renal organic cation and anion transport. Physiol Rev 2004; 84:987-1049. [PMID: 15269342 DOI: 10.1152/physrev.00040.2003] [Citation(s) in RCA: 342] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Organic cations and anions (OCs and OAs, respectively) constitute an extraordinarily diverse array of compounds of physiological, pharmacological, and toxicological importance. Renal secretion of these compounds, which occurs principally along the proximal portion of the nephron, plays a critical role in regulating their plasma concentrations and in clearing the body of potentially toxic xenobiotics agents. The transepithelial transport involves separate entry and exit steps at the basolateral and luminal aspects of renal tubular cells. It is increasingly apparent that basolateral and luminal OC and OA transport reflects the concerted activity of a suite of separate transport processes arranged in parallel in each pole of proximal tubule cells. The cloning of multiple members of several distinct transport families, the subsequent characterization of their activity, and their subcellular localization within distinct regions of the kidney now allows the development of models describing the molecular basis of the renal secretion of OCs and OAs. This review examines recent work on this issue, with particular emphasis on attempts to integrate information concerning the activity of cloned transporters in heterologous expression systems to that observed in studies of physiologically intact renal systems.
Collapse
Affiliation(s)
- Stephen H Wright
- Dept. of Physiology, College of Medicine, Univ. of Arizona, Tucson, AZ 85724, USA.
| | | |
Collapse
|
343
|
Gao B, St Pierre MV, Stieger B, Meier PJ. Differential expression of bile salt and organic anion transporters in developing rat liver. J Hepatol 2004; 41:201-8. [PMID: 15288467 DOI: 10.1016/j.jhep.2004.04.029] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2003] [Revised: 03/08/2004] [Accepted: 04/08/2004] [Indexed: 12/04/2022]
Abstract
BACKGROUND/AIMS Differentiated hepatocytes express distinct transport systems at their basolateral and canalicular membrane domains. Here, we investigated the ontogenesis of the polar expression of hepatocellular organic anion and bile salt transport systems in rat liver. METHODS mRNA levels (real time PCR) and protein expression (immunofluorescence microscopy) were investigated for the Na(+)-taurocholate cotransport protein (Ntcp), the organic anion transporting polypeptides (Oatp1a1, Oatp1a4, Oatp1b2), the multidrug resistance associated proteins (Mrp2, Mrp6) and the bile salt export pump (Bsep). RESULTS Expression of mRNA and protein was detected first for Oatp1b2, Mrp2 and Mrp6 at embryonic day 16 (E16), followed by Ntcp, Oatp1a1 and Bsep at E20 and by Oatp1a4 at postnatal day 5 (P5). Intracellular localization of Oatps (e.g. Oatp1b2) preceded expression at the plasma membrane. Approximate adult phenotypes of polarized expression were achieved for Ntcp by P5, for Bsep, Mrp2 and Mrp6 by P12 and for Oatp1a1, Oatp1a4 and Oatp1b2 by P29. CONCLUSIONS The data demonstrate that full maturation of polarized transporter expression in rat liver requires several weeks. The findings provide a molecular explanation for the previously observed chronology of the functional maturation of bile salt-independent and dependent bile formation and of hepatic detoxification functions in developing rat liver.
Collapse
Affiliation(s)
- Bo Gao
- Division of Clinical Pharmacology and Toxicology, Department of Medicine, University Hospital, CH-8091 Zurich, Switzerland
| | | | | | | |
Collapse
|
344
|
Abstract
Recent insights into the cellular and molecular mechanisms that control the function and regulation of hepatobiliary transport have led to a greater understanding of the physiological significance of bile secretion. Individual carriers for bile acids and other organic anions in both liver and intestine have now been cloned from several species. In addition, complex networks of signals that regulate key enzymes and membrane transporters located in cells that participate in the metabolism or transport of biliary constituents are being unraveled. This knowledge has major implications for the pathogenesis of cholestatic liver diseases. Here, we review recent information on molecular aspects of hepatobiliary secretory function and its regulation in cholestasis. Potential implications of this knowledge for the design of new therapies of cholestatic disorders are also discussed.
