351
|
Sármay G, Koncz G, Pecht I, Gergely J. Cooperation between SHP-2, phosphatidyl inositol 3-kinase and phosphoinositol 5-phosphatase in the Fc gamma RIIb mediated B cell regulation. Immunol Lett 1999; 68:25-34. [PMID: 10397152 DOI: 10.1016/s0165-2478(99)00026-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Co-clustering B cell receptors (BCR) and type II receptors binding the Fc part of IgG (Fc gamma RIIb) inhibits B cell activation and antibody production. Tyrosine phosphorylation of an intracellular motif of Fc gamma RIIb has been shown to be a prerequisite of the inhibition. After being phosphorylated by BCR-activated tyrosine kinases, the immunoreceptor tyrosine-based inhibitory motif (P-ITIM) of Fc gamma RIIb recruits SH2 domain containing protein tyrosine phosphatase(s) (PTPs) and polyphosphoinositol 5-phosphatase (SHIP) to the vicinity of BCR, which in turn dephosphorylate their specific substrates. This leads to the interruption of signal transduction, consequently to the anergy and/or apoptosis of the cell. The downstream signaling pathways affected by Fc gamma RIIb-BCR co-clustering are not clarified yet, neither the substrates of PTPs are known. We have studied the Fc gamma RIIb mediated B cell inhibition on human Burkitt lymphoma cell line (BL41). From the lysates of BL41 cells SHP-2 and phosphatidylinositol 3-kinase (PI3-K), as well as the protein tyrosine kinase (PTK) Lyn bind both to the BCR-co-clustered Fc gamma RIIb and to its P-ITIM peptide. Lyn hyperphosphorylates the P-ITIM associated molecules, including SHIP in the in vitro protein tyrosine kinase activity assay. The P-ITIM-compelled multi-phosphoprotein complex binds to and activates SHP-2, which in turn dephosphorylates SHIP and Shc and probably other substrates. Subcellular localisation of these signaling molecules is regulated by the phosphotyrosine-SH2 domain interactions, thus dephosphorylation may result in the re-direction of Shc and SHIP within the cell, consequently, in the modulation of their activity. Finally, co-clustering Fc gamma RIIb and BCR or Fc gamma RIIb and CD19 on the intact cells inhibited PI3-K activity as detected in the anti-phosphotyrosine (anti-PY) precipitates. The results indicate that SHP-2 bound to and activated by the BCR co-clustered Fc gamma RIIb, may down-regulate PI3-K activity by dephosphorylating a yet unidentified regulatory molecule, which recruits PI3-K to the cell membrane.
Collapse
MESH Headings
- Antigens, CD/metabolism
- Antigens, CD/physiology
- B-Lymphocytes/enzymology
- B-Lymphocytes/physiology
- Binding, Competitive/immunology
- Humans
- Inositol Polyphosphate 5-Phosphatases
- Intracellular Signaling Peptides and Proteins
- Macromolecular Substances
- Phosphatidylinositol 3-Kinases/physiology
- Phosphoinositide-3 Kinase Inhibitors
- Phosphopeptides/metabolism
- Phosphoric Monoester Hydrolases/physiology
- Protein Binding
- Protein Tyrosine Phosphatase, Non-Receptor Type 11
- Protein Tyrosine Phosphatase, Non-Receptor Type 6
- Protein Tyrosine Phosphatases/physiology
- Receptors, Antigen, B-Cell/metabolism
- Receptors, Antigen, B-Cell/physiology
- Receptors, IgG/metabolism
- Receptors, IgG/physiology
- SH2 Domain-Containing Protein Tyrosine Phosphatases
- Signal Transduction/immunology
Collapse
Affiliation(s)
- G Sármay
- Department of Immunology, Loránd Eötvös University, Göd, Hungary.
| | | | | | | |
Collapse
|
352
|
Harpur AG, Layton MJ, Das P, Bottomley MJ, Panayotou G, Driscoll PC, Waterfield MD. Intermolecular interactions of the p85alpha regulatory subunit of phosphatidylinositol 3-kinase. J Biol Chem 1999; 274:12323-32. [PMID: 10212202 DOI: 10.1074/jbc.274.18.12323] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The regulatory subunit of phosphatidylinositol 3-kinase, p85, contains a number of well defined domains involved in protein-protein interactions, including an SH3 domain and two SH2 domains. In order to investigate in detail the nature of the interactions of these domains with each other and with other binding partners, a series of deletion and point mutants was constructed, and their binding characteristics and apparent molecular masses under native conditions were analyzed. The SH3 domain and the first proline-rich motif bound each other, and variants of p85 containing the SH3 and BH domains and the first proline-rich motif were dimeric. Analysis of the apparent molecular mass of the deletion mutants indicated that each of these domains contributed residues to the dimerization interface, and competition experiments revealed that there were intermolecular SH3 domain-proline-rich motif interactions and BH-BH domain interactions mediating dimerization of p85alpha both in vitro and in vivo. Binding of SH2 domain ligands did not affect the dimeric state of p85alpha. Recently, roles for the p85 subunit have been postulated that do not involve the catalytic subunit, and if p85 exists on its own we propose that it would be dimeric.
Collapse
Affiliation(s)
- A G Harpur
- Ludwig Institute for Cancer Research, 91 Riding House St., London W1P 8BT, United Kingdom.
| | | | | | | | | | | | | |
Collapse
|
353
|
Chaika OV, Chaika N, Volle DJ, Hayashi H, Ebina Y, Wang LM, Pierce JH, Lewis RE. Mutation of tyrosine 960 within the insulin receptor juxtamembrane domain impairs glucose transport but does not inhibit ligand-mediated phosphorylation of insulin receptor substrate-2 in 3T3-L1 adipocytes. J Biol Chem 1999; 274:12075-80. [PMID: 10207032 DOI: 10.1074/jbc.274.17.12075] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
CSF-1 is equipotent to insulin in its ability to stimulate 2-[3H]deoxyglucose uptake in 3T3-L1 adipocytes expressing the colony stimulating factor-1 receptor/insulin receptor chimera (CSF1R/IR). However, CSF-1-stimulated glucose uptake and glycogen synthesis is reduced by 50% in comparison to insulin in 3T3-L1 cells expressing a CSF1R/IR mutated at Tyr960 (CSF1R/IRA960). CSF-1-treated adipocytes expressing the CSF1R/IRA960 were impaired in their ability to phosphorylate insulin receptor substrate 1 (IRS-1) but not in their ability to phosphorylate IRS-2. Immunoprecipitation of IRS proteins followed by Western blotting revealed that the intact CSF1R/IR co-precipitates with IRS-2 from CSF-1-treated cells. In contrast, the CSF1R/IRA960 co-precipitates poorly with IRS-2. These observations suggest that Tyr960 is important for interaction of the insulin receptor cytoplasmic domain with IRS-2, but it is not essential to the ability of the insulin receptor tyrosine kinase to use IRS-2 as a substrate. These observations also suggest that in 3T3-L1 adipocytes, tyrosine phosphorylation of IRS-2 by the insulin receptor tyrosine kinase is not sufficient for maximal stimulation of receptor-regulated glucose transport or glycogen synthesis.
Collapse
Affiliation(s)
- O V Chaika
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska 68198-6805, USA
| | | | | | | | | | | | | | | |
Collapse
|
354
|
Romand R, Chardin S. Effects of growth factors on the hair cells after ototoxic treatment of the neonatal mammalian cochlea in vitro. Brain Res 1999; 825:46-58. [PMID: 10216172 DOI: 10.1016/s0006-8993(99)01211-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
The aim of this study was to test the possible regenerative potential of several molecules and growth factors such as retinoic acid (RA), insulin, epidermal growth factor (EGF) and transforming growth factors alpha (TGFalpha) and beta (TGFbeta) on the neonatal cochlea in vitro after neomycin intoxication. Our studies show that cochlear sensory epithelium behaves differently while maintained in various culture conditions, although we did not observe regeneration whatever the molecules or growth factors tested. The ototoxic action of neomycin in vitro produced a specific death of hair cells, except in the apical region. Organ of Corti of rats 3 days after birth always presented two regions that responded differently to the antibiotic: a widespread scar region extending from the basal cochlea up to the beginning of the apical turn, where most hair cells had disappeared, and a second region called the resistance region localized in the apex, and which was more or less developed depending on culture conditions. The length of the resistance region was modulated by molecules or growth factors added to the feeding solution suggesting that some of them could produce a protective action on hair cells against neomycin. Slight protection effects may be found with RA and insulin, however, the most definite protection results from the combination of insulin with TGFalpha as shown by the large increase in the length of the resistance region compared to organ of Corti treated with antibiotic alone. The tested molecules and growth factors did not promote cochlear hair cell regeneration in vitro after neomycin treatment, however some of them may offer a protective action against ototoxicity.
Collapse
Affiliation(s)
- R Romand
- Laboratoire de Neurobiologie, Université Blaise Pascal-Clermont II, 63177 Aubière Cedex, France.
| | | |
Collapse
|
355
|
Kuno S, Kawamoto M, Okuyama M, Yasumasu I. Outgrowth of pseudopodial cables induced by all-trans retinoic acid in micromere-derived cells isolated from sea urchin embryos. Dev Growth Differ 1999; 41:193-9. [PMID: 10223715 DOI: 10.1046/j.1440-169x.1999.00416.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Cultured cells derived from micromeres of sea urchin embryos underwent pseudopodial cable growth without spicule rod formation in the presence of all-trans retinoic acid (tRA) or insulin. Pseudopodial cable growth caused by tRA or insulin was inhibited by genistein, a protein tyrosine kinase inhibitor. Phosphorylation of protein tyrosine residue was augmented in the cells treated with tRA or insulin and was inhibited by genistein. Probably, protein tyrosine kinase takes an indispensable part in signal transduction systems for tRA and insulin in these cells. In tRA-treated cells, augmentation of the phosphorylation of protein tyrosine residue was accompanied by an increase in the activity of protein tyrosine kinase and was inhibited by actinomycin D, inhibiting cable growth. Activation of this enzyme in tRA-treated cells probably depends on RNA synthesis. In insulin-treated cells, augmentation of tyrosine residue phosphorylation occurred without any appreciable change in this enzyme's activity and was hardly affected by actinomycin D. Phosphorylation of protein tyrosine residue seems to be activated by the binding of insulin to an insulin receptor. Pseudopodial cable growth in these cells treated with tRA or insulin was inhibited by wortmannin. Phosphatidylinositol 3 kinase probably participates in tRA and insulin signal transduction systems.
Collapse
Affiliation(s)
- S Kuno
- Department of Biology, School of Education, Waseda University, Tokyo, Japan
| | | | | | | |
Collapse
|
356
|
Katada T, Kurosu H, Okada T, Suzuki T, Tsujimoto N, Takasuga S, Kontani K, Hazeki O, Ui M. Synergistic activation of a family of phosphoinositide 3-kinase via G-protein coupled and tyrosine kinase-related receptors. Chem Phys Lipids 1999; 98:79-86. [PMID: 10358930 DOI: 10.1016/s0009-3084(99)00020-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Phosphoinositide 3-kinase (PI 3-kinase) is a key signaling enzyme implicated in a variety of receptor-stimulated cell responses. Stimulation of receptors possessing (or coupling to) protein-tyrosine kinase activates heterodimeric PI 3-kinases, which consist of an 85-kDa regulatory subunit (p85) containing Src-homology 2 (SH2) domains and a 110-kDa catalytic subunit (p110 alpha or p110 beta). Thus, this form of PI 3-kinases could be activated in vitro by a phosphotyrosyl peptide containing a YMXM motif that binds to the SH2 domains of p85. Receptors coupling to alpha beta gamma-trimeric G proteins also stimulate the lipid kinase activity of a novel p110 gamma isoform, which is not associated with p85, and thereby is not activated by tyrosine kinase receptors. The activation of p110 gamma PI 3-kinase appears to be mediated through the beta gamma subunits of the G protein (G beta gamma). In addition, rat liver heterodimeric PI 3-kinases containing the p110 beta catalytic subunit are synergistically activated by the phosphotyrosyl peptide plus G beta gamma. Such enzymatic properties were also observed with a recombinant p110 beta/p85 alpha expressed in COS-7 cells. In contrast, another heterodimeric PI 3-kinase consisting of p110 alpha and p85 in the same rat liver, together with a recombinant p110 alpha/p85 alpha, was not activated by G beta gamma, though their activities were stimulated by the phosphotyrosyl peptide. Synergistic activation of PI 3-kinase by the stimulation of the two major receptor types was indeed observed in intact cells, such as chemotactic peptide (N-formyl-Met-Leu-Phe) plus insulin (or Fc gamma II) receptors in differentiated THP-1 and CHO cells and adenosine (A1) plus insulin receptors in rat adipocytes. Thus, PI 3-kinase isoforms consisting of p110 beta catalytic and SH2-containing (p85 or its related) regulatory subunits appeared to function as a 'cross-talk' enzyme between the two signal transduction pathways mediated through tyrosine kinase and G protein-coupled receptors.
