301
|
DonCarlos LL, Azcoitia I, Garcia-Segura LM. Neuroprotective actions of selective estrogen receptor modulators. Psychoneuroendocrinology 2009; 34 Suppl 1:S113-22. [PMID: 19447561 PMCID: PMC2794899 DOI: 10.1016/j.psyneuen.2009.04.012] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2009] [Revised: 04/20/2009] [Accepted: 04/20/2009] [Indexed: 12/13/2022]
Abstract
Decreasing levels of sex hormones with aging may have a negative impact on brain function, since this decrease is associated with the progression of neurodegenerative disorders, increased depressive symptoms and other psychological disturbances. Extensive evidence from animal studies indicates that sex steroids, in particular estradiol, are neuroprotective. However, the potential benefits of estradiol therapy for the brain are counterbalanced by negative, life-threatening risks in the periphery. A potential therapeutic alternative to promote neuroprotection is the use of selective estrogen receptor modulators (SERMs), which may be designed to act with tissue selectivity as estrogen receptor agonists in the brain and not in other organs. Currently available SERMs act not only with tissue selectivity, but also with cellular selectivity within the brain and differentially modulate the activation of microglia, astroglia and neurons. Finally, SERMs may promote the interaction of estrogen receptors with the neuroprotective signaling of growth factors, such as the phosphatidylinositol 3-kinase/glycogen synthase kinase 3 pathway.
Collapse
Affiliation(s)
- Lydia L. DonCarlos
- Department of Cell Biology, Neurobiology and Anatomy, Stritch School of Medicine, Loyola University Chicago, 2160 South First Avenue, Maywood, Illinois 60153, USA. Tel: +1-7082164975; Fax: +1-7082163913; e-mail:
| | - Iñigo Azcoitia
- Departamento de Biología Celular, Facultad de Biología, Universidad Complutense, E-28040 Madrid, Spain. Tel: +34-913944861, Fax: +34-913944981 e-mail:
| | - Luis M. Garcia-Segura
- Instituto Cajal, CSIC, E-28002 Madrid, Spain. Tel:+34-915854729; Fax: +34-915854754; e-mail:
| |
Collapse
|
302
|
Abstract
Activation of estrogen receptor alpha (ERalpha) results in both induction and repression of gene transcription; while mechanistic details of estrogen induction are well described, details of repression remain largely unknown. We characterized several ERalpha-repressed targets and examined in detail the mechanism for estrogen repression of Reprimo (RPRM), a cell cycle inhibitor. Estrogen repression of RPRM is rapid and robust and requires a tripartite interaction between ERalpha, histone deacetylase 7 (HDAC7), and FoxA1. HDAC7 is the critical HDAC needed for repression of RPRM; it can bind to ERalpha and represses ERalpha's transcriptional activity--this repression does not require HDAC7's deacetylase activity. We further show that the chromatin pioneer factor FoxA1, well known for its role in estrogen induction of genes, is recruited to the RPRM promoter, is necessary for repression of RPRM, and interacts with HDAC7. Like other FoxA1 recruitment sites, the RPRM promoter is characterized by H3K4me1/me2. Estrogen treatment causes decreases in H3K4me1/me2 and release of RNA polymerase II (Pol II) from the RPRM proximal promoter. Overall, these data implicate a novel role for HDAC7 and FoxA1 in estrogen repression of RPRM, a mechanism which could potentially be generalized to many more estrogen-repressed genes and hence be important in both normal physiology and pathological processes.
Collapse
|
303
|
Kim SY, Weiss J, Tong M, Laronda MM, Lee EJ, Jameson JL. Foxl2, a forkhead transcription factor, modulates nonclassical activity of the estrogen receptor-alpha. Endocrinology 2009; 150:5085-93. [PMID: 19797124 PMCID: PMC2775987 DOI: 10.1210/en.2009-0313] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Foxl2 is a forkhead transcription factor required for ovary development and ovarian follicle maturation. In this report, we identified and characterized a functional relationship between Foxl2 expression and estrogen receptor (ER)-alpha signaling. We show that Foxl2 has no effect on classical ERalpha-mediated transcription, which occurs through canonical estrogen response elements. However, Foxl2 suppresses ERalpha signaling through nonclassical tethered transcriptional pathways. Specifically, the selective ER modulator tamoxifen stimulates activator protein-1 (AP1)-dependent transcription via the ERalpha, and this enhancement is blocked by Foxl2. Two lines of evidence suggest that Foxl2 suppression is mediated by physical interactions with ERalpha rather than direct action at AP1 binding sites. First, ERalpha is coimmunoprecipitated with Foxl2. Second, activation of a upstream activating sequence (UAS) reporter by Gal4-cJun in the presence of ERalpha and tamoxifen was blocked by Foxl2, demonstrating suppression in the absence of an AP1 site. Cyclooxygenase-2 (COX2), which is required for ovulation, was identified through expression profiling as a candidate physiological target for nonclassical ERalpha signaling and thus modulation by ERalpha/Foxl2 interactions. This possibility was confirmed by two sets of experiments. COX2 protein levels were induced by ERalpha in the presence of tamoxifen, and protein expression was suppressed by Foxl2. In addition, ERalpha stimulation of the COX2 promoter was repressed by Foxl2. We conclude that ERalpha and Foxl2 interact and that Foxl2 selectively suppresses ERalpha-mediated transcription of AP1-regulated genes. These data provide a potential point of convergence for ERalpha and Foxl2 to regulate ovarian development and function.
Collapse
Affiliation(s)
- So-Youn Kim
- Morton 4-656, 303 East Chicago Avenue, Chicago, Illinois 60611, USA
| | | | | | | | | | | |
Collapse
|
304
|
Capacity of type I and II ligands to confer to estrogen receptor alpha an appropriate conformation for the recruitment of coactivators containing a LxxLL motif-Relationship with the regulation of receptor level and ERE-dependent transcription in MCF-7 cells. Biochem Pharmacol 2009; 79:746-57. [PMID: 19879249 DOI: 10.1016/j.bcp.2009.10.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2009] [Revised: 10/19/2009] [Accepted: 10/19/2009] [Indexed: 01/15/2023]
Abstract
Estrogen receptor alpha (ERalpha) belongs to the superfamily of nuclear receptors and as such acts as a ligand-modulated transcription factor. Ligands elicit in ERalpha conformational changes leading to the recruitment of coactivators required for the transactivation of target genes via cognate response elements. In many cells, activated ERalpha also undergoes downregulation by proteolysis mediated by the ubiquitin/proteasome system. Although these various molecular processes have been well characterized, little is known as to which extent they are interrelated. In the present study, we used a panel of type I (estradiol derivatives and "linear", non-steroidal ligands) and type II ("angular" ligands) estrogens, in order to identify possible relationships between ligand binding affinity, recruitment of LxxLL-containing coactivators, ERalpha downregulation in MCF-7 cells and related transactivation activity of ligand-bound ERalpha. For type I estrogens, there was a clear-cut relationship between ligand binding affinity, hydrophobicity around C-11 of estradiol and ability of ERalpha to associate with LxxLL motifs, both in cell-free condition and in vivo (MCF-7 cells). Moreover, LxxLL motif recruitment by ERalpha seemed to be a prerequisite for the downregulation of the receptor. By contrast, type II ligands, as well as estradiol derivatives bearing a bulky side chain at 11beta, had much less tendency to promote ERalpha-LxxLL interaction or even behaved as antagonists in this respect, in agreement with the well known partial estrogenicity/antiestrogenicity of some of these compounds. Interestingly, some type II ligands which antagonized LxxLL motif recruitment were nonetheless able to enhance ERalpha-mediated gene transactivation.
Collapse
|
305
|
Soriano S, Ropero AB, Alonso-Magdalena P, Ripoll C, Quesada I, Gassner B, Kuhn M, Gustafsson JA, Nadal A. Rapid regulation of K(ATP) channel activity by 17{beta}-estradiol in pancreatic {beta}-cells involves the estrogen receptor {beta} and the atrial natriuretic peptide receptor. Mol Endocrinol 2009; 23:1973-82. [PMID: 19855088 DOI: 10.1210/me.2009-0287] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The ATP-sensitive potassium (K(ATP)) channel is a key molecule involved in glucose-stimulated insulin secretion. The activity of this channel regulates beta-cell membrane potential, glucose- induced [Ca(2+)](i) signals, and insulin release. In this study, the rapid effect of physiological concentrations of 17beta-estradiol (E2) on K(ATP) channel activity was studied in intact beta-cells by use of the patch-clamp technique. When cells from wild-type (WT) mice were used, 1 nm E2 rapidly reduced K(ATP) channel activity by 60%. The action of E2 on K(ATP) channel was not modified in beta-cells from ERalpha-/- mice, yet it was significantly reduced in cells from ERbeta-/- mice. The effect of E2 was mimicked by the ERbeta agonist 2,3-bis(4-hydroxyphenyl)-propionitrile (DPN). Activation of ERbeta by DPN enhanced glucose-induced Ca(2+) signals and insulin release. Previous evidence indicated that the acute inhibitory effects of E2 on K(ATP) channel activity involve cyclic GMP and cyclic GMP-dependent protein kinase. In this study, we used beta-cells from mice with genetic ablation of the membrane guanylate cyclase A receptor for atrial natriuretic peptide (also called the atrial natriuretic peptide receptor) (GC-A KO mice) to demonstrate the involvement of this membrane receptor in the rapid E2 actions triggered in beta-cells. E2 rapidly inhibited K(ATP) channel activity and enhanced insulin release in islets from WT mice but not in islets from GC-A KO mice. In addition, DPN reduced K(ATP) channel activity in beta-cells from WT mice, but not in beta-cells from GC-A KO mice. This work unveils a new role for ERbeta as an insulinotropic molecule that may have important physiological and pharmacological implications.
Collapse
Affiliation(s)
- Sergi Soriano
- Institute of Bioengineering and CIBERDEM, Universidad Miguel Hernández de Elche, Alicante, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
306
|
Maharjan S, Serova LI, Sabban EL. Membrane-initiated estradiol signaling increases tyrosine hydroxylase promoter activity with ER alpha in PC12 cells. J Neurochem 2009; 112:42-55. [PMID: 19818101 DOI: 10.1111/j.1471-4159.2009.06430.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Tyrosine hydroxylase (TH) promoter activity is induced by 17beta-estradiol (E(2)) in PC12 cells expressing estradiol receptor-alpha (ERalpha) requiring a cAMP/calcium response element (CRE/CaRE) at -45. To examine whether membrane-initiated estradiol signaling is underlying this induction, cells co-transfected with TH reporter construct and ERalpha expression vector were exposed to membrane-impermeant estradiol conjugate (beta-estradiol-6-(O-carboxy-methyl) oxime-bovine serum albumin, E(2)BSA). TH promoter activity was elevated by E(2)BSA in dose- and time-dependent manner. E(2)BSA also elicited rapid phosphorylation of CRE binding protein (CREB) and increased CRE-driven promoter activity. Over-expression of dominant negative forms of CREB, with mutations in DNA binding or phosphorylation site, prevented TH promoter response to E(2)BSA. Pre-treatment with protein kinase A (PKA) and MEK inhibitors reduced E(2) dependent phosphorylation of CREB and ERK, and also decreased induction of TH promoter activity by E(2) or E(2)BSA. Blocking S-palmitoylation of ERalpha with C451A mutation and/or pre-treatment with 2-Bromopalmitate did not prevent but instead enhanced E(2) or E(2)BSA-elicited induction of TH promoter activity. These findings reveal, for the first time, that estradiol induction of TH gene transcription with ERalpha in PC12 cells involves membrane-initiated estradiol signaling, rapid activation of dual PKA/MEK signaling pathways, leading to CREB phosphorylation, acting at CRE/CaRE. The data demonstrate possible mechanism whereby estradiol affects catecholaminergic systems in vivo.
