3551
|
Rowan PJ. What psychiatric screening and monitoring might be needed with the new generation of hepatitis C treatments? World J Virol 2015; 4:13-6. [PMID: 25674513 PMCID: PMC4308523 DOI: 10.5501/wjv.v4.i1.13] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Revised: 11/11/2014] [Accepted: 11/17/2014] [Indexed: 02/05/2023] Open
Abstract
Psychiatric difficulties, including depression and alcohol use disorders, pose a challenge to treatment decision-making for chronic hepatitis C. This is especially made worse because interferon-alpha, as part of the standard of care, may exacerbate depressive symptoms and cause suicidal symptoms to appear. This requires a treatment setting that has the capacity to carry out psychiatric assessment and monitoring, and the capability to deliver patient education regarding these aspects of care. Psychiatric comorbidities create a challenging decision-making situation, especially since success rates for the most common hepatitis C genotype, genotype 1, hover around 40%. In recent years, new treatments have emerged. These significantly boost the likelihood of sustained viral response, including for genotype 1, and do not seem to have the side effects of interferon-alpha or ribavirin. Relevant data are reviewed to assess the degree that these new treatments might reduce the portion not eligible for treatment due to psychiatric comorbidities, and might reduce the emergence of psychiatric symptoms during treatment. Several organizations have recently released evidence-based treatment recommendation guidelines. It is apparent that interferon-alpha continues to be a standard of care, with the new drugs added to this recognized regimen in order to shorten treatment and to boost efficacy. Clinical settings must continue to assess appropriateness for treatment, including current or recent psychiatric comorbidities, and must continue to closely monitor patients for the emergence of psychiatric side effects. The newly developed hepatitis C treatments may affect the metabolism of several categories of psychiatric drugs, and so drug-drug interactions must also be considered and monitored. With many promising drugs under development, an all-pill regimen, with no interferon-alpha and no ribavirin, may emerge in the near future. This will greatly change the challenge of treatment decision-making, and should expand the portion of patients able to successfully complete a treatment regimen.
Collapse
|
3552
|
Amarilla SP, Gómez-Laguna J, Carrasco L, Rodríguez-Gómez IM, Caridad Y Ocerín JM, Morgan SB, Graham SP, Frossard JP, Drew TW, Salguero FJ. A comparative study of the local cytokine response in the lungs of pigs experimentally infected with different PRRSV-1 strains: upregulation of IL-1α in highly pathogenic strain induced lesions. Vet Immunol Immunopathol 2015; 164:137-47. [PMID: 25739319 DOI: 10.1016/j.vetimm.2015.02.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Revised: 01/06/2015] [Accepted: 02/05/2015] [Indexed: 11/17/2022]
Abstract
Porcine reproductive and respiratory syndrome viruses (PRRSV) show high genetic differences both among and within genotypes. Recently, several highly pathogenic PRRSV (HP-PRRSV) strains have been described. This study compares and characterizes the production of cytokines by pulmonary macrophages in pigs experimentally infected with four different PRRSV-1 strains: two low-virulent strains, Lelystad (LV) and a British field strain (215-06); a HP strain (SU1-bel) from Belarus and the attenuated vaccine strain DV (Porcilis(®) PRRS). Animals were clinically monitored and post-mortem examinations were performed at 3, 7 and 35 days post-infection (dpi). Lung samples were processed for histopathological and immunohistochemical studies by using specific antibodies against PRRSV, IL1-α, IL-6, TNF-α, IL-10 and IFN-γ. SU1-bel infected animals presented the highest mean scores for clinical observations, gross and microscopic lesions as well as for PRRSV expression compared with the other infected groups (p≤0.027). These animals displayed the highest expression of IL1-α at 7dpi, together with the highest score for lung pathology, whereas LV, 215-06 and DV inoculated animals only showed a transient enhancement in some of these cytokines. SU1-bel-infected pigs showed a positive correlation between the amount of PRRSV antigen and IL-1α expression (r=0.645, p<0.001). The highest expression of IL-10 was detected in 215-06-infected animals (p≤0.004), with a positive correlation with the numbers of virus-infected cells (r=0.375, p≤0.013). In conclusion, the HP-PRRSV SU1-bel strain replicated more efficiently in the lung of infected animals and induced a higher expression of IL-1α than the other PRRSV-1-infected groups, which may have played a key role in the onset of the clinical signs and interstitial pneumonia.
Collapse
Affiliation(s)
- Shyrley P Amarilla
- Department of Anatomy and Comparative Pathology, Faculty of Veterinary Medicine, Campus Universitario de Rabanales, 'International Excellence Agrifood Campus, CeiA3', 14071 Cordoba, Spain.
| | | | - Librado Carrasco
- Department of Anatomy and Comparative Pathology, Faculty of Veterinary Medicine, Campus Universitario de Rabanales, 'International Excellence Agrifood Campus, CeiA3', 14071 Cordoba, Spain
| | - Irene M Rodríguez-Gómez
- Department of Anatomy and Comparative Pathology, Faculty of Veterinary Medicine, Campus Universitario de Rabanales, 'International Excellence Agrifood Campus, CeiA3', 14071 Cordoba, Spain
| | - José M Caridad Y Ocerín
- Department of Statistics, Econometrics, Operations Research, Business Organization and Applied Economics, Faculty of Law and Economics, 14071 Cordoba, Spain
| | - Sophie B Morgan
- Department of Virology, Animal Health and Veterinary Laboratories Agency-Weybridge, Addlestone, Surrey KT15 3NB, UK
| | - Simon P Graham
- Department of Virology, Animal Health and Veterinary Laboratories Agency-Weybridge, Addlestone, Surrey KT15 3NB, UK
| | - Jean-Pierre Frossard
- Department of Virology, Animal Health and Veterinary Laboratories Agency-Weybridge, Addlestone, Surrey KT15 3NB, UK
| | - Trevor W Drew
- Department of Virology, Animal Health and Veterinary Laboratories Agency-Weybridge, Addlestone, Surrey KT15 3NB, UK
| | - Francisco J Salguero
- Department of Virology, Animal Health and Veterinary Laboratories Agency-Weybridge, Addlestone, Surrey KT15 3NB, UK; Department of Pathology and Infectious Diseases, School of Veterinary Medicine, University of Surrey, Guildford GU2 7TE, UK
| |
Collapse
|
3553
|
Khatun A, Shabir N, Yoon KJ, Kim WI. Effects of ribavirin on the replication and genetic stability of porcine reproductive and respiratory syndrome virus. BMC Vet Res 2015; 11:21. [PMID: 25890207 PMCID: PMC4344762 DOI: 10.1186/s12917-015-0330-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Accepted: 01/20/2015] [Indexed: 11/29/2022] Open
Abstract
Background Although modified live virus (MLV) vaccines are commonly used for porcine reproductive and respiratory syndrome virus (PRRSV) control, there have been safety concerns due to the quick reversion of MLV to virulence during replication in pigs. Previous studies have demonstrated that mutant viruses emerged from lethal mutagenesis driven by antiviral mutagens and that those viruses had higher genetic stability compared to their parental strains because they acquired resistance to random mutation. Thus, this strategy was explored to stabilize the PRRSV genome in the current study. Results Four antiviral mutagens (ribavirin, 5-fluorouracil, 5-azacytidine, and amiloride) were evaluated for their antiviral effects against VR2332, a prototype of type 2 PRRSV. Among the mutagens, ribavirin and 5-fluorouracil had significant antiviral effects against VR2332. Consequently, VR2332 was serially passaged in MARC-145 cells in the presence of ribavirin at several concentrations to facilitate the emergence of ribavirin-resistant mutants. Two ribavirin-resistant mutants, RVRp13 and RVRp22, emerged from serial passages in the presence of 0.1 and 0.2 mM ribavirin, respectively. The genetic stability of these resistant mutants was evaluated in MARC-145 cells and compared with VR2332. As expected, the ribavirin-resistant mutants exhibited higher genetic stability compared to their parental virus. Conclusions In summary, ribavirin and 5-fluorouracil effectively suppressed PRRSV replication in MARC-145 cells. However, ribavirin-resistant mutants emerged when treated with low concentrations (≤0.2 mM) of ribavirin, and those mutants were genetically more stable during serial passages in cell culture.
Collapse
Affiliation(s)
- Amina Khatun
- College of Veterinary Medicine, Chonbuk National University Jeonju, Korea, 664-14 Deokjin-Dong 1 Ga, Jeonju, Jeonbuk, 561-756, Republic of Korea.
| | - Nadeem Shabir
- College of Veterinary Medicine, Chonbuk National University Jeonju, Korea, 664-14 Deokjin-Dong 1 Ga, Jeonju, Jeonbuk, 561-756, Republic of Korea.
| | - Kyoung-Jin Yoon
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, USA.
| | - Won-Il Kim
- College of Veterinary Medicine, Chonbuk National University Jeonju, Korea, 664-14 Deokjin-Dong 1 Ga, Jeonju, Jeonbuk, 561-756, Republic of Korea.
| |
Collapse
|
3554
|
Franzo G, Dotto G, Cecchinato M, Pasotto D, Martini M, Drigo M. Phylodynamic analysis of porcine reproductive and respiratory syndrome virus (PRRSV) in Italy: action of selective pressures and interactions between different clades. INFECTION GENETICS AND EVOLUTION 2015; 31:149-57. [PMID: 25660037 DOI: 10.1016/j.meegid.2015.01.026] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2014] [Revised: 01/27/2015] [Accepted: 01/28/2015] [Indexed: 12/17/2022]
Abstract
Porcine reproductive and respiratory syndrome (PRRS) is the most relevant and challenging infectious disease to affect swine breeding. Despite this, several aspects of the virus' evolution and virus-host interaction are still poorly understood and largely based on knowledge obtained through in vitro or in vivo experimental infections. Due to peculiar experimental conditions, our understanding is often contradictory and difficult to infer with respect to actual field conditions. Our phylodynamic study, based on ORF5 sequences of 141 samples collected in Italy from 1993 to 2012, explores different aspects of PRRSV epidemiology, evolution, and virus-host interaction. Two major clades, belonging to Type 1 subtype 1, were demonstrated to co-circulate while harboring a relevant intra- and inter-clade genetic diversity. Most Recent Common Ancestor (MRCA), evolution rates, and population dynamics were estimated using a serial coalescent-based approach, and different demographic histories were reconstructed for the two clades. Analysis of selective pressure revealed that sites subjected to diversifying selection were mainly located in the region of glycoprotein 5 (GP5) exposed to the host environment. Similarly, the vast majority of strains were highly glycosylated, confirming the proposed protective role of the glycan shield against the humoral immune response. Overall, our study reports both interactions among the viral populations as well as between virus and host, and their relevance in shaping viral evolution: different population dynamics over time seem to reflect a competition between clades. Some evidence argues in favor of the role of immune pressure in affecting GP5 evolution, including frequent changes in the region exposed to the host immune response, and preserving glycosylation profiles that can hamper humoral immunity.
Collapse
Affiliation(s)
- Giovanni Franzo
- Department of Animal Medicine, Production and Health (MAPS), Viale dell'Università 16, 35020 Legnaro, PD, Italy.
| | - Giorgia Dotto
- Department of Animal Medicine, Production and Health (MAPS), Viale dell'Università 16, 35020 Legnaro, PD, Italy
| | - Mattia Cecchinato
- Department of Animal Medicine, Production and Health (MAPS), Viale dell'Università 16, 35020 Legnaro, PD, Italy
| | - Daniela Pasotto
- Department of Animal Medicine, Production and Health (MAPS), Viale dell'Università 16, 35020 Legnaro, PD, Italy
| | - Marco Martini
- Department of Animal Medicine, Production and Health (MAPS), Viale dell'Università 16, 35020 Legnaro, PD, Italy
| | - Michele Drigo
- Department of Animal Medicine, Production and Health (MAPS), Viale dell'Università 16, 35020 Legnaro, PD, Italy
| |
Collapse
|
3555
|
Choi JG, Bharaj P, Abraham S, Ma H, Yi G, Ye C, Dang Y, Manjunath N, Wu H, Shankar P. Multiplexing seven miRNA-Based shRNAs to suppress HIV replication. Mol Ther 2015; 23:310-20. [PMID: 25358251 PMCID: PMC4445613 DOI: 10.1038/mt.2014.205] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Accepted: 10/17/2014] [Indexed: 11/09/2022] Open
Abstract
Multiplexed miRNA-based shRNAs (shRNA-miRs) could have wide potential to simultaneously suppress multiple genes. Here, we describe a simple strategy to express a large number of shRNA-miRs using minimal flanking sequences from multiple endogenous miRNAs. We found that a sequence of 30 nucleotides flanking the miRNA duplex was sufficient for efficient processing of shRNA-miRs. We inserted multiple shRNAs in tandem, each containing minimal flanking sequence from a different miRNA. Deep sequencing of transfected cells showed accurate processing of individual shRNA-miRs and that their expression did not decrease with the distance from the promoter. Moreover, each shRNA was as functionally competent as its singly expressed counterpart. We used this system to express one shRNA-miR targeting CCR5 and six shRNA-miRs targeting the HIV-1 genome. The lentiviral construct was pseudotyped with HIV-1 envelope to allow transduction of both resting and activated primary CD4 T cells. Unlike one shRNA-miR, the seven shRNA-miR transduced T cells nearly abrogated HIV-1 infection in vitro. Additionally, when PBMCs from HIV-1 seropositive individuals were transduced and transplanted into NOD/SCID/IL-2R γc(-/-) mice (Hu-PBL model) efficient suppression of endogenous HIV-1 replication with restoration of CD4 T cell counts was observed. Thus, our multiplexed shRNA appears to provide a promising gene therapeutic approach for HIV-1 infection.