Collapse
Affiliation(s)
- T Katada
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, University of Tokyo, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
357
|
Shi Y, Samuel SJ, Lee W, Yu C, Zhang W, Lachaal M, Jung CY. Cloning of an L-3-hydroxyacyl-CoA dehydrogenase that interacts with the GLUT4 C-terminus. Arch Biochem Biophys 1999; 363:323-32. [PMID: 10068455 DOI: 10.1006/abbi.1998.1088] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Evidence indicates that the carboxy-terminal cytoplasmic domain of glucose transporter 4 (GLUT4) is important for the regulation of GLUT4 in muscle and adipocytes. We cloned from a human skeletal muscle cDNA library a 34-kDa protein which interacts with GLUT4 C-terminal cytoplasmic domain in a two-hybrid system and also with GLUT4 C-terminus synthetic peptide in an in vitro binding assay. This protein, called YP10, showed a high degree (>90%) of sequence homology with l-3-hydroxyacyl-CoA dehydrogenase (HAD) and had a dehydrogenase activity similar to pig heart HAD, which was inhibited by GLUT4 C-terminus synthetic peptide. An antiserum raised against pig heart HAD also reacted with YP10. Western blot analysis using this antiserum revealed abundant immunoreactivity only in the mitochondria- and plasma membrane-enriched fractions of rat adipocytes. Northern blots revealed that YP10 mRNA is most abundant in skeletal and heart muscle. These findings suggest that YP10, a HAD isoform, interacts with GLUT4 at the plasma membrane and may play a role in cross-talk between glucose transport and fatty acid metabolism.
Collapse
Affiliation(s)
- Y Shi
- Veterans Administration Medical Center, Department of Biophysical Sciences, School of Medicine, State University of New York at Buffalo, 3495 Bailey Avenue, Buffalo, New York, 14215, USA
| | | | | | | | | | | | | |
Collapse
|
358
|
Zubenko GS, Stiffler JS, Hughes HB, Martinez AJ. Reductions in brain phosphatidylinositol kinase activities in Alzheimer's disease. Biol Psychiatry 1999; 45:731-6. [PMID: 10188002 DOI: 10.1016/s0006-3223(98)00073-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
BACKGROUND Converging lines of evidence suggest that alterations in the intracellular trafficking of the amyloid precursor protein, its derivatives, and other relevant proteins may contribute to the pathophysiology of Alzheimer's disease (AD). Since phosphatidylinositol (PI) kinase plays a pivotal role in the sorting and transport of newly synthesized proteins to their final destinations, we explored the hypothesis that AD is associated with alterations in the specific activities of these enzymes in postmortem brain tissue. METHODS The specific activities of soluble and particulate pools of PI 3-kinase and PI 4-kinase from the frontal cortex were compared between 11 cases with histopathologically confirmed AD and 11 nondemented controls matched for sex, race, age at death, and postmortem interval. Potential associations of these activities with sociodemographic and clinical features were also explored. RESULTS AD was associated with 43-59% reductions in the specific activities of the soluble forms of both lipid kinases; but no significant change in the specific activities of the particulate species. Associations of these specific activities with sex, age at onset or death, duration of illness, postmortem interval, or densities of morphologic lesions in the frontal cortex were not observed among the 11 AD cases. CONCLUSIONS In addition to regulating protein sorting and trafficking, PI kinases participate in a wide range of cellular processes including protection from apoptosis, differentiation and cell growth, regulation of the cytoskeleton, and glucose metabolism. The results of this study suggest that one or more of these alterations in AD may result from a common abnormality in PI kinase regulation.
Collapse
Affiliation(s)
- G S Zubenko
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pennsylvania, USA
| | | | | | | |
Collapse
|
359
|
Maroun CR, Holgado-Madruga M, Royal I, Naujokas MA, Fournier TM, Wong AJ, Park M. The Gab1 PH domain is required for localization of Gab1 at sites of cell-cell contact and epithelial morphogenesis downstream from the met receptor tyrosine kinase. Mol Cell Biol 1999; 19:1784-99. [PMID: 10022866 PMCID: PMC83972 DOI: 10.1128/mcb.19.3.1784] [Citation(s) in RCA: 161] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Stimulation of the hepatocyte growth factor (HGF) receptor tyrosine kinase, Met, induces mitogenesis, motility, invasion, and branching tubulogenesis of epithelial and endothelial cell lines in culture. We have previously shown that Gab1 is the major phosphorylated protein following stimulation of the Met receptor in epithelial cells that undergo a morphogenic program in response to HGF. Gab1 is a member of the family of IRS-1-like multisubstrate docking proteins and, like IRS-1, contains an amino-terminal pleckstrin homology domain, in addition to multiple tyrosine residues that are potential binding sites for proteins that contain SH2 or PTB domains. Following stimulation of epithelial cells with HGF, Gab1 associates with phosphatidylinositol 3-kinase and the tyrosine phosphatase SHP2. Met receptor mutants that are impaired in their association with Gab1 fail to induce branching tubulogenesis. Overexpression of Gab1 rescues the Met-dependent tubulogenic response in these cell lines. The ability of Gab1 to promote tubulogenesis is dependent on its pleckstrin homology domain. Whereas the wild-type Gab1 protein is localized to areas of cell-cell contact, a Gab1 protein lacking the pleckstrin homology domain is localized predominantly in the cytoplasm. Localization of Gab1 to areas of cell-cell contact is inhibited by LY294002, demonstrating that phosphatidylinositol 3-kinase activity is required. These data show that Gab1 is an important mediator of branching tubulogenesis downstream from the Met receptor and identify phosphatidylinositol 3-kinase and the Gab1 pleckstrin homology domain as crucial for subcellular localization of Gab1 and biological responses.
Collapse
Affiliation(s)
- C R Maroun
- Departments of Medicine, Molecular Oncology Group, Royal Victoria Hospital, McGill University, Montreal, Quebec, Canada H3A 1A1
| | | | | | | | | | | | | |
Collapse
|
360
|
Bochmann H, Gehrisch S, Jaross W. The gene structure of the human growth factor bound protein GRB2. Genomics 1999; 56:203-7. [PMID: 10051406 DOI: 10.1006/geno.1998.5692] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The growth factor bound protein GRB2, a 25-kDa cytosolic protein, plays a key role in two separate pathways of the insulin signal transduction system leading from the insulin receptor to the Ras proteins and thus affecting mitogenic signaling. GRB2 regulates Ras activation through association with the guanine nucleotide exchange factor Sos. The GRB2/Sos complex can connect with insulin receptor substrate 1 (IRS-1), which is one of the primary targets of the insulin and insulin-like growth factor receptors. In a second pathway, independent of IRS-1, GRB2 links the insulin receptor to Ras signaling through another adapter protein, called Shc. In protooncogenic and other noninsulin signaling systems, GRB2 appears to link receptor tyrosine kinases to Ras in similar pathways as well. This study presents the exon-intron organization of the human GRB2 gene. After primers were placed across the known mRNA sequence, Long PCR products spanning introns and their adjacent splice sites were amplified and adequately sequenced to establish the splice sites and flanking regions. The gene was found to consist of five exons (ranging from 78 to 186 bp) and of four introns (from approximately 1 to approximately 7 kb). Intron primers for the respective exons were generated using the newly found flanking sequences. All exons were successfully amplified and sequenced, and the data obtained from Long PCR sequencing were confirmed.
Collapse
Affiliation(s)
- H Bochmann
- Institut für Klinische Chemie und Laboratoriumsmedizin, Universitätsklinikum der Technischen Universität Dresden, Dresden, 01307,
| | | | | |
Collapse
|
361
|
Arbet-Engels C, Tartare-Deckert S, Eckhart W. C-terminal Src kinase associates with ligand-stimulated insulin-like growth factor-I receptor. J Biol Chem 1999; 274:5422-8. [PMID: 10026153 DOI: 10.1074/jbc.274.9.5422] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Increased expression of the insulin-like growth factor-I receptor (IGF-IR) protein-tyrosine kinase occurs in several kinds of cancer and induces neoplastic transformation in fibroblast cell lines. The transformed phenotype can be reversed by interfering with the function of the IGF-IR. The IGF-IR is required for transformation by a number of viral and cellular oncoproteins, including SV40 large T antigen, Ras, Raf, and Src. The IGF-IR is a substrate for Src in vitro and is phosphorylated in v-Src-transformed cells. We observed that the IGF-IR and IR associated with the C-terminal Src kinase (CSK) following ligand stimulation. We found that the SH2 domain of CSK binds to the tyrosine-phosphorylated form of IGF-IR and IR. We determined the tyrosine residues in the IGF-IR and in the IR responsible for this interaction. We also observed that fibroblasts stimulated with IGF-I or insulin showed a rapid and transient decrease in c-Src tyrosine kinase activity. The results suggest that c-Src and CSK are involved in IGF-IR and IR signaling and that the interaction of CSK with the IGF-IR may play a role in the decrease in c-Src activity following IGF-I stimulation.
Collapse
Affiliation(s)
- C Arbet-Engels
- Molecular Biology and Virology Laboratory, The Salk Institute for Biological Studies, La Jolla, California 92037, USA.
| | | | | |
Collapse
|
362
|
Shimoke K, Yamagishi S, Yamada M, Ikeuchi T, Hatanaka H. Inhibition of phosphatidylinositol 3-kinase activity elevates c-Jun N-terminal kinase activity in apoptosis of cultured cerebellar granule neurons. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 1999; 112:245-53. [PMID: 9878764 DOI: 10.1016/s0165-3806(98)00172-2] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Cerebellar granule neurons maintained in medium containing 26 mM potassium or in medium (5 mM potassium) with 50 ng/ml brain-derived neurotrophic factor (BDNF) undergo an apoptotic cell death when exposed to 10 microM LY294002, an inhibitor of phosphatidylinositol 3-kinase (PI3-K). To investigate the intracellular signaling mechanism of LY294002-induced apoptosis, the activities of Akt and c-Jun N-terminal kinase (JNK) were measured in cells in HK (26 mM potassium) medium or LK+ (5 mM potassium) medium containing BDNF, with or without 10 microM LY294002. Akt activity decreased following the addition of 10 microM LY294002. In addition, we found that LY294002 increased the JNK activity, which is known to mediate some types of cell death in PNS neurons. We also observed elevated expression of c-Jun by LY294002 in HK+ BDNF. These findings demonstrated that apoptosis induced by inhibition of PI3-K activity involves suppression of the Akt activity and elevation of the JNK activity in cerebellar granule neurons. Our results suggested that the PI3-K-Akt pathway suppresses the activation of JNK and c-Jun expression, and as a result prevents the neuronal cell death in cerebellar granule neurons.
