351
|
Mannino F, Bitto A, Irrera N. Severe Acute Respiratory Syndrome Coronavirus-2 Induces Cytokine Storm and Inflammation During Coronavirus Disease 19: Perspectives and Possible Therapeutic Approaches. Front Pharmacol 2020; 11:592169. [PMID: 33633566 PMCID: PMC7902081 DOI: 10.3389/fphar.2020.592169] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 10/19/2020] [Indexed: 12/20/2022] Open
Abstract
The new coronavirus outbreak was first identified in Wuhan, China, in December 2019, and has turned out to be a global health emergency, affecting millions of people worldwide. Coronavirus disease 19 (COVID-19), caused by the SARS-CoV-2 virus, can manifest with flu-like symptoms and can be complicated by severe pneumonia with acute respiratory distress syndrome (ARDS); however a large percentage of infected individuals do not have symptoms but contribute to the spread of the disease. Severe acute respiratory syndrome coronavirus-2 infection has become a global public health emergency since no available treatment seems effective and it is hard to manage the several complications caused by an intense release of cytokines. This paper reviews the current options on drugs used to reduce the deadly effects of the cytokine storm.
Collapse
Affiliation(s)
- Federica Mannino
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Alessandra Bitto
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Natasha Irrera
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| |
Collapse
|
352
|
Schuller M, Correy GJ, Gahbauer S, Fearon D, Wu T, Díaz RE, Young ID, Martins LC, Smith DH, Schulze-Gahmen U, Owens TW, Deshpande I, Merz GE, Thwin AC, Biel JT, Peters JK, Moritz M, Herrera N, Kratochvil HT, Aimon A, Bennett JM, Neto JB, Cohen AE, Dias A, Douangamath A, Dunnett L, Fedorov O, Ferla MP, Fuchs M, Gorrie-Stone TJ, Holton JM, Johnson MG, Krojer T, Meigs G, Powell AJ, Rangel VL, Russi S, Skyner RE, Smith CA, Soares AS, Wierman JL, Zhu K, Jura N, Ashworth A, Irwin J, Thompson MC, Gestwicki JE, von Delft F, Shoichet BK, Fraser JS, Ahel I. Fragment Binding to the Nsp3 Macrodomain of SARS-CoV-2 Identified Through Crystallographic Screening and Computational Docking. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2020:2020.11.24.393405. [PMID: 33269349 PMCID: PMC7709169 DOI: 10.1101/2020.11.24.393405] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The SARS-CoV-2 macrodomain (Mac1) within the non-structural protein 3 (Nsp3) counteracts host-mediated antiviral ADP-ribosylation signalling. This enzyme is a promising antiviral target because catalytic mutations render viruses non-pathogenic. Here, we report a massive crystallographic screening and computational docking effort, identifying new chemical matter primarily targeting the active site of the macrodomain. Crystallographic screening of diverse fragment libraries resulted in 214 unique macrodomain-binding fragments, out of 2,683 screened. An additional 60 molecules were selected from docking over 20 million fragments, of which 20 were crystallographically confirmed. X-ray data collection to ultra-high resolution and at physiological temperature enabled assessment of the conformational heterogeneity around the active site. Several crystallographic and docking fragment hits were validated for solution binding using three biophysical techniques (DSF, HTRF, ITC). Overall, the 234 fragment structures presented explore a wide range of chemotypes and provide starting points for development of potent SARS-CoV-2 macrodomain inhibitors.
Collapse
Affiliation(s)
- Marion Schuller
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | - Galen J. Correy
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, CA, USA
| | - Stefan Gahbauer
- Department of Pharmaceutical Chemistry, University of California San Francisco San Francisco, CA, USA
| | - Daren Fearon
- Diamond Light Source Ltd., Harwell Science and Innovation Campus, Didcot OX11 0DE, United Kingdom
| | - Taiasean Wu
- Institute for Neurodegenerative Disease, University of California San Francisco, CA, USA
- Chemistry and Chemical Biology Graduate Program, University of California San Francisco, CA, USA
| | - Roberto Efraín Díaz
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, CA, USA
- Tetrad Graduate Program, University of California San Francisco, CA, USA
| | - Iris D. Young
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, CA, USA
- Quantitative Biosciences Institute (QBI) Coronavirus Research Group Structural Biology Consortium, University of California San Francisco, CA, USA
| | - Luan Carvalho Martins
- Biochemistry Department, Institute for Biological Sciences, Federal University of Minas Gerais. Belo Horizonte, Brazil
| | - Dominique H. Smith
- Helen Diller Family Comprehensive Cancer, University of California San Francisco, CA, USA
| | - Ursula Schulze-Gahmen
- Quantitative Biosciences Institute (QBI) Coronavirus Research Group Structural Biology Consortium, University of California San Francisco, CA, USA
| | - Tristan W. Owens
- Quantitative Biosciences Institute (QBI) Coronavirus Research Group Structural Biology Consortium, University of California San Francisco, CA, USA
| | - Ishan Deshpande
- Quantitative Biosciences Institute (QBI) Coronavirus Research Group Structural Biology Consortium, University of California San Francisco, CA, USA
| | - Gregory E. Merz
- Quantitative Biosciences Institute (QBI) Coronavirus Research Group Structural Biology Consortium, University of California San Francisco, CA, USA
| | - Aye C. Thwin
- Quantitative Biosciences Institute (QBI) Coronavirus Research Group Structural Biology Consortium, University of California San Francisco, CA, USA
| | - Justin T. Biel
- Quantitative Biosciences Institute (QBI) Coronavirus Research Group Structural Biology Consortium, University of California San Francisco, CA, USA
| | - Jessica K. Peters
- Quantitative Biosciences Institute (QBI) Coronavirus Research Group Structural Biology Consortium, University of California San Francisco, CA, USA
| | - Michelle Moritz
- Quantitative Biosciences Institute (QBI) Coronavirus Research Group Structural Biology Consortium, University of California San Francisco, CA, USA
| | - Nadia Herrera
- Quantitative Biosciences Institute (QBI) Coronavirus Research Group Structural Biology Consortium, University of California San Francisco, CA, USA
| | - Huong T. Kratochvil
- Quantitative Biosciences Institute (QBI) Coronavirus Research Group Structural Biology Consortium, University of California San Francisco, CA, USA
| | - QCRG Structural Biology Consortium
- Quantitative Biosciences Institute (QBI) Coronavirus Research Group Structural Biology Consortium, University of California San Francisco, CA, USA
| | - Anthony Aimon
- Diamond Light Source Ltd., Harwell Science and Innovation Campus, Didcot OX11 0DE, United Kingdom
| | - James M. Bennett
- Centre for Medicines Discovery, University of Oxford, South Parks Road, Headington, OX3 7DQ, UK
| | - Jose Brandao Neto
- Diamond Light Source Ltd., Harwell Science and Innovation Campus, Didcot OX11 0DE, United Kingdom
| | - Aina E. Cohen
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Center, Menlo Park, CA 94025, USA
| | - Alexandre Dias
- Diamond Light Source Ltd., Harwell Science and Innovation Campus, Didcot OX11 0DE, United Kingdom
| | - Alice Douangamath
- Diamond Light Source Ltd., Harwell Science and Innovation Campus, Didcot OX11 0DE, United Kingdom
| | - Louise Dunnett
- Diamond Light Source Ltd., Harwell Science and Innovation Campus, Didcot OX11 0DE, United Kingdom
| | - Oleg Fedorov
- Centre for Medicines Discovery, University of Oxford, South Parks Road, Headington, OX3 7DQ, UK
| | - Matteo P. Ferla
- Wellcome Centre for Human Genetics, University of Oxford, Old Road Campus, Oxford OX3 7BN, UK
| | - Martin Fuchs
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, NY, USA
| | - Tyler J. Gorrie-Stone
- Diamond Light Source Ltd., Harwell Science and Innovation Campus, Didcot OX11 0DE, United Kingdom
| | - James M. Holton
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Center, Menlo Park, CA 94025, USA
- Department of Biochemistry and Biophysics, University of California San Francisco, CA, USA
- Department of Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | | | - Tobias Krojer
- Centre for Medicines Discovery, University of Oxford, South Parks Road, Headington, OX3 7DQ, UK
- Structural Genomics Consortium, University of Oxford, Old Road Campus, Roosevelt Drive, Headington OX3 7DQ, UK
| | - George Meigs
- Department of Biochemistry and Biophysics, University of California San Francisco, CA, USA
- Department of Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Ailsa J. Powell
- Diamond Light Source Ltd., Harwell Science and Innovation Campus, Didcot OX11 0DE, United Kingdom
| | | | - Victor L Rangel
- Centre for Medicines Discovery, University of Oxford, South Parks Road, Headington, OX3 7DQ, UK
- Structural Genomics Consortium, University of Oxford, Old Road Campus, Roosevelt Drive, Headington OX3 7DQ, UK
- School of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, São Paulo, Brazil
| | - Silvia Russi
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Center, Menlo Park, CA 94025, USA
| | - Rachael E. Skyner
- Diamond Light Source Ltd., Harwell Science and Innovation Campus, Didcot OX11 0DE, United Kingdom
| | - Clyde A. Smith
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Center, Menlo Park, CA 94025, USA
| | | | - Jennifer L. Wierman
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Center, Menlo Park, CA 94025, USA
| | - Kang Zhu
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | - Natalia Jura
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, CA, USA
| | - Alan Ashworth
- Helen Diller Family Comprehensive Cancer, University of California San Francisco, CA, USA
| | - John Irwin
- Department of Pharmaceutical Chemistry, University of California San Francisco San Francisco, CA, USA
| | - Michael C. Thompson
- Department of Chemistry and Chemical Biology, University of California Merced, CA, USA
| | - Jason E. Gestwicki
- Department of Pharmaceutical Chemistry, University of California San Francisco San Francisco, CA, USA
- Institute for Neurodegenerative Disease, University of California San Francisco, CA, USA
| | - Frank von Delft
- Diamond Light Source Ltd., Harwell Science and Innovation Campus, Didcot OX11 0DE, United Kingdom
- Centre for Medicines Discovery, University of Oxford, South Parks Road, Headington, OX3 7DQ, UK
- Structural Genomics Consortium, University of Oxford, Old Road Campus, Roosevelt Drive, Headington OX3 7DQ, UK
- Department of Biochemistry, University of Johannesburg, Auckland Park, 2006, South Africa
| | - Brian K. Shoichet
- Department of Pharmaceutical Chemistry, University of California San Francisco San Francisco, CA, USA
| | - James S. Fraser
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, CA, USA
| | - Ivan Ahel
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| |
Collapse
|
353
|
Simabuco FM, Tamura RE, Pavan ICB, Morale MG, Ventura AM. Molecular mechanisms and pharmacological interventions in the replication cycle of human coronaviruses. Genet Mol Biol 2020; 44:e20200212. [PMID: 33237152 PMCID: PMC7731901 DOI: 10.1590/1678-4685-gmb-2020-0212] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 09/25/2020] [Indexed: 12/13/2022] Open
Abstract
SARS-CoV-2 (Severe Acute Respiratory Syndrome Coronavirus 2), as well as SARS-CoV from 2003 along with MERS-CoV from 2012, is a member of the Betacoronavirus genus of the Nidovirales order and is currently the cause of the pandemic called COVID-19 (or Coronavirus disease 2019). COVID-19, which is characterized by cough, fever, fatigue, and severe cases of pneumonia, has affected more than 23 million people worldwide until August 25th, 2020. Here, we present a review of the cellular mechanisms associated with human coronavirus replication, including the unique molecular events related to the replication transcription complex (RTC) of coronaviruses. We also present information regarding the interactions between each viral protein and cellular proteins associated to known host-pathogen implications for the coronavirus biology. Finally, a specific topic addresses the current attempts for pharmacological interventions against COVID-19, highlighting the possible effects of each drug on the molecular events of viral replication. This review intends to aid future studies for a better understanding of the SARS-CoV-2 replication cycle and the development of pharmacological approaches targeting COVID-19.