Collapse
Affiliation(s)
- Jang-Gi Choi
- Department of Biomedical Sciences, Center of Excellence in Infectious Disease Research, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center, El Paso, Texas, USA
| | - Preeti Bharaj
- Department of Biomedical Sciences, Center of Excellence in Infectious Disease Research, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center, El Paso, Texas, USA
| | - Sojan Abraham
- Department of Biomedical Sciences, Center of Excellence in Infectious Disease Research, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center, El Paso, Texas, USA
| | - Hongming Ma
- Department of Biomedical Sciences, Center of Excellence in Infectious Disease Research, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center, El Paso, Texas, USA
| | - Guohua Yi
- Department of Biomedical Sciences, Center of Excellence in Infectious Disease Research, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center, El Paso, Texas, USA
| | - Chunting Ye
- Department of Biomedical Sciences, Center of Excellence in Infectious Disease Research, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center, El Paso, Texas, USA
| | - Ying Dang
- Department of Biomedical Sciences, Center of Excellence in Infectious Disease Research, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center, El Paso, Texas, USA
| | - N Manjunath
- Department of Biomedical Sciences, Center of Excellence in Infectious Disease Research, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center, El Paso, Texas, USA
| | - Haoquan Wu
- Department of Biomedical Sciences, Center of Excellence in Infectious Disease Research, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center, El Paso, Texas, USA
| | - Premlata Shankar
- Department of Biomedical Sciences, Center of Excellence in Infectious Disease Research, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center, El Paso, Texas, USA
| |
Collapse
|
3556
|
Restricted protein phosphatase 2A targeting by Merkel cell polyomavirus small T antigen. J Virol 2015; 89:4191-200. [PMID: 25631078 DOI: 10.1128/jvi.00157-15] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
UNLABELLED Merkel cell polyomavirus (MCV) is a newly discovered human cancer virus encoding a small T (sT) oncoprotein. We performed MCV sT FLAG-affinity purification followed by mass spectroscopy (MS) analysis, which identified several protein phosphatases (PP), including PP2A A and C subunits and PP4C, as potential cellular interacting proteins. PP2A targeting is critical for the transforming properties of nonhuman polyomaviruses, such as simian virus 40 (SV40), but is not required for MCV sT-induced rodent cell transformation. We compared similarities and differences in PP2A binding between MCV and SV40 sT. While SV40 sT coimmunopurified with subunits PP2A Aα and PP2A C, MCV sT coimmunopurified with PP2A Aα, PP2A Aβ, and PP2A C. Scanning alanine mutagenesis at 29 sites across the MCV sT protein revealed that PP2A-binding domains lie on the opposite molecular surface from a previously described large T stabilization domain (LSD) loop that binds E3 ligases, such as Fbw7. MCV sT-PP2A interactions can be functionally distinguished by mutagenesis from MCV sT LSD-dependent 4E-BP1 hyperphosphorylation and viral DNA replication enhancement. MCV sT has a restricted range for PP2A B subunit substitution, inhibiting only the assembly of B56α into the phosphatase holoenzyme. In contrast, SV40 sT inhibits the assembly of B55α, B56α and B56ε into PP2A. We conclude that MCV sT is required for Merkel cell carcinoma growth, but its in vitro transforming activity depends on LSD interactions rather than PP2A targeting. IMPORTANCE Merkel cell polyomavirus is a newly discovered human cancer virus that promotes cancer, in part, through expression of its small T (sT) oncoprotein. Animal polyomavirus sT oncoproteins have been found to cause experimental tumors by blocking the activities of a group of phosphatases called protein phosphatase 2A (PP2A). Our structural analysis reveals that MCV sT also displaces the B subunit of PP2A to inhibit PP2A activity. MCV sT, however, only displaces a restricted subset of PP2A B subunits, which is insufficient to cause tumor cell formation in vitro. MCV sT instead transforms tumor cells through another region called the large T stabilization domain. The PP2A targeting and transforming activities lie on opposite faces of the MCV sT molecule and can be genetically separated from each other.
Collapse
|
3557
|
Mei S, Zhu H. A novel one-class SVM based negative data sampling method for reconstructing proteome-wide HTLV-human protein interaction networks. Sci Rep 2015; 5:8034. [PMID: 25620466 PMCID: PMC5379509 DOI: 10.1038/srep08034] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Accepted: 12/22/2014] [Indexed: 11/09/2022] Open
Abstract
Protein-protein interaction (PPI) prediction is generally treated as a problem of binary classification wherein negative data sampling is still an open problem to be addressed. The commonly used random sampling is prone to yield less representative negative data with considerable false negatives. Meanwhile rational constraints are seldom exerted on model selection to reduce the risk of false positive predictions for most of the existing computational methods. In this work, we propose a novel negative data sampling method based on one-class SVM (support vector machine, SVM) to predict proteome-wide protein interactions between HTLV retrovirus and Homo sapiens, wherein one-class SVM is used to choose reliable and representative negative data, and two-class SVM is used to yield proteome-wide outcomes as predictive feedback for rational model selection. Computational results suggest that one-class SVM is more suited to be used as negative data sampling method than two-class PPI predictor, and the predictive feedback constrained model selection helps to yield a rational predictive model that reduces the risk of false positive predictions. Some predictions have been validated by the recent literature. Lastly, gene ontology based clustering of the predicted PPI networks is conducted to provide valuable cues for the pathogenesis of HTLV retrovirus.
Collapse
Affiliation(s)
- Suyu Mei
- 1] Software College, Shenyang Normal University, Shenyang, 110034, China [2] Bioinformatics Section, School of Biomedical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Hao Zhu
- Bioinformatics Section, School of Biomedical Sciences, Southern Medical University, Guangzhou, 510515, China
| |
Collapse
|
3558
|
Cai Q, Chen K, Young KH. Epstein-Barr virus-positive T/NK-cell lymphoproliferative disorders. Exp Mol Med 2015; 47:e133. [PMID: 25613730 PMCID: PMC4314580 DOI: 10.1038/emm.2014.105] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Accepted: 10/21/2014] [Indexed: 12/18/2022] Open
Abstract
Epstein-Barr virus, a ubiquitous human herpesvirus, can induce both lytic and latent infections that result in a variety of human diseases, including lymphoproliferative disorders. The oncogenic potential of Epstein-Barr virus is related to its ability to infect and transform B lymphocytes into continuously proliferating lymphoblastoid cells. However, Epstein-Barr virus has also been implicated in the development of T/natural killer cell lymphoproliferative diseases. Epstein-Barr virus encodes a series of products that mimic several growth, transcription and anti-apoptotic factors, thus usurping control of pathways that regulate diverse homeostatic cellular functions and the microenvironment. However, the exact mechanism by which Epstein-Barr virus promotes oncogenesis and inflammatory lesion development remains unclear. Epstein-Barr virus-associated T/natural killer cell lymphoproliferative diseases often have overlapping clinical symptoms as well as histologic and immunophenotypic features because both lymphoid cell types derive from a common precursor. Accurate classification of Epstein-Barr virus-associated T/natural killer cell lymphoproliferative diseases is a prerequisite for appropriate clinical management. Currently, the treatment of most T/natural killer cell lymphoproliferative diseases is less than satisfactory. Novel and targeted therapies are strongly required to satisfy clinical demands. This review describes our current knowledge of the genetics, oncogenesis, biology, diagnosis and treatment of Epstein-Barr virus-associated T/natural killer cell lymphoproliferative diseases.
Collapse
Affiliation(s)
- Qingqing Cai
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, China
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Kailin Chen
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, China
| | - Ken H Young
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- The University of Texas School of Medicine, Graduate School of Biomedical Sciences, Houston, TX, USA
| |
Collapse
|
3559
|
Nair M, Maria JM, Agudelo M, Yndart A, Vargas-Rivera ME. Platelets Contribute to BBB Disruption Induced by HIV and Alcohol. ACTA ACUST UNITED AC 2015; 3:182. [PMID: 26501067 PMCID: PMC4612493 DOI: 10.4172/2329-6488.1000182] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The role of platelets in the neurological diseases that underlie cognitive impairment has attracted increasing attention in recent years. Multiple pathways in platelets contribute to host defenses, as well as to CNS function. In the current study, we hypothesize that the Blood Brain Barrier (BBB) is disrupted when exposed to platelets from patients with triple Co-morbidity (hazardous alcohol users+ HIV+ thrombocytopenia), compared to those with dual, single or no morbidity (HIV only, alcohol only or healthy controls).
Collapse
Affiliation(s)
- Madhavan Nair
- Professor and Chair, Institute of Neuro-Immune Pharmacology, Department of Immunology, Florida International University, Miami, FL, USA
| | - Jose Mb Maria
- Professor, School of Integrated Health and Science, Department of Art and Science, Florida International University, Miami, FL, USA
| | - Marisela Agudelo
- Institute of Neuro-Immune Pharmacology, Department of Immunology, Florida International University, Miami, FL, USA
| | - Adriana Yndart
- Institute of Neuro-Immune Pharmacology, Department of Immunology, Florida International University, Miami, FL, USA
| | - Mayra E Vargas-Rivera
- School of Integrated Science and Humanity, College of Arts and Sciences, Florida International University, Miami, FL, USA
| |
Collapse
|
3560
|
Beal J, Wagner TE, Kitada T, Azizgolshani O, Parker JM, Densmore D, Weiss R. Model-driven engineering of gene expression from RNA replicons. ACS Synth Biol 2015; 4:48-56. [PMID: 24877739 DOI: 10.1021/sb500173f] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
RNA replicons are an emerging platform for engineering synthetic biological systems. Replicons self-amplify, can provide persistent high-level expression of proteins even from a small initial dose, and, unlike DNA vectors, pose minimal risk of chromosomal integration. However, no quantitative model sufficient for engineering levels of protein expression from such replicon systems currently exists. Here, we aim to enable the engineering of multigene expression from more than one species of replicon by creating a computational model based on our experimental observations of the expression dynamics in single- and multireplicon systems. To this end, we studied fluorescent protein expression in baby hamster kidney (BHK-21) cells using a replicon derived from Sindbis virus (SINV). We characterized expression dynamics for this platform based on the dose-response of a single species of replicon over 50 h and on a titration of two cotransfected replicons expressing different fluorescent proteins. From this data, we derive a quantitative model of multireplicon expression and validate it by designing a variety of three-replicon systems, with profiles that match desired expression levels. We achieved a mean error of 1.7-fold on a 1000-fold range, thus demonstrating how our model can be applied to precisely control expression levels of each Sindbis replicon species in a system.
Collapse
Affiliation(s)
- Jacob Beal
- Raytheon BBN Technologies, Cambridge, Massachusetts United States
| | - Tyler E. Wagner
- Center
of Synthetic Biology, Boston University, Boston, Massachusetts 02215, United States
| | - Tasuku Kitada
- Department
of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Odisse Azizgolshani
- Department
of Chemistry and Biochemistry, University of California Los Angeles, Los
Angeles, California 90095-1570, United States
| | - Jordan Moberg Parker
- Department
of Microbiology, Immunology and Molecular Genetics, University of California Los Angeles, 609 Young Drive, Box 148906, Los Angeles, California 90095-1570, United States
| | - Douglas Densmore
- Center
of Synthetic Biology, Boston University, Boston, Massachusetts 02215, United States
| | - Ron Weiss
- Department
of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
3561
|
Blázquez AB, Martín-Acebes MA, Saiz JC. Amino acid substitutions in the non-structural proteins 4A or 4B modulate the induction of autophagy in West Nile virus infected cells independently of the activation of the unfolded protein response. Front Microbiol 2015; 5:797. [PMID: 25642225 PMCID: PMC4295549 DOI: 10.3389/fmicb.2014.00797] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Accepted: 12/26/2014] [Indexed: 01/19/2023] Open
Abstract
West Nile virus (WNV) is a neurotropic mosquito-borne flavivirus responsible for outbreaks of meningitis and encephalitis. Whereas the activation of autophagy in cells infected with other flaviviruses is well known, the interaction of WNV with the autophagic pathway still remains unclear and there are reports describing opposite findings obtained even analyzing the same viral strain. To clarify this controversy, we first analyzed the induction of autophagic features in cells infected with a panel of WNV strains. WNV was determined to induce autophagy in a strain dependent manner. We observed that all WNV strains or isolates analyzed, except for the WNV NY99 used, upregulated the autophagic pathway in infected cells. Interestingly, a variant derived from this WNV NY99 isolated from a persistently infected mouse increased LC3 modification and aggregation. Genome sequencing of this variant revealed only two non-synonymous nucleotide substitutions when compared to parental NY99 strain. These nucleotide substitutions introduced one amino acid replacement in NS4A and other in NS4B. Using genetically engineered viruses we showed that introduction of only one of these replacements was sufficient to upregulate the autophagic pathway. Thus, in this work we have shown that naturally occurring point mutations in the viral non-structural proteins NS4A and NS4B confer WNV with the ability to induce the hallmarks of autophagy such as LC3 modification and aggregation. Even more, the differences on the induction of an autophagic response observed among WNV variants in infected cells did not correlate with alterations on the activation of the unfolded protein response (UPR), suggesting an uncoupling of UPR and autophagy during flavivirus infection. The findings here reported could help to improve the knowledge of the cellular processes involved on flavivirus–host cell interactions and contribute to the design of effective strategies to combat these pathogens.
Collapse
Affiliation(s)
- Ana-Belén Blázquez
- Department of Biotechnology, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria Madrid, Spain
| | - Miguel A Martín-Acebes
- Department of Biotechnology, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria Madrid, Spain ; Department of Virology and Microbiology, Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Madrid Spain
| | - Juan-Carlos Saiz
- Department of Biotechnology, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria Madrid, Spain
| |
Collapse
|
3562
|
Abstract
UNLABELLED Flavivirus RNA synthesis is mediated by a multiprotein complex associated with the endoplasmic reticulum membrane, named the replication complex (RC). Within the flavivirus RC, NS4B, an integral membrane protein with a role in virulence and regulation of the innate immune response, binds to the NS3 protease-helicase. NS4B modulates the RNA helicase activity of NS3, but the molecular details of their interaction remain elusive. Here, we used dengue virus (DENV) to map the determinants for the NS3-NS4B interaction. Coimmunoprecipitation and an in situ proximity ligation assay confirmed that NS3 colocalizes with NS4B in both DENV-infected cells and cells coexpressing both proteins. Surface plasmon resonance demonstrated that subdomains 2 and 3 of the NS3 helicase region and the cytoplasmic loop of NS4B are required for binding. Using nuclear magnetic resonance (NMR), we found that the isolated cytoplasmic loop of NS4B is flexible, with a tendency to form a three-turn α-helix and two short β-strands. Upon binding to the NS3 helicase, 12 amino acids within the cytoplasmic loop of NS4B exhibited line broadening, suggesting a participation in the interaction. Sequence alignment showed that 4 of these 12 residues are strictly conserved across different flaviviruses. Mutagenesis analysis showed that three (Q134, G140, and N144) of the four evolutionarily conserved NS4B residues are essential for DENV replication. The mapping of the NS3/NS4B-interacting regions described here can assist the design of inhibitors that disrupt their interface for antiviral therapy. IMPORTANCE NS3 and NS4B are essential components of the flavivirus RC. Using DENV as a model, we mapped the interaction between the viral NS3 and NS4B proteins. The subdomains 2 and 3 of NS3 helicase as well as the cytoplasmic loop of NS4B are critical for the interaction. Functional analysis delineated residues within the NS4B cytoplasmic loop that are crucial for DENV replication. Our findings reveal molecular details of how flavivirus NS3 protein cooperates with NS4B within the RC. In addition, this study has established the rationale and assays to search for inhibitors disrupting the NS3-NS4B interaction for antiviral drug discovery.
