301
|
Yamagishi SI. Potential clinical utility of advanced glycation end product cross-link breakers in age- and diabetes-associated disorders. Rejuvenation Res 2012; 15:564-72. [PMID: 22950433 DOI: 10.1089/rej.2012.1335] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Reducing sugars can react nonenzymatically with the amino groups of proteins to form Amadori products. These early glycation products undergo further complex reactions, such as rearrangement, dehydration, and condensation, to become irreversibly cross-linked, heterogeneous fluorescent derivatives, termed advanced glycation end products (AGEs). The formation and accumulation of AGEs have been known to progress in a normal aging process and at an accelerated rate under diabetes. Nonenzymatic glycation and cross-linking of proteins not only leads to an increase in vascular and myocardial stiffness, but also deteriorates structural integrity and physiological function of multiple organ systems. Furthermore, there is accumulating evidence that interaction of AGEs with a cell-surface receptor, receptor for AGEs (RAGE), elicits oxidative stress generation and subsequently evokes inflammatory, thrombogenic, and fibrotic reactions, thereby being involved in atherosclerosis, diabetic microvascular complications, erectile dysfunction, and pancreatic β-cell apoptosis. Recently, AGE cross-link breakers have been discovered. Therefore, removal of the preexisting AGEs by the breakers has emerged as a novel therapeutic approach to various types of diseases that develop with aging. This article summarizes the potential clinical utility of AGE cross-link breakers in the prevention and management of age- and diabetes-associated disorders.
Collapse
Affiliation(s)
- Sho-ichi Yamagishi
- Department of Pathophysiology and Therapeutics of Diabetic Vascular Complications, Kurume University School of Medicine, Kurume 830-0011, Japan.
| |
Collapse
|
302
|
Diogo CV, Suski JM, Lebiedzinska M, Karkucinska-Wieckowska A, Wojtala A, Pronicki M, Duszynski J, Pinton P, Portincasa P, Oliveira PJ, Wieckowski MR. Cardiac mitochondrial dysfunction during hyperglycemia--the role of oxidative stress and p66Shc signaling. Int J Biochem Cell Biol 2012; 45:114-22. [PMID: 22776741 DOI: 10.1016/j.biocel.2012.07.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2012] [Revised: 06/15/2012] [Accepted: 07/01/2012] [Indexed: 01/25/2023]
Abstract
Diabetes mellitus is a chronic disease caused by a deficiency in the production of insulin and/or by the effects of insulin resistance. Insulin deficiency leads to hyperglycemia which is the major initiator of diabetic cardiovascular complications escalating with time and driven by many complex biochemical and molecular processes. Four hypotheses, which propose mechanisms of diabetes-associated pathophysiology, are currently considered. Cardiovascular impairment may be caused by an increase in polyol pathway flux, by intracellular advanced glycation end-products formation or increased flux through the hexosamine pathway. The latter of these mechanisms involves activation of the protein kinase C. Cellular and mitochondrial metabolism alterations observed in the course of diabetes are partially associated with an excessive production of reactive oxygen species (ROS). Among many processes and factors involved in ROS production, the 66 kDa isoform of the growth factor adaptor shc (p66Shc protein) is of particular interest. This protein plays a key role in the control of mitochondria-dependent oxidative balance thus it involvement in diabetic complications and other oxidative stress based pathologies is recently intensively studied. In this review we summarize the current understanding of hyperglycemia induced cardiac mitochondrial dysfunction with an emphasis on the oxidative stress and p66Shc protein. This article is part of a Directed Issue entitled: Bioenergetic dysfunction, adaptation and therapy.
Collapse
Affiliation(s)
- Catia V Diogo
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Portugal
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
303
|
Kang R, Tang D. Autophagy in pancreatic cancer pathogenesis and treatment. Am J Cancer Res 2012; 2:383-396. [PMID: 22860230 PMCID: PMC3410583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2012] [Accepted: 05/23/2012] [Indexed: 06/01/2023] Open
Abstract
Pancreatic cancer is the fourth most common cancer to cause death due to advanced stage at diagnosis and poor response to current treatment. Autophagy is the lysosome-mediated degradation pathway which plays a critical role in cellular defense, quality control, and energy metabolism. Targeting autophagy is now an exciting field for translational cancer research, as autophagy dysfunction is among the hallmarks of cancer. Pancreatic tumors have elevated autophagy under basal conditions when compared with other epithelial cancers. This review describes our current understanding of the interaction between autophagy and pancreatic cancer development, including risk factors (e.g., pancreatitis, smoking, and alcohol use), tumor microenvironment (e.g., hypoxia and stromal cells), and molecular biology (e.g., K-Ras and p53) of pancreatic cancer. The importance of the HMGB1-RAGE pathway in regulation of autophagy and pancreatic cancer is also presented. Finally, we describe current studies involving autophagy inhibition using either pharmacological inhibitors (e.g., chloroquine) or RNA interference of essential autophagy genes that regulate chemotherapy sensitivity in pancreatic cancer. Summarily, autophagy plays multiple roles in the regulation of pancreatic cancer pathogenesis and treatment, although the exact mechanisms remain unknown.
Collapse
Affiliation(s)
- Rui Kang
- Department of Surgery, University of Pittsburgh Cancer InstitutePittsburgh, Pennsylvania 15219, USA
| | - Daolin Tang
- Department of Surgery, University of Pittsburgh Cancer InstitutePittsburgh, Pennsylvania 15219, USA
- Hillman Cancer Center, University of Pittsburgh Cancer InstitutePittsburgh, Pennsylvania 15219, USA
| |
Collapse
|
304
|
Zhang X, Chen C. A new insight of mechanisms, diagnosis and treatment of diabetic cardiomyopathy. Endocrine 2012; 41:398-409. [PMID: 22322947 DOI: 10.1007/s12020-012-9623-1] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2011] [Accepted: 01/28/2012] [Indexed: 12/25/2022]
Abstract
Diabetes mellitus is one of the most common chronic diseases across the world. Cardiovascular complication is the major morbidity and mortality among the diabetic patients. Diabetic cardiomyopathy, a new entity independent of coronary artery disease or hypertension, has been increasingly recognized by clinicians and epidemiologists. Cardiac dysfunction is the major characteristic of diabetic cardiomyopathy. For a better understanding of diabetic cardiomyopathy and necessary treatment strategy, several pathological mechanisms such as impaired calcium handling and increased oxidative stress, have been proposed through clinical and experimental observations. In this review, we will discuss the development of cardiac dysfunction, the mechanisms underlying diabetic cardiomyopathy, diagnostic methods, and treatment options.
Collapse
Affiliation(s)
- Xinli Zhang
- School of Biomedical Sciences, University of Queensland, Room 409A, Sir William MacGregor Building (64), St Lucia Campus, Brisbane, QLD 4072, Australia
| | | |
Collapse
|
305
|
Lin JA, Wu CH, Fang SC, Yen GC. Combining the observation of cell morphology with the evaluation of key inflammatory mediators to assess the anti-inflammatory effects of geranyl flavonoid derivatives in breadfruit. Food Chem 2012. [DOI: 10.1016/j.foodchem.2011.12.070] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
306
|
Ejdesjö A, Wentzel P, Eriksson UJ. Influence of maternal metabolism and parental genetics on fetal maldevelopment in diabetic rat pregnancy. Am J Physiol Endocrinol Metab 2012; 302:E1198-209. [PMID: 22374754 DOI: 10.1152/ajpendo.00661.2011] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The purpose of this study was to investigate the influence of parental transgenerational genetics and maternal metabolic state on fetal maldevelopment in diabetic rat pregnancy. Rats from an inbred malformation-resistant (W) strain, and an inbred malformation-prone (L) strain, were cross-mated to produce two different F(1) hybrids, WL and LW. Normal (N) and manifestly diabetic (MD) WL and LW females were mated with normal males of the same F(1) generation to obtain WLWL and LWLW F(2) hybrids. Maternal diabetes increased malformation and resorption rates in both F(2) generations. MD-WLWL offspring had higher resorption rate but similar malformation rate compared with the MD-LWLW offspring. Malformed MD-WLWL offspring presented with 100% agnathia/micrognathia, whereas malformed MD-LWL offspring had 60% agnathia/micrognathia and 40% cleft lip and palate. The MD-WL dams showed increased β-hydroxybutyrate levels and alterations in concentrations of several amino acids (taurine, asparagine, citrulline, cystine, glutamic acid, leucine, tyrosine, and tryptophan) compared with MD-LW dams. Fetal glyceraldehyde-3-phosphate dehydrogenase (Gapdh) activity and gene expression were more altered in MD-WLWL than MD-LWLW. Fetal gene expression of reactive oxygen species (ROS) scavenger enzymes was diminished in MD-WLWL compared with MD-LWLW. Glial cell line-derived neurotrophic factor and Ret proto-oncogene gene expression was decreased in both MD-WLWL and MD-LWLW fetuses, whereas increased bone morphogenetic protein 4 and decreased Sonic hedgehog homolog expression was found only in MD-LWLW fetuses. Despite identical autosomal genotypes, the WL and LW dams gave birth to offspring with markedly different malformation patterns. Together with fetal differences in enzymatic activity and expression of Gapdh, ROS scavengers, and developmental genes, these results may suggest a teratological mechanism in diabetic pregnancy influenced by maternal metabolism and parental strain epigenetics.