Collapse
Affiliation(s)
- Marco Arrese
- Departmento de Gastroenterologi;a, Facultad de Medicina, Pontificia Universidad Católica de Chile, Marcoleta 347, 8320000 Santiago, Chile.
| | | |
Collapse
|
345
|
Arrese M, Ananthanarayanan M. The bile salt export pump: molecular properties, function and regulation. Pflugers Arch 2004; 449:123-31. [PMID: 15578267 DOI: 10.1007/s00424-004-1311-4] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2004] [Accepted: 06/16/2004] [Indexed: 12/31/2022]
Abstract
Secretion of bile salts from the hepatocyte into bile is the major driving force for the generation of bile flow. Identification of the bile salt export pump (BSEP, ABCB11) as the main adenosine-triphosphate-dependent bile salt transporter in mammalian liver has led to a greater understanding of the biliary bile salt secretory process and its regulation. The biology and pathobiology of BSEP have been the subject of many recent studies. Thus, it has been recognized that while mutations in the gene encoding BSEP are responsible for a subgroup of progressive familial cholestasis (progressive familial intrahepatic cholestasis subtype 2), a pediatric cholestatic disorder that may progress to cirrhosis, defective expression or function of BSEP may underlie some forms of drug-induced cholestasis. The present review summarizes recent data on the molecular properties and regulation of BSEP, as well as the clinical implications of absent or defective function of this hepatic efflux pump.
Collapse
Affiliation(s)
- Marco Arrese
- Departamento de Gastroenterología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Marcoleta 367, 6510260 Santiago, Chile.
| | | |
Collapse
|
346
|
Rosmorduc O, Poupon R. [Hepatobiliary transporters: from genomics to diseases]. ACTA ACUST UNITED AC 2004; 28:D112-20. [PMID: 15213671 DOI: 10.1016/s0399-8320(04)94995-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
347
|
Jung D, Hagenbuch B, Fried M, Meier PJ, Kullak-Ublick GA. Role of liver-enriched transcription factors and nuclear receptors in regulating the human, mouse, and rat NTCP gene. Am J Physiol Gastrointest Liver Physiol 2004; 286:G752-61. [PMID: 14701722 DOI: 10.1152/ajpgi.00456.2003] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Hepatic uptake of bile acids is mediated by the Na(+)-taurocholate cotransporting polypeptide (NTCP; SLC10A1) of the basolateral hepatocyte membrane. Several cis-acting elements in the rat Ntcp gene promoter have been characterized. However, little is known about the mechanisms that control the expression of the human or mouse NTCP/Ntcp. We, therefore, compared the transcriptional regulation of the human and mouse NTCP/Ntcp gene with that of the rat. By computer alignment, a sequence in the 5'-regulatory region that is conserved between species was identified near the transcription start site. Huh7 cells were transfected with luciferase constructs containing the conserved region from each species. The hepatocyte nuclear factors (HNF)1alpha and -4alpha and the retinoid X receptor/retinoic acid receptor dimer (RXRalpha/RARalpha) bound and transactivated the rat but not the human or mouse NTCP/Ntcp promoters. In contrast, activation by the CCAAT/enhancer binding protein-beta was specific for human and mouse NTCP/Ntcp. The only consensus motif present in all three species was HNF3beta. HNF3beta formed a specific DNA-protein complex in electrophoretic mobility shift assays and inhibited NTCP/Ntcp promoter activity in cotransfection assays. Finally, a minor repressive effect of bile acids was only found for rat Ntcp. The transcriptional repressor small heterodimer partner (SHP) did not affect NTCP/Ntcp promoter activity. We conclude that 1) the transcriptional regulation of the conserved NTCP/Ntcp 5'-regulatory region differs considerably among human, mouse, and rat; and 2) the conserved NTCP/Ntcp regulatory region is not directly regulated by SHP. Bile acids may regulate NTCP/Ntcp indirectly by modulating the capacity of nuclear factors to activate gene expression.