Collapse
Affiliation(s)
- K Shimoke
- Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | | | | | | | | |
Collapse
|
363
|
Valverde AM, Navarro P, Teruel T, Conejo R, Benito M, Lorenzo M. Insulin and insulin-like growth factor I up-regulate GLUT4 gene expression in fetal brown adipocytes, in a phosphoinositide 3-kinase-dependent manner. Biochem J 1999; 337 ( Pt 3):397-405. [PMID: 9895282 PMCID: PMC1219990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
Fetal brown adipocytes cultured in a serum-free medium, containing 5 mM glucose, expressed both GLUT4 and GLUT1 glucose transporters at the mRNA and protein level. Treatment with either insulin or insulin-like growth factor (IGF)-I at physiological concentrations up-regulates the expression of the GLUT4 gene, producing a time-dependent mRNA accumulation (7-fold increase at 24 h) and a 2.5-fold increase in the amount of protein in the total membrane fraction. However, insulin treatment down-regulates GLUT1 mRNA and protein expression. Moreover, either insulin or IGF-I transactivates a full-promoter GLUT4-chloramphenicol acetyltransferase gene (CAT) construct transiently transfected to the cells, without affecting GLUT1-CAT activity. In consequence, insulin treatment for 24 h increased by 3-fold the basal glucose uptake. Inhibition of phosphoinositide (PI) 3-kinase activity with chemical agents such as wortmannin or LY294002 partially blocked insulin-induced GLUT4 mRNA accumulation, insulin-induced GLUT4 protein content, GLUT4-CAT transactivation and glucose uptake. Furthermore, co-transfection of brown adipocytes with a dominant-negative form of PI 3-kinase precluded the transactivation of the GLUT4 promoter by insulin. However, inhibition of p70S6 kinase (p70(s6k)) with rapamycin or of mitogen-activated protein kinase (MAPK) with PD098059 does not preclude insulin effects on GLUT4 gene expression or glucose uptake. Our results show for the first time a positive effect of insulin on GLUT4 gene expression in fetal brown adipocytes, suggesting the existence of insulin response element(s) in its promoter. Moreover, PI 3-kinase, but not p70(s6k) or MAPK, is an essential requirement for insulin regulation of GLUT4 gene expression.
Collapse
Affiliation(s)
- A M Valverde
- Departamento de Bioquimica y Biologia Molecular, Facultad de Farmacia, Universidad Complutense, 28040-Madrid, Spain
| | | | | | | | | | | |
Collapse
|
364
|
Miele C, Caruso M, Calleja V, Auricchio R, Oriente F, Formisano P, Condorelli G, Cafieri A, Sawka-Verhelle D, Van Obberghen E, Beguinot F. Differential role of insulin receptor substrate (IRS)-1 and IRS-2 in L6 skeletal muscle cells expressing the Arg1152 --> Gln insulin receptor. J Biol Chem 1999; 274:3094-102. [PMID: 9915848 DOI: 10.1074/jbc.274.5.3094] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In L6 muscle cells expressing the Arg1152 --> Gln insulin receptor (Mut), basal tyrosine phosphorylation of insulin receptor substrate (IRS)-1 was increased by 35% compared with wild-type cells (WT). Upon exposure to insulin, IRS-1 phosphorylation increased by 12-fold in both the Mut and WT cells. IRS-2 was constitutively phosphorylated in Mut cells and not further phosphorylated by insulin. The maximal phosphorylation of IRS-2 in basal Mut cells was paralleled by a 4-fold increased binding of the kinase regulatory loop binding domain of IRS-2 to the Arg1152 --> Gln receptor. Grb2 and phosphatidylinositol 3-kinase association to IRS-1 and IRS-2 reflected the phosphorylation levels of the two IRSs. Mitogen-activated protein kinase activation and [3H]thymidine incorporation closely correlated with IRS-1 phosphorylation in Mut and WT cells, while glycogen synthesis and synthase activity correlated with IRS-2 phosphorylation. The Arg1152 --> Gln mutant did not signal Shc phosphorylation or Shc-Grb2 association in intact L6 cells, while binding Shc in a yeast two-hybrid system and phosphorylating Shc in vitro. Thus, IRS-2 appears to mediate insulin regulation of glucose storage in Mut cells, while insulin-stimulated mitogenesis correlates with the activation of the IRS-1/mitogen-activated protein kinase pathway in these cells. IRS-1 and Shc-mediated mitogenesis may be redundant in muscle cells.
Collapse
Affiliation(s)
- C Miele
- Dipartimento di Biologia e Patologia Cellulare e Molecolare & Centro di Endocrinologia ed Oncologia Sperimentale del Consiglio Nazionale delle Ricerche, Federico II University of Naples, 80131 Naples, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
365
|
Thirone AC, Carvalho CR, Saad MJ. Growth hormone stimulates the tyrosine kinase activity of JAK2 and induces tyrosine phosphorylation of insulin receptor substrates and Shc in rat tissues. Endocrinology 1999; 140:55-62. [PMID: 9886807 DOI: 10.1210/endo.140.1.6417] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
GH stimulates the tyrosine phosphorylation of various cellular polypeptides, including the GH receptor itself, in an early part of the intracellular response. Some of these phosphorylations are catalyzed by a GH receptor-associated kinase identified as JAK2, a member of the Janus family of tyrosine kinases. In cultured cells, GH stimulates the tyrosine phosphorylation of insulin receptor substrate-1 (IRS-1), IRS-2, and Shc. This study investigated whether GH could cause the tyrosine phosphorylation of IRSs and Shc proteins in fasted rat tissues in vivo. GH was administered to fasted Wistar rats via a portal vein, and extracts of different tissues were immunoprecipitated with specific antibodies. GH increased the tyrosine phosphorylation of IRS-1, IRS-2, JAK2, and Shc proteins in the liver, heart, kidney, muscle, and adipose tissue of rats. The roles of these substrates as signaling molecules for GH were further demonstrated by the finding that GH stimulated the association of IRS-1/2 with phosphatidylinositol 3-kinase, Grb2, and phosphotyrosine phosphatase and of Shc with Grb2. The correlation between JAK2 tyrosyl phosphorylation and IRS-1 tyrosyl phosphorylation in response to GH together with the results of the in vitro tyrosine kinase assay are consistent with the hypothesis that JAK2 may mediate GH-induced phosphorylation of IRS-1.
Collapse
Affiliation(s)
- A C Thirone
- Departamento de Clínica Médica, Faculdade de Ciências Médicas, Universidade Estadual de Campinas, SP, Brazil
| | | | | |
Collapse
|
366
|
Abstract
Phosphatidylinositol (PI) 3-kinase plays an important role in various cellular signaling mechanisms in several cell systems. The role of PI 3-kinase in adipose differentiation was investigated. For this purpose, we examined the effect of specific inhibitors of PI 3-kinase on the differentiation of two adipogenic cell lines, 1246 and 3T3-L1. The results show that two structurally different inhibitors of PI 3-kinase, i.e., LY294002 and wortmannin, blocked adipose differentiation in a time and dose-dependent fashion. The results from time- course studies indicated that PI 3-kinase activity is most important in the early phase (day 4 to day 6) of the differentiation program. The effect of PI 3-kinase inhibitor on the expression of the peroxisome proliferator-activated receptor (PPAR) gamma, a master regulator in adipogenesis induced during the differentiation process, was also examined. LY294002 significantly inhibited the induction of PPARgamma mRNA expression. During the initiation phase of adipogenesis (day 4 to day 6), the expression of PPARgamma was induced and LY294002 blocked the increase of expression of PPARgamma mRNA. The inhibition of expression of PPARgamma may provide a molecular mechanism for the action of PI 3-kinase inhibitors on adipose differentiation.
Collapse
Affiliation(s)
- X Xia
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, USA
| | | |
Collapse
|
367
|
Kim B, Cheng HL, Margolis B, Feldman EL. Insulin receptor substrate 2 and Shc play different roles in insulin-like growth factor I signaling. J Biol Chem 1998; 273:34543-50. [PMID: 9852124 DOI: 10.1074/jbc.273.51.34543] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The major substrates for the type I insulin-like growth factor (IGF-I) receptor are Shc and insulin receptor substrate (IRS) proteins. In the current study, we report that IGF-I induces a sustained tyrosine phosphorylation of Shc and its association with Grb2 in SH-SY5Y human neuroblastoma cells. The time course of Shc tyrosine phosphorylation parallels the time course of IGF-I-stimulated activation of extracellular signal-regulated kinase (ERK). Transfection of SH-SY5Y cells with a p52 Shc mutant decreases Shc tyrosine phosphorylation and Shc-Grb2 association. This results in the inhibition of IGF-I-mediated ERK tyrosine phosphorylation and neurite outgrowth. In contrast, IGF-I induces a transient tyrosine phosphorylation of IRS-2 and an association of IRS-2 with Grb2. The time course of IRS-2 tyrosine phosphorylation and IRS-2-Grb2 and IRS-2-p85 association closely resembles the time course of IGF-I-mediated membrane ruffling. Treating cells with the phosphatidylinositol 3'-kinase inhibitors wortmannin and LY294002 blocks IGF-I-induced membrane ruffling. The ERK kinase inhibitor PD98059, as well as transfection with the p52 Shc mutant, has no effect on IGF-I-mediated membrane ruffling. Immunolocalization studies show IRS-2 and Grb2, but not Shc, concentrated at the tip of the extending growth cone where membrane ruffling is most active. Collectively, these results suggest that the association of Shc with Grb2 is essential for IGF-I-mediated neurite outgrowth, whereas the IRS-2-Grb2-phosphatidylinositol 3'-kinase complex may regulate growth cone extension and membrane ruffling.
Collapse
Affiliation(s)
- B Kim
- Neuroscience Program and Department of Neurology, University of Michigan, Ann Arbor, Michigan 48109, USA
| | | | | | | |
Collapse
|
368
|
Guilherme A, Czech MP. Stimulation of IRS-1-associated phosphatidylinositol 3-kinase and Akt/protein kinase B but not glucose transport by beta1-integrin signaling in rat adipocytes. J Biol Chem 1998; 273:33119-22. [PMID: 9837876 DOI: 10.1074/jbc.273.50.33119] [Citation(s) in RCA: 99] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The signal transduction pathway by which insulin stimulates glucose transport is not understood, but a role for complexes of insulin receptor substrate (IRS) proteins and phosphatidylinositol (PI) 3-kinase as well as for Akt/protein kinase B (PKB) has been proposed. Here, we present evidence suggesting that formation of IRS-1/PI 3-kinase complexes and Akt/PKB activation are insufficient to stimulate glucose transport in rat adipocytes. Cross-linking of beta1-integrin on the surface of rat adipocytes by anti-beta1-integrin antibody and fibronectin was found to cause greater IRS-1 tyrosine phosphorylation, IRS-1-associated PI 3-kinase activity, and Akt/PKB activation, detected by anti-serine 473 antibody, than did 1 nM insulin. Clustering of beta1-integrin also significantly potentiated stimulation of insulin receptor and IRS-1 tyrosine phosphorylation, IRS-associated PI 3-kinase activity, and Akt/PKB activation caused by submaximal concentrations of insulin. In contrast, beta1-integrin clustering caused neither a change in deoxyglucose transport nor an effect on the ability of insulin to stimulate deoxyglucose uptake at any concentration along the entire dose-response relationship range. The data suggest that (i) beta1-integrins can engage tyrosine kinase signaling pathways in isolated fat cells, potentially regulating fat cell functions and (ii) either formation of IRS-1/PI 3-kinase complexes and Akt/PKB activation is not necessary for regulation of glucose transport in fat cells or an additional signaling pathway is required.
