351
|
Wang J, Qiao J, Ma L, Li X, Wei C, Tian X, Liu K. Identification of the characteristics of infiltrating immune cells in pulpitis and its potential molecular regulation mechanism by bioinformatics method. BMC Oral Health 2023; 23:287. [PMID: 37179325 PMCID: PMC10182635 DOI: 10.1186/s12903-023-03020-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 05/05/2023] [Indexed: 05/15/2023] Open
Abstract
OBJECTIVE The inflammation of dental pulp will also trigger an immune response. The purpose of this study is to demonstrate the immune cell's function and explore their regulatory molecules and signal pathways in pulpitis. METHOD The CIBERSORTx method was used to quantitatively analyze 22 types of immune cells infiltrating in the GSE77459 dataset of dental pulp tissues. The immune-related differential genes (IR-DEGs) were further screened and enriched for the GO and KEGG pathways. Protein-protein interaction (PPI) networks were constructed and the hub IR-DEGs were screened. Finally, we constructed the regulatory network of hub genes. RESULTS The GSE77459 dataset screened 166 IR-DEGs and was enriched for three signal pathways involved in pulpitis development: chemokine signaling, TNF signaling, and NF-κB signaling. Significant differences in immune cell infiltration were observed between normal and inflamed dental pulp. The proportions of M0 macrophages, neutrophils, and follicular helper T cells were significantly higher than that of the normal dental pulp, while the proportions of resting mast cells, resting dendritic cells, CD8 T cells, and monocytes were significantly lower. The random forest algorithm concluded that M0 macrophages and neutrophils were the two most important immune cells. We identified five immune-related hub genes IL-6, TNF-α, IL-1β, CXCL8, and CCL2. In addition, IL-6, IL-1β, and CXCL8 are highly correlated with M0 macrophages and neutrophils, and the five hub genes have many shared regulatory molecules: four miRNAs and two lncRNAs, three transcription factors. CONCLUSION Immune cell infiltration plays an important role in pulpitis among which M0 macrophages and neutrophils are the most significant immune cells. IL-6, TNF-α, IL-1, CXCL8, and CCL2 may be essential molecule of the immune response regulation network in pulpitis. This will help us understand the immune regulatory network in pulpitis.
Collapse
Affiliation(s)
- Jing Wang
- Department of Stomatology, Liaocheng People's Hospital, 67 Dongchang West Road, Liaocheng, Shandong, 252000, P.R. China
| | - Junxia Qiao
- Department of Stomatology, Liaocheng People's Hospital, 67 Dongchang West Road, Liaocheng, Shandong, 252000, P.R. China
| | - Lili Ma
- Department of Stomatology, Liaocheng People's Hospital, 67 Dongchang West Road, Liaocheng, Shandong, 252000, P.R. China
| | - Xin Li
- Department of Stomatology, Liaocheng People's Hospital, 67 Dongchang West Road, Liaocheng, Shandong, 252000, P.R. China
| | - Chengshi Wei
- Department of Endodontics, Liaocheng People's Hospital, Liaocheng, Shandong, 252000, P.R. China
| | - Xiufen Tian
- Department of Stomatology, Liaocheng People's Hospital, 67 Dongchang West Road, Liaocheng, Shandong, 252000, P.R. China.
| | - Kun Liu
- Department of Stomatology, Liaocheng People's Hospital, 67 Dongchang West Road, Liaocheng, Shandong, 252000, P.R. China.
| |
Collapse
|
352
|
Zheng Z, Yuan D, Shen C, Zhang Z, Ye J, Zhu L. Identification of potential diagnostic biomarkers of atherosclerosis based on bioinformatics strategy. BMC Med Genomics 2023; 16:100. [PMID: 37173673 PMCID: PMC10176947 DOI: 10.1186/s12920-023-01531-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 04/28/2023] [Indexed: 05/15/2023] Open
Abstract
BACKGROUND Atherosclerosis is the main pathological change in atherosclerotic cardiovascular disease, and its underlying mechanisms are not well understood. The aim of this study was to explore the hub genes involved in atherosclerosis and their potential mechanisms through bioinformatics analysis. METHODS Three microarray datasets from Gene Expression Omnibus (GEO) identified robust differentially expressed genes (DEGs) by robust rank aggregation (RRA). We performed connectivity map (CMap) analysis and functional enrichment analysis on robust DEGs and constructed a protein‒protein interaction (PPI) network using the STRING database to identify the hub gene using 12 algorithms of cytoHubba in Cytoscape. Receiver operating characteristic (ROC) analysis was used to assess the diagnostic potency of the hub genes.The CIBERSORT algorithm was used to perform immunocyte infiltration analysis and explore the association between the identified biomarkers and infiltrating immunocytes using Spearman's rank correlation analysis in R software. Finally, we evaluated the expression of the hub gene in foam cells. RESULTS A total of 155 robust DEGs were screened by RRA and were revealed to be mainly associated with cytokines and chemokines by functional enrichment analysis. CD52 and IL1RN were identified as hub genes and were validated in the GSE40231 dataset. Immunocyte infiltration analysis showed that CD52 was positively correlated with gamma delta T cells, M1 macrophages and CD4 memory resting T cells, while IL1RN was positively correlated with monocytes and activated mast cells. RT-qPCR results indicate that CD52 and IL1RN were highly expressed in foam cells, in agreement with bioinformatics analysis. CONCLUSIONS This study has established that CD52 and IL1RN may play a key role in the occurrence and development of atherosclerosis, which opens new lines of thought for further research on the pathogenesis of atherosclerosis.
Collapse
Affiliation(s)
| | - Dong Yuan
- Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Cheng Shen
- Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Zhiyuan Zhang
- Dalian Medical University, Dalian, 116000, China
- The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou, 225300, China
| | - Jun Ye
- Dalian Medical University, Dalian, 116000, China.
- The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou, 225300, China.
| | - Li Zhu
- Dalian Medical University, Dalian, 116000, China.
- Nanjing University of Chinese Medicine, Nanjing, 210023, China.
- The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou, 225300, China.
| |
Collapse
|
353
|
Gusev E, Sarapultsev A. Atherosclerosis and Inflammation: Insights from the Theory of General Pathological Processes. Int J Mol Sci 2023; 24:ijms24097910. [PMID: 37175617 PMCID: PMC10178362 DOI: 10.3390/ijms24097910] [Citation(s) in RCA: 89] [Impact Index Per Article: 44.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/24/2023] [Accepted: 04/25/2023] [Indexed: 05/15/2023] Open
Abstract
Recent advances have greatly improved our understanding of the molecular mechanisms behind atherosclerosis pathogenesis. However, there is still a need to systematize this data from a general pathology perspective, particularly with regard to atherogenesis patterns in the context of both canonical and non-classical inflammation types. In this review, we analyze various typical phenomena and outcomes of cellular pro-inflammatory stress in atherosclerosis, as well as the role of endothelial dysfunction in local and systemic manifestations of low-grade inflammation. We also present the features of immune mechanisms in the development of productive inflammation in stable and unstable plaques, along with their similarities and differences compared to canonical inflammation. There are numerous factors that act as inducers of the inflammatory process in atherosclerosis, including vascular endothelium aging, metabolic dysfunctions, autoimmune, and in some cases, infectious damage factors. Life-critical complications of atherosclerosis, such as cardiogenic shock and severe strokes, are associated with the development of acute systemic hyperinflammation. Additionally, critical atherosclerotic ischemia of the lower extremities induces paracoagulation and the development of chronic systemic inflammation. Conversely, sepsis, other critical conditions, and severe systemic chronic diseases contribute to atherogenesis. In summary, atherosclerosis can be characterized as an independent form of inflammation, sharing similarities but also having fundamental differences from low-grade inflammation and various variants of canonical inflammation (classic vasculitis).
Collapse
Affiliation(s)
- Evgenii Gusev
- Institute of Immunology and Physiology, Ural Branch of the Russian Academy of Science, 620049 Ekaterinburg, Russia
| | - Alexey Sarapultsev
- Institute of Immunology and Physiology, Ural Branch of the Russian Academy of Science, 620049 Ekaterinburg, Russia
- Russian-Chinese Education and Research Center of System Pathology, South Ural State University, 454080 Chelyabinsk, Russia
| |
Collapse
|
354
|
Shahid J, Kashif A, Shahid MK. A Comprehensive Review of Physical Therapy Interventions for Stroke Rehabilitation: Impairment-Based Approaches and Functional Goals. Brain Sci 2023; 13:717. [PMID: 37239189 PMCID: PMC10216461 DOI: 10.3390/brainsci13050717] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 04/21/2023] [Indexed: 05/28/2023] Open
Abstract
Stroke is the fourth leading cause of mortality and is estimated to be one of the major reasons for long-lasting disability worldwide. There are limited studies that describe the application of physical therapy interventions to prevent disabilities in stroke survivors and promote recovery after a stroke. In this review, we have described a wide range of interventions based on impairments, activity limitations, and goals in recovery during different stages of a stroke. This article mainly focuses on stroke rehabilitation tactics, including those for sensory function impairments, motor learning programs, hemianopia and unilateral neglect, flexibility and joint integrity, strength training, hypertonicity, postural control, and gait training. We conclude that, aside from medicine, stroke rehabilitation must address specific functional limitations to allow for group activities and superior use of a hemiparetic extremity. Medical doctors are often surprised by the variety of physiotherapeutic techniques available; they are unfamiliar with the approaches of researchers such as Bobath, Coulter, and Brunnstrom, among others, as well as the scientific reasoning behind these techniques.
Collapse
Affiliation(s)
- Jawaria Shahid
- Department of Physical Therapy, Ikram Hospital, Gujrat 50700, Pakistan;
- Center of Physical Therapy, Rayan Medical Center, Gujrat 50700, Pakistan
| | - Ayesha Kashif
- Department of Senior Health Care, Eulji University, Uijeongbu 11759, Republic of Korea
| | - Muhammad Kashif Shahid
- Research Institute of Environment & Biosystem, Chungnam National University, Daejeon 34134, Republic of Korea;
| |
Collapse
|
355
|
Tan Z, Dong F, Wu L, Feng Y, Zhang M, Zhang F. Transcutaneous Electrical Nerve Stimulation (TENS) Alleviates Brain Ischemic Injury by Regulating Neuronal Oxidative Stress, Pyroptosis, and Mitophagy. Mediators Inflamm 2023; 2023:5677865. [PMID: 37101593 PMCID: PMC10125764 DOI: 10.1155/2023/5677865] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 12/04/2022] [Accepted: 04/05/2023] [Indexed: 04/28/2023] Open
Abstract
Background As a noninvasive treatment, transcutaneous electrical nerve stimulation (TENS) has been utilized to treat various diseases in clinic. However, whether TENS can be an effective intervention in the acute stage of ischemic stroke still remains unclear. In the present study, we aimed to explore whether TENS could alleviate brain infarct volume, reduce oxidative stress and neuronal pyroptosis, and activate mitophagy following ischemic stroke. Methods TENS was performed at 24 h after middle cerebral artery occlusion/reperfusion (MCAO/R) in rats for 3 consecutive days. Neurological scores, the volume of infarction, and the activity of SOD, MDA, GSH, and GSH-px were measured. Moreover, western blot was performed to detect the related protein expression, including Bcl-2, Bax, TXNIP, GSDMD, caspase-1, NLRP3, BRCC3, HIF-1α, BNIP3, LC3, and P62. Real-time PCR was performed to detect NLRP3 expression. Immunofluorescence was performed to detect the levels of LC3. Results There was no significant difference of neurological deficit scores between the MCAO group and the TENS group at 2 h after MCAO/R operation (P > 0.05), while the neurological deficit scores of TENS group significantly decreased in comparison with MCAO group at 72 h following MACO/R injury (P < 0.05). Similarly, TENS treatment significantly reduced the brain infarct volume compared with the MCAO group (P < 0.05). Moreover, TENS decreased the expression of Bax, TXNIP, GSDMD, caspase-1, BRCC3, NLRP3, and P62 and the activity of MDA as well as increasing the level of Bcl-2, HIF-1α, BNIP3, and LC3 and the activity of SOD, GSH, and GSH-px (P < 0.05). Conclusions In conclusion, our results indicated that TENS alleviated brain damage following ischemic stroke via inhibiting neuronal oxidative stress and pyroptosis and activating mitophagy, possibly via the regulation of TXNIP, BRCC3/NLRP3, and HIF-1α/BNIP3 pathways.
Collapse
Affiliation(s)
- Zixuan Tan
- Department of Rehabilitation Medicine, The Third Hospital of Hebei Medical University, Shijiazhuang 050051, China
| | - Fang Dong
- Department of Clinical Laboratory Medicine, The Third Hospital of Hebei Medical University, Shijiazhuang 05005, China
| | - Linyu Wu
- Department of Rehabilitation Medicine, The Third Hospital of Hebei Medical University, Shijiazhuang 050051, China
| | - Yashuo Feng
- Department of Rehabilitation Medicine, The Third Hospital of Hebei Medical University, Shijiazhuang 050051, China
| | - Min Zhang
- Department of Pathophysiology, Hebei Medical University, Shijiazhuang 050051, China
- Hebei Key Laboratory of Critical Disease Mechanism and Intervention, Shijiazhuang 050051, China
| | - Feng Zhang
- Department of Rehabilitation Medicine, The Third Hospital of Hebei Medical University, Shijiazhuang 050051, China
- Hebei Key Laboratory of Critical Disease Mechanism and Intervention, Shijiazhuang 050051, China
| |
Collapse
|
356
|
Zhang Q, Zhang P, Zhao Z, Wang J, Zhang H. Exploring the role of differentially expressed metabolic genes and their mechanisms in bone metastatic prostate cancer. PeerJ 2023; 11:e15013. [PMID: 37070095 PMCID: PMC10105558 DOI: 10.7717/peerj.15013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 02/16/2023] [Indexed: 04/19/2023] Open
Abstract
Background Approximately 10-20% of patients diagnosed with prostate cancer (PCa) evolve into castration-resistant prostate cancer (CRPC), while nearly 90% of patients with metastatic CRPC (mCRPC) exhibit osseous metastases (BM). These BM are intimately correlated with the stability of the tumour microenvironment. Purpose This study aspires to uncover the metabolism-related genes and the underlying mechanisms responsible for bone metastatic prostate cancer (BMPCa). Methods Gene Expression Omnibus (GEO) and The Cancer Genome Atlas (TCGA) datasets of PCa and BM were analyzed through R Studio software to identify differentially expressed genes (DEGs). The DEGs underwent functional enrichment via Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO), with key factors screened by a random forest utilized to establish a prognostic model for PCa. The study explored the relationship between DEGs and the stability of the immune microenvironment. The action and specificity of CRISP3 in PCa was validated through western blot analysis, CCK-8 assay, scratch assay, and cellular assay. Results The screening of GEO and TCGA datasets resulted in the identification of 199 co-differential genes. Three DEGs, including DES, HBB, and SLPI, were selected by random forest classification model and cox regression model. Immuno-infiltration analysis disclosed that a higher infiltration of naïve B cells and resting CD4 memory T cells occurred in the high-expression group of DES, whereas infiltration of resting M1 macrophages and NK cells was greater in the low-expression group of DES. A significant infiltration of neutrophils was observed in the high-expression group of HBB, while greater infiltration of gamma delta T cells and M1 macrophages was noted in the low-expression group of HBB. Resting dendritic cells, CD8 T cells, and resting T regulatory cells (Tregs) infiltrated significantly in the high-expression group of SLPI, while only resting mast cells infiltrated significantly in the low-expression group of SLPI. CRISP3 was established as a critical gene in BMPCa linked to DES expression. Targeting CRISP3, d-glucopyranose may impact tumour prognosis. During the mechanistic experiments, it was established that CRISP3 can advance the proliferation and metastatic potential of PCa by advancing epithelial-to-mesenchymal transition (EMT). Conclusion By modulating lipid metabolism and maintaining immunological and microenvironmental balance, DES, HBB, and SLPI suppress prostate cancer cell growth. The presence of DES-associated CRISP3 is a harbinger of unfavorable outcomes in prostate cancer and may escalate tumor proliferation and metastatic capabilities by inducing epithelial-mesenchymal transition.
