301
|
Abstract
Heart failure is associated with generalized insulin resistance. Moreover, insulin-resistant states such as type 2 diabetes mellitus and obesity increases the risk of heart failure even after adjusting for traditional risk factors. Insulin resistance or type 2 diabetes mellitus alters the systemic and neurohumoral milieu, leading to changes in metabolism and signaling pathways in the heart that may contribute to myocardial dysfunction. In addition, changes in insulin signaling within cardiomyocytes develop in the failing heart. The changes range from activation of proximal insulin signaling pathways that may contribute to adverse left ventricular remodeling and mitochondrial dysfunction to repression of distal elements of insulin signaling pathways such as forkhead box O transcriptional signaling or glucose transport, which may also impair cardiac metabolism, structure, and function. This article will review the complexities of insulin signaling within the myocardium and ways in which these pathways are altered in heart failure or in conditions associated with generalized insulin resistance. The implications of these changes for therapeutic approaches to treating or preventing heart failure will be discussed.
Collapse
Affiliation(s)
- Christian Riehle
- From the Division of Endocrinology and Metabolism, Fraternal Order of Eagles Diabetes Research Center, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City
| | - E Dale Abel
- From the Division of Endocrinology and Metabolism, Fraternal Order of Eagles Diabetes Research Center, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City.
| |
Collapse
|
302
|
Matsuura K, Canfield K, Feng W, Kurokawa M. Metabolic Regulation of Apoptosis in Cancer. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2016; 327:43-87. [PMID: 27692180 DOI: 10.1016/bs.ircmb.2016.06.006] [Citation(s) in RCA: 115] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Apoptosis is a cellular suicide program that plays a critical role in development and human diseases, including cancer. Cancer cells evade apoptosis, thereby enabling excessive proliferation, survival under hypoxic conditions, and acquired resistance to therapeutic agents. Among various mechanisms that contribute to the evasion of apoptosis in cancer, metabolism is emerging as one of the key factors. Cellular metabolites can regulate functions of pro- and antiapoptotic proteins. In turn, p53, a regulator of apoptosis, also controls metabolism by limiting glycolysis and facilitating mitochondrial respiration. Consequently, with dysregulated metabolism and p53 inactivation, cancer cells are well-equipped to disable the apoptotic machinery. In this article, we review how cellular apoptosis is regulated and how metabolism can influence the signaling pathways leading to apoptosis, especially focusing on how glucose and lipid metabolism are altered in cancer cells and how these alterations can impact the apoptotic pathways.
Collapse
Affiliation(s)
- K Matsuura
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC, United States
| | - K Canfield
- Department of Molecular & Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, NH, United States
| | - W Feng
- Norris Cotton Cancer Center, Lebanon, NH, United States
| | - M Kurokawa
- Department of Molecular & Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, NH, United States; Norris Cotton Cancer Center, Lebanon, NH, United States.
| |
Collapse
|
303
|
Kitessa SM, Abeywardena MY. Lipid-Induced Insulin Resistance in Skeletal Muscle: The Chase for the Culprit Goes from Total Intramuscular Fat to Lipid Intermediates, and Finally to Species of Lipid Intermediates. Nutrients 2016; 8:E466. [PMID: 27483311 PMCID: PMC4997379 DOI: 10.3390/nu8080466] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Revised: 07/13/2016] [Accepted: 07/21/2016] [Indexed: 12/16/2022] Open
Abstract
The skeletal muscle is the largest organ in the body. It plays a particularly pivotal role in glucose homeostasis, as it can account for up to 40% of the body and for up to 80%-90% of insulin-stimulated glucose disposal. Hence, insulin resistance (IR) in skeletal muscle has been a focus of much research and review. The fact that skeletal muscle IR precedes β-cell dysfunction makes it an ideal target for countering the diabetes epidemic. It is generally accepted that the accumulation of lipids in the skeletal muscle, due to dietary lipid oversupply, is closely linked with IR. Our understanding of this link between intramyocellular lipids (IMCL) and glycemic control has changed over the years. Initially, skeletal muscle IR was related to total IMCL. The inconsistencies in this explanation led to the discovery that particular lipid intermediates are more important than total IMCL. The two most commonly cited lipid intermediates for causing skeletal muscle IR are ceramides and diacylglycerol (DAG) in IMCL. Still, not all cases of IR and dysfunction in glycemic control have shown an increase in either or both of these lipids. In this review, we will summarise the latest research results that, using the lipidomics approach, have elucidated DAG and ceramide species that are involved in skeletal muscle IR in animal models and human subjects.
Collapse
Affiliation(s)
- Soressa M Kitessa
- CSIRO Health and Biosecurity, Kintore Avenue, Adelaide 5000, SA, Australia.
- Division of Livestock and Farming Systems, South Australian Research and Development Institute, J S Davies Bldg, Roseworthy Campus, GPO Box 397, Adelaide 5000, SA, Australia.
| | | |
Collapse
|
304
|
Chanda D, Luiken JJFP, Glatz JFC. Signaling pathways involved in cardiac energy metabolism. FEBS Lett 2016; 590:2364-74. [PMID: 27403883 DOI: 10.1002/1873-3468.12297] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Revised: 07/09/2016] [Accepted: 07/11/2016] [Indexed: 11/09/2022]
Abstract
Various signaling pathways coordinate energy metabolism and contractile function in the heart. Myocardial uptake of long-chain fatty acids largely occurs by facilitated diffusion, involving the membrane-associated protein, CD36. Glucose uptake, the rate-limiting step in glucose utilization, is mediated predominantly by the glucose transporter protein, GLUT4. Insulin and contraction-mediated AMPK signaling each are implicated in tightly regulating these myocardial 'gate-keepers' of energy balance, that is, CD36 and GLUT4. The insulin and AMPK signaling cascades are complex and their cross-talk is only beginning to be understood. Moreover, transcriptional regulation of the CD36 and GLUT4 is significantly understudied. This review focuses on recent advances on the role of these signaling pathways and transcription factors involved in the regulation of CD36 and GLUT4.
Collapse
Affiliation(s)
- Dipanjan Chanda
- Department of Genetics and Cell Biology, CARIM School of Cardiovascular Diseases, Maastricht University, The Netherlands
| | - Joost J F P Luiken
- Department of Genetics and Cell Biology, CARIM School of Cardiovascular Diseases, Maastricht University, The Netherlands
| | - Jan F C Glatz
- Department of Genetics and Cell Biology, CARIM School of Cardiovascular Diseases, Maastricht University, The Netherlands
| |
Collapse
|
305
|
Salameh A, Daquinag AC, Staquicini DI, An Z, Hajjar KA, Pasqualini R, Arap W, Kolonin MG. Prohibitin/annexin 2 interaction regulates fatty acid transport in adipose tissue. JCI Insight 2016; 1. [PMID: 27468426 DOI: 10.1172/jci.insight.86351] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
We have previously identified prohibitin (PHB) and annexin A2 (ANX2) as proteins interacting on the surface of vascular endothelial cells in white adipose tissue (WAT) of humans and mice. Here, we demonstrate that ANX2 and PHB also interact in adipocytes. Mice lacking ANX2 have normal WAT vascularization, adipogenesis, and glucose metabolism but display WAT hypotrophy due to reduced fatty acid uptake by WAT endothelium and adipocytes. By using cell culture systems in which ANX2/PHB binding is disrupted either genetically or through treatment with a blocking peptide, we show that fatty acid transport efficiency relies on this protein complex. We also provide evidence that the interaction between ANX2 and PHB mediates fatty acid transport from the endothelium into adipocytes. Moreover, we demonstrate that ANX2 and PHB form a complex with the fatty acid transporter CD36. Finally, we show that the colocalization of PHB and CD36 on adipocyte surface is induced by extracellular fatty acids. Together, our results suggest that an unrecognized biochemical interaction between ANX2 and PHB regulates CD36-mediated fatty acid transport in WAT, thus revealing a new potential pathway for intervention in metabolic diseases.
Collapse
Affiliation(s)
- Ahmad Salameh
- Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Alexes C Daquinag
- Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Daniela I Staquicini
- University of New Mexico Comprehensive Cancer Center and Division of Molecular Medicine, Department of Internal Medicine, University of New Mexico School of Medicine, Albuquerque, New Mexico, USA
| | - Zhiqiang An
- Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Katherine A Hajjar
- Departments of Pediatrics, Cell and Developmental Biology, and Medicine, Weill Cornell Medical College, New York, New York, USA
| | - Renata Pasqualini
- University of New Mexico Comprehensive Cancer Center and Division of Molecular Medicine, Department of Internal Medicine, University of New Mexico School of Medicine, Albuquerque, New Mexico, USA
| | - Wadih Arap
- University of New Mexico Comprehensive Cancer Center and Division of Hematology/Oncology, Department of Internal Medicine, University of New Mexico School of Medicine, Albuquerque, New Mexico, USA
| | - Mikhail G Kolonin
- Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, Texas, USA
| |
Collapse
|
306
|
Snook LA, Wright DC, Holloway GP. Postprandial control of fatty acid transport proteins' subcellular location is not dependent on insulin. FEBS Lett 2016; 590:2661-70. [PMID: 27311759 DOI: 10.1002/1873-3468.12260] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Revised: 04/28/2016] [Accepted: 06/14/2016] [Indexed: 01/09/2023]
Abstract
Fatty acid transport proteins rapidly translocate to the plasma membrane in response to various stimuli, including insulin, influencing lipid uptake into muscle. However, our understanding of the mechanisms regulating postprandial fatty acid transporter subcellular location remains limited. We demonstrate that the response of fatty acid transporters to insulin stimulation is extremely brief and not temporally matched in the postprandial state. We further show that high-fat diet-induced accumulation of fatty acid transporters on the plasma membrane can occur in the absence of insulin. Altogether, these data suggest that insulin is not the primary signal regulating fatty acid transporter relocation in vivo.
Collapse
Affiliation(s)
- Laelie A Snook
- Department of Human Health and Nutritional Sciences, University of Guelph, Canada
| | - David C Wright
- Department of Human Health and Nutritional Sciences, University of Guelph, Canada
| | - Graham P Holloway
- Department of Human Health and Nutritional Sciences, University of Guelph, Canada
| |
Collapse
|
307
|
Colombo A, Godino C, Donahue M, Testa L, Chiarito M, Pavon AG, Colantonio R, Cappelletti A, Monello A, Magni V, Milazzo D, Parisi R, Nicolino A, Moshiri S, Fattori R, Aprigliano G, Palloshi A, Caramanno G, Montorfano M, Bedogni F, Margonato A, Briguori C. One-year clinical outcome of amphilimus polymer-free drug-eluting stent in diabetes mellitus patients. Int J Cardiol 2016; 214:113-20. [DOI: 10.1016/j.ijcard.2016.03.088] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Revised: 03/17/2016] [Accepted: 03/19/2016] [Indexed: 01/04/2023]
|
308
|
Treps L, Conradi LC, Harjes U, Carmeliet P. Manipulating Angiogenesis by Targeting Endothelial Metabolism: Hitting the Engine Rather than the Drivers—A New Perspective? Pharmacol Rev 2016; 68:872-87. [DOI: 10.1124/pr.116.012492] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
309
|
Abstract
Lipids are essential components of a cell providing energy substrates for cellular processes, signaling intermediates, and building blocks for biological membranes. Lipids are constantly recycled and redistributed within a cell. Lysosomes play an important role in this recycling process that involves the recruitment of lipids to lysosomes via autophagy or endocytosis for their degradation by lysosomal hydrolases. The catabolites produced are redistributed to various cellular compartments to support basic cellular function. Several studies demonstrated a bidirectional relationship between lipids and lysosomes that regulate autophagy. While lysosomal degradation pathways regulate cellular lipid metabolism, lipids also regulate lysosome function and autophagy. In this review, we focus on this bidirectional relationship in the context of dietary lipids and provide an overview of recent evidence of how lipid-overload lipotoxicity, as observed in obesity and metabolic syndrome, impairs lysosomal function and autophagy that may eventually lead to cellular dysfunction or cell death.