Collapse
Affiliation(s)
- Shreekrishna Maharjan
- Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, New York, USA
| | | | | |
Collapse
|
307
|
|
308
|
Castoria G, Migliaccio A, Auricchio F. Signaling-dependent nuclear export of estradiol receptor controls cell cycle progression in breast cancer cells. Mol Cell Endocrinol 2009; 308:26-31. [PMID: 19549589 DOI: 10.1016/j.mce.2009.01.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2008] [Revised: 12/12/2008] [Accepted: 01/06/2009] [Indexed: 01/20/2023]
Abstract
Estradiol receptor plays a key role in breast cancer and specific hormonal therapies blocking the receptor functions have been developed. Unfortunately, many patients become resistant to this treatment and develop metastatic breast tumors. The causes of breast tumor progression and hormonal therapy resistance are still debated. Many proteins are mislocalized in human cancers, and increasing evidence indicates that nuclear exclusion of estradiol receptor is involved in tumorigenesis of breast cancer cells and hormonal therapy resistance. Therefore, analysis of intracellular localization of estradiol receptor together with screening for specific compounds that redirect the mislocalized receptor to the correct subcellular compartment is a very promising approach to the discovery of novel anticancer compounds. We recently dissected estradiol receptor nuclear export in breast cancer cells and its dependence on PI3-K. This export has a strong impact on cell cycle progression. A peptide mimicking the nuclear export sequence of estradiol receptor specifically traps the receptor in nuclear compartment and blocks the S-phase entry of target cells.
Collapse
Affiliation(s)
- Gabriella Castoria
- Department of General Pathology, II University of Naples, Napoli, Italy.
| | | | | |
Collapse
|
309
|
Alonso A, Ordóñez P, Fernández R, Moreno M, Llaneza P, Patterson AM, González C. 17beta-estradiol treatment is unable to reproduce p85 alpha redistribution associated with gestational insulin resistance in rats. J Steroid Biochem Mol Biol 2009; 116:160-70. [PMID: 19467325 DOI: 10.1016/j.jsbmb.2009.05.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2009] [Revised: 05/13/2009] [Accepted: 05/15/2009] [Indexed: 11/18/2022]
Abstract
Maternal metabolic adaptations are essential to ensure proper fetal development. According to changes in insulin sensitivity, pregnancy can be divided into two periods: early pregnancy, characterized by an increase in maternal insulin sensitivity, and late pregnancy, in which there is a significant increase in insulin resistance. The aims of the present work were two-fold: firstly, the molecular mechanisms associated with the development of pregnancy-related insulin resistance in peripheral tissues, mainly retroperitoneal adipose tissue and skeletal muscle, were studied in pregnant rats at 6, 11, and 16 days gestation. Secondly, the role of 17beta-estradiol in this process was elucidated in an animal model consisting of ovariectomized rats treated with 17beta-estradiol to mimic plasma gestational levels. The results support the conclusion that retroperitoneal adipose tissue plays a pivotal role in the decrease in insulin sensitivity during pregnancy, through a mechanism that involves p85 alpha redistribution to the insulin receptor and impairment of Glut4 translocation to the plasma membrane. Treatment with 17beta-estradiol did not reproduce the molecular adaptations that occur during pregnancy, suggesting that other hormonal factors presents in gestation but absent in our experimental model are responsible for p85 alpha redistribution to the insulin receptor.
Collapse
Affiliation(s)
- Ana Alonso
- Physiology Area, Department of Functional Biology, University of Oviedo, Spain
| | | | | | | | | | | | | |
Collapse
|
310
|
Abstract
Conservation of steroid hormone action outside the nucleus occurs from plants that make brassinosteroids to higher metazoans (primates). In plants, steroid hormone action occurs when the brassinosteroids bind a membrane tyrosine kinase receptor. Ligated receptors for all sex steroids exist at the plasma membrane and rapidly signal through G proteins to second messengers including calcium, cAMP and cGMP, activating proximal and more distal kinases. These signal cascades impact many functions of steroid hormones, responsible for the biological actions of these molecules. Support also exists for membrane-localized receptors of other members of the steroid superfamily, responding to glucocorticoids, mineralocorticoids, thyroid hormone, and vitamin D. The nature of these receptors is in some cases unclear. Steroid receptors also exist in discrete cytoplasmic organelles, most notably the mitochondria, although the functions of these receptors are poorly understood. In this review, I highlight the essential elements of the membrane oestrogen receptor alpha, noting where conserved aspects exist for other steroid receptors.
Collapse
Affiliation(s)
- Ellis R Levin
- Division of Endocrinology, Veterans Affairs Medical Center, Long Beach, Long Beach, CA 90822, USA.
| |
Collapse
|
311
|
Hershberger PA, Stabile LP, Kanterewicz B, Rothstein ME, Gubish CT, Land S, Shuai Y, Siegfried JM, Nichols M. Estrogen receptor beta (ERbeta) subtype-specific ligands increase transcription, p44/p42 mitogen activated protein kinase (MAPK) activation and growth in human non-small cell lung cancer cells. J Steroid Biochem Mol Biol 2009; 116:102-9. [PMID: 19460433 PMCID: PMC2722836 DOI: 10.1016/j.jsbmb.2009.05.004] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2008] [Revised: 03/31/2009] [Accepted: 05/08/2009] [Indexed: 12/29/2022]
Abstract
In non-small cell lung cancer (NSCLC) cells, 17beta-estradiol increases transcription, activates MAPK, and stimulates proliferation. We hypothesize that estrogen receptor beta (ERbeta) mediates these responses because it, but not ERalpha, is detected in our NSCLC cell lines. To test this, we determined the effects of the ERbeta-selective agonists genistein (GEN) and 2,3-bis(4-hydroxyphenyl)propionitrile (DPN) and the ERalpha-selective agonist 4,4',4''-(4-propyl-[1H]-pyrazole-1,3,5-triyl)trisphenol (PPT) in 201T cells. The cells were transfected with either an ERalpha or an ERbeta expression vector and an estrogen response element (ERE)-tk-luciferase reporter construct. PPT increased luciferase activity in cells expressing ERalpha but not ERbeta. GEN and DPN selectively increased luciferase activity in ERbeta-transfected cells at concentrations < or =10 nM. Fulvestrant blocked the GEN- and DPN-mediated increases, indicating that transcription was ER-dependent. GEN but not PPT mediated a significant 1.5-fold increase in reporter activity upon transfection with ERE-tk-luciferase alone, demonstrating that endogenous ERbeta activates transcription. PPT and DPN increased MAPK phosphorylation (2.5-fold and 3.7-fold, respectively). However, only DPN stimulated 201T growth in vitro (p=0.008) and in vivo (p=0.05). We conclude that ERbeta mediates genomic and non-genomic responses to estrogen in 201T cells and that activation of both pathways may be necessary for increased proliferation of these cells.
Collapse
|
312
|
Fox EM, Andrade J, Shupnik MA. Novel actions of estrogen to promote proliferation: integration of cytoplasmic and nuclear pathways. Steroids 2009; 74:622-7. [PMID: 18996136 PMCID: PMC2702758 DOI: 10.1016/j.steroids.2008.10.014] [Citation(s) in RCA: 113] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2008] [Accepted: 10/25/2008] [Indexed: 12/28/2022]
Abstract
Both steroids and growth factors stimulate proliferation of steroid-dependent tumor cells, and interaction between these signaling pathways occurs at several levels. Steroid receptors are classified as ligand-activated transcription factors, and steps by which they activate target gene transcription are well understood. Several steroid responses have now been functionally linked to other intracellular signaling pathways, including c-Src or tyrosine kinase receptors. Steroids such as 17beta-estradiol (E2), via binding to cytoplasmic or membrane-associated receptors, were also shown to rapidly activate intracellular signaling cascades such as ERK, PI3K and STATs. These E2-stimulated phosphorylations can then contribute to altered tumor cell function. ER-positive breast cancer cells, in which proliferation is stimulated by E2 and suppressed by antiestrogens, have been of particular interest in dissecting nuclear and cytoplasmic roles of estrogen receptors (ER). In some cell contexts, ER interacts directly with the intracellular tyrosine kinase c-Src and other cytoplasmic signaling and adaptor molecules, such as Shc, PI3K, MNAR, and p130 Cas. Although the hierarchy among these associations is not known, it is clear that c-Src plays a fundamental role in both growth factor and E2-stimulated cell growth, and this may also require other growth factor receptors such as those for EGF or IGF-1. STAT transcription factors represent one pathway to integrate E2 cytoplasmic and nuclear signaling. STAT5 is phosphorylated in the cytoplasm at an activating tyrosine in response to E2 or EGF, and then is translocated to the nucleus to stimulate target gene transcription. E2 stimulates recruitment of STAT5 and ER to the promoter of several proliferative genes, and STAT5 knockdown prevents recruitment of either protein to these promoters. STAT5 activation by E2 in breast cancer cells requires c-Src and EGF receptor, and inhibition of c-Src or EGFR, or knockdown of STAT5, prevents E2 stimulation of several genes and breast cancer cell proliferation. Hyperactivation of the growth factor receptor-c-Src pathway can in some contexts decrease growth responses to E2, or render cells and tumors resistant to suppressive actions of endocrine therapies. Crosstalk between growth factors and steroids in both the cytoplasm and nucleus may thus have a profound impact on complex biological processes such as cell growth, and may play a significant role in the treatment of steroid-dependent breast cancers.
Collapse
Affiliation(s)
- Emily M. Fox
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, VA 22903
| | - Josefa Andrade
- Department of, Medicine, University of Virginia School of Medicine, Charlottesville, VA 22903
| | - Margaret A. Shupnik
- Department of, Medicine, University of Virginia School of Medicine, Charlottesville, VA 22903
| |
Collapse
|
313
|
Catalano S, Barone I, Giordano C, Rizza P, Qi H, Gu G, Malivindi R, Bonofiglio D, Andò S. Rapid estradiol/ERalpha signaling enhances aromatase enzymatic activity in breast cancer cells. Mol Endocrinol 2009; 23:1634-45. [PMID: 19556341 DOI: 10.1210/me.2009-0039] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
In situ estrogen production by aromatase conversion from androgens plays an important role in breast tumor promotion. Here, we show that 17beta-estradiol (E2) can rapidly enhance aromatase enzymatic activity through an increase of aromatase protein phosphorylation in breast cancer cell lines. In vivo labeling experiments and site-directed mutagenesis studies demonstrated that phosphorylation of the 361-tyrosine residue is crucial in the up-regulation of aromatase activity under E2 exposure. Our results demonstrated a direct involvement of nonreceptor tyrosine-kinase c-Src in E2-stimulated aromatase activity because inhibition of its signaling abrogated the up-regulatory effects induced by E2 on aromatase activity as well as phosphorylation of aromatase protein. In addition, from our data it emerges that aromatase is a target of cross talk between growth factor receptors and estrogen receptor alpha signaling. These findings show, for the first time, that tyrosine phosphorylation processes play a key role in the rapid changes induced by E2 in aromatase enzymatic activity, revealing the existence of a short nongenomic autocrine loop between E2 and aromatase in breast cancer cells.