Collapse
Affiliation(s)
- Qingfu Zhang
- Department of Urology, Tai ’an Central Hospital, Tai ’an, Shandong, China
| | - Peng Zhang
- Department of Spine Surgery, Tai ’an Central Hospital, Tai ’an, Shandong, China
| | - Zhongting Zhao
- Department of Spinal Surgery, The Third People’s Hospital of Jinan, Jinan, Shandong, China
| | - Jun Wang
- Department of Emergency, Qingdao Eighth People’s Hospital, Qingdao, China
| | - Hepeng Zhang
- Department of Urology, Tai ’an Central Hospital, Tai ’an, Shandong, China
| |
Collapse
|
357
|
Xu Y, Han J, Tu WJ, Zhang J. Editorial: Potential biomarkers in neurovascular disorders. Front Neurol 2023; 14:1186852. [PMID: 37114232 PMCID: PMC10126421 DOI: 10.3389/fneur.2023.1186852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 03/21/2023] [Indexed: 04/29/2023] Open
Affiliation(s)
- Yuzhen Xu
- The Second Affiliated Hospital of Shandong First Medical University, Taian, Shandong, China
| | - Jinming Han
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Wen-Jun Tu
- Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - John Zhang
- Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA, United States
| |
Collapse
|
358
|
Mensah-Kane P, Sumien N. The potential of hyperbaric oxygen as a therapy for neurodegenerative diseases. GeroScience 2023; 45:747-756. [PMID: 36525211 PMCID: PMC9886764 DOI: 10.1007/s11357-022-00707-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 12/03/2022] [Indexed: 12/23/2022] Open
Abstract
The World Health Organization estimates that by the year 2040, neurodegenerative diseases will be the second leading cause of death in developed countries, overtaking cancer-related deaths and exceeded only by cardiovascular disease-related death. The search for interventions has therefore become paramount to alleviate some of this burden. Based on pathways affected in neurodegenerative diseases, hyperbaric oxygen treatment (HBOT) could be a good candidate. This therapy has been used for the past 50 years for conditions such as decompression sickness and wound healing and has been shown to have promising effects in conditions associated with neurodegeneration and functional impairments. The goal of this review was to explore the history of hyperbaric oxygen therapy, its uses, and benefits, and to evaluate its effectiveness as an intervention in treating neurodegenerative diseases. Additionally, we examined common mechanisms underlying the effects of HBOT in different neurodegenerative diseases, with a special emphasis on epigenetics.
Collapse
Affiliation(s)
- Paapa Mensah-Kane
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX, USA
| | - Nathalie Sumien
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX, USA.
| |
Collapse
|
359
|
Qiao C, Liu Z, Qie S. The Implications of Microglial Regulation in Neuroplasticity-Dependent Stroke Recovery. Biomolecules 2023; 13:biom13030571. [PMID: 36979506 PMCID: PMC10046452 DOI: 10.3390/biom13030571] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/23/2023] [Accepted: 03/14/2023] [Indexed: 03/30/2023] Open
Abstract
Stroke causes varying degrees of neurological deficits, leading to corresponding dysfunctions. There are different therapeutic principles for each stage of pathological development. Neuroprotection is the main treatment in the acute phase, and functional recovery becomes primary in the subacute and chronic phases. Neuroplasticity is considered the basis of functional restoration and neurological rehabilitation after stroke, including the remodeling of dendrites and dendritic spines, axonal sprouting, myelin regeneration, synapse shaping, and neurogenesis. Spatiotemporal development affects the spontaneous rewiring of neural circuits and brain networks. Microglia are resident immune cells in the brain that contribute to homeostasis under physiological conditions. Microglia are activated immediately after stroke, and phenotypic polarization changes and phagocytic function are crucial for regulating focal and global brain inflammation and neurological recovery. We have previously shown that the development of neuroplasticity is spatiotemporally consistent with microglial activation, suggesting that microglia may have a profound impact on neuroplasticity after stroke and may be a key therapeutic target for post-stroke rehabilitation. In this review, we explore the impact of neuroplasticity on post-stroke restoration as well as the functions and mechanisms of microglial activation, polarization, and phagocytosis. This is followed by a summary of microglia-targeted rehabilitative interventions that influence neuroplasticity and promote stroke recovery.
Collapse
Affiliation(s)
- Chenye Qiao
- Department of Rehabilitation, Beijing Rehabilitation Hospital, Capital Medical University, Beijing 100144, China
| | - Zongjian Liu
- Department of Rehabilitation, Beijing Rehabilitation Hospital, Capital Medical University, Beijing 100144, China
| | - Shuyan Qie
- Department of Rehabilitation, Beijing Rehabilitation Hospital, Capital Medical University, Beijing 100144, China
| |
Collapse
|
360
|
Zhu D, Zhu Y, Liu L, He X, Fu S. Metabolomic analysis of vascular cognitive impairment due to hepatocellular carcinoma. Front Neurol 2023; 13:1109019. [PMID: 37008043 PMCID: PMC10062391 DOI: 10.3389/fneur.2022.1109019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Accepted: 12/26/2022] [Indexed: 03/18/2023] Open
Abstract
IntroductionScreening for metabolically relevant differentially expressed genes (DEGs) shared by hepatocellular carcinoma (HCC) and vascular cognitive impairment (VCI) to explore the possible mechanisms of HCC-induced VCI.MethodsBased on metabolomic and gene expression data for HCC and VCI, 14 genes were identified as being associated with changes in HCC metabolites, and 71 genes were associated with changes in VCI metabolites. Multi-omics analysis was used to screen 360 DEGs associated with HCC metabolism and 63 DEGs associated with VCI metabolism.ResultsAccording to the Cancer Genome Atlas (TCGA) database, 882 HCC-associated DEGs were identified and 343 VCI-associated DEGs were identified. Eight genes were found at the intersection of these two gene sets: NNMT, PHGDH, NR1I2, CYP2J2, PON1, APOC2, CCL2, and SOCS3. The HCC metabolomics prognostic model was constructed and proved to have a good prognostic effect. The HCC metabolomics prognostic model was constructed and proved to have a good prognostic effect. Following principal component analyses (PCA), functional enrichment analyses, immune function analyses, and TMB analyses, these eight DEGs were identified as possibly affecting HCC-induced VCI and the immune microenvironment. As well as gene expression and gene set enrichment analyses (GSEA), a potential drug screen was conducted to investigate the possible mechanisms involved in HCC-induced VCI. The drug screening revealed the potential clinical efficacy of A-443654, A-770041, AP-24534, BI-2536, BMS- 509744, CGP-60474, and CGP-082996.ConclusionHCC-associated metabolic DEGs may influence the development of VCI in HCC patients.
Collapse
Affiliation(s)
- Dan Zhu
- Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Yamei Zhu
- Deptartment of Infectious Diseases, Wuhua Ward, 920th Hospital of Joint Logistics Support Force of Chinese PLA, Kunming, Yunnan, China
| | - Lin Liu
- Dalian Hunter Information Consulting Co. LTD, Dalian, China
| | - Xiaoxue He
- Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Shizhong Fu
- Deptartment of Infectious Diseases, Wuhua Ward, 920th Hospital of Joint Logistics Support Force of Chinese PLA, Kunming, Yunnan, China
- *Correspondence: Shizhong Fu ;
| |
Collapse
|
361
|
Mechanistic Insights into the Role of OPN in Mediating Brain Damage via Triggering Lysosomal Damage in Microglia/Macrophage. Cells 2023; 12:cells12060854. [PMID: 36980197 PMCID: PMC10046941 DOI: 10.3390/cells12060854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 03/02/2023] [Accepted: 03/07/2023] [Indexed: 03/12/2023] Open
Abstract
We previously found that osteopontin (OPN) played a role in hypoxia–ischemia (HI) brain damage. However, its underlying mechanism is still unknown. Bioinformatics analysis revealed that the OPN protein was linked to the lysosomal cathepsin B (CTSB) and galectin-3 (GAL-3) proteins after HI exposure. In the present study, we tested the hypothesis that OPN was able to play a critical role in the lysosomal damage of microglia/macrophages following HI insult in neonatal mice. The results showed that OPN expression was enhanced, especially in microglia/macrophages, and colocalized with lysosomal-associated membrane protein 1 (LAMP1) and GAL-3; this was accompanied by increased LAMP1 and GAL-3 expression, CTSB leakage, as well as impairment of autophagic flux in the early stage of the HI process. In addition, the knockdown of OPN expression markedly restored lysosomal function with significant improvements in the autophagic flux after HI insult. Interestingly, cleavage of OPN was observed in the ipsilateral cortex following HI. The wild-type OPN and C-terminal OPN (Leu152-Asn294), rather than N-terminal OPN (Met1-Gly151), interacted with GAL-3 to induce lysosomal damage. Furthermore, the secreted OPN stimulated lysosomal damage by binding to CD44 in microglia in vitro. Collectively, this study demonstrated that upregulated OPN in microglia/macrophages and its cleavage product was able to interact with GAL-3, and secreted OPN combined with CD44, leading to lysosomal damage and exacerbating autophagosome accumulation after HI exposure.
Collapse
|
362
|
Anderson AG, Rogers BB, Loupe JM, Rodriguez-Nunez I, Roberts SC, White LM, Brazell JN, Bunney WE, Bunney BG, Watson SJ, Cochran JN, Myers RM, Rizzardi LF. Single nucleus multiomics identifies ZEB1 and MAFB as candidate regulators of Alzheimer's disease-specific cis-regulatory elements. CELL GENOMICS 2023; 3:100263. [PMID: 36950385 PMCID: PMC10025452 DOI: 10.1016/j.xgen.2023.100263] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 12/06/2022] [Accepted: 01/12/2023] [Indexed: 02/05/2023]
Abstract
Cell type-specific transcriptional differences between brain tissues from donors with Alzheimer's disease (AD) and unaffected controls have been well documented, but few studies have rigorously interrogated the regulatory mechanisms responsible for these alterations. We performed single nucleus multiomics (snRNA-seq plus snATAC-seq) on 105,332 nuclei isolated from cortical tissues from 7 AD and 8 unaffected donors to identify candidate cis-regulatory elements (CREs) involved in AD-associated transcriptional changes. We detected 319,861 significant correlations, or links, between gene expression and cell type-specific transposase accessible regions enriched for active CREs. Among these, 40,831 were unique to AD tissues. Validation experiments confirmed the activity of many regions, including several candidate regulators of APP expression. We identified ZEB1 and MAFB as candidate transcription factors playing important roles in AD-specific gene regulation in neurons and microglia, respectively. Microglia links were globally enriched for heritability of AD risk and previously identified active regulatory regions.
Collapse
Affiliation(s)
| | - Brianne B. Rogers
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA
- University of Alabama at Birmingham, Birmingham, AL, USA
| | - Jacob M. Loupe
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA
| | | | | | - Lauren M. White
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA
| | | | - William E. Bunney
- Department of Psychiatry and Human Behavior, College of Medicine, University of California, Irvine, Irvine, CA, USA
| | - Blynn G. Bunney
- Department of Psychiatry and Human Behavior, College of Medicine, University of California, Irvine, Irvine, CA, USA
| | - Stanley J. Watson
- Mental Health Research Institute, University of Michigan, Ann Arbor, MI, USA
| | | | | | | |
Collapse
|
363
|
Salemi M, Ridolfo F, Salluzzo MG, Schillaci FA, Caniglia S, Lanuzza B, Cantone M, Ferri R. Humanin gene expression in subjects with Parkinson's disease. Mol Biol Rep 2023; 50:2943-2949. [PMID: 36626066 DOI: 10.1007/s11033-022-08132-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 11/16/2022] [Indexed: 01/11/2023]
Abstract
BACKGROUND Bradykinesia, tremor, rigidity and postural instability are the hallmark of Parkinson's disease (PD). Non-motor symptoms including cognitive, behavioral, and neuropsychiatric changes, sensory and sleep disturbances that may precede the motor symptoms by years. The peculiar pathological features of PD are decreased dopaminergic neurons and dopamine levels in the substantia nigra pars compacta and pontine locus coeruleus. Humanin is produced by a small gene peptide, which is located in the mitochondria genome. Inflammation, oxidative stress, mitochondrial dysfunction and altered transcription have been recognized as causative factors of PD. This evidence has prompted many researchers to focus on studying the functions of DNA and mitochondria. The purpose of the present study was to evaluate Humanin mRNA levels in peripheral blood mononuclear cells (PBMCs) of PD subjects, compared with those in PBMCs of normal control (NC) subjects. METHODS AND RESULTS A total of 220 participants, including 154 PD patients (57 females and 97 males; mean age 71.54 years, SD 7.8) and 66 CN (28 females and 38 males; mean age 70.54 years, SD 9.45) were enrolled for the qRT-PCR analysis. Increased Humanin mRNA levels were found in PD samples, compared to controls. CONCLUSION In conclusion, the present data confirm the tendency of mitochondria to overexpress mRNA in PD, which could be a cellular attempt to reduce apoptotic damage in PD subjects. Humanin might be useful as a marker for a better diagnosis of PD, and we cannot exclude that in the future it might also play a role on prognosis and in the possible therapies for PD.
Collapse
Affiliation(s)
| | - Federico Ridolfo
- UOC of Clinical Pathology, ASUR Marche -AV4, Hospital of Fermo, Fermo, Italy
| | | | | | | | | | - Mariagiovanna Cantone
- Neurology Unit, University Hospital Policlinico "G.Rodolico-San Marco", Catania, Italy
| | | |
Collapse
|
364
|
Baek SU, Yoon JH, Won JU. Mediating Effect of Work-Family Conflict on the Relationship Between Long Commuting Time and Workers' Anxiety and Insomnia. Saf Health Work 2023; 14:100-106. [PMID: 36941934 PMCID: PMC10024185 DOI: 10.1016/j.shaw.2022.11.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 10/29/2022] [Accepted: 11/15/2022] [Indexed: 11/21/2022] Open
Abstract
Background Our study aimed to investigate the mediating role of work-family conflict (WFC) on the relationship between long commutes and workers' anxiety and insomnia. Methods Our study measured the two dimensions of WFC, time-related, and strain-related, which were considered multiple mediators. The mediating effect of WFC on anxiety and insomnia was investigated by decomposing the total effect into a direct effect (long commuting time → anxiety or insomnia) and an indirect effect (long commuting time → WFC → anxiety or insomnia). The combined indirect effect (joint indirect effect) of strain-related WFC and time-related WFC was estimated. The effects were presented as odds ratios and 95% confidence intervals (CIs). Results The direct effect of 120 min or longer of commuting time was 1.39 (95% CI: 1.17-1.65) times increase in the odds of anxiety and 1.64 (95% CI: 1.41-1.90) times increase in the odds of insomnia than those whose commuting time was less than 60 min. In the case of indirect effects, those whose commuting time was 120 min or longer had 1.13 times higher odds of anxiety (95% CI: 1.07-1.18) and 1.12 times higher odds of insomnia (95% CI: 1.07-1.17) via WFC. The joint indirect effects accounted for 26.4% and 18.5% of the total effect on anxiety and insomnia, respectively. The longer the commuting time, the stronger both direct and indirect effects. Conclusions Our findings highlight the mediating effect of WFC on the relationship between long commuting times and workers' anxiety and insomnia.