Collapse
Affiliation(s)
- Bharat Jaishy
- Fraternal Order of Eagles Diabetes Research Center and Division of Endocrinology and Metabolism, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA 52242
| | - E Dale Abel
- Fraternal Order of Eagles Diabetes Research Center and Division of Endocrinology and Metabolism, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA 52242
| |
Collapse
|
310
|
Eltweri AM, Thomas AL, Fisk HL, Arshad A, Calder PC, Dennison AR, Bowrey DJ. Plasma and erythrocyte uptake of omega-3 fatty acids from an intravenous fish oil based lipid emulsion in patients with advanced oesophagogastric cancer. Clin Nutr 2016; 36:768-774. [PMID: 27342748 DOI: 10.1016/j.clnu.2016.06.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 05/05/2016] [Accepted: 06/01/2016] [Indexed: 10/21/2022]
Abstract
BACKGROUND It has been demonstrated that short term intravenous (IV) administration of omega-3 polyunsaturated fatty acids (PUFAs) is more effective than oral supplementation at promoting incorporation of the bioactive omega-3 PUFAs eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) into plasma, blood cells and tissues. The effect of repeated short term IV infusion of omega-3 PUFAs was investigated in patients with advanced oesophagogastric cancer during palliative chemotherapy. METHODS Patients with advanced oesophagogastric cancer (n = 21) were recruited into a phase II pilot clinical trial. All patients were scheduled for an intravenous infusion of Omegaven® (fish oil supplement containing EPA and DHA) at a rate of 2 ml/kg body weight for 4 h once a week for up to six months. Blood samples were collected to assess omega-3 PUFA uptake into plasma non-esterified fatty acids (NEFAs) and phosphatidylcholine (PC) and into red blood cell (RBC) membranes. Fatty acid profiles were analysed by gas chromatography. RESULTS Twenty patients received at least one Omegaven® treatment and were included in the analysis. Each infusion of omega-3 PUFAs resulted in increased EPA and DHA in plasma NEFAs, but there was little effect on PUFAs within plasma PC during the infusions. However, with repeated weekly infusion of omega-3 PUFAs, the EPA content of plasma PC and of RBC membranes increased. CONCLUSION Repeated weekly omega-3 PUFA infusion is effective in enriching plasma PC and RBC membranes in EPA in patients with advanced oesophagogastric cancer receiving palliative chemotherapy. TRIAL REGISTRATION Clinical Trials.Gov NCT01870791.
Collapse
Affiliation(s)
- A M Eltweri
- Department of Surgery, University Hospitals of Leicester NHS Trust, Leicester LE1 5WW, UK.
| | - A L Thomas
- Department of Cancer Studies, University of Leicester, Leicester LE2 7LX, UK
| | - H L Fisk
- Human Development and Health Academic Unit, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK
| | - A Arshad
- Department of Surgery, University Hospitals of Leicester NHS Trust, Leicester LE1 5WW, UK
| | - P C Calder
- Human Development and Health Academic Unit, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK; NIHR Southampton Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust and University of Southampton, Southampton SO16 6YD, UK
| | - A R Dennison
- Department of Surgery, University Hospitals of Leicester NHS Trust, Leicester LE1 5WW, UK
| | - D J Bowrey
- Department of Surgery, University Hospitals of Leicester NHS Trust, Leicester LE1 5WW, UK
| |
Collapse
|
311
|
Chen MC, Chang JP, Lin YS, Pan KL, Ho WC, Liu WH, Chang TH, Huang YK, Fang CY, Chen CJ. Deciphering the gene expression profile of peroxisome proliferator-activated receptor signaling pathway in the left atria of patients with mitral regurgitation. J Transl Med 2016; 14:157. [PMID: 27250500 PMCID: PMC4890244 DOI: 10.1186/s12967-016-0871-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Accepted: 04/19/2016] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Differentially expressed genes in the left atria of mitral regurgitation (MR) pigs have been linked to peroxisome proliferator-activated receptor (PPAR) signaling pathway in the KEGG pathway. However, specific genes of the PPAR signaling pathway in the left atria of MR patients have never been explored. METHODS This study enrolled 15 MR patients with heart failure, 7 patients with aortic valve disease and heart failure, and 6 normal controls. We used PCR assay (84 genes) for PPAR pathway and quantitative RT-PCR to study specific genes of the PPAR pathway in the left atria. RESULTS Gene expression profiling analysis through PCR assay identified 23 genes to be differentially expressed in the left atria of MR patients compared to normal controls. The expressions of APOA1, ACADM, FABP3, ETFDH, ECH1, CPT1B, CPT2, SLC27A6, ACAA2, SMARCD3, SORBS1, EHHADH, SLC27A1, PPARGC1B, PPARA and CPT1A were significantly up-regulated, whereas the expression of PLTP was significantly down-regulated in the MR patients compared to normal controls. The expressions of HMGCS2, ACADM, FABP3, MLYCD, ECH1, ACAA2, EHHADH, CPT1A and PLTP were significantly up-regulated in the MR patients compared to patients with aortic valve disease. Notably, only ACADM, FABP3, ECH1, ACAA2, EHHADH, CPT1A and PLTP of the PPAR pathway were significantly differentially expressed in the MR patients compared to patients with aortic valve disease and normal controls. CONCLUSIONS Differentially expressed genes of the PPAR pathway have been identified in the left atria of MR patients compared with patients with aortic valve disease and normal controls.
Collapse
Affiliation(s)
- Mien-Cheng Chen
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, 123 Ta Pei Road, Niao Sung District, Kaohsiung, 83301, Taiwan.
| | - Jen-Ping Chang
- Division of Cardiovascular Surgery, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Yu-Sheng Lin
- Division of Cardiology, Chang Gung Memorial Hospital, Chiayi, Taiwan
| | - Kuo-Li Pan
- Division of Cardiology, Chang Gung Memorial Hospital, Chiayi, Taiwan
| | - Wan-Chun Ho
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, 123 Ta Pei Road, Niao Sung District, Kaohsiung, 83301, Taiwan
| | - Wen-Hao Liu
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, 123 Ta Pei Road, Niao Sung District, Kaohsiung, 83301, Taiwan
| | - Tzu-Hao Chang
- Graduate Institute of Biomedical Informatics, Taipei Medical University, Taipei, Taiwan
| | - Yao-Kuang Huang
- Department of Thoracic and Cardiovascular Surgery, Chang Gung Memorial Hospital, Chiayi, Taiwan
| | - Chih-Yuan Fang
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, 123 Ta Pei Road, Niao Sung District, Kaohsiung, 83301, Taiwan
| | - Chien-Jen Chen
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, 123 Ta Pei Road, Niao Sung District, Kaohsiung, 83301, Taiwan
| |
Collapse
|
312
|
Emodin ameliorates high-fat-diet induced insulin resistance in rats by reducing lipid accumulation in skeletal muscle. Eur J Pharmacol 2016; 780:194-201. [DOI: 10.1016/j.ejphar.2016.03.049] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2015] [Revised: 03/20/2016] [Accepted: 03/24/2016] [Indexed: 01/02/2023]
|
313
|
Gharib M, Tao H, Fungwe TV, Hajri T. Cluster Differentiating 36 (CD36) Deficiency Attenuates Obesity-Associated Oxidative Stress in the Heart. PLoS One 2016; 11:e0155611. [PMID: 27195707 PMCID: PMC4873222 DOI: 10.1371/journal.pone.0155611] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Accepted: 05/02/2016] [Indexed: 12/17/2022] Open
Abstract
RATIONALE Obesity is often associated with a state of oxidative stress and increased lipid deposition in the heart. More importantly, obesity increases lipid influx into the heart and induces excessive production of reactive oxygen species (ROS) leading to cell toxicity and metabolic dysfunction. Cluster differentiating 36 (CD36) protein is highly expressed in the heart and regulates lipid utilization but its role in obesity-associated oxidative stress is still not clear. OBJECTIVE The aim of this study was to determine the impact of CD36 deficiency on cardiac steatosis, oxidative stress and lipotoxicity associated with obesity. METHODS AND RESULTS Studies were conducted in control (Lean), obese leptin-deficient (Lepob/ob) and leptin-CD36 double null (Lepob/obCD36-/-) mice. Compared to lean mice, cardiac steatosis, and fatty acid (FA) uptake and oxidation were increased in Lepob/ob mice, while glucose uptake and oxidation was reduced. Moreover, insulin resistance, oxidative stress markers and NADPH oxidase-dependent ROS production were markedly enhanced. This was associated with the induction of NADPH oxidase expression, and increased membrane-associated p47phox, p67phox and protein kinase C. Silencing CD36 in Lepob/ob mice prevented cardiac steatosis, increased insulin sensitivity and glucose utilization, but reduced FA uptake and oxidation. Moreover, CD36 deficiency reduced NADPH oxidase activity and decreased NADPH oxidase-dependent ROS production. In isolated cardiomyocytes, CD36 deficiency reduced palmitate-induced ROS production and normalized NADPH oxidase activity. CONCLUSIONS CD36 deficiency prevented obesity-associated cardiac steatosis and insulin resistance, and reduced NADPH oxidase-dependent ROS production. The study demonstrates that CD36 regulates NADPH oxidase activity and mediates FA-induced oxidative stress.
Collapse
Affiliation(s)
- Mohamed Gharib
- Department of Surgery, Hackensack University Medical Center, New Jersey 07601, United States of America
| | - Huan Tao
- Division of Cardiovascular Medicine, Vanderbilt University, Nashville, Tennessee 37212, United States of America
| | - Thomas V. Fungwe
- Nutritional Sciences, Howard University, Washington DC 20059, United States of America
| | - Tahar Hajri
- Department of Surgery, Hackensack University Medical Center, New Jersey 07601, United States of America
- * E-mail:
| |
Collapse
|
314
|
La Rosa C, Scalisi S, Lolicato F, Pannuzzo M, Raudino A. Lipid-assisted protein transport: A diffusion-reaction model supported by kinetic experiments and molecular dynamics simulations. J Chem Phys 2016; 144:184901. [DOI: 10.1063/1.4948323] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Affiliation(s)
- Carmelo La Rosa
- Department of Chemical Science, University of Catania, Viale A. Doria 6, I-95125 Catania, Italy
| | - Silvia Scalisi
- Department of Chemical Science, University of Catania, Viale A. Doria 6, I-95125 Catania, Italy
| | - Fabio Lolicato
- Department of Chemical Science, University of Catania, Viale A. Doria 6, I-95125 Catania, Italy
- Department of Physics, Tampere University of Technology, P.O. Box 692, FI-33101 Tampere, Finland
- Department of Physics, University of Helsinki, P.O. Box 64, FI-00014 Helsinki, Finland
| | - Martina Pannuzzo
- Department of Physics, Carnegie Mellon University, 5000 Forbes Ave., Pittsburgh, Pennsylvania 15213, USA
| | - Antonio Raudino
- Department of Chemical Science, University of Catania, Viale A. Doria 6, I-95125 Catania, Italy
| |
Collapse
|
315
|
Yang X, Zhang W, Chen Y, Li Y, Sun L, Liu Y, Liu M, Yu M, Li X, Han J, Duan Y. Activation of Peroxisome Proliferator-activated Receptor γ (PPARγ) and CD36 Protein Expression: THE DUAL PATHOPHYSIOLOGICAL ROLES OF PROGESTERONE. J Biol Chem 2016; 291:15108-18. [PMID: 27226602 DOI: 10.1074/jbc.m116.726737] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Indexed: 12/27/2022] Open
Abstract
Progesterone or its analog, one of components of hormone replacement therapy, may attenuate the cardioprotective effects of estrogen. However, the underlying mechanisms have not been fully elucidated. Expression of CD36, a receptor for oxidized LDL (oxLDL) that enhances macrophage/foam cell formation, is activated by the transcription factor peroxisome proliferator-activated receptor γ (PPARγ). CD36 also functions as a fatty acid transporter to influence fatty acid metabolism and the pathophysiological status of several diseases. In this study, we determined that progesterone induced macrophage CD36 expression, which is related to progesterone receptor (PR) activity. Progesterone enhanced cellular oxLDL uptake in a CD36-dependent manner. Mechanistically, progesterone increased PPARγ expression and PPARγ promoter activity in a PR-dependent manner and the binding of PR with the progesterone response element in the PPARγ promoter. Specific deletion of macrophage PPARγ (MφPPARγ KO) expression in mice abolished progesterone-induced macrophage CD36 expression and cellular oxLDL accumulation. We also determined that, associated with gestation and increased serum progesterone levels, CD36 and PPARγ expression in mouse adipose tissue, skeletal muscle, and peritoneal macrophages were substantially activated. Taken together, our study demonstrates that progesterone can play dual pathophysiological roles by activating PPARγ expression, in which progesterone increases macrophage CD36 expression and oxLDL accumulation, a negative effect on atherosclerosis, and enhances the PPARγ-CD36 pathway in adipose tissue and skeletal muscle, a protective effect on pregnancy.