Collapse
Affiliation(s)
- Stefania Catalano
- Department of Pharmaco-Biology, University of Calabria, Arcavacata di Rende (CS) 87030, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
314
|
Guerriero G. Vertebrate sex steroid receptors: evolution, ligands, and neurodistribution. Ann N Y Acad Sci 2009; 1163:154-68. [PMID: 19456336 DOI: 10.1111/j.1749-6632.2009.04460.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
This review focuses on our current understanding of vertebrate sex steroid receptors, with an emphasis on their evolutionary relationships. These relationships are discussed based on nucleotide and amino acid sequence data, which provide clues to the process by which structure-function relations have originated, evolved, and been maintained over time. The importance of the distribution of sex steroid receptors in the vertebrate brain is discussed using the example of androgen receptor sites and their relatively conserved localizations in the vertebrate brain.
Collapse
Affiliation(s)
- Giulia Guerriero
- Department of Biological Sciences, Federico II University of Naples, Naples, Italy.
| |
Collapse
|
315
|
Friberg PA, Larsson DJ, Billig H. Dominant Role of Nuclear Progesterone Receptor in the Control of Rat Periovulatory Granulosa Cell Apoptosis1. Biol Reprod 2009; 80:1160-7. [DOI: 10.1095/biolreprod.108.073932] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
|
316
|
Yuan X, Ta TC, Lin M, Evans JR, Dong Y, Bolotin E, Sherman MA, Forman BM, Sladek FM. Identification of an endogenous ligand bound to a native orphan nuclear receptor. PLoS One 2009; 4:e5609. [PMID: 19440305 PMCID: PMC2680617 DOI: 10.1371/journal.pone.0005609] [Citation(s) in RCA: 159] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2009] [Accepted: 04/22/2009] [Indexed: 12/25/2022] Open
Abstract
Orphan nuclear receptors have been instrumental in identifying novel signaling pathways and therapeutic targets. However, identification of ligands for these receptors has often been based on random compound screens or other biased approaches. As a result, it remains unclear in many cases if the reported ligands are the true endogenous ligands, – i.e., the ligand that is bound to the receptor in an unperturbed in vivo setting. Technical limitations have limited our ability to identify ligands based on this rigorous definition. The orphan receptor hepatocyte nuclear factor 4 α (HNF4α) is a key regulator of many metabolic pathways and linked to several diseases including diabetes, atherosclerosis, hemophilia and cancer. Here we utilize an affinity isolation/mass-spectrometry (AIMS) approach to demonstrate that HNF4α is selectively occupied by linoleic acid (LA, C18:2ω6) in mammalian cells and in the liver of fed mice. Receptor occupancy is dramatically reduced in the fasted state and in a receptor carrying a mutation derived from patients with Maturity Onset Diabetes of the Young 1 (MODY1). Interestingly, however, ligand occupancy does not appear to have a significant effect on HNF4α transcriptional activity, as evidenced by genome-wide expression profiling in cells derived from human colon. We also use AIMS to show that LA binding is reversible in intact cells, indicating that HNF4α could be a viable drug target. This study establishes a general method to identify true endogenous ligands for nuclear receptors (and other lipid binding proteins), independent of transcriptional function, and to track in vivo receptor occupancy under physiologically relevant conditions.
Collapse
Affiliation(s)
- Xiaohui Yuan
- Department of Gene Regulation and Drug Discovery, Gonda Diabetes Research Center, The Beckman Research Institute at the City of Hope National Medical Center, Duarte, California, United States of America
| | - Tuong Chi Ta
- Cell, Molecular and Developmental Biology Graduate Program, University of California Riverside, Riverside, California, United States of America
| | - Min Lin
- Department of Gene Regulation and Drug Discovery, Gonda Diabetes Research Center, The Beckman Research Institute at the City of Hope National Medical Center, Duarte, California, United States of America
| | - Jane R. Evans
- Department of Cell Biology and Neuroscience, University of California Riverside, Riverside, California, United States of America
| | - Yinchen Dong
- Department of Gene Regulation and Drug Discovery, Gonda Diabetes Research Center, The Beckman Research Institute at the City of Hope National Medical Center, Duarte, California, United States of America
| | - Eugene Bolotin
- Genetics, Genomics and Bioinformatics Graduate Program, University of California Riverside, Riverside, California, United States of America
| | - Mark A. Sherman
- Department of Biomedical Informatics, The Beckman Research Institute at the City of Hope National Medical Center, Duarte, California, United States of America
| | - Barry M. Forman
- Department of Gene Regulation and Drug Discovery, Gonda Diabetes Research Center, The Beckman Research Institute at the City of Hope National Medical Center, Duarte, California, United States of America
- * E-mail: (BMF); (FMS)
| | - Frances M. Sladek
- Department of Cell Biology and Neuroscience, University of California Riverside, Riverside, California, United States of America
- * E-mail: (BMF); (FMS)
| |
Collapse
|
317
|
miR-22 inhibits estrogen signaling by directly targeting the estrogen receptor alpha mRNA. Mol Cell Biol 2009; 29:3783-90. [PMID: 19414598 DOI: 10.1128/mcb.01875-08] [Citation(s) in RCA: 206] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Estrogen receptor alpha (ER alpha) is a ligand-regulated transcription factor with a broad range of physiological functions and one of the most important classifiers in breast cancer. MicroRNAs (miRNAs) are small noncoding RNAs that have emerged as important regulators of gene expression in a plethora of physiological and pathological processes. Upon binding the 3' untranslated region (UTR) of target mRNAs, miRNAs typically reduce their stability and/or translation. The ER alpha mRNA has a long 3' UTR of about 4.3 kb which has been reported to reduce mRNA stability and which bears evolutionarily conserved miRNA target sites, suggesting that it might be regulated by miRNAs. We have performed a comprehensive and systematic assessment of the regulatory role of all miRNAs that are predicted to target the 3' UTR of the ER alpha mRNA. We found that miR-22 represses ER alpha expression most strongly and by directly targeting the ER alpha mRNA 3' UTR. Of the three predicted miR-22 target sites in the 3' UTR, the evolutionarily conserved one is the primary target. miR-22 overexpression leads to a reduction of ER alpha levels, at least in part by inducing mRNA degradation, and compromises estrogen signaling, as exemplified by its inhibitory impact on the ER alpha-dependent proliferation of breast cancer cells.
Collapse
|
318
|
Mermelstein PG, Micevych PE. Nervous system physiology regulated by membrane estrogen receptors. Rev Neurosci 2009; 19:413-24. [PMID: 19317180 DOI: 10.1515/revneuro.2008.19.6.413] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Our understanding of estrogen signaling in the nervous system has undergone a significant shift in recent years. For over three decades, the idea that all estradiol actions were explained by direct regulation of transcription held sway. Within the past decade, the idea that in addition to classical effects, membrane-initiated actions of estradiol are important has gained traction. While several novel putative membrane estrogen receptors (ERs) have been described, a large fraction of measured responses appear to be due to membrane-localized estrogen receptor-alpha (ER alpha) and estrogen receptor-beta (ER beta), the same proteins that regulate gene expression. These membrane-localized ERs participate in the regulation of the synthesis of neuroprogesterone, dorsal root ganglion (DRG) neuron excitation, and female sexual receptivity. This is achieved by the modulation of intracellular cell signaling pathways usually associated with the activation of G protein-coupled receptors (GPCRs). ER alpha and ER beta are themselves not GPCRs that directly activate G proteins to regulate physiological responses, but rather interact with traditional GPCRs to initiate cell signaling. This review presents results that support a direct protein-protein interaction between ER alpha and ER beta with metabotropic glutamate receptors (mGluRs), allowing estradiol to signal through mGluRs. This ER/mGluR hypothesis explains how estradiol can activate a wide-range of intracellular pathways and provides an underlying mechanism for the hitherto seemingly unrelated rapid membrane actions in the nervous system.
Collapse
Affiliation(s)
- Paul G Mermelstein
- Department of Neuroscience, University of Minnesota, 6-145 Jackson Hall, 321 Church St S.E., Minneapolis, MN 55455, USA.
| | | |
Collapse
|
319
|
Isensee J, Meoli L, Zazzu V, Nabzdyk C, Witt H, Soewarto D, Effertz K, Fuchs H, Gailus-Durner V, Busch D, Adler T, de Angelis MH, Irgang M, Otto C, Noppinger PR. Expression pattern of G protein-coupled receptor 30 in LacZ reporter mice. Endocrinology 2009; 150:1722-30. [PMID: 19095739 DOI: 10.1210/en.2008-1488] [Citation(s) in RCA: 149] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Multiple reports implicated the function of G protein-coupled receptor (GPR)-30 with nongenomic effects of estrogen, suggesting that GPR30 might be a G-protein coupled estrogen receptor. However, the findings are controversial and the expression pattern of GPR30 on a cell type level as well as its function in vivo remains unclear. Therefore, the objective of this study was to identify cell types that express Gpr30 in vivo by analyzing a mutant mouse model that harbors a lacZ reporter (Gpr30-lacZ) in the Gpr30 locus leading to a partial deletion of the Gpr30 coding sequence. Using this strategy, we identified the following cell types expressing Gpr30: 1) an endothelial cell subpopulation in small arterial vessels of multiple tissues, 2) smooth muscle cells and pericytes in the brain, 3) gastric chief cells in the stomach, 4) neuronal subpopulations in the cortex as well as the polymorph layer of the dentate gyrus, 5) cell populations in the intermediate and anterior lobe of the pituitary gland, and 6) in the medulla of the adrenal gland. In further experiments, we aimed to decipher the function of Gpr30 by analyzing the phenotype of Gpr30-lacZ mice. The body weight as well as fat mass was unchanged in Gpr30-lacZ mice, even if fed with a high-fat diet. Flow cytometric analysis revealed lower frequencies of T cells in both sexes of Gpr30-lacZ mice. Within the T-cell cluster, the amount of CD62L-expressing cells was clearly reduced, suggesting an impaired production of T cells in the thymus of Gpr30-lacZ mice.
Collapse
Affiliation(s)
- Jörg Isensee
- Center for Cardiovascular Research, Charité Universitätsmedizin Berlin, Berlin, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
320
|
Ouzounian S, Bouchard P, Chabbert-Buffet N. Effects of antiprogestins on the uterus. ACTA ACUST UNITED AC 2009; 4:269-80. [PMID: 19072476 DOI: 10.2217/17455057.4.3.269] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Progesterone-receptor modulators (PRMs) are progesterone-receptor ligands that can exert agonistic, antagonistic or mixed agonist-antagonist effects depending on the cellular context. The mechanisms of action of these compounds are still incompletely understood. PRMs already have several applications in women's health such as emergency contraception, pregnancy termination, management of early fetal demise and cervical maturation. The main indications that will be developed in the future include dysfunctional bleeding and preoperative treatment of uterine myomas. Other future indications may include estrogen-free contraception, treatment of endometriosis and prevention and treatment of breast cancer. However, the available data from mid- to long-term continuous administration studies has raised the issue of endometrial safety. For this reason, long-term applications of PRMs are currently postponed, although windows of treatment with a short course of progestin therapy, or even by a short interruption of treatment, could improve endometrial aspects if needed.