Collapse
Affiliation(s)
- A Ejdesjö
- Dept. of Medical Cell Biology, Biomedical Centre, PO Box 571, SE-75123 Uppsala, Sweden.
| | | | | |
Collapse
|
307
|
DeVerse JS, Bailey KA, Jackson KN, Passerini AG. Shear stress modulates RAGE-mediated inflammation in a model of diabetes-induced metabolic stress. Am J Physiol Heart Circ Physiol 2012; 302:H2498-508. [PMID: 22467309 DOI: 10.1152/ajpheart.00869.2011] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Atherosclerosis occurs preferentially at sites of disturbed blood flow despite the influence of risk factors contributing to systemic inflammation. The receptor for advanced glycation endproducts (RAGE) is a prominent mediator of inflammation in diabetes that is upregulated in atherosclerotic plaques. Our goal was to elucidate a role for arterial hemodynamics in the regulation of RAGE expression and activity. Endothelial RAGE expression was elevated at sites of flow disturbance in the aortas of healthy swine. To demonstrate a direct role for physiological shear stress (SS) in modulating RAGE expression, human aortic endothelial cells (HAEC) were exposed to high SS (HSS; 15 dyn/cm(2)), which downregulated RAGE by fourfold, or oscillatory SS (OSS; 0 ± 5 dyn/cm(2)), which upregulated RAGE by threefold, compared with static culture at 4 h. In a model of diabetes-induced metabolic stress, HAEC were chronically conditioned under high glucose (25 mM) and then simultaneously stimulated with TNF-α (0.5 ng/ml) and the RAGE ligand high mobility group box 1 (HMGB1). A 50% increase in VCAM-1 expression over TNF-α was associated with increased cytoplasmic and mitochondrial reactive oxygen species and NF-κB activity. This increase was RAGE-specific and NADPH oxidase dependent. In activated HAEC, OSS amplified HMGB1-induced VCAM-1 (3-fold) and RAGE (1.6-fold) expression and proportionally enhanced monocyte adhesion to HAEC in a RAGE-dependent manner, while HSS mitigated these increases to the level of TNF-α alone. We demonstrate that SS plays a fundamental role in regulating RAGE expression and inflammatory responses in the endothelium. These findings may provide mechanistic insight into how diabetes accelerates the nonrandom distribution of atherosclerosis in arteries.
Collapse
Affiliation(s)
- J Sherrod DeVerse
- Department of Biomedical Engineering, University of California, Davis, California 95616, USA
| | | | | | | |
Collapse
|
308
|
Aroor AR, Mandavia C, Ren J, Sowers JR, Pulakat L. Mitochondria and Oxidative Stress in the Cardiorenal Metabolic Syndrome. Cardiorenal Med 2012; 2:87-109. [PMID: 22619657 DOI: 10.1159/000335675] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2011] [Accepted: 12/08/2011] [Indexed: 12/16/2022] Open
Abstract
Mitochondria play a fundamental role in the maintenance of normal structure, function, and survival of tissues. There is considerable evidence for mitochondrial dysfunction in association with metabolic diseases including insulin resistance, obesity, diabetes, and the cardiorenal metabolic syndrome. The phenomenon of reactive oxygen species (ROS)-induced ROS release through interactions between cytosolic and mitochondrial oxidative stress contributes to a vicious cycle of enhanced oxidative stress and mitochondrial dysfunction. Activation of the cytosolic and mitochondrial NADPH oxidase system, impairment of the mitochondrial electron transport, activation of p66shc pathway-targeting mitochondria, endoplasmic reticular stress, and activation of the mammalian target of the rapamycin-S6 kinase pathway underlie dysregulation of mitochondrial dynamics and promote mitochondrial oxidative stress. These processes are further modulated by acetyltransferases including sirtuin 1 and sirtuin 3, the former regulating nuclear acetylation and the latter regulating mitochondrial acetylation. The regulation of mitochondrial functions by microRNAs forms an additional layer of molecular control of mitochondrial oxidative stress. Alcohol further exacerbates mitochondrial oxidative stress induced by overnutrition and promotes the development of metabolic diseases.
Collapse
Affiliation(s)
- Annayya R Aroor
- Department of Internal Medicine, University of Missouri School of Medicine, Columbia, Mo., USA
| | | | | | | | | |
Collapse
|
309
|
Sourris KC, Harcourt BE, Tang PH, Morley AL, Huynh K, Penfold SA, Coughlan MT, Cooper ME, Nguyen TV, Ritchie RH, Forbes JM. Ubiquinone (coenzyme Q10) prevents renal mitochondrial dysfunction in an experimental model of type 2 diabetes. Free Radic Biol Med 2012; 52:716-723. [PMID: 22172526 DOI: 10.1016/j.freeradbiomed.2011.11.017] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2011] [Revised: 11/09/2011] [Accepted: 11/12/2011] [Indexed: 12/21/2022]
Abstract
Cardiovascular benefits of ubiquinone have been previously demonstrated, and we administered it as a novel therapy in an experimental model of type 2 diabetic nephropathy. db/db and dbH mice were followed for 10 weeks, after randomization to receive either vehicle or ubiquinone (CoQ10; 10mg/kg/day) orally. db/db mice had elevated urinary albumin excretion rates and albumin:creatinine ratio, not seen in db/db CoQ10-treated mice. Renal cortices from db/db mice had lower total and oxidized CoQ10 content, compared with dbH mice. Mitochondria from db/db mice also contained less oxidized CoQ10(ubiquinone) compared with dbH mice. Diabetes-induced increases in total renal collagen but not glomerulosclerosis were significantly decreased with CoQ10 therapy. Mitochondrial superoxide and ATP production via complex II in the renal cortex were increased in db/db mice, with ATP normalized by CoQ10. However, excess renal mitochondrial hydrogen peroxide production and increased mitochondrial membrane potential seen in db/db mice were attenuated with CoQ10. Renal superoxide dismutase activity was also lower in db/db mice compared with dbH mice. Our results suggest that a deficiency in mitochondrial oxidized CoQ10 (ubiquinone) may be a likely precipitating factor for diabetic nephropathy. Therefore CoQ10 supplementation may be renoprotective in type 2 diabetes, via preservation of mitochondrial function.
Collapse
Affiliation(s)
- Karly C Sourris
- Glycation and Diabetes Complications, Baker IDI Heart Research Institute, Melbourne, VIC 3004, Australia; Department of Immunology and Department of Medicine, Monash University, Alfred Medical Research Education Precinct, Melbourne, Australia.
| | - Brooke E Harcourt
- Glycation and Diabetes Complications, Baker IDI Heart Research Institute, Melbourne, VIC 3004, Australia; Department of Immunology and Department of Medicine, Monash University, Alfred Medical Research Education Precinct, Melbourne, Australia
| | - Peter H Tang
- Department of Pediatrics, Department of Pathology, and Department of Laboratory Medicine, Cincinnati Children's Hospital Medical Center and University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Amy L Morley
- Glycation and Diabetes Complications, Baker IDI Heart Research Institute, Melbourne, VIC 3004, Australia
| | - Karina Huynh
- Department of Immunology and Department of Medicine, Monash University, Alfred Medical Research Education Precinct, Melbourne, Australia; Heart Failure Pharmacology, Baker IDI Heart Research Institute, Melbourne, VIC 3004, Australia
| | - Sally A Penfold
- Glycation and Diabetes Complications, Baker IDI Heart Research Institute, Melbourne, VIC 3004, Australia
| | - Melinda T Coughlan
- Glycation and Diabetes Complications, Baker IDI Heart Research Institute, Melbourne, VIC 3004, Australia; Department of Immunology and Department of Medicine, Monash University, Alfred Medical Research Education Precinct, Melbourne, Australia
| | - Mark E Cooper
- Glycation and Diabetes Complications, Baker IDI Heart Research Institute, Melbourne, VIC 3004, Australia; Department of Immunology and Department of Medicine, Monash University, Alfred Medical Research Education Precinct, Melbourne, Australia
| | - Tuong-Vi Nguyen
- Glycation and Diabetes Complications, Baker IDI Heart Research Institute, Melbourne, VIC 3004, Australia
| | - Rebecca H Ritchie
- Department of Immunology and Department of Medicine, Monash University, Alfred Medical Research Education Precinct, Melbourne, Australia; Heart Failure Pharmacology, Baker IDI Heart Research Institute, Melbourne, VIC 3004, Australia
| | - Josephine M Forbes
- Glycation and Diabetes Complications, Baker IDI Heart Research Institute, Melbourne, VIC 3004, Australia; Department of Immunology and Department of Medicine, Monash University, Alfred Medical Research Education Precinct, Melbourne, Australia; Mater Medical Research Institute, South Brisbane, QLD, Australia
| |
Collapse
|
310
|
Millioni R, Puricelli L, Iori E, Trevisan R, Tessari P. Skin fibroblasts as a tool for identifying the risk of nephropathy in the type 1 diabetic population. Diabetes Metab Res Rev 2012; 28:62-70. [PMID: 22218755 DOI: 10.1002/dmrr.1287] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Human fibroblasts in culture have been employed as an in vitro system to investigate some pathophysiological mechanisms of diabetes mellitus also associated with the development of diabetic nephropathy. In fact, there is increasing evidence that genetic factors either convey the risk of, or protect from, diabetic nephropathy and that the expression profiles and/or the behaviour of the cultured skin fibroblasts from type 1 diabetic patients could reflect these genetic influences. On the other hand, alterations could be attributable not only to changes in DNA sequence, but also to epigenetic factors. Our aim is to make a critical overview of the studies involving primary cultures of skin fibroblasts as tools to investigate the pathophysiology of diabetic nephropathy performed until now in this area. Cultured skin fibroblasts could be useful not only for the identification of patients at risk of developing diabetic renal disease, but also for a better understanding of the complex multifactorial mechanisms leading to the long-term complications in diabetes.