Collapse
Affiliation(s)
| | | | - Yuanli Chen
- the College of Biomedical Engineering, Hefei University of Technology, Hefei 230000, China School of Medicine, and
| | - Yan Li
- From the College of Life Sciences
| | - Lei Sun
- From the College of Life Sciences
| | - Ying Liu
- From the College of Life Sciences
| | | | - Miao Yu
- From the College of Life Sciences
| | | | - Jihong Han
- the College of Biomedical Engineering, Hefei University of Technology, Hefei 230000, China College of Life Sciences, State Key Laboratory of Medicinal Chemical Biology, Collaborative Innovation Center of Biotherapy, Nankai University, Tianjin 300071, China and
| | - Yajun Duan
- the College of Biomedical Engineering, Hefei University of Technology, Hefei 230000, China College of Life Sciences, State Key Laboratory of Medicinal Chemical Biology, Collaborative Innovation Center of Biotherapy, Nankai University, Tianjin 300071, China and
| |
Collapse
|
316
|
Kolahi K, Louey S, Varlamov O, Thornburg K. Real-Time Tracking of BODIPY-C12 Long-Chain Fatty Acid in Human Term Placenta Reveals Unique Lipid Dynamics in Cytotrophoblast Cells. PLoS One 2016; 11:e0153522. [PMID: 27124483 PMCID: PMC4849650 DOI: 10.1371/journal.pone.0153522] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 03/30/2016] [Indexed: 01/10/2023] Open
Abstract
While the human placenta must provide selected long-chain fatty acids to support the developing fetal brain, little is known about the mechanisms underlying the transport process. We tracked the movement of the fluorescently labeled long-chain fatty acid analogue, BODIPY-C12, across the cell layers of living explants of human term placenta. Although all layers took up the fatty acid, rapid esterification of long-chain fatty acids and incorporation into lipid droplets was exclusive to the inner layer cytotrophoblast cells rather than the expected outer syncytiotrophoblast layer. Cytotrophoblast is a progenitor cell layer previously relegated to a repair role. As isolated cytotrophoblasts differentiated into syncytialized cells in culture, they weakened their lipid processing capacity. Syncytializing cells suppress previously active genes that regulate fatty-acid uptake (SLC27A2/FATP2, FABP4, ACSL5) and lipid metabolism (GPAT3, LPCAT3). We speculate that cytotrophoblast performs a previously unrecognized role in regulating placental fatty acid uptake and metabolism.
Collapse
Affiliation(s)
- Kevin Kolahi
- Department of Biomedical Engineering, Oregon Health and Science University, Portland, Oregon, United States of America
- Center for Developmental Health, Oregon Health and Science University, Portland, Oregon, United States of America
| | - Samantha Louey
- Department of Biomedical Engineering, Oregon Health and Science University, Portland, Oregon, United States of America
| | - Oleg Varlamov
- Division of Diabetes, Obesity, and Metabolism, Oregon National Primate Research Center, Beaverton, Oregon, United States of America
| | - Kent Thornburg
- Department of Biomedical Engineering, Oregon Health and Science University, Portland, Oregon, United States of America
- Center for Developmental Health, Oregon Health and Science University, Portland, Oregon, United States of America
- Knight Cardiovascular Institute, Oregon Health and Science University, Portland, Oregon, United States of America
- Department of Medicine, Oregon Health and Science University, Portland, Oregon, United States of America
- * E-mail:
| |
Collapse
|
317
|
Yao CH, Fowle-Grider R, Mahieu NG, Liu GY, Chen YJ, Wang R, Singh M, Potter GS, Gross RW, Schaefer J, Johnson SL, Patti GJ. Exogenous Fatty Acids Are the Preferred Source of Membrane Lipids in Proliferating Fibroblasts. Cell Chem Biol 2016; 23:483-93. [PMID: 27049668 PMCID: PMC5510604 DOI: 10.1016/j.chembiol.2016.03.007] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Revised: 02/11/2016] [Accepted: 03/11/2016] [Indexed: 12/11/2022]
Abstract
Cellular proliferation requires the formation of new membranes. It is often assumed that the lipids needed for these membranes are synthesized mostly de novo. Here, we show that proliferating fibroblasts prefer to take up palmitate from the extracellular environment over synthesizing it de novo. Relative to quiescent fibroblasts, proliferating fibroblasts increase their uptake of palmitate, decrease fatty acid degradation, and instead direct more palmitate to membrane lipids. When exogenous palmitate is provided in the culture media at physiological concentrations, de novo synthesis accounts for only a minor fraction of intracellular palmitate in proliferating fibroblasts as well as proliferating HeLa and H460 cells. Blocking fatty acid uptake decreased the proliferation rate of fibroblasts, HeLa, and H460 cells, while supplementing media with exogenous palmitate resulted in decreased glucose uptake and rendered cells less sensitive to glycolytic inhibition. Our results suggest that cells scavenging exogenous lipids may be less susceptible to drugs targeting glycolysis and de novo lipid synthesis.
Collapse
Affiliation(s)
- Cong-Hui Yao
- Department of Chemistry, Washington University, St. Louis, MO 63130, USA; Department of Medicine, Washington University, St. Louis, MO 63110, USA
| | - Ronald Fowle-Grider
- Department of Chemistry, Washington University, St. Louis, MO 63130, USA; Department of Medicine, Washington University, St. Louis, MO 63110, USA
| | - Nathanial G Mahieu
- Department of Chemistry, Washington University, St. Louis, MO 63130, USA; Department of Medicine, Washington University, St. Louis, MO 63110, USA
| | - Gao-Yuan Liu
- Department of Chemistry, Washington University, St. Louis, MO 63130, USA; Division of Bioorganic and Molecular Pharmacology, Department of Internal Medicine, Washington University, St. Louis, MO 63110, USA
| | - Ying-Jr Chen
- Department of Chemistry, Washington University, St. Louis, MO 63130, USA; Department of Medicine, Washington University, St. Louis, MO 63110, USA
| | - Rencheng Wang
- Department of Chemistry, Washington University, St. Louis, MO 63130, USA; Department of Medicine, Washington University, St. Louis, MO 63110, USA; Department of Genetics, Washington University, St. Louis, MO 63110, USA
| | - Manmilan Singh
- Department of Chemistry, Washington University, St. Louis, MO 63130, USA
| | - Gregory S Potter
- Department of Chemistry, Washington University, St. Louis, MO 63130, USA
| | - Richard W Gross
- Department of Chemistry, Washington University, St. Louis, MO 63130, USA; Division of Bioorganic and Molecular Pharmacology, Department of Internal Medicine, Washington University, St. Louis, MO 63110, USA
| | - Jacob Schaefer
- Department of Chemistry, Washington University, St. Louis, MO 63130, USA
| | - Stephen L Johnson
- Department of Genetics, Washington University, St. Louis, MO 63110, USA
| | - Gary J Patti
- Department of Chemistry, Washington University, St. Louis, MO 63130, USA; Department of Medicine, Washington University, St. Louis, MO 63110, USA.
| |
Collapse
|
318
|
Calderon-Dominguez M, Mir JF, Fucho R, Weber M, Serra D, Herrero L. Fatty acid metabolism and the basis of brown adipose tissue function. Adipocyte 2016; 5:98-118. [PMID: 27386151 PMCID: PMC4916887 DOI: 10.1080/21623945.2015.1122857] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Revised: 10/13/2015] [Accepted: 11/12/2015] [Indexed: 12/21/2022] Open
Abstract
Obesity has reached epidemic proportions, leading to severe associated pathologies such as insulin resistance, cardiovascular disease, cancer and type 2 diabetes. Adipose tissue has become crucial due to its involvement in the pathogenesis of obesity-induced insulin resistance, and traditionally white adipose tissue has captured the most attention. However in the last decade the presence and activity of heat-generating brown adipose tissue (BAT) in adult humans has been rediscovered. BAT decreases with age and in obese and diabetic patients. It has thus attracted strong scientific interest, and any strategy to increase its mass or activity might lead to new therapeutic approaches to obesity and associated metabolic diseases. In this review we highlight the mechanisms of fatty acid uptake, trafficking and oxidation in brown fat thermogenesis. We focus on BAT's morphological and functional characteristics and fatty acid synthesis, storage, oxidation and use as a source of energy.
Collapse
Affiliation(s)
- María Calderon-Dominguez
- Department of Biochemistry and Molecular Biology, School of Pharmacy, Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona, Barcelona, Spain
- CIBER Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Joan F. Mir
- Department of Biochemistry and Molecular Biology, School of Pharmacy, Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona, Barcelona, Spain
- CIBER Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Raquel Fucho
- Department of Biochemistry and Molecular Biology, School of Pharmacy, Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona, Barcelona, Spain
- CIBER Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Minéia Weber
- Department of Biochemistry and Molecular Biology, School of Pharmacy, Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona, Barcelona, Spain
- CIBER Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Dolors Serra
- Department of Biochemistry and Molecular Biology, School of Pharmacy, Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona, Barcelona, Spain
- CIBER Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Laura Herrero
- Department of Biochemistry and Molecular Biology, School of Pharmacy, Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona, Barcelona, Spain
- CIBER Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
319
|
Taegtmeyer H, Young ME, Lopaschuk GD, Abel ED, Brunengraber H, Darley-Usmar V, Des Rosiers C, Gerszten R, Glatz JF, Griffin JL, Gropler RJ, Holzhuetter HG, Kizer JR, Lewandowski ED, Malloy CR, Neubauer S, Peterson LR, Portman MA, Recchia FA, Van Eyk JE, Wang TJ. Assessing Cardiac Metabolism: A Scientific Statement From the American Heart Association. Circ Res 2016; 118:1659-701. [PMID: 27012580 DOI: 10.1161/res.0000000000000097] [Citation(s) in RCA: 185] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
In a complex system of interrelated reactions, the heart converts chemical energy to mechanical energy. Energy transfer is achieved through coordinated activation of enzymes, ion channels, and contractile elements, as well as structural and membrane proteins. The heart's needs for energy are difficult to overestimate. At a time when the cardiovascular research community is discovering a plethora of new molecular methods to assess cardiac metabolism, the methods remain scattered in the literature. The present statement on "Assessing Cardiac Metabolism" seeks to provide a collective and curated resource on methods and models used to investigate established and emerging aspects of cardiac metabolism. Some of those methods are refinements of classic biochemical tools, whereas most others are recent additions from the powerful tools of molecular biology. The aim of this statement is to be useful to many and to do justice to a dynamic field of great complexity.
Collapse
|
320
|
Selwan EM, Finicle BT, Kim SM, Edinger AL. Attacking the supply wagons to starve cancer cells to death. FEBS Lett 2016; 590:885-907. [PMID: 26938658 DOI: 10.1002/1873-3468.12121] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 02/10/2016] [Accepted: 02/29/2016] [Indexed: 12/14/2022]
Abstract
The constitutive anabolism of cancer cells not only supports proliferation but also addicts tumor cells to a steady influx of exogenous nutrients. Limiting access to metabolic substrates could be an effective and selective means to block cancer growth. In this review, we define the pathways by which cancer cells acquire the raw materials for anabolism, highlight the actionable proteins in each pathway, and discuss the status of therapeutic interventions that disrupt nutrient acquisition. Critical open questions to be answered before apical metabolic inhibitors can be successfully and safely deployed in the clinic are also outlined. In summary, recent studies provide strong support that substrate limitation is a powerful therapeutic strategy to effectively, and safely, starve cancer cells to death.
Collapse
Affiliation(s)
- Elizabeth M Selwan
- Department of Developmental and Cell Biology, University of California Irvine, CA, USA
| | - Brendan T Finicle
- Department of Developmental and Cell Biology, University of California Irvine, CA, USA
| | - Seong M Kim
- Department of Developmental and Cell Biology, University of California Irvine, CA, USA
| | - Aimee L Edinger
- Department of Developmental and Cell Biology, University of California Irvine, CA, USA
| |
Collapse
|
321
|
Abumrad NA, Goldberg IJ. CD36 actions in the heart: Lipids, calcium, inflammation, repair and more? Biochim Biophys Acta Mol Cell Biol Lipids 2016; 1861:1442-9. [PMID: 27004753 DOI: 10.1016/j.bbalip.2016.03.015] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Revised: 03/14/2016] [Accepted: 03/15/2016] [Indexed: 01/15/2023]
Abstract
CD36 is a multifunctional immuno-metabolic receptor with many ligands. One of its physiological functions in the heart is the high-affinity uptake of long-chain fatty acids (FAs) from albumin and triglyceride rich lipoproteins. CD36 deletion markedly reduces myocardial FA uptake in rodents and humans. The protein is expressed on endothelial cells and cardiomyocytes and at both sites is likely to contribute to FA uptake by the myocardium. CD36 also transduces intracellular signaling events that influence how the FA is utilized and mediate metabolic effects of FA in the heart. CD36 transduced signaling regulates AMPK activation in a way that adjusts oxidation to FA uptake. It also impacts remodeling of myocardial phospholipids and eicosanoid production, effects exerted via influencing intracellular calcium (iCa(2+)) and the activation of phospholipases. Under excessive FA supply CD36 contributes to lipid accumulation, inflammation and dysfunction. However, it is also important for myocardial repair after injury via its contribution to immune cell clearance of apoptotic cells. This review describes recent progress regarding the multiple actions of CD36 in the heart and highlights those areas requiring future investigation. This article is part of a Special Issue entitled: Heart Lipid Metabolism edited by G.D. Lopaschuk.