Collapse
|
321
|
Nott SL, Huang Y, Li X, Fluharty BR, Qiu X, Welshons WV, Yeh S, Muyan M. Genomic responses from the estrogen-responsive element-dependent signaling pathway mediated by estrogen receptor alpha are required to elicit cellular alterations. J Biol Chem 2009; 284:15277-88. [PMID: 19321454 DOI: 10.1074/jbc.m900365200] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Estrogen (E2) signaling is conveyed by the transcription factors estrogen receptor (ER) alpha and beta. ERs modulate the expression of genes involved in cellular proliferation, motility, and death. The regulation of transcription by E2-ERalpha through binding to estrogen-responsive elements (EREs) in DNA constitutes the ERE-dependent signaling pathway. E2-ERalpha also modulates gene expression by interacting with transregulators bound to cognate DNA-regulatory elements, and this regulation is referred to as the ERE-independent signaling pathway. The relative importance of the ERE-independent pathway in E2-ERalpha signaling is unclear. To address this issue, we engineered an ERE-binding defective ERalpha mutant (ERalpha(EBD)) by changing residues in an alpha-helix of the protein involved in DNA binding to render the receptor functional only through the ERE-independent signaling pathway. Using recombinant adenovirus-infected ER-negative MDA-MB-231 cells derived from a breast adenocarcinoma, we found that E2-ERalpha(EBD) modulated the expression of a subset of ERalpha-responsive genes identified by microarrays and verified by quantitative PCR. However, E2-ERalpha(EBD) did not affect cell cycle progression, cellular growth, death, or motility in contrast to E2-ERalpha.ERalpha(EBD) in the presence of E2 was also ineffective in inducing phenotypic alterations in ER-negative U-2OS cells derived from an osteosarcoma. E2-ERalpha, on the other hand, effectively repressed growth in this cell line. Our findings suggest that genomic responses from the ERE-dependent signaling pathway are required for E2-ERalpha to induce alterations in cellular responses.
Collapse
Affiliation(s)
- Stephanie L Nott
- Department of Biochemistry and Biophysics, University of Rochester Medical School, Rochester, New York 14642, USA
| | | | | | | | | | | | | | | |
Collapse
|
322
|
Yang E, Jeon SB, Baek I, Chen ZA, Jin Z, Kim IK. 17beta-estradiol attenuates vascular contraction through inhibition of RhoA/Rho kinase pathway. Naunyn Schmiedebergs Arch Pharmacol 2009; 380:35-44. [PMID: 19296091 DOI: 10.1007/s00210-009-0408-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2008] [Accepted: 02/22/2009] [Indexed: 01/11/2023]
Abstract
We hypothesized that 17beta-estradiol attenuates vascular contraction through inhibition of RhoA/Rho kinase pathway. Rat aortic rings were contracted with cumulative addition of U46619, NaF, KCl or PDBu 30 min after pretreatment with 17beta-estradiol (10, 30, and 100 microM) or vehicle. We measured the amount of GTP RhoA and the level of phosphorylation of the myosin light chain (MLC(20)), myosin phosphatase targeting subunit 1 (MYPT1) and PKC-potentiated inhibitory protein for heterotrimeric MLCP of 17 kDa (CPI17). Pretreatment with 17beta-estradiol dose-dependently inhibited the concentration-response curves in response to U46619, NaF or KCl, but not to PDBu. 17beta-Estradiol decreased not only the level of phosphorylation of MYPT1(Thr855) and CPI17(Thr38) as well as MLC(20), but also the activity of RhoA induced by U46619 or NaF. However, 17beta-estradiol did not affect the level of phosphorylation of CPI17 induced by PDBu. 17beta-Estradiol attenuates vascular contraction through inhibition of RhoA/Rho kinase pathway.
Collapse
Affiliation(s)
- Enyue Yang
- Department of Pharmacology, Kyungpook National University School of Medicine, 101 Dongin-2-Ga, Daegu 700-422, Republic of Korea
| | | | | | | | | | | |
Collapse
|
323
|
Marin R, Díaz M, Alonso R, Sanz A, Arévalo MA, Garcia-Segura LM. Role of estrogen receptor alpha in membrane-initiated signaling in neural cells: interaction with IGF-1 receptor. J Steroid Biochem Mol Biol 2009; 114:2-7. [PMID: 19167493 DOI: 10.1016/j.jsbmb.2008.12.014] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2008] [Accepted: 12/31/2008] [Indexed: 12/25/2022]
Abstract
The mechanisms of action of estradiol in the nervous system involve nuclear-initiated steroid signaling and membrane-initiated steroid signaling. Estrogen receptors (ERs) are involved in both mechanisms. ERalpha interacts with the signaling of IGF-1 receptor in neural cells: ERalpha transcriptional activity is regulated by IGF-1 receptor signaling and estradiol regulates IGF-1 receptor signaling. The interaction between ERalpha and the IGF-1 receptor in the brain may occur at the plasma membrane of neurons and glial cells. Caveolin-1 may provide the scaffolding for the interaction of different membrane-associated molecules, including voltage-dependent anion channel, ERalpha and IGF-I receptor.
Collapse
Affiliation(s)
- Raquel Marin
- Laboratory of Cellular Neurobiology, Department of Physiology & Institute of Biomedical Technologies, University of La Laguna, School of Medicine, Santa Cruz de Tenerife, Spain
| | | | | | | | | | | |
Collapse
|
324
|
Tobet S, Knoll JG, Hartshorn C, Aurand E, Stratton M, Kumar P, Searcy B, McClellan K. Brain sex differences and hormone influences: a moving experience? J Neuroendocrinol 2009; 21:387-92. [PMID: 19207813 PMCID: PMC2669491 DOI: 10.1111/j.1365-2826.2009.01834.x] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Sex differences in the nervous system come in many forms. Although a majority of sexually dimorphic characteristics in the brain have been described in older animals, mechanisms that determine sexually differentiated brain characteristics often operate during critical perinatal periods. Both genetic and hormonal factors likely contribute to physiological mechanisms in development to generate the ontogeny of sexual dimorphisms in brain. Relevant mechanisms may include neurogenesis, cell migration, cell differentiation, cell death, axon guidance and synaptogenesis. On a molecular level, there are several ways to categorize factors that drive brain development. These range from the actions of transcription factors in cell nuclei that regulate the expression of genes that control cell development and differentiation, to effector molecules that directly contribute to signalling from one cell to another. In addition, several peptides or proteins in these and other categories might be referred to as 'biomarkers' of sexual differentiation with undetermined functions in development or adulthood. Although a majority of sex differences are revealed as a direct consequence of hormone actions, some may only be revealed after genetic or environmental disruption. Sex differences in cell positions in the developing hypothalamus, and steroid hormone influences on cell movements in vitro, suggest that cell migration may be one target for early molecular actions that impact brain development and sexual differentiation.
Collapse
Affiliation(s)
- S Tobet
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA.
| | | | | | | | | | | | | | | |
Collapse
|
325
|
Alam SM, Rajendran M, Ouyang S, Veeramani S, Zhang L, Lin MF. A novel role of Shc adaptor proteins in steroid hormone-regulated cancers. Endocr Relat Cancer 2009; 16:1-16. [PMID: 19001530 PMCID: PMC2776657 DOI: 10.1677/erc-08-0179] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Tyrosine phosphorylation plays a critical role in growth regulation, and its aberrant regulation can be involved in carcinogenesis. The association of Shc (Src homolog and collagen homolog) adaptor protein family members in tyrosine phosphorylation signaling pathway is well recognized. Shc adaptor proteins transmit activated tyrosine phosphorylation signaling that suggest their plausible role in growth regulation including carcinogenesis and metastasis. In parallel, by sharing a similar mechanism of carcinogenesis, the steroids are involved in the early stage of carcinogenesis as well as the regulation of cancer progression and metastatic processes. Recent evidence indicates a cross-talk between tyrosine phosphorylation signaling and steroid hormone action in epithelial cells, including prostate and breast cancer cells. Therefore, the members of Shc proteins may function as mediators between tyrosine phosphorylation and steroid signaling in steroid-regulated cell proliferation and carcinogenesis. In this communication, we discuss the novel roles of Shc proteins, specifically p52(Shc) and p66(Shc), in steroid hormone-regulated cancers and a novel molecular mechanism by which redox signaling induced by p66(Shc) mediates steroid action via a non-genomic pathway. The p66(Shc) protein may serve as an effective biomarker for predicting cancer prognosis as well as a useful target for treatment.
Collapse
Affiliation(s)
- Syed Mahfuzul Alam
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska 68198-5870, USA
| | | | | | | | | | | |
Collapse
|
326
|
Roepke TA, Qiu J, Bosch MA, Rønnekleiv OK, Kelly MJ. Cross-talk between membrane-initiated and nuclear-initiated oestrogen signalling in the hypothalamus. J Neuroendocrinol 2009; 21:263-70. [PMID: 19187465 PMCID: PMC2796511 DOI: 10.1111/j.1365-2826.2009.01846.x] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
It is increasingly evident that 17beta-oestradiol (E(2)), via a distinct membrane oestrogen receptor (Gq-mER), can rapidly activate kinase pathways to have multiple downstream actions in central nervous system (CNS) neurones. We have found that E(2) can rapidly reduce the potency of the GABA(B) receptor agonist baclofen and mu-opioid receptor agonist DAMGO to activate G-protein-coupled, inwardly rectifying K(+) (GIRK) channels in hypothalamic neurones, thereby increasing the excitability (firing activity) of pro-opiomelanocortin (POMC) and dopamine neurones. These effects are mimicked by the membrane impermeant E(2)-BSA and a new ligand (STX) that is selective for the Gq-mER that does not bind to ERalpha or ERbeta. Both E(2) and STX are fully efficacious in attenuating the GABA(B) response in ERalpha, ERbeta and GPR 30 knockout mice in an ICI 182 780 reversible manner. These findings are further proof that E(2) signals through a unique plasma membrane ER. We have characterised the coupling of this Gq-mER to a Gq-mediated activation of phospholipase C leading to the up-regulation of protein kinase Cdelta and protein kinase A activity in these neurones, which ultimately alters gene transcription. Finally, as proof of principle, we have found that STX, similar to E(2), reduces food intake and body weight gain in ovariectomised females. STX, presumably via the Gq-mER, also regulates gene expression of a number of relevant targets including cation channels and signalling molecules that are critical for regulating (as a prime example) POMC neuronal excitability. Therefore, E(2) can activate multiple receptor-mediated pathways to modulate excitability and gene transcription in CNS neurones that are critical for controlling homeostasis and motivated behaviors.