Collapse
Affiliation(s)
- Seong-Uk Baek
- Department of Occupational and Environmental Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
- The Institute for Occupational Health, Yonsei University College of Medicine, Seoul, Republic of Korea
- Graduate School, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jin-Ha Yoon
- The Institute for Occupational Health, Yonsei University College of Medicine, Seoul, Republic of Korea
- Graduate School of Public Health, Yonsei University College of Medicine, Seoul, Republic of Korea
- Department of Preventive Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jong-Uk Won
- Department of Occupational and Environmental Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
- The Institute for Occupational Health, Yonsei University College of Medicine, Seoul, Republic of Korea
- Graduate School of Public Health, Yonsei University College of Medicine, Seoul, Republic of Korea
- Corresponding author. Department of Occupational and Environmental Medicine, Severance Hospital, Yonsei University Health System, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea.
| |
Collapse
|
365
|
Wang J, Yu NW, Wang DZ, Guo L, Yang S, Zheng B, Guo FQ, Wang JH. Helicobacter pylori Infection Is Associated with Long-Term Cognitive Decline in Older Adults: A Two-Year Follow-Up Study. J Alzheimers Dis 2023; 91:1351-1358. [PMID: 36641681 DOI: 10.3233/jad-221112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
BACKGROUND Previous cross-sectional studies have identified a possible link between Helicobacter pylori (H. pylori) infection and dementia. However, the association of H. pylori infection with longitudinal cognitive decline has rarely been investigated. OBJECTIVE This cohort study aims to demonstrate the effects of H. pylori infection on longitudinal cognitive decline. METHODS This cohort study recruited 268 subjects with memory complaints. Among these subjects, 72 had a history of H. pylori infection, and the rest 196 subjects had no H. pylori infection. These subjects were followed up for 24 months and received cognitive assessment in fixed intervals of 12 months. RESULTS At baseline, H. pylori infected, and uninfected participants had no difference in MMSE scores. At 2 years of follow-up, H. pylori infected participants had lower MMSE scores than uninfected participants. H. pylori infection was associated with an increased risk of longitudinal cognitive decline, as defined by a decrease of MMSE of 3 points or more during follow-up, adjusting for age, sex, education, APOEɛ4 genotype, hypertension, diabetes, hyperlipidemia, and smoking history (HR: 2.701; 95% CI: 1.392 to 5.242). H. pylori infection was associated with larger cognitive decline during follow-up, adjusting for the above covariates (standardized coefficient: 0.282, p < 0.001). Furthermore, H. pylori infected subjects had significantly higher speed of cognitive decline than uninfected subjects during follow-up, adjusting for the above covariates. CONCLUSION H. pylori infection increases the risk of longitudinal cognitive decline in older subjects with memory complaints. This study is helpful for further understanding the association between infection and dementia.
Collapse
Affiliation(s)
- Jian Wang
- Department of Neurology, Ya'an People's Hospital, Ya'an, Sichuan, China
| | - Neng-Wei Yu
- Department of Neurology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Sichuan Provincial People's Hospital, Chengdu, Sichuan, China
| | - Duo-Zi Wang
- Department of Neurology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Sichuan Provincial People's Hospital, Chengdu, Sichuan, China
| | - Lei Guo
- Department of Neurology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Sichuan Provincial People's Hospital, Chengdu, Sichuan, China
| | - Shu Yang
- Department of Neurology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Sichuan Provincial People's Hospital, Chengdu, Sichuan, China
| | - Bo Zheng
- Department of Neurology, Ya'an People's Hospital, Ya'an, Sichuan, China
| | - Fu-Qiang Guo
- Department of Neurology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Sichuan Provincial People's Hospital, Chengdu, Sichuan, China
| | - Jian-Hong Wang
- Department of Neurology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Sichuan Provincial People's Hospital, Chengdu, Sichuan, China
| |
Collapse
|
366
|
Wang T, Wang L, Zhang L, Long Y, Zhang Y, Hou Z. Single-cell RNA sequencing in orthopedic research. Bone Res 2023; 11:10. [PMID: 36828839 PMCID: PMC9958119 DOI: 10.1038/s41413-023-00245-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 12/22/2022] [Accepted: 12/29/2022] [Indexed: 02/26/2023] Open
Abstract
Although previous RNA sequencing methods have been widely used in orthopedic research and have provided ideas for therapeutic strategies, the specific mechanisms of some orthopedic disorders, including osteoarthritis, lumbar disc herniation, rheumatoid arthritis, fractures, tendon injuries, spinal cord injury, heterotopic ossification, and osteosarcoma, require further elucidation. The emergence of the single-cell RNA sequencing (scRNA-seq) technique has introduced a new era of research on these topics, as this method provides information regarding cellular heterogeneity, new cell subtypes, functions of novel subclusters, potential molecular mechanisms, cell-fate transitions, and cell‒cell interactions that are involved in the development of orthopedic diseases. Here, we summarize the cell subpopulations, genes, and underlying mechanisms involved in the development of orthopedic diseases identified by scRNA-seq, improving our understanding of the pathology of these diseases and providing new insights into therapeutic approaches.
Collapse
Affiliation(s)
- Tao Wang
- Department of Orthopedic Surgery, Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, PR China
- Orthopedic Research Institute of Hebei Province, Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, PR China
| | - Ling Wang
- Orthopedic Research Institute of Hebei Province, Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, PR China
- Department of Orthopedic Oncology, Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, PR China
| | - Liping Zhang
- Department of Physiology, Hebei Medical University, Shijiazhuang, Hebei, PR China
| | - Yubin Long
- Department of Orthopedic Surgery, Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, PR China
- Orthopedic Research Institute of Hebei Province, Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, PR China
| | - Yingze Zhang
- Department of Orthopedic Surgery, Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, PR China
- Orthopedic Research Institute of Hebei Province, Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, PR China
- NHC Key Laboratory of Intelligent Orthopedic Equipment (Third Hospital of Hebei Medical University), Hebei, PR China
| | - Zhiyong Hou
- Department of Orthopedic Surgery, Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, PR China.
- Orthopedic Research Institute of Hebei Province, Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, PR China.
- NHC Key Laboratory of Intelligent Orthopedic Equipment (Third Hospital of Hebei Medical University), Hebei, PR China.
| |
Collapse
|
367
|
A new border for circadian rhythm gene NFIL3 in diverse fields of cancer. Clin Transl Oncol 2023:10.1007/s12094-023-03098-5. [PMID: 36788184 DOI: 10.1007/s12094-023-03098-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 01/19/2023] [Indexed: 02/16/2023]
Abstract
The circadian rhythm disorder and abnormal expression of rhythm genes are related to many diseases, especially cancer. Rhythm gene NFIL3 is involved in energy metabolism and immune cell differentiation, and its aberrant expression is associated with metabolic diseases and inflammation. Previously, numerous studies have shown that aberrant NFIL3 expression is associated with tumorigenesis, progression, and chemotherapy resistance. For instance, NFIL3 performs as a nuclear transcription factor, impacts cell proliferation, represses apoptosis, and promotes cancer cell invasion and metastasis by regulating the transcription of target genes. In addition, NFIL3 expressed in cancer cells influences the type and proportion of infiltrated immune cells in the tumor microenvironment. Increased expression of NFIL3 induces the chemotherapy and immunotherapy resistance in cancer. In this review, we summarized the pathological functions of NFIL3 in tumorigenesis, cancer development, and treatment. The rhythm gene NFIL3 can be used as a promising target in cancer therapy in the future.
Collapse
|
368
|
Qin H, Luo Z, Sun Y, He Z, Qi B, Chen Y, Wang J, Li C, Lin W, Han Z, Zhu Y. Low-intensity pulsed ultrasound promotes skeletal muscle regeneration via modulating the inflammatory immune microenvironment. Int J Biol Sci 2023; 19:1123-1145. [PMID: 36923940 PMCID: PMC10008697 DOI: 10.7150/ijbs.79685] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Accepted: 01/15/2023] [Indexed: 03/14/2023] Open
Abstract
Background: Low-intensity pulsed ultrasound (LIPUS, a form of mechanical stimulation) can promote skeletal muscle functional repair, but a lack of mechanistic understanding of its relationship and tissue regeneration limits progress in this field. We investigated the hypothesis that specific energy levels of LIPUS mediates skeletal muscle regeneration by modulating the inflammatory microenvironment. Methods: To address these gaps, LIPUS irritation was applied in vivo for 5 min at two different intensities (30mW/cm2 and 60mW/cm2) in next 7 consecutive days, and the treatment begun at 24h after air drop-induced contusion injury. In vitro experiments, LIPUS irritation was applied at three different intensities (30mW/cm2, 45mW/cm2, and 60mW/cm2) for 2 times 24h after introduction of LPS in RAW264.7. Then, we comprehensively assessed the functional and histological parameters of skeletal muscle injury in mice and the phenotype shifting in macrophages through molecular biological methods and immunofluorescence analysis both in vivo and in vitro. Results: We reported that LIPUS therapy at intensity of 60mW/cm2 exhibited the most significant differences in functional recovery of contusion-injured muscle in mice. The comprehensive functional tests and histological analysis in vivo indirectly and directly proved the effectiveness of LIPUS for muscle recovery. Through biological methods and immunofluorescence analysis both in vivo and in vitro, we found that this improvement was attributable in part to the clearance of M1 macrophages populations and the increase in M2 subtypes with the change of macrophage-mediated factors. Depletion of macrophages in vivo eliminated the therapeutic effects of LIPUS, indicating that improvement in muscle function was the result of M2-shifted macrophage polarization. Moreover, the M2-inducing effects of LIPUS were proved partially through the WNT pathway by upregulating FZD5 expression and enhancing β-catenin nuclear translocation in macrophages both in vitro and in vivo. The inhibition and augment of WNT pathway in vitro further verified our results. Conclusion: LIPUS at intensity of 60mW/cm2 could significantly promoted skeletal muscle regeneration through shifting macrophage phenotype from M1 to M2. The ability of LIPUS to direct macrophage polarization may be a beneficial target in the clinical treatment of many injuries and inflammatory diseases.
Collapse
Affiliation(s)
- Haocheng Qin
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Zhiwen Luo
- Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Yaying Sun
- Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Zhong He
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Beijie Qi
- Department of Orthopedics, Shanghai Pudong Hospital, Fudan University, Shanghai, China
| | - Yisheng Chen
- Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Junlong Wang
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai, China
| | - Ce Li
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Weiwei Lin
- Department of Neurosurgery, Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, Zhejiang, China
| | - Zhihua Han
- Department of Orthopedics and Traumatology, Shanghai General Hospital Shanghai Jiaotong University, Shanghai, China
| | - Yulian Zhu
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
369
|
Ghanaatfar F, Ghanaatfar A, Isapour P, Farokhi N, Bozorgniahosseini S, Javadi M, Gholami M, Ulloa L, Coleman-Fuller N, Motaghinejad M. Is lithium neuroprotective? An updated mechanistic illustrated review. Fundam Clin Pharmacol 2023; 37:4-30. [PMID: 35996185 DOI: 10.1111/fcp.12826] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 06/17/2022] [Accepted: 08/19/2022] [Indexed: 01/25/2023]
Abstract
Neurodegeneration is a pathological process characterized by progressive neuronal impairment, dysfunction, and loss due to mitochondrial dysfunction, oxidative stress, inflammation, and apoptosis. Many studies have shown that lithium protects against neurodegeneration. Herein, we summarize recent clinical and laboratory studies on the neuroprotective effects of lithium against neurodegeneration and its potential to modulate mitochondrial dysfunction, oxidative stress, inflammation, and apoptosis. Recent findings indicate that lithium regulates critical intracellular pathways such as phosphatidylinositol-3 (PI3)/protein kinase B (Akt)/glycogen synthase kinase-3 (GSK3β) and PI3/Akt/response element-binding protein (CREB)/brain-derived neurotrophic factor (BDNF). We queried PubMed, Web of Science, Scopus, Elsevier, and other related databases using search terms related to lithium and its neuroprotective effect in various neurodegenerative diseases and events from January 2000 to May 2022. We reviewed the major findings and mechanisms proposed for the effects of lithium. Lithium's neuroprotective potential against neural cell degeneration is mediated by inducing anti-inflammatory factors, antioxidant enzymes, and free radical scavengers to prevent mitochondrial dysfunction. Lithium effects are regulated by two essential pathways: PI3/Akt/GSK3β and PI3/Akt/CREB/BDNF. Lithium acts as a neuroprotective agent against neurodegeneration by preventing inflammation, oxidative stress, apoptosis, and mitochondrial dysfunction using PI3/Akt/GSK3β and PI3/Akt/CREB/BDNF signaling pathways.
Collapse
Affiliation(s)
- Fateme Ghanaatfar
- Student Research Committee, School of Nursing and Midwifery, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ali Ghanaatfar
- Student Research Committee, Qom University of Medical Sciences, Qom, Iran
| | - Parisa Isapour
- Department of Medicinal Chemistry, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Negin Farokhi
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Chemistry, Pharmaceutical Sciences Branch, Islamic Azad University (IUAPS), Tehran, Iran
| | | | - Mahshid Javadi
- Chronic Respiratory Disease Research Center (CRDRC), National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mina Gholami
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Luis Ulloa
- Center for Perioperative Organ Protection, Department of Anesthesiology, Duke University, Durham, North Carolina, USA
| | - Natalie Coleman-Fuller
- Department of Veterinary and Biomedical Sciences, University of Minnesota, St. Paul, Minnesota, USA
| | - Majid Motaghinejad
- Chronic Respiratory Disease Research Center (CRDRC), National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
370
|
Pinosanu LR, Capitanescu B, Glavan D, Godeanu S, Cadenas IF, Doeppner TR, Hermann DM, Balseanu AT, Bogdan C, Popa-Wagner A. Neuroglia Cells Transcriptomic in Brain Development, Aging and Neurodegenerative Diseases. Aging Dis 2023; 14:63-83. [PMID: 36818562 PMCID: PMC9937697 DOI: 10.14336/ad.2022.0621] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 06/21/2022] [Indexed: 11/18/2022] Open
Abstract
Glia cells are essential for brain functioning during development, aging and disease. However, the role of astroglia plays during brain development is quite different from the role played in the adult lesioned brain. Therefore, a deeper understanding of pathomechanisms underlying astroglia activity in the aging brain and cerebrovascular diseases is essential to guide the development of new therapeutic strategies. To this end, this review provides a comparison between the transcriptomic activity of astroglia cells during development, aging and neurodegenerative diseases, including cerebral ischemia. During fetal brain development, astrocytes and microglia often affect the same developmental processes such as neuro-/gliogenesis, angiogenesis, axonal outgrowth, synaptogenesis, and synaptic pruning. In the adult brain astrocytes are a critical player in the synapse remodeling by mediating synapse elimination while microglia activity has been associated with changes in synaptic plasticity and remove cell debris by constantly sensing the environment. However, in the lesioned brain astrocytes proliferate and play essential functions with regard to energy supply to the neurons, neurotransmission and buildup of a protective scar isolating the lesion site from the surroundings. Inflammation, neurodegeneration, or loss of brain homeostasis induce changes in microglia gene expression, morphology, and function, generally referred to as "primed" microglia. These changes in gene expression are characterized by an enrichment of phagosome, lysosome, and antigen presentation signaling pathways and is associated with an up-regulation of genes encoding cell surface receptors. In addition, primed microglia are characterized by upregulation of a network of genes in response to interferon gamma. Conclusion. A comparison of astroglia cells transcriptomic activity during brain development, aging and neurodegenerative disorders might provide us with new therapeutic strategies with which to protect the aging brain and improve clinical outcome.