Collapse
Affiliation(s)
- A Guilherme
- Program in Molecular Medicine and Department of Biochemistry and Molecular Biology, University of Massachusetts Medical Center, Worcester, Massachusetts 01605, USA
| | | |
Collapse
|
369
|
Layton MJ, Harpur AG, Panayotou G, Bastiaens PI, Waterfield MD. Binding of a diphosphotyrosine-containing peptide that mimics activated platelet-derived growth factor receptor beta induces oligomerization of phosphatidylinositol 3-kinase. J Biol Chem 1998; 273:33379-85. [PMID: 9837914 DOI: 10.1074/jbc.273.50.33379] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Phosphatidylinositol 3-kinase (PI3K) is a heterodimeric enzyme comprising a p110 catalytic subunit and a p85 regulatory subunit. We have recently shown that the isolated p85 subunit exists as a dimer; therefore, we examined whether the heterodimeric enzyme was capable of further self-association. Size-exclusion chromatography demonstrated that PI3K was a 1:1 complex of p85 and p110 under native conditions. However, binding of a diphosphotyrosine-containing peptide that mimics an activated platelet-derived growth factor receptor beta induced an increase in the apparent molecular mass of PI3K. This increase was due to dimerization of PI3K and was dependent on PI3K concentration but not diphosphopeptide concentration. Dimer formation was also observed directly using fluorescence resonance energy transfer. Diphosphopeptide-induced activation of PI3K (Carpenter, C. L., Auger, K. R., Chanudhuri, M., Yoakim, M., Schaffhausen, B., Shoelson, S., and Cantley, L. C. (1993) J. Biol. Chem. 268, 9478-9483; Rordorf-Nikolic, T., Van Horn, D. J., Chen, D., White, M. F., and Backer, J. M. (1995) J. Biol. Chem. 270, 3662-3666) was not a direct result of dimerization and occurred only when phosphatidylinositol, and not phosphatidylinositol-4,5-diphosphate, was the phosphorylation substrate. Binding of the tandem SH2 domains of the p85 regulatory subunit to activated receptor tyrosine kinases therefore induces dimerization of PI3K, which may be an early step in inositol lipid-mediated signal transduction.
Collapse
Affiliation(s)
- M J Layton
- Ludwig Institute for Cancer Research, 91 Riding House Street, London W1P 8BT, United Kingdom
| | | | | | | | | |
Collapse
|
370
|
Abstract
This review focuses on the recent advances made in our understanding of the mechanism by which insulin induces the activation of PI 3-kinase(s) whose role is to generate 3-phosphoinositide lipids which are the second messenger of the insulin signalling pathway. The mechanism by which these signalling molecules induce the activation of downstream signalling pathways leading to the activation of protein kinase B (PKB, also known as Akt) and other kinases is also discussed. PKB is likely to be a major mediator of many of the physiological responses of a cell to insulin and likely physiological cellular targets of this enzyme are highlighted.
Collapse
Affiliation(s)
- D R Alessi
- Department of Biochemistry, MSI/WTB Complex, Dow Street, Dundee DD1 5EH, UK
| | | |
Collapse
|
371
|
Karoor V, Wang L, Wang HY, Malbon CC. Insulin stimulates sequestration of beta-adrenergic receptors and enhanced association of beta-adrenergic receptors with Grb2 via tyrosine 350. J Biol Chem 1998; 273:33035-41. [PMID: 9830057 DOI: 10.1074/jbc.273.49.33035] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
G-protein-linked receptors, such as the beta2-adrenergic receptor, are substrates for growth factor receptors with intrinsic tyrosine kinase activity (Karoor, V., Baltensperger, K., Paul, H., Czech, M. P., and Malbon C. C. (1995) J. Biol. Chem. 270, 25305-25308). In the present work, the counter-regulatory action of insulin on catecholamine action is shown to stimulate enhanced sequestration of beta2-adrenergic receptors in either DDT1MF-2 smooth muscle cells or Chinese hamster ovary cells stably expressing beta2-adrenergic receptors. Both insulin and insulin-like growth factor-1 stimulate internalization of beta-adrenergic receptors, contributing to the counter-regulatory effects of these growth factors on catecholamine action. In combination with beta-adrenergic agonists, insulin stimulates internalization of 50-60% of the complement of beta-adrenergic receptors. Insulin administration in vitro and in vivo stimulates phosphorylation of Tyr-350 of the beta-adrenergic receptor, creating an Src homology 2 domain available for binding of the adaptor molecule Grb2. The association of Grb2 with beta-adrenergic receptors was established using antibodies to Grb2 as well as a Grb2-glutathione S-transferase fusion protein. Insulin treatment of cells provokes binding of Grb2 to beta2-adrenergic receptors. Insulin also stimulates association of phosphatidylinositol 3-kinase and dynamin, via the Src homology 3 domain of Grb2. Both these interactions as well as internalization of the beta-adrenergic receptor are shown to be enhanced by insulin, beta-agonist, or both. The Tyr-350 --> Phe mutant form of the beta2-adrenergic receptor, lacking the site for tyrosine phosphorylation, fails to bind Grb2 in response to insulin, fails to display internalization of beta2-adrenergic receptor in response to insulin, and is no longer subject to the counter-regulatory effects of insulin on cyclic AMP accumulation. These data are the first to demonstrate the ability of a growth factor insulin to counter-regulate G-protein-linked receptor, the beta-adrenergic receptor, via a new mechanism, i.e. internalization.
Collapse
Affiliation(s)
- V Karoor
- Department of Molecular Pharmacology, Diabetes & Metabolic Diseases Research Center, State University of New York, Stony Brook, New York 11794-8651, USA
| | | | | | | |
Collapse
|
372
|
Kotani K, Ogawa W, Matsumoto M, Kitamura T, Sakaue H, Hino Y, Miyake K, Sano W, Akimoto K, Ohno S, Kasuga M. Requirement of atypical protein kinase clambda for insulin stimulation of glucose uptake but not for Akt activation in 3T3-L1 adipocytes. Mol Cell Biol 1998; 18:6971-6982. [PMID: 9819385 PMCID: PMC109280 DOI: 10.1128/mcb.18.12.6971] [Citation(s) in RCA: 284] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/1998] [Accepted: 08/14/1998] [Indexed: 02/07/2023] Open
Abstract
Phosphoinositide (PI) 3-kinase contributes to a wide variety of biological actions, including insulin stimulation of glucose transport in adipocytes. Both Akt (protein kinase B), a serine-threonine kinase with a pleckstrin homology domain, and atypical isoforms of protein kinase C (PKCzeta and PKClambda) have been implicated as downstream effectors of PI 3-kinase. Endogenous or transfected PKClambda in 3T3-L1 adipocytes or CHO cells has now been shown to be activated by insulin in a manner sensitive to inhibitors of PI 3-kinase (wortmannin and a dominant negative mutant of PI 3-kinase). Overexpression of kinase-deficient mutants of PKClambda (lambdaKD or lambdaDeltaNKD), achieved with the use of adenovirus-mediated gene transfer, resulted in inhibition of insulin activation of PKClambda, indicating that these mutants exert dominant negative effects. Insulin-stimulated glucose uptake and translocation of the glucose transporter GLUT4 to the plasma membrane, but not growth hormone- or hyperosmolarity-induced glucose uptake, were inhibited by lambdaKD or lambdaDeltaNKD in a dose-dependent manner. The maximal inhibition of insulin-induced glucose uptake achieved by the dominant negative mutants of PKClambda was approximately 50 to 60%. These mutants did not inhibit insulin-induced activation of Akt. A PKClambda mutant that lacks the pseudosubstrate domain (lambdaDeltaPD) exhibited markedly increased kinase activity relative to that of the wild-type enzyme, and expression of lambdaDeltaPD in quiescent 3T3-L1 adipocytes resulted in the stimulation of glucose uptake and translocation of GLUT4 but not in the activation of Akt. Furthermore, overexpression of an Akt mutant in which the phosphorylation sites targeted by growth factors are replaced by alanine resulted in inhibition of insulin-induced activation of Akt but not of PKClambda. These results suggest that insulin-elicited signals that pass through PI 3-kinase subsequently diverge into at least two independent pathways, an Akt pathway and a PKClambda pathway, and that the latter pathway contributes, at least in part, to insulin stimulation of glucose uptake in 3T3-L1 adipocytes.
Collapse
Affiliation(s)
- K Kotani
- Second Department of Internal Medicine, Kobe University School of Medicine, Chuo-ku, Kobe 650-0017, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
373
|
Sarbassov DD, Peterson CA. Insulin receptor substrate-1 and phosphatidylinositol 3-kinase regulate extracellular signal-regulated kinase-dependent and -independent signaling pathways during myogenic differentiation. Mol Endocrinol 1998; 12:1870-8. [PMID: 9849961 DOI: 10.1210/mend.12.12.0205] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Activation of the insulin-like growth factor (IGF) autocrine loop is required for myogenic differentiation and results in sustained activation of extracellular signal-regulated kinases-1 and -2 (ERK-1 and -2). We show here that insulin receptor substrate-1 (IRS-1) phosphorylation on tyrosine and serine residues and association with phosphatidylinositol 3-kinase (PI 3-kinase) are also associated with IGF-dependent myogenic differentiation. Down-regulation of IRS-1 is linked to its serine phosphorylation dependent on PI 3-kinase activity and appears required for differentiation to occur, as IRS-1 is not modified and continues to accumulate in a nondifferentiating myoblast cell line. Furthermore, inhibition of PI 3-kinase activity with LY294002 blocks differentiation, as demonstrated by inhibition of myogenin and myosin heavy chain expression and ERK activation. Blocking the Raf/MEK/ERK cascade with PD98059 does not block myogenic differentiation; however, myotubes do not survive. Thus, PI 3-kinase, in association with IRS-1, is involved in an ERK-independent signaling pathway in myoblasts required for IGF-dependent myogenic differentiation and in inducing sustained activation of ERKs necessary for later stages of differentiation.
Collapse
Affiliation(s)
- D D Sarbassov
- Donald W. Reynolds Department of Geriatrics, University of Arkansas for Medical Sciences and The Geriatric Research, Education, and Clinical Center, McClellan Veterans Hospital, Little Rock 72205, USA
| | | |
Collapse
|
374
|
Hellberg CB, Boggs SE, Lapetina EG. Phosphatidylinositol 3-kinase is a target for protein tyrosine nitration. Biochem Biophys Res Commun 1998; 252:313-7. [PMID: 9826526 DOI: 10.1006/bbrc.1998.9581] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A major mechanism of injury associated with the production of nitric oxide (NO*) in vivo is due to its diffusion-limited reaction with superoxide to form peroxynitrite, which in turn may cause nitration of protein tyrosine residues. To assess the physiological role of tyrosine nitration, it is crucial to identify the proteins that become nitrated. Therefore, we treated lysates from RAW 264.7 cells with 1 mM peroxynitrite and immunoprecipitated tyrosine nitrated proteins. This treatment resulted in the nitration of several proteins, with molecular weights ranging from 60-250 kD. One of these proteins was immunologically identified as the p85 regulatory subunit of the phosphatidylinositol 3-kinase, a key enzyme involved in the signal transduction cascade initiated by many agonists including growth factors. Treatment of RAW 264.7 macrophages with the NO* donor spermine NONOate also induced a nitration of the p85 subunit, demonstrating that this covalent modification also occurs in intact cells. Immunoprecipitation of the p110 catalytic subunit of the phosphatidylinositol 3-kinase co-immunoprecipitated p85 in control lysates. However, p85 could not be detected in the same immunoprecipitates when the lysates had been preincubated with 1 mM peroxynitrite, indicating that the nitration of the p85 subunit may abrogate its interaction with the p110 subunit.