Collapse
Affiliation(s)
- Troy A. Roepke
- Department of Physiology and Pharmacology, Oregon Health & Science University, Portland, OR 97239
| | - Jian Qiu
- Department of Physiology and Pharmacology, Oregon Health & Science University, Portland, OR 97239
| | - Martha A. Bosch
- Department of Physiology and Pharmacology, Oregon Health & Science University, Portland, OR 97239
| | - Oline K. Rønnekleiv
- Department of Physiology and Pharmacology, Oregon Health & Science University, Portland, OR 97239
- Anesthesiology and Perioperative Medicine, Oregon Health & Science University, Portland, OR 97239
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006
| | - Martin J. Kelly
- Department of Physiology and Pharmacology, Oregon Health & Science University, Portland, OR 97239
| |
Collapse
|
327
|
Noel SD, Keen KL, Baumann DI, Filardo EJ, Terasawa E. Involvement of G protein-coupled receptor 30 (GPR30) in rapid action of estrogen in primate LHRH neurons. Mol Endocrinol 2009; 23:349-59. [PMID: 19131510 PMCID: PMC2654512 DOI: 10.1210/me.2008-0299] [Citation(s) in RCA: 128] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2008] [Accepted: 12/30/2008] [Indexed: 12/27/2022] Open
Abstract
Previously, we have reported that 17beta-estradiol (E(2)) induces an increase in firing activity of primate LH-releasing hormone (LHRH) neurons. The present study investigates whether E(2) alters LHRH release as well as the pattern of intracellular calcium ([Ca(2+)](i)) oscillations and whether G protein-coupled receptor 30 (GPR30) plays a role in mediating the rapid E(2) action in primate LHRH neurons. Results are summarized: 1) E(2), the nuclear membrane-impermeable estrogen, estrogen-dendrimer conjugate, and the plasma membrane-impermeable estrogen, E(2)-BSA conjugate, all stimulated LHRH release within 10 min of exposure; 2) whereas the estrogen receptor antagonist, ICI 182,780, did not block the E(2)-induced LHRH release, E(2) application to cells treated with pertussis toxin failed to induce LHRH release; 3) GPR30 mRNA was expressed in olfactory placode cultures, and GPR30 protein was expressed in a subset of LHRH neurons; 4) pertussis toxin treatment blocked the E(2)-induced increase in [Ca(2+)](i) oscillations; 5) knockdown of GPR30 in primate LHRH neurons by transfection with small interfering RNA (siRNA) for GPR30 completely abrogated the E(2)-induced changes in [Ca(2+)](i) oscillations, whereas transfection with control siRNA did not; 6) the estrogen-dendrimer conjugate-induced increase in [Ca(2+)](i) oscillations also did not occur in LHRH neurons transfected with GPR30 siRNA; and 7) G1, a GPR30 agonist, resulted in changes in [Ca(2+)](i) oscillations, similar to those observed with E(2). Collectively, E(2) induces a rapid excitatory effect on primate LHRH neurons, and this rapid action of E(2) appears to be mediated, in part, through GPR30.
Collapse
Affiliation(s)
- Sekoni D Noel
- Wisconsin National Primate Research Center, University of Wisconsin, 1223 Capitol Court, Madison, Wisconsin 53715-1299.
| | | | | | | | | |
Collapse
|
328
|
Lim P, Allan CM, Notini AJ, Axell AM, Spaliviero J, Jimenez M, Davey R, McManus J, MacLean HE, Zajac JD, Handelsman DJ. Oestradiol-induced spermatogenesis requires a functional androgen receptor. Reprod Fertil Dev 2009; 20:861-70. [PMID: 19007549 DOI: 10.1071/rd08144] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2008] [Accepted: 07/25/2008] [Indexed: 01/06/2023] Open
Abstract
Spermatogenesis requires androgen but, paradoxically, oestradiol (E2) treatment stimulates spermatogenic development in gonadotrophin- and androgen-deficient hypogonadal (hpg) mice. The mechanisms of E2-induced spermatogenesis were investigated by determining intratesticular E2 levels and testis cell populations in E2-treated hpg male mice, and E2 spermatogenic actions were determined in androgen receptor-knockout (ARKO) mice. Despite increased serum E2 concentrations (150-300 pmol L(-1)), intratesticular E2 concentrations declined fivefold (P < 0.001) in E2-treated v. untreated hpg male mice. Serum FSH reached 40% of normal and total testicular numbers of known FSH-responsive Sertoli, spermatogonia and meiotic spermatocyte populations were significantly (P < 0.001) elevated 1.7-, 4- and 13-fold, respectively. However, E2 administration also increased androgen-dependent pachytene spermatocytes and post-meiotic spermatids to levels comparable with testosterone-treated hpg testes. Selective investigation of androgen receptor involvement used E2-treated ARKO mice, which were found to exhibit increased (1.6-fold; P < 0.05) intratesticular E2 concentrations and suppression of the elevated serum gonadotrophins, although FSH remained twofold higher than normal. However, testis size and total Sertoli, spermatogonia and spermatocyte numbers were not increased in E2-treated ARKO male mice. Therefore, E2-stimulated murine spermatogenic development occurs with markedly suppressed and not elevated intratesticular E2 levels and displays an absolute requirement for functional androgen receptors. We propose that this paradoxical E2 spermatogenic response is explained by predominantly extratesticular E2 actions, increasing FSH to combine with residual androgen activity in hpg testes to stimulate pre- to post-meiotic development.
Collapse
Affiliation(s)
- Patrick Lim
- Andrology Laboratory, ANZAC Research Institute, Concord Hospital and University of Sydney, Australia
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
329
|
The transactivating function 1 of estrogen receptor alpha is dispensable for the vasculoprotective actions of 17beta-estradiol. Proc Natl Acad Sci U S A 2009; 106:2053-8. [PMID: 19188600 DOI: 10.1073/pnas.0808742106] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Full-length 66-kDa estrogen receptor alpha (ERalpha) stimulates target gene transcription through two activation functions (AFs), AF-1 in the N-terminal domain and AF-2 in the ligand binding domain. Another physiologically expressed 46-kDa ERalpha isoform lacks the N-terminal A/B domains and is consequently devoid of AF-1. Previous studies in cultured endothelial cells showed that the N-terminal A/B domain might not be required for estradiol (E2)-elicited NO production. To evaluate the involvement of ERalpha AF-1 in the vasculoprotective actions of E2, we generated a targeted deletion of the ERalpha A/B domain in the mouse. In these ERalphaAF-1(0) mice, both basal endothelial NO production and reendothelialization process were increased by E2 administration to a similar extent than in control mice. Furthermore, exogenous E2 similarly decreased fatty streak deposits at the aortic root from both ovariectomized 18-week-old ERalphaAF-1(+/+) LDLr(-/-) (low-density lipoprotein receptor) and ERalphaAF-1(0) LDLr (-/-) mice fed with a hypercholesterolemic diet. In addition, quantification of lesion size on en face preparations of the aortic tree of 8-month-old ovariectomized or intact female mice revealed that ERalpha AF-1 is dispensable for the atheroprotective action of endogenous estrogens. We conclude that ERalpha AF-1 is not required for three major vasculoprotective actions of E2, whereas it is necessary for the effects of E2 on its reproductive targets. Thus, selective ER modulators stimulating ERalpha with minimal activation of ERalpha AF-1 could retain beneficial vascular actions, while minimizing the sexual effects.
Collapse
|
330
|
Abstract
The control of energy homeostasis in women is correlated with the anorectic effects of oestrogen, which can attenuate body weight gain and reduce food intake in rodent models. This review investigates the multiple signalling pathways and cellular targets that oestrogen utilises to control energy homeostasis in the hypothalamus. Oestrogen affects all of the hypothalamic nuclei that control energy homeostasis. Oestrogen controls the activity of hypothalamic neurones through gene regulation and neuronal excitability. Oestrogen's primary cellular pathway is the control of gene transcription through the classical oestrogen receptors (ERs) (ERalpha and ERbeta) with ERalpha having the primary role in energy homeostasis. Oestrogen also controls energy homeostasis through membrane-mediated events via membrane-associated ERs or a novel, putative membrane ER that is coupled to G-proteins. Therefore, oestrogen is coupled to at least two receptors with multiple signalling and transcriptional pathways to mediate immediate and long-term anorectic effects. Ultimately, it is the interactions of all the receptor-mediated processes in hypothalamus and other areas of the central nervous system that will determine the anorectic effects of oestrogen and its control of energy homeostasis.
Collapse
Affiliation(s)
- T A Roepke
- Department of Physiology and Pharmacology, Oregon Health and Science University, Portland, OR 97239, USA.
| |
Collapse
|
331
|
Robinson LJ, Yaroslavskiy BB, Griswold RD, Zadorozny EV, Guo L, Tourkova IL, Blair HC. Estrogen inhibits RANKL-stimulated osteoclastic differentiation of human monocytes through estrogen and RANKL-regulated interaction of estrogen receptor-alpha with BCAR1 and Traf6. Exp Cell Res 2009; 315:1287-301. [PMID: 19331827 DOI: 10.1016/j.yexcr.2009.01.014] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2008] [Revised: 12/28/2008] [Accepted: 01/16/2009] [Indexed: 01/08/2023]
Abstract
The effects of estrogen on osteoclast survival and differentiation were studied using CD14-selected mononuclear osteoclast precursors from peripheral blood. Estradiol at approximately 1 nM reduced RANKL-dependent osteoclast differentiation by 40-50%. Osteoclast differentiation was suppressed 14 days after addition of RANKL even when estradiol was withdrawn after 18 h. In CD14+ cells apoptosis was rare and was not augmented by RANKL or by 17-beta-estradiol. Estrogen receptor-alpha (ERalpha) expression was strongly down-regulated by RANKL, whether or not estradiol was present. Mature human osteoclasts thus cannot respond to estrogen via ERalpha. However, ERalpha was present in CD14+ osteoclast progenitors, and a scaffolding protein, BCAR1, which binds ERalpha in the presence of estrogen, was abundant. Immunoprecipitation showed rapid (approximately 5 min) estrogen-dependent formation of ERalpha-BCAR1 complexes, which were increased by RANKL co-treatment. The RANKL-signaling intermediate Traf6, which regulates NF-kappaB activity, precipitated with this complex. Reduction of NF-kappaB nuclear localization occurred within 30 min of RANKL stimulation, and estradiol inhibited the phosphorylation of IkappaB in response to RANKL. Inhibition by estradiol was abolished by siRNA knockdown of BCAR1. We conclude that estrogen directly, but only partially, curtails human osteoclast formation. This effect requires BCAR1 and involves a non-genomic interaction with ERalpha.
Collapse
Affiliation(s)
- Lisa J Robinson
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA 15261, USA.
| | | | | | | | | | | | | |
Collapse
|
332
|
Pinto PIS, Estêvão MD, Redruello B, Socorro SM, Canário AVM, Power DM. Immunohistochemical detection of estrogen receptors in fish scales. Gen Comp Endocrinol 2009; 160:19-29. [PMID: 18977356 DOI: 10.1016/j.ygcen.2008.10.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2008] [Revised: 09/30/2008] [Accepted: 10/01/2008] [Indexed: 01/11/2023]
Abstract
Calcium mobilization from internal stores, such as scales, induced by 17beta-estradiol during sexual maturation in salmonids is well documented. This calcium mobilization from scales is proposed to be mediated by the estrogen receptor (ER). However, the ER subtypes involved and signaling mechanisms responsible for this effect remain to be fully characterized. In the present study, we have localized ERalpha, ERbetaa and ERbetab proteins in juvenile and adult sea bream (Sparus auratus) and Mozambique tilapia (Oreochromis mossambicus) scales by immunohistochemistry with sea bream ER subtype specific antibodies. The three ERs were detected in isolated or small groups of round cells, in the basal layer of the scales of both juvenile and adult fish and the localization and signal intensity varied with the species and age of the animals. The ERs may be co-localized in cells of the scale posterior region that expressed tartrate-resistant acid phosphatase (TRAP), a marker for osteoclasts. These results suggest that the calcium mobilizing action of 17beta-estradiol on fish scales is via its direct action on ERs localized in osteoclasts.