Collapse
Affiliation(s)
- Leonard Radu Pinosanu
- Experimental Research Center for Normal and Pathological Aging (ARES), University of Medicine and Pharmacy of Craiova, Craiova, Romania.
| | - Bogdan Capitanescu
- Experimental Research Center for Normal and Pathological Aging (ARES), University of Medicine and Pharmacy of Craiova, Craiova, Romania.
| | - Daniela Glavan
- Psychiatric clinic, University of Medicine and Pharmacy Craiova, Craiova, Romania.
| | - Sanziana Godeanu
- Experimental Research Center for Normal and Pathological Aging (ARES), University of Medicine and Pharmacy of Craiova, Craiova, Romania.
| | - Israel Ferna´ndez Cadenas
- Stroke Pharmacogenomics and Genetics group, Sant Pau Hospital Institute of Research, Barcelona, Spain.
| | - Thorsten R. Doeppner
- Department of Neurology, University Hospital Giessen, Giessen, Germany.,University of Göttingen Medical School, Department of Neurology, Göttingen, Germany.
| | - Dirk M. Hermann
- Vascular Neurology, Dementia and Ageing Research, Department of Neurology, University Hospital Essen, University of Duisburg-Essen, Hufelandstrasse 55, Germany.
| | - Adrian-Tudor Balseanu
- Experimental Research Center for Normal and Pathological Aging (ARES), University of Medicine and Pharmacy of Craiova, Craiova, Romania.
| | - Catalin Bogdan
- Experimental Research Center for Normal and Pathological Aging (ARES), University of Medicine and Pharmacy of Craiova, Craiova, Romania.,Vascular Neurology, Dementia and Ageing Research, Department of Neurology, University Hospital Essen, University of Duisburg-Essen, Hufelandstrasse 55, Germany.,Correspondence should be addressed to: Dr. Aurel Popa-Wagner () and Dr. Catalin Bogdan (), University Hospital Essen, University of Duisburg-Essen, Hufelandstrasse 55, 45147 Essen, Germany
| | - Aurel Popa-Wagner
- Experimental Research Center for Normal and Pathological Aging (ARES), University of Medicine and Pharmacy of Craiova, Craiova, Romania.,Vascular Neurology, Dementia and Ageing Research, Department of Neurology, University Hospital Essen, University of Duisburg-Essen, Hufelandstrasse 55, Germany.,Correspondence should be addressed to: Dr. Aurel Popa-Wagner () and Dr. Catalin Bogdan (), University Hospital Essen, University of Duisburg-Essen, Hufelandstrasse 55, 45147 Essen, Germany
| |
Collapse
|
371
|
Hu H, Lu X, Huang L, He Y, Liu X, Wang Y, Duan C. Castor1 overexpression regulates microglia M1/M2 polarization via inhibiting mTOR pathway. Metab Brain Dis 2023; 38:699-708. [PMID: 36454504 DOI: 10.1007/s11011-022-01135-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 11/24/2022] [Indexed: 12/05/2022]
Abstract
Microglia are resident immune cells in the brain and are closely associated with central nervous system inflammation and neurodegenerative diseases. It is known that mammalian target of rapamycin (mTOR) pathway plays an important role in the polarization of microglia. Castor1 has been identified as the cytosolic arginine sensor for the mTOR complex 1 (mTORC1) pathway, but the role of Castor1 in microglial polarization is still unknown. The purpose of this study was to explore the regulatory effect of Castor1 on microglial polarization and the underlying mechanism. The results demonstrated that Castor1 expression was significantly decreased in lipopolysaccharides (LPS) and interferon (IFN)-γ treated microglia. Castor1 overexpression inhibited the microglia M1 polarization by reducing the expression of M1 related markers. However, the expression of M2-related genes was promoted when Castor1 was overexpressed in IL-4 treated microglia. Mechanistically, Castor1 overexpression inhibited the activation of mTOR signaling pathway. In addition, after treatment with the mTOR activator MHY1485, the inhibitory effect of Castor1 overexpression on M1 polarization was attenuated, indicating that the regulation effects of Castor1 on M1 polarization was dependent on its inhibition of mTOR pathway. We propose that Castor1-mTOR signaling pathway could be considered as a potential target for treatment and intervention of central nervous system-related diseases by regulating microglia polarization.
Collapse
Affiliation(s)
- Huiling Hu
- Department of Clinical Laboratory, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.
| | - Xiaoxia Lu
- Department of Clinical Laboratory, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Lisi Huang
- Department of Clinical Laboratory, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Yuqing He
- Translational Medicine Research Center, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Xiuli Liu
- Department of Clinical Laboratory, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Ying Wang
- Department of Clinical Laboratory, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.
| | - Chaohui Duan
- Department of Clinical Laboratory, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.
| |
Collapse
|
372
|
Huang W, Mo L, Yang Y, Chen S, Liu Z, Ma Q, Luo X. Effect of Aspergillus fumigatus on infection in immunosuppressed rats. ANNALS OF TRANSLATIONAL MEDICINE 2023; 11:88. [PMID: 36819534 PMCID: PMC9929786 DOI: 10.21037/atm-22-6600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 01/10/2023] [Indexed: 01/31/2023]
Abstract
Background Immunosuppression is believed to increase the risk of invasive pulmonary aspergillosis (IPA), but information on the mechanism is limited. Therefore, we analyze the effect and mechanism of the pathogenesis and disease progression of IPA in a combined immunosuppressed rat model. Methods The immunosuppressed rat model was established by intraperitoneal injection of cyclophosphamide (CTX) and dexamethasone (DXM). IPA was established by nasal inoculation of Aspergillus fumigatus spore suspension. Pathological sections and tissue homogenate culture were used to evaluate the lung tissue. Routine blood and inflammatory indexes were dynamically observed. The expressions of NLRP3/caspase-1/GSDMD protein and gene were determined using western blot and quantitative polymerase chain reaction (q-PCR) respectively. T-test or one-way repeated measures analysis were used to do statistical analysis on the groups. Results Following intraperitoneal of CTX and DXM injections, the rats showed depression, weight loss, and significant decreases in the numbers of leukocytes and classified cells. Pathological sections revealed more severe lung lesions in the immunosuppressed rats infected with Aspergillus fumigatus. The expression of NLRP3/caspase-1/GSDMD protein increased significantly in both the aspergillosis and immunosuppressed plus aspergillosis groups. Conclusions The pathological development of IPA in the immunosuppressed rats had the most serious effects, and the findings strongly implicated NLRP3/caspase-1/GSDMD pathway involvement.
Collapse
Affiliation(s)
- Wanhong Huang
- Laboratory of Clinical Medicine, Nanning Fourth People’s Hospital, Guangxi AIDS Clinical Treatment Center, Nanning, China;,Department of Laboratory Medicine, First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning, China
| | - Lida Mo
- Laboratory of Clinical Medicine, Nanning Fourth People’s Hospital, Guangxi AIDS Clinical Treatment Center, Nanning, China
| | - Yanfang Yang
- Guangxi Zhuoqiang Technology Co., Ltd, Nanning, China
| | - Songlin Chen
- Department of Laboratory Medicine, First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning, China
| | - Zeduan Liu
- Laboratory of Clinical Medicine, Nanning Fourth People’s Hospital, Guangxi AIDS Clinical Treatment Center, Nanning, China
| | - Qiuying Ma
- Laboratory of Clinical Medicine, Nanning Fourth People’s Hospital, Guangxi AIDS Clinical Treatment Center, Nanning, China
| | - Xiaolu Luo
- Laboratory of Clinical Medicine, Nanning Fourth People’s Hospital, Guangxi AIDS Clinical Treatment Center, Nanning, China
| |
Collapse
|
373
|
Makievskaya CI, Popkov VA, Andrianova NV, Liao X, Zorov DB, Plotnikov EY. Ketogenic Diet and Ketone Bodies against Ischemic Injury: Targets, Mechanisms, and Therapeutic Potential. Int J Mol Sci 2023; 24:2576. [PMID: 36768899 PMCID: PMC9916612 DOI: 10.3390/ijms24032576] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/17/2023] [Accepted: 01/25/2023] [Indexed: 02/03/2023] Open
Abstract
The ketogenic diet (KD) has been used as a treatment for epilepsy since the 1920s, and its role in the prevention of many other diseases is now being considered. In recent years, there has been an intensive investigation on using the KD as a therapeutic approach to treat acute pathologies, including ischemic ones. However, contradictory data are observed for the effects of the KD on various organs after ischemic injury. In this review, we provide the first systematic analysis of studies conducted from 1980 to 2022 investigating the effects and main mechanisms of the KD and its mimetics on ischemia-reperfusion injury of the brain, heart, kidneys, liver, gut, and eyes. Our analysis demonstrated a high diversity of both the composition of the used KD and the protocols for the treatment of animals, which could be the reason for contradictory effects in different studies. It can be concluded that a true KD or its mimetics, such as β-hydroxybutyrate, can be considered as positive exposure, protecting the organ from ischemia and its negative consequences, whereas the shift to a rather similar high-calorie or high-fat diet leads to the opposite effect.
Collapse
Affiliation(s)
- Ciara I. Makievskaya
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 119992 Moscow, Russia
| | - Vasily A. Popkov
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia
- V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, 117997 Moscow, Russia
| | - Nadezda V. Andrianova
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Xinyu Liao
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 119992 Moscow, Russia
| | - Dmitry B. Zorov
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia
- V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, 117997 Moscow, Russia
| | - Egor Y. Plotnikov
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia
- V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, 117997 Moscow, Russia
| |
Collapse
|
374
|
Weng H, Song W, Fu K, Guan Y, Cai G, Huang E, Chen X, Zou H, Ye Q. Proteomic profiling reveals the potential mechanisms and regulatory targets of sirtuin 4 in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced Parkinson's mouse model. Front Neurosci 2023; 16:1035444. [PMID: 36760798 PMCID: PMC9905825 DOI: 10.3389/fnins.2022.1035444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 12/06/2022] [Indexed: 01/26/2023] Open
Abstract
Introduction Parkinson's disease (PD), as a common neurodegenerative disease, currently has no effective therapeutic approaches to delay or stop its progression. There is an urgent need to further define its pathogenesis and develop new therapeutic targets. An increasing number of studies have shown that members of the sirtuin (SIRT) family are differentially involved in neurodegenerative diseases, indicating their potential to serve as targets in therapeutic strategies. Mitochondrial SIRT4 possesses multiple enzymatic activities, such as deacetylase, ADP ribosyltransferase, lipoamidase, and deacylase activities, and exhibits different enzymatic activities and target substrates in different tissues and cells; thus, mitochondrial SIRT4 plays an integral role in regulating metabolism. However, the role and mechanism of SIRT4 in PD are not fully understood. This study aimed to investigate the potential mechanism and possible regulatory targets of SIRT4 in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced PD mice. Methods The expression of the SIRT4 protein in the MPTP-induced PD mouse mice or key familial Parkinson disease protein 7 knockout (DJ-1 KO) rat was compared against the control group by western blot assay. Afterwards, quantitative proteomics and bioinformatics analyses were performed to identify altered proteins in the vitro model and reveal the possible functional role of SIRT4. The most promising molecular target of SIRT4 were screened and validated by viral transfection, western blot assay and reverse transcription quantitative PCR (RT-qPCR) assays. Results The expression of the SIRT4 protein was found to be altered both in the MPTP-induced PD mouse mice and DJ-1KO rats. Following the viral transfection of SIRT4, a quantitative proteomics analysis identified 5,094 altered proteins in the vitro model, including 213 significantly upregulated proteins and 222 significantly downregulated proteins. The results from bioinformatics analyses indicated that SIRT4 mainly affected the ribosomal pathway, propionate metabolism pathway, peroxisome proliferator-activated receptor (PPAR) signaling pathway and peroxisome pathway in cells, and we screened 25 potential molecular targets. Finally, only fatty acid binding protein 4 (FABP4) in the PPAR signaling pathway was regulated by SIRT4 among the 25 molecules. Importantly, the alterations in FABP4 and PPARγ were verified in the MPTP-induced PD mouse model. Discussion Our results indicated that FABP4 in the PPAR signaling pathway is the most promising molecular target of SIRT4 in an MPTP-induced mouse model and revealed the possible functional role of SIRT4. This study provides a reference for future drug development and mechanism research with SIRT4 as a target or biomarker.
Collapse
Affiliation(s)
- Huidan Weng
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, China,Fujian Key Laboratory of Molecular Neurology, Institute of Neuroscience, Fujian Medical University, Fuzhou, China
| | - Wenjing Song
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, China,Fujian Key Laboratory of Molecular Neurology, Institute of Neuroscience, Fujian Medical University, Fuzhou, China
| | - Kangyue Fu
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Yunqian Guan
- Cell Therapy Center, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Guoen Cai
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, China,Fujian Key Laboratory of Molecular Neurology, Institute of Neuroscience, Fujian Medical University, Fuzhou, China
| | - En Huang
- The School of Basic Medical Sciences, Fujian Key Laboratory of Brain Aging and Neurodegenerative Diseases, Fujian Medical University, Fuzhou, China
| | - Xiaochun Chen
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, China,Fujian Key Laboratory of Molecular Neurology, Institute of Neuroscience, Fujian Medical University, Fuzhou, China
| | - Haiqiang Zou
- Department of Neurosurgery, General Hospital of Southern Theatre Command, PLA, Guangzhou, Guangdong, China,Haiqiang Zou,
| | - Qinyong Ye
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, China,Fujian Key Laboratory of Molecular Neurology, Institute of Neuroscience, Fujian Medical University, Fuzhou, China,*Correspondence: Qinyong Ye,
| |
Collapse
|
375
|
Extracellular Vesicles from NMN Preconditioned Mesenchymal Stem Cells Ameliorated Myocardial Infarction via miR-210-3p Promoted Angiogenesis. Stem Cell Rev Rep 2023; 19:1051-1066. [PMID: 36696015 DOI: 10.1007/s12015-022-10499-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/19/2022] [Indexed: 01/26/2023]
Abstract
Mesenchymal stem cell-derived extracellular vesicles (MSCs-EVs) possess cardioprotection in acute myocardial infarction. Nevertheless, the therapeutic intervention potential and the molecular mechanism of EVs from NMN (Nicotinamide mononucleotide) preconditioned hUCMSCs (N-EVs) in acute myocardial infarction remains unknown. In the present study, EVs from hUCMSCs (M-EVs) and N-EVs were identified by electron microscopy, immunoblotting and nanoparticle tracking analysis. Compared with M-EVs, N-EVs significantly increased the proliferation, migration, and angiogenesis of HUVECs. Meanwhile, N-EVs markedly reduced apoptosis and cardiac fibrosis and promoted angiogenesis in the peri-infarct region in the MI rats. A high-throughput miRNA sequencing and qPCR methods analysis revealed that miR-210-3p was abundant in N-EVs and the expression of miR-210-3p was obviously upregulated in HUVECs after N-EVs treated. Overexpression of miR-210-3p in HUVECs significantly enhanced the tube formation, migration and proliferative capacities of HUVECs. However, downregulation of miR-210-3p in HUVECs markedly decreased the tube formation, migration and proliferative capacities of HUVECs. Furthermore, bioinformatics analysis and luciferase assays revealed that EphrinA3 (EFNA3) was a direct target of miR-210-3p. Knockdown of miR-210-3p in N-EVs significantly impaired its ability to protect the heart after myocardial infarction. Altogether, these results indicated that N-EVs promoted the infarct healing through improvement of angiogenesis by miR-210-3p via targeting the EFNA3. Created with Biorender.com.
Collapse
|
376
|
Feng X, Peng Z, Yuan L, Jin M, Hu H, Peng X, Wang Y, Zhang C, Luo Z, Liao H. Research progress of exosomes in pathogenesis, diagnosis, and treatment of ocular diseases. Front Bioeng Biotechnol 2023; 11:1100310. [PMID: 36761297 PMCID: PMC9902372 DOI: 10.3389/fbioe.2023.1100310] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 01/10/2023] [Indexed: 01/26/2023] Open
Abstract
Exosomes are natural extracellular vesicles with a diameter of 30-150 nm, which exist in biological fluids and contain biomolecules related to the parent cell, such as proteins, nucleic acids, lipids, etc. It has a wide range of biological functions, and participates in the regulation of important physiological and pathological activities of the body. It can be used as a biomarker for early diagnosis of ocular diseases, a potential therapeutic target, a targeted drug carrier, and has a high potential for clinical application. In this paper, we summarized the genesis mechanism, biological functions, research and application progress of exosomes, focused on the engineering strategy of exosomes, and summarized the advantages and disadvantages of common engineering exosome preparation methods. Systematically combed the role of exosomes in corneal diseases, glaucoma, and retinal diseases, to provide a reference for further understanding of the role of exosomes in the pathogenesis, diagnosis, and treatment of ocular diseases. Finally, we further summarized the opportunities and challenges of exosomes for precision medicine. The extension of exosome research to the field of ophthalmology will help advance current diagnostic and therapeutic methods. Tiny exosomes have huge potential.