Collapse
Affiliation(s)
- C B Hellberg
- Molecular Cardiovascular Research Center, Case Western Reserve, University School of Medicine and University Hospitals of Cleveland, Cleveland, Ohio, 44106-4958, USA
| | | | | |
Collapse
|
375
|
Yu J, Wjasow C, Backer JM. Regulation of the p85/p110alpha phosphatidylinositol 3'-kinase. Distinct roles for the n-terminal and c-terminal SH2 domains. J Biol Chem 1998; 273:30199-203. [PMID: 9804776 DOI: 10.1074/jbc.273.46.30199] [Citation(s) in RCA: 147] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Our previous studies on the p85/p110alpha phosphatidylinositol 3-kinase showed that the p85 regulatory subunit inhibits the p110alpha catalytic subunit, and that phosphopeptide activation of p85/p110alpha dimers reflects a disinhibition of p110alpha (Yu, J., Zhang, Y., McIlroy, J., Rordorf-Nikolic, T., Orr, G. A., and Backer, J. M. (1998) Mol. Cell. Biol. 18, 1379-1387). We now define the domains of p85 required for inhibition of p110alpha. The iSH2 domain of p85 is sufficient to bind p110alpha but does not inhibit it. Inhibition of p110alpha requires the presence of the nSH2 domain linked to the iSH2 domain. Phosphopeptides increase the activity of nSH2/iSH2-p110alpha dimers, demonstrating that the nSH2 domain mediates both inhibition of p110alpha and disinhibition by phosphopeptides. In contrast, phosphopeptides did not increase the activity of iSH2/cSH2-p110alpha dimers, or dimers composed of p110alpha and an nSH2/iSH2/cSH2 construct containing a mutant nSH2 domain. Phosphopeptide binding to the cSH2 domain increased p110alpha activity only in the context of an intact p85 containing both the nSH2 domain and residues 1-322 (the SH3, proline-rich and breakpoint cluster region-homolgy domains). These data suggest that the nSH2 domain of p85 is a direct regulator of p110alpha activity. Regulation of p110alpha by phosphopeptide binding to the cSH2 domain occurs by a mechanism that requires the additional presence of the nSH2 domain and residues 1-322 of p85.
Collapse
Affiliation(s)
- J Yu
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | | | |
Collapse
|
376
|
VanRenterghem B, Morin M, Czech MP, Heller-Harrison RA. Interaction of insulin receptor substrate-1 with the sigma3A subunit of the adaptor protein complex-3 in cultured adipocytes. J Biol Chem 1998; 273:29942-9. [PMID: 9792713 DOI: 10.1074/jbc.273.45.29942] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Signaling through the insulin receptor tyrosine kinase involves its autophosphorylation in response to insulin and the subsequent tyrosine phosphorylation of substrate proteins such as insulin receptor substrate-1 (IRS-1). In basal 3T3-L1 adipocytes, IRS-1 is predominantly membrane-bound, and this localization may be important in targeting downstream signaling elements that mediate insulin action. Since IRS-1 localization to membranes may occur through its association with specific membrane proteins, a 3T3-F442A adipocyte cDNA expression library was screened with non-tyrosine-phosphorylated, baculovirus-expressed IRS-1 in order to identify potential IRS-1 receptors. A cDNA clone that encodes sigma3A, a small subunit of the AP-3 adaptor protein complex, was demonstrated to bind IRS-1 utilizing this cloning strategy. The specific interaction between IRS-1 and sigma3A was further verified by in vitro binding studies employing baculovirus-expressed IRS-1 and a glutathione S-transferase (GST)-sigma3A fusion protein. IRS-1 and sigma3A were found to co-fractionate in a detergent-resistant population of low density membranes isolated from basal 3T3-L1 adipocytes. Importantly, the addition of exogenous purified GST-sigma3A to low density membranes caused the release of virtually all of the IRS-1 bound to these membranes, while GST alone had no effect. These results are consistent with the hypothesis that sigma3A serves as an IRS-1 receptor that may dictate the subcellular localization and the signaling functions of IRS-1.
Collapse
Affiliation(s)
- B VanRenterghem
- Program in Molecular Medicine and the Department of Biochemistry and Molecular Biology, University of Massachusetts Medical Center, Worcester, Massachusetts 01605, USA
| | | | | | | |
Collapse
|
377
|
Yenush L, Zanella C, Uchida T, Bernal D, White MF. The pleckstrin homology and phosphotyrosine binding domains of insulin receptor substrate 1 mediate inhibition of apoptosis by insulin. Mol Cell Biol 1998; 18:6784-94. [PMID: 9774692 PMCID: PMC109262 DOI: 10.1128/mcb.18.11.6784] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/1998] [Accepted: 08/13/1998] [Indexed: 01/02/2023] Open
Abstract
Insulin and insulin-like growth factor 1 (IGF-1) evoke diverse biological effects through receptor-mediated tyrosine phosphorylation of insulin receptor substrate (IRS) proteins. We investigated the elements of IRS-1 signaling that inhibit apoptosis of interleukin 3 (IL-3)-deprived 32D myeloid progenitor cells. 32D cells have few insulin receptors and no IRS proteins; therefore, insulin failed to inhibit apoptosis during IL-3 withdrawal. Insulin stimulated mitogen-activated protein kinase in 32D cells expressing insulin receptors (32DIR) but failed to activate the phosphatidylinositol 3 (PI 3)-kinase cascade or to inhibit apoptosis. By contrast, insulin stimulated the PI 3-kinase cascade, inhibited apoptosis, and promoted replication of 32DIR cells expressing IRS-1. As expected, insulin did not stimulate PI 3-kinase in 32DIR cells, which expressed a truncated IRS-1 protein lacking the tail of tyrosine phosphorylation sites. However, this truncated IRS-1 protein, which retained the NH2-terminal pleckstrin homology (PH) and phosphotyrosine binding (PTB) domains, mediated phosphorylation of PKB/akt, inhibition of apoptosis, and replication of 32DIR cells during insulin stimulation. These results suggest that a phosphotyrosine-independent mechanism mediated by the PH and PTB domains promoted antiapoptotic and growth actions of insulin. Although PI 3-kinase was not activated, its phospholipid products were required, since LY294002 inhibited these responses. Without IRS-1, a chimeric insulin receptor containing a tail of tyrosine phosphorylation sites derived from IRS-1 activated the PI 3-kinase cascade but failed to inhibit apoptosis. Thus, phosphotyrosine-independent IRS-1-linked pathways may be critical for survival and growth of IL-3-deprived 32D cells during insulin stimulation.
Collapse
Affiliation(s)
- L Yenush
- Howard Hughes Medical Institute, Joslin Diabetes Center, Harvard Medical School, Boston, Massachusetts 02215, USA
| | | | | | | | | |
Collapse
|
378
|
Shimoke K, Yamada M, Ikeuchi T, Hatanaka H. Synthetic lipid products of PI3-kinase which are added to culture medium prevent low K+-induced apoptosis of cerebellar granule neurons via Akt kinase activation. FEBS Lett 1998; 437:221-4. [PMID: 9824294 DOI: 10.1016/s0014-5793(98)01235-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
To examine which lipid product of phosphatidylinositol 3-kinase (PI3-K) is essential for the survival-promoting pathway in cultured cerebellar granule neurons, three synthetic derivatives of lipid products of PI3-K were added to culture medium containing a low concentration (5 mM) of potassium (LK+) which induces apoptotic cell death. We found that dipalmitoylphosphatidylinositol 3,4-bisphosphate and dipalmitoylphosphatidylinositol 3,4,5-trisphosphate, but not dipalmitoylphosphatidylinositol 3-monophosphate, effectively blocked the LK+-induced apoptosis. These two synthetic phospholipids increased Akt activity but not that of PI3-K. These findings demonstrated that specific lipid products of PI3-K which are added to culture medium activate Akt/PKB without modulating PI3-K itself, and as a result prevent neuronal cell death in cerebellar granule neurons.
Collapse
Affiliation(s)
- K Shimoke
- Institute for Protein Research, Osaka University, Suita, Japan
| | | | | | | |
Collapse
|
379
|
Abstract
Phosphatidylinositol, a component of eukaryotic cell membranes, is unique among phospholipids in that its head group can be phosphorylated at multiple free hydroxyls. Several phosphorylated derivatives of phosphatidylinositol, collectively termed phosphoinositides, have been identified in eukaryotic cells from yeast to mammals. Phosphoinositides are involved in the regulation of diverse cellular processes, including proliferation, survival, cytoskeletal organization, vesicle trafficking, glucose transport, and platelet function. The enzymes that phosphorylate phosphatidylinositol and its derivatives are termed phosphoinositide kinases. Recent advances have challenged previous hypotheses about the substrate selectivity of different phosphoinositide kinase families. Here we re-examine the pathways of phosphoinositide synthesis and the enzymes involved.
Collapse
Affiliation(s)
- D A Fruman
- Department of Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts 02215, USA.
| | | | | |
Collapse
|
380
|
Turner SJ, Domin J, Waterfield MD, Ward SG, Westwick J. The CC chemokine monocyte chemotactic peptide-1 activates both the class I p85/p110 phosphatidylinositol 3-kinase and the class II PI3K-C2alpha. J Biol Chem 1998; 273:25987-95. [PMID: 9748276 DOI: 10.1074/jbc.273.40.25987] [Citation(s) in RCA: 139] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The cellular effects of MCP-1 are mediated primarily by binding to CC chemokine receptor-2. We report here that MCP-1 stimulates the formation of the lipid products of phosphatidylinositol (PI) 3-kinase, namely phosphatidylinositol 3,4-bisphosphate and phosphatidylinositol 3,4,5-trisphosphate (PI 3,4,5-P3) in THP-1 cells that can be inhibited by pertussis toxin but not wortmannin. MCP-1 also stimulates an increase in the in vitro lipid kinase activity present in immunoprecipitates of the class 1A p85/p110 heterodimeric PI 3-kinase, although the kinetics of activation were much slower than observed for the accumulation of PI 3,4,5-P3. In addition, this in vitro lipid kinase activity was inhibited by wortmannin (IC50 = 4.47 +/- 1.88 nM, n = 4), and comparable concentrations of wortmannin also inhibited MCP-stimulated chemotaxis of THP-1 cells (IC50 = 11.8 +/- 4.2 nM, n = 4), indicating that p85/p110 PI 3-kinase activity is functionally relevant. MCP-1 also induced tyrosine phosphorylation of three proteins in these cells, and a fourth tyrosine-phosphorylated protein co-precipitates with the p85 subunit upon MCP-1 stimulation. In addition, MCP-1 stimulated lipid kinase activity present in immunoprecipitates of a class II PI 3-kinase (PI3K-C2alpha) with kinetics that closely resembled the accumulation of PI 3,4,5-P3. Moreover, this MCP-1-induced increase in PI3K-C2alpha activity was insensitive to wortmannin but was inhibited by pertussis toxin pretreatment. Since this mirrored the effects of these inhibitors on MCP-1-stimulated increases in D-3 phosphatidylinositol lipid accumulation in vivo, these results suggest that activation of PI3K-C2alpha rather than the p85/p110 heterodimer is responsible for mediating the in vivo formation of D-3 phosphatidylinositol lipids. These data demonstrate that MCP-1 stimulates protein tyrosine kinases as well as at least two separate PI 3-kinase isoforms, namely the p85/p110 PI 3-kinase and PI3K-C2alpha. This is the first demonstration that MCP-1 can stimulate PI 3-kinase activation and is also the first indication of an agonist-induced activation of the PI3K-C2alpha enzyme. These two events may play important roles in MCP-1-stimulated signal transduction and biological consequences.