Collapse
Affiliation(s)
- Renato Millioni
- Department of Clinical and Experimental Medicine, Chair of Metabolism, University of Padova, Padova, Italy.
| | | | | | | | | |
Collapse
|
311
|
Fujita H, Fujishima H, Morii T, Sakamoto T, Komatsu K, Hosoba M, Narita T, Takahashi K, Takahashi T, Yamada Y. Modulation of renal superoxide dismutase by telmisartan therapy in C57BL/6-Ins2(Akita) diabetic mice. Hypertens Res 2011; 35:213-20. [PMID: 22072110 PMCID: PMC3273720 DOI: 10.1038/hr.2011.176] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Renal superoxide excess, which is induced by an imbalance of the superoxide-producing enzyme NAD(P)H oxidase and the superoxide-scavenging enzyme superoxide dismutase (SOD) under hyperglycemia, increases oxidative stress and contributes to the development of diabetic nephropathy. In this study, we treated non-obese and hypoinsulinemic C57BL/6-Ins2Akita (C57BL/6-Akita) diabetic mice with telmisartan (5 mg kg−1 per day), an angiotensin II type 1 receptor blocker, or amlodipine (5 mg kg−1 per day), a calcium channel blocker, for 4 weeks and compared the effects of these two anti-hypertensive drugs on renal NAD(P)H oxidase, SOD and transcription factor Nrf2 (NF-E2-related factor 2), which is known to upregulate several antioxidant enzymes including SOD. Vehicle-treated C57BL/6-Akita mice exhibited higher renal NAD(P)H oxidase and lower renal SOD activity with increased levels of renal superoxide than the C57BL/6-wild-type non-diabetic mice. Interestingly, telmisartan treatment not only reduced NAD(P)H oxidase activity but also enhanced SOD activity in C57BL/6-Akita mouse kidneys, leading to a reduction of renal superoxide levels. Furthermore, telmisartan-treated C57BL/6-Akita mice increased the renal protein expression of SOD and Nrf2. In parallel with the reduction of renal superoxide levels, a reduction of urinary albumin levels and a normalization of elevated glomerular filtration rate were observed in telmisartan-treated C57BL/6-Akita mice. In contrast, treatment with amlodipine failed to modulate renal NAD(P)H oxidase, SOD and Nrf2. Finally, treatment of C57BL/6-Akita mice with apocynin, an NAD(P)H oxidase inhibitor, also increased the renal protein expression of SOD and Nrf2. Collectively, our data suggest that NAD(P)H oxidase negatively regulates renal SOD, possibly by downregulation of Nrf2, and that telmisartan could upregulate renal SOD by the suppression of NAD(P)H oxidase and subsequent upregulation of Nrf2, leading to the amelioration of renal oxidative stress and diabetic renal changes.
Collapse
Affiliation(s)
- Hiroki Fujita
- Division of Endocrinology, Metabolism and Geriatric Medicine, Akita University Graduate School of Medicine, Akita, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
312
|
Vetter SW, Indurthi VS. Moderate glycation of serum albumin affects folding, stability, and ligand binding. Clin Chim Acta 2011; 412:2105-16. [DOI: 10.1016/j.cca.2011.07.022] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2011] [Revised: 07/21/2011] [Accepted: 07/22/2011] [Indexed: 01/11/2023]
|
313
|
Differential effects of insulin on peripheral diabetes-related changes in mitochondrial bioenergetics: Involvement of advanced glycosylated end products. Biochim Biophys Acta Mol Basis Dis 2011; 1812:1460-71. [DOI: 10.1016/j.bbadis.2011.06.017] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2011] [Revised: 05/30/2011] [Accepted: 06/07/2011] [Indexed: 11/17/2022]
|
314
|
Liu Y, Ma Y, Wang R, Xia C, Zhang R, Lian K, Luan R, Sun L, Yang L, Lau WB, Wang H, Tao L. Advanced glycation end products accelerate ischemia/reperfusion injury through receptor of advanced end product/nitrative thioredoxin inactivation in cardiac microvascular endothelial cells. Antioxid Redox Signal 2011; 15:1769-78. [PMID: 21126209 DOI: 10.1089/ars.2010.3764] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The advanced glycation end products (AGEs) are associated with increased cardiac endothelial injury. However, no causative link has been established between increased AGEs and enhanced endothelial injury after ischemia/reperfusion. More importantly, the molecular mechanisms by which AGEs may increase endothelial injury remain unknown. Adult rat cardiac microvascular endothelial cells (CMECs) were isolated and incubated with AGE-modified bovine serum albumin (BSA) or BSA. After AGE-BSA or BSA preculture, CMECs were subjected to simulated ischemia (SI)/reperfusion (R). AGE-BSA increased SI/R injury as evidenced by enhanced lactate dehydrogenase release and caspase-3 activity. Moreover, AGE-BSA significantly increased SI/R-induced oxidative/nitrative stress in CMECs (as measured by increased inducible nitric oxide synthase expression, total nitric oxide production, superoxide generation, and peroxynitrite formation) and increased SI/R-induced nitrative inactivation of thioredoxin-1 (Trx-1), an essential cytoprotective molecule. Supplementation of EUK134 (peroxynitrite decomposition catalyst), human Trx-1, or soluble receptor of advanced end product (sRAGE) (a RAGE decoy) in AGE-BSA precultured cells attenuated SI/R-induced oxidative/nitrative stress, reduced SI/R-induced Trx-1 nitration, preserved Trx-1 activity, and reduced SI/R injury. Our results demonstrated that AGEs may increase SI/R-induced endothelial injury by increasing oxidative/nitrative injury and subsequent nitrative inactivation of Trx-1. Interventions blocking RAGE signaling or restoring Trx activity may be novel therapies to mitigate endothelial ischemia/reperfusion injury in the diabetic population.
Collapse
Affiliation(s)
- Yi Liu
- Department of Cardiology, Xijing Hospital, The Fourth Military Medical University,15 Changle West Road, Xi’an, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
315
|
Grosjean F, Vlassara H, Striker GE. Aging kidney: modern perspectives for an ‘old’ problem. ACTA ACUST UNITED AC 2011. [DOI: 10.2217/ahe.11.63] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The scientific community and health systems will have to address the increasing incidence of reduced kidney function because of progressive global aging. The aim of this review is to describe the morphological and functional alterations that characterize the aging kidney and to suggest not only pharmaceutical pathways but also lifestyle changes that could be beneficially targeted.
Collapse
Affiliation(s)
- Fabrizio Grosjean
- Division of Experimental Diabetes & Aging, Department of Geriatrics, Mount Sinai School of Medicine, New York, USA; Division of Nephrology, Department of Medicine, Mount Sinai School of Medicine, New York, USA
- Section of Nephrology, Department of Internal Medicine, University of Pavia, Policlinico San Matteo, Pavia, Italy
| | - Helen Vlassara
- Division of Experimental Diabetes & Aging, Department of Geriatrics, Mount Sinai School of Medicine, New York, USA; Division of Nephrology, Department of Medicine, Mount Sinai School of Medicine, New York, USA
| | - Gary E Striker
- Division of Experimental Diabetes & Aging, Department of Geriatrics, Mount Sinai School of Medicine, New York, USA; Division of Nephrology, Department of Medicine, Mount Sinai School of Medicine, New York, USA
| |
Collapse
|
316
|
Drosophila melanogaster larvae fed by glucose and fructose demonstrate difference in oxidative stress markers and antioxidant enzymes of adult flies. Comp Biochem Physiol A Mol Integr Physiol 2011; 160:27-34. [DOI: 10.1016/j.cbpa.2011.04.019] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2011] [Revised: 04/27/2011] [Accepted: 04/27/2011] [Indexed: 01/05/2023]
|
317
|
Kong FL, Cheng W, Chen J, Liang Y. d-Ribose glycates β(2)-microglobulin to form aggregates with high cytotoxicity through a ROS-mediated pathway. Chem Biol Interact 2011; 194:69-78. [PMID: 21864514 DOI: 10.1016/j.cbi.2011.08.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2011] [Revised: 08/04/2011] [Accepted: 08/05/2011] [Indexed: 11/29/2022]
Abstract
β(2)-Microglobulin (β(2)M) modified with advanced glycation end products (AGEs) is a major component of the amyloid deposits in hemodialysis-associated amyloidosis (HAA). However, the effect of glycation on the misfolding and aggregation of β(2)M has not been studied so far. Here we examine the molecular mechanism of aggregate formation of HAA-related ribosylated β(2)M in vitro. We find that the glycating agent d-ribose interacts with human β(2)M to generate AGEs that form aggregates in a time-dependent manner. Ribosylated β(2)M molecules are highly oligomerized compared with unglycated β(2)M, and have granular morphology. Furthermore, such ribosylated β(2)M aggregates show significant cytotoxicity to both human SH-SY5Y neuroblastoma and human foreskin fibroblast FS2 cells and induce intracellular reactive oxygen species (ROS). Presence of the antioxidant N-acetylcysteine (1.0mM) attenuated intracellular ROS and prevented cell death induction in both SH-SY5Y and FS2 cells, indicating that the cytotoxicity of ribosylated β(2)M aggregates depends on a ROS-mediated pathway in both cell lines. In other words, d-ribose reacts with β(2)M and induces the ribosylated protein to form granular aggregates with high cytotoxicity through a ROS-mediated pathway. These findings suggest that ribosylated β(2)M aggregates could contribute to the dysfunction and death of cells and could play an important role in the pathogenesis of β(2)M-associated diseases such as HAA.