Collapse
Affiliation(s)
- Diana Jung
- Division of Gastroenterology and Hepatology, Dept. of Internal Medicine, Univ. Hospital, CH-8091 Zurich, Switzerland
| | | | | | | | | |
Collapse
|
348
|
Bañales JM, Medina JF. [Molecular mechanisms in bile formation]. GASTROENTEROLOGIA Y HEPATOLOGIA 2004; 27:320-4. [PMID: 15117613 DOI: 10.1016/s0210-5705(03)70469-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
349
|
Geyer J, Döring B, Failing K, Petzinger E. Molecular cloning and functional characterization of the bovine (Bos taurus) organic anion transporting polypeptide Oatp1a2 (Slco1a2). Comp Biochem Physiol B Biochem Mol Biol 2004; 137:317-29. [PMID: 15050519 DOI: 10.1016/j.cbpc.2003.12.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2003] [Revised: 12/02/2003] [Accepted: 12/07/2003] [Indexed: 10/26/2022]
Abstract
We describe the cloning, functional characterization and tissue localization of a novel membrane transporter of the OATP/Oatp-gene family obtained from liver and kidney of cattle (Bos taurus). The carrier protein exhibits highest sequence identity to the human OATP1A2 (previously called OATP-A) and is, therefore, named bovine Oatp1a2. Bovine Oatp1a2 received the gene symbol Slco1a2 that is identical to the SLC classification of human OATP1A2 (SLCO1A2, previously called SLC21A3) and is likely an orthologue of the human gene. Two different full-length bOatp1a2 cDNAs of 2316-bp and 3504-bp were obtained and encoded for a 666 amino acid membrane protein, which contains twelve putative transmembrane spanning domains. Bovine Oatp1a2 expression was detected in liver, kidney, brain and adrenal gland. Uptake studies in cRNA-injected oocytes demonstrated that bOatp1a2 transports estrone-3-sulfate and taurocholate, with K(m) values of 9.6 microM and 51 microM, respectively, and estradiol-17beta-glucuronide. However, the structurally-related heart glycosides ouabain (1 microM) and digoxin (1 microM) are neither transported by bovine Oatp1a2 nor by human OATP1A2. We conclude that based on the tested substrates bovine Oatp1a2 shows functional homology to human OATP1A2.
Collapse
Affiliation(s)
- Joachim Geyer
- Institute of Pharmacology and Toxicology, Justus-Liebig-University of Giessen, Frankfurter Str. 107, D-35392 Giessen, Germany
| | | | | | | |
Collapse
|
350
|
Pauli-Magnus C, Kerb R, Fattinger K, Lang T, Anwald B, Kullak-Ublick GA, Beuers U, Meier PJ. BSEP and MDR3 haplotype structure in healthy Caucasians, primary biliary cirrhosis and primary sclerosing cholangitis. Hepatology 2004; 39:779-91. [PMID: 14999697 DOI: 10.1002/hep.20159] [Citation(s) in RCA: 115] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Primary biliary cirrhosis (PBC) and primary sclerosing cholangitis (PSC) are characterized by a cholestatic pattern of liver damage, also observed in hereditary or acquired dysfunction of the canalicular membrane transporters bile salt export pump (BSEP, ABCB11) and multidrug resistance protein type 3 (MDR3, ABCB4). Controversy exists whether a genetically determined dysfunction of BSEP and MDR3 plays a pathogenic role in PBC and PSC. Therefore, 149 healthy Caucasian control individuals (control group) were compared to 76 PBC and 46 PSC patients with respect to genetic variations in BSEP and MDR3. Sequencing spanned approximately 10,000 bp including promoter and coding regions as well as 50-350 bp of flanking intronic regions. In all, 46 and 45 variants were identified in BSEP and MDR3, respectively. No differences between the groups were detected either in the total number of variants (BSEP: control group: 37, PBC: 37, PSC: 31; and MDR3: control group: 35; PBC: 32, PSC: 30), or in the allele frequency of the common variable sites. Furthermore, there were no significant differences in haplotype distribution and linkage disequilibrium. In conclusion, this study provides an analysis of BSEP and MDR3 variant segregation and haplotype structure in a Caucasian population. Although an impact of rare variants on BSEP and MDR3 function cannot be ruled out, our data do not support a strong role of BSEP and MDR3 genetic variations in the pathogenesis of PBC and PSC.
Collapse
Affiliation(s)
- Christiane Pauli-Magnus
- Division of Clinical Pharmacology and Toxicology, University Hospital Zurich, Rämistrasse 100, A-8091 Zurich, Switzerland.
| | | | | | | | | | | | | | | |
Collapse
|