Collapse
Affiliation(s)
- Xinting Feng
- Jiangxi Provincial Key Laboratory for Ophthalmology, Jiangxi Clinical Research Center for Ophthalmic Disease, Affiliated Eye Hospital of Nanchang University, Jiangxi Research Institute of Ophthalmology and Visual Science, Nanchang, China
- Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Zhen Peng
- Jiangxi Provincial Key Laboratory for Ophthalmology, Jiangxi Clinical Research Center for Ophthalmic Disease, Affiliated Eye Hospital of Nanchang University, Jiangxi Research Institute of Ophthalmology and Visual Science, Nanchang, China
- Department of Sports Medicine, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Lingyi Yuan
- Jiangxi Provincial Key Laboratory for Ophthalmology, Jiangxi Clinical Research Center for Ophthalmic Disease, Affiliated Eye Hospital of Nanchang University, Jiangxi Research Institute of Ophthalmology and Visual Science, Nanchang, China
| | - Ming Jin
- Jiangxi Provincial Key Laboratory for Ophthalmology, Jiangxi Clinical Research Center for Ophthalmic Disease, Affiliated Eye Hospital of Nanchang University, Jiangxi Research Institute of Ophthalmology and Visual Science, Nanchang, China
| | - Haijian Hu
- Jiangxi Provincial Key Laboratory for Ophthalmology, Jiangxi Clinical Research Center for Ophthalmic Disease, Affiliated Eye Hospital of Nanchang University, Jiangxi Research Institute of Ophthalmology and Visual Science, Nanchang, China
| | - Xin Peng
- College of Fine Arts, Jiangxi Science and Technology Normal University, Nanchang, China
| | - Yaohua Wang
- Jiangxi Provincial Key Laboratory for Ophthalmology, Jiangxi Clinical Research Center for Ophthalmic Disease, Affiliated Eye Hospital of Nanchang University, Jiangxi Research Institute of Ophthalmology and Visual Science, Nanchang, China
| | - Chun Zhang
- Department of ophthalmology, West China hospital, Sichuan University, Chengdu, China
| | - Zhiwen Luo
- Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Hongfei Liao
- Jiangxi Provincial Key Laboratory for Ophthalmology, Jiangxi Clinical Research Center for Ophthalmic Disease, Affiliated Eye Hospital of Nanchang University, Jiangxi Research Institute of Ophthalmology and Visual Science, Nanchang, China
| |
Collapse
|
377
|
Hydroxytyrosol Reduces Foam Cell Formation and Endothelial Inflammation Regulating the PPARγ/LXRα/ABCA1 Pathway. Int J Mol Sci 2023; 24:ijms24032057. [PMID: 36768382 PMCID: PMC9916557 DOI: 10.3390/ijms24032057] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/15/2023] [Accepted: 01/17/2023] [Indexed: 01/21/2023] Open
Abstract
Cholesterol accumulation in macrophages leads to the formation of foam cells and increases the risk of developing atherosclerosis. We have verified whether hydroxytyrosol (HT), a phenolic compound with anti-inflammatory and antioxidant properties, can reduce the cholesterol build up in THP-1 macrophage-derived foam cells. We have also investigated the potential mechanisms. Oil Red O staining and high-performance liquid chromatography (HPLC) assays were utilized to detect cellular lipid accumulation and cholesterol content, respectively, in THP-1 macrophages foam cells treated with HT. The impact of HT on cholesterol metabolism-related molecules (SR-A1, CD36, LOX-1, ABCA1, ABCG1, PPARγ and LRX-α) in foam cells was assessed using real-time PCR (RT-qPCR) and Western blot analyses. Finally, the effect of HT on the adhesion of THP-1 monocytes to human vascular endothelial cells (HUVEC) was analyzed to study endothelial activation. We found that HT activates the PPARγ/LXRα pathway to upregulate ABCA1 expression, reducing cholesterol accumulation in foam cells. Moreover, HT significantly inhibited monocyte adhesion and reduced the levels of adhesion factors (ICAM-1 and VCAM-1) and pro-inflammatory factors (IL-6 and TNF-α) in LPS-induced endothelial cells. Taken together, our findings suggest that HT, with its ability to interfere with the import and export of cholesterol, could represent a new therapeutic strategy for the treatment of atherosclerotic disease.
Collapse
|
378
|
Integrated Network Pharmacology and Proteomic Analyses of Targets and Mechanisms of Jianpi Tianjing Decoction in Treating Vascular Dementia. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2023; 2023:9021546. [PMID: 36714532 PMCID: PMC9876684 DOI: 10.1155/2023/9021546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 12/20/2022] [Accepted: 12/29/2022] [Indexed: 01/20/2023]
Abstract
Background Vascular dementia (VD), associated with cerebrovascular injury, is characterized by severe cognitive impairment. Jianpi Tianjing Decoction (JTD) has been widely used to treat VD. However, its molecular targets and mechanisms of action in this treatment remain unclear. This study integrated network pharmacology and proteomics to identify targets and mechanisms of JTD in the treatment of VD and to provide new insights and goals for clinical treatments. Methods Systematic network pharmacology was used to identify active chemical compositions, potential targets, and mechanisms of JTD in VD treatment. Then, a mouse model of VD was induced via transient bilateral common carotid artery occlusion to verify the identified targets and mechanisms of JTD against VD using 4D label-free quantitative proteomics. Results By screening active chemical compositions and potential targets in relevant databases, 187 active chemical compositions and 416 disease-related compound targets were identified. In vivo experiments showed that JTD improved learning and memory in mice. Proteomics also identified 112 differentially expressed proteins in the model and sham groups and the JTD and model groups. Integrating the network pharmacology and proteomics results revealed that JTD may regulate expressions of cytochrome c oxidase subunit 7C, metabotropic glutamate receptor 2, Slc30a1 zinc transporter 1, and apolipoprotein A-IV in VD mice and that their mechanisms involve biological processes like oxidative phosphorylation, regulation of neuron death, glutamate secretion, cellular ion homeostasis, and lipoprotein metabolism. Conclusions JTD may suppress VD development via multiple components, targets, and pathways. It may thus serve as a complementary treatment option for patients with VD.
Collapse
|
379
|
Luo N, Guo Y, Peng L, Deng F. High-fiber-diet-related metabolites improve neurodegenerative symptoms in patients with obesity with diabetes mellitus by modulating the hippocampal-hypothalamic endocrine axis. Front Neurol 2023; 13:1026904. [PMID: 36733447 PMCID: PMC9888315 DOI: 10.3389/fneur.2022.1026904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 12/09/2022] [Indexed: 01/19/2023] Open
Abstract
Objective Through transcriptomic and metabolomic analyses, this study examined the role of high-fiber diet in obesity complicated by diabetes and neurodegenerative symptoms. Method The expression matrix of high-fiber-diet-related metabolites, blood methylation profile associated with pre-symptomatic dementia in elderly patients with type 2 diabetes mellitus (T2DM), and high-throughput single-cell sequencing data of hippocampal samples from patients with Alzheimer's disease (AD) were retrieved from the Gene Expression Omnibus (GEO) database and through a literature search. Data were analyzed using principal component analysis (PCA) after quality control and data filtering to identify different cell clusters and candidate markers. A protein-protein interaction network was mapped using the STRING database. To further investigate the interaction among high-fiber-diet-related metabolites, methylation-related DEGs related to T2DM, and single-cell marker genes related to AD, AutoDock was used for semi-flexible molecular docking. Result Based on GEO database data and previous studies, 24 marker genes associated with high-fiber diet, T2DM, and AD were identified. Top 10 core genes include SYNE1, ANK2, SPEG, PDZD2, KALRN, PTPRM, PTPRK, BIN1, DOCK9, and NPNT, and their functions are primarily related to autophagy. According to molecular docking analysis, acetamidobenzoic acid, the most substantially altered metabolic marker associated with a high-fiber diet, had the strongest binding affinity for SPEG. Conclusion By targeting the SPEG protein in the hippocampus, acetamidobenzoic acid, a metabolite associated with high-fiber diet, may improve diabetic and neurodegenerative diseases in obese people.
Collapse
Affiliation(s)
- Ning Luo
- Department of Endocrinology, Chenzhou No. 1 People's Hospital, Chenzhou, China,*Correspondence: Ning Luo ✉
| | - Yuejie Guo
- Department of Geriatrics, Chenzhou No. 1 People's Hospital, Chenzhou, China
| | - Lihua Peng
- Department of Clinical Laboratory, Chenzhou No. 4 People's Hospital, Chenzhou, China
| | - Fangli Deng
- Breast Health Care Center, Chenzhou No. 1 People's Hospital, Chenzhou, China
| |
Collapse
|
380
|
Fan K, Dong Y, Li T, Li Y. Cuproptosis-associated CDKN2A is targeted by plicamycin to regulate the microenvironment in patients with head and neck squamous cell carcinoma. Front Genet 2023; 13:1036408. [PMID: 36699463 PMCID: PMC9868476 DOI: 10.3389/fgene.2022.1036408] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Accepted: 12/12/2022] [Indexed: 01/11/2023] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC), the most common malignancy of the head and neck, has an overall 5-year survival rate of <50%. Genes associated with cuproptosis, a newly identified copper-dependent form of cell death, are aberrantly expressed in various tumours. However, their role in HNSCC remains unknown. In this study, bioinformatic analysis revealed that the cuproptosis-related gene CDKN2A was correlated with the malignant behaviour of HNSCC. Kaplan-Meier (KM) curves showed that patients with high CDKN2A expression had a better prognosis. Multiomic analysis revealed that CDKN2A may be associated with cell cycle and immune cell infiltration in the tumour microenvironment and is important for maintaining systemic homeostasis in the body. Furthermore, molecular docking and molecular dynamics simulations suggested strong binding between plicamycin and CDKN2A. And plicamycin inhibits the progression of HNSCC in cellular assays. In conclusion, this study elucidated a potential mechanism of action of the cuproptosis-associated gene CDKN2A in HNSCC and revealed that plicamycin targets CDKN2A to improve the prognosis of patients.
Collapse
|
381
|
La Russa D, Di Santo C, Lizasoain I, Moraga A, Bagetta G, Amantea D. Tumor Necrosis Factor (TNF)-α-Stimulated Gene 6 (TSG-6): A Promising Immunomodulatory Target in Acute Neurodegenerative Diseases. Int J Mol Sci 2023; 24:ijms24021162. [PMID: 36674674 PMCID: PMC9865344 DOI: 10.3390/ijms24021162] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 12/26/2022] [Accepted: 01/04/2023] [Indexed: 01/11/2023] Open
Abstract
Tumor necrosis factor (TNF)-α-stimulated gene 6 (TSG-6), the first soluble chemokine-binding protein to be identified in mammals, inhibits chemotaxis and transendothelial migration of neutrophils and attenuates the inflammatory response of dendritic cells, macrophages, monocytes, and T cells. This immunoregulatory protein is a pivotal mediator of the therapeutic efficacy of mesenchymal stem/stromal cells (MSC) in diverse pathological conditions, including neuroinflammation. However, TSG-6 is also constitutively expressed in some tissues, such as the brain and spinal cord, and is generally upregulated in response to inflammation in monocytes/macrophages, dendritic cells, astrocytes, vascular smooth muscle cells and fibroblasts. Due to its ability to modulate sterile inflammation, TSG-6 exerts protective effects in diverse degenerative and inflammatory diseases, including brain disorders. Emerging evidence provides insights into the potential use of TSG-6 as a peripheral diagnostic and/or prognostic biomarker, especially in the context of ischemic stroke, whereby the pathobiological relevance of this protein has also been demonstrated in patients. Thus, in this review, we will discuss the most recent data on the involvement of TSG-6 in neurodegenerative diseases, particularly focusing on relevant anti-inflammatory and immunomodulatory functions. Furthermore, we will examine evidence suggesting novel therapeutic opportunities that can be afforded by modulating TSG-6-related pathways in neuropathological contexts and, most notably, in stroke.
Collapse
Affiliation(s)
- Daniele La Russa
- Section of Preclinical and Translational Pharmacology, Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, CS, Italy
| | - Chiara Di Santo
- Section of Preclinical and Translational Pharmacology, Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, CS, Italy
| | - Ignacio Lizasoain
- Unidad de Investigación Neurovascular, Departamento de Farmacología y Toxicología, Facultad de Medicina, Instituto Universitario de Investigación en Neuroquímica, Universidad Complutense de Madrid, and Instituto de Investigación Hospital 12 de Octubre (Imas12), 28040 Madrid, Spain
| | - Ana Moraga
- Unidad de Investigación Neurovascular, Departamento de Farmacología y Toxicología, Facultad de Medicina, Instituto Universitario de Investigación en Neuroquímica, Universidad Complutense de Madrid, and Instituto de Investigación Hospital 12 de Octubre (Imas12), 28040 Madrid, Spain
| | - Giacinto Bagetta
- Section of Preclinical and Translational Pharmacology, Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, CS, Italy
| | - Diana Amantea
- Section of Preclinical and Translational Pharmacology, Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, CS, Italy
- Correspondence:
| |
Collapse
|
382
|
Zhang Z, Guo Z, Zhang J, Yu X. Diffuse benign inflammatory gastric polyps: A rare case in a young female: Case report and review of the literature. Front Surg 2023; 9:1090622. [PMID: 36684282 PMCID: PMC9851379 DOI: 10.3389/fsurg.2022.1090622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Accepted: 12/06/2022] [Indexed: 01/06/2023] Open
Abstract
Background Gastric polyps are one of the most common clinical diseases arising from the mucosal surface of the stomach. The benign nature of the gastric polyp and its absence of symptoms have been widely accepted. Diffuse benign inflammatory polyps spanning the entire gastric mucosa are relatively rare in young people. Case presentation Our objective was to report a 20-year-old woman who presented with epigastric pain and vomiting; upper gastrointestinal barium contrast roentgenography demonstrated a huge defect in the filling of the stomach. Upper endoscopy also showed the presence of dense inflammatory polyps in the stomach that were the cause of the severe pylorus obstruction. The diffuse benign gastric polyps were diagnosed as inflammatory gastric polyps on the basis of findings on the histopathological examination. She was delivered as a result of the operating procedure of total gastrectomy and Roux-en-Y anastomosis of the esophagus and jejunum. Postoperative nutritional support therapy was also implemented. Postoperative pathological examination revealed inflammatory papillary and villous polyps distributed over the stomach, and eosinophilic infiltration was found in the local area of the polyp. Polyps move like tufts of coral. During the 16-month follow-up, patients with symptoms of malnutrition and anemia recovered. Conclusion Nutritional support and a total gastrectomy were used to improve this patient's symptoms of malnutrition and anemia. Surgical intervention with appropriate nutritional support should be actively performed in these patients while strengthening the differential diagnosis of hereditary disease.