Collapse
Affiliation(s)
- Fan-Lou Kong
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, China
| | | | | | | |
Collapse
|
318
|
Barlovic DP, Soro-Paavonen A, Jandeleit-Dahm KAM. RAGE biology, atherosclerosis and diabetes. Clin Sci (Lond) 2011; 121:43-55. [PMID: 21457145 DOI: 10.1042/cs20100501] [Citation(s) in RCA: 137] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Diabetes is characterized by accelerated atherosclerosis with widely distributed vascular lesions. An important mechanism by which hyperglycaemia contributes to vascular injury is through the extensive intracellular and extracellular formation of AGEs (advanced glycation end products). AGEs represent a heterogeneous group of proteins, lipids and nucleic acids, irreversibly cross-linked with reducing sugars. AGEs are implicated in the atherosclerotic process, either directly or via receptor-mediated mechanisms, the most extensively studied receptor being RAGE (receptor for AGEs). The AGE-RAGE interaction alters cellular signalling, promotes gene expression and enhances the release of pro-inflammatory molecules. It elicits the generation of oxidative stress in numerous cell types. The importance of the AGE-RAGE interaction and downstream pathways leading to injurious effects as a result of chronic hyperglycaemia in the development, progression and instability of diabetic atherosclerotic lesions has been amply demonstrated in animal studies. Moreover, the deleterious link of AGEs with diabetic vascular complications has been suggested in many human studies. In the present review, our current understanding of their role as an important mediator of vascular injury through the various stages of atherosclerosis in diabetes will be reviewed and critically assessed.
Collapse
Affiliation(s)
- Drazenka Pongrac Barlovic
- Clinical Department of Endocrinology, Diabetes and Metabolic Diseases, University Medical Centre Ljubljana, Zaloska 7, Ljubljana, Slovenia
| | | | | |
Collapse
|
319
|
Harcourt BE, Sourris KC, Coughlan MT, Walker KZ, Dougherty SL, Andrikopoulos S, Morley AL, Thallas-Bonke V, Chand V, Penfold SA, de Courten MP, Thomas MC, Kingwell BA, Bierhaus A, Cooper ME, Courten BD, Forbes JM. Targeted reduction of advanced glycation improves renal function in obesity. Kidney Int 2011; 80:190-8. [DOI: 10.1038/ki.2011.57] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
320
|
Abstract
Persistently elevated oxidative stress and inflammation precede or occur during the development of type 1 or type 2 diabetes mellitus and precipitate devastating complications. Given the rapidly increasing incidence of diabetes mellitus and obesity in the space of a few decades, new genetic mutations are unlikely to be the cause, instead pointing to environmental initiators. A hallmark of contemporary culture is a preference for thermally processed foods, replete with pro-oxidant advanced glycation endproducts (AGEs). These molecules are appetite-increasing and, thus, efficient enhancers of overnutrition (which promotes obesity) and oxidant overload (which promotes inflammation). Studies of genetic and nongenetic animal models of diabetes mellitus suggest that suppression of host defenses, under sustained pressure from food-derived AGEs, may potentially shift homeostasis towards a higher basal level of oxidative stress, inflammation and injury of both insulin-producing and insulin-responsive cells. This sequence promotes both types of diabetes mellitus. Reducing basal oxidative stress by AGE restriction in mice, without energy or nutrient change, reinstates host defenses, alleviates inflammation, prevents diabetes mellitus, vascular and renal complications and extends normal lifespan. Studies in healthy humans and in those with diabetes mellitus show that consumption of high amounts of food-related AGEs is a determinant of insulin resistance and inflammation and that AGE restriction improves both. This Review focuses on AGEs as novel initiators of oxidative stress that precedes, rather than results from, diabetes mellitus. Therapeutic gains from AGE restriction constitute a paradigm shift.
Collapse
Affiliation(s)
- Helen Vlassara
- Division of Experimental Diabetes and Aging, Brookdale Department of Geriatrics, Mount Sinai School of Medicine, New York, NY 10029, USA. helen.vlassara@ mssm.edu
| | | |
Collapse
|
321
|
|
322
|
Li BY, Li XL, Cai Q, Gao HQ, Cheng M, Zhang JH, Wang JF, Yu F, Zhou RH. Induction of lactadherin mediates the apoptosis of endothelial cells in response to advanced glycation end products and protective effects of grape seed procyanidin B2 and resveratrol. Apoptosis 2011; 16:732-45. [DOI: 10.1007/s10495-011-0602-4] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
323
|
Park J, Kwon MK, Huh JY, Choi WJ, Jeong LS, Nagai R, Kim WY, Kim J, Lee GT, Lee HB, Ha H. Renoprotective antioxidant effect of alagebrium in experimental diabetes. Nephrol Dial Transplant 2011; 26:3474-84. [DOI: 10.1093/ndt/gfr152] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
324
|
Detection of autoantibodies against reactive oxygen species modified glutamic acid decarboxylase-65 in type 1 diabetes associated complications. BMC Immunol 2011; 12:19. [PMID: 21385406 PMCID: PMC3063234 DOI: 10.1186/1471-2172-12-19] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2010] [Accepted: 03/08/2011] [Indexed: 02/02/2023] Open
Abstract
Background Autoantibodies against glutamate decarboxylase-65 (GAD65Abs) are thought to be a major immunological tool involved in pathogenic autoimmunity development in various diseases. GAD65Abs are a sensitive and specific marker for type 1 diabetes (T1D). These autoantibodies can also be found in 6-10% of patients classified with type 2 diabetes (T2D), as well as in 1-2% of the healthy population. The latter individuals are at low risk of developing T1D because the prevalence rate of GAD65Abs is only about 0.3%. It has, therefore, been suggested that the antibody binding to GAD65 in these three different GAD65Ab-positive phenotypes differ with respect to epitope specificity. The specificity of reactive oxygen species modified GAD65 (ROS-GAD65) is already well established in the T1D. However, its association in secondary complications of T1D has not yet been ascertained. Hence this study focuses on identification of autoantibodies against ROS-GAD65 (ROS-GAD65Abs) and quantitative assays in T1D associated complications. Results From the cohort of samples, serum autoantibodies from T1D retinopathic and nephropathic patients showed high recognition of ROS-GAD65 as compared to native GAD65 (N-GAD65). Uncomplicated T1D subjects also exhibited reactivity towards ROS-GAD65. However, this was found to be less as compared to the binding recorded from complicated subjects. These results were further proven by competitive ELISA estimations. The apparent association constants (AAC) indicate greater affinity of IgG from retinopathic T1D patients (1.90 × 10-6 M) followed by nephropathic (1.81 × 10-6 M) and uncomplicated (3.11 × 10-7 M) T1D patients for ROS-GAD65 compared to N-GAD65. Conclusion Increased oxidative stress and blood glucose levels with extended duration of disease in complicated T1D could be responsible for the gradual formation and/or exposing cryptic epitopes on GAD65 that induce increased production of ROS-GAD65Abs. Hence regulation of ROS-GAD65Abs could offer novel tools for analysing and possibly treating T1D complications.
Collapse
|
325
|
Abstract
Diabetic nephropathy is a major microvascular complication of diabetes mellitus and the most common cause of end-stage renal disease worldwide. The treatment costs of diabetes mellitus and its complications represent a huge burden on health-care expenditures, creating a major need to identify modifiable factors concerned in the pathogenesis and progression of diabetic nephropathy. Chronic hyperglycemia remains the primary cause of the metabolic, biochemical and vascular abnormalities in diabetic nephropathy. Promotion of excessive oxidative stress in the vascular and cellular milieu results in endothelial cell dysfunction, which is one of the earliest and most pivotal metabolic consequences of chronic hyperglycemia. These derangements are caused by excessive production of advanced glycation end products and free radicals and by the subjugation of antioxidants and antioxidant mechanisms. An increased understanding of the role of oxidative stress in diabetic nephropathy has lead to the exploration of a number of therapeutic strategies, the success of which has so far been limited. However, judicious and timely use of current therapies to maintain good glycemic control, adequate blood pressure and lipid levels, along with lifestyle measures such as regular exercise, optimization of diet and smoking cessation, may help to reduce oxidative stress and endothelial cell dysfunction and retard the progression of diabetic nephropathy until more definitive therapies become available.
Collapse
|
326
|
Rosin DL, Okusa MD. Dangers within: DAMP responses to damage and cell death in kidney disease. J Am Soc Nephrol 2011; 22:416-25. [PMID: 21335516 DOI: 10.1681/asn.2010040430] [Citation(s) in RCA: 228] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The response to exogenous pathogens leads to activation of innate immunity through the release of pathogen-associated molecular patterns (PAMPs) and their binding to pattern recognition receptors. A classic example is septic shock where Toll receptor 4 recognizes PAMPs. Although well accepted, this concept does not explain the activation of innate immunity and inflammation occurs with transplantation, autoimmunity, or trauma. Increasingly recognized is that endogenous molecules released by dying cells (damage-associated molecular patterns; DAMPs) activate cellular receptors leading to downstream inflammation. Thus endogenous danger signals and exogenous PAMPs elicit similar responses through seemingly similar mechanisms. Also emerging is our understanding that normal repair processes benefit from dampening the immune response to these endogenous danger molecules. Here we focus on the role of DAMPs and their putative receptors in the pathogenesis of acute and chronic kidney diseases.
Collapse
Affiliation(s)
- Diane L Rosin
- Division of Nephrology, University of Virginia Health System, Charlottesville, VA 22908, USA.
| | | |
Collapse
|
327
|
Anderson S, Eldadah B, Halter JB, Hazzard WR, Himmelfarb J, Horne FM, Kimmel PL, Molitoris BA, Murthy M, O'Hare AM, Schmader KE, High KP. Acute kidney injury in older adults. J Am Soc Nephrol 2011; 22:28-38. [PMID: 21209252 DOI: 10.1681/asn.2010090934] [Citation(s) in RCA: 140] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Aging kidneys undergo structural and functional changes that decrease autoregulatory capacity and increase susceptibility to acute injury. Acute kidney injury associates with duration and location of hospitalization, mortality risk, progression to chronic kidney disease, and functional status in daily living. Definition and diagnosis of acute kidney injury are based on changes in creatinine, which is an inadequate marker and might identify patients when it is too late. The incidence of acute kidney injury is rising and increases with advancing age, yet clinical studies have been slow to address geriatric issues or the heterogeneity in etiologies, outcomes, or patient preferences among the elderly. Here we examine some of the current literature, identify knowledge gaps, and suggest potential research questions regarding acute kidney injury in older adults. Answering these questions will facilitate the integration of geriatric issues into future mechanistic and clinical studies that affect management and care of acute kidney injury.