Collapse
Affiliation(s)
- P I S Pinto
- Centro de Ciências do Mar, CIMAR-Laboratório Associado, University of Algarve, Campus de Gambelas, Faro, Portugal.
| | | | | | | | | | | |
Collapse
|
333
|
Roepke TA, Xue C, Bosch MA, Scanlan TS, Kelly MJ, Rønnekleiv OK. Genes associated with membrane-initiated signaling of estrogen and energy homeostasis. Endocrinology 2008; 149:6113-24. [PMID: 18755790 PMCID: PMC2613047 DOI: 10.1210/en.2008-0769] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
During the reproductive cycle, fluctuations in circulating estrogens affect multiple homeostatic systems controlled by hypothalamic neurons. Two of these neuronal populations are arcuate proopiomelanocortin and neuropeptide Y neurons, which control energy homeostasis and feeding. Estradiol modulates these neurons either through the classical estrogen receptors (ERs) to control gene transcription or through a G protein-coupled receptor (mER) activating multiple signaling pathways. To differentiate between these two divergent ER-mediated mechanisms and their effects on homeostasis, female guinea pigs were ovariectomized and treated systemically with vehicle, estradiol benzoate (EB) or STX, a selective mER agonist, for 4 wk, starting 7 d after ovariectomy. Individual body weights were measured after each injection day for 28 d, at which time the animals were euthanized, and the arcuate nucleus was microdissected. As predicted, the body weight gain was significantly lower for EB-treated females after d 5 and for STX-treated females after d 12 compared with vehicle-treated females. Total arcuate RNA was extracted from all groups, but only the vehicle and STX-treated samples were prepared for gene microarray analysis using a custom guinea pig gene microarray. In the arcuate nucleus, 241 identified genes were significantly regulated by STX, several of which were confirmed by quantitative real-time PCR and compared with EB-treated groups. The lower weight gain of EB-treated and STX-treated females suggests that estradiol controls energy homeostasis through both ERalpha and mER-mediated mechanisms. Genes regulated by STX indicate that not only does it control neuronal excitability but also alters gene transcription via signal transduction cascades initiated from mER activation.
Collapse
Affiliation(s)
- T A Roepke
- Department of Physiology and Pharmacology, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, Oregon 97239, USA
| | | | | | | | | | | |
Collapse
|
334
|
Weiss J, Bernhardt ML, Laronda MM, Hurley LA, Glidewell-Kenney C, Pillai S, Tong M, Korach KS, Jameson JL. Estrogen actions in the male reproductive system involve estrogen response element-independent pathways. Endocrinology 2008; 149:6198-206. [PMID: 18719025 PMCID: PMC2613049 DOI: 10.1210/en.2008-0122] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The estrogen receptor-alpha (ERalpha) acts through multiple pathways, including estrogen response element (ERE)-dependent (classical) and ERE-independent (nonclassical) mechanisms. We previously created a mouse model harboring a two-amino-acid mutation of the DNA-binding domain (E207A, G208A) that precludes direct binding of ERalpha to an ERE. After crossing heterozygous mutant mice with an ERalpha knockout (ERKO) line, it was possible to assess the degree of physiological rescue by the isolated ERalpha nonclassical allele (-/AA; AA) when compared with ERKO mice (-/-) and to wild type (+/+; WT). In male ERKO mice up to 8 months of age, testosterone levels were high, although LH levels were similar to WT. Testosterone was normal in the AA mice, indicating that the AA allele rescues the enhanced testosterone biosynthesis in ERKO mice. Male ERKO mice exhibited distention of the seminiferous tubules as early as 2-3 months of age as a consequence of decreased water resorption in the efferent ducts. By 3-4 months of age, ERKO mice had impaired spermatogenesis in approximately 40% of their tubules, and sperm counts and motility declined in association with the histological changes. In the AA mice, histological defects were greatly reduced or absent, and sperm counts and motility were rescued. Levels of aquaporins 1 and 9, which contribute to water uptake in the efferent ducts, were reduced in ERKO mice and partially or fully rescued in AA mice, whereas another water transporter, sodium-hydrogen exchanger-3, was decreased in both ERKO and AA mice. We conclude that non-ERE-dependent estrogen pathways are sufficient to rescue the defective spermatogenesis observed in ERKO mice and play a prominent role in ERalpha action in the testis, including pathways that regulate water resorption and androgen biosynthesis.
Collapse
Affiliation(s)
- Jeffrey Weiss
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
335
|
Waters EM, Torres-Reveron A, McEwen BS, Milner TA. Ultrastructural localization of extranuclear progestin receptors in the rat hippocampal formation. J Comp Neurol 2008; 511:34-46. [PMID: 18720413 DOI: 10.1002/cne.21826] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Progesterone's effects on hippocampus-dependent behavior and synaptic connectivity maybe mediated through the progestin receptor (PR). Although estrogen induces PR mRNA and cytosolic PR in the hippocampus, nuclear PR immunoreactivity is undetectable by light microscopy, suggesting that PR is present at extranuclear sites. To determine whether this is the case, we used immunoelectron microscopy to examine PR distribution in the hippocampal formation of proestrus rats. Ultrastructural analysis revealed that PR labeling is present in extranuclear profiles throughout the CA1 and CA3 regions and dentate gyrus, and, in contrast to light microscopic findings, in nuclei of a few pyramidal and subgranular zone cells. Most neuronal PR labeling is extranuclear and is divided between pre- and postsynaptic compartments; approximately 30% of labeled profiles were axon terminals and 30% were dendrites and dendritic spines. In most laminae, except in CA3 stratum lucidum, about 15% of PR-immunoreactive profiles were unmyelinated axons. In stratum lucidum, where the mossy fiber axons course, more than 50% of PR-labeled profiles were axonal. The remaining 25% of PR-labeled profiles were glia, some resembling astrocytes. PR labeling is strongly dependent on estrogen priming, insofar as few PR-labeled profiles were detected in ovariectomized, oil-replaced females. Synapses formed by PR-labeled terminals were predominantly asymmetric, consistent with a role for progesterone in directly regulating excitatory transmission. These findings suggest that some of progesterone's actions in the hippocampal formation may be mediated by direct and rapid actions on extranuclear PRs and that PRs are well positioned to regulate progesterone-induced changes at synapses.
Collapse
Affiliation(s)
- Elizabeth M Waters
- Harold and Margaret Milliken Hatch Laboratory of Neuroendocrinology, The Rockefeller University, New York, New York 10065, USA.
| | | | | | | |
Collapse
|
336
|
Jia L, Berman BP, Jariwala U, Yan X, Cogan JP, Walters A, Chen T, Buchanan G, Frenkel B, Coetzee GA. Genomic androgen receptor-occupied regions with different functions, defined by histone acetylation, coregulators and transcriptional capacity. PLoS One 2008; 3:e3645. [PMID: 18997859 PMCID: PMC2577007 DOI: 10.1371/journal.pone.0003645] [Citation(s) in RCA: 118] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2008] [Accepted: 10/14/2008] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND The androgen receptor (AR) is a steroid-activated transcription factor that binds at specific DNA locations and plays a key role in the etiology of prostate cancer. While numerous studies have identified a clear connection between AR binding and expression of target genes for a limited number of loci, high-throughput elucidation of these sites allows for a deeper understanding of the complexities of this process. METHODOLOGY/PRINCIPAL FINDINGS We have mapped 189 AR occupied regions (ARORs) and 1,388 histone H3 acetylation (AcH3) loci to a 3% continuous stretch of human genomic DNA using chromatin immunoprecipitation (ChIP) microarray analysis. Of 62 highly reproducible ARORs, 32 (52%) were also marked by AcH3. While the number of ARORs detected in prostate cancer cells exceeded the number of nearby DHT-responsive genes, the AcH3 mark defined a subclass of ARORs much more highly associated with such genes -- 12% of the genes flanking AcH3+ARORs were DHT-responsive, compared to only 1% of genes flanking AcH3-ARORs. Most ARORs contained enhancer activities as detected in luciferase reporter assays. Analysis of the AROR sequences, followed by site-directed ChIP, identified binding sites for AR transcriptional coregulators FoxA1, CEBPbeta, NFI and GATA2, which had diverse effects on endogenous AR target gene expression levels in siRNA knockout experiments. CONCLUSIONS/SIGNIFICANCE We suggest that only some ARORs function under the given physiological conditions, utilizing diverse mechanisms. This diversity points to differential regulation of gene expression by the same transcription factor related to the chromatin structure.
Collapse
MESH Headings
- Acetylation
- Cell Line, Tumor
- Chromatin Immunoprecipitation
- Chromosomes, Human, Pair 19/genetics
- Chromosomes, Human, Pair 20/genetics
- Genome, Human
- Histones/metabolism
- Humans
- Male
- Models, Biological
- Prostatic Neoplasms/genetics
- Prostatic Neoplasms/metabolism
- Receptors, Androgen/genetics
- Receptors, Androgen/metabolism
- Response Elements/genetics
- Transcription Factors/genetics
- Transcription Factors/metabolism
- Transcription, Genetic
Collapse
Affiliation(s)
- Li Jia
- Department of Preventive Medicine, University of Southern California, Los Angeles, California, United States of America
- Department of Urology, University of Southern California, Los Angeles, California, United States of America
- Norris Cancer Center, University of Southern California, Los Angeles, California, United States of America
| | - Benjamin P. Berman
- Epigenome Center, Keck School of Medicine, Molecular and Computational Biology Program, University of Southern California, Los Angeles, California, United States of America
| | - Unnati Jariwala
- Department of Biochemistry and Molecular Biology, University of Southern California, Los Angeles, California, United States of America
- Institute of Genetic Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Xiting Yan
- Department of Biological Sciences, University of Southern California, Los Angeles, California, United States of America
| | - Jon P. Cogan
- Department of Biochemistry and Molecular Biology, University of Southern California, Los Angeles, California, United States of America
- Institute of Genetic Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Allison Walters
- Department of Preventive Medicine, University of Southern California, Los Angeles, California, United States of America
- Norris Cancer Center, University of Southern California, Los Angeles, California, United States of America
| | - Ting Chen
- Department of Biological Sciences, University of Southern California, Los Angeles, California, United States of America
| | - Grant Buchanan
- Department of Preventive Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Baruch Frenkel
- Department of Biochemistry and Molecular Biology, University of Southern California, Los Angeles, California, United States of America
- Department of Orthopedic Surgery, University of Southern California, Los Angeles, California, United States of America
- Institute of Genetic Medicine, University of Southern California, Los Angeles, California, United States of America
- * E-mail: (BF); (GAC)
| | - Gerhard A. Coetzee
- Department of Preventive Medicine, University of Southern California, Los Angeles, California, United States of America
- Department of Urology, University of Southern California, Los Angeles, California, United States of America
- Norris Cancer Center, University of Southern California, Los Angeles, California, United States of America
- * E-mail: (BF); (GAC)
| |
Collapse
|
337
|
Zhu Y, Hanna RN, Schaaf MJM, Spaink HP, Thomas P. Candidates for membrane progestin receptors--past approaches and future challenges. Comp Biochem Physiol C Toxicol Pharmacol 2008; 148:381-9. [PMID: 18602498 DOI: 10.1016/j.cbpc.2008.05.019] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2008] [Revised: 05/19/2008] [Accepted: 05/20/2008] [Indexed: 02/02/2023]
Abstract
Progestins have a broad range of functions in reproductive biology. Many rapid nongenomic actions of progestins have been identified, including induction of oocyte maturation, modulation of reproductive signaling in the brain, rapid activation of breast cancer cell signaling, induction of the acrosomal reaction and hypermotility in mammalian sperm. Currently, there are three receptor candidates for mediating rapid progestin actions: (1) membrane progestin receptors (mPRs); (2) progestin receptor membrane components (PGRMCs); and (3) nuclear progestin receptors (nPRs). The recently-described mPR family of proteins has seven integral transmembrane domains and mediates signaling via G-protein coupled pathways. The PGRMCs have a single transmembrane with putative Src homology domains for potential activation of second messengers. The classical nPRs, in addition to having well defined transcriptional activity, can also mediate rapid activation of intracellular signaling pathways. However, details of the mechanisms by which these three classes of progestin receptors mediate rapid intracellular signaling and their subcellular localization remain unclear. In addition, mPRs, nPRs and PGRMCs exhibit overlapping expression and functions in multiple tissues, implying potential interactions during oocyte maturation, parturition, and breast cancer signaling in individual cells. However, the overwhelming majority of studies to date have focused on the functions of one of these groups of receptors in isolation. This review will summarize recent findings on the three major progestin receptor candidates, emphasizing the different approaches used, some experimental pitfalls, and current controversies. We will also review evidence for the involvement of mPRs and nPRs in one of the most well-characterized nongenomic steroid actions in basal vertebrates, oocyte maturation, and conclude by suggesting some future areas of research. Clarification of the controversies surrounding the identities and localization of membrane progestin receptors may help direct future research that could advance our understanding of rapid actions of steroids.