Collapse
Affiliation(s)
- ZongYao Zhang
- Department of General Surgery, The First Affiliated Hospital of Anhui University of Science and Technology, Huainan, China
| | - ZhengChang Guo
- Department of General Surgery, Zhenjiang First People's Hospital, Zhenjiang, China
| | - JiaJia Zhang
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Xin Yu
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China,Correspondence: Xin Yu
| |
Collapse
|
383
|
Zhang D, Zheng C, Zhu T, Yang F, Zhou Y. Identification of key module and hub genes in pulpitis using weighted gene co-expression network analysis. BMC Oral Health 2023; 23:2. [PMID: 36593446 PMCID: PMC9808982 DOI: 10.1186/s12903-022-02638-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 11/30/2022] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Pulpitis is a common disease mainly caused by bacteria. Conventional approaches of diagnosing the state of dental pulp are mainly based on clinical symptoms, thereby harbor deficiencies. The accurate and rapid diagnosis of pulpitis is important for choosing the suitable therapy. The study aimed to identify pulpits related key genes by integrating micro-array data analysis and systems biology network-based methods such as weighted gene co-expression network analysis (WGCNA). METHODS The micro-array data of 13 inflamed pulp and 11 normal pulp were acquired from Gene Expression Omnibus (GEO). WGCNA was utilized to establish a genetic network and categorize genes into diverse modules. Hub genes in the most associated module to pulpitis were screened out using high module group members (MM) methods. Pulpitis model in rat was constructed and iRoot BP plus was applied to cap pulp. Reverse transcription-quantitative polymerase chain reaction (RT-qPCR) was used for validation of hub genes. RESULTS WGCNA was established and genes were categorized into 22 modules. The darkgrey module had the highest correlation with pulpitis among them. A total of 5 hub genes (HMOX1, LOX, ACTG1, STAT3, GNB5) were identified. RT-qPCR proved the differences in expression levels of HMOX1, LOX, ACTG1, STAT3, GNB5 in inflamed dental pulp. Pulp capping reversed the expression level of HMOX1, LOX, ACTG1. CONCLUSION The study was the first to produce a holistic view of pulpitis, screen out and validate hub genes involved in pulpitis using WGCNA method. Pulp capping using iRoot BP plus could reverse partial hub genes.
Collapse
Affiliation(s)
- Denghui Zhang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, 310006, China
| | - Chen Zheng
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, 310006, China
| | - Tianer Zhu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, 310006, China
| | - Fan Yang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, 310006, China
| | - Yiqun Zhou
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, 310006, China.
| |
Collapse
|
384
|
Cui Z, Wang S, Hao Y, Chen Y. Higher serum β2-microglobulin is a predictive biomarker for cognitive impairment in spinal cord injury. PeerJ 2023; 11:e15372. [PMID: 37193029 PMCID: PMC10183166 DOI: 10.7717/peerj.15372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 04/18/2023] [Indexed: 05/18/2023] Open
Abstract
Objective Recent studies have suggested that high levels of β2-microglobulin are linked to cognitive deterioration; however, it is unclear how this connects to spinal cord injury (SCI). This study sought to determine whether there was any association between cognitive decline and serum β2-microglobulin levels in patients with SCI. Methods A total of 96 patients with SCI and 56 healthy volunteers were enrolled as study participants. At the time of enrollment, specific baseline data including age, gender, triglycerides (TG), low-density lipoprotein (LDL), systolic blood pressure (SBP), diastolic blood pressure (DBP), fasting blood glucose (FBG), smoking, and alcohol use were recorded. Each participant was assessed by a qualified physician using the Montreal cognitive assessment (MoCA) scale. Serum β2-microglobulin levels were measured using an enzyme-linked immunosorbent assay (ELISA) reagent for β2-microglobulin. Results A total of 152 participants were enrolled, with 56 in the control group and 96 in the SCI group. There were no significant baseline data differences between the two groups (p > 0.05). The control group had a MoCA score of 27.4 ± 1.1 and the SCI group had a score of 24.3 ± 1.5, with the difference being significant (p < 0.05). The serum ELISA results revealed that the levels of β2-microglobulin in the SCI group were considerably higher (p < 0.05) than those in the control group (2.08 ± 0.17 g/mL compared to 1.57 ± 0.11 g/mL). The serum β2-microglobulin level was used to categorize the patients with SCI into four groups. As serum β2-microglobulin levels increased, the MoCA score reduced (p < 0.05). After adjustment of baseline data, further regression analysis showed that serum β2-microglobulin level remained an independent risk factor for post-SCI cognitive impairment. Conclusions Patients with SCI had higher serum levels of β2-microglobulin, which may be a biomarker for cognitive decline following SCI.
Collapse
Affiliation(s)
- Zhonghao Cui
- Shandong First Medical University & Shandong Academy of Medical Sciences, Bone Biomechanics Engineering Laboratory of Shandong Province, Shandong Medicinal Biotechnology Center (School of Biomedical Sciences), Neck-Shoulder and Lumbocrural Pain Hospital of Shandong First Medical University, Jinan, Shandong Province, China
| | - Shuai Wang
- Shandong University of TCM, Jinan, Shandong Province, China
| | - Yanke Hao
- Orthopedics Department, The Affiliated Hospital of Shandong University of TCM, Jinan, Shandong Province, China
| | - Yuanzhen Chen
- Shandong First Medical University & Shandong Academy of Medical Sciences, Bone Biomechanics Engineering Laboratory of Shandong Province, Shandong Medicinal Biotechnology Center (School of Biomedical Sciences), Neck-Shoulder and Lumbocrural Pain Hospital of Shandong First Medical University, Jinan, Shandong Province, China
| |
Collapse
|
385
|
Wang L, Wang J, Shan Q, Shu H, Guo JM. Involvement of baroreflex deficiency in the age-related loss of estrogen efficacy against cerebral ischemia. Front Aging Neurosci 2023; 15:1167170. [PMID: 37205058 PMCID: PMC10186347 DOI: 10.3389/fnagi.2023.1167170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 04/03/2023] [Indexed: 05/21/2023] Open
Abstract
For post-menopausal women, stroke is complicated by the variable effects of estrogen therapy and the age-related therapeutic consequences involved. Estrogen therapy has been shown to have an age-dimorphic effect, which is neuroprotective in young females, but non-neuroprotective, even neurotoxic in acyclic females. We hypothesized that arterial baroreflex (ABR) and its downstream acetylcholine-α7 nicotinic acetylcholine receptor (α7nAChR) anti-inflammatory pathways are involved in estrogen efficacy toward cerebral ischemic damage. Our data showed that estrogen supplements contributed to ABR improvement and neuroprotection in adult, not aged, ovariectomized (OVX) rats. In adult rats, OVX-induced estrogen deficiency aggravated middle cerebral artery occlusion (MCAO), which induced brain infarction and reduced ABR function, with decreased α7nAChR expression of the brain and exaggerated inflammation following MCAO; these effects were significantly prevented by supplementation with estrogen. ABR impairment by sinoaortic denervation partly attenuated the estrogen effect on baroreflex sensitivity (BRS) and ischemic damage in adult rats, as well as α7nAChR expression and inflammatory response. These data suggested that ABR and acetylcholine-α7nAChR anti-inflammatory pathways are involved in the neuroprotection of estrogen in adult OVX rats. In contrast, aged rats exhibited more severe ischemic damage and inflammatory response than adult rats, as well as poorer baroreflex function and lower α7nAChR expression. Estrogen supplements did not improve BRS or confer neuroprotection in aged rats without affecting brain α7nAChR and post-ischemic inflammation. Most importantly, ketanserin restored ABR function and significantly postponed the onset of stroke in aged female strokeprone spontaneously hypertensive rats, whereas estrogen treatment failed to delay the development of stroke. Our findings reveal that estrogen is protective against ischemic stroke (IS) in adult female rats and that ABR played a role in this beneficial action. Dysfunction of ABR and unresponsiveness to estrogen in aged female rats may contribute to a reduced estrogen efficacy against cerebral ischemia.
Collapse
Affiliation(s)
- Lei Wang
- Department of Orthopedics, 960th Hospital of PLA, Jinan, Shandong, China
| | - Jia Wang
- Health Service Department, 960th Hospital of PLA, Jinan, Shandong, China
| | - Qing Shan
- Department of Clinical Pharmacy, Weifang Medical University, Weifang, Shandong, China
| | - He Shu
- Department of Clinical Pharmacy, 960th Hospital of PLA, Jinan, Shandong, China
| | - Jin-Min Guo
- Department of Clinical Pharmacy, 960th Hospital of PLA, Jinan, Shandong, China
- *Correspondence: Jin-Min Guo,
| |
Collapse
|
386
|
Raval M, Mishra S, Tiwari AK. Epigenetic regulons in Alzheimer's disease. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2023; 198:185-247. [DOI: 10.1016/bs.pmbts.2023.01.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
|
387
|
Zhao H, Li Z, Wang Y, Zhou K, Li H, Bi S, Wang Y, Wu W, Huang Y, Peng B, Tang J, Pan B, Wang B, Chen Z, Zhang Z. Bioengineered MSC-derived exosomes in skin wound repair and regeneration. Front Cell Dev Biol 2023; 11:1029671. [PMID: 36923255 PMCID: PMC10009159 DOI: 10.3389/fcell.2023.1029671] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Accepted: 02/16/2023] [Indexed: 03/02/2023] Open
Abstract
Refractory skin defects such as pressure ulcers, diabetic ulcers, and vascular ulcers represent a challenge for clinicians and researchers in many aspects. The treatment strategies for wound healing have high cost and limited efficacy. To ease the financial and psychological burden on patients, a more effective therapeutic approach is needed to address the chronic wound. MSC-derived exosomes (MSC-exosomes), the main bioactive extracellular vesicles of the paracrine effect of MSCs, have been proposed as a new potential cell-free approach for wound healing and skin regeneration. The benefits of MSC-exosomes include their ability to promote angiogenesis and cell proliferation, increase collagen production, regulate inflammation, and finally improve tissue regenerative capacity. However, poor targeting and easy removability of MSC-exosomes from the wound are major obstacles to their use in clinical therapy. Thus, the concept of bioengineering technology has been introduced to modify exosomes, enabling higher concentrations and construction of particles of greater stability with specific therapeutic capability. The use of biomaterials to load MSC-exosomes may be a promising strategy to concentrate dose, create the desired therapeutic efficacy, and maintain a sustained release effect. The beneficial role of MSC-exosomes in wound healing is been widely accepted; however, the potential of bioengineering-modified MSC-exosomes remains unclear. In this review, we attempt to summarize the therapeutic applications of modified MSC-exosomes in wound healing and skin regeneration. The challenges and prospects of bioengineered MSC-exosomes are also discussed.
Collapse
Affiliation(s)
- Hanxing Zhao
- Department of Plastic and Burn Surgery, West China Hospital, Sichuan University, Chengdu, China.,Department of Plastic Reconstructive and Aesthetic Surgery, West China Tianfu Hospital, Sichuan University, Chengdu, China
| | - Zhengyong Li
- Department of Plastic and Burn Surgery, West China Hospital, Sichuan University, Chengdu, China.,Department of Plastic Reconstructive and Aesthetic Surgery, West China Tianfu Hospital, Sichuan University, Chengdu, China
| | - Yixi Wang
- Department of Plastic and Burn Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Kai Zhou
- Department of Plastic Reconstructive and Aesthetic Surgery, West China Tianfu Hospital, Sichuan University, Chengdu, China
| | - Hairui Li
- Department of Plastic Reconstructive and Aesthetic Surgery, West China Tianfu Hospital, Sichuan University, Chengdu, China
| | - Siwei Bi
- Department of Plastic and Burn Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Yudong Wang
- Department of Plastic and Burn Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Wenqing Wu
- Department of Plastic and Burn Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Yeqian Huang
- Department of Plastic and Burn Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Bo Peng
- Department of Plastic and Burn Surgery, West China Hospital, Sichuan University, Chengdu, China.,Department of Plastic Reconstructive and Aesthetic Surgery, West China Tianfu Hospital, Sichuan University, Chengdu, China
| | - Jun Tang
- Department of Plastic and Burn Surgery, West China Hospital, Sichuan University, Chengdu, China.,Department of Plastic Reconstructive and Aesthetic Surgery, West China Tianfu Hospital, Sichuan University, Chengdu, China
| | - Bo Pan
- Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Baoyun Wang
- Department of Plastic and Burn Surgery, West China Hospital, Sichuan University, Chengdu, China.,Department of Plastic Reconstructive and Aesthetic Surgery, West China Tianfu Hospital, Sichuan University, Chengdu, China
| | - Zhixing Chen
- Department of Plastic and Burn Surgery, West China Hospital, Sichuan University, Chengdu, China.,Department of Plastic Reconstructive and Aesthetic Surgery, West China Tianfu Hospital, Sichuan University, Chengdu, China
| | - Zhenyu Zhang
- Department of Plastic and Burn Surgery, West China Hospital, Sichuan University, Chengdu, China.,Department of Plastic Reconstructive and Aesthetic Surgery, West China Tianfu Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
388
|
Zhang H, Zhang Y, Sheng S, Xing Y, Mou Z, Zhang Y, Shi Z, Yu Z, Gao Q, Cai W, Jing Q. Relationship Between Physical Exercise and Cognitive Impairment Among Older Adults with Type 2 Diabetes: Chain Mediating Roles of Sleep Quality and Depression. Psychol Res Behav Manag 2023; 16:817-828. [PMID: 36960417 PMCID: PMC10030003 DOI: 10.2147/prbm.s403788] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 03/10/2023] [Indexed: 03/19/2023] Open
Abstract
Objective Although physical exercise has been shown to boost physical, psychological, and psychiatric conditions in older adults, there is a relative lack of research on the mechanisms involved in this process for older adults with type 2 diabetes mellitus (T2DM). We thus evaluated whether sleep quality and depression mediated the relationship between physical exercise and cognitive impairment in older adults with T2DM by focusing on the exercise-physiology-psychology and psychiatry connection. Methods Self-reported data were collected from 2646 older adults with T2DM in Weifang, Shandong, China. Regression and bootstrap analyses were conducted to explore the chain mediator model including physical exercise, cognitive impairment, sleep quality, and depression. Results Engaging in physical exercise (coefficient = -0.6858, p < 0.001), high levels of sleep quality (coefficient = -0.3397, p = 0.015), and low levels of depression (coefficient = 0.3866, p < 0.001) were significantly associated with a low level of cognitive impairment. Sleep quality and depression mediated the chain effect between physical exercise and cognitive impairment (total effect = -1.0732, 95% CI [-1.3652, -0.7862]; direct effect = -0.6858, 95% CI [-0.9702, -0.3974]; indirect effect = -0.3875, 95% CI [-0.5369, -0.2521]). Conclusion Physical exercise may improve sleep quality in older adults with T2DM, alleviating depression and delaying the development of cognitive impairment. Physical exercise can enhance patients' ability to resist depression and cognitive impairment, and creating comfortable sleep environments can also reinforce the effects of this process. These findings have important implications for promoting healthy aging in older adults with T2DM.