Collapse
Affiliation(s)
- Nada A Abumrad
- Departments of Medicine and Cell Biology, Washington University, St. Louis, MO, United States..
| | - Ira J Goldberg
- Division of Endocrinology, Diabetes and Metabolism, New York University School of Medicine, New York, NY, United States
| |
Collapse
|
322
|
Goldenberg JR, Wang X, Lewandowski ED. Acyl CoA synthetase-1 links facilitated long chain fatty acid uptake to intracellular metabolic trafficking differently in hearts of male versus female mice. J Mol Cell Cardiol 2016; 94:1-9. [PMID: 26995156 DOI: 10.1016/j.yjmcc.2016.03.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Revised: 03/14/2016] [Accepted: 03/15/2016] [Indexed: 12/18/2022]
Abstract
RATIONALE Acyl CoA synthetase-1 (ACSL1) is localized at intracellular membranes, notably the mitochondrial membrane. ACSL1 and female sex are suggested to indirectly facilitate lipid availability to the heart and other organs. However, such mechanisms in intact, functioning myocardium remain unexplored, and roles of ACSL1 and sex in the uptake and trafficking of fats are poorly understood. OBJECTIVE To determine the potential for ACSL1 and sex-dependent differences in metabolic trapping and trafficking effects of long-chain fatty acids (LCFA) within cardiomyocytes of intact hearts. METHODS AND RESULTS (13)C NMR of intact, beating mouse hearts, supplied (13)C palmitate, revealed 44% faster trans-sarcolemmal uptake of LCFA in male hearts overexpressing ACSL1 (MHC-ACSL1) than in non-transgenic (NTG) males (p<0.05). Acyl CoA content was elevated by ACSL1 overexpression, 404% in males and 164% in female, relative to NTG. Despite similar ACSL1 content, NTG females displayed faster LCFA uptake kinetics compared to NTG males, which was reversed by ovariectomy. NTG female LCFA uptake rates were similar to those in ACSL1 males and ACSL1 females. ACSL1 and female sex hormones both accelerated LCFA uptake without affecting triglyceride content or turnover. ACSL1 hearts contained elevated ceramide, particularly C22 ceramide in both sexes and specifically, C24 in males. ACSL1 also induced lower content of fatty acid transporter-6 (FATP6) indicating cooperative regulation with ACSL1. Surprisingly, ACSL1 overexpression did not increase mitochondrial oxidation of exogenous palmitate, which actually dropped in female ACSL1 hearts. CONCLUSIONS ACSL1-mediated metabolic trapping of exogenous LCFA accelerates LCFA uptake rates, albeit to a lesser extent in females, which distinctly affects LCFA trafficking to acyl intermediates but not triglyceride storage or mitochondrial oxidation and is affected by female sex hormones.
Collapse
Affiliation(s)
- Joseph R Goldenberg
- Center for Cardiovascular Research, University of Illinois College of Medicine at Chicago, 909 South Wolcott Avenue, Chicago, IL 60612, USA; Department of Physiology and Biophysics, University of Illinois College of Medicine at Chicago, 835 South Wolcott Avenue, Chicago, IL 60612, USA
| | - Xuerong Wang
- Center for Cardiovascular Research, University of Illinois College of Medicine at Chicago, 909 South Wolcott Avenue, Chicago, IL 60612, USA
| | - E Douglas Lewandowski
- Center for Cardiovascular Research, University of Illinois College of Medicine at Chicago, 909 South Wolcott Avenue, Chicago, IL 60612, USA; Department of Physiology and Biophysics, University of Illinois College of Medicine at Chicago, 835 South Wolcott Avenue, Chicago, IL 60612, USA; Sanford Burnham Prebys Medical Discovery Institute, 6400 Sanger Road, Orlando, FL 32827, USA.
| |
Collapse
|
323
|
Angrish MM, Kaiser JP, McQueen CA, Chorley BN. Tipping the Balance: Hepatotoxicity and the 4 Apical Key Events of Hepatic Steatosis. Toxicol Sci 2016; 150:261-8. [PMID: 26980302 DOI: 10.1093/toxsci/kfw018] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Hepatic steatosis is a condition were fat accumulates in the liver and it is associated with extra-hepatic diseases related to metabolic syndrome and systemic energy metabolism. If not reversed, steatosis can progress to steatohepatitis and irreversible stages of liver disease including fibrosis, cirrhosis, hepatocellular carcinoma, and death. From a public health standpoint, identifying chemical exposures that may be factors in steatosis etiology are important for preventing hepatotoxicity and liver disease progression. It is therefore important to identify the biological events that are key for steatosis pathology mediated by chemical exposure. In this review, we give a current overview of the complex biological cascades that can disrupt lipid homeostasis in hepatocytes in the context of 4 apical key events central to hepatic lipid retention: hepatic fatty acid (FA) uptake,de novoFA and lipid synthesis, FA oxidation, and lipid efflux. Our goal is to review these key cellular events and visually summarize them using a network for application in pathway-based toxicity testing. This effort provides a foundation to improve next-generation chemical screening efforts that may be used to prevent and ultimately reverse the growing incidence of fatty liver disease in our population.
Collapse
Affiliation(s)
- Michelle M Angrish
- *National Health and Environmental Effects Research Laboratory, Office of Research and Development (ORD), United States Environmental Protection Agency (US EPA), Research Triangle Park, North Carolina 27709
| | - Jonathan Phillip Kaiser
- United States Environmental Protection Agency (US EPA), National Center for Environmental Assessment, Office of Research and Development (ORD), Cincinnati, Ohio 45268
| | - Charlene A McQueen
- *National Health and Environmental Effects Research Laboratory, Office of Research and Development (ORD), United States Environmental Protection Agency (US EPA), Research Triangle Park, North Carolina 27709
| | - Brian N Chorley
- *National Health and Environmental Effects Research Laboratory, Office of Research and Development (ORD), United States Environmental Protection Agency (US EPA), Research Triangle Park, North Carolina 27709;
| |
Collapse
|
324
|
Li Y, Chow CC, Courville AB, Sumner AE, Periwal V. Modeling glucose and free fatty acid kinetics in glucose and meal tolerance test. Theor Biol Med Model 2016; 13:8. [PMID: 26934990 PMCID: PMC4776401 DOI: 10.1186/s12976-016-0036-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2015] [Accepted: 02/26/2016] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Quantitative evaluation of insulin regulation on plasma glucose and free fatty acid (FFA) in response to external glucose challenge is clinically important to assess the development of insulin resistance (World J Diabetes 1:36-47, 2010). Mathematical minimal models (MMs) based on insulin modified frequently-sampled intravenous glucose tolerance tests (IM-FSIGT) are widely applied to ascertain an insulin sensitivity index (IEEE Rev Biomed Eng 2:54-96, 2009). Furthermore, it is important to investigate insulin regulation on glucose and FFA in postprandial state as a normal physiological condition. A simple way to calculate the appearance rate (Ra) of glucose and FFA would be especially helpful to evaluate glucose and FFA kinetics for clinical applications. METHODS A new MM is developed to simulate the insulin modulation of plasma glucose and FFA, combining IM-FSIGT with a mixed meal tolerance test (MT). A novel simple functional form for the appearance rate (Ra) of glucose or FFA in the MT is developed. Model results are compared with two other models for data obtained from 28 non-diabetic women (13 African American, 15 white). RESULTS The new functional form for Ra of glucose is an acceptable empirical approximation to the experimental Ra for a subset of individuals. When both glucose and FFA are included in FSIGT and MT, the new model is preferred using the Bayes Information Criterion (BIC). CONCLUSIONS Model simulations show that the new MM allows consistent application to both IM-FSIGT and MT data, balancing model complexity and data fitting. While the appearance of glucose in the circulation has an important effect on FFA kinetics in MT, the rate of appearance of FFA can be neglected for the time-period modeled.
Collapse
Affiliation(s)
- Yanjun Li
- Laboratory of Biological Modeling, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institutes of Health (NIH), MSC 5621, LBM, NIDDK, NIH, Bethesda, MD, 20892-5621, USA.
| | - Carson C Chow
- Laboratory of Biological Modeling, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institutes of Health (NIH), MSC 5621, LBM, NIDDK, NIH, Bethesda, MD, 20892-5621, USA.
| | - Amber B Courville
- Nutrition Department, Clinical Center, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institutes of Health (NIH), Bethesda, MD, 20892, USA.
| | - Anne E Sumner
- Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institutes of Health (NIH), Bethesda, MD, 20892, USA.
| | - Vipul Periwal
- Laboratory of Biological Modeling, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institutes of Health (NIH), MSC 5621, LBM, NIDDK, NIH, Bethesda, MD, 20892-5621, USA.
| |
Collapse
|
325
|
Talukder MAH, Preda M, Ryzhova L, Prudovsky I, Pinz IM. Heterozygous caveolin-3 mice show increased susceptibility to palmitate-induced insulin resistance. Physiol Rep 2016; 4:e12736. [PMID: 27033451 PMCID: PMC4814890 DOI: 10.14814/phy2.12736] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Revised: 02/18/2016] [Accepted: 02/19/2016] [Indexed: 12/30/2022] Open
Abstract
Insulin resistance and diabetes are comorbidities of obesity and affect one in 10 adults in the United States. Despite the high prevalence, the mechanisms of cardiac insulin resistance in obesity are still unclear. We test the hypothesis that the insulin receptor localizes to caveolae and is regulated through binding to caveolin-3 (CAV3). We further test whether haploinsufficiency forCAV3 increases the susceptibility to high-fat-induced insulin resistance. We used in vivo and in vitro studies to determine the effect of palmitate exposure on global insulin resistance, contractile performance of the heart in vivo, glucose uptake in the heart, and on cellular signaling downstream of theIR We show that haploinsufficiency forCAV3 increases susceptibility to palmitate-induced global insulin resistance and causes cardiomyopathy. On the basis of fluorescence energy transfer (FRET) experiments, we show thatCAV3 andIRdirectly interact in cardiomyocytes. Palmitate impairs insulin signaling by a decrease in insulin-stimulated phosphorylation of Akt that corresponds to an 87% decrease in insulin-stimulated glucose uptake inHL-1 cardiomyocytes. Despite loss of Akt phosphorylation and lower glucose uptake, palmitate increased insulin-independent serine phosphorylation ofIRS-1 by 35%. In addition, we found lipid induced downregulation ofCD36, the fatty acid transporter associated with caveolae. This may explain the problem the diabetic heart is facing with the simultaneous impairment of glucose uptake and lipid transport. Thus, these findings suggest that loss ofCAV3 interferes with downstream insulin signaling and lipid uptake, implicatingCAV3 as a regulator of theIRand regulator of lipid uptake in the heart.