Collapse
Affiliation(s)
- S J Turner
- Pharmacology Group, Department of Pharmacy and Pharmacology, Bath University, Claverton Down, Bath, Avon BA2 7AY, United Kingdom
| | | | | | | | | |
Collapse
|
381
|
Affiliation(s)
- Y J Hei
- Pharmaceutical Research Institute, Bristol-Myers Squibb, Buffalo, NY 14213, USA
| |
Collapse
|
382
|
Staubs PA, Nelson JG, Reichart DR, Olefsky JM. Platelet-derived growth factor inhibits insulin stimulation of insulin receptor substrate-1-associated phosphatidylinositol 3-kinase in 3T3-L1 adipocytes without affecting glucose transport. J Biol Chem 1998; 273:25139-47. [PMID: 9737973 DOI: 10.1074/jbc.273.39.25139] [Citation(s) in RCA: 75] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Phosphatidylinositol 3-kinase (PI3K) activation is necessary for insulin-responsive glucose transporter (GLUT4) translocation and glucose transport. Insulin and platelet-derived growth factor (PDGF) stimulate PI3K activity in 3T3-L1 adipocytes, but only insulin is capable of stimulating GLUT4 translocation and glucose transport. We found that PDGF causes serine/threonine phosphorylation of insulin receptor substrate 1 (IRS-1) in 3T3-L1 cells, measured by altered mobility on SDS-polyacrylamide gel, and this leads to a decrease in insulin-stimulated tyrosine phosphorylation of IRS-1. The PI3K inhibitors wortmannin and LY294002 inhibit the PDGF-induced phosphorylation of IRS-1, whereas the MEK inhibitor PD98059 was without a major effect. PDGF pretreatment for 60-90 min led to a marked 80-90% reduction in insulin stimulatable phosphotyrosine and IRS-1-associated PI3K activity. We examined the functional consequences of this decrease in IRS-1-associated PI3K activity. Interestingly, insulin stimulation of GLUT4 translocation and glucose transport was unaffected by 60-90 min of PDGF preincubation. Furthermore, insulin activation of Akt and p70(s6kinase), kinases downstream of PI3K, was unaffected by PDGF pretreatment. Wortmannin was capable of blocking these insulin actions following PDGF pretreatment, suggesting that PI3K was still necessary for these effects. In conclusion, 1) PDGF causes serine/threonine phosphorylation of IRS-1, and PI3K, or a kinase downstream of PI3K, mediates this phosphorylation. 2) This PDGF-induced phosphorylation of IRS-1 leads to a significant decrease in insulin-stimulated PI3K activity. 3) PDGF has no effect on insulin stimulation of Akt, p70(s6kinase), GLUT4 translocation, or glucose transport. 4) This suggests the existence of an IRS-1-independent pathway leading to the activation of PI3K, Akt, and p70(s6kinase); GLUT4 translocation; and glucose transport.
Collapse
Affiliation(s)
- P A Staubs
- Department of Medicine, University of California, San Diego, La Jolla, California 92093, USA
| | | | | | | |
Collapse
|
383
|
Butler AA, Yakar S, Gewolb IH, Karas M, Okubo Y, LeRoith D. Insulin-like growth factor-I receptor signal transduction: at the interface between physiology and cell biology. Comp Biochem Physiol B Biochem Mol Biol 1998; 121:19-26. [PMID: 9972281 DOI: 10.1016/s0305-0491(98)10106-2] [Citation(s) in RCA: 170] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
The insulin-like growth factor-I receptor (IGF-IR) mediates the biological actions of IGF-I and IGF-II. The IGFs play a critical role in promoting development, stimulating growth and organogenesis via mitogenic, antiapoptotic and chemotactic activity. Recent research has focused on the events that occur intracellularly upon receptor activation. Several pathways have been shown to be important. The insulin-receptor substrate (IRS), SHC, GRB2, CRKII and CRKL adaptor proteins have all been implicated in transmitting signals to the nucleus of the cell. This review outlines some of the signalling pathways believed to be important in converting IGF-IR activation into changes in cell behavior and metabolism.
Collapse
Affiliation(s)
- A A Butler
- Diabetes Branch, National Institutes of Health, Bethesda, MD 20892-1770, USA
| | | | | | | | | | | |
Collapse
|
384
|
Rognoni JB, Pichard V, Honore S, Rigot V, Lehmann M, Roccabianca M, Carles G, Luis J, Marvaldi J, Briand C. Convergent effects of growth factors, hormones, and fibronectin are necessary for the enterocyte differentiation of a colon adenocarcinoma cell line (HT29-D4). Differentiation 1998; 63:305-17. [PMID: 9810709 DOI: 10.1046/j.1432-0436.1998.6350305.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The aim of this work was to show in serum-free medium a convergent effect of physiological factors and extracellular matrix proteins on the differentiation process of enterocytes by taking as a model the HT29-D4 clone that has the feature of differentiating when subcultured in fetal bovine serum glucose-free medium. We show that triiodothyronine (T3) as well as insulin promotes limited cell growth and differentiation, whereas fibronectin or bovine serum albumin (BSA) induces cell growth and a low level of differentiation. However, insulin, T3, fibronectin, and BSA together with epidermal growth factor and transferrin promoted satisfactory growth and enterocyte morphology with epithelial electrophysiological properties in HT29-D4 cells. With these factors adequate protein targeting was achieved since cells apically expressed the carcinoembryonic antigen, and basolaterally transferrin and insulin receptors, beta 1 and alpha v beta 6 integrins, talin, vinculin, and focal adhesion kinase (FAK). Talin, vinculin, FAK, and alpha v beta 6 integrin, the fibronectin receptor, were clustered in focal contacts, which agrees with a possible role of fibronectin in final cell growth, the latter process mediating the final phase of differentiation. This level of differentiation can be maintained for a long time. Thus HT29-D4 cells appear to be a suitable model to study the implication of integrins in the differentiation process of human enterocytes.
Collapse
Affiliation(s)
- J B Rognoni
- UPRES-A CNRS 6032, Faculté de Pharmacie, Université Aix-Marseille I et II, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
385
|
Heldin CH, Ostman A, Rönnstrand L. Signal transduction via platelet-derived growth factor receptors. BIOCHIMICA ET BIOPHYSICA ACTA 1998; 1378:F79-113. [PMID: 9739761 DOI: 10.1016/s0304-419x(98)00015-8] [Citation(s) in RCA: 276] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Platelet-derived growth factor (PDGF) exerts its stimulatory effects on cell growth and motility by binding to two related protein tyrosine kinase receptors. Ligand binding induces receptor dimerization and autophosphorylation, allowing binding and activation of cytoplasmic SH2-domain containing signal transduction molecules. Thereby, a number of different signaling pathways are initiated leading to cell growth, actin reorganization migration and differentiation. Recent observations suggest that extensive cross-talk occurs between different signaling pathways, and that stimulatory signals are modulated by inhibitory signals arising in parallel.
Collapse
Affiliation(s)
- C H Heldin
- Ludwig Institute for Cancer Research, Biomedical Center, Uppsala, Sweden
| | | | | |
Collapse
|
386
|
Dickens M, Svitek CA, Culbert AA, O'Brien RM, Tavaré JM. Central role for phosphatidylinositide 3-kinase in the repression of glucose-6-phosphatase gene transcription by insulin. J Biol Chem 1998; 273:20144-9. [PMID: 9685358 DOI: 10.1074/jbc.273.32.20144] [Citation(s) in RCA: 72] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Transcription of the gene encoding the catalytic subunit of glucose-6-phosphatase (G6Pase) is stimulated by glucocorticoids and strongly repressed by insulin. We have explored the signaling pathways by which insulin mediates the repression of G6Pase transcription in H4IIE cells. Wortmannin, a phosphatidylinositide 3-kinase (PtdIns 3-kinase) inhibitor blocked the repression of G6Pase mRNA expression by insulin. However, both rapamycin, which inhibits p70S6 kinase activation, and PD98059, an inhibitor of mitogen-activated protein kinase activation, were without effect. Insulin inhibited dexamethasone-induced luciferase expression from a transiently transfected plasmid that places the luciferase gene under the control of the G6Pase promoter. This effect of insulin was mimicked by the overexpression of a constitutively active PtdIns 3-kinase but not by a constitutively active protein kinase B. Taken together, these data demonstrate that PtdIns 3-kinase activation is both necessary and at least partly sufficient for the repression of G6Pase expression by insulin, but neither mitogen-activated protein kinase nor p70S6 kinase are involved. In addition, activation of protein kinase B alone is not sufficient for repression of the G6Pase gene. These results imply the existence of a novel signaling pathway downstream of PtdIns 3 kinase that is involved in the regulation of G6Pase expression by insulin.
Collapse
Affiliation(s)
- M Dickens
- Department of Biochemistry, School of Medical Sciences, University of Bristol, BS8 1TD, United Kingdom
| | | | | | | | | |
Collapse
|
387
|
Sharma PM, Egawa K, Huang Y, Martin JL, Huvar I, Boss GR, Olefsky JM. Inhibition of phosphatidylinositol 3-kinase activity by adenovirus-mediated gene transfer and its effect on insulin action. J Biol Chem 1998; 273:18528-37. [PMID: 9660823 DOI: 10.1074/jbc.273.29.18528] [Citation(s) in RCA: 101] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Phosphatidylinositol 3-kinase (PI 3-K) is implicated in cellular events including glucose transport, glycogen synthesis, and protein synthesis. It is activated in insulin-stimulated cells by binding of the Src homology 2 (SH2) domains in its 85-kDa regulatory subunit to insulin receptor substrate-1 (IRS-1), and, others. We have previously shown that IRS-1-associated PI 3-kinase activity is not essential for insulin-stimulated glucose transport in 3T3-L1 adipocytes, and that alternate pathways exist in these cells. We now show that adenovirus-mediated overexpression of the p85N-SH2 domain in these cells behaves in a dominant-negative manner, interfering with complex formation between endogenous PI 3-K and its SH2 binding targets. This not only inhibited insulin-stimulated IRS-1-associated PI 3-kinase activity, but also completely blocked anti-phosphotyrosine-associated PI 3-kinase activity, which would include the non-IRS-1-associated activity. This resulted in inhibition of insulin-stimulated glucose transport, glycogen synthase activity and DNA synthesis. Further, Ser/Thr phosphorylation of downstream molecules Akt and p70 S6 kinase was inhibited. However, co-expression of a membrane-targeted p110(C) with the p85N-SH2 protein rescued glucose transport, supporting our argument that the p85N-SH2 protein specifically blocks insulin-mediated PI 3-kinase activity, and, that the signaling pathways downstream of PI 3-kinase are intact. Unexpectedly, GTP-bound Ras was elevated in the basal state. Since p85 is known to interact with GTPase-activating protein in 3T3-L1 adipocytes, the overexpressed p85N-SH2 peptide could titrate out cellular GTPase-activating protein by direct association, such that it is unavailable to hydrolyze GTP-bound Ras. However, insulin-induced mitogen-activated protein kinase phosphorylation was inhibited. Thus, PI 3-kinase may be required for this action at a step independent of and downstream of Ras. We conclude that, in 3T3-L1 adipocytes, non-IRS-1-associated PI 3-kinase activity is crucial for insulin's metabolic signaling, and that overexpressed p85N-SH2 protein inhibits a variety of insulin's ultimate biological effects.
Collapse
Affiliation(s)
- P M Sharma
- Department of Medicine, Division of Endocrinology and Metabolism, University of California, San Diego, La Jolla, California 92093, USA
| | | | | | | | | | | | | |
Collapse
|
388
|
Blakesley VA, Koval AP, Stannard BS, Scrimgeour A, LeRoith D. Replacement of tyrosine 1251 in the carboxyl terminus of the insulin-like growth factor-I receptor disrupts the actin cytoskeleton and inhibits proliferation and anchorage-independent growth. J Biol Chem 1998; 273:18411-22. [PMID: 9660809 DOI: 10.1074/jbc.273.29.18411] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Insulin-like growth factor (IGF)-I signaling through the IGF-I receptor modulates cellular adhesion and proliferation and the transforming ability of cells overexpressing the IGF-I receptor. Tyrosine phosphorylation of intracellular proteins is essential for this transduction of the IGF-I-induced mitogenic and tumorigenic signals. IGF-I induces specific cytoskeletal structure and the phosphorylation of proteins in the associated focal adhesion complexes. The determination of the exact pathways emanating from the IGF-I receptor that are involved in mediating these signals will contribute greatly to the understanding of IGF-I action. We have previously shown that replacement of tyrosine residues 1250 and 1251 in the carboxyl terminus of the IGF-I receptor abrogates IGF-I-induced cellular proliferation and tumor formation in nude mice. In this study, replacement of either tyrosine 1250 or 1251 similarly reduces the cells ability to grow in an anchorage-independent manner. The actin cytoskeleton and cellular localization of vinculin are disrupted by replacement of tyrosine 1251. Tyrosine residues 1250 and 1251 are not essential for tyrosine phosphorylation of two known substrates; insulin receptor substrate-1 and SHC, nor association of known downstream adaptor proteins to these substrates. In addition, these mutant IGF-I receptors do not affect IGF-I-stimulated p42/p44 mitogen-activated protein kinase activation or phosphatidylinositol (PI) 3'-kinase activity. Thus, it appears that in fibroblasts expressing tyrosine 1250 and 1251 mutant IGF-I receptors, the signal transduction pathways impacting on mitogenesis and tumorigenesis do not occur exclusively through the PI 3'-kinase or mitogen-activated protein kinase pathways.