Collapse
|
3563
|
Impact of the adenoviral E4 Orf3 protein on the activity and posttranslational modification of p53. J Virol 2015; 89:3209-20. [PMID: 25568206 DOI: 10.1128/jvi.03072-14] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
UNLABELLED Our previous studies have established that the p53 populations that accumulate in normal human cells exposed to etoposide or infected by an E1B 55-kDa protein-null mutant of human adenovirus type 5 carry a large number of posttranslational modifications at numerous residues (C. J. DeHart, J. S. Chahal, S. J. Flint, and D. H. Perlman, Mol Cell Proteomics 13:1-17, 2014, http://dx.doi.org/10.1074/mcp.M113.030254). In the absence of this E1B protein, the p53 transcriptional program is not induced, and it has been reported that the viral E4 Orf3 protein inactivates p53 (C. Soria, F. E. Estermann, K. C. Espantman, and C. C. O'Shea, Nature 466:1076-1081, 2010, http://dx.doi.org/10.1038/nature09307). As the latter protein disrupts nuclear Pml bodies, sites at which p53 is modified, we used mass spectrometry to catalogue the posttranscriptional modifications of the p53 population that accumulates when neither the E1B 55-kDa nor the E4 Orf3 protein is made in infected cells. Eighty-five residues carrying 163 modifications were identified. The overall patterns of posttranslational modification of this population and p53 present in cells infected by an E1B 55-kDa-null mutant were similar. The efficiencies with which the two forms of p53 bound to a consensus DNA recognition sequence could not be distinguished and were lower than that of transcriptionally active p53. The absence of the E4 Orf3 protein increased expression of several p53-responsive genes when the E1B protein was also absent from infected cells. However, expression of these genes did not attain the levels observed when p53 was activated in response to etoposide treatment and remained lower than those measured in mock-infected cells. IMPORTANCE The tumor suppressor p53, a master regulator of cellular responses to stress, is inactivated and destroyed in cells infected by species C human adenoviruses, such as type 5. It is targeted for proteasomal degradation by the action of a virus-specific E3 ubiquitin ligase that contains the viral E1B 55-kDa and E4 Orf6 proteins, while the E4 Orf3 protein has been reported to block its ability to stimulate expression of p53-dependent genes. The comparisons reported here of the posttranslational modifications and activities of p53 populations that accumulate in infected normal human cells in the absence of both mechanisms of inactivation or of only the E3 ligase revealed little impact of the E4 Orf3 protein. These observations indicate that E4 Orf3-dependent disruption of Pml bodies does not have a major effect on the pattern of p53 posttranslational modifications in adenovirus-infected cells. Furthermore, they suggest that one or more additional viral proteins contribute to blocking p53 activation and the consequences that are deleterious for viral reproduction, such as apoptosis or cell cycle arrest.
Collapse
|
3564
|
Hodgins DC, Chattha K, Vlasova A, Parreño V, Corbeil LB, Renukaradhya GJ, Saif LJ. Mucosal Veterinary Vaccines. Mucosal Immunol 2015. [PMCID: PMC7149859 DOI: 10.1016/b978-0-12-415847-4.00068-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
3565
|
Herrera-Carrillo E, Berkhout B. Gene therapy strategies to block HIV-1 replication by RNA interference. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 848:71-95. [PMID: 25757616 DOI: 10.1007/978-1-4939-2432-5_4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The cellular mechanism of RNA interference (RNAi) plays an antiviral role in many organisms and can be used for the development of therapeutic strategies against viral pathogens. Persistent infections like the one caused by the human immunodeficiency virus type 1 (HIV-1) likely require a durable gene therapy approach. The continuous expression of the inhibitory RNA molecules in T cells is needed to effectively block HIV-1 replication. We discuss here several issues, ranging from the choice of RNAi inhibitor and vector system, finding the best target in the HIV-1 RNA genome, alternatively by targeting host mRNAs that encode important viral cofactors, to the setup of appropriate preclinical test systems. Finally, we briefly discuss the relevance of this topic for other viral pathogens that cause a chronic infection in humans.
Collapse
Affiliation(s)
- Elena Herrera-Carrillo
- Laboratory of Experimental Virology, Department of Medical Microbiology, Center for Infection and Immunity Amsterdam (CINIMA), Academic Medical Center of the University of Amsterdam, K3-110 Meibergdreef 15, Amsterdam, 1105 AS, The Netherlands
| | | |
Collapse
|
3566
|
Garg R, Rusciolelli C, Gerber ME. An adolescent girl with Crohn's disease, fever, and sore throat. Pediatr Ann 2015; 44:e14-7. [PMID: 25621629 DOI: 10.3928/00904481-20151226-10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
An adolescent female with a past medical history significant for Crohn's disease presented with fevers, tonsillitis without exudate, and tender posterior cervical lymphadenopathy. Laboratory results showed transaminitis, leukocytosis with a left shift, and atypical lymphocytes on a blood smear. The patient did not respond to supportive care or dexamethasone, necessitating a tonsillectomy and adenoidectomy. Although her presentation was consistent with infectious mononucleosis, diagnosis was not confirmed until Epstein-Barr virus (EBV) polymerase chain reaction (PCR) from tonsillar tissue was positive. False-negative results on the heterophile antibody test are common in pediatric populations and the detection of EBV antibodies is further complicated in immunocompromised patients. Studies indicate PCR is a more sensitive test, although there is no consensus regarding ideal material to use or quantitative levels necessitating intervention.
Collapse
|
3567
|
Suntornlohanakul R, Wanlapakorn N, Vongpunsawad S, Thongmee T, Chansaenroj J, Poovorawan Y. Seroprevalence of Anti-EBV IgG among Various Age Groups from Khon Kaen Province, Thailand. Asian Pac J Cancer Prev 2015; 16:7583-7587. [PMID: 26625765 DOI: 10.7314/apjcp.2015.16.17.7583] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Epstein-Barr virus (EBV) is an extremely common herpesvirus that may cause asymptomatic infection or various diseases, including infectious mononucleosis, certain lymphoproliferative diseases and several types of neoplasms. Vaccine development is an important strategy to reduce the burden of EBV-associated diseases and the timing of vaccinations should be before primary infection occurs. In the past, more than 90% of Thai children were infected with EBV in early childhood. Now, due to the improved healthcare system in Thailand, we aim to determine current prevalence of EBV infection among people in different age groups. A total of 538 sera were collected from residents of Khon Kaen province in northeastern Thailand for detecting anti-EBV IgG. Sera of infants under 2-years-old were also tested for anti-EBV IgM and EBV-DNA. The prevalence of anti-EBV IgG was 47.1% (95% CI: 23.3-70.8) in infants aged 0-6 months, 34.9% (95% CI: 23.1-46.7) in those aged 6-24 months, 87.9% (95% CI: 79.5-96.3) in children aged 3-5 years and then maintained at above 95% through adulthood. These seropositivity rates among Thai children remain similar to those found in a previous study conducted 20 years ago. Thai children are still exposed to EBV from an early age. Therefore, a prophylactic vaccine should be given within the first two years of life.
Collapse
Affiliation(s)
- Rabporn Suntornlohanakul
- Center of Excellence in Clinical Virology, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand E-mail :
| | | | | | | | | | | |
Collapse
|
3568
|
Abstract
In this chapter, we describe 73 zoonotic viruses that were isolated in Northern Eurasia and that belong to the different families of viruses with a single-stranded RNA (ssRNA) genome. The family includes viruses with a segmented negative-sense ssRNA genome (families Bunyaviridae and Orthomyxoviridae) and viruses with a positive-sense ssRNA genome (families Togaviridae and Flaviviridae). Among them are viruses associated with sporadic cases or outbreaks of human disease, such as hemorrhagic fever with renal syndrome (viruses of the genus Hantavirus), Crimean–Congo hemorrhagic fever (CCHFV, Nairovirus), California encephalitis (INKV, TAHV, and KHATV; Orthobunyavirus), sandfly fever (SFCV and SFNV, Phlebovirus), Tick-borne encephalitis (TBEV, Flavivirus), Omsk hemorrhagic fever (OHFV, Flavivirus), West Nile fever (WNV, Flavivirus), Sindbis fever (SINV, Alphavirus) Chikungunya fever (CHIKV, Alphavirus) and others. Other viruses described in the chapter can cause epizootics in wild or domestic animals: Geta virus (GETV, Alphavirus), Influenza A virus (Influenzavirus A), Bhanja virus (BHAV, Phlebovirus) and more. The chapter also discusses both ecological peculiarities that promote the circulation of these viruses in natural foci and factors influencing the occurrence of epidemic and epizootic outbreaks
Collapse
|
3569
|
Abstract
Epstein-Barr virus (EBV) is widely distributed in the world and associated with a still increasing number of acute, chronic, malignant and autoimmune disease syndromes. Humoral immune responses to EBV have been studied for diagnostic, pathogenic and protective (vaccine) purposes. These studies use a range of methodologies, from cell-based immunofluorescence testing to antibody-diversity analysis using immunoblot and epitope analysis using recombinant or synthetic peptide-scanning. First, the individual EBV antigen complexes (VCA , MA, EA(D), EA(R) and EBNA) are defined at cellular and molecular levels, providing a historic overview. The characteristic antibody responses to these complexes in health and disease are described, and differences are highlighted by clinical examples. Options for EBV vaccination are briefly addressed. For a selected number of immunodominant proteins, in particular EBNA1, the interaction with human antibodies is further detailed at the epitope level, revealing interesting insights for structure, function and immunological aspects, not considered previously. Humoral immune responses against EBV-encoded tumour antigens LMP1, LMP2 and BARF1 are addressed, which provide novel options for targeted immunotherapy. Finally, some considerations on EBV-linked autoimmune diseases are given, and mechanisms of antigen mimicry are briefly discussed. Further analysis of humoral immune responses against EBV in health and disease in carefully selected patient cohorts will open new options for understanding pathogenesis of individual EBV-linked diseases and developing targeted diagnostic and therapeutic approaches.
Collapse
|
3570
|
Yarbrough VL, Winkle S, Herbst-Kralovetz MM. Antimicrobial peptides in the female reproductive tract: a critical component of the mucosal immune barrier with physiological and clinical implications. Hum Reprod Update 2014; 21:353-77. [PMID: 25547201 DOI: 10.1093/humupd/dmu065] [Citation(s) in RCA: 141] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Accepted: 12/10/2014] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND At the interface of the external environment and the mucosal surface of the female reproductive tract (FRT) lies a first-line defense against pathogen invasion that includes antimicrobial peptides (AMP). Comprised of a unique class of multifunctional, amphipathic molecules, AMP employ a wide range of functions to limit microbial invasion and replication within host cells as well as independently modulate the immune system, dampen inflammation and maintain tissue homeostasis. The role of AMP in barrier defense at the level of the skin and gut has received much attention as of late. Given the far reaching implications for women's health, maternal and fetal morbidity and mortality, and sexually transmissible and polymicrobial diseases, we herein review the distribution and function of key AMP throughout the female reproductive mucosa and assess their role as an essential immunological barrier to microbial invasion throughout the reproductive cycle of a woman's lifetime. METHODS A comprehensive search in PubMed/Medline was conducted related to AMP general structure, function, signaling, expression, distribution and barrier function of AMP in the FRT, hormone regulation of AMP, the microbiome of the FRT, and AMP in relation to implantation, pregnancy, fertility, pelvic inflammatory disease, complications of pregnancy and assisted reproductive technology. RESULTS AMP are amphipathic peptides that target microbes for destruction and have been conserved throughout all living organisms. In the FRT, several major classes of AMP are expressed constitutively and others are inducible at the mucosal epithelium and by immune cells. AMP expression is also under the influence of sex hormones, varying throughout the menstrual cycle, and dependent on the vaginal microbiome. AMP can prevent infection with sexually transmissible and opportunistic pathogens of the female reproductive tissues, although emerging understanding of vaginal dysbiosis suggests induction of a unique AMP profile with increased susceptibility to these pathogens. During pregnancy, AMP are key immune effectors of the fetal membranes and placenta and are dysregulated in states of intrauterine infection and other complications of pregnancy. CONCLUSIONS At the level of the FRT, AMP serve to inhibit infection by sexually and vertically transmissible as well as by opportunistic bacteria, fungi, viruses, and protozoa and must do so throughout the hormone flux of menses and pregnancy. Guarding the exclusive site of reproduction, AMP modulate the vaginal microbiome of the lower FRT to aid in preventing ascending microbes into the upper FRT. Evolving in parallel with, and in response to, pathogenic insults, AMP are relatively immune to the resistance mechanisms employed by rapidly evolving pathogens and play a key role in barrier function and host defense throughout the FRT.
Collapse
Affiliation(s)
- Victoria L Yarbrough
- Department of Basic Medical Sciences, University of Arizona College of Medicine-Phoenix, , Phoenix, AZ 85004-2157, USA
| | - Sean Winkle
- Department of Basic Medical Sciences, University of Arizona College of Medicine-Phoenix, , Phoenix, AZ 85004-2157, USA
| | - Melissa M Herbst-Kralovetz
- Department of Basic Medical Sciences, University of Arizona College of Medicine-Phoenix, , Phoenix, AZ 85004-2157, USA
| |
Collapse
|
3571
|
Shirvani-Dastgerdi E, Amini-Bavil-Olyaee S, Alavian SM, Trautwein C, Tacke F. Comprehensive analysis of mutations in the hepatitis delta virus genome based on full-length sequencing in a nationwide cohort study and evolutionary pattern during disease progression. Clin Microbiol Infect 2014; 21:510.e11-23. [PMID: 25656625 DOI: 10.1016/j.cmi.2014.12.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Revised: 11/21/2014] [Accepted: 12/18/2014] [Indexed: 02/06/2023]
Abstract
Delta hepatitis, caused by co-infection or super-infection of hepatitis D virus (HDV) in hepatitis B virus (HBV) -infected patients, is the most severe form of chronic hepatitis, often progressing to liver cirrhosis and liver failure. Although 15 million individuals are affected worldwide, molecular data on the HDV genome and its proteins, small and large delta antigen (S-/L-HDAg), are limited. We therefore conducted a nationwide study in HBV-HDV-infected patients from Iran and successfully amplified 38 HDV full genomes and 44 L-HDAg sequences from 34 individuals. Phylogenetic analyses of full-length HDV and L-HDAg isolates revealed that all strains clustered with genotype 1 and showed high genotypic distances to HDV genotypes 2 to 8, with a maximal distance to genotype 3. Longitudinal analyses in individual patients indicated a reverse evolutionary trend, especially in L-HDAg amino acid composition, over time. Besides multiple sequence variations in the hypervariable region of HDV, nucleotide substitutions preferentially occurred in the stabilizing P4 domain of the HDV ribozyme. A high rate of single amino acid changes was detected in structural parts of L-HDAg, whereas its post-translational modification sites were highly conserved. Interestingly, several non-synonymous mutations were positively selected that affected immunogenic epitopes of L-HDAg towards CD8 T-cell- and B-cell-driven immune responses. Hence, our comprehensive molecular analysis comprising a nationwide cohort revealed phylogenetic relationships and provided insight into viral evolution within individual hosts. Moreover, preferential areas of frequent mutations in the HDV ribozyme and antigen protein were determined in this study.