Collapse
Affiliation(s)
| | - Marilena Preda
- Maine Medical Center Research Institute, Scarborough, Maine
| | - Larisa Ryzhova
- Maine Medical Center Research Institute, Scarborough, Maine
| | - Igor Prudovsky
- Maine Medical Center Research Institute, Scarborough, Maine
| | - Ilka M Pinz
- Maine Medical Center Research Institute, Scarborough, Maine
| |
Collapse
|
326
|
Passos STA, Correa JR, Soares SLM, da Silva WA, Neto BAD. Fluorescent Peptoids as Selective Live Cell Imaging Probes. J Org Chem 2016; 81:2646-51. [DOI: 10.1021/acs.joc.6b00034] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Saulo T. A. Passos
- Laboratory
of Bioactive Compounds Synthesis N.T.S., University of Brasilia (IQ-UnB), Campus Universitário Darcy Ribeiro, Brasília, DF, Brazil
| | - José R. Correa
- Laboratory
of Medicinal and Technological Chemistry, University of Brasília, Chemistry Institute (IQ-UnB), Campus Universitário Darcy
Ribeiro, CEP 70904-970, P.O. Box 4478, Brasília, DF, Brazil
| | - Samira L. M. Soares
- Laboratory
of Medicinal and Technological Chemistry, University of Brasília, Chemistry Institute (IQ-UnB), Campus Universitário Darcy
Ribeiro, CEP 70904-970, P.O. Box 4478, Brasília, DF, Brazil
| | - Wender A. da Silva
- Laboratory
of Bioactive Compounds Synthesis N.T.S., University of Brasilia (IQ-UnB), Campus Universitário Darcy Ribeiro, Brasília, DF, Brazil
| | - Brenno A. D. Neto
- Laboratory
of Medicinal and Technological Chemistry, University of Brasília, Chemistry Institute (IQ-UnB), Campus Universitário Darcy
Ribeiro, CEP 70904-970, P.O. Box 4478, Brasília, DF, Brazil
| |
Collapse
|
327
|
Popadic Gacesa J, Schick F, Machann J, Grujic N. Intramyocellular lipids and their dynamics assessed by 1 H magnetic resonance spectroscopy. Clin Physiol Funct Imaging 2016; 37:558-566. [PMID: 26865009 DOI: 10.1111/cpf.12346] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Accepted: 12/26/2015] [Indexed: 12/15/2022]
Abstract
This report provides an overview on the present knowledge on intramyocellular lipids (IMCL) and their dynamics in the course of interventions with physical activity of variable type and intensity in different population groups, as accessible by examinations using non-invasive volume-selective 1 H magnetic resonance spectroscopy (1 H MRS). IMCL serve as energy source in skeletal muscle for fat oxidation in the mitochondria and became intensively studied after discovery of their relation with insulin sensitivity. While baseline levels of IMCL concentration have been shown to be mainly dependent on the metabolic status (insulin sensitivity), on the level of training and on fibre composition in the muscles, studies applying different physical activity protocols revealed the dynamic of their depletion and replenishment. From the findings in human studies, it can be concluded that IMCL levels are potentially useful markers for monitoring metabolic adaptation of skeletal muscle to sportive activities and training.
Collapse
Affiliation(s)
- J Popadic Gacesa
- Laboratory for Functional Diagnostics, Department of Physiology, Medical School, University of Novi Sad, Novi Sad, Serbia
| | - F Schick
- Section on Experimental Radiology, Department of Diagnostic and Interventional Radiology, University Hospital Tübingen, Tübingen, Germany
| | - J Machann
- Section on Experimental Radiology, Department of Diagnostic and Interventional Radiology, University Hospital Tübingen, Tübingen, Germany.,Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Centre Munich at the University of Tübingen, Tübingen, Germany.,German Center for Diabetes Research (DZD), Tübingen, Germany
| | - N Grujic
- Laboratory for Functional Diagnostics, Department of Physiology, Medical School, University of Novi Sad, Novi Sad, Serbia
| |
Collapse
|
328
|
Jayewardene AF, Mavros Y, Reeves A, Hancock DP, Gwinn T, Rooney KB. Interactions Between Fatty Acid Transport Proteins, Genes That Encode for Them, and Exercise: A Systematic Review. J Cell Physiol 2016; 231:1671-87. [PMID: 26638980 DOI: 10.1002/jcp.25281] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Accepted: 12/04/2015] [Indexed: 01/29/2023]
Abstract
Long-chain fatty acid (LCFA) movement into skeletal muscle involves a highly mediated process in which lipid rafts are utilized in the cellular membrane, involving numerous putative plasma membrane-associated LCFA transport proteins. The process of LCFA uptake and oxidation is of particular metabolic significance both at rest and during light to moderate exercise. A comprehensive systematic search of electronic databases was conducted to investigate whether exercise alters protein and/or gene expression of putative LCFA transport proteins. There were 31 studies meeting all eligibility criteria, of these 13 utilized an acute exercise protocol and 18 examined chronic exercise adaptations. Seventeen involved a study design incorporating an exercise stimulus, while the remaining 14 incorporated a combined exercise and diet stimulus. Divergent data relating to acute exercise, as well as prolonged exercise training (≥3 weeks), on protein content (PC) response was identified for proteins CD36, FABPpm and CAV1. Messenger ribonucleic acid (mRNA) data did not always correspond to functional PC, supporting previous suggestions of a disconnect due to potentially limiting factors post gene expression. The large array of study designs, cohorts, and primary dependent variables within the studies included in the present review elucidate the complexity of the interaction between exercise and LCFA transport proteins. Summary of the results in the present review validate the need for further targeted investigation within this topic, and provide an important information base for such research. J. Cell. Physiol. 231: 1671-1687, 2016. © 2015 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Avindra F Jayewardene
- Discipline of Exercise and Sport Science, Faculty of Health Sciences, University of Sydney, Lidcombe, New South Wales, Australia
| | - Yorgi Mavros
- Discipline of Exercise and Sport Science, Faculty of Health Sciences, University of Sydney, Lidcombe, New South Wales, Australia
| | - Anneliese Reeves
- Discipline of Exercise and Sport Science, Faculty of Health Sciences, University of Sydney, Lidcombe, New South Wales, Australia
| | - Dale P Hancock
- School of Molecular Biosciences, Faculty of Science, University of Sydney, Camperdown, New South Wales, Australia
| | - Tom Gwinn
- Discipline of Exercise and Sport Science, Faculty of Health Sciences, University of Sydney, Lidcombe, New South Wales, Australia
| | - Kieron B Rooney
- Discipline of Exercise and Sport Science, Faculty of Health Sciences, University of Sydney, Lidcombe, New South Wales, Australia
| |
Collapse
|
329
|
Bou M, Todorčević M, Torgersen J, Škugor S, Navarro I, Ruyter B. De novo lipogenesis in Atlantic salmon adipocytes. Biochim Biophys Acta Gen Subj 2016; 1860:86-96. [DOI: 10.1016/j.bbagen.2015.10.022] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2015] [Revised: 10/14/2015] [Accepted: 10/23/2015] [Indexed: 12/13/2022]
|
330
|
Fowler MA, Debier C, Champagne CD, Crocker DE, Costa DP. The demands of lactation promote differential regulation of lipid stores in fasting elephant seals. Gen Comp Endocrinol 2016; 225:125-132. [PMID: 26407500 DOI: 10.1016/j.ygcen.2015.09.024] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Revised: 09/03/2015] [Accepted: 09/22/2015] [Indexed: 12/25/2022]
Abstract
Fasting animals must ration stored reserves appropriately for metabolic demands. Animals that experience fasting concomitant with other metabolically demanding activities are presented with conflicting demands of energy conservation and expenditure. Our objective was to understand how fasting northern elephant seals regulate the mobilization of lipid reserves and subsequently milk lipid content during lactation. We sampled 36 females early and 39 at the end of lactation. To determine the separate influences of lactation from fasting, we also sampled fasting but non-lactating females early and late (8 and 6 seals, respectively) in their molting fasting period. Mass and adiposity were measured, as well as circulating non-esterified fatty acid (NEFA), triacylglycerol (TAG), cortisol, insulin and growth hormone levels. Milk was collected from lactating females. Milk lipid content increased from 31% in early to 51% in late lactation. In lactating females plasma NEFA was positively related to cortisol and negatively related to insulin, but in molting seals, only variation in cortisol was related to NEFA. Milk lipid content varied with mass, adiposity, NEFA, TAG, cortisol and insulin. Surprisingly, growth hormone concentration was not related to lipid metabolites or milk lipid. Suppression of insulin release appears to be the differential regulator of lipolysis in lactating versus molting seals, facilitating mobilization of stored lipids and maintenance of high NEFA concentrations for milk synthesis. Milk lipid was strongly impacted by the supply of substrate to the mammary gland, indicating regulation at the level of mobilization of lipid reserves.
Collapse
Affiliation(s)
- Melinda A Fowler
- Dept of Ecology & Evolutionary Biology, University of California, Santa Cruz, USA.
| | - Cathy Debier
- Institut des Sciences de la Vie, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Cory D Champagne
- Dept of Ecology & Evolutionary Biology, University of California, Santa Cruz, USA
| | | | - Daniel P Costa
- Dept of Ecology & Evolutionary Biology, University of California, Santa Cruz, USA
| |
Collapse
|
331
|
Zhang J, Sun P, Kong T, Yang F, Guan W. Tributyltin promoted hepatic steatosis in zebrafish (Danio rerio) and the molecular pathogenesis involved. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2016; 170:208-215. [PMID: 26674369 DOI: 10.1016/j.aquatox.2015.11.028] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Revised: 11/27/2015] [Accepted: 11/28/2015] [Indexed: 06/05/2023]
Abstract
Endocrine disruptor effects of tributyltin (TBT) are well established in fish. However, the adverse effects on lipid metabolism are less well understood. Since the liver is the predominant site of de novo synthesis of lipids, the present study uses zebrafish (Danio rerio) to examine lipid accumulation in the livers and hepatic gene expression associated with lipid metabolism pathways. After exposure for 90 days, we found that the livers in fish exposed to TBT were yellowish in appearance and with accumulation of lipid droplet, which is consistent with the specific pathological features of steatosis. Molecular analysis revealed that TBT induced hepatic steatosis by increasing the gene expression associated with lipid transport, lipid storage, lipiogenic enzymes and lipiogenic factors in the livers. Moreover, TBT enhanced hepatic caspase-3 activity and up-regulated genes related to apoptosis and cell-death, which indicated steatotic livers of fish exposed to TBT and the subsequent liver damage were likely due to accelerated hepatocyte apoptosis or cell stress. In short, TBT can produce multiple and complex alterations in transcriptional activity of lipid metabolism and cell damage, which provides potential molecular evidence of TBT on hepatic steatosis.
Collapse
Affiliation(s)
- Jiliang Zhang
- Henan Open Laboratory of key subjects of Environmental and Animal Products Safety, College of Animal Science and Technology, Henan University of Science and Technology, Henan, China.
| | - Ping Sun
- Henan Open Laboratory of key subjects of Environmental and Animal Products Safety, College of Animal Science and Technology, Henan University of Science and Technology, Henan, China
| | - Tao Kong
- Henan Open Laboratory of key subjects of Environmental and Animal Products Safety, College of Animal Science and Technology, Henan University of Science and Technology, Henan, China
| | - Fan Yang
- Henan Open Laboratory of key subjects of Environmental and Animal Products Safety, College of Animal Science and Technology, Henan University of Science and Technology, Henan, China
| | - Wenchao Guan
- Henan Open Laboratory of key subjects of Environmental and Animal Products Safety, College of Animal Science and Technology, Henan University of Science and Technology, Henan, China
| |
Collapse
|
332
|
Kakehi S, Tamura Y, Takeno K, Sakurai Y, Kawaguchi M, Watanabe T, Funayama T, Sato F, Ikeda SI, Kanazawa A, Fujitani Y, Kawamori R, Watada H. Increased intramyocellular lipid/impaired insulin sensitivity is associated with altered lipid metabolic genes in muscle of high responders to a high-fat diet. Am J Physiol Endocrinol Metab 2016; 310:E32-40. [PMID: 26487001 DOI: 10.1152/ajpendo.00220.2015] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Accepted: 10/16/2015] [Indexed: 01/07/2023]
Abstract
The accumulation of intramyocellular lipid (IMCL) is recognized as an important determinant of insulin resistance, and is increased by a high-fat diet (HFD). However, the effects of HFD on IMCL and insulin sensitivity are highly variable. The aim of this study was to identify the genes in muscle that are related to this inter-individual variation. Fifty healthy men were recruited for this study. Before and after HFD for 3 days, IMCL levels in the tibialis anterior were measured by (1)H magnetic resonance spectroscopy, and peripheral insulin sensitivity was evaluated by glucose infusion rate (GIR) during the euglycemic-hyperinsulinemic clamp. Subjects who showed a large increase in IMCL and a large decrease in GIR by HFD were classified as high responders (HRs), and subjects who showed a small increase in IMCL and a small decrease in GIR were classified as low responders (LRs). In five subjects from each group, the gene expression profile of the vastus lateralis muscle was analyzed by DNA microarray analysis. Before HFD, gene expression profiles related to lipid metabolism were comparable between the two groups. Gene Set Enrichment Analysis demonstrated that five gene sets related to lipid metabolism were upregulated by HFD in the HR group but not in the LR group. Changes in gene expression patterns were confirmed by qRT-PCR using more samples (LR, n = 9; HR, n = 11). These results suggest that IMCL accumulation/impaired insulin sensitivity after HFD is closely associated with changes in the expression of genes related to lipid metabolism in muscle.