Collapse
Affiliation(s)
- V A Blakesley
- Diabetes Branch, NIDDK, National Institutes of Health, Bethesda, Maryland 20892-1770, USA
| | | | | | | | | |
Collapse
|
389
|
Teruel T, Valverde AM, Navarro P, Benito M, Lorenzo M. Inhibition of PI 3-kinase and RAS blocks IGF-I and insulin-induced uncoupling protein 1 gene expression in brown adipocytes. J Cell Physiol 1998; 176:99-109. [PMID: 9618150 DOI: 10.1002/(sici)1097-4652(199807)176:1<99::aid-jcp12>3.0.co;2-j] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Fetal brown adipocytes expressed uncoupling protein 1 (UCP1) mRNA, this expression being blunted throughout culture for 24 h in a serum-free medium. At physiological doses, either insulin-like growth factor I (IGF-I) or insulin turned out to be as potent as dibutyryl cAMP (dbcAMP) in increasing UCP1 gene transcription rate (1 h) and also UCP1 mRNA accumulation (3 h), their maximal effect (15-fold increase) reached upon treatment for 24 h. Upon treatment with either IGF-I or insulin for 48 h, a 7-fold increase in the UCP1 protein content relative to levels in the control cells was found, this induction being abolished in the presence of cycloheximide. Moreover, either IGF-I or insulin transactivates the UCP1-chloramphenicol acetyl transferase (CAT) fusion gene after transient transfection of primary brown adipocytes, these effects being tissue-specific. Transient transfection of dominant-negative form of phosphatidylinositol (PI) 3-kinase completely blocked the transactivation of the fusion gene UCP1-CAT induced by either IGF-I or insulin, although inhibition of p70S6kinase with rapamycin does not preclude transactivation of the UCP1 promoter by insulin. Furthermore, transient transfection of dominant-negative form of p21-ras or treatment of cells with a mitogen-activated protein kinase kinase (MEK-1) inhibitor (PD098059) completely abolished insulin-induced UCP1-CAT transactivation. Cotransfection with dominant-negative p85 or with dominant-negative Ras also produced down-regulation of the insulin or IGF-I-induced 12-O-tetradecanoylphorbol-13-acetate response element (TRE)-CAT (five AP-1, activating protein-1, binding sites arranged in tandem) transactivation. In addition, insulin induced AP-1 DNA binding activity, this effect being totally prevented in the presence of MEK-1 inhibitor. These results strongly suggest that either IGF-I or insulin induced thermogenic-differentiation through AP-1 activity in a PI 3-kinase and Ras/MAPK dependent manner in brown adipocytes.
Collapse
Affiliation(s)
- T Teruel
- Departamento de Bioquimica y Biologia Molecular II, Facultad de Farmacia, Universidad Complutense, Madrid, Spain
| | | | | | | | | |
Collapse
|
390
|
Yamauchi T, Kaburagi Y, Ueki K, Tsuji Y, Stark GR, Kerr IM, Tsushima T, Akanuma Y, Komuro I, Tobe K, Yazaki Y, Kadowaki T. Growth hormone and prolactin stimulate tyrosine phosphorylation of insulin receptor substrate-1, -2, and -3, their association with p85 phosphatidylinositol 3-kinase (PI3-kinase), and concomitantly PI3-kinase activation via JAK2 kinase. J Biol Chem 1998; 273:15719-26. [PMID: 9624169 DOI: 10.1074/jbc.273.25.15719] [Citation(s) in RCA: 123] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Growth hormone (GH) and prolactin (PRL) binding to their receptors, which belong to the cytokine receptor superfamily, activate Janus kinase (JAK) 2 tyrosine kinase, thereby leading to their biological actions. We recently showed that GH mainly stimulated tyrosine phosphorylation of epidermal growth factor receptor and its association with Grb2, and concomitantly stimulated mitogen-activated protein kinase activity in liver, a major target tissue. Using specific antibodies, we now show that GH was also able to induce tyrosine phosphorylation of insulin receptor substrate (IRS)-1/IRS-2 in liver. In addition, the major tyrosine-phosphorylated protein in anti-p85 phosphatidylinositol 3-kinase (PI3-kinase) immunoprecipitate from liver of wild-type mice was IRS-1, and IRS-2 in IRS-1 deficient mice, but not epidermal growth factor receptor. These data suggest that tyrosine phosphorylation of IRS-1 may be a major mechanism for GH-induced PI3-kinase activation in physiological target organ of GH, liver. We also show that PRL was able to induce tyrosine phosphorylation of both IRS-1 and IRS-2 in COS cells transiently transfected with PRLR and in CHO-PRLR cells. Moreover, we show that tyrosine phosphorylation of IRS-3 was induced by both GH and PRL in COS cells transiently transfected with IRS-3 and their cognate receptors. By using the JAK2-deficient cell lines or by expressing a dominant negative JAK2 mutant, we show that JAK2 is required for the GH- and PRL-dependent tyrosine phosphorylation of IRS-1, -2, and -3. Finally, a specific PI3-kinase inhibitor, wortmannin, completely blocked the anti-lipolytic effect of GH in 3T3 L1 adipocytes. Taken together, the role of IRS-1, -2, and -3 in GH and PRL signalings appears to be phosphorylated by JAK2, thereby providing docking sites for p85 PI3-kinase and activating PI3-kinase and its downstream biological effects.
Collapse
Affiliation(s)
- T Yamauchi
- Third Department of Internal Medicine, Faculty of Medicine, University of Tokyo, Tokyo 113, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
391
|
Ozawa T, Sato M, Sugawara M, Umezawa Y. An assay method for evaluating chemical selectivity of agonists for insulin signaling pathways based on agonist-induced phosphorylation of a target peptide. Anal Chem 1998; 70:2345-52. [PMID: 9624906 DOI: 10.1021/ac971192s] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
An optical method for evaluating the physiologically relevant agonist and antagonist selectivity of an insulin signaling pathway based on an insulin-dependent on/off switching of phosphorylation of a target peptide via insulin receptor is described. Insulin receptor serves as a binding for insulin and a given insulin receptor-binding peptide as a target for an insulin-receptor complex. Upon binding of insulin to its receptor, the insulin receptor undergoes autophosphorylation which enables the receptor to have a kinase activity and phosphorylate various substrates. The phosphorylated tyrosine in the substrate was measured with a monoclonal anti-phosphotyrosine antibody. As the target substrate for insulin receptor, a Y939 peptide consisting of 12 amino acid residues derived from insulin receptor substrate 1 (IRS-1) was used. The present assay method involves different sequential steps: (1) immobilization of a biotin-coupled Y939 peptide on an avidin coated 96-well plate via biotin-avidin complexation; (2) insulin-dependent phosphorylation of the Y939 peptide by the insulin receptor; (3) enzymatic reaction and absorptiometric assay of the phosphorylated Y939 peptide using the anti-phosphotyrosine antibody labeled with horseradish peroxidase. An insulin-dependent absorbance was observed for insulin concentrations from 1.0 x 10(-10) to 1.0 x 10(-7) M, and it leveled off. The observed absorbance was explained to be due to an increase in the phosphorylated Y939 peptide caused by insulin and its receptor complexation. No signal was, however, induced by both vanadyl and vanadate ions at concentrations up to 1.0 x 10(-4) M; these results and previous intact cell level data taken together led to the conclusion that these ions did not induce phosphorylation of the Y939 peptide. Upon addition of tyrphostin 25, a specific inhibitor for insulin receptor kinase activity, phosphorylation of the Y939 peptide in the presence of 1.0 microM insulin was competitively inhibited over 1.0 x 10(-4) M tyrphostin 25. The present system thus exhibited "physiologically more relevant" agonist and antagonist selectivity, the principle of which is based in part on the insulin signal transduction rather than simply relying on the binding assay. The potential use of the present method for evaluating the selectivity of a wide range of agonists and antagonists toward the insulin signaling pathways is discussed.
Collapse
Affiliation(s)
- T Ozawa
- Department of Chemistry, School of Science, University of Tokyo, Japan
| | | | | | | |
Collapse
|
392
|
von Willebrand M, Williams S, Tailor P, Mustelin T. Phosphorylation of the Grb2- and phosphatidylinositol 3-kinase p85-binding p36/38 by Syk in Lck-negative T cells. Cell Signal 1998; 10:407-13. [PMID: 9720763 DOI: 10.1016/s0898-6568(97)00139-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Activation of the mitogen-activated protein kinase (MAPK) pathway by the T-cell antigen receptor (TCR) in T cells involves a positive role for phosphatidylinositol 3-kinase (PI3K) activity. We recently reported that over-expression of the Syk protein tyrosine kinase in the Lck-negative JCaM1 cells enabled the TCR to induce a normal activation of the Erk2 MAPK and enhanced transcription of a reporter gene driven by the nuclear factor of activated T cells and AP-1. Because this system allows us to analyse the targets for Syk in receptor-mediated signalling, we examined the role of PI3K in signalling events between the TCR-regulated Syk and the downstream activation of Erk2. We report that inhibition of PI3K by wortmannin or an inhibitory p85 construct, p85deltaiSH2, reduced the TCR-induced Syk-dependent activation of Erk2, as well as the appearance of phospho-Erk and phospho-Mek. At the same time, expression of Syk resulted in the activation-dependent phosphorylation of three proteins that bound to the src homology 2 (SH2) domains of PI3K p85. The strongest of these bands had an apparent molecular mass of 36-38 kDa on SDS gels, and it was quantitatively removed from the lysates by adsorption to a fusion protein containing the SH2 domain of Grb2. The appearance of this band was Syk dependent, and it was seen only upon triggering of the TCR complex. Thus, p36/38 was phosphorylated by Syk or a Syk-regulated kinase, and this protein may provide a link to the recruitment and activation of PI3K, as well as to the Ras-MAPK pathway, in TCR-triggered T cells.
Collapse
Affiliation(s)
- M von Willebrand
- Division of Cell Biology, La Jolla Institute for Allergy and Immunology, San Diego, CA 92121, USA
| | | | | | | |
Collapse
|
393
|
Christoffersen CT, Tornqvist H, Vlahos CJ, Bucchini D, Jami J, De Meyts P, Joshi RL. Insulin and insulin-like growth factor-I receptor mediated differentiation of 3T3-F442A cells into adipocytes: effect of PI 3-kinase inhibition. Biochem Biophys Res Commun 1998; 246:426-30. [PMID: 9610377 DOI: 10.1006/bbrc.1998.8637] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The ability of insulin and insulin-like growth factors (IGF-I and IGF-II) to induce differentiation of 3T3-F442A cells into adipocytes was examined at various hormone concentrations. Both insulin and the IGFs promoted differentiation at concentrations compatible with binding to their cognate receptors, suggesting that both insulin and IGF-I receptors are capable of promoting this differentiation. Adipocyte conversion of 3T3-F442A cells was completely blocked in the presence of LY294002, a specific inhibitor of PI 3-kinase, indicating that PI 3-kinase activity plays a crucial role in the initial signalling events that trigger this differentiation process.