Collapse
Affiliation(s)
| | - S Amini-Bavil-Olyaee
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Harlyne J. Norris Cancer Research Tower, Los Angeles, CA, USA
| | - S Moayed Alavian
- Baqiyatallah Research Centre for Gastroenterology and Liver Diseases, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| | - C Trautwein
- Department of Medicine III, RWTH-University Hospital Aachen, Aachen, Germany
| | - F Tacke
- Department of Medicine III, RWTH-University Hospital Aachen, Aachen, Germany
| |
Collapse
|
3572
|
Regulation and evasion of antiviral immune responses by porcine reproductive and respiratory syndrome virus. Virus Res 2014; 202:101-11. [PMID: 25529442 PMCID: PMC7132515 DOI: 10.1016/j.virusres.2014.12.014] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Revised: 12/10/2014] [Accepted: 12/11/2014] [Indexed: 12/13/2022]
Abstract
Five PRRSV viral proteins are shown to inhibit type I IFN induction and signaling by targeting different intracellular signaling intermediates. PRRSV regulates the expression of IL-10 and TNFα. PRRSV modulates apoptosis during infection. MicroRNAs might play significant roles in subverting immunity for PRRSV. PRRSV escapes from adaptive immunity by impairing antigen presentation, activating Tregs, and ADE.
Virus infection of mammalian cells triggers host innate immune responses to restrict viral replication and induces adaptive immunity for viral elimination. In order to survive and propagate, viruses have evolved sophisticated mechanisms to subvert host defense system by encoding proteins that target key components of the immune signaling pathways. Porcine reproductive and respiratory syndrome virus (PRRSV), a RNA virus, impairs several processes of host immune responses including interfering with interferon production and signaling, modulating cytokine expression, manipulating apoptotic responses and regulating adaptive immunity. In this review, we highlight the molecular mechanisms of how PRRSV interferes with the different steps of initial antiviral host responses to establish persistent infection in pigs. Dissection of the PRRSV–host interaction is the key in understanding PRRSV pathogenesis and will provide a basis for the rational design of vaccines.
Collapse
|
3573
|
Assinger A. Platelets and infection - an emerging role of platelets in viral infection. Front Immunol 2014; 5:649. [PMID: 25566260 PMCID: PMC4270245 DOI: 10.3389/fimmu.2014.00649] [Citation(s) in RCA: 269] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Accepted: 12/05/2014] [Indexed: 12/23/2022] Open
Abstract
Platelets are anucleate blood cells that play a crucial role in the maintenance of hemostasis. While platelet activation and elevated platelet counts (thrombocytosis) are associated with increased risk of thrombotic complications, low platelet counts (thrombocytopenia) and several platelet function disorders increase the risk of bleeding. Over the last years, more and more evidence has emerged that platelets and their activation state can also modulate innate and adaptive immune responses and low platelet counts have been identified as a surrogate marker for poor prognosis in septic patients. Viral infections often coincide with platelet activation. Host inflammatory responses result in the release of platelet activating mediators and a pro-oxidative and pro-coagulant environment, which favors platelet activation. However, viruses can also directly interact with platelets and megakaryocytes and modulate their function. Furthermore, platelets can be activated by viral antigen-antibody complexes and in response to some viruses B-lymphocytes also generate anti-platelet antibodies. All these processes contributing to platelet activation result in increased platelet consumption and removal and often lead to thrombocytopenia, which is frequently observed during viral infection. However, virus-induced platelet activation does not only modulate platelet count but also shape immune responses. Platelets and their released products have been reported to directly and indirectly suppress infection and to support virus persistence in response to certain viruses, making platelets a double-edged sword during viral infections. This review aims to summarize the current knowledge on platelet interaction with different types of viruses, the viral impact on platelet activation, and platelet-mediated modulations of innate and adaptive immune responses.
Collapse
Affiliation(s)
- Alice Assinger
- Department of Physiology and Pharmacology, Medical University of Vienna , Vienna , Austria ; Department of Medicine, Center for Molecular Medicine, Karolinska University Hospital , Stockholm , Sweden
| |
Collapse
|
3574
|
Ergunay K, Kasap OE, Orsten S, Oter K, Gunay F, Yoldar AZA, Dincer E, Alten B, Ozkul A. Phlebovirus and Leishmania detection in sandflies from eastern Thrace and northern Cyprus. Parasit Vectors 2014; 7:575. [PMID: 25499083 PMCID: PMC4269954 DOI: 10.1186/s13071-014-0575-6] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Accepted: 11/26/2014] [Indexed: 01/01/2023] Open
Abstract
Background Phlebotomine sandflies are vectors of several pathogens with significant impact for public health. This study was conducted to investigate and characterize phlebovirus and Leishmania infections in vector sandflies collected in the eastern Thrace region in Turkey and Northern Cyprus, where previous data indicate activity of these agents. Methods Field sampling of sandflies was performed at 4 locations in Edirne and Tekirdag provinces of eastern Thrace and at 17 locations in Lefkosa, Girne, Magosa and Guzelyurt provinces of northern Cyprus. In sandfly pools, phlebovirus RNA and Leishmania DNA were screened via a generic polymerase chain reaction (PCR) and kinetoplast minicircle PCR, respectively. Selected sandfly specimens unsuitable for pathogen detection were identified to species level. Cytochrome oxidase 1 gene region was used for DNA barcoding of selected specimens and pathogen positive pools. Positive amplicons were cloned and characterized by sequencing. Results A total of 2690 sandflies, collected from Eastern Thrace (15.4%) and Northern Cyprus (84.6%) were evaluated. Morphological examination of 780 specimens from Cyprus exhibited Phlebotomus perfiliewi sensu lato (72.6%), Phlebotomus tobbi (19.7%), Phlebotomus papatasi (2.8%), Laroussius sp. (1.6%) and Sergentomyia azizi (1.6%), Sergentomyia sp. (0.9%), Sergentomyia minuta (0.5%) and Phleobotomus jacusieli (0.1%) species. Pathogen screening was performed in 1910 specimens distributed in 195 pools. In eight pools of P.tobbi sandflies collected in Cyprus, Leishmania infantum DNA was demonstrated. Toscana virus (TOSV) genotype A sequences were identified in two pools of P. perfiliewi s.l. and one pool of P.tobbi sandflies from Cyprus. Co-infection of TOSV and Leishmania infantum was characterized in a P.tobbi pool. Sequences belonging to novel phleboviruses are revealed in three P. perfiliewi s.l. pools. One sequence, provisionally named Edirne virus, identified in Edirne province in eastern Thrace, demonstrated the highest rate of genomic similarity to Adria and Salehabad viruses. Furthermore, Girne 1 and Girne 2 viruses, identified in Girne province, revealed similarities to TOSV and Sandfly Fever Sicilian virus and related strains, respectively. Conclusions Activity of TOSV genotype A strains in Cyprus and co-infection of sandfly vectors with L. infantum was documented for the first time. Novel phlebovirus strains of unknown medical significance was identified in sampling regions.
Collapse
Affiliation(s)
- Koray Ergunay
- Faculty of Medicine, Department of Medical Microbiology, Virology Unit, Hacettepe University, Morphology Building 3rd Floor, 06100, Sihhiye, Ankara, Turkey.
| | - Ozge Erisoz Kasap
- Faculty of Sciences, Department of Biology, Division of Ecology, Hacettepe University, Ankara, Turkey.
| | - Serra Orsten
- Faculty of Medicine, Department of Medical Microbiology, Virology Unit, Hacettepe University, Morphology Building 3rd Floor, 06100, Sihhiye, Ankara, Turkey.
| | - Kerem Oter
- Faculty of Veterinary Medicine, Department of Parasitology, Istanbul University, Istanbul, Turkey.
| | - Filiz Gunay
- Faculty of Sciences, Department of Biology, Division of Ecology, Hacettepe University, Ankara, Turkey.
| | | | - Ender Dincer
- Advanced Technology Education, Research and Application Center, Mersin University, Mersin, Turkey.
| | - Bulent Alten
- Faculty of Sciences, Department of Biology, Division of Ecology, Hacettepe University, Ankara, Turkey.
| | - Aykut Ozkul
- Faculty of Veterinary Medicine, Department of Virology, Ankara University, Ankara, Turkey.
| |
Collapse
|
3575
|
Saeed U, Mazoor S, Jalal N, Zahid Piracha Z. Contemplating the Importance of Toll-like Receptors I and II Regarding Human Viral Pathogenesis. Jundishapur J Microbiol 2014; 8:e13348. [PMID: 25763131 PMCID: PMC4344769 DOI: 10.5812/jjm.13348] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Revised: 03/29/2014] [Accepted: 07/26/2014] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Toll-like receptors (TLRs) play a major role in innate immunity, since they detect conserved pathogen-associated molecular patterns (PAMPs) on a range of microbes, including viruses, leading to innate immune activation and orchestration of the adaptive immune response. OBJECTIVES The current study aimed to discuss earlier evidence implicating TLRs I and II in the innate immune response to viruses, in the light of more recent clinical data demonstrating that TLRs are important for anti-viral immunity in humans. MATERIALS AND METHODS A literature search was performed via accessing research articles from PakMediNet, Pubmed and Google Scholar with key words of Toll-like receptors I and II Regarding human viral pathogenesis. The valued information on the recent scientific horizons was subjected to critical analysis. RESULTS Comprehensive literature review illustrates important signaling pathways involved in TLR1/TLR2 mediated regulation of viral pathogenesis. TLRs mediated activation of apoptosis tends to contribute towards defense strategies utilized by innate immune response. Activation of antiviral TLR1-dependent signaling cascade would ultimately lead to activation of NF-kappa B which promotes antiviral responses via induction of specific genes. TLR1/TLR2 dimer generates intracellular signaling via IRAK4 mediated activation of IRAK1/2 which results in activation of NF-kappa B, p38 and JNK proteins in cytoplasm. NF- kappa B, p38 and JNK enter the nucleus thereby causing activation of various pro-inflammatory cytokines such as IL-1 beta, TNF-alpha, IL-6, IL-8 and IL-18. Among the chronic HCV infection, the HCV core protein induces TNF-α and IL-10 from the macrophages thereby causing reduction in release of interferon alpha. Abnormal TLR1/TLR2 signaling may contribute to the enhancement of infection-related morbidity and mortality. CONCLUSIONS To date, a large number of viruses are proved to trigger innate immunity via TLRs, suggesting that these receptors are likely to be important in the outcome of viral infection. This suggestion is supported by the observation that many viruses have evolved mechanisms not only to evade the innate immune system, but also to subvert it for the benefit of the virus.
Collapse
Affiliation(s)
- Umar Saeed
- Attaur Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
- Corresponding author: Umar Saeed, Attaur Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan. Tel: +92-3235338544, E-mail:
| | - Sobia Mazoor
- Attaur Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Nasir Jalal
- Attaur Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Zahra Zahid Piracha
- Attaur Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| |
Collapse
|
3576
|
Calzolari M, Angelini P, Finarelli AC, Cagarelli R, Bellini R, Albieri A, Bonilauri P, Cavrini F, Tamba M, Dottori M, Gaibani P, Natalini S, Maioli G, Pinna M, Mattivi A, Sambri V, Pierro A, Landini MP, Rossini G, Squintani G, Cinotti S, Varani S, Vocale C, Bedeschi E. Human and entomological surveillance of Toscana virus in the Emilia-Romagna region, Italy, 2010 to 2012. Euro Surveill 2014; 19:20978. [DOI: 10.2807/1560-7917.es2014.19.48.20978] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Toscana virus (TOSV), transmitted by phlebotomine sandflies, is recognised as one of the most important causes of viral meningitis in summer in Mediterranean countries. A surveillance plan based on both human and entomological surveys was started in 2010 in the Emilia-Romagna region, Italy. Clinical samples from patients with neurological manifestations were collected during 2010 to 2012. The surveillance protocol was improved during these years, allowing the detection of 65 human infections. Most of these infections were recorded in hilly areas, where sandflies reach the highest density. Entomological sampling around the homes of the patients resulted in a low number of captured sandflies, while later sampling in a hilly area with high number of human cases (n=21) resulted in a larger number of captured sandflies. Using this approach, 25,653 sandflies were sampled, of which there were 21,157 females, which were sorted into 287 pools. TOSV RNA was detected by real-time PCR in 33 of the pools. The results highlighted the role of Phlebotomus perfiliewi as the main vector of TOSV and a potential link between vector density and virus circulation. This integrated system shows that an interdisciplinary approach improves the sensitiveness and effectiveness of health surveillance.
Collapse
Affiliation(s)
- M Calzolari
- Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia-Romagna, Brescia, Italy
| | - P Angelini
- Public Health Service, Emilia-Romagna Region, Bologna, Italy
| | - A C Finarelli
- Public Health Service, Emilia-Romagna Region, Bologna, Italy
| | - R Cagarelli
- Public Health Service, Emilia-Romagna Region, Bologna, Italy
| | - R Bellini
- Centro Agricoltura Ambiente ‘G Nicoli’, Crevalcore, Italy
| | - A Albieri
- Centro Agricoltura Ambiente ‘G Nicoli’, Crevalcore, Italy
| | - P Bonilauri
- Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia-Romagna, Brescia, Italy
| | - F Cavrini
- Unit of Clinical Microbiology, Regional Reference Centre for Microbiological Emergencies (CRREM), St. Orsola-Malpighi University Hospital, Bologna, Italy
| | - M Tamba
- Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia-Romagna, Brescia, Italy
| | - M Dottori
- Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia-Romagna, Brescia, Italy
| | - P Gaibani
- Unit of Clinical Microbiology, Regional Reference Centre for Microbiological Emergencies (CRREM), St. Orsola-Malpighi University Hospital, Bologna, Italy
| | - S Natalini
- Veterinary and Food Hygiene Service, Emilia-Romagna Region, Bologna, Italy
| | - G Maioli
- Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia-Romagna, Brescia, Italy
| | - M Pinna
- Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia-Romagna, Brescia, Italy
| | - A Mattivi
- Public Health Service, Emilia-Romagna Region, Bologna, Italy
| | - V Sambri
- Unit of Microbiology, Greater Romagna Area Hub Laboratory, Pievesestina, Italy
| | - A Pierro
- Unit of Clinical Microbiology, Regional Reference Centre for Microbiological Emergencies (CRREM), St. Orsola-Malpighi University Hospital, Bologna, Italy
| | - M P Landini
- Unit of Clinical Microbiology, Regional Reference Centre for Microbiological Emergencies (CRREM), St. Orsola-Malpighi University Hospital, Bologna, Italy
| | - G Rossini
- Unit of Clinical Microbiology, Regional Reference Centre for Microbiological Emergencies (CRREM), St. Orsola-Malpighi University Hospital, Bologna, Italy
| | - G Squintani
- Veterinary and Food Hygiene Service, Emilia-Romagna Region, Bologna, Italy
| | - S Cinotti
- Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia-Romagna, Brescia, Italy
| | - S Varani
- Unit of Clinical Microbiology, Regional Reference Centre for Microbiological Emergencies (CRREM), St. Orsola-Malpighi University Hospital, Bologna, Italy
| | - C Vocale
- Unit of Clinical Microbiology, Regional Reference Centre for Microbiological Emergencies (CRREM), St. Orsola-Malpighi University Hospital, Bologna, Italy
| | - E Bedeschi
- Public Health Service, Emilia-Romagna Region, Bologna, Italy
| |
Collapse
|
3577
|
Marlinge M, Crespy L, Zandotti C, Piorkowski G, Kaphan E, Charrel RN, Ninove L. Afebrile meningoencephalitis with transient central facial paralysis due to Toscana virus infection, southeastern France, 2014 [corrected]. ACTA ACUST UNITED AC 2014; 19:20974. [PMID: 25496570 DOI: 10.2807/1560-7917.es2014.19.48.20974] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
We report a case of meningoencephalitis caused by Toscana virus (TOSV) with central facial paralysis lasting over two days acquired in south-eastern France. The patient was not febrile either before or during the course of the disease. The diagnosis was established by both real-time RT-PCR and virus isolation with complete genome sequencing. This case emphasises the need to consider TOSV in non-febrile neurological syndromes in people living in or having travelled to the Mediterranean area.