Collapse
Affiliation(s)
- Sharon Anderson
- Section on Infectious Diseases, Department of Internal Medicine, Wake Forest University School of Medicine, 100 Medical Center Boulevard, Winston-Salem, NC 27157-1042, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
328
|
Cheng X, Siow RCM, Mann GE. Impaired redox signaling and antioxidant gene expression in endothelial cells in diabetes: a role for mitochondria and the nuclear factor-E2-related factor 2-Kelch-like ECH-associated protein 1 defense pathway. Antioxid Redox Signal 2011; 14:469-87. [PMID: 20524845 DOI: 10.1089/ars.2010.3283] [Citation(s) in RCA: 150] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Type 2 diabetes is an age-related disease associated with vascular pathologies, including severe blindness, renal failure, atherosclerosis, and stroke. Reactive oxygen species (ROS), especially mitochondrial ROS, play a key role in regulating the cellular redox status, and an overproduction of ROS may in part underlie the pathogenesis of diabetes and other age-related diseases. Cells have evolved endogenous defense mechanisms against sustained oxidative stress such as the redox-sensitive transcription factor nuclear factor E2-related factor 2 (Nrf2), which regulates antioxidant response element (ARE/electrophile response element)-mediated expression of detoxifying and antioxidant enzymes and the cystine/glutamate transporter involved in glutathione biosynthesis. We hypothesize that diminished Nrf2/ARE activity contributes to increased oxidative stress and mitochondrial dysfunction in the vasculature leading to endothelial dysfunction, insulin resistance, and abnormal angiogenesis observed in diabetes. Sustained hyperglycemia further exacerbates redox dysregulation, thereby providing a positive feedback loop for severe diabetic complications. This review focuses on the role that Nrf2/ARE-linked gene expression plays in regulating endothelial redox homeostasis in health and type 2 diabetes, highlighting recent evidence that Nrf2 may provide a therapeutic target for countering oxidative stress associated with vascular disease and aging.
Collapse
Affiliation(s)
- Xinghua Cheng
- Cardiovascular Division, School of Medicine, King's College London, London, United Kingdom
| | | | | |
Collapse
|
329
|
Duncan JG. Mitochondrial dysfunction in diabetic cardiomyopathy. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2011; 1813:1351-9. [PMID: 21256163 DOI: 10.1016/j.bbamcr.2011.01.014] [Citation(s) in RCA: 156] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Received: 06/16/2010] [Revised: 12/21/2010] [Accepted: 01/11/2011] [Indexed: 12/26/2022]
Abstract
Cardiovascular disease is common in patients with diabetes and is a significant contributor to the high mortality rates associated with diabetes. Heart failure is common in diabetic patients, even in the absence of coronary artery disease or hypertension, an entity known as diabetic cardiomyopathy. Evidence indicates that myocardial metabolism is altered in diabetes, which likely contributes to contractile dysfunction and ventricular failure. The mitochondria are the center of metabolism, and recent data suggests that mitochondrial dysfunction may play a critical role in the pathogenesis of diabetic cardiomyopathy. This review summarizes many of the potential mechanisms that lead to mitochondrial dysfunction in the diabetic heart. This article is part of a Special Issue entitled: Mitochondria and Cardioprotection.
Collapse
Affiliation(s)
- Jennifer G Duncan
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
330
|
Shen GX. Oxidative stress and diabetic cardiovascular disorders: roles of mitochondria and NADPH oxidase. Can J Physiol Pharmacol 2011; 88:241-8. [PMID: 20393589 DOI: 10.1139/y10-018] [Citation(s) in RCA: 107] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cardiovascular diseases are the predominant cause of death in patients with diabetes mellitus. Underlying mechanism for the susceptibility of diabetic patients to cardiovascular diseases remains unclear. Elevated oxidative stress was detected in diabetic patients and in animal models of diabetes. Hyperglycemia, oxidatively modified atherogenic lipoproteins, and advanced glycation end products are linked to oxidative stress in diabetes. Mitochondria are one of major sources of reactive oxygen species (ROS) in cells. Mitochondrial dysfunction increases electron leak and the generation of ROS from the mitochondrial respiratory chain (MRC). High levels of glucose and lipids impair the activities of MRC complex enzymes. NADPH oxidase (NOX) generates superoxide from NADPH in cells. Increased NOX activity was detected in diabetic patients. Hyperglycemia and hyperlipidemia increased the expression of NOX in vascular endothelial cells. Accumulated lines of evidence indicate that oxidative stress induced by excessive ROS production is linked to many processes associated with diabetic cardiovascular complications. Overproduction of ROS resulting from mitochondrial dysfunction or NOX activation is associated with uncoupling of endothelial nitric oxide synthase, which leads to reduced production of nitric oxide and endothelial-dependent vasodilation. Gene silence or inhibitor of NOX reduced oxidized or glycated LDL-induced expression of plasminogen activator inhibitor-1 in endothelial cells. Statins, hypoglycemic agents, and exercise may reduce oxidative stress in diabetic patients through the reduction of NOX activity or the improvement of mitochondrial function, which may prevent or postpone the development of cardiovascular complications.
Collapse
Affiliation(s)
- Garry X Shen
- Department of Internal Medicine, University of Manitoba, 835-715 McDermot Avenue, Winnipeg MB R3E 3P4, Canada.
| |
Collapse
|
331
|
Desai KM, Chang T, Wang H, Banigesh A, Dhar A, Liu J, Untereiner A, Wu L. Oxidative stress and aging: is methylglyoxal the hidden enemy? Can J Physiol Pharmacol 2011; 88:273-84. [PMID: 20393592 DOI: 10.1139/y10-001] [Citation(s) in RCA: 149] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Aging is a multifactorial process that involves changes at the cellular, tissue, organ and the whole body levels resulting in decreased functioning, development of diseases, and ultimately death. Oxidative stress is believed to be a very important factor in causing aging and age-related diseases. Oxidative stress is caused by an imbalance between oxidants such as reactive oxygen species (ROS) and antioxidants. ROS are produced from the mitochondrial electron transport chain and many oxidative reactions. Methylglyoxal (MG) is a highly reactive dicarbonyl metabolite formed during glucose, protein and fatty acid metabolism. MG levels are elevated in hyperglycemia and other conditions. An excess of MG formation can increase ROS production and cause oxidative stress. MG reacts with proteins, DNA and other biomolecules, and is a major precursor of advanced glycation end products (AGEs). AGEs are also associated with the aging process and age-related diseases such as cardiovascular complications of diabetes, neurodegenerative diseases and connective tissue disorders. AGEs also increase oxidative stress. In this review we discuss the potential role of MG in the aging process through increasing oxidative stress besides causing AGEs formation. Specific and effective scavengers and crosslink breakers of MG and AGEs are being developed and can become potential treatments to slow the aging process and prevent many diseases.
Collapse
Affiliation(s)
- Kaushik M Desai
- Department of Pharmacology, College of Medicine, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
| | | | | | | | | | | | | | | |
Collapse
|
332
|
Coughlan MT, Forbes JM. Temporal increases in urinary carboxymethyllysine correlate with albuminuria development in diabetes. Am J Nephrol 2011; 34:9-17. [PMID: 21654162 DOI: 10.1159/000328581] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2011] [Accepted: 02/12/2011] [Indexed: 01/09/2023]
Abstract
BACKGROUND/AIMS Advanced glycation end products (AGEs) mediate progressive tissue damage in diabetic nephropathy; however, their utility as a noninvasive reliable biomarker of progressive diabetic nephropathy remains to be determined. In this study, we investigated the temporal accumulation of the AGE carboxymethyllysine (CML) at various sites in a model of experimental diabetic nephropathy. METHODS Diabetic rats were followed for 1, 4, 8, 16 and 32 weeks. Glomerular filtration rate and urinary albumin excretion were measured. CML was determined in the plasma, urine, renal cortical mitochondria and cytosol by an in-house ELISA. Gene expression of AGE receptors were quantified by real-time PCR and urinary excretion of 8-hydroxy-2'-deoxyguanosine (8-OHdG) was determined by EIA. RESULTS Four weeks after diabetes induction, urinary CML excretion was increased, which preceded the excretion of urinary albumin and continued to rise progressively until 32 weeks. Circulating, mitochondrial and cytosolic CML content and urinary excretion of 8-OHdG were increased 4 weeks after diabetes induction, but did not increase further with diabetes duration. Renal gene expression of AGE receptors was transiently upregulated at 1 week of diabetes, but this was not a sustained phenomenon. CONCLUSIONS The most informative marker of progressive renal damage linked to the AGE pathway in experimental diabetic nephropathy is urinary excretion of CML, which now warrants clinical investigation as a potential noninvasive sensitive marker of progressive diabetic nephropathy.