Collapse
Affiliation(s)
- C T Christoffersen
- Hagedorn Research Institute, Department of Molecular Signalling, Gentofte, Denmark
| | | | | | | | | | | | | |
Collapse
|
394
|
Hazeki O, Okada T, Kurosu H, Takasuga S, Suzuki T, Katada T. Activation of PI 3-kinase by G protein betagamma subunits. Life Sci 1998; 62:1555-9. [PMID: 9585135 DOI: 10.1016/s0024-3205(98)00106-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
We have reported that fMLP-induced activation of pertussis toxin-sensitive GTP-binding proteins in THP-1 cells potentiates the insulin-induced accumulation of PtdIns(3,4,5)P3, a product of phosphoinositide 3-kinase (T. Okada et al., Biochem. J. 317, 475-480, 1996). The synergism in PtdIns(3,4,5)P3 accumulation was observed in Chinese hamster ovary cells expressing both insulin and fMLP receptors. In rat adipocytes, which represent the physiological target cells of insulin, receptor-mediated activation of GTP-binding protein by adenosine and prostaglandin E2 potentiated the insulin-induced PtdIns(3,4,5)P3 accumulation. In cell-free systems, the activity of the p85/p110beta subtype of phosphoinositide 3-kinase was, while that of p85/p110alpha was not, stimulated by the betagamma subunits of the GTP-binding proteins. We propose here a hypothesis that the p85/p110beta subtype is under the control of both the insulin receptors and the GTP-binding protein-coupled receptors in intact cell systems.
Collapse
Affiliation(s)
- O Hazeki
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, University of Tokyo, Japan.
| | | | | | | | | | | |
Collapse
|
395
|
Lin YL, Chou CK. Phosphatidylinositol 3-kinase is required for the regulation of hepatitis B surface antigen production and mitogen-activated protein kinase activation by insulin but not by TPA. Biochem Biophys Res Commun 1998; 246:172-5. [PMID: 9600088 DOI: 10.1006/bbrc.1998.8488] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Insulin suppresses hepatitis B surface antigen (HBsAg) gene expression and stimulates cell proliferation in human hepatoma Hep3B cells. 12-O-tetradecanoyl phorbol-13-acetate, TPA, has been demonstrated to mimic insulin actions in these cells. We examined the role of phosphatidylinositol 3-kinase (PI 3-kinase) in the signaling pathways of insulin and TPA towards these two biological phenomena in Hep3B cells. The pre-treatment of 5 microM of wortmannin diminished insulin suppressed HBsAg production and completely abolished insulin stimulated cell proliferation. However, wortmannin had no effect on TPA actions in both HBsAg suppression and cell growth stimulation. We further investigated the effect of wortmannin in mitogen-activated protein kinases (MAPKs) activation induced by insulin or TPA. After the pretreatment of wortmannin, insulin activated MAPKs was completely blocked, but TPA was still capable to activate MAPKs. These results suggest that PI 3-kinase is involved in insulin actions but not in TPA effects, and allow us to dissociate the signaling pathways of insulin and TPA in human hepatoma Hep3B cells.
Collapse
Affiliation(s)
- Y L Lin
- Department of Medical Research, Veterans General Hospital, Taipei, Taiwan, Republic of China.
| | | |
Collapse
|
396
|
Kraemer FB, Takeda D, Natu V, Sztalryd C. Insulin regulates lipoprotein lipase activity in rat adipose cells via wortmannin- and rapamycin-sensitive pathways. Metabolism 1998; 47:555-9. [PMID: 9591746 DOI: 10.1016/s0026-0495(98)90239-6] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Lipoprotein lipase (LPL) hydrolyzes the triacylglycerol component of circulating lipoprotein particles, mediating the uptake of fatty acids into adipose tissue and muscle. Insulin is the principal factor responsible for regulating LPL activity in adipose tissue, yet the mechanisms whereby insulin controls LPL expression are unknown. The current studies used wortmannin, a specific inhibitor of phosphatidylinositol (PI) 3-kinase, and rapamycin, a specific inhibitor of activation of phosphoprotein 70 ribosomal protein S6 kinase (p70s6k), to explore some of the components of the insulin signaling pathway controlling LPL activity in adipose cells. Preincubation of isolated rat adipose cells with wortmannin completely abrogated the stimulation of LPL activity by insulin, while preincubation with rapamycin caused approximately a 60% inhibition of insulin-stimulated LPL activity. Thus, the current studies show that the regulation of adipose tissue LPL by insulin is mediated via a wortmannin-sensitive pathway, most likely PI 3-kinase, and that a rapamycin-sensitive pathway, most likely p705s6k, constitutes an important downstream component in the insulin signaling pathway through which LPL is regulated.
Collapse
Affiliation(s)
- F B Kraemer
- Department of Medicine, Stanford University School of Medicine, CA, USA
| | | | | | | |
Collapse
|
397
|
Ogawa W, Matozaki T, Kasuga M. Role of binding proteins to IRS-1 in insulin signalling. Mol Cell Biochem 1998; 182:13-22. [PMID: 9609110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Insulin elicits its divergent metabolic and mitogenic effects by binding to its specific receptor, which belongs to the family of receptor tyrosine kinases. The activated insulin receptor phosphorylates the intracellular substrate IRS-1, which then binds various signalling molecules that contain SRC homology 2 domains, thereby propagating the insulin signal. Among these IRS-1-binding proteins, the Grb2-Sos complex and the protein tyrosine phosphatase SHP-2 transmit mitogenic signals through the activation of Ras, and phosphoinositide 3-kinase is implicated in the major metabolic actions of insulin. Although substantial evidence indicates the importance of IRS-1 in insulin signal transduction, the generation of IRS-1-deficient mice has revealed the existence of redundant signalling pathways.
Collapse
Affiliation(s)
- W Ogawa
- Second Department of Internal Medicine, Kobe University School of Medicine, Japan
| | | | | |
Collapse
|
398
|
Duronio V, Scheid MP, Ettinger S. Downstream signalling events regulated by phosphatidylinositol 3-kinase activity. Cell Signal 1998; 10:233-9. [PMID: 9617480 DOI: 10.1016/s0898-6568(97)00129-0] [Citation(s) in RCA: 158] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The phosphatidylinositol (PI) 3-kinase family of enzymes is now known to be regulated by several different upstream pathways in response to virtually all growth factors and cytokines. In the past few years, the phosphoinositides phosphorylated at the 3-OH position of the inositol ring have been shown to be lipid second messengers that may directly or indirectly regulate the activity of several different serine/threonine kinases. Consistent with the many different cellular events in which PI 3-kinase plays an important role, a diverse group of serine/threonine kinases are regulated downstream of PI 3-kinases, including protein kinase C (PKC) isoforms, p70 S6 kinase, and PKB/Akt. This review summarises studies done primarily in the past few years that have begun to unravel these targets of PI 3-kinase activity.
Collapse
Affiliation(s)
- V Duronio
- Department of Medicine, University of British Columbia, Jack Bell Research Centre, Vancouver, BC, Canada.
| | | | | |
Collapse
|
399
|
Boehm JE, Chaika OV, Lewis RE. Anti-apoptotic signaling by a colony-stimulating factor-1 receptor/insulin receptor chimera with a juxtamembrane deletion. J Biol Chem 1998; 273:7169-76. [PMID: 9507032 DOI: 10.1074/jbc.273.12.7169] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The intracellular mechanisms used by insulin and insulin-like growth factors to block programmed cell death are unknown. To identify receptor structures and signaling pathways essential for anti-apoptotic effects on cells, we have created a chimeric receptor (colony-stimulating factor-1 receptor/insulin receptor chimera (CSF1R/IR)) connecting the extracellular, ligand-binding domain of the colony-stimulating factor-1 (CSF-1) receptor to the transmembrane and cytoplasmic domains of the insulin receptor. Upon activation with CSF-1, the CSF1R/IR phosphorylates itself and intracellular substrates in a manner characteristic of normal insulin receptors. CSF-1 treatment protected cells expressing the CSF1R/IR from staurosporine-induced apoptosis. A chimeric receptor (CSF1R/IRDelta960) with a deletion of 12 amino acids from its juxtamembrane domain was constructed and expressed. CSF-1-treated cells expressing the CSF1R/IRDelta960 are unable to phosphorylate IRS-1 and Shc (Chaika, O. V., Chaika, N., Volle, D. J., Wilden, P. A. , Pirrucello, S. J., and Lewis, R. E. (1997) J. Biol. Chem. 272, 11968-11974). CSF-1 stimulated glucose uptake, mitogen-activated protein kinases, and IRS-1-associated phosphatidylinositol 3' kinase in cells expressing the CSF1R/IR but not in cells expressing the CSF1R/IRDelta960. Surprisingly, the CSF1R/IRDelta960 was as effective as the CSF1R/IR in mediating CSF-1 protection of cells from staurosporine-induced apoptosis. These observations indicate that the anti-apoptotic effects of the insulin receptor cytoplasmic domain can be mediated by signaling pathways distinct from those requiring IRS-1 and Shc.
Collapse
Affiliation(s)
- J E Boehm
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska 68198-6805, USA
| | | | | |
Collapse
|
400
|
Yu J, Zhang Y, McIlroy J, Rordorf-Nikolic T, Orr GA, Backer JM. Regulation of the p85/p110 phosphatidylinositol 3'-kinase: stabilization and inhibition of the p110alpha catalytic subunit by the p85 regulatory subunit. Mol Cell Biol 1998; 18:1379-87. [PMID: 9488453 PMCID: PMC108851 DOI: 10.1128/mcb.18.3.1379] [Citation(s) in RCA: 413] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/1997] [Accepted: 12/01/1997] [Indexed: 02/06/2023] Open
Abstract
We propose a novel model for the regulation of the p85/pl10alpha phosphatidylinositol 3'-kinase. In insect cells, the p110alpha catalytic subunit is active as a monomer but its activity is decreased by coexpression with the p85 regulatory subunit. Similarly, the lipid kinase activity of recombinant glutathione S-transferase (GST)-p110alpha is reduced by 65 to 85% upon in vitro reconstitution with p85. Incubation of p110alpha/p85 dimers with phosphotyrosyl peptides restored activity, but only to the level of monomeric p110alpha. These data show that the binding of phosphoproteins to the SH2 domains of p85 activates the p85/p110alpha dimers by inducing a transition from an inhibited to a disinhibited state. In contrast, monomeric p110 had little activity in HEK 293T cells, and its activity was increased 15- to 20-fold by coexpression with p85. However, this apparent requirement for p85 was eliminated by the addition of a bulky tag to the N terminus of p110alpha or by the growth of the HEK 293T cells at 30 degrees C. These nonspecific interventions mimicked the effects of p85 on p110alpha, suggesting that the regulatory subunit acts by stabilizing the overall conformation of the catalytic subunit rather than by inducing a specific activated conformation. This stabilization was directly demonstrated in metabolically labeled HEK 293T cells, in which p85 increased the half-life of p110. Furthermore, p85 protected p110 from thermal inactivation in vitro. Importantly, when we examined the effect of p85 on GST-p110alpha in mammalian cells at 30 degrees C, culture conditions that stabilize the catalytic subunit and that are similar to the conditions used for insect cells, we found that p85 inhibited p110alpha. Thus, we have experimentally distinguished two effects of p85 on p110alpha: conformational stabilization of the catalytic subunit and inhibition of its lipid kinase activity. Our data reconcile the apparent conflict between previous studies of insect versus mammalian cells and show that p110alpha is both stabilized and inhibited by dimerization with p85.
Collapse
Affiliation(s)
- J Yu
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | | | | | | | | | |
Collapse
|