Collapse
Affiliation(s)
- Mc Marlinge
- IHU Mediterranee Infection, APHM Public Hospitals of Marseille, Marseille, France
| | | | | | | | | | | | | |
Collapse
|
3578
|
Fernández-de-Castro I, Risco C. Imaging RNA virus replication assemblies: bunyaviruses and reoviruses. Future Virol 2014. [DOI: 10.2217/fvl.14.95] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
ABSTRACT RNA viruses replicate in the cytoplasm in close association with host cell membranes. Both viral and cellular factors generate organelle-like structures termed viral factories, viral inclusions or viroplasms. Biochemical, light and electron microscopy analyses, including 3D models, have improved our understanding of the architecture and function of RNA virus replication factories. In these structures, the virus compartmentalizes genome replication and transcription, thus enhancing replication efficiency and protection from host defenses. Recent studies with diverse RNA viruses have elucidated the ultrastructure of replication organelles and shown how these structures act in close coordination with virion assembly. This review focuses on a general description of RNA virus factories and summarizes recent progress in the characterization of those assembled by bunyaviruses and reoviruses. We describe how these viruses modify intracellular membranes; we highlight similarities with the structures induced by viruses of other families, and discuss how these structures might be formed.
Collapse
Affiliation(s)
| | - Cristina Risco
- Cell Structure Laboratory, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain
| |
Collapse
|
3579
|
Palgen JL, Jurgens EM, Moscona A, Porotto M, Palermo LM. Unity in diversity: shared mechanism of entry among paramyxoviruses. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2014; 129:1-32. [PMID: 25595799 DOI: 10.1016/bs.pmbts.2014.10.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The Paramyxoviridae family includes many viruses that are pathogenic in humans, including parainfluenza viruses, measles virus, respiratory syncytial virus, and the emerging zoonotic Henipaviruses. No effective treatments are currently available for these viruses, and there is a need for efficient antiviral therapies. Paramyxoviruses enter the target cell by binding to a cell surface receptor and then fusing the viral envelope with the target cell membrane, allowing the release of the viral genome into the cytoplasm. Blockage of these crucial steps prevents infection and disease. Binding and fusion are driven by two virus-encoded glycoproteins, the receptor-binding protein and the fusion protein, that together form the viral "fusion machinery." The development of efficient antiviral drugs requires a deeper understanding of the mechanism of action of the Paramyxoviridae fusion machinery, which is still controversial. Here, we review recent structural and functional data on these proteins and the current understanding of the mechanism of the paramyxovirus cell entry process.
Collapse
Affiliation(s)
- Jean-Louis Palgen
- Department of Pediatrics, Weill Cornell Medical College, Cornell University, New York, USA; Department of Biology, Ecole Normale Supérieure, Lyon, France
| | - Eric M Jurgens
- Department of Pediatrics, Weill Cornell Medical College, Cornell University, New York, USA
| | - Anne Moscona
- Department of Pediatrics, Weill Cornell Medical College, Cornell University, New York, USA; Department of Microbiology and Immunology, Weill Cornell Medical College, Cornell University, New York, USA
| | - Matteo Porotto
- Department of Pediatrics, Weill Cornell Medical College, Cornell University, New York, USA.
| | - Laura M Palermo
- Department of Pediatrics, Weill Cornell Medical College, Cornell University, New York, USA; Department of Microbiology and Immunology, Weill Cornell Medical College, Cornell University, New York, USA
| |
Collapse
|
3580
|
Toscana virus meningitis case in Switzerland: an example of the ezVIR bioinformatics pipeline utility for the identification of emerging viruses. Clin Microbiol Infect 2014; 21:387.e1-4. [PMID: 25658528 DOI: 10.1016/j.cmi.2014.11.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Revised: 09/18/2014] [Accepted: 11/05/2014] [Indexed: 02/06/2023]
Abstract
Toscana virus (TOSV) represents a frequent cause of viral meningitis in the Mediterranean Basin that remains neglected in neighbouring countries. We report a documented TOSV meningitis case in a traveller returning from Tuscany to Switzerland. While routine serological and PCR assays could not discriminate between TOSV and Sandfly fever Naples virus infection, a high-throughput sequencing performed directly on the cerebrospinal fluid specimen and analysed with the ezVIR pipeline provided an unequivocal viral diagnostic. TOSV could be unequivocally considered as the aetiological agent, proving the potential of ezVIR to improve standard diagnostics in cases of infection with uncommon or emerging viruses.
Collapse
|
3581
|
Torres L, Tang Q. Immediate-Early (IE) gene regulation of cytomegalovirus: IE1- and pp71-mediated viral strategies against cellular defenses. Virol Sin 2014; 29:343-52. [PMID: 25501994 DOI: 10.1007/s12250-014-3532-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Accepted: 11/11/2014] [Indexed: 12/17/2022] Open
Abstract
Three crucial hurdles hinder studies on human cytomegalovirus (HCMV): strict species specificity, differences between in vivo and in vitro infection, and the complexity of gene regulation. Ever since the sequencing of the whole genome was first accomplished, functional studies on individual genes have been the mainstream in the CMV field. Gene regulation has therefore been elucidated in a more detailed fashion. However, viral gene regulation is largely controlled by both cellular and viral components. In other words, viral gene expression is determined by the virus-host interaction. Generally, cells respond to viral infection in a defensive pattern; at the same time, viruses try to counteract the cellular defense or else hide in the host (latency). Viruses evolve effective strategies against cellular defense in order to achieve replicative success. Whether or not they are successful, cellular defenses remain in the whole viral replication cycle: entry, immediate-early (IE) gene expression, early gene expression, DNA replication, late gene expression, and viral egress. Many viral strategies against cellular defense, and which occur in the immediate-early time of viral infection, have been documented. In this review, we will summarize the documented biological functions of IE1 and pp71 proteins, especially with regard to how they counteract cellular intrinsic defenses.
Collapse
Affiliation(s)
- Lilith Torres
- Department of Microbiology, Ponce Health Sciences University, Ponce Research Institute, Ponce, PR, 00716, USA
| | | |
Collapse
|
3582
|
Fezaa O, M'ghirbi Y, Savellini GG, Ammari L, Hogga N, Triki H, Cusi MG, Bouattour A. Serological and molecular detection of Toscana and other Phleboviruses in patients and sandflies in Tunisia. BMC Infect Dis 2014; 14:598. [PMID: 25398483 PMCID: PMC4236749 DOI: 10.1186/s12879-014-0598-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Accepted: 10/29/2014] [Indexed: 11/10/2022] Open
Abstract
Background Our aim is to detect the infection by Toscana virus (TOSV) and other Phleboviruses in the sera and cerebro-spinal fluid (CSF) of patients with meningitis in Tunisia. We examined various species of phlebotomus present in Tunisia to determine whether or not a direct relationship exists between cases of meningitis and the viruses circulating in the insect vectors. Methods Patients with the meningeal syndrome were tested for anti-TOSV IgM and IgG using an indirect Enzyme-Linked Immunosorbent Assay (ELISA) and for the presence of TOSV and other Phleboviruses using a RT-PCR test. An entomological study was carried out using CDC light traps to trap sandflies in different bioclimatic zones of Tunisia. Collected sandflies were tested by RT-PCR for the presence of TOSV and other Phleboviruses and subsequently by viral isolation on Vero cells. Results Of 263 patients were tested using ELISA of which 12.16% (n = 32/263) were IgM positive for anti TOSV. Of these 32 patients, 78% (n = 25/32) were IgG positive. 12.86% (n = 18/140) of the CSF samples tested by RT-PCR were positive for the Toscana virus. One CSF sample tested by RT-PCR revealed the presence of Sandfly Fever Sicilian Virus (SFSV). The Punique virus was identified in one sandfly pool. Conclusions This study confirms, for the first time, that TOSV is involved in a neurological disorder in North Africa. The incidence of this involvement in Tunisia conforms with observations made in other Mediterranean countries. Moreover, for the first time, a molecular approach was used to detect SFSV in a Tunisian patient displaying neurological symptoms. Electronic supplementary material The online version of this article (doi:10.1186/s12879-014-0598-9) contains supplementary material, which is available to authorized users.
Collapse
|
3583
|
Bunyavirus-vector interactions. Viruses 2014; 6:4373-97. [PMID: 25402172 PMCID: PMC4246228 DOI: 10.3390/v6114373] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Revised: 10/30/2014] [Accepted: 11/04/2014] [Indexed: 01/23/2023] Open
Abstract
The Bunyaviridae family is comprised of more than 350 viruses, of which many within the Hantavirus, Orthobunyavirus, Nairovirus, Tospovirus, and Phlebovirus genera are significant human or agricultural pathogens. The viruses within the Orthobunyavirus, Nairovirus, and Phlebovirus genera are transmitted by hematophagous arthropods, such as mosquitoes, midges, flies, and ticks, and their associated arthropods not only serve as vectors but also as virus reservoirs in many cases. This review presents an overview of several important emerging or re-emerging bunyaviruses and describes what is known about bunyavirus-vector interactions based on epidemiological, ultrastructural, and genetic studies of members of this virus family.
Collapse
|
3584
|
Gouttenoire J, Montserret R, Paul D, Castillo R, Meister S, Bartenschlager R, Penin F, Moradpour D. Aminoterminal amphipathic α-helix AH1 of hepatitis C virus nonstructural protein 4B possesses a dual role in RNA replication and virus production. PLoS Pathog 2014; 10:e1004501. [PMID: 25392992 PMCID: PMC4231108 DOI: 10.1371/journal.ppat.1004501] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Accepted: 10/02/2014] [Indexed: 01/19/2023] Open
Abstract
Nonstructural protein 4B (NS4B) is a key organizer of hepatitis C virus (HCV) replication complex formation. In concert with other nonstructural proteins, it induces a specific membrane rearrangement, designated as membranous web, which serves as a scaffold for the HCV replicase. The N-terminal part of NS4B comprises a predicted and a structurally resolved amphipathic α-helix, designated as AH1 and AH2, respectively. Here, we report a detailed structure-function analysis of NS4B AH1. Circular dichroism and nuclear magnetic resonance structural analyses revealed that AH1 folds into an amphipathic α-helix extending from NS4B amino acid 4 to 32, with positively charged residues flanking the helix. These residues are conserved among hepaciviruses. Mutagenesis and selection of pseudorevertants revealed an important role of these residues in RNA replication by affecting the biogenesis of double-membrane vesicles making up the membranous web. Moreover, alanine substitution of conserved acidic residues on the hydrophilic side of the helix reduced infectivity without significantly affecting RNA replication, indicating that AH1 is also involved in virus production. Selective membrane permeabilization and immunofluorescence microscopy analyses of a functional replicon harboring an epitope tag between NS4B AH1 and AH2 revealed a dual membrane topology of the N-terminal part of NS4B during HCV RNA replication. Luminal translocation was unaffected by the mutations introduced into AH1, but was abrogated by mutations introduced into AH2. In conclusion, our study reports the three-dimensional structure of AH1 from HCV NS4B, and highlights the importance of positively charged amino acid residues flanking this amphipathic α-helix in membranous web formation and RNA replication. In addition, we demonstrate that AH1 possesses a dual role in RNA replication and virus production, potentially governed by different topologies of the N-terminal part of NS4B. With an estimated 180 million chronically infected individuals, hepatitis C virus (HCV) is a leading cause of chronic hepatitis, liver cirrhosis and hepatocellular carcinoma worldwide. HCV is a positive-strand RNA virus that builds its replication complex on rearranged intracellular membranes, designated as membranous web. HCV nonstructural protein 4B (NS4B) is a key organizer of HCV membranous web and replication complex formation. Here, we provide a detailed structure-function analysis of an N-terminal amphipathic α-helix of NS4B, named AH1, and demonstrate that it plays key roles in shaping the membranous web as well as in virus production. We also show that the N-terminal part of NS4B adopts a dual membrane topology in a replicative context, possibly reflecting the different roles of this protein in the viral life cycle.
Collapse
Affiliation(s)
- Jérôme Gouttenoire
- Division of Gastroenterology and Hepatology, Centre Hospitalier Universitaire Vaudois, University of Lausanne, Lausanne, Switzerland
| | - Roland Montserret
- Institut de Biologie et Chimie des Protéines, Bases Moléculaires et Structurales des Systèmes Infectieux, UMR 5086, CNRS, Labex Ecofect, University of Lyon, Lyon, France
| | - David Paul
- Department of Infectious Diseases, Molecular Virology, University of Heidelberg, Heidelberg, Germany
| | - Rosa Castillo
- Division of Gastroenterology and Hepatology, Centre Hospitalier Universitaire Vaudois, University of Lausanne, Lausanne, Switzerland
| | - Simon Meister
- Division of Gastroenterology and Hepatology, Centre Hospitalier Universitaire Vaudois, University of Lausanne, Lausanne, Switzerland
| | - Ralf Bartenschlager
- Department of Infectious Diseases, Molecular Virology, University of Heidelberg, Heidelberg, Germany
| | - François Penin
- Institut de Biologie et Chimie des Protéines, Bases Moléculaires et Structurales des Systèmes Infectieux, UMR 5086, CNRS, Labex Ecofect, University of Lyon, Lyon, France
| | - Darius Moradpour
- Division of Gastroenterology and Hepatology, Centre Hospitalier Universitaire Vaudois, University of Lausanne, Lausanne, Switzerland
- * E-mail:
| |
Collapse
|
3585
|
Abstract
Hepatitis C virus (HCV) is a major global health burden accounting for around 170 million chronic infections worldwide. Although highly potent direct-acting antiviral drugs to treat chronic hepatitis C have been approved recently, owing to their high costs and limited availability and a large number of undiagnosed infections, the burden of disease is expected to rise in the next few years. In addition, HCV is an excellent paradigm for understanding the tight link between a pathogen and host cell pathways, most notably lipid metabolism. HCV extensively remodels intracellular membranes to establish its cytoplasmic replication factory and also usurps components of the intercellular lipid transport system for production of infectious virus particles. Here, we review the molecular mechanisms of viral replicase function, cellular pathways employed during HCV replication factory biogenesis, and viral, as well as cellular, determinants of progeny virus production.