Collapse
Affiliation(s)
- Melinda T Coughlan
- Glycation and Diabetes Complications Laboratory, Baker IDI Heart and Diabetes Institute, Melbourne, VIC, Australia.
| | | |
Collapse
|
333
|
Babaev VR, Whitesell RR, Li L, Linton MF, Fazio S, May JM. Selective macrophage ascorbate deficiency suppresses early atherosclerosis. Free Radic Biol Med 2011; 50:27-36. [PMID: 20974251 PMCID: PMC3014415 DOI: 10.1016/j.freeradbiomed.2010.10.702] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2010] [Revised: 09/22/2010] [Accepted: 10/17/2010] [Indexed: 11/17/2022]
Abstract
To test whether severe ascorbic acid deficiency in macrophages affects progression of early atherosclerosis, we used fetal liver cell transplantation to generate atherosclerosis-prone apolipoprotein E-deficient (apoE(-/-)) mice that selectively lacked the ascorbate transporter (SVCT2) in hematopoietic cells, including macrophages. After 13 weeks of chow diet, apoE(-/-) mice lacking the SVCT2 in macrophages had surprisingly less aortic atherosclerosis, decreased lesion macrophage numbers, and increased macrophage apoptosis compared to control-transplanted mice. Serum lipid levels were similar in both groups. Peritoneal macrophages lacking the SVCT2 had undetectable ascorbate; increased susceptibility to H(2)O(2)-induced mitochondrial dysfunction and apoptosis; decreased expression of genes for COX-2, IL1β, and IL6; and decreased lipopolysaccharide-stimulated NF-κB and antiapoptotic gene expression. These changes were associated with decreased expression of both the receptor for advanced glycation end products and HIF-1α, either or both of which could have been the proximal cause of decreased macrophage activation and apoptosis in ascorbate-deficient macrophages.
Collapse
Affiliation(s)
- Vladimir R Babaev
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | | | | | | | | | | |
Collapse
|
334
|
Soro-Paavonen A, Zhang WZ, Venardos K, Coughlan MT, Harris E, Tong DCK, Brasacchio D, Paavonen K, Chin-Dusting J, Cooper ME, Kaye D, Thomas MC, Forbes JM. Advanced glycation end-products induce vascular dysfunction via resistance to nitric oxide and suppression of endothelial nitric oxide synthase. J Hypertens 2010; 28:780-8. [PMID: 20186099 DOI: 10.1097/hjh.0b013e328335043e] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
OBJECTIVE A number of factors contribute to diabetes-associated vascular dysfunction. In the present study, we tested whether exposure to advanced glycation end-products (AGEs) impairs vascular reactivity independently of hyperglycemia and examined the potential mechanisms responsible for diabetes and AGE-associated vascular dysfunction. METHODS Vasodilator function was studied using infusion of exogenous AGEs into Sprague-Dawley rats as compared with control and streptozotocin-induced diabetic rats all followed for 16 weeks (n = 10 per group). The level of arginine metabolites and expression of endothelial nitric oxide synthase (eNOS) and downstream mediators of nitric oxide-dependent signaling were examined. To further explore these mechanisms, cultured bovine aortic endothelial cells (BAECs) were exposed to AGEs. RESULTS Both diabetic and animals infused with AGE-modified rat serum albumin (AGE-RSA) had significantly impaired vasodilatory response to acetylcholine. Unlike diabetes-associated endothelial dysfunction, AGE infusion was not associated with changes in plasma arginine metabolites, asymmetric dimethyl-L-arginine levels or eNOS expression. However, expression of the downstream mediator cGMP-dependent protein kinase 1 (PKG-1) was significantly reduced by both AGE exposure and diabetes. AGEs also augmented hyperglycemia-associated depletion in endothelial nitric oxide production and eNOS protein expression in vitro, and the novel AGE inhibitor, alagebrium chloride, partly restored these parameters. CONCLUSION We demonstrate that AGEs represent a potentially important cause of vascular dysfunction, linked to the induction of nitric oxide resistance. These findings also emphasize the deleterious and potentially additive effects of AGEs and hyperglycemia in diabetic vasculature.
Collapse
|
335
|
Prevention of diabetic nephropathy in Ins2(+/)⁻(AkitaJ) mice by the mitochondria-targeted therapy MitoQ. Biochem J 2010; 432:9-19. [PMID: 20825366 PMCID: PMC2973231 DOI: 10.1042/bj20100308] [Citation(s) in RCA: 168] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Mitochondrial production of ROS (reactive oxygen species) is thought to be associated with the cellular damage resulting from chronic exposure to high glucose in long-term diabetic patients. We hypothesized that a mitochondria-targeted antioxidant would prevent kidney damage in the Ins2(+/)⁻(AkitaJ) mouse model (Akita mice) of Type 1 diabetes. To test this we orally administered a mitochondria-targeted ubiquinone (MitoQ) over a 12-week period and assessed tubular and glomerular function. Fibrosis and pro-fibrotic signalling pathways were determined by immunohistochemical analysis, and mitochondria were isolated from the kidney for functional assessment. MitoQ treatment improved tubular and glomerular function in the Ins2(+/)⁻(AkitaJ) mice. MitoQ did not have a significant effect on plasma creatinine levels, but decreased urinary albumin levels to the same level as non-diabetic controls. Consistent with previous studies, renal mitochondrial function showed no significant change between any of the diabetic or wild-type groups. Importantly, interstitial fibrosis and glomerular damage were significantly reduced in the treated animals. The pro-fibrotic transcription factors phospho-Smad2/3 and β-catenin showed a nuclear accumulation in the Ins2(+/)⁻(AkitaJ) mice, which was prevented by MitoQ treatment. These results support the hypothesis that mitochondrially targeted therapies may be beneficial in the treatment of diabetic nephropathy. They also highlight a relatively unexplored aspect of mitochondrial ROS signalling in the control of fibrosis.
Collapse
|
336
|
Sourris KC, Morley AL, Koitka A, Samuel P, Coughlan MT, Penfold SA, Thomas MC, Bierhaus A, Nawroth PP, Yamamoto H, Allen TJ, Walther T, Hussain T, Cooper ME, Forbes JM. Receptor for AGEs (RAGE) blockade may exert its renoprotective effects in patients with diabetic nephropathy via induction of the angiotensin II type 2 (AT2) receptor. Diabetologia 2010; 53:2442-51. [PMID: 20631980 PMCID: PMC4926314 DOI: 10.1007/s00125-010-1837-2] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2010] [Accepted: 05/20/2010] [Indexed: 12/13/2022]
Abstract
AIMS/HYPOTHESIS The receptor for AGEs (RAGE) contributes to the development and progression of diabetic nephropathy. In this study, we examined whether the protective effects of RAGE blockade are exerted via modulation of the renal angiotensin II type 2 (AT2) receptor. METHODS Control and streptozotocin diabetic mice, wild-type or deficient in the AT2 receptor (At2 knockout [KO]) or RAGE (Rage KO), were studied for 24 weeks. Adenoviral overexpression of full-length Rage in primary rat mesangial cells was also used to determine the effects on AT2 production. RESULTS With diabetes, Rage-deficient mice had less albuminuria, and an attenuation of hyperfiltration and glomerulosclerosis as compared with diabetic wild-type and At2 KO mice. Renal gene and protein expression of RAGE was elevated with diabetes. Diabetic Rage KO mice had a greater increase in renal AT2 receptor protein than was seen in diabetic wild-type mice. Diabetes-induced increases in renal cytosolic and mitochondrial superoxide generation were prevented in diabetic Rage KO mice, but enhanced in all At2 KO mice. Adenoviral overexpression of RAGE or AGE treatment decreased cell surface AT2 expression, in association with increasing superoxide generation; both were reversed using antioxidants N-acetylcysteine and apocynin, and soluble RAGE in primary mesangial cells. CONCLUSIONS/INTERPRETATION RAGE appears to be a common and key modulator of AT2 receptor expression, a finding that would implicate a newly defined RAGE-AT2 axis in the development and progression of diabetic nephropathy.
Collapse
Affiliation(s)
- K C Sourris
- JDRF Einstein Centre for Diabetes Complications, Baker Heart Research Institute, PO Box 6492, St Kilda Rd Central, Melbourne, Victoria, 8008, Australia.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
337
|
Afanas'ev I. Signaling of reactive oxygen and nitrogen species in Diabetes mellitus. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2010; 3:361-73. [PMID: 21311214 PMCID: PMC3154046 DOI: 10.4161/oxim.3.6.14415] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2010] [Revised: 11/26/2010] [Accepted: 12/06/2010] [Indexed: 02/07/2023]
Abstract
Disorder of physiological signaling functions of reactive oxygen species (ROS) superoxide and hydrogen peroxide and reactive nitrogen species (RNS) nitric oxide and peroxynitrite is an important feature of diabetes mellitus type 1 and type 2. It is now known that hyperglycemic conditions of cells are associated with the enhanced levels of ROS mainly generated by mitochondria and NADPH oxidase. It has been established that ROS stimulate many enzymatic cascades under normal physiological conditions, but hyperglycemia causes ROS overproduction and the deregulation of ROS signaling pathways initiating the development of diabetes mellitus. On the other hand the deregulation of RNS signaling leads basically to a decrease in NO formation with subsequent damaging disorders. In the present work we will consider the pathological changes of ROS and RNS signaling in enzyme/gene regulated processes catalyzed by protein kinases C and B (Akt/B), phosphatidylinositol 3'-kinase (PI3-kinase), extracellular signal-regulated kinase 1/2 (ERK1/2), and some others. Furthermore we will discuss a particularly important role of several ROS-regulated genes and adapter proteins such as the p66shc, FOXO3a, and Sirt2. The effects of low and high ROS levels in diabetes will be also considered. Thus the regulation of damaging ROS levels in diabetes by antioxidants and free radical scavengers must be one of promising treatment of this disease, however, because of the inability of traditional antioxidative vitamin E and C to interact with superoxide and hydrogen peroxide, new free radical scavengers such as flavonoids, quinones and synthetic mimetics of superoxide dismutase (SOD) should be intensively studied.