Collapse
Affiliation(s)
- Saori Kakehi
- Department of Metabolism and Endocrinology, Juntendo University Graduate School of Medicine, Tokyo, Japan; Sportology Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Yoshifumi Tamura
- Department of Metabolism and Endocrinology, Juntendo University Graduate School of Medicine, Tokyo, Japan; Sportology Center, Juntendo University Graduate School of Medicine, Tokyo, Japan;
| | - Kageumi Takeno
- Department of Metabolism and Endocrinology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Yuko Sakurai
- Department of Metabolism and Endocrinology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Minako Kawaguchi
- Department of Metabolism and Endocrinology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Takahiro Watanabe
- Department of Metabolism and Endocrinology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Takashi Funayama
- Department of Metabolism and Endocrinology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Fumihiko Sato
- Department of Metabolism and Endocrinology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Shin-Ichi Ikeda
- Department of Metabolism and Endocrinology, Juntendo University Graduate School of Medicine, Tokyo, Japan; Sportology Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Akio Kanazawa
- Department of Metabolism and Endocrinology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Yoshio Fujitani
- Department of Metabolism and Endocrinology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Ryuzo Kawamori
- Department of Metabolism and Endocrinology, Juntendo University Graduate School of Medicine, Tokyo, Japan; Sportology Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Hirotaka Watada
- Department of Metabolism and Endocrinology, Juntendo University Graduate School of Medicine, Tokyo, Japan; Sportology Center, Juntendo University Graduate School of Medicine, Tokyo, Japan; Center for Therapeutic Innovations in Diabetes, Juntendo University Graduate School of Medicine, Tokyo, Japan; and Center for Molecular Diabetology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| |
Collapse
|
333
|
Harjes U, Kalucka J, Carmeliet P. Targeting fatty acid metabolism in cancer and endothelial cells. Crit Rev Oncol Hematol 2016; 97:15-21. [DOI: 10.1016/j.critrevonc.2015.10.011] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Revised: 09/03/2015] [Accepted: 10/27/2015] [Indexed: 12/15/2022] Open
|
334
|
Hoshino D, Kitaoka Y, Hatta H. High-intensity interval training enhances oxidative capacity and substrate availability in skeletal muscle. ACTA ACUST UNITED AC 2016. [DOI: 10.7600/jpfsm.5.13] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
| | - Yu Kitaoka
- Department of Sports Sciences, The University of Tokyo
| | - Hideo Hatta
- Department of Sports Sciences, The University of Tokyo
| |
Collapse
|
335
|
Berthiaume J, Kirk J, Ranek M, Lyon R, Sheikh F, Jensen B, Hoit B, Butany J, Tolend M, Rao V, Willis M. Pathophysiology of Heart Failure and an Overview of Therapies. Cardiovasc Pathol 2016. [DOI: 10.1016/b978-0-12-420219-1.00008-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
|
336
|
Regulation of Carbohydrate Metabolism, Lipid Metabolism, and Protein Metabolism by AMPK. EXPERIENTIA SUPPLEMENTUM (2012) 2016; 107:23-43. [PMID: 27812975 DOI: 10.1007/978-3-319-43589-3_2] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
This chapter summarizes AMPK function in the regulation of substrate and energy metabolism with the main emphasis on carbohydrate and lipid metabolism, protein turnover, mitochondrial biogenesis, and whole-body energy homeostasis. AMPK acts as whole-body energy sensor and integrates different signaling pathway to meet both cellular and body energy requirements while inhibiting energy-consuming processes but also activating energy-producing ones. AMPK mainly promotes glucose and fatty acid catabolism, whereas it prevents protein, glycogen, and fatty acid synthesis.
Collapse
|
337
|
Abstract
The global epidemic of obesity is closely linked to the development of serious co-morbidities, including many forms of cancer. Epidemiological evidence consistently shows that obesity is associated with a similar or mildly increased incidence of prostate cancer but, more prominently, an increased risk for aggressive prostate cancer and prostate cancer-specific mortality. Studies in mice demonstrate that obesity induced by high-fat feeding increases prostate cancer progression; however, the mechanisms underpinning this relationship remain incompletely understood. Adipose tissue expansion in obesity leads to local tissue dysfunction and is associated with low-grade inflammation, alterations in endocrine function and changes in lipolysis that result in increased delivery of fatty acids to tissues of the body. The human prostate gland is covered anteriorly by the prominent peri-prostatic adipose tissue and laterally by smaller adipose tissue depots that lie directly adjacent to the prostatic surface. We discuss how the close association between dysfunctional adipose tissue and prostate epithelial cells might result in bi-directional communication to cause increased prostate cancer aggressiveness and progression. However, the literature indicates that several 'mainstream' hypotheses regarding obesity-related drivers of prostate cancer progression are not yet supported by a solid evidence base and, in particular, are not supported by experiments using human tissue. Understanding the links between obesity and prostate cancer will have major implications for the health policy for men with prostate cancer and the development of new therapeutic or preventative strategies.
Collapse
Affiliation(s)
- Renea A Taylor
- Department of PhysiologyCancer Program and Obesity and Metabolic Disease Program, Biomedicine Discovery Institute, Monash University, Wellington Road, Victoria 3800, Australia
| | - Jennifer Lo
- Department of PhysiologyCancer Program and Obesity and Metabolic Disease Program, Biomedicine Discovery Institute, Monash University, Wellington Road, Victoria 3800, Australia
| | - Natasha Ascui
- Department of PhysiologyCancer Program and Obesity and Metabolic Disease Program, Biomedicine Discovery Institute, Monash University, Wellington Road, Victoria 3800, Australia
| | - Matthew J Watt
- Department of PhysiologyCancer Program and Obesity and Metabolic Disease Program, Biomedicine Discovery Institute, Monash University, Wellington Road, Victoria 3800, Australia
| |
Collapse
|
338
|
Jeromson S, Gallagher IJ, Galloway SDR, Hamilton DL. Omega-3 Fatty Acids and Skeletal Muscle Health. Mar Drugs 2015; 13:6977-7004. [PMID: 26610527 PMCID: PMC4663562 DOI: 10.3390/md13116977] [Citation(s) in RCA: 115] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Revised: 10/30/2015] [Accepted: 11/09/2015] [Indexed: 12/15/2022] Open
Abstract
Skeletal muscle is a plastic tissue capable of adapting and mal-adapting to physical activity and diet. The response of skeletal muscle to adaptive stimuli, such as exercise, can be modified by the prior nutritional status of the muscle. The influence of nutrition on skeletal muscle has the potential to substantially impact physical function and whole body metabolism. Animal and cell based models show that omega-3 fatty acids, in particular those of marine origin, can influence skeletal muscle metabolism. Furthermore, recent human studies demonstrate that omega-3 fatty acids of marine origin can influence the exercise and nutritional response of skeletal muscle. These studies show that the prior omega-3 status influences not only the metabolic response of muscle to nutrition, but also the functional response to a period of exercise training. Omega-3 fatty acids of marine origin therefore have the potential to alter the trajectory of a number of human diseases including the physical decline associated with aging. We explore the potential molecular mechanisms by which omega-3 fatty acids may act in skeletal muscle, considering the n-3/n-6 ratio, inflammation and lipidomic remodelling as possible mechanisms of action. Finally, we suggest some avenues for further research to clarify how omega-3 fatty acids may be exerting their biological action in skeletal muscle.
Collapse
Affiliation(s)
- Stewart Jeromson
- Health and Exercise Sciences Research Group, School of Sport, University of Stirling, Stirling, FK9 4LA Scotland, UK.
| | - Iain J Gallagher
- Health and Exercise Sciences Research Group, School of Sport, University of Stirling, Stirling, FK9 4LA Scotland, UK.
| | - Stuart D R Galloway
- Health and Exercise Sciences Research Group, School of Sport, University of Stirling, Stirling, FK9 4LA Scotland, UK.
| | - D Lee Hamilton
- Health and Exercise Sciences Research Group, School of Sport, University of Stirling, Stirling, FK9 4LA Scotland, UK.
| |
Collapse
|
339
|
Klosinski LP, Yao J, Yin F, Fonteh AN, Harrington MG, Christensen TA, Trushina E, Brinton RD. White Matter Lipids as a Ketogenic Fuel Supply in Aging Female Brain: Implications for Alzheimer's Disease. EBioMedicine 2015; 2:1888-904. [PMID: 26844268 PMCID: PMC4703712 DOI: 10.1016/j.ebiom.2015.11.002] [Citation(s) in RCA: 104] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Revised: 10/24/2015] [Accepted: 11/02/2015] [Indexed: 01/28/2023] Open
Abstract
White matter degeneration is a pathological hallmark of neurodegenerative diseases including Alzheimer's. Age remains the greatest risk factor for Alzheimer's and the prevalence of age-related late onset Alzheimer's is greatest in females. We investigated mechanisms underlying white matter degeneration in an animal model consistent with the sex at greatest Alzheimer's risk. Results of these analyses demonstrated decline in mitochondrial respiration, increased mitochondrial hydrogen peroxide production and cytosolic-phospholipase-A2 sphingomyelinase pathway activation during female brain aging. Electron microscopic and lipidomic analyses confirmed myelin degeneration. An increase in fatty acids and mitochondrial fatty acid metabolism machinery was coincident with a rise in brain ketone bodies and decline in plasma ketone bodies. This mechanistic pathway and its chronologically phased activation, links mitochondrial dysfunction early in aging with later age development of white matter degeneration. The catabolism of myelin lipids to generate ketone bodies can be viewed as a systems level adaptive response to address brain fuel and energy demand. Elucidation of the initiating factors and the mechanistic pathway leading to white matter catabolism in the aging female brain provides potential therapeutic targets to prevent and treat demyelinating diseases such as Alzheimer's and multiple sclerosis. Targeting stages of disease and associated mechanisms will be critical. Mitochondrial dysfunction activates mechanisms for catabolism of myelin lipids to generate ketone bodies for ATP production. Mechanisms leading to ketone body driven energy production in brain coincide with stages of reproductive aging in females. Sequential activation of myelin catabolism pathway during aging provides multiple therapeutic targets and windows of efficacy.
The mechanisms underlying white matter degeneration, a hallmark of multiple neurodegenerative diseases including Alzheimer's, remain unclear. Herein we provide a mechanistic pathway, spanning multiple transitions of aging, that links mitochondrial dysfunction early in aging with later age white matter degeneration. Catabolism of myelin lipids to generate ketone bodies can be viewed as an adaptive survival response to address brain fuel and energy demand. Women are at greatest risk of late-onset-AD, thus, our analyses in female brain address mechanisms of AD pathology and therapeutic targets to prevent, delay and treat AD in the sex most affected with potential relevance to men.
Collapse
Key Words
- ABAD, Aβ-binding alcohol dehydrogenase
- ABAD, Aβ-binding-alcohol-dehydrogenase
- ACER3, alkaline ceramidase
- AD, Alzheimer's disease
- APO-ε4, apolipoprotein ε4
- APP, amyloid precursor protein
- Aging oxidative stress
- Alzheimer's disease
- BACE1, beta-secretase 1
- BBB, blood brain barrier
- CC, corpus callosum
- CMRglu, cerebral glucose metabolic rate
- COX, complex IV cytochrome c oxidase
- CPT1, carnitine palmitoyltransferase 1
- Cldn11, claudin 11
- Cyp2j6, arachidonic acid epoxygenase
- Cytosolic phospholipase A2
- DHA, docosahexaesnoic acid
- Erbb3, Erb-B2 receptor tyrosine kinase 3
- FDG-PET, 2-[18F]fluoro-2-deoxy-d-glucose
- GFAP, glial fibrillary acidic protein
- H2O2, hydrogen peroxide
- HADHA, hydroxyacyl-CoA dehydrogenase
- HK, hexokinase
- Ketone bodies
- LC MS, liquid chromatography mass spectrometer
- MAG, myelin associated glycoprotein
- MBP, myelin basic protein
- MCT1, monocarboxylate transporter 1
- MIB, mitochondrial isolation buffer
- MOG, myelin oligodendrocyte glycoprotein
- MTL, medial temporal lobe
- Mitochondria
- NEFA, nonesterified fatty acids
- Neurodegeneration
- OCR, oxygen consumption rate
- Olig2, oligodendrocyte transcription factor
- PB, phosphate buffer
- PCC, posterior cingulate
- PCR, polymerase chain reaction
- PDH, pyruvate dehydrogenase
- PEI, polyethyleneimine
- RCR, respiratory control ratio
- ROS, reactive oxygen species
- S1P, sphingosine
- TLDA, TaqMan low density array
- WM, white matter
- WT, wild type
- White matter
- cPLA2, cytosolic phospholipase A2
Collapse
Affiliation(s)
- Lauren P Klosinski
- Department of Neuroscience, Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, CA, USA
| | - Jia Yao
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, USA
| | - Fei Yin
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, USA
| | | | | | | | - Eugenia Trushina
- Department of Neurology, Mayo Clinic Rochester, MN, USA; Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, USA
| | - Roberta Diaz Brinton
- Department of Neuroscience, Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, CA, USA; Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, USA; Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
340
|
Zhang Y, Carter T, Eyster K, Swanson DL. Acute cold and exercise training up-regulate similar aspects of fatty acid transport and catabolism in house sparrows (Passer domesticus). ACTA ACUST UNITED AC 2015; 218:3885-93. [PMID: 26486368 DOI: 10.1242/jeb.126128] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Accepted: 10/08/2015] [Indexed: 12/21/2022]
Abstract
Summit maximum thermoregulatory metabolic rate (Msum) and maximum exercise metabolic rate (MMR) both increase in response to acute cold or exercise training in birds. Because lipids are the main fuel supporting both thermogenesis and exercise in birds, adjustments to lipid transport and catabolic capacities may support elevated energy demands from cold and exercise training. To examine a potential mechanistic role for lipid transport and catabolism in organismal cross-training effects (exercise effects on both exercise and thermogenesis, and vice versa), we measured enzyme activities and mRNA and protein expression in pectoralis muscle for several key steps of lipid transport and catabolism pathways in house sparrows (Passer domesticus) during acute exercise and cold training. Both training protocols elevated pectoralis protein levels of fatty acid translocase (FAT/CD36), cytosolic fatty acid-binding protein, and citrate synthase (CS) activity. However, mRNA expression of FAT/CD36 and both mRNA and protein expression of plasma membrane fatty acid-binding protein did not change for either training group. CS activities in supracoracoideus, leg and heart, and carnitine palmitoyl transferase (CPT) and β-hydroxyacyl CoA-dehydrogenase activities in all muscles did not vary significantly with either training protocol. Both Msum and MMR were significantly positively correlated with CPT and CS activities. These data suggest that up-regulation of trans-sarcolemmal and intramyocyte lipid transport capacities and cellular metabolic intensities, along with previously documented increases in body and pectoralis muscle masses and pectoralis myostatin (a muscle growth inhibitor) levels, are common mechanisms underlying the training effects of both exercise and shivering in birds.