Collapse
Affiliation(s)
- Han Zhang
- School of Management, Weifang Medical University, Weifang, Shandong, People’s Republic of China
- “Health Shandong” Collaborative Innovation Center for Severe Social Risk Prediction and Governance, Weifang, People’s Republic of China
- China Academy of Rehabilitation and Health, Weifang Medical University, Weifang, People’s Republic of China
| | - Yefan Zhang
- School of Management, Weifang Medical University, Weifang, Shandong, People’s Republic of China
- “Health Shandong” Collaborative Innovation Center for Severe Social Risk Prediction and Governance, Weifang, People’s Republic of China
- China Academy of Rehabilitation and Health, Weifang Medical University, Weifang, People’s Republic of China
| | - Sen Sheng
- School of Management, Weifang Medical University, Weifang, Shandong, People’s Republic of China
- “Health Shandong” Collaborative Innovation Center for Severe Social Risk Prediction and Governance, Weifang, People’s Republic of China
| | - Yang Xing
- Weifang People’s Hospital, Weifang, People’s Republic of China
| | - Zhongchen Mou
- School of Psychology, Weifang Medical University, Weifang, People’s Republic of China
| | - Yanqiu Zhang
- School of Management, Weifang Medical University, Weifang, Shandong, People’s Republic of China
- “Health Shandong” Collaborative Innovation Center for Severe Social Risk Prediction and Governance, Weifang, People’s Republic of China
- China Academy of Rehabilitation and Health, Weifang Medical University, Weifang, People’s Republic of China
| | - Zhixue Shi
- School of Management, Weifang Medical University, Weifang, Shandong, People’s Republic of China
- “Health Shandong” Collaborative Innovation Center for Severe Social Risk Prediction and Governance, Weifang, People’s Republic of China
- China Academy of Rehabilitation and Health, Weifang Medical University, Weifang, People’s Republic of China
| | - Zhenjie Yu
- School of Management, Weifang Medical University, Weifang, Shandong, People’s Republic of China
- “Health Shandong” Collaborative Innovation Center for Severe Social Risk Prediction and Governance, Weifang, People’s Republic of China
| | - Qianqian Gao
- School of Management, Weifang Medical University, Weifang, Shandong, People’s Republic of China
- “Health Shandong” Collaborative Innovation Center for Severe Social Risk Prediction and Governance, Weifang, People’s Republic of China
- China Academy of Rehabilitation and Health, Weifang Medical University, Weifang, People’s Republic of China
| | - Weiqin Cai
- School of Management, Weifang Medical University, Weifang, Shandong, People’s Republic of China
- “Health Shandong” Collaborative Innovation Center for Severe Social Risk Prediction and Governance, Weifang, People’s Republic of China
- China Academy of Rehabilitation and Health, Weifang Medical University, Weifang, People’s Republic of China
- Correspondence: Weiqin Cai; Qi Jing, School of Management, Weifang Medical University, No. 7166 Baotongxi Street, Weifang, 261053, People’s Republic of China, Tel +8618106369128, Email ;
| | - Qi Jing
- School of Management, Weifang Medical University, Weifang, Shandong, People’s Republic of China
- “Health Shandong” Collaborative Innovation Center for Severe Social Risk Prediction and Governance, Weifang, People’s Republic of China
- China Academy of Rehabilitation and Health, Weifang Medical University, Weifang, People’s Republic of China
| |
Collapse
|
389
|
Lee S, Affandi J, Waters S, Price P. Human Cytomegalovirus Infection and Cardiovascular Disease: Current Perspectives. Viral Immunol 2023; 36:13-24. [PMID: 36622943 DOI: 10.1089/vim.2022.0139] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Infections with human cytomegalovirus (HCMV) are often asymptomatic in healthy adults but can be severe in people with a compromised immune system. While several studies have demonstrated associations between cardiovascular disease in older adults and HCMV seropositivity, the underlying mechanisms are unclear. We review evidence published within the last 5 years establishing how HCMV can contribute directly and indirectly to the development and progression of atherosclerotic plaques. We also discuss associations between HCMV infection and cardiovascular outcomes in populations with a high or very high burden of HCMV, including patients with renal or autoimmune disease, transplant recipients, and people living with HIV.
Collapse
Affiliation(s)
- Silvia Lee
- Department of Microbiology, Pathwest Laboratory Medicine, Perth, Western Australia, Australia.,Department of Advanced Clinical and Translational Cardiovascular Imaging, Harry Perkins Institute of Medical Research, Murdoch, Western Australia, Australia.,Curtin Medical School and the Curtin Health Innovation Research Institute (CHIRI); Bentley, Western Australia, Australia
| | - Jacquita Affandi
- Curtin School of Population Health; Curtin University, Bentley, Western Australia, Australia
| | - Shelley Waters
- Curtin Medical School and the Curtin Health Innovation Research Institute (CHIRI); Bentley, Western Australia, Australia
| | - Patricia Price
- Curtin Medical School and the Curtin Health Innovation Research Institute (CHIRI); Bentley, Western Australia, Australia
| |
Collapse
|
390
|
Liu H, Wang D, Tang J, Yu L, Su S. Differences and Clinical Significance of Serum 25-Hydroxyvitamin D3 and Vasohibin-1 (VASH-1) Levels in Patients with Diabetic Nephropathy and Different Renal Injuries. Diabetes Metab Syndr Obes 2023; 16:1085-1091. [PMID: 37155499 PMCID: PMC10122855 DOI: 10.2147/dmso.s405554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 04/06/2023] [Indexed: 05/10/2023] Open
Abstract
Objective We investigate the relationship between the changes of serum 25-hydroxyvitamin D3 (25(OH)D3) and vasohibin-1 (VASH-1) and renal function injury in patients with type 2 diabetic nephropathy. Methods In this study, 143 patients with diabetic nephropathy (DN) were selected as DN group, and 80 patients with type 2 diabetes mellitus were selected as T2DM group. The serum 25 (OH) D3, VASH-1, blood glucose index, inflammation index and renal function index were compared between the two groups. According to the urinary microalbumin/creatinine ratio (UACR), the DN group was divided into microalbuminuria group (UACR range≥30.0mg/g and <300.0mg/g) and macroalbuminuria group (UACR≥300.0mg/g) for stratified comparison. The correlation between 25-hydroxyvitamin D3, VASH-1 and inflammation index and renal function index was analyzed by simple linear correlation analysis. Results The level of 25 (OH) D3 in DN group was significantly lower than that in T2DM group (P<0.05). The levels of VASH-1, CysC, BUN, Scr, 24h urine protein, serum CRP, TGF-β1, TNF-α and IL-6 in DN group were higher than those in T2DM group (P<0.05). The level of 25 (OH) D3 in DN patients with massive proteinuria was significantly lower than that in DN patients with microalbuminuria. The level of VASH-1 in DN patients with massive proteinuria was higher than that in DN patients with microalbuminuria (P<0.05). There was a negative correlation between 25 (OH) D3 and CysC, BUN, Scr, 24h urine protein, CRP, TGF-β1, TNF-α, IL-6 in patients with DN (P<0.05). VASH-1 was positively correlated with Scr, 24h urinary protein, CRP, TGF-β1, TNF-α and IL-6 in patients with DN (P<0.05). Conclusion The level of serum 25 (OH) D3 in DN patients was considerably decreased, and the level of VASH-1 was increased, which was related to the degree of renal function injury and inflammatory response.
Collapse
Affiliation(s)
- Hui Liu
- Department of Nephrology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, People’s Republic of China
| | - Dongyan Wang
- Department of Nephrology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, People’s Republic of China
| | - Jingnan Tang
- Department of Nephrology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, People’s Republic of China
| | - Linlin Yu
- Department of Science and Technology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, People’s Republic of China
| | - Shanshan Su
- Department of Nephrology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, People’s Republic of China
- Correspondence: Shanshan Su, Department of Nephrology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, People’s Republic of China, Email
| |
Collapse
|
391
|
Wang X, Kong F, Lin Z. Cromolyn prevents cerebral vasospasm and dementia by targeting WDR43. Front Aging Neurosci 2023; 15:1132733. [PMID: 37122373 PMCID: PMC10133528 DOI: 10.3389/fnagi.2023.1132733] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 03/21/2023] [Indexed: 05/02/2023] Open
Abstract
Background Cerebral vasospasm (CV) can cause inflammation and damage to neuronal cells in the elderly, leading to dementia. Purpose This study aimed to investigate the genetic mechanisms underlying dementia caused by CV in the elderly, identify preventive and therapeutic drugs, and evaluate their efficacy in treating neurodegenerative diseases. Methods Genes associated with subarachnoid hemorrhage and CV were acquired and screened for differentially expressed miRNAs (DEmiRNAs) associated with aneurysm rupture. A regulatory network of DEmiRNAs and mRNAs was constructed, and virtual screening was performed to evaluate possible binding patterns between Food and Drug Administration (FDA)-approved drugs and core proteins. Molecular dynamics simulations were performed on the optimal docked complexes. Optimally docked drugs were evaluated for efficacy in the treatment of neurodegenerative diseases through cellular experiments. Results The study found upregulated genes (including WDR43 and THBS1) and one downregulated gene associated with aneurysm rupture. Differences in the expression of these genes indicate greater disease risk. DEmiRNAs associated with ruptured aortic aneurysm were identified, of which two could bind to THBS1 and WDR43. Cromolyn and lanoxin formed the best docking complexes with WDR43 and THBS1, respectively. Cellular experiments showed that cromolyn improved BV2 cell viability and enhanced Aβ42 uptake, suggesting its potential as a therapeutic agent for inflammation-related disorders. Conclusion The findings suggest that WDR43 and THBS1 are potential targets for preventing and treating CV-induced dementia in the elderly. Cromolyn may have therapeutic value in the treatment of Alzheimer's disease and dementia.
Collapse
|
392
|
Involvement of Galectin-3 in neurocognitive impairment in obstructive sleep apnea via regulating inflammation and oxidative stress through NLRP3. Sleep Med 2023; 101:1-10. [PMID: 36332381 DOI: 10.1016/j.sleep.2022.09.018] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 09/08/2022] [Accepted: 09/19/2022] [Indexed: 01/11/2023]
Abstract
OBJECTIVE Accumulated studies have revealed that oxidative stress and inflammation play important roles in the development of OSA related cognitive dysfunction. Galectin-3, a member of the galectin family, has been reported to be involved in the neuroinflammatory diseases. However, the relationship between Galectin-3 and cognitive impairment in OSA remains ambiguous. MATERIALS AND METHODS 47 new diagnosed OSA patients and 18 age-, gender-, education- and body mass index-matched healthy control subjects were enrolled in the present study. All subjects underwent whole-night in-laboratory polysomnography (PSG). Montreal Cognitive Assessment (MoCA) was used to evaluated the cognitive function of OSA patients. Serum Galectin-3, interleukin (IL)-1β and IL-8 were examined by enzyme-linked immunosorbent assay (ELISA). The levels of malonaldehyde (MDA), superoxide dismutase (SOD) and catalase (CAT) were measured to evaluate oxidative stress. Protein level of Galectin-3 and NLRP3 in peripheral blood mononuclear cells (PBMCs) and human microglial clone 3 (HMC3) cells were measured by Western Blot. RESULTS Serum Galectin-3 level in severe OSA patients (2.31 ± 0.43 ng/m) was higher than those in mild-moderate OSA patients (1.87 ± 0.32 ng/m, p < 0.001) and those in the healthy controls (1.56 ± 0.22 ng/ml, p < 0.001). Similarly, Galectin-3 level in PBMCs was increased with disease severity (p < 0.01). In addition, OSA patients also showed higher levels of inflammation and oxidative stress (p < 0.01). Patients with OSA scored significantly lower than healthy controls on the MoCA test after controlling for age, gender, education, and BMI. CPAP treatment for 12 weeks effectively reduced the levels of Galectin-3, inflammation and oxidative stress, as well as improved cognitive function of severe OSA patients. Closed correlations were observed between Galectin-3 with sleep respiratory parameters and cognitive dysfunction. In addition, we explored the underlying mechanism of Galectin-3 in neuroinflammation and oxidative stress. We treated HMC3 cells with LPS to mimic neuroinflammatory response in vitro. The results showed that LPS treatment led to a dose-dependent increase in Galectin-3 expression, meanwhile induced inflammation and oxidative stress. Inhibiting Galectin-3 with a specific Galectin-3 inhibitor, TD139, significantly ameliorated LPS-induced neuroinflammation and oxidative stress via suppressing NLRP3. CONCLUSION Current findings suggest that increased Galectin-3 might be involved in the cognitive impairment of OSA patients by promoting neuroinflammation and oxidative stress via regulating NLRP3. These results suggested that Galectin-3 inhibition may exert a protective role against the neurocognitive dysfunction associated with OSA.
Collapse
|
393
|
Wu X, Zhao L, Zhang Y, Li K, Yang J. The role and mechanism of the gut microbiota in the development and treatment of diabetic kidney disease. Front Physiol 2023; 14:1166685. [PMID: 37153213 PMCID: PMC10160444 DOI: 10.3389/fphys.2023.1166685] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 04/12/2023] [Indexed: 05/09/2023] Open
Abstract
Diabetic kidney disease (DKD) is a common complication in patients with diabetes mellitus (DM). Increasing evidence suggested that the gut microbiota participates in the progression of DKD, which is involved in insulin resistance, renin-angiotensin system (RAS) activation, oxidative stress, inflammation and immunity. Gut microbiota-targeted therapies including dietary fiber, supplementation with probiotics or prebiotics, fecal microbiota transplantation and diabetic agents that modulate the gut microbiota, such as metformin, glucagon-like peptide-1 (GLP-1) receptor agonists, dipeptidyl peptidase-4 (DPP-4) inhibitors, and sodium-glucose transporter-2 (SGLT-2) inhibitors. In this review, we summarize the most important findings about the role of the gut microbiota in the pathogenesis of DKD and the application of gut microbiota-targeted therapies.
Collapse
Affiliation(s)
- Xiaofang Wu
- Department of Nephrology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Lei Zhao
- Department of Nephrology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yujiang Zhang
- Department of Nephrology, Chongqing Jiangjin Second People’s Hospital, Chongqing, China
| | - Kailong Li
- Department of Nephrology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jurong Yang
- Department of Nephrology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
- *Correspondence: Jurong Yang,
| |
Collapse
|
394
|
Zhang Q, Li Z, Xie L, Cao S, Cui Z, Shi B, Chen Y. Serum neutrophil gelatinase-associated lipocalin as a potential biomarker for cognitive decline in spinal cord injury. Front Neurol 2023; 14:1120446. [PMID: 36949855 PMCID: PMC10025340 DOI: 10.3389/fneur.2023.1120446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Accepted: 02/13/2023] [Indexed: 03/08/2023] Open
Abstract
Objective Neutrophil gelatinase-associated lipoprotein (NGAL), a protein encoded by the lipocalcin-2 (LCN2) gene, has been reported to be involved in multiple processes of innate immunity, but its relationship with spinal cord injury (SCI) remains unclear. This study set out to determine whether NGAL played a role in the development of cognitive impairment following SCI. Methods At the Neck-Shoulder and Lumbocrural Pain Hospital, a total of 100 SCI patients and 72 controls were enrolled in the study through recruitment. Through questionnaires, baseline data on the participants' age, gender, education level, lifestyle choices (drinking and smoking) and underlying illnesses (hypertension, diabetes, coronary heart disease, and hyperlipidemia) were gathered. The individuals' cognitive performance was evaluated using the Montreal Cognitive Scale (MoCA), and their serum NGAL levels were discovered using ELISA. Results The investigation included 72 controls and 100 SCI patients. The baseline data did not differ substantially between the two groups, however the SCI group's serum NGAL level was higher than the control group's (p < 0.05), and this elevated level was adversely connected with the MoCA score (p < 0.05). According to the results of the ROC analysis, NGAL had a sensitivity of 58.24% and a specificity of 86.72% for predicting cognitive impairment following SCI. Conclusions The changes in serum NGAL level could serve as a biomarker for cognitive impairment in SCI patients, and this holds true even after taking in account several confounding variables.