Collapse
|
338
|
Gaens KH, Stehouwer CDA, Schalkwijk CG. The N ε-(carboxymethyl)lysine-RAGE axis: putative implications for the pathogenesis of obesity-related complications. Expert Rev Endocrinol Metab 2010; 5:839-854. [PMID: 30780826 DOI: 10.1586/eem.10.68] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Obesity is an important contributor to the burden of insulin resistance, Type 2 diabetes and cardiovascular disease. An important mechanism by which excess adiposity causes obesity-associated complications is the dysregulated production and secretion of biologically active molecules derived from adipocytes. These adipokines affect the vascular wall and contribute to the development of insulin resistance and Type 2 diabetes. However, factors that cause an increased production of pro-inflammatory adipokines, while decreasing anti-inflammatory adipokines, have not been fully clarified. Owing to local conditions in adipose tissue, that is, increased fatty acids, hypoxia and oxidative stress, we speculate that an increased formation of the major advanced lipoxidation end product, Nε-(carboxymethyl)lysine (CML), may play a role. CML-adducts in proteins are major ligands for the receptor for advanced glycation end products (RAGE). The consequence of RAGE activation by CML is the activation of important signaling inflammatory pathways. The putative role of CML-modified proteins in obesity is addressed in this article. The identification of this pathway may provide an important strategy for novel therapeutic approaches against obesity-associated complications.
Collapse
Affiliation(s)
- Katrien Hj Gaens
- a Department of Internal Medicine, Laboratory for Metabolism and Vascular Medicine, Maastricht University Medical Centre, P Debeyelaan 25, PO Box 5800, 6206 AZ Maastricht, The Netherlands
- b Cardiovascular Research Institute Maastricht, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Coen DA Stehouwer
- a Department of Internal Medicine, Laboratory for Metabolism and Vascular Medicine, Maastricht University Medical Centre, P Debeyelaan 25, PO Box 5800, 6206 AZ Maastricht, The Netherlands
- b Cardiovascular Research Institute Maastricht, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Casper G Schalkwijk
- a Department of Internal Medicine, Laboratory for Metabolism and Vascular Medicine, Maastricht University Medical Centre, P Debeyelaan 25, PO Box 5800, 6206 AZ Maastricht, The Netherlands
- b Cardiovascular Research Institute Maastricht, Maastricht University Medical Centre, Maastricht, The Netherlands
- c
| |
Collapse
|
339
|
Hofmann Bowman MA, Gawdzik J, Bukhari U, Husain AN, Toth PT, Kim G, Earley J, McNally EM. S100A12 in vascular smooth muscle accelerates vascular calcification in apolipoprotein E-null mice by activating an osteogenic gene regulatory program. Arterioscler Thromb Vasc Biol 2010; 31:337-44. [PMID: 20966394 DOI: 10.1161/atvbaha.110.217745] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
OBJECTIVE The proinflammatory cytokine S100A12 is associated with coronary atherosclerotic plaque rupture. We previously generated transgenic mice with vascular smooth muscle-targeted expression of human S100A12 and found that these mice developed aortic aneurysmal dilation of the thoracic aorta. In the current study, we tested the hypothesis that S100A12 expressed in vascular smooth muscle in atherosclerosis-prone apolipoprotein E (ApoE)-null mice would accelerate atherosclerosis. METHODS AND RESULTS ApoE-null mice with or without the S100A12 transgene were analyzed. We found a 1.4-fold increase in atherosclerotic plaque size and more specifically a large increase in calcified plaque area (45% versus 7% of innominate artery plaques and 18% versus 10% of aortic root plaques) in S100A12/ApoE-null mice compared with wild-type/ApoE-null littermates. Expression of bone morphogenic protein and other osteoblastic genes was increased in aorta and cultured vascular smooth muscle, and importantly, these changes in gene expression preceded the development of vascular calcification in S100A12/ApoE-null mice. Accelerated atherosclerosis and vascular calcification were mediated, at least in part, by oxidative stress because inhibition of NADPH oxidase attenuated S100A12-mediated osteogenesis in cultured vascular smooth muscle cells. S100A12 transgenic mice in the wild-type background (ApoE+/+) showed minimal vascular calcification, suggesting that S100A12 requires a proinflammatory/proatherosclerotic environment to induce osteoblastic differentiation and vascular calcification. CONCLUSIONS Vascular smooth muscle S100A12 accelerates atherosclerosis and augments atherosclerosis-triggered osteogenesis, reminiscent of features associated with plaque instability.
Collapse
Affiliation(s)
- Marion A Hofmann Bowman
- Department of Medicine, Section of Cardiology, University of Chicago, 5841 S Maryland Avenue, Chicago IL 60637, USA.
| | | | | | | | | | | | | | | |
Collapse
|
340
|
|
341
|
Fleming TH, Humpert PM, Nawroth PP, Bierhaus A. Reactive metabolites and AGE/RAGE-mediated cellular dysfunction affect the aging process: a mini-review. Gerontology 2010; 57:435-43. [PMID: 20962515 DOI: 10.1159/000322087] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2010] [Accepted: 08/02/2010] [Indexed: 01/05/2023] Open
Abstract
Aging is a dynamic process in which its rate and subsequent longevity of an organism are dependent upon the balance between the reactive intermediates of normal cellular metabolism and the ability of the body to reduce these by-products through a multifaceted antioxidant defence system. Every disturbance of this balance constitutes a clear and present danger to the macromolecular integrity of the body. When defence mechanisms become diminished or impaired, the resulting imbalance results in accumulation of endogenous agents, such as reactive oxygen and carbonyl species, and a state of increased cellular stress, which can accelerate the rate of aging. Glycation is the non-enzymatic glycosylation of proteins, nucleotides and lipids by saccharide derivatives. Glucose and other reducing sugars are important glycating agents, but the most reactive physiological relevant glycating agents, are the dicarbonyls, in particular methylglyoxal. Endogenously formed dicarbonyl compounds can react with proteins to form advanced glycation endproducts (AGEs). Experimental models have recently provided evidence that reduced detoxification of AGE precursors by the glyoxalase system, engagement of the cellular receptor RAGE and RAGE-dependent sustained activation of the pro-inflammatory transcription factor nuclear factor κB might significantly contribute to the rate of aging and the onset of age-related neurodegenerative, musculoskeletal and vascular diseases.
Collapse
Affiliation(s)
- Thomas H Fleming
- Department of Medicine I and Clinical Chemistry, University of Heidelberg, Germany
| | | | | | | |
Collapse
|
342
|
Early- and advanced non-enzymatic glycation in diabetic vascular complications: the search for therapeutics. Amino Acids 2010; 42:1193-204. [PMID: 20960212 PMCID: PMC3296013 DOI: 10.1007/s00726-010-0779-9] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2010] [Accepted: 08/23/2010] [Indexed: 01/11/2023]
Abstract
Cardiovascular disease is a common complication of diabetes and the leading cause of death among people with diabetes. Because of the huge premature morbidity and mortality associated with diabetes, prevention of vascular complications is a key issue. Although the exact mechanism by which vascular damage occurs in diabetes in not fully understood, numerous studies support the hypothesis of a causal relationship of non-enzymatic glycation with vascular complications. In this review, data which point to an important role of Amadori-modified glycated proteins and advanced glycation endproducts in vascular disease are surveyed. Because of the potential role of early- and advanced non-enzymatic glycation in vascular complications, we also described recent developments of pharmacological inhibitors that inhibit the formation of these glycated products or the biological consequences of glycation and thereby retard the development of vascular complications in diabetes.
Collapse
|
343
|
Hallam KM, Li Q, Ananthakrishnan R, Kalea A, Zou YS, Vedantham S, Schmidt AM, Yan SF, Ramasamy R. Aldose reductase and AGE-RAGE pathways: central roles in the pathogenesis of vascular dysfunction in aging rats. Aging Cell 2010; 9:776-84. [PMID: 20670350 DOI: 10.1111/j.1474-9726.2010.00606.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Aging is inevitably accompanied by gradual and irreversible innate endothelial dysfunction. In this study, we tested the hypothesis that accentuation of glucose metabolism via the aldose reductase (AR) pathway contributes to age-related vascular dysfunction. AR protein and activity levels were significantly increased in aged vs. young aortic homogenates from Fischer 344 rats. Immunostaining revealed that the principal site of increased AR protein was the aortic endothelium as well as smooth muscle cells. Studies revealed that endothelial-dependent relaxation (EDR) in response to acetylcholine was impaired in aged rats compared to young rats and that treatment with the AR inhibitor (ARI) zopolrestat significantly improved EDR in aged rats. Methylglyoxal (MG), a key precursor of advanced glycation endproducts (AGEs), was significantly increased in the aortas of aged rats vs. young rats. Consistent with central roles for AR in generation of MG in aging, ARI treatment significantly reduced MG levels in aged rat aorta to those in young rats. Treatment of aged rats with soluble(s) RAGE, a soluble form of the chief signal transduction receptor for AGEs, RAGE, significantly improved EDR in aged rats, thus establishing the contribution of age-related increases in AGEs to endothelial dysfunction. These findings reveal that significant increases in AR expression and activity in aged rat vasculature linked to endothelial dysfunction may be mitigated, at least in part, via ARI and that aging-linked increased flux via AR generates AGEs; species which transduce endothelial injury consequent to their interaction with RAGE. These data demonstrate for the first time that AR mediates aging-related vascular dysfunction, at least in part, via RAGE.