Collapse
Affiliation(s)
- Yong Zhu
- Department of Biology, East Carolina University, 1000 E. 5th Street, Greenville, NC 27858, USA.
| | | | | | | | | |
Collapse
|
338
|
Fialho D, Kullmann DM, Hanna MG, Schorge S. Non-genomic effects of sex hormones on CLC-1 may contribute to gender differences in myotonia congenita. Neuromuscul Disord 2008; 18:869-72. [PMID: 18815035 DOI: 10.1016/j.nmd.2008.07.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2008] [Revised: 05/09/2008] [Accepted: 07/15/2008] [Indexed: 01/04/2023]
Abstract
Myotonia congenita is caused by mutations in the voltage-gated chloride channel ClC-1. It is more severe in men than women and often worsens during pregnancy, but the basis for these gender differences is not known. We show here that both testosterone and progesterone rapidly and reversibly inhibit wild-type ClC-1 channels expressed in Xenopus oocytes by causing a prominent rightward shift in the voltage dependence of their open probability. In contrast, 17beta-estradiol at similar concentrations causes only a small shift. Progesterone and testosterone also profoundly inhibit ClC-1 channels containing the mutation F297S associated with dominantly inherited myotonia congenita. The effects of sex hormones are likely to be non-genomic because of their speed of onset and reversibility. These results suggest a possible mechanism to explain how the severity of myotonia congenita can be modulated by sex hormones.
Collapse
Affiliation(s)
- Doreen Fialho
- MRC Centre for Neuromuscular Disease, UCL Institute of Neurology and National Hospital for Neurology, Queen Square, London WC1N 3BG, UK
| | | | | | | |
Collapse
|
339
|
Abstract
Steroid receptors transcribe genes that lead to important biological processes, including normal organ development and function, tissue differentiation, and promotion of oncogenic transformation. These actions mainly result from nuclear steroid receptor action. However, for 50 years, it has been known that rapid effects of steroid hormones occur and could result from rapid signal transduction. Examples of these effects include stress responses to secreted glucocorticoids, rapid actions of thyroid hormones in the heart, and acute uterine/vaginal responses to injected estrogen. These types of responses have increasingly been attributed to rapid signaling by steroid hormones, upon engaging binding proteins most often at the cell surface of target organs. It is clear that rapid signal transduction serves an integrated role to modify existing proteins, altering their structure and activity, and to modulate gene transcription, often through collaboration with the nuclear pool of steroid receptors. The biological outcomes of steroid hormone actions thus reflect input from various cellular pools, cocoordinating the necessary events that are restrained in temporal and kinetic fashion. Here I describe the current understanding of rapid steroid signaling that is now appreciated to extend to virtually all members of this family of hormones and their receptors.
Collapse
Affiliation(s)
- Ellis R Levin
- Department of Medicine, Veterans Affairs Medical Center, Long Beach, CA 90822, USA.
| |
Collapse
|
340
|
Zampieri S, Mellon SH, Butters TD, Nevyjel M, Covey DF, Bembi B, Dardis A. Oxidative stress in NPC1 deficient cells: protective effect of allopregnanolone. J Cell Mol Med 2008; 13:3786-96. [PMID: 18774957 PMCID: PMC2832077 DOI: 10.1111/j.1582-4934.2008.00493.x] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Niemann-Pick C disease (NPC) is an autosomal recessive neurodegenerative disorder caused by the abnormal function of NPC1 or NPC2 proteins, leading to an accumulation of unesterified cholesterol and glycosphingolipids (GSLs) in the lysosomes. The mechanisms underlying the pathophysiology in NPC disease are not clear. Oxidative damage is implicated in the pathophysiology of different neurological disorders and the effect of GSL accumulation on the intracellular redox state has been documented. Therefore, we determined whether the intracellular redox state might contribute to the NPC disease pathophysiology. Because the treatment of NPC mice with allopregnanolone (ALLO) increases their lifespan and delays the onset of neurological impairment, we analysed the effect of ALLO on the oxidative damage in human NPC fibroblasts. Concentrations of reactive oxygen species (ROS) and lipid peroxidation were higher in fibroblasts from NPC patients than in fibroblasts from normal subjects. Fibroblasts from NPC patients were more susceptible to cell death through apoptosis after an acute oxidative insult. This process is mediated by activation of the NF-κB signalling pathway. Knockdown of NPC1 mRNA both in normal fibroblasts and in human SH-SY5Y neuroblastoma cells caused increased ROS concentrations. ALLO treatment of fibroblasts from NPC patients or NPC1 knockdown cells reduced the levels of ROS and lipid peroxidation and prevented peroxide-induced apoptosis and NF-kB activation. Thus, these findings suggest that oxidative stress might contribute to the NPC disease and ALLO might be beneficial in the treatment of the disease, at least in part, due to its ability to restore the intracellular redox state.
Collapse
|
341
|
Laguë E, Tremblay JJ. Antagonistic effects of testosterone and the endocrine disruptor mono-(2-ethylhexyl) phthalate on INSL3 transcription in Leydig cells. Endocrinology 2008; 149:4688-94. [PMID: 18499751 DOI: 10.1210/en.2008-0310] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Insulin-like 3 (INSL3) is a small peptide produced by testicular Leydig cells throughout embryonic and postnatal life and by theca and luteal cells of the adult ovary. During fetal life, INSL3 regulates testicular descent in males, whereas in adults, it acts as an antiapoptotic factor for germ cells in males and as a follicle selection and survival factor in females. Despite its considerable roles in the reproductive system, the mechanisms that regulate Insl3 expression remain poorly understood. There is accumulating evidence suggesting that androgens might regulate Insl3 expression in Leydig cells, but transcriptional data are still lacking. We now report that testosterone does increase Insl3 mRNA levels in a Leydig cell line and primary Leydig cells. We also show that testosterone activates the activity of the Insl3 promoter from different species. In addition, the testosterone-stimulating effects on Insl3 mRNA levels and promoter activity require the androgen receptor. We have mapped the testosterone-responsive element to the proximal Insl3 promoter region. This region, however, lacks a consensus androgen response element, suggesting an indirect mechanism of action. Finally we show that mono-(2-ethylhexyl) phthalate, a widely distributed endocrine disruptor with antiandrogenic activity previously shown to inhibit Insl3 expression in vivo, represses Insl3 transcription, at least in part, by antagonizing testosterone/androgen receptor action. All together our data provide important new insights into the regulation of Insl3 transcription in Leydig cells and the mode of action of phthalates.
Collapse
Affiliation(s)
- Eric Laguë
- Department of Reproduction, Perinatal, and Child Health, Centre Hospitalier Universitaire of Québec Research Centre, CHUL Room T1-49, 2705 Laurier Boulevard, Québec City, Québec, Canada G1V 4G2
| | | |
Collapse
|
342
|
Simpkins JW, Yang SH, Sarkar SN, Pearce V. Estrogen actions on mitochondria--physiological and pathological implications. Mol Cell Endocrinol 2008; 290:51-9. [PMID: 18571833 PMCID: PMC2737506 DOI: 10.1016/j.mce.2008.04.013] [Citation(s) in RCA: 112] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2008] [Revised: 04/08/2008] [Accepted: 04/10/2008] [Indexed: 02/07/2023]
Abstract
Estrogens are potent neuroprotective hormones and mitochondria are the site of cellular life-death decisions. As such, it is not surprising that we and others have shown that estrogens have remarkable effects on mitochondrial function. Herein we provide evidence for a primary effect of estrogens on mitochondrial function, achieved in part by the import of estrogen receptor beta (ERbeta) into the mitochondria where it mediates a number of estrogen actions on this vital organelle. ERbeta is imported into the mitochondria, through tethering to cytosolic chaperone protein and/or through direct interaction with mitochondrial import proteins. In the mitochondria, ERbeta can affect transcription of critical mitochondrial genes through the interaction with estrogen response elements (ERE) or through protein-protein interactions with mitochondrially imported transcription factors. The potent effects of estrogens on mitochondrial function, particularly during mitochondrial stress, argues for a role of estrogens in the treatment of mitochondrial defects in chronic neurodegenerative diseases like Alzheimer's disease (AD) and Parkinson's disease (PD) and more acute conditions of mitochondrial compromise, like cerebral ischemia and traumatic brain injury.
Collapse
Affiliation(s)
- James W Simpkins
- Department of Pharmacology & Neuroscience, Institute for Aging and Alzheimer's Disease Research, University of North Texas Health Science Center, 3500 Camp Bowie Boulevard, Fort Worth, TX 76107, USA.
| | | | | | | |
Collapse
|
343
|
Kelly MJ, Rønnekleiv OK. Membrane-initiated estrogen signaling in hypothalamic neurons. Mol Cell Endocrinol 2008; 290:14-23. [PMID: 18538919 PMCID: PMC2601664 DOI: 10.1016/j.mce.2008.04.014] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2008] [Accepted: 04/11/2008] [Indexed: 10/24/2022]
Abstract
It is well known that many of the actions of 17beta-estradiol (E2) in the central nervous system are mediated via intracellular receptor/transcription factors that interact with steroid response elements on target genes. However, there is compelling evidence for membrane steroid receptors for estrogen in hypothalamic and other brain neurons. But it is not well understood how estrogen signals via membrane receptors, and how these signals impact not only membrane excitability but also gene transcription in neurons. Indeed, it has been known for sometime that E2 can rapidly alter neuronal activity within seconds, indicating that some cellular effects can occur via membrane delimited events. In addition, E2 can affect second messenger systems including calcium mobilization and a plethora of kinases to alter cell signaling. Therefore, this review will consider our current knowledge of rapid membrane-initiated and intracellular signaling by E2 in the hypothalamus, the nature of receptors involved and how they contribute to homeostatic functions.