Collapse
Affiliation(s)
- Fernando Moreira Simabuco
- Universidade Estadual de Campinas, Faculdade de Ciências Aplicadas (FCA), Laboratório Multidisciplinar em Alimentos e Saúde (LABMAS), Limeira, SP, Brazil
| | - Rodrigo Esaki Tamura
- Universidade Federal de São Paulo (UNIFESP), Departmento de Ciências Biológicas, Diadema, SP, Brazil
| | - Isadora Carolina Betim Pavan
- Universidade Estadual de Campinas, Faculdade de Ciências Aplicadas (FCA), Laboratório Multidisciplinar em Alimentos e Saúde (LABMAS), Limeira, SP, Brazil.,Universidade Estadual de Campinas, Faculdade de Ciências Farmacêuticas (FCF), Campinas, SP, Brazil
| | - Mirian Galliote Morale
- Universidade de São Paulo (USP), Departamento de Radiologia e Oncologia, Faculdade de Medicina, Centro de Oncologia Translacional, Instituto do Câncer do Estado de São Paulo (ICESP), São Paulo, SP, Brazil
| | - Armando Morais Ventura
- Universidade de São Paulo (USP), Instituto de Ciências Biomédicas (ICB), Departamento de Microbiologia, São Paulo, SP, Brazil
| |
Collapse
|
354
|
Ogando NS, Zevenhoven-Dobbe JC, van der Meer Y, Bredenbeek PJ, Posthuma CC, Snijder EJ. The Enzymatic Activity of the nsp14 Exoribonuclease Is Critical for Replication of MERS-CoV and SARS-CoV-2. J Virol 2020; 94:e01246-20. [PMID: 32938769 PMCID: PMC7654266 DOI: 10.1128/jvi.01246-20] [Citation(s) in RCA: 166] [Impact Index Per Article: 41.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 09/09/2020] [Indexed: 02/08/2023] Open
Abstract
Coronaviruses (CoVs) stand out for their large RNA genome and complex RNA-synthesizing machinery comprising 16 nonstructural proteins (nsps). The bifunctional nsp14 contains 3'-to-5' exoribonuclease (ExoN) and guanine-N7-methyltransferase (N7-MTase) domains. While the latter presumably supports mRNA capping, ExoN is thought to mediate proofreading during genome replication. In line with such a role, ExoN knockout mutants of mouse hepatitis virus (MHV) and severe acute respiratory syndrome coronavirus (SARS-CoV) were previously reported to have crippled but viable hypermutation phenotypes. Remarkably, using reverse genetics, a large set of corresponding ExoN knockout mutations has now been found to be lethal for another betacoronavirus, Middle East respiratory syndrome coronavirus (MERS-CoV). For 13 mutants, viral progeny could not be recovered, unless-as happened occasionally-reversion had first occurred. Only a single mutant was viable, likely because its E191D substitution is highly conservative. Remarkably, a SARS-CoV-2 ExoN knockout mutant was found to be unable to replicate, resembling observations previously made for alpha- and gammacoronaviruses, but starkly contrasting with the documented phenotype of ExoN knockout mutants of the closely related SARS-CoV. Subsequently, we established in vitro assays with purified recombinant MERS-CoV nsp14 to monitor its ExoN and N7-MTase activities. All ExoN knockout mutations that proved lethal in reverse genetics were found to severely decrease ExoN activity while not affecting N7-MTase activity. Our study strongly suggests that CoV nsp14 ExoN has an additional function, which apparently is critical for primary viral RNA synthesis and thus differs from the proofreading function that, based on previous MHV and SARS-CoV studies, was proposed to boost longer-term replication fidelity.IMPORTANCE The bifunctional nsp14 subunit of the coronavirus replicase contains 3'-to-5' exoribonuclease (ExoN) and guanine-N7-methyltransferase domains. For the betacoronaviruses MHV and SARS-CoV, ExoN was reported to promote the fidelity of genome replication, presumably by mediating a form of proofreading. For these viruses, ExoN knockout mutants are viable while displaying an increased mutation frequency. Strikingly, we have now established that the equivalent ExoN knockout mutants of two other betacoronaviruses, MERS-CoV and SARS-CoV-2, are nonviable, suggesting an additional and critical ExoN function in their replication. This is remarkable in light of the very limited genetic distance between SARS-CoV and SARS-CoV-2, which is highlighted, for example, by 95% amino acid sequence identity in their nsp14 sequences. For (recombinant) MERS-CoV nsp14, both its enzymatic activities were evaluated using newly developed in vitro assays that can be used to characterize these key replicative enzymes in more detail and explore their potential as target for antiviral drug development.
Collapse
Affiliation(s)
- Natacha S Ogando
- Molecular Virology Laboratory, Department of Medical Microbiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Jessika C Zevenhoven-Dobbe
- Molecular Virology Laboratory, Department of Medical Microbiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Yvonne van der Meer
- Molecular Virology Laboratory, Department of Medical Microbiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Peter J Bredenbeek
- Molecular Virology Laboratory, Department of Medical Microbiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Clara C Posthuma
- Molecular Virology Laboratory, Department of Medical Microbiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Eric J Snijder
- Molecular Virology Laboratory, Department of Medical Microbiology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
355
|
Francés-Monerris A, Hognon C, Miclot T, García-Iriepa C, Iriepa I, Terenzi A, Grandemange S, Barone G, Marazzi M, Monari A. Molecular Basis of SARS-CoV-2 Infection and Rational Design of Potential Antiviral Agents: Modeling and Simulation Approaches. J Proteome Res 2020; 19:4291-4315. [PMID: 33119313 PMCID: PMC7640986 DOI: 10.1021/acs.jproteome.0c00779] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Indexed: 01/18/2023]
Abstract
The emergence in late 2019 of the coronavirus SARS-CoV-2 has resulted in the breakthrough of the COVID-19 pandemic that is presently affecting a growing number of countries. The development of the pandemic has also prompted an unprecedented effort of the scientific community to understand the molecular bases of the virus infection and to propose rational drug design strategies able to alleviate the serious COVID-19 morbidity. In this context, a strong synergy between the structural biophysics and molecular modeling and simulation communities has emerged, resolving at the atomistic level the crucial protein apparatus of the virus and revealing the dynamic aspects of key viral processes. In this Review, we focus on how in silico studies have contributed to the understanding of the SARS-CoV-2 infection mechanism and the proposal of novel and original agents to inhibit the viral key functioning. This Review deals with the SARS-CoV-2 spike protein, including the mode of action that this structural protein uses to entry human cells, as well as with nonstructural viral proteins, focusing the attention on the most studied proteases and also proposing alternative mechanisms involving some of its domains, such as the SARS unique domain. We demonstrate that molecular modeling and simulation represent an effective approach to gather information on key biological processes and thus guide rational molecular design strategies.
Collapse
Affiliation(s)
- Antonio Francés-Monerris
- Université
de Lorraine and CNRS, LPCT UMR 7019, F-54000 Nancy, France
- Departament
de Química Física, Universitat
de València, 46100 Burjassot, Spain
| | - Cécilia Hognon
- Université
de Lorraine and CNRS, LPCT UMR 7019, F-54000 Nancy, France
| | - Tom Miclot
- Université
de Lorraine and CNRS, LPCT UMR 7019, F-54000 Nancy, France
- Department
of Biological, Chemical and Pharmaceutical Sciences and Technologies, Università degli Studi di Palermo, Viale delle Scienze Ed. 17, 90128 Palermo, Italy
| | - Cristina García-Iriepa
- Department
of Analytical Chemistry, Physical Chemistry and Chemical Engineering, Universidad de Alcalá, Ctra. Madrid-Barcelona, Km 33,600, 28871 Alcalá de Henares, Madrid, Spain
- Chemical
Research Institute “Andrés M. del Río”
(IQAR), Universidad de Alcalá, 28871 Alcalá de
Henares, Madrid, Spain
| | - Isabel Iriepa
- Chemical
Research Institute “Andrés M. del Río”
(IQAR), Universidad de Alcalá, 28871 Alcalá de
Henares, Madrid, Spain
- Department
of Organic and Inorganic Chemistry, Universidad
de Alcalá, Ctra.
Madrid-Barcelona, Km 33,600, 28871 Alcalá de Henares, Madrid, Spain
| | - Alessio Terenzi
- Department
of Biological, Chemical and Pharmaceutical Sciences and Technologies, Università degli Studi di Palermo, Viale delle Scienze Ed. 17, 90128 Palermo, Italy
| | | | - Giampaolo Barone
- Department
of Biological, Chemical and Pharmaceutical Sciences and Technologies, Università degli Studi di Palermo, Viale delle Scienze Ed. 17, 90128 Palermo, Italy
| | - Marco Marazzi
- Department
of Analytical Chemistry, Physical Chemistry and Chemical Engineering, Universidad de Alcalá, Ctra. Madrid-Barcelona, Km 33,600, 28871 Alcalá de Henares, Madrid, Spain
- Chemical
Research Institute “Andrés M. del Río”
(IQAR), Universidad de Alcalá, 28871 Alcalá de
Henares, Madrid, Spain
| | - Antonio Monari
- Université
de Lorraine and CNRS, LPCT UMR 7019, F-54000 Nancy, France
| |
Collapse
|
356
|
Doboszewska U, Wlaź P, Nowak G, Młyniec K. Targeting zinc metalloenzymes in coronavirus disease 2019. Br J Pharmacol 2020; 177:4887-4898. [PMID: 32671829 PMCID: PMC7405164 DOI: 10.1111/bph.15199] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 06/22/2020] [Accepted: 07/05/2020] [Indexed: 12/15/2022] Open
Abstract
Several lines of evidence support a link between the essential element zinc and the coronavirus disease 2019 (COVID-19). An important fact is that zinc is present in proteins of humans and of viruses. Some zinc sites in viral enzymes may serve as drug targets and may liberate zinc ions, thus leading to changes in intracellular concentration of zinc ions, while increased intracellular zinc may induce biological effects in both the host and the virus. Drugs such as chloroquine may contribute to increased intracellular zinc. Moreover, clinical trials on the use of zinc alone or in addition to other drugs in the prophylaxis/treatment of COVID-19 are ongoing. Thereby, we aim to discuss the rationale for targeting zinc metalloenzymes as a new strategy for the treatment of COVID-19. LINKED ARTICLES: This article is part of a themed issue on The Pharmacology of COVID-19. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v177.21/issuetoc.
Collapse
Affiliation(s)
- Urszula Doboszewska
- Department of PharmacobiologyJagiellonian University Medical CollegeKrakówPoland
| | - Piotr Wlaź
- Department of Animal Physiology and Pharmacology, Institute of Biological SciencesMaria Curie‐Skłodowska UniversityLublinPoland
| | - Gabriel Nowak
- Department of PharmacobiologyJagiellonian University Medical CollegeKrakówPoland
- Laboratory of Trace Elements Neurobiology, Department of Neurobiology, Maj Institute of PharmacologyPolish Academy of SciencesKrakówPoland
| | - Katarzyna Młyniec
- Department of PharmacobiologyJagiellonian University Medical CollegeKrakówPoland
| |
Collapse
|
357
|
Rack JGM, Zorzini V, Zhu Z, Schuller M, Ahel D, Ahel I. Viral macrodomains: a structural and evolutionary assessment of the pharmacological potential. Open Biol 2020; 10:200237. [PMID: 33202171 PMCID: PMC7729036 DOI: 10.1098/rsob.200237] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 10/09/2020] [Indexed: 12/16/2022] Open
Abstract
Viral macrodomains possess the ability to counteract host ADP-ribosylation, a post-translational modification implicated in the creation of an antiviral environment via immune response regulation. This brought them into focus as promising therapeutic targets, albeit the close homology to some of the human macrodomains raised concerns regarding potential cross-reactivity and adverse effects for the host. Here, we evaluate the structure and function of the macrodomain of SARS-CoV-2, the causative agent of COVID-19. We show that it can antagonize ADP-ribosylation by PARP14, a cellular (ADP-ribosyl)transferase necessary for the restriction of coronaviral infections. Furthermore, our structural studies together with ligand modelling revealed the structural basis for poly(ADP-ribose) binding and hydrolysis, an emerging new aspect of viral macrodomain biology. These new insights were used in an extensive evolutionary analysis aimed at evaluating the druggability of viral macrodomains not only from the Coronaviridae but also Togaviridae and Iridoviridae genera (causing diseases such as Chikungunya and infectious spleen and kidney necrosis virus disease, respectively). We found that they contain conserved features, distinct from their human counterparts, which may be exploited during drug design.
Collapse
Affiliation(s)
| | | | | | | | | | - Ivan Ahel
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| |
Collapse
|
358
|
Alexander SP, Armstrong JF, Davenport AP, Davies JA, Faccenda E, Harding SD, Levi‐Schaffer F, Maguire JJ, Pawson AJ, Southan C, Spedding M. A rational roadmap for SARS-CoV-2/COVID-19 pharmacotherapeutic research and development: IUPHAR Review 29. Br J Pharmacol 2020; 177:4942-4966. [PMID: 32358833 PMCID: PMC7267163 DOI: 10.1111/bph.15094] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 04/27/2020] [Accepted: 04/28/2020] [Indexed: 12/13/2022] Open
Abstract
In this review, we identify opportunities for drug discovery in the treatment of COVID-19 and, in so doing, provide a rational roadmap whereby pharmacology and pharmacologists can mitigate against the global pandemic. We assess the scope for targeting key host and viral targets in the mid-term, by first screening these targets against drugs already licensed, an agenda for drug repurposing, which should allow rapid translation to clinical trials. A simultaneous, multi-pronged approach using conventional drug discovery methods aimed at discovering novel chemical and biological means of targeting a short list of host and viral entities which should extend the arsenal of anti-SARS-CoV-2 agents. This longer term strategy would provide a deeper pool of drug choices for future-proofing against acquired drug resistance. Second, there will be further viral threats, which will inevitably evade existing vaccines. This will require a coherent therapeutic strategy which pharmacology and pharmacologists are best placed to provide. LINKED ARTICLES: This article is part of a themed issue on The Pharmacology of COVID-19. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v177.21/issuetoc.