Collapse
Affiliation(s)
- Yufeng Zhang
- Department of Biology, University of South Dakota, Vermillion, SD 57069, USA
| | - Travis Carter
- Department of Biology, University of South Dakota, Vermillion, SD 57069, USA
| | - Kathleen Eyster
- Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD 57105, USA
| | - David L Swanson
- Department of Biology, University of South Dakota, Vermillion, SD 57069, USA
| |
Collapse
|
341
|
Houten SM, Violante S, Ventura FV, Wanders RJA. The Biochemistry and Physiology of Mitochondrial Fatty Acid β-Oxidation and Its Genetic Disorders. Annu Rev Physiol 2015; 78:23-44. [PMID: 26474213 DOI: 10.1146/annurev-physiol-021115-105045] [Citation(s) in RCA: 489] [Impact Index Per Article: 54.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Mitochondrial fatty acid β-oxidation (FAO) is the major pathway for the degradation of fatty acids and is essential for maintaining energy homeostasis in the human body. Fatty acids are a crucial energy source in the postabsorptive and fasted states when glucose supply is limiting. But even when glucose is abundantly available, FAO is a main energy source for the heart, skeletal muscle, and kidney. A series of enzymes, transporters, and other facilitating proteins are involved in FAO. Recessively inherited defects are known for most of the genes encoding these proteins. The clinical presentation of these disorders may include hypoketotic hypoglycemia, (cardio)myopathy, arrhythmia, and rhabdomyolysis and illustrates the importance of FAO during fasting and in hepatic and (cardio)muscular function. In this review, we present the current state of knowledge on the biochemistry and physiological functions of FAO and discuss the pathophysiological processes associated with FAO disorders.
Collapse
Affiliation(s)
- Sander M Houten
- Department of Genetics and Genomic Sciences and Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029; ,
| | - Sara Violante
- Department of Genetics and Genomic Sciences and Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029; ,
| | - Fatima V Ventura
- Metabolism and Genetics Group, Research Institute for Medicines and Pharmaceutical Sciences, iMed.ULisboa, 1649-003 Lisboa, Portugal; .,Department of Biochemistry and Human Biology, Faculty of Pharmacy, University of Lisbon, 1649-003 Lisboa, Portugal
| | - Ronald J A Wanders
- Laboratory Genetic Metabolic Diseases, Department of Clinical Chemistry, University of Amsterdam, 1100 DE Amsterdam, The Netherlands; .,Department of Pediatrics, Emma Children's Hospital, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| |
Collapse
|
342
|
Abstract
Intracellular and extracellular interactions with proteins enables the functional and mechanistic diversity of lipids. Fatty acid-binding proteins (FABPs) were originally described as intracellular proteins that can affect lipid fluxes, metabolism and signalling within cells. As the functions of this protein family have been further elucidated, it has become evident that they are critical mediators of metabolism and inflammatory processes, both locally and systemically, and therefore are potential therapeutic targets for immunometabolic diseases. In particular, genetic deficiency and small molecule-mediated inhibition of FABP4 (also known as aP2) and FABP5 can potently improve glucose homeostasis and reduce atherosclerosis in mouse models. Further research has shown that in addition to their intracellular roles, some FABPs are found outside the cells, and FABP4 undergoes regulated, vesicular secretion. The circulating form of FABP4 has crucial hormonal functions in systemic metabolism. In this Review we discuss the roles and regulation of both intracellular and extracellular FABP actions, highlighting new insights that might direct drug discovery efforts and opportunities for management of chronic metabolic diseases.
Collapse
Affiliation(s)
- Gökhan S Hotamisligil
- Department of Genetics and Complex Diseases and Sabri Ülker Center, Harvard T.H. Chan School of Public Health, 677 Huntington Avenue, Boston, MA 02115, USA
| | - David A Bernlohr
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, 321 Church Street SE, Minneapolis, MN 55455, USA
| |
Collapse
|
343
|
Bonen A, Jain SS, Snook LA, Han XX, Yoshida Y, Buddo KH, Lally JS, Pask ED, Paglialunga S, Beaudoin MS, Glatz JFC, Luiken JJFP, Harasim E, Wright DC, Chabowski A, Holloway GP. Extremely rapid increase in fatty acid transport and intramyocellular lipid accumulation but markedly delayed insulin resistance after high fat feeding in rats. Diabetologia 2015. [PMID: 26197708 DOI: 10.1007/s00125-015-3691-8] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
AIMS/HYPOTHESIS The mechanisms for diet-induced intramyocellular lipid accumulation and its association with insulin resistance remain contentious. In a detailed time-course study in rats, we examined whether a high-fat diet increased intramyocellular lipid accumulation via alterations in fatty acid translocase (FAT/CD36)-mediated fatty acid transport, selected enzymes and/or fatty acid oxidation, and whether intramyocellular lipid accretion coincided with the onset of insulin resistance. METHODS We measured, daily (on days 1-7) and/or weekly (for 6 weeks), the diet-induced changes in circulating substrates, insulin, sarcolemmal substrate transporters and transport, selected enzymes, intramyocellular lipids, mitochondrial fatty acid oxidation and basal and insulin-stimulated sarcolemmal GLUT4 and glucose transport. We also examined whether upregulating fatty acid oxidation improved glucose transport in insulin-resistant muscles. Finally, in Cd36-knockout mice, we examined the role of FAT/CD36 in intramyocellular lipid accumulation, insulin sensitivity and diet-induced glucose intolerance. RESULTS Within 2-3 days, diet-induced increases occurred in insulin, sarcolemmal FAT/CD36 (but not fatty acid binding protein [FABPpm] or fatty acid transporter [FATP]1 or 4), fatty acid transport and intramyocellular triacylglycerol, diacylglycerol and ceramide, independent of enzymatic changes or muscle fatty acid oxidation. Diet-induced increases in mitochondria and mitochondrial fatty acid oxidation and impairments in insulin-stimulated glucose transport and GLUT4 translocation occurred much later (≥21 days). FAT/CD36 ablation impaired insulin-stimulated fatty acid transport and lipid accumulation, improved insulin sensitivity and prevented diet-induced glucose intolerance. Increasing fatty acid oxidation in insulin-resistant muscles improved glucose transport. CONCLUSIONS/INTERPRETATIONS High-fat feeding rapidly increases intramyocellular lipids (in 2-3 days) via insulin-mediated upregulation of sarcolemmal FAT/CD36 and fatty acid transport. The 16-19 day delay in the onset of insulin resistance suggests that additional mechanisms besides intramyocellular lipids contribute to this pathology.
Collapse
Affiliation(s)
- Arend Bonen
- Department of Human Health & Nutritional Sciences, University of Guelph, Guelph, ON, Canada, N1G 2W1.
| | - Swati S Jain
- Department of Human Health & Nutritional Sciences, University of Guelph, Guelph, ON, Canada, N1G 2W1
| | - Laelie A Snook
- Department of Human Health & Nutritional Sciences, University of Guelph, Guelph, ON, Canada, N1G 2W1
| | - Xiao-Xia Han
- Department of Human Health & Nutritional Sciences, University of Guelph, Guelph, ON, Canada, N1G 2W1
| | - Yuko Yoshida
- Department of Human Health & Nutritional Sciences, University of Guelph, Guelph, ON, Canada, N1G 2W1
| | - Kathryn H Buddo
- Department of Human Health & Nutritional Sciences, University of Guelph, Guelph, ON, Canada, N1G 2W1
| | - James S Lally
- Department of Human Health & Nutritional Sciences, University of Guelph, Guelph, ON, Canada, N1G 2W1
| | - Elizabeth D Pask
- Department of Human Health & Nutritional Sciences, University of Guelph, Guelph, ON, Canada, N1G 2W1
| | - Sabina Paglialunga
- Department of Human Health & Nutritional Sciences, University of Guelph, Guelph, ON, Canada, N1G 2W1
| | - Marie-Soleil Beaudoin
- Department of Human Health & Nutritional Sciences, University of Guelph, Guelph, ON, Canada, N1G 2W1
| | - Jan F C Glatz
- Department of Molecular Genetics, Maastricht University, Maastricht, the Netherlands
| | - Joost J F P Luiken
- Department of Molecular Genetics, Maastricht University, Maastricht, the Netherlands
| | - Ewa Harasim
- Department of Physiology, Medical University of Bialystok, Bialystok, Poland
| | - David C Wright
- Department of Human Health & Nutritional Sciences, University of Guelph, Guelph, ON, Canada, N1G 2W1
| | - Adrian Chabowski
- Department of Physiology, Medical University of Bialystok, Bialystok, Poland
| | - Graham P Holloway
- Department of Human Health & Nutritional Sciences, University of Guelph, Guelph, ON, Canada, N1G 2W1
| |
Collapse
|
344
|
Mazibuko SE, Joubert E, Johnson R, Louw J, Opoku AR, Muller CJF. Aspalathin improves glucose and lipid metabolism in 3T3-L1 adipocytes exposed to palmitate. Mol Nutr Food Res 2015; 59:2199-208. [PMID: 26310822 DOI: 10.1002/mnfr.201500258] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Revised: 07/21/2015] [Accepted: 07/29/2015] [Indexed: 01/14/2023]
Abstract
SCOPE Saturated-free fatty acids, such as palmitate, are associated with insulin resistance. This study aimed to establish if an aspalathin-enriched green rooibos extract (GRE) and, its major flavanoid, aspalathin (ASP) could contribute significantly to the amelioration of experimentally induced insulin resistance in 3T3-L1 adipocytes. METHODS AND RESULTS 3T3-L1 adipocytes were cultured in DMEM containing 0.75 mM palmitate for 16 h to induce insulin resistance before treatment for 3 h with GRE (10 μg/mL) or ASP (10 μM). GRE and ASP reversed the palmitate-induced insulin resistance. At a protein level GRE and ASP suppressed nuclear factor kappa beta (NF-κB), insulin receptor substrate one (serine 307) (IRS1 (Ser (307) )) and AMP-activated protein kinase phosphorylation and increased serine/threonine kinase AKT (AKT) activation, while only GRE increased glucose transporter four (Glut4) protein expression. Peroxisome proliferator-activated receptor alpha and gamma (PPARα and γ), and carnitine palmitoyltransferase one (CPT1) expression were increased by ASP alone. CONCLUSION Together these effects offer a plausible explanation for the ameliorative effect of GRE and ASP on insulin-resistance, an underlying cause for obesity and type 2 diabetes.