Collapse
|
3586
|
Qu J, Yu Z, Li Q, Chen Y, Xiang D, Tan L, Lei C, Bai W, Li H, Shang Q, Chen L, Hu X, Lu W, Li Z, Chen D, Wang X, Zhang C, Xiao G, Qi X, Chen J, Zhou L, Chen G, Li Y, Zeng Z, Rong G, Dong Z, Chen Y, Lou M, Wang C, Lu Y, Zhang C, Yang Y. Blocking and reversing hepatic fibrosis in patients with chronic hepatitis B treated by traditional Chinese medicine (tablets of biejia ruangan or RGT): study protocol for a randomized controlled trial. Trials 2014; 15:438. [PMID: 25381721 PMCID: PMC4234899 DOI: 10.1186/1745-6215-15-438] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Accepted: 10/24/2014] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Chronic hepatitis B (CHB) can progress to cirrhosis, hepatocellular carcinoma (HCC) and ultimately liver-related death. Although oral antiviral therapy for patients with CHB reduces the risk of such complications, once cirrhosis is established, the benefits of antiviral therapy are not robustly demonstrated. According to traditional Chinese medicine (TCM), some Chinese herbal medicines promote blood circulation and soften hard masses, and therefore they may block and reverse hepatic fibrosis. The aim of this study is to evaluate the effects of TCM tablets of the compound biejia ruangan (RGT) administered for fibrosis, and entecavir (ETV), on the development of HCC in patients with CHB or hepatitis B virus (HBV)-related compensated cirrhosis. METHODS/DESIGN This multicenter, centrally randomized, double-blind, placebo-controlled, parallel-group study is planned to complete within 5 years. For the study, 1,000 with CHB or HBV-related compensated cirrhosis are randomly assigned in a 1:1 ratio to a treatment group (0.5 mg ETV once daily; 2 g RGT three times daily) or a control group (0.5 mg ETV once daily; 2 g RGT dummy agent three times daily). The primary end points are the development of HCC and liver-related death. Secondary end points include disease progression and overall survival. DISCUSSION Although antiviral therapy can achieve sustained suppression of HBV replication, thereby preventing cirrhosis, patients with CHB treated with nucleos(t)ide analogs (NUCs) retain a higher risk for HCC compared with patients with inactive disease. Although previous clinical trials with RGT have confirmed the efficacy of blocking and reversing hepatic fibrosis in patients with CHB or compensated cirrhosis, the long-term risk for HCC or disease progression in these patients treated with combination of RGT and NUCs compared with NUCs alone is unclear. Therefore, it is necessary to investigate the effects of the RGT blockade and reversal of hepatic fibrosis on the development of HCC in patients with CHB or HBV-related compensated cirrhosis in large, prospective, multicenter, double-blind, randomized, controlled trials in China. TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT01965418. Date registered: 17 October 2013.
Collapse
Affiliation(s)
- Jianhui Qu
- />Center of Therapeutic Research for Liver Cancer, the 302 hospital of PLA, 100 Xisi Huan Middle Road, Beijing, 100039 China
| | - Zujiang Yu
- />Department of Infectious Disease, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province 450052 China
| | - Qin Li
- />Fuzhou Infectious Diseases Hospital, Fuzhou, Fujian Province 350025 China
| | - Yongping Chen
- />Department of Infectious and Liver Diseases, Liver Research Center, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province 325000 China
| | - Dedong Xiang
- />Department of Infectious Diseases, Southwest Hospital, Third Military Medical University, Chongqing, 400038 China
| | - Lin Tan
- />Liver Disease Department, Fuyang No 2 People’s Hospital, Fuyang, Anhui Province 236015 China
| | - Chunliang Lei
- />Guangzhou No 8 People’s Hospital, Guangzhou, Guangdong Province 510060 China
| | - Wenlin Bai
- />Center of Therapeutic Research for Liver Cancer, the 302 hospital of PLA, 100 Xisi Huan Middle Road, Beijing, 100039 China
| | - Hongyan Li
- />Center of Therapeutic Research for Liver Cancer, the 302 hospital of PLA, 100 Xisi Huan Middle Road, Beijing, 100039 China
| | - Qinghua Shang
- />Therapeutic Center for Liver Disease, 88th Hospital of PLA, Taian, Shandong Province 271000 China
| | - Liang Chen
- />Department of Hepatic Diseases, Shanghai Public Health Clinical Center, Shanghai, 201508 China
| | - Xiaoyu Hu
- />National Integrative Medicine Clinical Base for Infectious Diseases, Department of Infectious Diseases, Affiliated Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province 610072 China
| | - Wei Lu
- />Tianjin Second People’s Hospital, Tianjin Institute of Hepatology, Tianjin, 300192 China
| | - Zhiqin Li
- />Department of Infectious Disease, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province 450052 China
| | - Da Chen
- />Fuzhou Infectious Diseases Hospital, Fuzhou, Fujian Province 350025 China
| | - Xiaodong Wang
- />Department of Infectious and Liver Diseases, Liver Research Center, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province 325000 China
| | - Changjiang Zhang
- />Department of Infectious Diseases, Southwest Hospital, Third Military Medical University, Chongqing, 400038 China
| | - Guangming Xiao
- />Guangzhou No 8 People’s Hospital, Guangzhou, Guangdong Province 510060 China
| | - Xun Qi
- />Department of Hepatic Diseases, Shanghai Public Health Clinical Center, Shanghai, 201508 China
| | - Jing Chen
- />National Integrative Medicine Clinical Base for Infectious Diseases, Department of Infectious Diseases, Affiliated Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province 610072 China
| | - Li Zhou
- />Tianjin Second People’s Hospital, Tianjin Institute of Hepatology, Tianjin, 300192 China
| | - Guofeng Chen
- />Center of Therapeutic Research for Liver Cancer, the 302 hospital of PLA, 100 Xisi Huan Middle Road, Beijing, 100039 China
| | - Yonggang Li
- />Center of Therapeutic Research for Liver Cancer, the 302 hospital of PLA, 100 Xisi Huan Middle Road, Beijing, 100039 China
| | - Zhen Zeng
- />Center of Therapeutic Research for Liver Cancer, the 302 hospital of PLA, 100 Xisi Huan Middle Road, Beijing, 100039 China
| | - Guanghua Rong
- />Center of Therapeutic Research for Liver Cancer, the 302 hospital of PLA, 100 Xisi Huan Middle Road, Beijing, 100039 China
| | - Zheng Dong
- />Center of Therapeutic Research for Liver Cancer, the 302 hospital of PLA, 100 Xisi Huan Middle Road, Beijing, 100039 China
| | - Yan Chen
- />Center of Therapeutic Research for Liver Cancer, the 302 hospital of PLA, 100 Xisi Huan Middle Road, Beijing, 100039 China
| | - Min Lou
- />Center of Therapeutic Research for Liver Cancer, the 302 hospital of PLA, 100 Xisi Huan Middle Road, Beijing, 100039 China
| | - Chunping Wang
- />Center of Therapeutic Research for Liver Cancer, the 302 hospital of PLA, 100 Xisi Huan Middle Road, Beijing, 100039 China
| | - Yinying Lu
- />Center of Therapeutic Research for Liver Cancer, the 302 hospital of PLA, 100 Xisi Huan Middle Road, Beijing, 100039 China
| | - Cuihong Zhang
- />Center of Therapeutic Research for Liver Cancer, the 302 hospital of PLA, 100 Xisi Huan Middle Road, Beijing, 100039 China
| | - Yongping Yang
- />Center of Therapeutic Research for Liver Cancer, the 302 hospital of PLA, 100 Xisi Huan Middle Road, Beijing, 100039 China
| |
Collapse
|
3587
|
Devaux CA. The hidden face of academic researches on classified highly pathogenic microorganisms. INFECTION GENETICS AND EVOLUTION 2014; 29:26-34. [PMID: 25445654 DOI: 10.1016/j.meegid.2014.10.028] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Revised: 10/27/2014] [Accepted: 10/29/2014] [Indexed: 11/17/2022]
Abstract
Highly pathogenic microorganisms and toxins are manipulated in academic laboratories for fundamental research purposes, diagnostics, drugs and vaccines development. Obviously, these infectious pathogens represent a potential risk for human and/or animal health and their accidental or intentional release (biosafety and biosecurity, respectively) is a major concern of governments. In the past decade, several incidents have occurred in laboratories and reported by media causing fear and raising a sense of suspicion against biologists. Some scientists have been ordered by US government to leave their laboratory for long periods of time following the occurrence of an incident involving infectious pathogens; in other cases laboratories have been shut down and universities have been forced to pay fines and incur a long-term ban on funding after gross negligence of biosafety/biosecurity procedures. Measures of criminal sanctions have also been taken to minimize the risk that such incidents can reoccur. As United States and many other countries, France has recently strengthened its legal measures for laboratories' protection. During the past two decades, France has adopted a series of specific restriction measures to better protect scientific discoveries with a potential economic/social impact and prevent their misuse by ill-intentioned people without affecting the progress of science through fundamental research. French legal regulations concerning scientific discoveries have progressively strengthened since 2001, until the publication in November 2011 of a decree concerning the "PPST" (for "Protection du Potentiel Scientifique et Technique de la nation", the protection of sensitive scientific data). Following the same logic of protection of sensitive scientific researches, regulations were also adopted in an order published in April 2012 concerning the biology and health field. The aim was to define the legal framework that precise the conditions for authorizing microorganisms and toxins experimentation in France; these regulations apply for any operation of production, manufacturing, transportation, import, export, possession, supply, transfer, acquisition and use of highly pathogenic microorganisms and toxins, referred to as "MOT" (for "MicroOrganismes et Toxines hautement pathogènes") by the French law. Finally, laboratories conducting researches on such infectious pathogens are henceforth classified restricted area or ZRR (for "Zone à Régime Restrictif"), according an order of July 2012. In terms of economic protection, biosafety and biosecurity, these regulations represent an undeniable progress as compared to the previous condition. However, the competitiveness of research laboratories handling MOTs is likely to suffer the side effects of these severe constraints. For example research teams working on MOTs can be drastically affected both by (i) the indirect costs generated by the security measure to be applied; (ii) the working time devoted to samples recording; (iii) the establishment of traceability and reporting to national security agency ANSM, (iv) the latency period required for staff members being officially authorized to conduct experiments on MOTs; (v) the consequent reduced attractiveness for recruiting new trainees whose work would be significantly hampered by theses administrative constraints; and (vi) the limitations in the exchange of material with external laboratories and collaborators. Importantly, there is a risk that French academic researchers gradually abandon research on MOTs in favor of other projects that are less subject to legal restrictions. This would reduce the acquisition of knowledge in the field of MOTs which, in the long term, could be highly detrimental to the country by increasing its vulnerability to natural epidemics due to pathogenic microorganisms that are classified as MOTs and, by reducing its preparedness against possible bioterrorist attacks that would use such microorganisms.
Collapse
Affiliation(s)
- Christian A Devaux
- Centre d'Etudes d'agents Pathogènes et Biotechnologies pour la Santé-CPBS, UMR5236 CNRS-UM1-UM2, 1919 route de Mende, F-34293 Montpellier cedex 5, Montpellier, France.
| |
Collapse
|
3588
|
Editorial overview: Virus replication in animals and plants. Curr Opin Virol 2014; 9:iv-v. [PMID: 25544731 DOI: 10.1016/j.coviro.2014.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
3589
|
Barajas D, Xu K, de Castro Martín IF, Sasvari Z, Brandizzi F, Risco C, Nagy PD. Co-opted oxysterol-binding ORP and VAP proteins channel sterols to RNA virus replication sites via membrane contact sites. PLoS Pathog 2014; 10:e1004388. [PMID: 25329172 PMCID: PMC4199759 DOI: 10.1371/journal.ppat.1004388] [Citation(s) in RCA: 94] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Accepted: 08/06/2014] [Indexed: 02/06/2023] Open
Abstract
Viruses recruit cellular membranes and subvert cellular proteins involved in lipid biosynthesis to build viral replicase complexes and replication organelles. Among the lipids, sterols are important components of membranes, affecting the shape and curvature of membranes. In this paper, the tombusvirus replication protein is shown to co-opt cellular Oxysterol-binding protein related proteins (ORPs), whose deletion in yeast model host leads to decreased tombusvirus replication. In addition, tombusviruses also subvert Scs2p VAP protein to facilitate the formation of membrane contact sites (MCSs), where membranes are juxtaposed, likely channeling lipids to the replication sites. In all, these events result in redistribution and enrichment of sterols at the sites of viral replication in yeast and plant cells. Using in vitro viral replication assay with artificial vesicles, we show stimulation of tombusvirus replication by sterols. Thus, co-opting cellular ORP and VAP proteins to form MCSs serves the virus need to generate abundant sterol-rich membrane surfaces for tombusvirus replication.
Collapse
Affiliation(s)
- Daniel Barajas
- Department of Plant Pathology, University of Kentucky, Lexington, Kentucky, United States of America
| | - Kai Xu
- Department of Plant Pathology, University of Kentucky, Lexington, Kentucky, United States of America
| | | | - Zsuzsanna Sasvari
- Department of Plant Pathology, University of Kentucky, Lexington, Kentucky, United States of America
| | - Federica Brandizzi
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, Michigan, United States of America
| | - Cristina Risco
- Cell Structure Laboratory, Centro Nacional de Biotecnología (CNB-CSIC), Campus de Cantoblanco, Madrid, Spain
| | - Peter D. Nagy
- Department of Plant Pathology, University of Kentucky, Lexington, Kentucky, United States of America
- * E-mail:
| |
Collapse
|
3590
|
Marcello MA, Malandrino P, Almeida JFM, Martins MB, Cunha LL, Bufalo NE, Pellegriti G, Ward LS. The influence of the environment on the development of thyroid tumors: a new appraisal. Endocr Relat Cancer 2014; 21:T235-54. [PMID: 24948559 DOI: 10.1530/erc-14-0131] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Most epidemiological studies concerning differentiated thyroid cancers (DTC) indicate an increasing incidence over the last two decades. This increase might be partially explained by the better access to health services worldwide, but clinicopathological analyses do not fully support this hypothesis, indicating that there are carcinogenetic factors behind this noticeable increasing incidence. Although we have undoubtedly understood the biology and molecular pathways underlying thyroid carcinogenesis in a better way, we have made very little progresses in identifying a risk profile for DTC, and our knowledge of risk factors is very similar to what we knew 30-40 years ago. In addition to ionizing radiation exposure, the most documented and established risk factor for DTC, we also investigated the role of other factors, including eating habits, tobacco smoking, living in a volcanic area, xenobiotics, and viruses, which could be involved in thyroid carcinogenesis, thus, contributing to the increase in DTC incidence rates observed.