Collapse
|
344
|
Abstract
The pathologic paradigm for renal progression is advancing tubulointerstitial fibrosis. Whereas mechanisms underlying fibrogenesis have grown in scope and understanding in recent decades, effective human treatment to directly halt or even reverse fibrosis remains elusive. Here, we examine key features mediating the molecular and cellular basis of tubulointerstitial fibrosis and highlight new insights that may lead to novel therapies. How to prevent chronic kidney disease from progressing to renal failure awaits even deeper biochemical understanding.
Collapse
Affiliation(s)
- Michael Zeisberg
- Division of Matrix Biology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA.
| | | |
Collapse
|
345
|
Belotto MF, Magdalon J, Rodrigues HG, Vinolo MAR, Curi R, Pithon-Curi TC, Hatanaka E. Moderate exercise improves leucocyte function and decreases inflammation in diabetes. Clin Exp Immunol 2010; 162:237-43. [PMID: 20846161 DOI: 10.1111/j.1365-2249.2010.04240.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
The genesis and progression of diabetes occur due in part to an uncontrolled inflammation profile with insulin resistance, increased serum levels of free fatty acids (FFA), proinflammatory cytokines and leucocyte dysfunction. In this study, an investigation was made of the effect of a 3-week moderate exercise regimen on a treadmill (60% of VO₂(max) , 30 min/day, 6 days a week) on inflammatory markers and leucocyte functions in diabetic rats. The exercise decreased serum levels of tumour necrosis factor (TNF)-α (6%), cytokine-induced neutrophil chemotactic factor 2 alpha/beta (CINC-2α/β) (9%), interleukin (IL)-1β (34%), IL-6 (86%), C-reactive protein (CRP) (41%) and FFA (40%) in diabetic rats when compared with sedentary diabetic animals. Exercise also attenuated the increased responsiveness of leucocytes from diabetics when compared to controls, diminishing the reactive oxygen species (ROS) release by neutrophils (21%) and macrophages (28%). Exercise did not change neutrophil migration and the proportion of neutrophils and macrophages in necrosis (loss of plasma membrane integrity) and apoptosis (DNA fragmentation). Serum activities of creatine kinase (CK) and lactate dehydrogenase (LDH) were not modified in the conditions studied. Therefore, physical training did not alter the integrity of muscle cells. We conclude that moderate physical exercise has marked anti-inflammatory effects on diabetic rats. This may be an efficient strategy to protect diabetics against microorganism infection, insulin resistance and vascular complications.
Collapse
|
346
|
Sun L, Xiao L, Nie J, Liu FY, Ling GH, Zhu XJ, Tang WB, Chen WC, Xia YC, Zhan M, Ma MM, Peng YM, Liu H, Liu YH, Kanwar YS. p66Shc mediates high-glucose and angiotensin II-induced oxidative stress renal tubular injury via mitochondrial-dependent apoptotic pathway. Am J Physiol Renal Physiol 2010; 299:F1014-25. [PMID: 20739391 DOI: 10.1152/ajprenal.00414.2010] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
p66Shc, a promoter of apoptosis, modulates oxidative stress response and cellular survival, but its role in the progression of diabetic nephropathy is relatively unknown. In this study, mechanisms by which p66Shc modulates high-glucose (HG)- or angiotensin (ANG) II-induced mitochondrial dysfunction were investigated in renal proximal tubular cells (HK-2 cells). Expression of p66Shc and its phosphorylated form (p-p66Shc, serine residue 36) and apoptosis were notably increased in renal tubules of diabetic mice, suggesting an increased reactive oxygen species production. In vitro, HG and ANG II led to an increased expression of total and p-p66Shc in HK-2 cells. These changes were accompanied with increased production of mitochondrial H(2)O(2), reduced mitochondrial membrane potential, increased translocation of mitochondrial cytochrome c from mitochondria into cytosol, upregulation of the expression of caspase-9, and ultimately reduced cell survival. Overexpression of a dominant-negative Ser36 mutant p66Shc (p66ShcS36A) or treatment of p66Shc- or PKC-β-short interfering RNAs partially reversed these changes. Treatment of HK-2 cells with HG and ANG II also increased the protein-protein association between p-p66Shc and Pin1, an isomerase, in the cytosol, and with cytochrome c in the mitochondria. These interactions were partially disrupted with the treatment of PKC-β inhibitor or Pin1-short interfering RNA. These data suggest that p66Shc mediates HG- and ANG II-induced mitochondrial dysfunctions via PKC-β and Pin1-dependent pathways in renal tubular cells.
Collapse
Affiliation(s)
- Lin Sun
- Dept. of Nephrology, 2nd Xiangya Hospital, Central South Univ., No. 139 Renmin Middle Rd., Changsha, Hunan 410011.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
347
|
Wang Q, Pfister F, Dorn-Beineke A, vom Hagen F, Lin J, Feng Y, Hammes HP. Low-dose erythropoietin inhibits oxidative stress and early vascular changes in the experimental diabetic retina. Diabetologia 2010; 53:1227-38. [PMID: 20339831 DOI: 10.1007/s00125-010-1727-7] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2009] [Accepted: 02/03/2010] [Indexed: 10/19/2022]
Abstract
AIMS/HYPOTHESIS Diabetic retinopathy is the result of increased oxidative and nitrosative stress induced by chronic hyperglycaemia, and affects the vasculature and the neuroglia. Erythropoietin is a neuroprotective and an endothelial survival factor. We assessed the effect of suberythropoietic epoetin delta doses on variables of oxidative stress in target tissues of diabetic complications and on pericyte loss in the diabetic retina. METHODS We administered epoetin delta to streptozotocin-induced diabetic Wistar rats at doses of 384 IU/kg body weight once weekly or 128 IU/kg body weight three times a week. The treatment lasted for 3 months. Oxidative stress and formation of AGEs were assessed by immunoblotting, expression of Ang-2 (also known as Angpt2) by RT-PCR, activation of protein kinase B (AKT) and heat shock protein (HSP)-27 levels by immunofluorescence, and incipient retinal vascular changes by quantitative morphometry of retinal digest preparations. RESULTS Diabetes increased variables of oxidative stress and nitrosative stress (N(epsilon)-carboxymethyl-lysine, nitrotyrosine and methylglyoxal-type AGEs) in retina, kidney and heart of diabetic rats. Epoetin delta reduced oxidative and nitrosative stress in all tissues, and AGEs in the retina. It also reduced increased retinal Ang-2 expression and pericyte loss, and ameliorated p-AKT and HSP-27 levels. CONCLUSIONS/INTERPRETATION Epoetin delta has antioxidative properties in organs affected by diabetes and may prevent incipient microvascular damage in the diabetic retina.
Collapse
Affiliation(s)
- Q Wang
- 5th Medical Department, Medical Faculty Mannheim, University of Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany
| | | | | | | | | | | | | |
Collapse
|
348
|
Circulating high-molecular-weight RAGE ligands activate pathways implicated in the development of diabetic nephropathy. Kidney Int 2010; 78:287-95. [PMID: 20463655 DOI: 10.1038/ki.2010.134] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The accumulation of advanced glycation end products is thought to be a key factor in the initiation and progression of diabetic nephropathy. Here we determined whether the size of the ligands for the receptor for advanced glycation end products (RAGEs) that were present in the serum of patients with type 2 diabetes modulates their pathogenic potential. Serum was collected from control subjects and patients with type 2 diabetes with varying degrees of renal disease (normo-, micro-, or macroalbuminuria). The titers of the RAGE ligands N-carboxymethyllysine (CML), S100A, S100B, and high-mobility group box 1 (HMGB1) were measured by enzyme-linked immunosorbent assay in serum as well as in pooled size-fractionated serum. We also measured cellular binding of serum fractions to mesangial cells transfected with RAGE and examined the downstream signaling pathways. Circulating CML was increased in patients with type 2 diabetes, whereas HMGB1 was decreased. S100A8, S100BA9, and soluble RAGE were unchanged. The high-molecular-weight (over 50 kDa) serum fraction contained the greatest proportion of RAGE ligands, with all immunoreactivity and cellular binding observed only with serum fractions over 30 kDa. High-molecular-weight serum from macroalbuminuric patients showed greater RAGE binding capacity, modulation of cell-surface RAGE expression, increased phospho-protein kinase C-alpha, and p65 nuclear factor kappaB DNA-binding activity, which were competitively inhibited by soluble RAGE or CML neutralizing antibodies. These data show that ligands that activate RAGE present in the circulation of patients with type 2 diabetes and nephropathy are predominantly of high molecular weight.
Collapse
|
349
|
Abstract
The multiligand receptor of the immunoglobulin superfamily, receptor for advanced glycation endproducts (RAGE), is a signal transduction receptor that binds advanced glycation endproducts, certain members of the S100/calgranulin family of proteins, high mobility group box 1 (HMGB1), advanced oxidation protein products, and amyloid (beta-sheet fibrils). Initial studies investigating the role of RAGE in renal dysfunction focused on diabetes. However, RAGE also has roles in the pathogenesis of renal disorders that are not associated with diabetes, such as obesity-related glomerulopathy, doxorubicin-induced nephropathy, hypertensive nephropathy, lupus nephritis, renal amyloidosis, and ischemic renal injuries. Experiments that have employed transgenic mouse models, pharmacological blockade of RAGE, or genetic deletion or modification of RAGE indicate that modulation of RAGE expression or function affects the functional and pathological properties of these nephropathies. Accumulating evidence links RAGE to the pathogenesis of nephropathies, indicating that antagonism of RAGE might be a strategy for the treatment of chronic kidney disease.
Collapse
|
350
|
Supplemental dietary arginine reduces renal RAGE expression and oxidative damage in rats with streptozotocin-induced type 2 diabetes. ACTA ACUST UNITED AC 2010. [DOI: 10.1016/j.eclnm.2010.02.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|