Collapse
Affiliation(s)
- Steve P.H. Alexander
- Chair, Nomenclature and Standards Committee of the International Union of Basic and Clinical Pharmacology (NC‐IUPHAR), School of Life SciencesUniversity of NottinghamNottinghamUK
| | - Jane F. Armstrong
- Curator, Guide to PHARMACOLOGY (GtoPdb), Deanery of Biomedical SciencesUniversity of EdinburghEdinburghUK
| | | | - Jamie A. Davies
- Principal Investigator, Guide to PHARMACOLOGY (GtoPdb), Executive Committee, NC‐IUPHAR, Deanery of Biomedical SciencesUniversity of EdinburghEdinburghUK
| | - Elena Faccenda
- Curator, Guide to PHARMACOLOGY (GtoPdb), Deanery of Biomedical SciencesUniversity of EdinburghEdinburghUK
| | - Simon D. Harding
- Database Developer, Guide to PHARMACOLOGY (GtoPdb), Deanery of Biomedical SciencesUniversity of EdinburghEdinburghUK
| | - Francesca Levi‐Schaffer
- First Vice‐President and Chair of Immunopharmacology Section, International Union of Basic and Clinical Pharmacology (IUPHAR)Hebrew University of JerusalemJerusalemIsrael
| | | | - Adam J. Pawson
- Senior Curator, Guide to PHARMACOLOGY (GtoPdb), Executive Committee, NC‐IUPHAR, Deanery of Biomedical SciencesUniversity of EdinburghEdinburghUK
| | - Christopher Southan
- Deanery of Biomedical SciencesUniversity of EdinburghEdinburghUK
- TW2Informatics LtdGothenburgSweden
| | - Michael Spedding
- Secretary‐General, International Union of Basic and Clinical Pharmacology (IUPHAR) and Spedding Research Solutions SASLe VesinetFrance
| |
Collapse
|
359
|
Pišlar A, Mitrović A, Sabotič J, Pečar Fonović U, Perišić Nanut M, Jakoš T, Senjor E, Kos J. The role of cysteine peptidases in coronavirus cell entry and replication: The therapeutic potential of cathepsin inhibitors. PLoS Pathog 2020; 16:e1009013. [PMID: 33137165 PMCID: PMC7605623 DOI: 10.1371/journal.ppat.1009013] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Over the last 2 decades, several coronaviruses (CoVs) have crossed the species barrier into humans, causing highly prevalent and severe respiratory diseases, often with fatal outcomes. CoVs are a large group of enveloped, single-stranded, positive-sense RNA viruses, which encode large replicase polyproteins that are processed by viral peptidases to generate the nonstructural proteins (Nsps) that mediate viral RNA synthesis. Papain-like peptidases (PLPs) and chymotrypsin-like cysteine 3C-like peptidase are essential for coronaviral replication and represent attractive antiviral drug targets. Furthermore, CoVs utilize the activation of their envelope spike glycoproteins by host cell peptidases to gain entry into cells. CoVs have evolved multiple strategies for spike protein activation, including the utilization of lysosomal cysteine cathepsins. In this review, viral and host peptidases involved in CoV cell entry and replication are discussed in depth, with an emphasis on papain-like cysteine cathepsins. Furthermore, important findings on cysteine peptidase inhibitors with regard to virus attenuation are highlighted as well as the potential of such inhibitors for future treatment strategies for CoV-related diseases.
Collapse
Affiliation(s)
- Anja Pišlar
- Department of Pharmaceutical Biology, Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
| | - Ana Mitrović
- Department of Biotechnology, Jožef Stefan Institute, Ljubljana, Slovenia
| | - Jerica Sabotič
- Department of Biotechnology, Jožef Stefan Institute, Ljubljana, Slovenia
| | - Urša Pečar Fonović
- Department of Pharmaceutical Biology, Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
| | | | - Tanja Jakoš
- Department of Pharmaceutical Biology, Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
| | - Emanuela Senjor
- Department of Pharmaceutical Biology, Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
- Department of Biotechnology, Jožef Stefan Institute, Ljubljana, Slovenia
| | - Janko Kos
- Department of Pharmaceutical Biology, Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
- Department of Biotechnology, Jožef Stefan Institute, Ljubljana, Slovenia
| |
Collapse
|
360
|
Hemmati S, Behzadipour Y, Haddad M. Decoding the proteome of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) for cell-penetrating peptides involved in pathogenesis or applicable as drug delivery vectors. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2020; 85:104474. [PMID: 32712315 PMCID: PMC7378008 DOI: 10.1016/j.meegid.2020.104474] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 07/17/2020] [Accepted: 07/20/2020] [Indexed: 01/18/2023]
Abstract
Synthetic or natural derived cell-penetrating peptides (CPPs) are vastly investigated as tools for the intracellular delivery of membrane-impermeable molecules. As viruses are intracellular obligate parasites, viral originated CPPs have been considered as suitable intracellular shuttling vectors for cargo transportation. A total of 310 CPPs were identified in the proteome of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Screening the proteome of the cause of COVID-19 reveals that SARS-CoV-2 CPPs (SCV2-CPPs) span the regions involved in replication, protein-nucleotide and protein-protein interaction, protein-metal ion interaction, and stabilization of homo/hetero-oligomers. However, to find the most appropriate peptides as drug delivery vectors, one might face several hurdles. Computational analyses showed that 94.3% of the identified SCV2-CPPs are non-toxins, and 38% are neither antigenic nor allergenic. Interestingly, 36.70% of SCV2-CPPs were resistant to all four groups of protease families. Nearly 1/3 of SCV2-CPPs had sufficient inherent or induced helix and sheet conformation leading to increased uptake efficiency. Heliquest lipid-binding discrimination factor revealed that 44.30% of the helical SCV2-CPPs are lipid-binding helices. Although Cys-rich derived CPPs of helicase (NSP13) can potentially fold into a cyclic conformation in endosomes with a higher rate of endosomal release, the most optimal SCV2-CPP candidates as vectors for drug delivery were SCV2-CPP118, SCV2-CPP119, SCV2-CPP122, and SCV2-CPP129 of NSP12 (RdRp). Ten experimentally validated viral-derived CPPs were also used as the positive control to check the scalability and reliability of our protocol in SCV2-CPP retrieval. Some peptides with a cell-penetration ability known as bioactive peptides are adopted as biotherapeutics themselves. Therefore, 59.60%, 29.63%, and 32.32% of SCV2-CPPs were identified as potential antibacterial, antiviral, and antifungals, respectively. While 63.64% of SCV2-CPPs had immuno-modulatory properties, 21.89% were recognized as anti-cancers. Conclusively, the workflow of this study provides a platform for profound screening of viral proteomes as a rich source of biotherapeutics or drug delivery carriers.
Collapse
Affiliation(s)
- Shiva Hemmati
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran; Biotechnology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Yasaman Behzadipour
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mahdi Haddad
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
361
|
Alhammad YMO, Kashipathy MM, Roy A, Gagné JP, McDonald P, Gao P, Nonfoux L, Battaile KP, Johnson DK, Holmstrom ED, Poirier GG, Lovell S, Fehr AR. The SARS-CoV-2 conserved macrodomain is a mono-ADP-ribosylhydrolase. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2020:2020.05.11.089375. [PMID: 32511412 PMCID: PMC7263559 DOI: 10.1101/2020.05.11.089375] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/14/2023]
Abstract
UNLABELLED Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and other SARS-like-CoVs encode 3 tandem macrodomains within non-structural protein 3 (nsp3). The first macrodomain, Mac1, is conserved throughout CoVs, and binds to and hydrolyzes mono-ADP-ribose (MAR) from target proteins. Mac1 likely counters host-mediated anti-viral ADP-ribosylation, a posttranslational modification that is part of the host response to viral infections. Mac1 is essential for pathogenesis in multiple animal models of CoV infection, implicating it as a virulence factor and potential therapeutic target. Here we report the crystal structure of SARS-CoV-2 Mac1 in complex with ADP-ribose. SARS-CoV-2, SARS-CoV and MERS-CoV Mac1 exhibit similar structural folds and all 3 proteins bound to ADP-ribose with low μM affinities. Importantly, using ADP-ribose detecting binding reagents in both a gel-based assay and novel ELISA assays, we demonstrated de-MARylating activity for all 3 CoV Mac1 proteins, with the SARS-CoV-2 Mac1 protein leading to a more rapid loss of substrate compared to the others. In addition, none of these enzymes could hydrolyze poly-ADP-ribose. We conclude that the SARS-CoV-2 and other CoV Mac1 proteins are MAR-hydrolases with similar functions, indicating that compounds targeting CoV Mac1 proteins may have broad anti-CoV activity. IMPORTANCE SARS-CoV-2 has recently emerged into the human population and has led to a worldwide pandemic of COVID-19 that has caused greater than 900 thousand deaths worldwide. With, no currently approved treatments, novel therapeutic strategies are desperately needed. All coronaviruses encode for a highly conserved macrodomain (Mac1) that binds to and removes ADP-ribose adducts from proteins in a dynamic post-translational process increasingly recognized as an important factor that regulates viral infection. The macrodomain is essential for CoV pathogenesis and may be a novel therapeutic target. Thus, understanding its biochemistry and enzyme activity are critical first steps for these efforts. Here we report the crystal structure of SARS-CoV-2 Mac1 in complex with ADP-ribose, and describe its ADP-ribose binding and hydrolysis activities in direct comparison to SARS-CoV and MERS-CoV Mac1 proteins. These results are an important first step for the design and testing of potential therapies targeting this unique protein domain.
Collapse
|
362
|
Alshebri MS, Alshouimi RA, Alhumidi HA, Alshaya AI. Neurological Complications of SARS-CoV, MERS-CoV, and COVID-19. ACTA ACUST UNITED AC 2020; 2:2037-2047. [PMID: 33083695 PMCID: PMC7565215 DOI: 10.1007/s42399-020-00589-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/11/2020] [Indexed: 12/13/2022]
Abstract
This review provides an overview of studies and case reports of neurological and neuromuscular complications associated with severe acute respiratory syndrome coronavirus (SARS-CoV), Middle East respiratory syndrome coronavirus (MERS-CoV), and coronavirus disease 2019 (COVID-19) and describes the possible mechanisms of viral transmission to the central nervous system (CNS). Coronavirus family has shown central and peripheral nervous system tropism in multiple retrospective studies and case reports from different parts of the world. To date, the reported cases of neurological and neuromuscular complications associated with coronaviruses, especially COVID-19, are increasing. Neurological and neuromuscular symptoms and complications ranging from headache and anosmia to more severe encephalitis and stroke have been reported in many studies. However, the neurotropism mechanism of coronaviruses is still not clear and the evidence of central nervous system (CNS) involvement is limited despite the number of studies that attempted to illustrate the possible CNS invasion mechanisms. The reported neurological complications of coronaviruses are summarized in this article.
Collapse
Affiliation(s)
- Munirah Saad Alshebri
- College of Pharmacy, King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| | | | - Hadeel Aqeel Alhumidi
- College of Pharmacy, King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| | - Abdulrahman I Alshaya
- College of Pharmacy, King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia.,National Guard Health Affairs, King Abdulaziz Medical City, Riyadh, Saudi Arabia.,King Abdullah International Medical Research Center, Riyadh, Saudi Arabia
| |
Collapse
|
363
|
Ucciferri C, Vecchiet J, Falasca K. Role of monoclonal antibody drugs in the treatment of COVID-19. World J Clin Cases 2020; 8:4280-4285. [PMID: 33083387 PMCID: PMC7559676 DOI: 10.12998/wjcc.v8.i19.4280] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 08/20/2020] [Accepted: 09/08/2020] [Indexed: 02/06/2023] Open
Abstract
Currently clinicians all around the world are experiencing a pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The clinical presentation of this pathology includes fever, dry cough, fatigue and acute respiratory distress syndrome that can lead to death infected patients. Current studies on coronavirus disease 2019 (COVID-19) continue to highlight the urgent need for an effective therapy. Numerous therapeutic strategies have been used until now but, to date, there is no specific effective treatment for SARS-CoV-2 infection. Elevated inflammatory cytokines have been reported in patients with COVID-19. Evidence suggests that elevated cytokine levels, reflecting a hyperinflammatory response secondary to SARS-CoV-2 infection, are responsible for multi-organ damage in patients with COVID-19. For these reason, numerous randomized clinical trials are currently underway to explore the effectiveness of biopharmaceutical drugs, such as, interleukin-1 blockers, interleukin-6 inhibitors, Janus kinase inhibitors, in COVID-19. The aim of the present paper is to briefly summarize the pathogenetic rationale and the state of the art of therapeutic strategy blocking hyperinflammation.
Collapse
Affiliation(s)
- Claudio Ucciferri
- Clinic of Infectious Diseases, Department of Medicine and Science of Aging, University “G. d’Annunzio” Chieti-Pescara, Chieti 66100, Italy
- Department of Medicine and Health Sciences, University of Molise, Campobasso 66100, Italy
| | - Jacopo Vecchiet
- Clinic of Infectious Diseases, Department of Medicine and Science of Aging, University “G. d’Annunzio” Chieti-Pescara, Chieti 66100, Italy
| | - Katia Falasca
- Clinic of Infectious Diseases, Department of Medicine and Science of Aging, University “G. d’Annunzio” Chieti-Pescara, Chieti 66100, Italy
| |
Collapse
|
364
|
Senger MR, Evangelista TCS, Dantas RF, Santana MVDS, Gonçalves LCS, de Souza Neto LR, Ferreira SB, Silva-Junior FP. COVID-19: molecular targets, drug repurposing and new avenues for drug discovery. Mem Inst Oswaldo Cruz 2020; 115:e200254. [PMID: 33027420 PMCID: PMC7534958 DOI: 10.1590/0074-02760200254] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 09/01/2020] [Indexed: 01/18/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19) caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a highly contagious infection that may break the healthcare system of several countries. Here, we aimed at presenting a critical view of ongoing drug repurposing efforts for COVID-19 as well as discussing opportunities for development of new treatments based on current knowledge of the mechanism of infection and potential targets within. Finally, we also discuss patent protection issues, cost effectiveness and scalability of synthetic routes for some of the most studied repurposing candidates since these are key aspects to meet global demand for COVID-19 treatment.