Collapse
Affiliation(s)
- M A Marcello
- Laboratory of Cancer Molecular Genetics (Gemoca)Faculty of Medical Sciences, University of Campinas (FCM-Unicamp), Rua Tessalia Vieira de Camargo, 126, Barao Geraldo, Campinas, Sao Paulo, 13083-887, BrazilEndocrinologyDepartment of Clinical and Molecular Biomedicine, Garibaldi-Nesima Medical Center, University of Catania, Catania, Italy
| | - P Malandrino
- Laboratory of Cancer Molecular Genetics (Gemoca)Faculty of Medical Sciences, University of Campinas (FCM-Unicamp), Rua Tessalia Vieira de Camargo, 126, Barao Geraldo, Campinas, Sao Paulo, 13083-887, BrazilEndocrinologyDepartment of Clinical and Molecular Biomedicine, Garibaldi-Nesima Medical Center, University of Catania, Catania, Italy
| | - J F M Almeida
- Laboratory of Cancer Molecular Genetics (Gemoca)Faculty of Medical Sciences, University of Campinas (FCM-Unicamp), Rua Tessalia Vieira de Camargo, 126, Barao Geraldo, Campinas, Sao Paulo, 13083-887, BrazilEndocrinologyDepartment of Clinical and Molecular Biomedicine, Garibaldi-Nesima Medical Center, University of Catania, Catania, Italy
| | - M B Martins
- Laboratory of Cancer Molecular Genetics (Gemoca)Faculty of Medical Sciences, University of Campinas (FCM-Unicamp), Rua Tessalia Vieira de Camargo, 126, Barao Geraldo, Campinas, Sao Paulo, 13083-887, BrazilEndocrinologyDepartment of Clinical and Molecular Biomedicine, Garibaldi-Nesima Medical Center, University of Catania, Catania, Italy
| | - L L Cunha
- Laboratory of Cancer Molecular Genetics (Gemoca)Faculty of Medical Sciences, University of Campinas (FCM-Unicamp), Rua Tessalia Vieira de Camargo, 126, Barao Geraldo, Campinas, Sao Paulo, 13083-887, BrazilEndocrinologyDepartment of Clinical and Molecular Biomedicine, Garibaldi-Nesima Medical Center, University of Catania, Catania, Italy
| | - N E Bufalo
- Laboratory of Cancer Molecular Genetics (Gemoca)Faculty of Medical Sciences, University of Campinas (FCM-Unicamp), Rua Tessalia Vieira de Camargo, 126, Barao Geraldo, Campinas, Sao Paulo, 13083-887, BrazilEndocrinologyDepartment of Clinical and Molecular Biomedicine, Garibaldi-Nesima Medical Center, University of Catania, Catania, Italy
| | - G Pellegriti
- Laboratory of Cancer Molecular Genetics (Gemoca)Faculty of Medical Sciences, University of Campinas (FCM-Unicamp), Rua Tessalia Vieira de Camargo, 126, Barao Geraldo, Campinas, Sao Paulo, 13083-887, BrazilEndocrinologyDepartment of Clinical and Molecular Biomedicine, Garibaldi-Nesima Medical Center, University of Catania, Catania, Italy
| | - L S Ward
- Laboratory of Cancer Molecular Genetics (Gemoca)Faculty of Medical Sciences, University of Campinas (FCM-Unicamp), Rua Tessalia Vieira de Camargo, 126, Barao Geraldo, Campinas, Sao Paulo, 13083-887, BrazilEndocrinologyDepartment of Clinical and Molecular Biomedicine, Garibaldi-Nesima Medical Center, University of Catania, Catania, Italy
| |
Collapse
|
3591
|
Osna NA, Ganesan M, Donohue TM. Proteasome- and ethanol-dependent regulation of HCV-infection pathogenesis. Biomolecules 2014; 4:885-896. [PMID: 25268065 PMCID: PMC4279161 DOI: 10.3390/biom4040885] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Revised: 08/05/2014] [Accepted: 09/16/2014] [Indexed: 02/05/2023] Open
Abstract
This paper reviews the role of the catabolism of HCV and signaling proteins in HCV protection and the involvement of ethanol in HCV-proteasome interactions. HCV specifically infects hepatocytes, and intracellularly expressed HCV proteins generate oxidative stress, which is further exacerbated by heavy drinking. The proteasome is the principal proteolytic system in cells, and its activity is sensitive to the level of cellular oxidative stress. Not only host proteins, but some HCV proteins are degraded by the proteasome, which, in turn, controls HCV propagation and is crucial for the elimination of the virus. Ubiquitylation of HCV proteins usually leads to the prevention of HCV propagation, while accumulation of undegraded viral proteins in the nuclear compartment exacerbates infection pathogenesis. Proteasome activity also regulates both innate and adaptive immunity in HCV-infected cells. In addition, the proteasome/immunoproteasome is activated by interferons, which also induce "early" and "late" interferon-sensitive genes (ISGs) with anti-viral properties. Cleaving viral proteins to peptides in professional immune antigen presenting cells and infected ("target") hepatocytes that express the MHC class I-antigenic peptide complex, the proteasome regulates the clearance of infected hepatocytes by the immune system. Alcohol exposure prevents peptide cleavage by generating metabolites that impair proteasome activity, thereby providing escape mechanisms that interfere with efficient viral clearance to promote the persistence of HCV-infection.
Collapse
Affiliation(s)
- Natalia A. Osna
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, 4101 Woolworth Ave, Omaha, NE 68105, USA; E-Mails: , (M.G.); (T.M.D.Jr.)
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68105, USA
| | - Murali Ganesan
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, 4101 Woolworth Ave, Omaha, NE 68105, USA; E-Mails: , (M.G.); (T.M.D.Jr.)
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68105, USA
| | - Terrence M. Donohue
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, 4101 Woolworth Ave, Omaha, NE 68105, USA; E-Mails: , (M.G.); (T.M.D.Jr.)
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68105, USA
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| |
Collapse
|
3592
|
Chang PC, Kung HJ. SUMO and KSHV Replication. Cancers (Basel) 2014; 6:1905-24. [PMID: 25268162 PMCID: PMC4276950 DOI: 10.3390/cancers6041905] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Revised: 09/09/2014] [Accepted: 09/10/2014] [Indexed: 02/07/2023] Open
Abstract
Small Ubiquitin-related MOdifier (SUMO) modification was initially identified as a reversible post-translational modification that affects the regulation of diverse cellular processes, including signal transduction, protein trafficking, chromosome segregation, and DNA repair. Increasing evidence suggests that the SUMO system also plays an important role in regulating chromatin organization and transcription. It is thus not surprising that double-stranded DNA viruses, such as Kaposi's sarcoma-associated herpesvirus (KSHV), have exploited SUMO modification as a means of modulating viral chromatin remodeling during the latent-lytic switch. In addition, SUMO regulation allows the disassembly and assembly of promyelocytic leukemia protein-nuclear bodies (PML-NBs), an intrinsic antiviral host defense, during the viral replication cycle. Overcoming PML-NB-mediated cellular intrinsic immunity is essential to allow the initial transcription and replication of the herpesvirus genome after de novo infection. As a consequence, KSHV has evolved a way as to produce multiple SUMO regulatory viral proteins to modulate the cellular SUMO environment in a dynamic way during its life cycle. Remarkably, KSHV encodes one gene product (K-bZIP) with SUMO-ligase activities and one gene product (K-Rta) that exhibits SUMO-targeting ubiquitin ligase (STUbL) activity. In addition, at least two viral products are sumoylated that have functional importance. Furthermore, sumoylation can be modulated by other viral gene products, such as the viral protein kinase Orf36. Interference with the sumoylation of specific viral targets represents a potential therapeutic strategy when treating KSHV, as well as other oncogenic herpesviruses. Here, we summarize the different ways KSHV exploits and manipulates the cellular SUMO system and explore the multi-faceted functions of SUMO during KSHV's life cycle and pathogenesis.
Collapse
Affiliation(s)
- Pei-Ching Chang
- Institute of Microbiology and Immunology, National Yang-Ming University, Taipei 112, Taiwan.
| | - Hsing-Jien Kung
- Institute for Translational Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan.
| |
Collapse
|
3593
|
Vidal-Dupiol J, Dheilly NM, Rondon R, Grunau C, Cosseau C, Smith KM, Freitag M, Adjeroud M, Mitta G. Thermal stress triggers broad Pocillopora damicornis transcriptomic remodeling, while Vibrio coralliilyticus infection induces a more targeted immuno-suppression response. PLoS One 2014; 9:e107672. [PMID: 25259845 PMCID: PMC4178034 DOI: 10.1371/journal.pone.0107672] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Accepted: 08/13/2014] [Indexed: 12/19/2022] Open
Abstract
Global change and its associated temperature increase has directly or indirectly changed the distributions of hosts and pathogens, and has affected host immunity, pathogen virulence and growth rates. This has resulted in increased disease in natural plant and animal populations worldwide, including scleractinian corals. While the effects of temperature increase on immunity and pathogen virulence have been clearly identified, their interaction, synergy and relative weight during pathogenesis remain poorly documented. We investigated these phenomena in the interaction between the coral Pocillopora damicornis and the bacterium Vibrio coralliilyticus, for which the infection process is temperature-dependent. We developed an experimental model that enabled unraveling the effects of thermal stress, and virulence vs. non-virulence of the bacterium. The physiological impacts of various treatments were quantified at the transcriptome level using a combination of RNA sequencing and targeted approaches. The results showed that thermal stress triggered a general weakening of the coral, making it more prone to infection, non-virulent bacterium induced an ‘efficient’ immune response, whereas virulent bacterium caused immuno-suppression in its host.
Collapse
Affiliation(s)
- Jeremie Vidal-Dupiol
- CNRS, Ecologie et Evolution des Interactions, UMR 5244, Perpignan, France
- Univ. Perpignan Via Domitia, Ecologie et Evolution des Interactions, UMR 5244, Perpignan, France
- * E-mail:
| | - Nolwenn M. Dheilly
- CNRS, Ecologie et Evolution des Interactions, UMR 5244, Perpignan, France
- Univ. Perpignan Via Domitia, Ecologie et Evolution des Interactions, UMR 5244, Perpignan, France
| | - Rodolfo Rondon
- CNRS, Ecologie et Evolution des Interactions, UMR 5244, Perpignan, France
- Univ. Perpignan Via Domitia, Ecologie et Evolution des Interactions, UMR 5244, Perpignan, France
- Reponse Immunitaire des Macroorganismes et Environnement, Ecologie des Systèmes Marins côtiers, UMR 5119 CNRS-Ifremer-UM2, Montpellier, France
| | - Christoph Grunau
- CNRS, Ecologie et Evolution des Interactions, UMR 5244, Perpignan, France
- Univ. Perpignan Via Domitia, Ecologie et Evolution des Interactions, UMR 5244, Perpignan, France
| | - Céline Cosseau
- CNRS, Ecologie et Evolution des Interactions, UMR 5244, Perpignan, France
- Univ. Perpignan Via Domitia, Ecologie et Evolution des Interactions, UMR 5244, Perpignan, France
| | - Kristina M. Smith
- Department of Biochemistry and Biophysics, Center for Genome Research and Biocomputing, Oregon State University, Corvallis, Oregon, United States of America
| | - Michael Freitag
- Department of Biochemistry and Biophysics, Center for Genome Research and Biocomputing, Oregon State University, Corvallis, Oregon, United States of America
| | - Mehdi Adjeroud
- Institut de Recherche pour le Développement, Unité 227 CoRéUs2 “Biocomplexité des écosystèmes coralliens de l’Indo-Pacifique”, Laboratoire d’excellence CORAIL, Banyuls-sur-Mer, France
| | - Guillaume Mitta
- CNRS, Ecologie et Evolution des Interactions, UMR 5244, Perpignan, France
- Univ. Perpignan Via Domitia, Ecologie et Evolution des Interactions, UMR 5244, Perpignan, France
| |
Collapse
|
3594
|
Merino-Ramos T, Blázquez AB, Escribano-Romero E, Cañas-Arranz R, Sobrino F, Saiz JC, Martín-Acebes MA. Protection of a single dose west nile virus recombinant subviral particle vaccine against lineage 1 or 2 strains and analysis of the cross-reactivity with Usutu virus. PLoS One 2014; 9:e108056. [PMID: 25229345 PMCID: PMC4168257 DOI: 10.1371/journal.pone.0108056] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Accepted: 08/19/2014] [Indexed: 12/30/2022] Open
Abstract
West Nile virus (WNV) is a neurovirulent mosquito-borne flavivirus. High WNV virulence was mainly associated with lineage 1 strains, but recent outbreaks have unveiled circulation of highly virulent lineage 2 strains. Co-expression of flavivirus prM and E glycoproteins drives the assembly of recombinant subviral particles (RSPs) that share antigenic features with virions. Mouse immunization with lineage 1 WNV RSPs induced a potent humoral response against WNV with production of neutralizing antibodies. A single inoculation of RSPs formulated with Al(OH)3 as adjuvant protected mice against a lethal challenge with WNV strains from lineage 1 or 2. The cross-reactivity of the response elicited by these RSPs was analyzed against the related flavivirus Usutu virus (USUV), which shares multiple ecological and antigenic features with WNV. Immunization with WNV-RSPs increased specific, although low, antibody titers found upon subsequent USUV infection.