Collapse
Affiliation(s)
- Martin J Kelly
- Department of Physiology and Pharmacology, L334, Oregon Health & Science University, 3181 S.W. Sam Jackson Park Road, Portland, OR 97239-3098, USA.
| | | |
Collapse
|
344
|
Micevych P, Sinchak K. Estradiol regulation of progesterone synthesis in the brain. Mol Cell Endocrinol 2008; 290:44-50. [PMID: 18572304 PMCID: PMC2603025 DOI: 10.1016/j.mce.2008.04.016] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2008] [Revised: 04/26/2008] [Accepted: 04/26/2008] [Indexed: 12/22/2022]
Abstract
Steroidogenesis is now recognized as a global phenomenon in the brain, but how it is regulated and its relationship to circulating steroids of peripheral origin have remained more elusive issues. Neurosteroids, steroids synthesized de novo in nervous tissue, have a large range of actions in the brain, but it is only recently that the role of neuroprogesterone in the regulation of arguably the quintessential steroid-dependent neural activity, regulation of the reproduction has been appreciated. Circuits involved in controlling the LH surge and sexual behaviors were thought to be influenced by estradiol and progesterone synthesized in the ovary and perhaps the adrenal. It is now apparent that estradiol of ovarian origin regulates the synthesis of neuroprogesterone, and it is the locally produced neuroprogesterone that is involved in the initiation of the LH surge and subsequent ovulation. In this model, estradiol induces the transcription of progesterone receptors while stimulating synthesis of neuroprogesterone. Although the complete signaling cascade has not been elucidated, many of the features have been characterized. The synthesis of neuroprogesterone occurs primarily in astrocytes and requires the interaction of membrane-associated estrogen receptor-alpha with metabotropic glutamate receptor-1a. This G protein-coupled receptor activates a phospholipase C that in turn increases inositol trisphosphate (IP3) levels mediating the release of intracellular stores of Ca2+ via an IP3 receptor gated Ca2+ channel. The large increase in free cytoplasmic Ca2+ ([Ca2+]i) stimulates the synthesis of progesterone, which can then diffuse out of the astrocyte and activate estradiol-induced progesterone receptors in local neurons to trigger the neural cascade to produce the LH surge. Thus, it is a cooperative action of astrocytes and neurons that is needed for estrogen positive feedback and stimulation of the LH surge.
Collapse
Affiliation(s)
- Paul Micevych
- Department of Neurobiology, David Geffen School of Medicine at ULCA, Los Angeles, CA 90095, USA.
| | | |
Collapse
|
345
|
Human myeloblastic leukemia cells (HL-60) express a membrane receptor for estrogen that signals and modulates retinoic acid-induced cell differentiation. Exp Cell Res 2008; 314:2999-3006. [PMID: 18692045 DOI: 10.1016/j.yexcr.2008.07.015] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2008] [Revised: 07/17/2008] [Accepted: 07/17/2008] [Indexed: 01/08/2023]
Abstract
Estrogen receptors are historically perceived as nuclear ligand activated transcription factors. An estrogen receptor has now been found localized to the plasma membrane of human myeloblastic leukemia cells (HL-60). Its expression occurs throughout the cell cycle, progressively increasing as cells mature from G(1) to S to G(2)/M. To ascertain that the receptor functioned, the effect of ligands, including a non-internalizable estradiol-BSA conjugate and tamoxifen, an antagonist of nuclear estrogen receptor function, were tested. The ligands caused activation of the ERK MAPK pathway. They also modulated the effect of retinoic acid, an inducer of MAPK dependent terminal differentiation along the myeloid lineage in these cells. In particular the ligands inhibited retinoic acid-induced inducible oxidative metabolism, a functional marker of terminal myeloid cell differentiation. To a lesser degree they also diminished retinoic acid-induced earlier markers of cell differentiation, namely CD38 and CD11b. However, they did not regulate retinoic acid-induced G(0) cell cycle arrest. There is thus a membrane localized estrogen receptor in HL-60 myeloblastic leukemia cells that can cause ERK activation and modulates the response of these cells to retinoic acid, indicating crosstalk between the membrane estrogen and retinoic acid evoked pathways relevant to propulsion of cell differentiation.
Collapse
|
346
|
Madak-Erdogan Z, Kieser KJ, Kim SH, Komm B, Katzenellenbogen JA, Katzenellenbogen BS. Nuclear and extranuclear pathway inputs in the regulation of global gene expression by estrogen receptors. Mol Endocrinol 2008; 22:2116-27. [PMID: 18617595 DOI: 10.1210/me.2008-0059] [Citation(s) in RCA: 143] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Whereas estrogens exert their effects by binding to nuclear estrogen receptors (ERs) and directly altering target gene transcription, they can also initiate extranuclear signaling through activation of kinase cascades. We have investigated the impact of estrogen-mediated extranuclear-initiated pathways on global gene expression by using estrogen-dendrimer conjugates (EDCs), which because of their charge and size remain outside the nucleus and can only initiate extranuclear signaling. Genome-wide cDNA microarray analysis of MCF-7 breast cancer cells identified a subset of 17beta-estradiol (E2)-regulated genes ( approximately 25%) as EDC responsive. The EDC and E2-elicited increases in gene expression were due to increases in gene transcription, as observed in nuclear run-on assays and RNA polymerase II recruitment and phosphorylation. Treatment with antiestrogen or ERalpha knockdown using small interfering RNA abolished EDC-mediated gene stimulation, whereas GPR30 knockdown or treatment with a GPR30-selective ligand was without effect, indicating ER as the mediator of these gene regulations. Inhibitors of MAPK kinase and c-Src suppressed both E2 and EDC stimulated gene expression. Of note, in chromatin immunoprecipitation assays, EDC was unable to recruit ERalpha to estrogen-responsive regions of regulated genes, whereas ERalpha recruitment by E2 was very effective. These findings suggest that other transcription factors or kinases that are downstream effectors of EDC-initiated extranuclear signaling cascades are recruited to regulatory regions of EDC-responsive genes in order to elicit gene stimulation. This study thus highlights the importance of inputs from both nuclear and extranuclear ER signaling pathways in regulating patterns of gene expression in breast cancer cells.
Collapse
Affiliation(s)
- Zeynep Madak-Erdogan
- Department of Cell and Developmental Biology, University of Illinois, Urbana, Illinois 61801, USA
| | | | | | | | | | | |
Collapse
|
347
|
Stice JP, Knowlton AA. Estrogen, NFkappaB, and the heat shock response. Mol Med 2008; 14:517-27. [PMID: 18431462 PMCID: PMC2323333 DOI: 10.2119/2008-00026.stice] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2008] [Accepted: 04/10/2008] [Indexed: 11/06/2022] Open
Abstract
Estrogen has pleiotropic actions, among which are its anti-apoptotic, anti-inflammatory, and vasodilatory effects. Recently, an interaction between 17beta-estradiol (E2) and the transcription factor nuclear factor kappaB (NFkappaB) has been identified. NFkappaB has a central role in the control of genes involved in inflammation, proliferation, and apoptosis. Prolonged activation of NFkappaB is associated with numerous inflammatory pathological conditions. An important facet of E2 is its ability to modulate activity of NFkappaB via both genomic and nongenomic actions. E2 can activate NFkappaB rapidly via nongenomic pathways, increase cellular resistance to injury, and induce expression of the protective class of proteins, heat shock proteins (HSPs). HSPs can bind to many of the pro-apoptotic and pro-inflammatory targets of NFkappaB and, thus, indirectly inhibit many of its deleterious effects. In addition, HSPs can block NFkappaB activation and binding directly. Similarly, genomic E2 signaling can inhibit NFkappaB, but does so through alternative mechanisms. This review focuses on the molecular mechanisms of cross-talk between E2, NFkappaB, and HSPs, and the biological relevance of this cross-talk.
Collapse
Affiliation(s)
- James P Stice
- Molecular & Cellular Cardiology, University of California, Davis, Davis, California, United States of America
| | - Anne A Knowlton
- Molecular & Cellular Cardiology, University of California, Davis, Davis, California, United States of America
- Cardiovascular Division, Department of Medicine, and the Department of Medical Pharmacology, University of California, Davis, Davis, California, United States of America
- The VA Northern California Health Care System, Mather, California, United States of America
| |
Collapse
|
348
|
Abstract
Estrogen receptor (ER) is an important drug target, but it has multiple signaling pathways that are difficult to dissect. A new study reports the development of a multicolor bioluminescent probe that can measure a compound's ability to modulate ER-mediated transcription and to promote an interaction between ER and Src, a key protein in a number of different cell signaling cascades. The discovery provides a new tool for quickly obtaining a more complete picture of the potential effects of a compound on estrogen signaling and could lead to more selective ER modulators with fewer side effects.
Collapse
Affiliation(s)
- Ross V. Weatherman
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana 47907
| |
Collapse
|
349
|
Kohno S, Katsu Y, Iguchi T, Guillette LJ. Novel approaches for the study of vertebrate steroid hormone receptors. Integr Comp Biol 2008; 48:527-34. [DOI: 10.1093/icb/icn080] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
350
|
Abstract
The impact of estrogen exposure in preventing or treating cardiovascular disease is controversial. But it is clear that estrogen has important effects on vascular physiology and pathophysiology, with potential therapeutic implications. Therefore, the goal of this review is to summarize, using an integrated approach, current knowledge of the vascular effects of estrogen, both in humans and in experimental animals. Aspects of estrogen synthesis and receptors, as well as general mechanisms of estrogenic action are reviewed with an emphasis on issues particularly relevant to the vascular system. Recent understanding of the impact of estrogen on mitochondrial function suggests that the longer lifespan of women compared with men may depend in part on the ability of estrogen to decrease production of reactive oxygen species in mitochondria. Mechanisms by which estrogen increases endothelial vasodilator function, promotes angiogenesis, and modulates autonomic function are summarized. Key aspects of the relevant pathophysiology of inflammation, atherosclerosis, stroke, migraine, and thrombosis are reviewed concerning current knowledge of estrogenic effects. A number of emerging concepts are addressed throughout. These include the importance of estrogenic formulation and route of administration and the impact of genetic polymorphisms, either in estrogen receptors or in enzymes responsible for estrogen metabolism, on responsiveness to hormone treatment. The importance of local metabolism of estrogenic precursors and the impact of timing for initiation of treatment and its duration are also considered. Although consensus opinions are emphasized, controversial views are presented to stimulate future research.
Collapse
Affiliation(s)
- Virginia M. Miller
- Professor, Surgery and Physiology, Mayo Clinic College of Medicine, , Phone: 507-284-2290, Fax: 507-266-2233
| | - Sue P. Duckles
- Professor, Pharmacology, University of California, Irvine, School of Medicine, , Phone: 949-824-4265, Fax: 949-824-4855
| |
Collapse
|