Collapse
Affiliation(s)
- Mario Roberto Senger
- Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Laboratório
de Bioquímica Experimental e Computacional de Fármacos, Rio de Janeiro, RJ,
Brasil
| | - Tereza Cristina Santos Evangelista
- Universidade Federal do Rio de Janeiro, Instituto de Química,
Laboratório de Síntese Orgânica e Prospecção Biológica, Rio de Janeiro, RJ,
Brasil
| | - Rafael Ferreira Dantas
- Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Laboratório
de Bioquímica Experimental e Computacional de Fármacos, Rio de Janeiro, RJ,
Brasil
| | - Marcos Vinicius da Silva Santana
- Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Laboratório
de Bioquímica Experimental e Computacional de Fármacos, Rio de Janeiro, RJ,
Brasil
| | - Luiz Carlos Saramago Gonçalves
- Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Laboratório
de Bioquímica Experimental e Computacional de Fármacos, Rio de Janeiro, RJ,
Brasil
| | - Lauro Ribeiro de Souza Neto
- Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Laboratório
de Bioquímica Experimental e Computacional de Fármacos, Rio de Janeiro, RJ,
Brasil
| | - Sabrina Baptista Ferreira
- Universidade Federal do Rio de Janeiro, Instituto de Química,
Laboratório de Síntese Orgânica e Prospecção Biológica, Rio de Janeiro, RJ,
Brasil
| | - Floriano Paes Silva-Junior
- Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Laboratório
de Bioquímica Experimental e Computacional de Fármacos, Rio de Janeiro, RJ,
Brasil
| |
Collapse
|
365
|
Henderson JA, Verma N, Harris RC, Liu R, Shen J. Assessment of proton-coupled conformational dynamics of SARS and MERS coronavirus papain-like proteases: Implication for designing broad-spectrum antiviral inhibitors. J Chem Phys 2020; 153:115101. [PMID: 32962355 PMCID: PMC7499820 DOI: 10.1063/5.0020458] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Broad-spectrum antiviral drugs are urgently needed to stop the Coronavirus Disease 2019 pandemic and prevent future ones. The novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is related to the SARS-CoV and Middle East respiratory syndrome coronavirus (MERS-CoV), which have caused the previous outbreaks. The papain-like protease (PLpro) is an attractive drug target due to its essential roles in the viral life cycle. As a cysteine protease, PLpro is rich in cysteines and histidines, and their protonation/deprotonation modulates catalysis and conformational plasticity. Here, we report the pKa calculations and assessment of the proton-coupled conformational dynamics of SARS-CoV-2 in comparison to SARS-CoV and MERS-CoV PLpros using the recently developed graphical processing unit (GPU)-accelerated implicit-solvent continuous constant pH molecular dynamics method with a new asynchronous replica-exchange scheme, which allows computation on a single GPU card. The calculated pKa's support the catalytic roles of the Cys-His-Asp triad. We also found that several residues can switch protonation states at physiological pH among which is C270/271 located on the flexible blocking loop 2 (BL2) of SARS-CoV-2/CoV PLpro. Simulations revealed that the BL2 can open and close depending on the protonation state of C271/270, consistent with the most recent crystal structure evidence. Interestingly, despite the lack of an analogous cysteine, BL2 in MERS-CoV PLpro is also very flexible, challenging a current hypothesis. These findings are supported by the all-atom fixed-charge simulations and provide a starting point for more detailed studies to assist the structure-based design of broad-spectrum inhibitors against CoV PLpros.
Collapse
Affiliation(s)
- Jack A Henderson
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland 21201, USA
| | - Neha Verma
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland 21201, USA
| | - Robert C Harris
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland 21201, USA
| | - Ruibin Liu
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland 21201, USA
| | - Jana Shen
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland 21201, USA
| |
Collapse
|
366
|
Korn SM, Dhamotharan K, Fürtig B, Hengesbach M, Löhr F, Qureshi NS, Richter C, Saxena K, Schwalbe H, Tants JN, Weigand JE, Wöhnert J, Schlundt A. 1H, 13C, and 15N backbone chemical shift assignments of the nucleic acid-binding domain of SARS-CoV-2 non-structural protein 3e. BIOMOLECULAR NMR ASSIGNMENTS 2020; 14:329-333. [PMID: 32770392 PMCID: PMC7414254 DOI: 10.1007/s12104-020-09971-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 07/31/2020] [Indexed: 06/11/2023]
Abstract
The ongoing pandemic caused by the Betacoronavirus SARS-CoV-2 (Severe Acute Respiratory Syndrome Coronavirus-2) demonstrates the urgent need of coordinated and rapid research towards inhibitors of the COVID-19 lung disease. The covid19-nmr consortium seeks to support drug development by providing publicly accessible NMR data on the viral RNA elements and proteins. The SARS-CoV-2 genome encodes for approximately 30 proteins, among them are the 16 so-called non-structural proteins (Nsps) of the replication/transcription complex. The 217-kDa large Nsp3 spans one polypeptide chain, but comprises multiple independent, yet functionally related domains including the viral papain-like protease. The Nsp3e sub-moiety contains a putative nucleic acid-binding domain (NAB) with so far unknown function and consensus target sequences, which are conceived to be both viral and host RNAs and DNAs, as well as protein-protein interactions. Its NMR-suitable size renders it an attractive object to study, both for understanding the SARS-CoV-2 architecture and drugability besides the classical virus' proteases. We here report the near-complete NMR backbone chemical shifts of the putative Nsp3e NAB that reveal the secondary structure and compactness of the domain, and provide a basis for NMR-based investigations towards understanding and interfering with RNA- and small-molecule-binding by Nsp3e.
Collapse
Affiliation(s)
- Sophie M Korn
- Institute for Molecular Biosciences, Johann Wolfgang Goethe-University Frankfurt, Max-von-Laue-Str. 9, 60438, Frankfurt, Germany
- Center for Biomolecular Magnetic Resonance (BMRZ), Johann Wolfgang Goethe-University Frankfurt, 60438, Frankfurt, Germany
| | - Karthikeyan Dhamotharan
- Institute for Molecular Biosciences, Johann Wolfgang Goethe-University Frankfurt, Max-von-Laue-Str. 9, 60438, Frankfurt, Germany
- Center for Biomolecular Magnetic Resonance (BMRZ), Johann Wolfgang Goethe-University Frankfurt, 60438, Frankfurt, Germany
| | - Boris Fürtig
- Institute for Organic Chemistry and Chemical Biology, Johann Wolfgang Goethe-University Frankfurt, Max-von-Laue-Str. 7, 60438, Frankfurt, Germany
- Center for Biomolecular Magnetic Resonance (BMRZ), Johann Wolfgang Goethe-University Frankfurt, 60438, Frankfurt, Germany
| | - Martin Hengesbach
- Institute for Organic Chemistry and Chemical Biology, Johann Wolfgang Goethe-University Frankfurt, Max-von-Laue-Str. 7, 60438, Frankfurt, Germany
- Center for Biomolecular Magnetic Resonance (BMRZ), Johann Wolfgang Goethe-University Frankfurt, 60438, Frankfurt, Germany
| | - Frank Löhr
- Institute of Biophysical Chemistry, Johann Wolfgang Goethe-University Frankfurt, Max-von-Laue-Str. 9, 60438, Frankfurt, Germany
- Center for Biomolecular Magnetic Resonance (BMRZ), Johann Wolfgang Goethe-University Frankfurt, 60438, Frankfurt, Germany
| | - Nusrat S Qureshi
- Institute for Organic Chemistry and Chemical Biology, Johann Wolfgang Goethe-University Frankfurt, Max-von-Laue-Str. 7, 60438, Frankfurt, Germany
- Center for Biomolecular Magnetic Resonance (BMRZ), Johann Wolfgang Goethe-University Frankfurt, 60438, Frankfurt, Germany
| | - Christian Richter
- Institute for Organic Chemistry and Chemical Biology, Johann Wolfgang Goethe-University Frankfurt, Max-von-Laue-Str. 7, 60438, Frankfurt, Germany
- Center for Biomolecular Magnetic Resonance (BMRZ), Johann Wolfgang Goethe-University Frankfurt, 60438, Frankfurt, Germany
| | - Krishna Saxena
- Institute for Organic Chemistry and Chemical Biology, Johann Wolfgang Goethe-University Frankfurt, Max-von-Laue-Str. 7, 60438, Frankfurt, Germany
- Center for Biomolecular Magnetic Resonance (BMRZ), Johann Wolfgang Goethe-University Frankfurt, 60438, Frankfurt, Germany
| | - Harald Schwalbe
- Institute for Organic Chemistry and Chemical Biology, Johann Wolfgang Goethe-University Frankfurt, Max-von-Laue-Str. 7, 60438, Frankfurt, Germany
- Center for Biomolecular Magnetic Resonance (BMRZ), Johann Wolfgang Goethe-University Frankfurt, 60438, Frankfurt, Germany
| | - Jan-Niklas Tants
- Institute for Molecular Biosciences, Johann Wolfgang Goethe-University Frankfurt, Max-von-Laue-Str. 9, 60438, Frankfurt, Germany
- Center for Biomolecular Magnetic Resonance (BMRZ), Johann Wolfgang Goethe-University Frankfurt, 60438, Frankfurt, Germany
| | - Julia E Weigand
- Department of Biology, Technical University of Darmstadt, Schnittspahnstr. 10, 64287, Darmstadt, Germany
| | - Jens Wöhnert
- Institute for Molecular Biosciences, Johann Wolfgang Goethe-University Frankfurt, Max-von-Laue-Str. 9, 60438, Frankfurt, Germany
- Center for Biomolecular Magnetic Resonance (BMRZ), Johann Wolfgang Goethe-University Frankfurt, 60438, Frankfurt, Germany
| | - Andreas Schlundt
- Institute for Molecular Biosciences, Johann Wolfgang Goethe-University Frankfurt, Max-von-Laue-Str. 9, 60438, Frankfurt, Germany.
- Center for Biomolecular Magnetic Resonance (BMRZ), Johann Wolfgang Goethe-University Frankfurt, 60438, Frankfurt, Germany.
| |
Collapse
|
367
|
Petushkova AI, Zamyatnin AA. Papain-Like Proteases as Coronaviral Drug Targets: Current Inhibitors, Opportunities, and Limitations. Pharmaceuticals (Basel) 2020; 13:E277. [PMID: 32998368 PMCID: PMC7601131 DOI: 10.3390/ph13100277] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 09/26/2020] [Accepted: 09/26/2020] [Indexed: 12/23/2022] Open
Abstract
Papain-like proteases (PLpro) of coronaviruses (CoVs) support viral reproduction and suppress the immune response of the host, which makes CoV PLpro perspective pharmaceutical targets. Their inhibition could both prevent viral replication and boost the immune system of the host, leading to the speedy recovery of the patient. Coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is the third CoV outbreak in the last 20 years. Frequent mutations of the viral genome likely lead to the emergence of more CoVs. Inhibitors for CoV PLpro can be broad-spectrum and can diminish present and prevent future CoV outbreaks as PLpro from different CoVs have conservative structures. Several inhibitors have been developed to withstand SARS-CoV and Middle East respiratory syndrome CoV (MERS-CoV). This review summarizes the structural features of CoV PLpro, the inhibitors that have been identified over the last 20 years, and the compounds that have the potential to become novel effective therapeutics against CoVs in the near future.
Collapse
Affiliation(s)
- Anastasiia I. Petushkova
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, 119991 Moscow, Russia;
| | - Andrey A. Zamyatnin
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, 119991 Moscow, Russia;
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia
- Department of Biotechnology, Sirius University of Science and Technology, 1 Olympic Ave, 354340 Sochi, Russia
| |
Collapse
|
368
|
Kandeel M, Kitade Y, Fayez M, Venugopala KN, Ibrahim A. The emerging SARS-CoV-2 papain-like protease: Its relationship with recent coronavirus epidemics. J Med Virol 2020; 93:1581-1588. [PMID: 32902889 DOI: 10.1002/jmv.26497] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 08/28/2020] [Accepted: 09/02/2020] [Indexed: 01/05/2023]
Abstract
The papain-like protease (PLpro ) is an important enzyme for coronavirus polyprotein processing, as well as for virus-host immune suppression. Previous studies reveal that a molecular analysis of PLpro indicates the catalytic activity of viral PLpro and its interactions with ubiquitin. By using sequence comparisons, molecular models, and protein-protein interaction maps, PLpro was compared in the three recorded fatal CoV epidemics, which involved severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), severe acute respiratory syndrome CoV (SARS-CoV), and Middle East respiratory syndrome coronavirus (MERS-CoV). The pairwise sequence comparison of SARS-CoV-2 PLpro indicated similarity percentages of 82.59% and 30.06% with SARS-CoV PLpro and MERS-CoV PLpro , respectively. In comparison with SARS-CoV PLpro , in SARS-CoV-2, the PLpro had a conserved catalytic triad of C111, H278, and D293, with a slightly lower number of polar interface residues and of hydrogen bonds, a higher number of buried interface sizes, and a lower number of residues that interact with ubiquitin and PLpro . These features might contribute to a similar or slightly lower level of deubiquitinating activity in SARS-CoV-2 PLpro. It was, however, a much higher level compared to MERS-CoV, which contained amino acid mutations and a low number of polar interfaces. SARS-CoV-2 PLpro and SARS-CoV PLpro showed almost the same catalytic site profiles, interface area compositions and polarities, suggesting a general similarity in deubiquitination activity. Compared with MERS-CoV, SARS-CoV-2 had a higher potential for binding interactions with ubiquitin. These estimated parameters contribute to the knowledge gap in understanding how the new virus interacts with the immune system.