Collapse
Affiliation(s)
- Teresa Merino-Ramos
- Departamento de Biotecnología, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Madrid, Spain
| | - Ana-Belén Blázquez
- Departamento de Biotecnología, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Madrid, Spain
| | - Estela Escribano-Romero
- Departamento de Biotecnología, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Madrid, Spain
| | - Rodrigo Cañas-Arranz
- Departamento de Virología y Microbiología, Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Cantoblanco, Madrid, Spain
| | - Francisco Sobrino
- Departamento de Virología y Microbiología, Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Cantoblanco, Madrid, Spain
- * E-mail: (FS); (JCS)
| | - Juan-Carlos Saiz
- Departamento de Biotecnología, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Madrid, Spain
- * E-mail: (FS); (JCS)
| | - Miguel A. Martín-Acebes
- Departamento de Virología y Microbiología, Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Cantoblanco, Madrid, Spain
| |
Collapse
|
3595
|
Strazzulla A, Costa C, Pisani V, De Maria V, Giancotti F, Di Salvo S, Parisi SG, Basso M, Franzetti MM, Marascio N, Liberto MC, Barreca GS, Lamberti AG, Zicca E, Postorino MC, Matera G, Focà A, Torti C. Present, old and future strategies for anti-HCV treatment in patients infected by genotype-1: estimation of the drug costs in the Calabria Region in the era of the directly acting antivirals. BMC Infect Dis 2014; 14 Suppl 5:S3. [PMID: 25236374 PMCID: PMC4160897 DOI: 10.1186/1471-2334-14-s5-s3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND In Italy, anti-HCV drugs are provided free of charge by the National Health System. Since 2011, three drug regimens including a directly acting antiviral (DAA) are considered the gold standard for HCV treatment. However, these drugs add a significant cost (roughly €26,000) to the combination of pegylated-interferon-α/ribavirin (PEG-IFN/RBV), which before DAA represented the unique treatment. To provide the National Health System potential useful information, we estimated costs to provide anti-HCV drugs to treat a population experienced for PEG-INF/RBV. METHODS Genotype 1 HCV mono-infected or HIV/HCV co-infected individuals who were treated with PEG-IFN/RBV between 2008 and 2013 were included. The cost to treat these patients with PEG-IFN/RBV was calculated (cost 1). We also estimated costs if we had to treat these patients with a lead-in period of PEG-INF/RBV followed by PEG-IFN/RBV and a DAA in naïves (cost 2), in addition to cost 1 plus the estimated cost to re-treat with PEG-IFN/RBV and a DAA patients who had a relapse or a non response (cost 3). Moreover, all costs were normalized by SVR. Rates of foreseen response with DAA were obtained from literature data. RESULTS The overall study population consisted of 104 patients. The rate of sustained virological response (SVR) was 55%, while it was estimated that SVR would be obtained in 75% of patients with a lead-in period with PEG-IFN/RBV followed by a DAA combination, and in 78% if this treatment is used to re-treat experienced patients with a DAA. Drug costs associated with these treatments were: €1,214,283 for cost 1, €3,474,977 for cost 2 and €3,002,095 for cost 3. Costs per SVR achieved were: €22,284 for cost 1, €44,643 for cost 2 and €38,322 for cost 3. CONCLUSIONS Treatments including DAAs achieve a SVR in more patients than PEG-IFN/RBV but they cost around three times more than PEG-IFN/RBV alone regimens. Also, cost per SVR is almost twofold greater than PEG-IFN/RBV regimens. Therefore, it is mandatory to implement use of DAA in clinical practice, but the National Health System should allocate adequate resources to provide drugs, which challenges sustainability. Cost reduction for anti-HCV drugs should be pursued.
Collapse
|
3596
|
Becares M, Sanchez CM, Sola I, Enjuanes L, Zuñiga S. Antigenic structures stably expressed by recombinant TGEV-derived vectors. Virology 2014; 464-465:274-286. [PMID: 25108114 PMCID: PMC7112069 DOI: 10.1016/j.virol.2014.07.027] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Revised: 06/17/2014] [Accepted: 07/17/2014] [Indexed: 11/21/2022]
Abstract
Coronaviruses (CoVs) are positive-stranded RNA viruses with potential as immunization vectors, expressing high levels of heterologous genes and eliciting both secretory and systemic immune responses. Nevertheless, its high recombination rate may result in the loss of the full-length foreign gene, limiting their use as vectors. Transmissible gastroenteritis virus (TGEV) was engineered to express porcine reproductive and respiratory syndrome virus (PRRSV) small protein domains, as a strategy to improve heterologous gene stability. After serial passage in tissue cultures, stable expression of small PRRSV protein antigenic domains was achieved. Therefore, size reduction of the heterologous genes inserted in CoV-derived vectors led to the stable expression of antigenic domains. Immunization of piglets with these TGEV vectors led to partial protection against a challenge with a virulent PRRSV strain, as immunized animals showed reduced clinical signs and lung damage. Further improvement of TGEV-derived vectors will require the engineering of vectors with decreased recombination rate.
Collapse
Affiliation(s)
- Martina Becares
- Centro Nacional de Biotecnología, CNB-CSIC, Department of Molecular and Cell Biology, Campus Universidad Autónoma de Madrid, Darwin 3, Madrid 28049, Spain
| | - Carlos M Sanchez
- Centro Nacional de Biotecnología, CNB-CSIC, Department of Molecular and Cell Biology, Campus Universidad Autónoma de Madrid, Darwin 3, Madrid 28049, Spain
| | - Isabel Sola
- Centro Nacional de Biotecnología, CNB-CSIC, Department of Molecular and Cell Biology, Campus Universidad Autónoma de Madrid, Darwin 3, Madrid 28049, Spain
| | - Luis Enjuanes
- Centro Nacional de Biotecnología, CNB-CSIC, Department of Molecular and Cell Biology, Campus Universidad Autónoma de Madrid, Darwin 3, Madrid 28049, Spain.
| | - Sonia Zuñiga
- Centro Nacional de Biotecnología, CNB-CSIC, Department of Molecular and Cell Biology, Campus Universidad Autónoma de Madrid, Darwin 3, Madrid 28049, Spain
| |
Collapse
|
3597
|
Maier HJ, Hawes PC, Keep SM, Britton P. Spherules and IBV. Bioengineered 2014; 5:288-92. [PMID: 25482229 PMCID: PMC4156489 DOI: 10.4161/bioe.29323] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Revised: 05/21/2014] [Accepted: 05/22/2014] [Indexed: 01/29/2023] Open
Abstract
Infectious bronchitis virus (IBV) is an economically important virus infecting chickens, causing large losses to the poultry industry globally. While vaccines are available, there is a requirement for novel vaccine strategies due to high strain variation and poor cross-protection. This requires a more detailed understanding of virus-host cell interactions to identify candidates for targeted virus attenuation. One key area of research in the positive sense RNA virus field, due to its central role in virus replication, is the induction of cellular membrane rearrangements by this class of viruses for the assembly of virus replication complexes. In our recent work, we identified the structures induced by IBV during infection of cultured cells, as well as primary cells and ex vivo organ culture. We identified structures novel to the coronavirus family, which strongly resemble replication sites of other positive sense RNA viruses. We have begun to extend this work using recombinant IBVs, which are chimera of different virus strains to study the role of viral proteins in the induction of membrane rearrangements.
Collapse
Affiliation(s)
- Helena J Maier
- The Pirbright Institute; Compton Laboratory; Compton, UK
| | | | - Sarah M Keep
- The Pirbright Institute; Compton Laboratory; Compton, UK
| | - Paul Britton
- The Pirbright Institute; Compton Laboratory; Compton, UK
| |
Collapse
|
3598
|
Ren J, Lu H, Wen S, Sun W, Yan F, Chen X, Jing J, Liu H, Liu C, Xue F, Xiao P, Xin S, Jin N. Enhanced immune responses in pigs by DNA vaccine coexpressing GP3 and GP5 of European type porcine reproductive and respiratory syndrome virus. J Virol Methods 2014; 206:27-37. [PMID: 24882496 DOI: 10.1016/j.jviromet.2014.05.021] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2014] [Revised: 04/20/2014] [Accepted: 05/06/2014] [Indexed: 01/04/2023]
Abstract
The European (EU) type of porcine reproductive and respiratory syndrome virus (PRRSV) has recently emerged in China. In this study, three recombinant DNA vaccines, pVAX1-EU-ORF3-ORF5 (coexpressing EU type PRRSV GP3 and GP5), pVAX1-EU-ORF3 and pVAX1-EU-ORF5, were constructed and evaluated for their abilities to induce humoral and cellular responses as well as to protect piglets against homologous virus challenge. All piglets were given booster vaccinations at 21 days after the initial inoculation and then challenged 14 days later. Pigs inoculated with pVAX1-EU-ORF3-ORF5 developed significantly higher (P<0.05) PRRSV-specific antibody responses, neutralizing antibodies and levels of IL-4 and IL-10 than those given pVAX1-EU-ORF3, pVAX1-EU-ORF5 or pVAX1. Moreover, pigs immunized with pVAX1-EU-ORF3-ORF5 had markedly increased levels of IFN-γ and IL-2 in serum and T-lymphocytes (CD3(+)CD4(+) and CD3(+)CD8(+) T cells) in peripheral blood. Thus, EU-type PRRSV GP3 and GP5 proteins demonstrated good immunogenicity and reactogenicity and could induce cellular immunity in pigs. Following challenge with the Lelystad virus (LV) strain, piglets inoculated with pVAX1-EU-ORF3-ORF5 showed viremia and virus load distributed in organ tissues that were significantly lower (P<0.05) than those in the pVAX1-EU-ORF3 group and control group, and slightly lower than those in the pVAX1-EU-ORF5 group (P>0.05). As GP3 could enhance humoral- and cell-mediated immune responses to GP5, the results of this study suggested that these two proteins delivered by a vaccine can synergistically induce immunity against PRRSV.
Collapse
Affiliation(s)
- Jingqiang Ren
- College of Veterinary Medicine, Jilin University, Changchun 130062, China; Institute of Military Veterinary, Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Academy of Military Medical Sciences, Changchun 130122, China.
| | - Huijun Lu
- Institute of Military Veterinary, Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Academy of Military Medical Sciences, Changchun 130122, China.
| | - Shubo Wen
- Institute of Military Veterinary, Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Academy of Military Medical Sciences, Changchun 130122, China; College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China.
| | - Wenchao Sun
- Institute of Military Veterinary, Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Academy of Military Medical Sciences, Changchun 130122, China; College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China.
| | - Fulong Yan
- Institute of Military Veterinary, Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Academy of Military Medical Sciences, Changchun 130122, China; College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China.
| | - Xing Chen
- Institute of Military Veterinary, Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Academy of Military Medical Sciences, Changchun 130122, China; College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China.
| | - Jie Jing
- College of Veterinary Medicine, Jilin University, Changchun 130062, China; Institute of Military Veterinary, Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Academy of Military Medical Sciences, Changchun 130122, China.
| | - Hao Liu
- Institute of Military Veterinary, Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Academy of Military Medical Sciences, Changchun 130122, China; Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun 130122, China.
| | - Cunxia Liu
- Institute of Military Veterinary, Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Academy of Military Medical Sciences, Changchun 130122, China.
| | - Fei Xue
- Institute of Military Veterinary, Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Academy of Military Medical Sciences, Changchun 130122, China.
| | - Pengpeng Xiao
- College of Veterinary Medicine, Jilin University, Changchun 130062, China; Institute of Military Veterinary, Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Academy of Military Medical Sciences, Changchun 130122, China.
| | - Shu Xin
- Institute of Military Veterinary, Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Academy of Military Medical Sciences, Changchun 130122, China; College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China.
| | - Ningyi Jin
- College of Veterinary Medicine, Jilin University, Changchun 130062, China; Institute of Military Veterinary, Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Academy of Military Medical Sciences, Changchun 130122, China.
| |
Collapse
|
3599
|
Maringer K, Fernandez-Sesma A. Message in a bottle: lessons learned from antagonism of STING signalling during RNA virus infection. Cytokine Growth Factor Rev 2014; 25:669-79. [PMID: 25212897 PMCID: PMC4330990 DOI: 10.1016/j.cytogfr.2014.08.004] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Accepted: 08/05/2014] [Indexed: 02/08/2023]
Abstract
STING has emerged in recent years as an important signalling adaptor in the activation of type I interferon responses during infection with DNA viruses and bacteria. An increasing body of evidence suggests that STING also modulates responses to RNA viruses, though the mechanisms remain less clear. In this review, we give a brief overview of the ways in which STING facilitates sensing of RNA viruses. These include modulation of RIG-I-dependent responses through STING's interaction with MAVS, and more speculative mechanisms involving the DNA sensor cGAS and sensing of membrane remodelling events. We then provide an in-depth literature review to summarise the known mechanisms by which RNA viruses of the families Flaviviridae and Coronaviridae evade sensing through STING. Our own work has shown that the NS2B/3 protease complex of the flavivirus dengue virus binds and cleaves STING, and that an inability to degrade murine STING may contribute to host restriction in this virus. We contrast this to the mechanism employed by the distantly related hepacivirus hepatitis C virus, in which STING is bound and inactivated by the NS4B protein. Finally, we discuss STING antagonism in the coronaviruses SARS coronavirus and human coronavirus NL63, which disrupt K63-linked polyubiquitination and dimerisation of STING (both of which are required for STING-mediated activation of IRF-3) via their papain-like proteases. We draw parallels with less-well characterised mechanisms of STING antagonism in related viruses, and place our current knowledge in the context of species tropism restrictions that potentially affect the emergence of new human pathogens.
Collapse
Affiliation(s)
- Kevin Maringer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; School of Cellular and Molecular Medicine, School of Medical Sciences, University of Bristol, Bristol BS8 1TD, United Kingdom
| | - Ana Fernandez-Sesma
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| |
Collapse
|
3600
|
The composition of West Nile virus lipid envelope unveils a role of sphingolipid metabolism in flavivirus biogenesis. J Virol 2014; 88:12041-54. [PMID: 25122799 DOI: 10.1128/jvi.02061-14] [Citation(s) in RCA: 110] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
West Nile virus (WNV) is an emerging zoonotic mosquito-borne flavivirus responsible for outbreaks of febrile illness and meningoencephalitis. The replication of WNV takes place on virus-modified membranes from the endoplasmic reticulum of the host cell, and virions acquire their envelope by budding into this organelle. Consistent with this view, the cellular biology of this pathogen is intimately linked to modifications of the intracellular membranes, and the requirement for specific lipids, such as cholesterol and fatty acids, has been documented. In this study, we evaluated the impact of WNV infection on two important components of cellular membranes, glycerophospholipids and sphingolipids, by mass spectrometry of infected cells. A significant increase in the content of several glycerophospholipids (phosphatidylcholine, plasmalogens, and lysophospholipids) and sphingolipids (ceramide, dihydroceramide, and sphingomyelin) was noticed in WNV-infected cells, suggesting that these lipids have functional roles during WNV infection. Furthermore, the analysis of the lipid envelope of WNV virions and recombinant virus-like particles revealed that their envelopes had a unique composition. The envelopes were enriched in sphingolipids (sphingomyelin) and showed reduced levels of phosphatidylcholine, similar to sphingolipid-enriched lipid microdomains. Inhibition of neutral sphingomyelinase (which catalyzes the hydrolysis of sphingomyelin into ceramide) by either pharmacological approaches or small interfering RNA-mediated silencing reduced the release of flavivirus virions as well as virus-like particles, suggesting a role of sphingomyelin-to-ceramide conversion in flavivirus budding and confirming the importance of sphingolipids in the biogenesis of WNV. Importance: West Nile virus (WNV) is a neurotropic flavivirus spread by mosquitoes that can infect multiple vertebrate hosts, including humans. There is no specific vaccine or therapy against this pathogen licensed for human use. Since the multiplication of this virus is associated with rearrangements of host cell membranes, we analyzed the effect of WNV infection on different cellular lipids that constitute important membrane components. The levels of multiple lipid species were increased in infected cells, pointing to the induction of major alterations of cellular lipid metabolism by WNV infection. Interestingly, certain sphingolipids, which were increased in infected cells, were also enriched in the lipid envelope of the virus, thus suggesting a potential role during virus assembly. We further verified the role of sphingolipids in the production of WNV by means of functional analyses. This study provides new insight into the formation of flavivirus infectious particles and the involvement of sphingolipids in the WNV life cycle.
Collapse
|