Collapse
Affiliation(s)
- Sithandiwe E Mazibuko
- Diabetes Discovery Platform, South African Medical Research Council, Tygerberg, South Africa.,Department of Biochemistry and Microbiology, University of Zululand, Kwa-Dlangezwa, South Africa
| | - Elizabeth Joubert
- Post-Harvest and Wine Technology Division, Agricultural Research Council (ARC), Infruitec-Nietvoorbij, Stellenbosch, South Africa.,Department of Food Science, Stellenbosch University, Matieland, South Africa
| | - Rabia Johnson
- Diabetes Discovery Platform, South African Medical Research Council, Tygerberg, South Africa
| | - Johan Louw
- Diabetes Discovery Platform, South African Medical Research Council, Tygerberg, South Africa
| | - Andrew R Opoku
- Department of Biochemistry and Microbiology, University of Zululand, Kwa-Dlangezwa, South Africa
| | - Christo J F Muller
- Diabetes Discovery Platform, South African Medical Research Council, Tygerberg, South Africa
| |
Collapse
|
345
|
Brown adipose tissue: a potential target in the fight against obesity and the metabolic syndrome. Clin Sci (Lond) 2015; 129:933-49. [DOI: 10.1042/cs20150339] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
BAT (brown adipose tissue) is the main site of thermogenesis in mammals. It is essential to ensure thermoregulation in newborns. It is also found in (some) adult humans. Its capacity to oxidize fatty acids and glucose without ATP production contributes to energy expenditure and glucose homoeostasis. Brown fat activation has thus emerged as an attractive therapeutic target for the treatment of obesity and the metabolic syndrome. In the present review, we integrate the recent advances on the metabolic role of BAT and its relation with other tissues as well as its potential contribution to fighting obesity and the metabolic syndrome.
Collapse
|
346
|
Mountfort K, Mehran R, Colombo A, Stella P, Romaguera R, Sardella G. Patient-tailored Drug-eluting Stent Choice - A Solution for Patients with Diabetes: Proceedings of Two Satellite Symposia Held at EuroPCR in May 2015 in Paris. Interv Cardiol 2015; 10:158-161. [PMID: 29588695 DOI: 10.15420/icr.2015.10.03.158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Although second-generation drug-eluting stents (DES) have improved outcomes in percutaneous coronary interventions (PCIs), important unmet needs remain. Two symposia at EuroPCR 2015 focused on two challenging scenarios. First, patients with diabetes mellitus (DM) have generally inferior outcomes following PCI. The Cre8™ stent (manufactured by CID Spa, member of Alvimedica Group) has shown unique efficacy in subpopulations of patients with DM during clinical trials. A live case in a patient with diabetes illustrated the challenges of complex multivessel disease. Second, optimising stent selection towards devices that have demonstrated complete and early endothelialisation offers the potential to reduce the duration of dual antiplatelet therapy. The Cre8™ DES features a polymer-free platform and has been associated with low rates of in-stent thrombosis.
Collapse
Affiliation(s)
- Katrina Mountfort
- Medical Writer, Radcliffe Cardiology.,Mount Sinai School of Medicine, New York, NY, USA.,San Raffaele Scientific Institute, Milan, Italy.,University Medical Centre, Utrecht, The Netherlands.,Hospital de Bellvitge, Idibell, University of Barcelona, Barcelona, Spain.,Policlinico Umberto I "Sapienza" University of Rome, Rome, Italy
| | | | | | | | - Rafael Romaguera
- Hospital de Bellvitge, Idibell, University of Barcelona, Barcelona, Spain
| | - Gennaro Sardella
- Policlinico Umberto I "Sapienza" University of Rome, Rome, Italy
| |
Collapse
|
347
|
Jain SS, Luiken JJFP, Snook LA, Han XX, Holloway GP, Glatz JFC, Bonen A. Fatty acid transport and transporters in muscle are critically regulated by Akt2. FEBS Lett 2015; 589:2769-75. [PMID: 26296318 DOI: 10.1016/j.febslet.2015.08.010] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Accepted: 08/07/2015] [Indexed: 10/23/2022]
Abstract
Muscle contains various fatty acid transporters (CD36, FABPpm, FATP1, FATP4). Physiological stimuli (insulin, contraction) induce the translocation of all four transporters to the sarcolemma to enhance fatty acid uptake similarly to glucose uptake stimulation via glucose transporter-4 (GLUT4) translocation. Akt2 mediates insulin-induced, but not contraction-induced, GLUT4 translocation, but its role in muscle fatty acid transporter translocation is unknown. In muscle from Akt2-knockout mice, we observed that Akt2 is critically involved in both insulin-induced and contraction-induced fatty acid transport and translocation of fatty acid translocase/CD36 (CD36) and FATP1, but not of translocation of fatty acid-binding protein (FABPpm) and FATP4. Instead, Akt2 mediates intracellular retention of both latter transporters. Collectively, our observations reveal novel complexities in signaling mechanisms regulating the translocation of fatty acid transporters in muscle.
Collapse
Affiliation(s)
- Swati S Jain
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Joost J F P Luiken
- Department of Molecular Genetics, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, P.O. Box 616, Maastricht NL-6200 MD, The Netherlands.
| | - Laelie A Snook
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Xiao Xia Han
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Graham P Holloway
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Jan F C Glatz
- Department of Molecular Genetics, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, P.O. Box 616, Maastricht NL-6200 MD, The Netherlands
| | - Arend Bonen
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| |
Collapse
|
348
|
Fatty acid transport protein-2 inhibitor Grassofermata/CB5 protects cells against lipid accumulation and toxicity. Biochem Biophys Res Commun 2015; 465:534-41. [PMID: 26284975 DOI: 10.1016/j.bbrc.2015.08.055] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Accepted: 08/12/2015] [Indexed: 01/05/2023]
Abstract
The inhibition of the fatty acid uptake into non-adipose tissues provides an attractive target for prevention of lipotoxicity leading to obesity-associated non-alcoholic fatty liver disease and type 2 diabetes. Fatty acid transport proteins (FATPs) are bifunctional proteins involved in the uptake and activation of fatty acids by esterification with coenzyme A. Here we characterize Grassofermata/CB5, previously identified as a fatty acid uptake inhibitor directed against HsFATP2. The compound was effective in inhibiting the uptake of fatty acids in the low micro-molar range (IC50 8-11 μM) and prevented palmitate-mediated lipid accumulation and cell death in cell lines that are models for intestines, liver, muscle and pancreas. In adipocytes, uptake inhibition was less effective (IC50 58 μM). Inhibition was specific for long chain fatty acids and was ineffective toward medium chain fatty acids, which are transported by diffusion. Kinetic analysis of Grassofermata-dependent FA transport inhibition verified a non-competitive mechanism. By comparison with Grassofermata, several atypical antipsychotic drugs previously implicated as inhibitors of FA uptake were ineffectual. In mice Grassofermata decreased absorption of (13)C-oleate demonstrating its potential as a therapeutic agent.
Collapse
|
349
|
Pourteymour S, Lee S, Langleite TM, Eckardt K, Hjorth M, Bindesbøll C, Dalen KT, Birkeland KI, Drevon CA, Holen T, Norheim F. Perilipin 4 in human skeletal muscle: localization and effect of physical activity. Physiol Rep 2015; 3:3/8/e12481. [PMID: 26265748 PMCID: PMC4562567 DOI: 10.14814/phy2.12481] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Perilipins (PLINs) coat the surface of lipid droplets and are important for the regulation of lipid turnover. Knowledge about the physiological role of the individual PLINs in skeletal muscle is limited although lipid metabolism is very important for muscle contraction. To determine the effect of long-term exercise on PLINs expression, 26 middle-aged, sedentary men underwent 12 weeks combined endurance and strength training intervention. Muscle biopsies from m. vastus lateralis and subcutaneous adipose tissue were taken before and after the intervention and total gene expression was measured with deep mRNA sequencing. PLIN4 mRNA exhibited the highest expression of all five PLINs in both tissues, and the expression was significantly reduced after long-term exercise in skeletal muscle. Moreover, PLIN4 mRNA expression levels in muscle correlated with the expression of genes involved in de novo phospholipid biosynthesis, with muscular content of phosphatidylethanolamine and phosphatidylcholine, and with the content of subsarcolemmal lipid droplets. The PLIN4 protein was mainly located at the periphery of skeletal muscle fibers, with higher levels in slow-twitch as compared to fast-twitch skeletal muscle fibers. In summary, we report reduced expression of PLIN4 after long-term physical activity, and preferential slow-twitch skeletal muscle fibers and plasma membrane-associated PLIN4 location.
Collapse
Affiliation(s)
- Shirin Pourteymour
- Department of Nutrition, Institute of Basic Medical Science, Faculty of Medicine University of Oslo, Oslo, Norway
| | - Sindre Lee
- Department of Nutrition, Institute of Basic Medical Science, Faculty of Medicine University of Oslo, Oslo, Norway
| | - Torgrim M Langleite
- Department of Nutrition, Institute of Basic Medical Science, Faculty of Medicine University of Oslo, Oslo, Norway Department of Endocrinology, Morbid Obesity and Preventive Medicine, Oslo University Hospital and Faculty of Medicine University of Oslo, Oslo, Norway
| | - Kristin Eckardt
- Department of Nutrition, Institute of Basic Medical Science, Faculty of Medicine University of Oslo, Oslo, Norway
| | - Marit Hjorth
- Department of Nutrition, Institute of Basic Medical Science, Faculty of Medicine University of Oslo, Oslo, Norway
| | - Christian Bindesbøll
- Department of Nutrition, Institute of Basic Medical Science, Faculty of Medicine University of Oslo, Oslo, Norway
| | - Knut T Dalen
- Department of Nutrition, Institute of Basic Medical Science, Faculty of Medicine University of Oslo, Oslo, Norway
| | - Kåre I Birkeland
- Department of Endocrinology, Morbid Obesity and Preventive Medicine, Oslo University Hospital and Faculty of Medicine University of Oslo, Oslo, Norway
| | - Christian A Drevon
- Department of Nutrition, Institute of Basic Medical Science, Faculty of Medicine University of Oslo, Oslo, Norway
| | - Torgeir Holen
- Department of Nutrition, Institute of Basic Medical Science, Faculty of Medicine University of Oslo, Oslo, Norway
| | - Frode Norheim
- Department of Nutrition, Institute of Basic Medical Science, Faculty of Medicine University of Oslo, Oslo, Norway
| |
Collapse
|
350
|
Hargett SR, Walker NN, Hussain SS, Hoehn KL, Keller SR. Deletion of the Rab GAP Tbc1d1 modifies glucose, lipid, and energy homeostasis in mice. Am J Physiol Endocrinol Metab 2015; 309:E233-45. [PMID: 26015432 PMCID: PMC4525116 DOI: 10.1152/ajpendo.00007.2015] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Accepted: 05/24/2015] [Indexed: 11/22/2022]
Abstract
Tbc1d1 is a Rab GTPase-activating protein (GAP) implicated in regulating intracellular retention and cell surface localization of the glucose transporter GLUT4 and thus glucose uptake in a phosphorylation-dependent manner. Tbc1d1 is most abundant in skeletal muscle but is expressed at varying levels among different skeletal muscles. Previous studies with male Tbc1d1-deficient (Tbc1d1(-/-)) mice on standard and high-fat diets established a role for Tbc1d1 in glucose, lipid, and energy homeostasis. Here we describe similar, but also additional abnormalities in male and female Tbc1d1(-/-) mice. We corroborate that Tbc1d1 loss leads to skeletal muscle-specific and skeletal muscle type-dependent abnormalities in GLUT4 expression and glucose uptake in female and male mice. Using subcellular fractionation, we show that Tbc1d1 controls basal intracellular GLUT4 retention in large skeletal muscles. However, cell surface labeling of extensor digitorum longus muscle indicates that Tbc1d1 does not regulate basal GLUT4 cell surface exposure as previously suggested. Consistent with earlier observations, female and male Tbc1d1(-/-) mice demonstrate increased energy expenditure and skeletal muscle fatty acid oxidation. Interestingly, we observe sex-dependent differences in in vivo phenotypes. Female, but not male, Tbc1d1(-/-) mice have decreased body weight and impaired glucose and insulin tolerance, but only male Tbc1d1(-/-) mice show increased lipid clearance after oil gavage. We surmise that similar changes at the tissue level cause differences in whole-body metabolism between male and female Tbc1d1(-/-) mice and between male Tbc1d1(-/-) mice in different studies due to variations in body composition and nutrient handling.
Collapse
Affiliation(s)
- Stefan R Hargett
- Department of Medicine, Division of Endocrinology, University of Virginia, Charlottesville Virginia
| | - Natalie N Walker
- Department of Medicine, Division of Endocrinology, University of Virginia, Charlottesville Virginia
| | - Syed S Hussain
- Department of Medicine, Division of Endocrinology, University of Virginia, Charlottesville Virginia
| | - Kyle L Hoehn
- Department of Pharmacology, University of Virginia, Charlottesville, Virginia
| | - Susanna R Keller
- Department of Medicine, Division of Endocrinology, University of Virginia, Charlottesville Virginia;
| |
Collapse
|