Collapse
Affiliation(s)
- Mahmoud Kandeel
- Department of Biomedical Sciences, College of Veterinary Medicine, King Faisal University, Al-Ahsa, Saudi Arabia.,Department of Pharmacology, Faculty of Veterinary Medicine, Kafrelshikh University, Kafrelshikh, Egypt
| | - Yukio Kitade
- Department of Applied Chemistry, Faculty of Engineering, Aichi Institute of Technology, Toyota, Aichi, Japan.,Department of Chemistry and Biomolecular Sciences, Faculty of Engineering, Gifu University, Gifu, Japan
| | - Mahmoud Fayez
- Ministry of Agriculture, Al-Ahsa Veterinary Diagnostic Laboratory, Saudi Arabia.,Veterinary Serum and Vaccine Research institute, Ministry of Agriculture, Cairo, Egypt
| | - Katharigatta N Venugopala
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa, Saudi Arabia.,Department of Biotechnology and Food Technology, Durban University of Technology, Durban, South Africa
| | - Abdelazim Ibrahim
- Department of Pathology, King Faisal University, Al-Ahsa, Saudi Arabia.,Department of Pathology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, Egypt
| |
Collapse
|
369
|
Bergasa-Caceres F, Rabitz HA. Interdiction of Protein Folding for Therapeutic Drug Development in SARS CoV-2. J Phys Chem B 2020; 124:8201-8208. [PMID: 32790379 PMCID: PMC7466092 DOI: 10.1021/acs.jpcb.0c03716] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 08/07/2020] [Indexed: 12/12/2022]
Abstract
In this article, we predict the folding initiation events of the ribose phosphatase domain of protein Nsp3 and the receptor binding domain of the spike protein from the severe acute respiratory syndrome (SARS) coronavirus-2. The calculations employ the sequential collapse model and the crystal structures to identify the segments involved in the initial contact formation events of both viral proteins. The initial contact locations may provide good targets for therapeutic drug development. The proposed strategy is based on a drug binding to the contact location, thereby aiming to prevent protein folding. Peptides are suggested as a natural choice for such protein folding interdiction drugs.
Collapse
Affiliation(s)
| | - Herschel A. Rabitz
- Department of Chemistry, Princeton
University, Princeton, New Jersey 08544, United
States
| |
Collapse
|
370
|
Kouznetsova VL, Zhang A, Tatineni M, Miller MA, Tsigelny IF. Potential COVID-19 papain-like protease PL pro inhibitors: repurposing FDA-approved drugs. PeerJ 2020; 8:e9965. [PMID: 32999768 PMCID: PMC7505060 DOI: 10.7717/peerj.9965] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 08/26/2020] [Indexed: 12/16/2022] Open
Abstract
Using the crystal structure of SARS-CoV-2 papain-like protease (PLpro) as a template, we developed a pharmacophore model of functional centers of the PLpro inhibitor-binding pocket. With this model, we conducted data mining of the conformational database of FDA-approved drugs. This search identified 147 compounds that can be potential inhibitors of SARS-CoV-2 PLpro. The conformations of these compounds underwent 3D fingerprint similarity clusterization, followed by docking of possible conformers to the binding pocket of PLpro. Docking of random compounds to the binding pocket of protease was also done for comparison. Free energies of the docking interaction for the selected compounds were lower than for random compounds. The drug list obtained includes inhibitors of HIV, hepatitis C, and cytomegalovirus (CMV), as well as a set of drugs that have demonstrated some activity in MERS, SARS-CoV, and SARS-CoV-2 therapy. We recommend testing of the selected compounds for treatment of COVID-19.
Collapse
Affiliation(s)
| | - Aidan Zhang
- REHS Program at San Diego Dupercomputer Center, University of California, San Diego, La Jolla, CA, USA
| | - Mahidhar Tatineni
- San Diego Supercomputer Center, University of California, San Diego, La Jolla, CA, USA
| | - Mark A. Miller
- San Diego Supercomputer Center, University of California, San Diego, La Jolla, CA, USA
| | - Igor F. Tsigelny
- San Diego Supercomputer Center, University of California, San Diego, La Jolla, CA, USA
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA
- Science, CureMatch Inc., San Diego, CA, USA
| |
Collapse
|
371
|
Induction of the Antiviral Immune Response and Its Circumvention by Coronaviruses. Viruses 2020; 12:v12091039. [PMID: 32961897 PMCID: PMC7551260 DOI: 10.3390/v12091039] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 09/12/2020] [Accepted: 09/14/2020] [Indexed: 12/15/2022] Open
Abstract
Some coronaviruses are zoonotic viruses of human and veterinary medical importance. The novel coronavirus, severe acute respiratory symptoms coronavirus 2 (SARS-CoV-2), associated with the current global pandemic, is characterized by pneumonia, lymphopenia, and a cytokine storm in humans that has caused catastrophic impacts on public health worldwide. Coronaviruses are known for their ability to evade innate immune surveillance exerted by the host during the early phase of infection. It is important to comprehensively investigate the interaction between highly pathogenic coronaviruses and their hosts. In this review, we summarize the existing knowledge about coronaviruses with a focus on antiviral immune responses in the respiratory and intestinal tracts to infection with severe coronaviruses that have caused epidemic diseases in humans and domestic animals. We emphasize, in particular, the strategies used by these coronaviruses to circumvent host immune surveillance, mainly including the hijack of antigen-presenting cells, shielding RNA intermediates in replication organelles, 2′-O-methylation modification for the evasion of RNA sensors, and blocking of interferon signaling cascades. We also provide information about the potential development of coronavirus vaccines and antiviral drugs.
Collapse
|
372
|
Samudrala PK, Kumar P, Choudhary K, Thakur N, Wadekar GS, Dayaramani R, Agrawal M, Alexander A. Virology, pathogenesis, diagnosis and in-line treatment of COVID-19. Eur J Pharmacol 2020; 883:173375. [PMID: 32682788 PMCID: PMC7366121 DOI: 10.1016/j.ejphar.2020.173375] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 07/09/2020] [Accepted: 07/13/2020] [Indexed: 02/08/2023]
Abstract
SARS-CoV-2, a newly emerged pathogen in December 2019, marked as one of the highly pathogenic Coronavirus, and altogether this is the third coronavirus attack that crossed the species barrier. As of 1st July 2020, it is spreading around 216 countries, areas or territories, and a total of 10,185,374 and 503,862 confirmed cases and death reports, respectively. The SARS-CoV-2 virus entered into the target cells by binding with the hACE2 receptors. Spike glycoprotein promotes the entry of the virus into host target cells. Literature reported a significant mutation in receptor binding sites and membrane proteins of the previous SARS-CoV to turned as SARS-CoV-2 virus, responsible for most dreadful pandemic COVID-19. These modifications may be the probable reason for the extreme transmission and pathogenicity of the virus. A hasty spread of COVID-19 throughout the world is highly threatening, but still, scientists do not have a proper therapeutic measure to fight with it. Scientists are endeavoring across the world to find effective therapy to combat COVID 19. Several drugs such as Remdesivir, Hydroxychloroquine, Chloroquine, Ribavirin, Ritonavir, Lopinavir, Favipiravir, Interferons, Bevacizumab, Azithromycin, etc. are currently under clinical trials. Vaccine development from various pharmaceutical companies and research institutes is under progress, and more than ten vaccine candidates are in the various phases of clinical trials. This review work highlighted the origin, emergence, structural features, pathogenesis, and clinical features of COVID-19. We have also discussed the in-line treatment strategies, preventive measures, and vaccines to combat the emergence of COVID-19.
Collapse
Affiliation(s)
- Pavan Kumar Samudrala
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Guwahati, Department of Pharmaceuticals, Ministry of Chemicals & Fertilizers, Govt. of India, Sila Katamur (Halugurisuk), Changsari, Kamrup, 781101, Guwahati, Assam, India
| | - Pramod Kumar
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER)-Guwahati, Department of Pharmaceuticals, Ministry of Chemicals & Fertilizers, Govt. of India, Sila Katamur (Halugurisuk), Changsari, Kamrup, 781101, Guwahati, Assam, India.
| | - Kamlesh Choudhary
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Guwahati, Department of Pharmaceuticals, Ministry of Chemicals & Fertilizers, Govt. of India, Sila Katamur (Halugurisuk), Changsari, Kamrup, 781101, Guwahati, Assam, India
| | - Nagender Thakur
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER)-Guwahati, Department of Pharmaceuticals, Ministry of Chemicals & Fertilizers, Govt. of India, Sila Katamur (Halugurisuk), Changsari, Kamrup, 781101, Guwahati, Assam, India
| | - Gaurav Suresh Wadekar
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER)-Guwahati, Department of Pharmaceuticals, Ministry of Chemicals & Fertilizers, Govt. of India, Sila Katamur (Halugurisuk), Changsari, Kamrup, 781101, Guwahati, Assam, India
| | | | - Mukta Agrawal
- Rungta College of Pharmaceutical Sciences and Research, Kohka-Kurud Road, Bhilai, 490024, Chhattisgarh, India
| | - Amit Alexander
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER)-Guwahati, Department of Pharmaceuticals, Ministry of Chemicals & Fertilizers, Govt. of India, Sila Katamur (Halugurisuk), Changsari, Kamrup, 781101, Guwahati, Assam, India.
| |
Collapse
|
373
|
Omolo CA, Soni N, Fasiku VO, Mackraj I, Govender T. Update on therapeutic approaches and emerging therapies for SARS-CoV-2 virus. Eur J Pharmacol 2020; 883:173348. [PMID: 32634438 PMCID: PMC7334944 DOI: 10.1016/j.ejphar.2020.173348] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 06/24/2020] [Accepted: 07/02/2020] [Indexed: 02/09/2023]
Abstract
The global pandemic of coronavirus disease 2019 (COVID-19), caused by novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has resulted in over 7,273,958 cases with almost over 413,372 deaths worldwide as per the WHO situational report 143 on COVID-19. There are no known treatment regimens with proven efficacy and vaccines thus far, posing an unprecedented challenge to identify effective drugs and vaccines for prevention and treatment. The urgency for its prevention and cure has resulted in an increased number of proposed treatment options. The high rate and volume of emerging clinical trials on therapies for COVID-19 need to be compared and evaluated to provide scientific evidence for effective medical options. Other emerging non-conventional drug discovery techniques such as bioinformatics and cheminformatics, structure-based drug design, network-based methods for prediction of drug-target interactions, artificial intelligence (AI) and machine learning (ML) and phage technique could provide alternative routes to discovering potent Anti-SARS-CoV2 drugs. While drugs are being repurposed and discovered for COVID-19, novel drug delivery systems will be paramount for efficient delivery and avoidance of possible drug resistance. This review describes the proposed drug targets for therapy, and outcomes of clinical trials that have been reported. It also identifies the adopted treatment modalities that are showing promise, and those that have failed as drug candidates. It further highlights various emerging therapies and future strategies for the treatment of COVID-19 and delivery of Anti-SARS-CoV2 drugs.
Collapse
Affiliation(s)
- Calvin A Omolo
- United States International University-Africa, School of Pharmacy and Health Sciences, Department of Pharmaceutics, P. O. Box 14634-00800, Nairobi, Kenya; Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Private Bag X54001, Durban, South Africa.
| | - Nikki Soni
- United States International University-Africa, School of Pharmacy and Health Sciences, Department of Pharmaceutics, P. O. Box 14634-00800, Nairobi, Kenya
| | - Victoria Oluwaseun Fasiku
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Private Bag X54001, Durban, South Africa
| | - Irene Mackraj
- School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Private Bag X54001, Durban, South Africa
| | - Thirumala Govender
- United States International University-Africa, School of Pharmacy and Health Sciences, Department of Pharmaceutics, P. O. Box 14634-00800, Nairobi, Kenya.
| |
Collapse
|
374
|
Wang Y, Grunewald M, Perlman S. Coronaviruses: An Updated Overview of Their Replication and Pathogenesis. Methods Mol Biol 2020; 2203:1-29. [PMID: 32833200 DOI: 10.1007/978-1-0716-0900-2_1] [Citation(s) in RCA: 121] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Coronaviruses (CoVs), enveloped positive-sense RNA viruses, are characterized by club-like spikes that project from their surface, an unusually large RNA genome, and a unique replication strategy. CoVs cause a variety of diseases in mammals and birds ranging from enteritis in cows and pigs, and upper respiratory tract and kidney disease in chickens to lethal human respiratory infections. Most recently, the novel coronavirus, SARS-CoV-2, which was first identified in Wuhan, China in December 2019, is the cause of a catastrophic pandemic, COVID-19, with more than 8 million infections diagnosed worldwide by mid-June 2020. Here we provide a brief introduction to CoVs discussing their replication, pathogenicity, and current prevention and treatment strategies. We will also discuss the outbreaks of the highly pathogenic Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV) and Middle Eastern Respiratory Syndrome Coronavirus (MERS-CoV), which are relevant for understanding COVID-19.