Collapse
Affiliation(s)
- Qinghao Zhang
- Bone Biomechanics Engineering Laboratory of Shandong Province, Shandong Medicinal Biotechnology Center (School of Biomedical Sciences), Neck-Shoulder and Lumbocrural Pain Hospital of Shandong First Medical University, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Ziteng Li
- Bone Biomechanics Engineering Laboratory of Shandong Province, Shandong Medicinal Biotechnology Center (School of Biomedical Sciences), Neck-Shoulder and Lumbocrural Pain Hospital of Shandong First Medical University, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
- School of Acupuncture and Tuina, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Liangyu Xie
- Bone Biomechanics Engineering Laboratory of Shandong Province, Shandong Medicinal Biotechnology Center (School of Biomedical Sciences), Neck-Shoulder and Lumbocrural Pain Hospital of Shandong First Medical University, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Shengnan Cao
- Bone Biomechanics Engineering Laboratory of Shandong Province, Shandong Medicinal Biotechnology Center (School of Biomedical Sciences), Neck-Shoulder and Lumbocrural Pain Hospital of Shandong First Medical University, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Zhonghao Cui
- Bone Biomechanics Engineering Laboratory of Shandong Province, Shandong Medicinal Biotechnology Center (School of Biomedical Sciences), Neck-Shoulder and Lumbocrural Pain Hospital of Shandong First Medical University, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Bin Shi
- Bone Biomechanics Engineering Laboratory of Shandong Province, Shandong Medicinal Biotechnology Center (School of Biomedical Sciences), Neck-Shoulder and Lumbocrural Pain Hospital of Shandong First Medical University, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Yuanzhen Chen
- Bone Biomechanics Engineering Laboratory of Shandong Province, Shandong Medicinal Biotechnology Center (School of Biomedical Sciences), Neck-Shoulder and Lumbocrural Pain Hospital of Shandong First Medical University, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
- *Correspondence: Yuanzhen Chen
| |
Collapse
|
395
|
Chen CH, Hsia CC, Hu PA, Yeh CH, Chen CT, Peng CL, Wang CH, Lee TS. Bromelain Ameliorates Atherosclerosis by Activating the TFEB-Mediated Autophagy and Antioxidant Pathways. Antioxidants (Basel) 2022; 12:72. [PMID: 36670934 PMCID: PMC9855131 DOI: 10.3390/antiox12010072] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/22/2022] [Accepted: 12/26/2022] [Indexed: 12/31/2022] Open
Abstract
Bromelain, a cysteine protease found in pineapple, has beneficial effects in the treatment of inflammatory diseases; however, its effects in cardiovascular pathophysiology are not fully understood. We investigated the effect of bromelain on atherosclerosis and its regulatory mechanisms in hyperlipidemia and atheroprone apolipoprotein E-null (apoe-/-) mice. Bromelain was orally administered to 16-week-old male apoe-/- mice for four weeks. Daily bromelain administration decreased hyperlipidemia and aortic inflammation, leading to atherosclerosis retardation in apoe-/- mice. Moreover, hepatic lipid accumulation was decreased by the promotion of cholesteryl ester hydrolysis and autophagy through the AMP-activated protein kinase (AMPK)/transcription factor EB (TFEB)-mediated upregulation of autophagy- and antioxidant-related proteins. Moreover, bromelain decreased oxidative stress by increasing the antioxidant capacity and protein expression of antioxidant proteins while downregulating the protein expression of NADPH oxidases and decreasing the production of reactive oxygen species. Therefore, AMPK/TFEB signaling may be crucial in bromelain-mediated anti-hyperlipidemia, antioxidant, and anti-inflammatory effects, effecting the amelioration of atherosclerosis.
Collapse
Affiliation(s)
- Chia-Hui Chen
- Graduate Institute and Department of Physiology, College of Medicine, National Taiwan University, Taipei 10051, Taiwan
| | - Chien-Chung Hsia
- Department of Isotope Application, Institute of Nuclear Energy Research, Taoyuan 32546, Taiwan
| | - Po-An Hu
- Graduate Institute and Department of Physiology, College of Medicine, National Taiwan University, Taipei 10051, Taiwan
| | - Chung-Hsin Yeh
- Department of Isotope Application, Institute of Nuclear Energy Research, Taoyuan 32546, Taiwan
| | - Chun-Tang Chen
- Department of Isotope Application, Institute of Nuclear Energy Research, Taoyuan 32546, Taiwan
| | - Cheng-Liang Peng
- Department of Isotope Application, Institute of Nuclear Energy Research, Taoyuan 32546, Taiwan
| | - Chih-Hsien Wang
- Cardiovascular Surgery, Department of Surgery, National Taiwan University Hospital and College of Medicine, Taipei 10051, Taiwan
| | - Tzong-Shyuan Lee
- Graduate Institute and Department of Physiology, College of Medicine, National Taiwan University, Taipei 10051, Taiwan
| |
Collapse
|
396
|
Orlova E, Dudding T, Chernus JM, Alotaibi RN, Haworth S, Crout RJ, Lee MK, Mukhopadhyay N, Feingold E, Levy SM, McNeil DW, Foxman B, Weyant RJ, Timpson NJ, Marazita ML, Shaffer JR. Association of Early Childhood Caries with Bitter Taste Receptors: A Meta-Analysis of Genome-Wide Association Studies and Transcriptome-Wide Association Study. Genes (Basel) 2022; 14:59. [PMID: 36672800 PMCID: PMC9858612 DOI: 10.3390/genes14010059] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 12/14/2022] [Accepted: 12/17/2022] [Indexed: 12/28/2022] Open
Abstract
Although genetics affects early childhood caries (ECC) risk, few studies have focused on finding its specific genetic determinants. Here, we performed genome-wide association studies (GWAS) in five cohorts of children (aged up to 5 years, total N = 2974, cohorts: Center for Oral Health Research in Appalachia cohorts one and two [COHRA1, COHRA2], Iowa Fluoride Study, Iowa Head Start, Avon Longitudinal Study of Parents and Children [ALSPAC]) aiming to identify genes with potential roles in ECC biology. We meta-analyzed the GWASs testing ~3.9 million genetic variants and found suggestive evidence for association at genetic regions previously associated with caries in primary and permanent dentition, including the β-defensin anti-microbial proteins. We then integrated the meta-analysis results with gene expression data in a transcriptome-wide association study (TWAS). This approach identified four genes whose genetically predicted expression was associated with ECC (p-values < 3.09 × 10−6; CDH17, TAS2R43, SMIM10L1, TAS2R14). Some of the strongest associations were with genes encoding members of the bitter taste receptor family (TAS2R); other members of this family have previously been associated with caries. Of note, we identified the receptor encoded by TAS2R14, which stimulates innate immunity and anti-microbial defense in response to molecules released by the cariogenic bacteria, Streptococcus mutans and Staphylococcus aureus. These findings provide insight into ECC genetic architecture, underscore the importance of host-microbial interaction in caries risk, and identify novel risk genes.
Collapse
Affiliation(s)
- Ekaterina Orlova
- Department of Human Genetics, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Tom Dudding
- Bristol Dental School, University of Bristol, Bristol BS1 2LY, UK
- Medical Research Council Integrative Epidemiology Unit, Department of Population Health Sciences, University of Bristol, Bristol BS8 1QU, UK
| | - Jonathan M. Chernus
- Department of Human Genetics, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Rasha N. Alotaibi
- Dental Health Department, College of Applied Medical Sciences, King Saud University, Riyadh 12372, Saudi Arabia
| | - Simon Haworth
- Bristol Dental School, University of Bristol, Bristol BS1 2LY, UK
- Medical Research Council Integrative Epidemiology Unit, Department of Population Health Sciences, University of Bristol, Bristol BS8 1QU, UK
| | - Richard J. Crout
- Department of Periodontics, School of Dentistry, West Virginia University, Morgantown, WV 26505, USA
| | - Myoung Keun Lee
- Center for Craniofacial and Dental Genetics, Department of Oral and Craniofacial Sciences, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Nandita Mukhopadhyay
- Center for Craniofacial and Dental Genetics, Department of Oral and Craniofacial Sciences, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Eleanor Feingold
- Department of Human Genetics, University of Pittsburgh, Pittsburgh, PA 15260, USA
- Center for Craniofacial and Dental Genetics, Department of Oral and Craniofacial Sciences, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Steven M. Levy
- Department of Preventive & Community Dentistry, University of Iowa College of Dentistry, Iowa City, IA 52242, USA
| | - Daniel W. McNeil
- Department of Psychology & Department of Dental Public Health and Professional Practice, West Virginia University, Morgantown, WV 26505, USA
| | - Betsy Foxman
- Center for Molecular and Clinical Epidemiology of Infectious Diseases, Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI 48109, USA
| | - Robert J. Weyant
- Dental Public Health, School of Dental Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Nicholas J. Timpson
- Medical Research Council Integrative Epidemiology Unit, Department of Population Health Sciences, University of Bristol, Bristol BS8 1QU, UK
- Avon Longitudinal Study of Parents and Children, University of Bristol, Bristol BS8 1QU, UK
| | - Mary L. Marazita
- Department of Human Genetics, University of Pittsburgh, Pittsburgh, PA 15260, USA
- Center for Craniofacial and Dental Genetics, Department of Oral and Craniofacial Sciences, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - John R. Shaffer
- Department of Human Genetics, University of Pittsburgh, Pittsburgh, PA 15260, USA
- Center for Craniofacial and Dental Genetics, Department of Oral and Craniofacial Sciences, University of Pittsburgh, Pittsburgh, PA 15261, USA
| |
Collapse
|
397
|
Tao P, Ji J, Wang Q, Cui M, Cao M, Xu Y. The role and mechanism of gut microbiota-derived short-chain fatty in the prevention and treatment of diabetic kidney disease. Front Immunol 2022; 13:1080456. [PMID: 36601125 PMCID: PMC9806165 DOI: 10.3389/fimmu.2022.1080456] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 12/05/2022] [Indexed: 12/23/2022] Open
Abstract
Diabetic kidney disease (DKD), an emerging global health issue, is one of the most severe microvascular complications derived from diabetes and a primary pathology contributing to end-stage renal disease. The currently available treatment provides only symptomatic relief and has failed to delay the progression of DKD into chronic kidney disease. Recently, multiple studies have proposed a strong link between intestinal dysbiosis and the occurrence of DKD. The gut microbiota-derived short-chain fatty acids (SCFAs) capable of regulating inflammation, oxidative stress, fibrosis, and energy metabolism have been considered versatile players in the prevention and treatment of DKD. However, the underlying molecular mechanism of the intervention of the gut microbiota-kidney axis in the development of DKD still remains to be explored. This review provides insight into the contributory role of gut microbiota-derived SCFAs in DKD.
Collapse
Affiliation(s)
- Pengyu Tao
- Department of Nephrology, Seventh People’s Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jing Ji
- Department of Endocrinology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Qian Wang
- Postdoctoral Workstation, Department of Central Laboratory, The Affiliated Taian City Central Hospital of Qingdao University, Taian, China
| | - Mengmeng Cui
- Department of Rehabilitation, The Second Affiliated Hospital of Shandong First Medical University, Taian, China
| | - Mingfeng Cao
- Department of Endocrinology, The Second Affiliated Hospital of Shandong First Medical University Taian, Taian, China
| | - Yuzhen Xu
- Department of Rehabilitation, The Second Affiliated Hospital of Shandong First Medical University, Taian, China
| |
Collapse
|
398
|
Tian T, Sun W, Du J, Sun Y. Analysis of co-expression gene network associated with intracranial aneurysm and type 2 diabetes mellitus. Front Neurol 2022; 13:1032038. [PMID: 36561297 PMCID: PMC9763588 DOI: 10.3389/fneur.2022.1032038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 11/14/2022] [Indexed: 12/12/2022] Open
Abstract
To screen for common target genes in intracranial aneurysms (IA) and type 2 diabetes mellitus (T2DM), construct a common transcriptional regulatory network to predict clusters of candidate genes involved in the pathogenesis of T2DM and IA, and identify the common neurovascular markers and pathways in T2DM causing IA. Microarray datasets (GSE55650, GSE25462, GSE26969, GSE75436, and GSE13353) from the GEO database were analyzed in this research. Screening of the IA and the T2DM datasets yielded a total of 126 DEGs, among which 78 were upregulated and 138 were downregulated. Functional enrichment analysis revealed that these DEGs were enriched for a total of 68 GO pathways, including extracellular matrix composition, coagulation regulation, hemostasis regulation, and collagen fiber composition pathways. We also constructed transcriptional regulatory networks, and identified key transcription factors involved in both the conditions. Univariate logistic regression analysis showed that ARNTL2 and STAT1 were significantly associated with the development of T2DM and IA, acting as the common neurovascular markers for both the diseases. In cellular experiments, hyperglycemic microenvironments exhibited upregulated STAT1 expression. STAT1 may be involved in the pathogenesis of IA in T2DM patients. Being the common neurovascular markers, STAT1 may acts as novel therapeutic targets for the treatment of IA and T2DM.
Collapse
Affiliation(s)
- Tian Tian
- Department of Neurological Surgery, Chengde Medical University Affiliated Hospital, Chengde, China
| | - Wenhao Sun
- Department of Neurological Surgery, Chengde Medical University Affiliated Hospital, Chengde, China
| | - Jia Du
- Department of Neurological Surgery, Cangzhou Center Hospital, Cangzhou, China
| | - Yafei Sun
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, China,*Correspondence: Yafei Sun
| |
Collapse
|
399
|
Cheon SY, Song J. Novel insights into non-alcoholic fatty liver disease and dementia: insulin resistance, hyperammonemia, gut dysbiosis, vascular impairment, and inflammation. Cell Biosci 2022; 12:99. [PMID: 35765060 PMCID: PMC9237975 DOI: 10.1186/s13578-022-00836-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 06/20/2022] [Indexed: 02/08/2023] Open
Abstract
AbstractNon-alcoholic fatty liver disease (NAFLD) is a metabolic disease characterized by multiple pathologies. The progression of dementia with NAFLD may be affected by various risk factors, including brain insulin resistance, cerebrovascular dysfunction, gut dysbiosis, and neuroinflammation. Many recent studies have focused on the increasing prevalence of dementia in patients with NAFLD. Dementia is characterized by cognitive and memory deficits and has diverse subtypes, including vascular dementia, Alzheimer’s dementia, and diabetes mellitus-induced dementia. Considering the common pathological features of NAFLD and dementia, further studies on the association between them are needed to find appropriate therapeutic solutions for diseases. This review summarizes the common pathological characteristics and mechanisms of NAFLD and dementia. Additionally, it describes recent evidence on association between NAFLD and dementia progression and provides novel perspectives with regard to the treatment of patients with dementia secondary to NAFLD.
Collapse
|
400
|
Li Y, Kong M, Wang J, Han P, Zhang N, Yang X, Wang J, Hu Y, Duo Y, Liu D. Exercise-induced circulating exosomes potentially prevent pelvic organ prolapse in clinical practice via inhibition of smooth muscle apoptosis. Heliyon 2022; 9:e12583. [PMID: 37077375 PMCID: PMC10106923 DOI: 10.1016/j.heliyon.2022.e12583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 11/14/2022] [Accepted: 12/15/2022] [Indexed: 12/26/2022] Open
Abstract
Background This study aimed to explore the potential mechanisms of exercise to prevent pelvic organ prolapse (POP) and search for diagnostic indictors for POP. Methods We used two clinical POP datasets with patients' information (GSE12852 and GSE53868), a dataset consisting of altered microRNA expression in circulating blood after exercise (GSE69717) for bioinformatic analysis and clinical diagnostic analysis, while a series of cellular experiments were conducted for preliminary mechanical validation. Results Our results show that AXUD1 is highly expressed in the smooth muscle of the ovary and is a key pathogenic gene in POP, while miR-133b is a key molecule in the regulation of POP by exercise-induced serum exosomes. The AUCs of AXUD1 for POP diagnosis were 0.842 and 0.840 in GSE12852 and GSE53868 respectively. At cut-off value = 9.627, the sensitivity and specificity of AXUD1 for predicating POP is 1.000 and 0.833 respectively for GSE53868, while at cut-off value = 3324.640, the sensitivity and specificity of AXUD1 for predicating POP is 0.941 and 0.812 separately for GSE12852. Analysis and experiments confirmed that miR-133b can directly regulate AXUD1. miR-133b mediated C2C12 myoblasts proliferation and inhibited hydrogen peroxide-induced apoptosis. Conclusions Our study proved that AXUD1 is a good clinical diagnostic indicator for POP and provided a theoretical basis for future prevention of POP through exercise and a potential target for intervention in muscle dysfunction.
Collapse
|