Collapse
Affiliation(s)
- Yuhang Wang
- Department of Microbiology and Immunology, University of Iowa, Iowa City, IA, USA
| | - Matthew Grunewald
- Department of Microbiology and Immunology, University of Iowa, Iowa City, IA, USA
| | - Stanley Perlman
- Department of Microbiology and Immunology, University of Iowa, Iowa City, IA, USA.
| |
Collapse
|
375
|
Abstract
When caring for patients with coronavirus disease 2019 (COVID-19), clinicians have noticed some unusual clinical presentations not observed before, such as profound hypoxia and severe hypotension. Scientists are probing the evidence to explain these issues and many other unanswered questions. Severe acute respiratory syndrome associated with coronavirus 2 presents an unchartered acute and critical care dilemma. Some of the theories and proposed interventions that will improve outcomes for these critically ill patients are explored in this article. Various testing procedures for COVID-19 are described so valid results can be obtained. Clinical presentations are discussed but continue to evolve as the pandemic ravages our society. The psychological impact of this devastation is also addressed from multiple perspectives. The health care provider is faced with an unprecedented, harrowing situation that has become an internal war that also must be confronted. Professional dedication has provided a formidable response to this destructive virus.
Collapse
Affiliation(s)
- Nancy Munro
- Nancy Munro is Acute Care Nurse Practitioner, Critical Care Medicine Department, National Institutes of Health, 10 Center Dr, Bldg 10-CRC Room 3-3677, Bethesda, MD 20892
| | - Kristine Anne Scordo
- Kristine Anne Scordo is Acute Care Nurse Practitioner, Infectious Diseases, TriHealth, Cincinnati, Ohio
| | - Misty M Richmond
- Misty M. Richmond is Assistant Professor, Wright State University College of Nursing and Health, Dayton, Ohio
| |
Collapse
|
376
|
Hartenian E, Nandakumar D, Lari A, Ly M, Tucker JM, Glaunsinger BA. The molecular virology of coronaviruses. J Biol Chem 2020; 295:12910-12934. [PMID: 32661197 PMCID: PMC7489918 DOI: 10.1074/jbc.rev120.013930] [Citation(s) in RCA: 308] [Impact Index Per Article: 77.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 07/13/2020] [Indexed: 12/14/2022] Open
Abstract
Few human pathogens have been the focus of as much concentrated worldwide attention as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the cause of COVID-19. Its emergence into the human population and ensuing pandemic came on the heels of severe acute respiratory syndrome coronavirus (SARS-CoV) and Middle East respiratory syndrome coronavirus (MERS-CoV), two other highly pathogenic coronavirus spillovers, which collectively have reshaped our view of a virus family previously associated primarily with the common cold. It has placed intense pressure on the collective scientific community to develop therapeutics and vaccines, whose engineering relies on a detailed understanding of coronavirus biology. Here, we present the molecular virology of coronavirus infection, including its entry into cells, its remarkably sophisticated gene expression and replication mechanisms, its extensive remodeling of the intracellular environment, and its multifaceted immune evasion strategies. We highlight aspects of the viral life cycle that may be amenable to antiviral targeting as well as key features of its biology that await discovery.
Collapse
Affiliation(s)
- Ella Hartenian
- Department of Molecular and Cell Biology, University of California, Berkeley, California, USA
| | - Divya Nandakumar
- Department of Plant and Microbial Biology, University of California, Berkeley, California, USA
| | - Azra Lari
- Department of Plant and Microbial Biology, University of California, Berkeley, California, USA
| | - Michael Ly
- Department of Molecular and Cell Biology, University of California, Berkeley, California, USA
| | - Jessica M Tucker
- Department of Plant and Microbial Biology, University of California, Berkeley, California, USA
| | - Britt A Glaunsinger
- Department of Molecular and Cell Biology, University of California, Berkeley, California, USA; Department of Plant and Microbial Biology, University of California, Berkeley, California, USA; Howard Hughes Medical Institute, University of California, Berkeley, California, USA.
| |
Collapse
|
377
|
Shibabaw T, Molla MD, Teferi B, Ayelign B. Role of IFN and Complements System: Innate Immunity in SARS-CoV-2. J Inflamm Res 2020; 13:507-518. [PMID: 32982366 PMCID: PMC7490109 DOI: 10.2147/jir.s267280] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 07/31/2020] [Indexed: 12/23/2022] Open
Abstract
The critical role of the innate immune system has been confirmed in driving local and systemic inflammation and the cytokine release storm in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). This dysregulated immune response is focused on interferon (IFN) and complement activation, which are crucial for the development of metabolic inflammation, local lung tissue damage, and systemic multi-organ failure. IFNs control viral infections by inducing expression of IFN-stimulated genes (ISGs) that restrict distinct steps of viral replication. Therefore, in this review article, we propose the mechanism of SARS-CoV-2-associated acute respiratory disease syndrome, and assess treatment options by considering IFNs and by targeting IFN-antagonist SARS-CoV-2 virulent gene products. Furthermore, we elaborate on the mechanism of the amplified complement-mediated inflammatory cytokine storm, and propose an antiviral and immunotherapeutic strategy against coronavirus disease 2019 (COVID-19).
Collapse
Affiliation(s)
- Tewodros Shibabaw
- Department of Biochemistry, School of Medicine, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| | - Meseret Derbew Molla
- Department of Biochemistry, School of Medicine, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| | - Banchamlak Teferi
- Department of Clinical Pharmacy, School of Pharmacy, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| | - Birhanu Ayelign
- Department of Immunology and Molecular Biology, School of Biomedical and Laboratory Sciences, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| |
Collapse
|
378
|
Strongin AY, Sloutsky A, Cieplak P. A Note on the Potential BCG Vaccination – COVID-19 Molecular Link. ACTA ACUST UNITED AC 2020. [DOI: 10.2174/2666796701999200629003417] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Objective:
Our goal was to elucidate a potential molecular link between the past and current
tuberculosis vaccine Bacillus Calmette-Guérin (BCG; a live attenuated strain of Mycobacterium bovis)
immunization policies and COVID-19.
Methods:
Our sequence homology analyses have demonstrated that there is an intriguing level of sequence
homology between a few of the BCG and Sars-CoV-2 proteins.
Results:
The data suggest that the BCG-specific memory B-cells that are preserved in BCG-vaccinated
patients cross-recognize SARS-CoV-2 and that this cross-recognition may affect the virus proliferation
and COVID-19 severity.
Conclusion:
Our results can stimulate the sharply focused follow-up experimental studies.
Collapse
Affiliation(s)
- Alex Y. Strongin
- Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Rd., La Jolla, CA 92037, United States
| | - Alex Sloutsky
- Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Rd., La Jolla, CA 92037, United States
| | - Piotr Cieplak
- Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Rd., La Jolla, CA 92037, United States
| |
Collapse
|
379
|
Haque SKM, Ashwaq O, Sarief A, Azad John Mohamed AK. A comprehensive review about SARS-CoV-2. Future Virol 2020; 15:625-648. [PMID: 33224265 PMCID: PMC7664148 DOI: 10.2217/fvl-2020-0124] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 09/21/2020] [Indexed: 12/16/2022]
Abstract
The coronavirus disease (COVID-19) was first identified in China, December 2019. Since then, it has spread the length and breadth of the world at an unprecedented, alarming rate. Severe acute respiratory syndrome coronavirus (SARS-CoV)-2, which causes COVID-19, has much in common with its closest homologs, SARS-CoV and Middle East respiratory syndrome-CoV. The virus-host interaction of SARS-CoV-2 uses the same receptor, ACE2, which is similar to that of SARS-CoV, which spreads through the respiratory tract. Patients with COVID-19 report symptoms including mild-to-severe fever, cough and fatigue; very few patients report gastrointestinal infections. There are no specific antiviral strategies. A few strong medications are under investigation, so we have to focus on proposals which ought to be taken to forestall this infection in a living host.
Collapse
Affiliation(s)
- SK Manirul Haque
- Department of Chemical & Process Engineering Technology, Jubail Industrial College, P. O. Box 10099, Jubail Industrial City 31961, Saudi Arabia
| | - Omar Ashwaq
- Department of Chemical & Process Engineering Technology, Jubail Industrial College, P. O. Box 10099, Jubail Industrial City 31961, Saudi Arabia
| | - Abdulla Sarief
- Department of Chemical & Process Engineering Technology, Jubail Industrial College, P. O. Box 10099, Jubail Industrial City 31961, Saudi Arabia
| | - Abdul Kalam Azad John Mohamed
- Department of Chemical & Process Engineering Technology, Jubail Industrial College, P. O. Box 10099, Jubail Industrial City 31961, Saudi Arabia
| |
Collapse
|
380
|
Alamri MA, Altharawi A, Alabbas AB, Alossaimi MA, Alqahtani SM. Structure-based virtual screening and molecular dynamics of phytochemicals derived from Saudi medicinal plants to identify potential COVID-19 therapeutics. ARAB J CHEM 2020; 13:7224-7234. [PMID: 34909058 PMCID: PMC7415226 DOI: 10.1016/j.arabjc.2020.08.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 08/02/2020] [Indexed: 01/26/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19) has affected almost every country in the world by causing a global pandemic with a high mortality rate. Lack of an effective vaccine and/or antiviral drugs against SARS-CoV-2, the causative agent, has severely hampered the response to this novel coronavirus. Natural products have long been used in traditional medicines to treat various diseases, and purified phytochemicals from medicinal plants provide a valuable scaffold for the discovery of new drug leads. In the present study, we performed a computational screening of an in-house database composed of ~1000 phytochemicals derived from traditional Saudi medicinal plants with recognised antiviral activity. Structure-based virtual screening was carried out against three druggable SARS-CoV-2 targets, viral RNA-dependent RNA polymerase (RdRp), 3-chymotrypsin-like cysteine protease (3CLpro) and papain like protease (PLpro) to identify putative inhibitors that could facilitate the development of potential anti-COVID-19 drug candidates. Computational analyses identified three compounds inhibiting each target, with binding affinity scores ranging from -9.9 to -6.5 kcal/mol. Among these, luteolin 7-rutinoside, chrysophanol 8-(6-galloylglucoside) and kaempferol 7-(6″-galloylglucoside) bound efficiently to RdRp, while chrysophanol 8-(6-galloylglucoside), 3,4,5-tri-O-galloylquinic acid and mulberrofuran G interacted strongly with 3CLpro, and withanolide A, isocodonocarpine and calonysterone bound tightly to PLpro. These potential drug candidates will be subjected to further in vitro and in vivo studies and may assist the development of effective anti-COVID-19 drugs.
Collapse
|
381
|
Dos Santos WG. Natural history of COVID-19 and current knowledge on treatment therapeutic options. Biomed Pharmacother 2020; 129:110493. [PMID: 32768971 PMCID: PMC7332915 DOI: 10.1016/j.biopha.2020.110493] [Citation(s) in RCA: 88] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 06/24/2020] [Accepted: 06/30/2020] [Indexed: 02/08/2023] Open
Abstract
Despite intense research there is currently no effective vaccine available against the new severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) emerged in the later 2019 and responsible for the COVID-19 pandemic. This infectious and communicable disease has become one of the major public health challenges in the world. The clinical management of COVID-19 has been limited to infection prevention and control measures associated with supportive care such as supplemental oxygen and mechanical ventilation. Meanwhile efforts to find an effective treatment to inhibit virus replication, mitigate the symptoms, increase survival and decrease mortality rate are ongoing. Several classes of drugs, many of them already in use for other diseases, are being evaluated based on the body of clinical knowledge obtained from infected patients regarding to the natural history and evolution of the infection. Herein we will provide an updated overview of the natural history and current knowledge on drugs and therapeutic agents being tested for the prevention and treatment of COVID-19. These include different classes of drugs such as antiviral agents (chloroquine, ivermectin, nitazoxanide, hydroxychloroquine, lopinavir, remdesivir, tocilizumab), supporting agents (Vitamin C, Vitamin D, azithromycin, corticosteroids) and promising investigational vaccines. Considering the controversies and excessive number of compounds being tested and reported in the literature we hope that this review can provide useful and updated consolidated information on potential drugs used to prevent, control and treat COVID-19 patients worldwide.
Collapse
Affiliation(s)
- Wagner Gouvea Dos Santos
- Laboratory of Genetics and Molecular Biology, Department of Biomedicine, Graduate Program in Applied Health Sciences, Special Academic Unit of Health Sciences, Federal University of Jataí-UFJ, BR 364, Km 195, Nº 3800, CEP 75801-615, Jataí, Goiás, Brazil.
| |
Collapse
|
382
|
Michalska K, Kim Y, Jedrzejczak R, Maltseva NI, Stols L, Endres M, Joachimiak A. Crystal structures of SARS-CoV-2 ADP-ribose phosphatase: from the apo form to ligand complexes. IUCRJ 2020; 7:814-824. [PMID: 32939273 PMCID: PMC7467174 DOI: 10.1107/s2052252520009653] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 07/15/2020] [Indexed: 05/11/2023]
Abstract
Among 15 nonstructural proteins (Nsps), the newly emerging Severe Acute Respiratory Syndrome coronavirus 2 (SARS-CoV-2) encodes a large, multidomain Nsp3. One of its units is the ADP-ribose phosphatase domain (ADRP; also known as the macrodomain, MacroD), which is believed to interfere with the host immune response. Such a function appears to be linked to the ability of the protein to remove ADP-ribose from ADP-ribosylated proteins and RNA, yet the precise role and molecular targets of the enzyme remain unknown. Here, five high-resolution (1.07-2.01 Å) crystal structures corresponding to the apo form of the protein and its complexes with 2-(N-morpholino)ethanesulfonic acid (MES), AMP and ADP-ribose have been determined. The protein is shown to undergo conformational changes to adapt to the ligand in the manner previously observed in close homologues from other viruses. A conserved water molecule is also identified that may participate in hydrolysis. This work builds foundations for future structure-based research on ADRP, including the search for potential antiviral therapeutics.
Collapse
Affiliation(s)
- Karolina Michalska
- Center for Structural Genomics of Infectious Diseases, Consortium for Advanced Science and Engineering, University of Chicago, Chicago, IL 60667, USA
- Structural Biology Center, X-ray Science Division, Argonne National Laboratory, Argonne, IL 60439, USA
| | - Youngchang Kim
- Center for Structural Genomics of Infectious Diseases, Consortium for Advanced Science and Engineering, University of Chicago, Chicago, IL 60667, USA
- Structural Biology Center, X-ray Science Division, Argonne National Laboratory, Argonne, IL 60439, USA
| | - Robert Jedrzejczak
- Center for Structural Genomics of Infectious Diseases, Consortium for Advanced Science and Engineering, University of Chicago, Chicago, IL 60667, USA
- Structural Biology Center, X-ray Science Division, Argonne National Laboratory, Argonne, IL 60439, USA
| | - Natalia I. Maltseva
- Center for Structural Genomics of Infectious Diseases, Consortium for Advanced Science and Engineering, University of Chicago, Chicago, IL 60667, USA
- Structural Biology Center, X-ray Science Division, Argonne National Laboratory, Argonne, IL 60439, USA
| | - Lucy Stols
- Center for Structural Genomics of Infectious Diseases, Consortium for Advanced Science and Engineering, University of Chicago, Chicago, IL 60667, USA
| | - Michael Endres
- Structural Biology Center, X-ray Science Division, Argonne National Laboratory, Argonne, IL 60439, USA
| | - Andrzej Joachimiak
- Center for Structural Genomics of Infectious Diseases, Consortium for Advanced Science and Engineering, University of Chicago, Chicago, IL 60667, USA
- Structural Biology Center, X-ray Science Division, Argonne National Laboratory, Argonne, IL 60439, USA
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL 60367, USA
| |
Collapse
|
383
|
Angelopoulou A, Alexandris N, Konstantinou E, Mesiakaris K, Zanidis C, Farsalinos K, Poulas K. Imiquimod - A toll like receptor 7 agonist - Is an ideal option for management of COVID 19. ENVIRONMENTAL RESEARCH 2020; 188:109858. [PMID: 32846644 PMCID: PMC7309930 DOI: 10.1016/j.envres.2020.109858] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 06/17/2020] [Accepted: 06/19/2020] [Indexed: 05/17/2023]
Abstract
According to numerous recent publications, the COVID-19 patients have lymphopenia, higher infection-related biomarkers and several elevated inflammatory cytokines (i.e. tumor necrosis factor (TNF)-α, interleukin IL-2R and IL-6). The total number of B cells, T cells and NK cells are significantly decreased. RNA viruses, SARS-CoV-2 included, hit the innate immune system in order to cause infection, through TLRs 3, 7 and 8. Imiquimod is an immune-stimulator that activates TLR 7 and can be used to enhance the innate and adaptive immunity. Preclinical and clinical trials are proposed.
Collapse
Affiliation(s)
- Athina Angelopoulou
- Laboratory of Molecular Biology and Immunology, Department of Pharmacy, University of Patras, 26500, Greece
| | - Nikos Alexandris
- Laboratory of Molecular Biology and Immunology, Department of Pharmacy, University of Patras, 26500, Greece
| | - Evangelia Konstantinou
- Laboratory of Molecular Biology and Immunology, Department of Pharmacy, University of Patras, 26500, Greece
| | - Konstantinos Mesiakaris
- Laboratory of Molecular Biology and Immunology, Department of Pharmacy, University of Patras, 26500, Greece
| | - Charilaos Zanidis
- Laboratory of Molecular Biology and Immunology, Department of Pharmacy, University of Patras, 26500, Greece
| | - Konstantinos Farsalinos
- Laboratory of Molecular Biology and Immunology, Department of Pharmacy, University of Patras, 26500, Greece
| | - Konstantinos Poulas
- Laboratory of Molecular Biology and Immunology, Department of Pharmacy, University of Patras, 26500, Greece.
| |
Collapse
|
384
|
Joshi S, Joshi M, Degani MS. Tackling SARS-CoV-2: proposed targets and repurposed drugs. Future Med Chem 2020; 12:1579-1601. [PMID: 32564623 PMCID: PMC7307730 DOI: 10.4155/fmc-2020-0147] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 06/03/2020] [Indexed: 12/15/2022] Open
Abstract
The SARS-CoV-2 pandemic, declared as a global health emergency by the WHO in February 2020, has currently infected more than 6 million people with fatalities near 371,000 and increasing exponentially, in absence of vaccines and drugs. The pathogenesis of SARS-CoV-2 is still being elucidated. Identifying potential targets and repurposing drugs as therapeutic options is the need of the hour. In this review, we focus on potential druggable targets and suitable therapeutics, currently being explored in clinical trials, to treat SARS-CoV-2 infection. A brief understanding of the complex interactions of both viral as well as host targets, and the possible repurposed drug candidates are described with an emphasis on understanding the mechanisms at the molecular level.
Collapse
Affiliation(s)
- Siddhi Joshi
- Department of Pharmaceutical Sciences & Technology, Institute of Chemical Technology, Nathalal Parekh Marg, Mumbai, 400019, Maharashtra, India
| | - Maithili Joshi
- Department of Pharmaceutical Sciences & Technology, Institute of Chemical Technology, Nathalal Parekh Marg, Mumbai, 400019, Maharashtra, India
| | - Mariam S Degani
- Department of Pharmaceutical Sciences & Technology, Institute of Chemical Technology, Nathalal Parekh Marg, Mumbai, 400019, Maharashtra, India
| |
Collapse
|
385
|
Marghalani AM, Althumali IM, Yousef LM, Alharthi MA, Alahmari ZS, Kabel AM. Coronavirus disease 2019 (COVID-19): Insights into the recent trends and the role of the primary care in diabetic patients. J Family Med Prim Care 2020; 9:3843-3847. [PMID: 33110777 PMCID: PMC7586637 DOI: 10.4103/jfmpc.jfmpc_683_20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 06/10/2020] [Accepted: 07/01/2020] [Indexed: 01/04/2023] Open
Abstract
Diseases with viral etiology continue to emerge in the last years and may represent serious problems that affect various aspects of life. Coronaviruses are a large family of RNA viruses that cause illness affecting the respiratory tract ranging from common cold to severe respiratory distress syndrome. In the last weeks of 2019, enormous cases of unexplained pneumonia were reported in China. Few days later, a novel type of coronavirus was identified as the causative agent of these cases and the disease was named as coronavirus disease 2019 (COVID-19) by the World Health Organization. The disease was rapidly spreading in China and all over the world and now it is considered as pandemic catastrophe. It can be transmitted from animals to human and from human to human. Diabetes mellitus may represent a potential risk factor for the development of COVID-19, possibly due to the relative state of immunosuppression frequently encountered in diabetic patients. This review sheds light on COVID-19 based on the currently available data with reference to the role of the primary care in diabetic patients.
Collapse
Affiliation(s)
| | | | | | | | | | - Ahmed M Kabel
- Department of Clinical Pharmacy, College of Pharmacy, Taif University, Taif, KSA.,Department of Pharmacology, Faculty of Medicine, Tanta University, Tanta, Egypt
| |
Collapse
|
386
|
Meini S, Zanichelli A, Sbrojavacca R, Iuri F, Roberts AT, Suffritti C, Tascini C. Understanding the Pathophysiology of COVID-19: Could the Contact System Be the Key? Front Immunol 2020; 11:2014. [PMID: 32849666 PMCID: PMC7432138 DOI: 10.3389/fimmu.2020.02014] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 07/24/2020] [Indexed: 12/20/2022] Open
Abstract
To date the pathophysiology of COVID-19 remains unclear: this represents a factor determining the current lack of effective treatments. In this paper, we hypothesized a complex host response to SARS-CoV-2, with the Contact System (CS) playing a pivotal role in innate immune response. CS is linked with different proteolytic defense systems operating in human vasculature: the Kallikrein–Kinin (KKS), the Coagulation/Fibrinolysis and the Renin–Angiotensin (RAS) Systems. We investigated the role of the mediators involved. CS consists of Factor XII (FXII) and plasma prekallikrein (complexed to high-molecular-weight kininogen-HK). Autoactivation of FXII by contact with SARS-CoV-2 could lead to activation of intrinsic coagulation, with fibrin formation (microthrombosis), and fibrinolysis, resulting in increased D-dimer levels. Activation of kallikrein by activated FXII leads to production of bradykinin (BK) from HK. BK binds to B2-receptors, mediating vascular permeability, vasodilation and edema. B1-receptors, binding the metabolite [des-Arg9]-BK (DABK), are up-regulated during infections and mediate lung inflammatory responses. BK could play a relevant role in COVID-19 as already described for other viral models. Angiotensin-Converting-Enzyme (ACE) 2 displays lung protective effects: it inactivates DABK and converts Angiotensin II (Ang II) into Angiotensin-(1-7) and Angiotensin I into Angiotensin-(1-9). SARS-CoV-2 binds to ACE2 for cell entry, downregulating it: an impaired DABK inactivation could lead to an enhanced activity of B1-receptors, and the accumulation of Ang II, through a negative feedback loop, may result in decreased ACE activity, with consequent increase of BK. Therapies targeting the CS, the KKS and action of BK could be effective for the treatment of COVID-19.
Collapse
Affiliation(s)
- Simone Meini
- Internal Medicine Unit, Azienda USL Toscana Centro, Santa Maria Annunziata Hospital, Florence, Italy
| | - Andrea Zanichelli
- General Medicine Unit, ASST Fatebenefratelli Sacco, Ospedale Luigi Sacco-Università degli Studi di Milano, Milan, Italy
| | - Rodolfo Sbrojavacca
- Infectious Diseases Clinic, Santa Maria Misericordia Hospital, Università degli Studi di Udine, Udine, Italy
| | - Federico Iuri
- Department of Emergency, Santa Maria Misericordia Hospital, Università degli Studi di Udine, Udine, Italy
| | | | - Chiara Suffritti
- General Medicine Unit, ASST Fatebenefratelli Sacco, Ospedale Luigi Sacco-Università degli Studi di Milano, Milan, Italy
| | - Carlo Tascini
- Infectious Diseases Clinic, Santa Maria Misericordia Hospital, Università degli Studi di Udine, Udine, Italy
| |
Collapse
|
387
|
Zhang P, Yu L, Dong J, Liu Y, Zhang L, Liang P, Wang L, Chen B, Huang L, Song C. Cellular poly(C) binding protein 2 interacts with porcine epidemic diarrhea virus papain-like protease 1 and supports viral replication. Vet Microbiol 2020; 247:108793. [PMID: 32768236 PMCID: PMC7355335 DOI: 10.1016/j.vetmic.2020.108793] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 07/06/2020] [Accepted: 07/08/2020] [Indexed: 12/15/2022]
Abstract
PLP1 promotes PEDV replication and inhibits expression of TNF-α induced IFN-β. PLP1 interacts with cellular PCBP2. PCBP2 expression affects PEDV replication. The interaction of PCBP2 and PLP1 supports PEDV replication.
Porcine epidemic diarrhea virus (PEDV) belongs to the Alphacoronavirus genus in the Coronaviridae family. Similar to other coronaviruses, PEDV encodes two papain-like proteases. Papain-like protease (PLP)2 has been proposed to play a key role in antagonizing host innate immunity. However, the function of PLP1 remains unclear. In this study, we found that overexpression of PLP1 significantly promoted PEDV replication and inhibited production of interferon-β. Immunoprecipitation and mass spectrometry were used to identify cellular interaction partners of PLP1. Host cell poly(C) binding protein 2 (PCBP2) was determined to bind and interact with PLP1. Both endogenous and overexpressed PCBP2 co-localized with PLP1 in the cytoplasm. Overexpression of PLP1 upregulated expression of PCBP2. Furthermore, overexpression of PCBP2 promoted PEDV replication. Silencing of endogenous PCBP2 using small interfering RNAs attenuated PEDV replication. Taken together, these data demonstrated that PLP1 negatively regulated the production of type 1 interferon by interacting with PCBP2 and promoted PEDV replication.
Collapse
Affiliation(s)
- Pengfei Zhang
- College of Animal Science & National Engineering Center for Swine Breeding Industry, South China Agriculture University, Guangzhou, 510642, China
| | - Linyang Yu
- College of Animal Science & National Engineering Center for Swine Breeding Industry, South China Agriculture University, Guangzhou, 510642, China
| | - Jianguo Dong
- School of Animal Husbandry and Medical Engineering, Xinyang Agriculture and Forestry University, Xinyang 464000, China
| | - Yanling Liu
- College of Animal Science & National Engineering Center for Swine Breeding Industry, South China Agriculture University, Guangzhou, 510642, China
| | - Leyi Zhang
- College of Animal Science & National Engineering Center for Swine Breeding Industry, South China Agriculture University, Guangzhou, 510642, China
| | - Pengshuai Liang
- College of Animal Science & National Engineering Center for Swine Breeding Industry, South China Agriculture University, Guangzhou, 510642, China
| | - Lei Wang
- College of Animal Science & National Engineering Center for Swine Breeding Industry, South China Agriculture University, Guangzhou, 510642, China
| | - Bin Chen
- School of Animal Husbandry and Medical Engineering, Xinyang Agriculture and Forestry University, Xinyang 464000, China
| | - Li Huang
- School of Animal Husbandry and Medical Engineering, Xinyang Agriculture and Forestry University, Xinyang 464000, China.
| | - Changxu Song
- College of Animal Science & National Engineering Center for Swine Breeding Industry, South China Agriculture University, Guangzhou, 510642, China.
| |
Collapse
|
388
|
Zhou R, Zeng R, von Brunn A, Lei J. Structural characterization of the C-terminal domain of SARS-CoV-2 nucleocapsid protein. MOLECULAR BIOMEDICINE 2020; 1:2. [PMID: 34765991 PMCID: PMC7406681 DOI: 10.1186/s43556-020-00001-4] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 07/12/2020] [Indexed: 12/18/2022] Open
Abstract
The newly emerging severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has resulted in a global human health crisis. The CoV nucleocapsid (N) protein plays essential roles both in the viral genomic RNA packaging and the regulation of host cellular machinery. Here, to contribute to the structural information of the N protein, we describe the 2.0 Å crystal structure of the SARS-CoV-2 N protein C-terminal domain (N-CTD). The structure indicates an extensive interaction dimer in a domain-swapped manner. The interface of this dimer was first thoroughly illustrated. Also, the SARS-CoV-2 N-CTD dimerization form was verified in solution using size-exclusion chromatography. Based on the structural comparison of the N-CTDs from alpha-, beta-, and gamma-CoVs, we demonstrate the common and specific characteristics of the SARS-CoV-2 N-CTD. Furthermore, we provide evidence that the SARS-CoV-2 N-CTD possesses the binding ability to single-stranded RNA, single-stranded DNA as well as double-stranded DNA in vitro. In conclusion, this study could potentially accelerate research to understand the complete biological functions of the new CoV N protein.
Collapse
|
389
|
Wolff G, Limpens RWAL, Zevenhoven-Dobbe JC, Laugks U, Zheng S, de Jong AWM, Koning RI, Agard DA, Grünewald K, Koster AJ, Snijder EJ, Bárcena M. A molecular pore spans the double membrane of the coronavirus replication organelle. Science 2020; 369:1395-1398. [PMID: 32763915 PMCID: PMC7665310 DOI: 10.1126/science.abd3629] [Citation(s) in RCA: 325] [Impact Index Per Article: 81.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 07/31/2020] [Indexed: 12/15/2022]
Abstract
Coronaviruses transform host cell membranes into peculiar double-membrane vesicles that have long been thought to accommodate viral genome replication. However, because these compartments appeared to be completely sealed, it has remained unknown how the newly made viral RNA could be exported to the cytosol for translation and packaging into new virions. Wolff et al. used cryo–electron microscopy to identify a molecular pore that spans the double membrane (see the Perspective by Unchwaniwala and Ahlquist). Six copies of a large coronavirus transmembrane protein formed the core of this structure, which may constitute a viral RNA export channel and provide a target for future antiviral interventions. Science, this issue p. 1395; see also p. 1306 Coronavirus genome replication is associated with virus-induced cytosolic double-membrane vesicles, which may provide a tailored microenvironment for viral RNA synthesis in the infected cell. However, it is unclear how newly synthesized genomes and messenger RNAs can travel from these sealed replication compartments to the cytosol to ensure their translation and the assembly of progeny virions. In this study, we used cellular cryo–electron microscopy to visualize a molecular pore complex that spans both membranes of the double-membrane vesicle and would allow export of RNA to the cytosol. A hexameric assembly of a large viral transmembrane protein was found to form the core of the crown-shaped complex. This coronavirus-specific structure likely plays a key role in coronavirus replication and thus constitutes a potential drug target.
Collapse
Affiliation(s)
- Georg Wolff
- Section Electron Microscopy, Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden 2333 ZC, Netherlands
| | - Ronald W A L Limpens
- Section Electron Microscopy, Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden 2333 ZC, Netherlands
| | - Jessika C Zevenhoven-Dobbe
- Molecular Virology Laboratory, Department of Medical Microbiology, Leiden University Medical Center, Leiden 2333 ZA, Netherlands
| | - Ulrike Laugks
- Department of Structural Cell Biology of Viruses, Centre for Structural Systems Biology, Heinrich Pette Institute, Leibnitz Institute of Experimental Virology, 22607 Hamburg, Germany
| | - Shawn Zheng
- Howard Hughes Medical Institute, Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA 94143, USA
| | - Anja W M de Jong
- Section Electron Microscopy, Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden 2333 ZC, Netherlands
| | - Roman I Koning
- Section Electron Microscopy, Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden 2333 ZC, Netherlands
| | - David A Agard
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA 94143, USA
| | - Kay Grünewald
- Department of Structural Cell Biology of Viruses, Centre for Structural Systems Biology, Heinrich Pette Institute, Leibnitz Institute of Experimental Virology, 22607 Hamburg, Germany.,Department of Chemistry, MIN Faculty, Universität Hamburg, 20146 Hamburg, Germany
| | - Abraham J Koster
- Section Electron Microscopy, Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden 2333 ZC, Netherlands
| | - Eric J Snijder
- Molecular Virology Laboratory, Department of Medical Microbiology, Leiden University Medical Center, Leiden 2333 ZA, Netherlands
| | - Montserrat Bárcena
- Section Electron Microscopy, Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden 2333 ZC, Netherlands.
| |
Collapse
|
390
|
Kumar P, Pandey R, Sharma P, Dhar MS, A. V, Uppili B, Vashisht H, Wadhwa S, Tyagi N, Fatihi S, Sharma U, Singh P, Lall H, Datta M, Gupta P, Saini N, Tewari A, Nandi B, Kumar D, Bag S, Gahlot D, Rathore S, Jatana N, Jaiswal V, Gogia H, Madan P, Singh S, Singh P, Dash D, Bala M, Kabra S, Singh S, Mukerji M, Thukral L, Faruq M, Agrawal A, Rakshit P. Integrated genomic view of SARS-CoV-2 in India. Wellcome Open Res 2020; 5:184. [PMID: 32995557 PMCID: PMC7506191 DOI: 10.12688/wellcomeopenres.16119.1] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/15/2020] [Indexed: 01/12/2023] Open
Abstract
Background: India first detected SARS-CoV-2, causal agent of COVID-19 in late January 2020, imported from Wuhan, China. From March 2020 onwards, the importation of cases from countries in the rest of the world followed by seeding of local transmission triggered further outbreaks in India. Methods: We used ARTIC protocol-based tiling amplicon sequencing of SARS-CoV-2 (n=104) from different states of India using a combination of MinION and MinIT sequencing from Oxford Nanopore Technology to understand how introduction and local transmission occurred. Results: The analyses revealed multiple introductions of SARS-CoV-2 genomes, including the A2a cluster from Europe and the USA, A3 cluster from Middle East and A4 cluster (haplotype redefined) from Southeast Asia (Indonesia, Thailand and Malaysia) and Central Asia (Kyrgyzstan). The local transmission and persistence of genomes A4, A2a and A3 was also observed in the studied locations. The most prevalent genomes with patterns of variance (confined in a cluster) remain unclassified, and are here proposed as A4-clade based on its divergence within the A cluster. Conclusions: The viral haplotypes may link their persistence to geo-climatic conditions and host response. Multipronged strategies including molecular surveillance based on real-time viral genomic data is of paramount importance for a timely management of the pandemic.
Collapse
Affiliation(s)
- Pramod Kumar
- Biotechnology Division, National Centre for Disease Control, Delhi, Delhi, 110054, India
| | - Rajesh Pandey
- Department of Genomics and Molecular Medicine, CSIR-Institute of Genomics and Integrative Biology, Delhi, Delhi, 110007, India
| | - Pooja Sharma
- Department of Genomics and Molecular Medicine, CSIR-Institute of Genomics and Integrative Biology, Delhi, Delhi, 110007, India
| | - Mahesh S. Dhar
- Biotechnology Division, National Centre for Disease Control, Delhi, Delhi, 110054, India
| | - Vivekanand A.
- Department of Genomics and Molecular Medicine, CSIR-Institute of Genomics and Integrative Biology, Delhi, Delhi, 110007, India
| | - Bharathram Uppili
- Department of Genomics and Molecular Medicine, CSIR-Institute of Genomics and Integrative Biology, Delhi, Delhi, 110007, India
| | - Himanshu Vashisht
- Biotechnology Division, National Centre for Disease Control, Delhi, Delhi, 110054, India
| | - Saruchi Wadhwa
- Department of Genomics and Molecular Medicine, CSIR-Institute of Genomics and Integrative Biology, Delhi, Delhi, 110007, India
| | - Nishu Tyagi
- Department of Genomics and Molecular Medicine, CSIR-Institute of Genomics and Integrative Biology, Delhi, Delhi, 110007, India
| | - Saman Fatihi
- Department of Genomics and Molecular Medicine, CSIR-Institute of Genomics and Integrative Biology, Delhi, Delhi, 110007, India
| | - Uma Sharma
- Biotechnology Division, National Centre for Disease Control, Delhi, Delhi, 110054, India
| | - Priyanka Singh
- Biotechnology Division, National Centre for Disease Control, Delhi, Delhi, 110054, India
| | - Hemlata Lall
- Biotechnology Division, National Centre for Disease Control, Delhi, Delhi, 110054, India
| | - Meena Datta
- Biotechnology Division, National Centre for Disease Control, Delhi, Delhi, 110054, India
| | - Poonam Gupta
- Biotechnology Division, National Centre for Disease Control, Delhi, Delhi, 110054, India
| | - Nidhi Saini
- Biotechnology Division, National Centre for Disease Control, Delhi, Delhi, 110054, India
| | - Aarti Tewari
- Biotechnology Division, National Centre for Disease Control, Delhi, Delhi, 110054, India
| | - Bibhash Nandi
- Biotechnology Division, National Centre for Disease Control, Delhi, Delhi, 110054, India
| | - Dhirendra Kumar
- Biotechnology Division, National Centre for Disease Control, Delhi, Delhi, 110054, India
| | - Satyabrata Bag
- Biotechnology Division, National Centre for Disease Control, Delhi, Delhi, 110054, India
| | - Deepanshi Gahlot
- Department of Genomics and Molecular Medicine, CSIR-Institute of Genomics and Integrative Biology, Delhi, Delhi, 110007, India
| | - Surabhi Rathore
- Department of Genomics and Molecular Medicine, CSIR-Institute of Genomics and Integrative Biology, Delhi, Delhi, 110007, India
| | - Nidhi Jatana
- Department of Genomics and Molecular Medicine, CSIR-Institute of Genomics and Integrative Biology, Delhi, Delhi, 110007, India
| | - Varun Jaiswal
- Biotechnology Division, National Centre for Disease Control, Delhi, Delhi, 110054, India
| | - Hema Gogia
- Biotechnology Division, National Centre for Disease Control, Delhi, Delhi, 110054, India
| | - Preeti Madan
- Biotechnology Division, National Centre for Disease Control, Delhi, Delhi, 110054, India
| | - Simrita Singh
- Biotechnology Division, National Centre for Disease Control, Delhi, Delhi, 110054, India
| | - Prateek Singh
- Department of Genomics and Molecular Medicine, CSIR-Institute of Genomics and Integrative Biology, Delhi, Delhi, 110007, India
| | - Debasis Dash
- Department of Genomics and Molecular Medicine, CSIR-Institute of Genomics and Integrative Biology, Delhi, Delhi, 110007, India
| | - Manju Bala
- Biotechnology Division, National Centre for Disease Control, Delhi, Delhi, 110054, India
| | - Sandhya Kabra
- Biotechnology Division, National Centre for Disease Control, Delhi, Delhi, 110054, India
| | - Sujeet Singh
- Biotechnology Division, National Centre for Disease Control, Delhi, Delhi, 110054, India
| | - Mitali Mukerji
- Department of Genomics and Molecular Medicine, CSIR-Institute of Genomics and Integrative Biology, Delhi, Delhi, 110007, India
| | - Lipi Thukral
- Department of Genomics and Molecular Medicine, CSIR-Institute of Genomics and Integrative Biology, Delhi, Delhi, 110007, India
| | - Mohammed Faruq
- Department of Genomics and Molecular Medicine, CSIR-Institute of Genomics and Integrative Biology, Delhi, Delhi, 110007, India
| | - Anurag Agrawal
- Department of Genomics and Molecular Medicine, CSIR-Institute of Genomics and Integrative Biology, Delhi, Delhi, 110007, India
| | - Partha Rakshit
- Biotechnology Division, National Centre for Disease Control, Delhi, Delhi, 110054, India
| |
Collapse
|
391
|
Böhmer MM, Buchholz U, Corman VM, Hoch M, Katz K, Marosevic DV, Böhm S, Woudenberg T, Ackermann N, Konrad R, Eberle U, Treis B, Dangel A, Bengs K, Fingerle V, Berger A, Hörmansdorfer S, Ippisch S, Wicklein B, Grahl A, Pörtner K, Muller N, Zeitlmann N, Boender TS, Cai W, Reich A, An der Heiden M, Rexroth U, Hamouda O, Schneider J, Veith T, Mühlemann B, Wölfel R, Antwerpen M, Walter M, Protzer U, Liebl B, Haas W, Sing A, Drosten C, Zapf A. Investigation of a COVID-19 outbreak in Germany resulting from a single travel-associated primary case: a case series. THE LANCET. INFECTIOUS DISEASES 2020; 20:920-928. [PMID: 32422201 PMCID: PMC7228725 DOI: 10.1016/s1473-3099(20)30314-5] [Citation(s) in RCA: 281] [Impact Index Per Article: 70.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 04/09/2020] [Accepted: 04/09/2020] [Indexed: 12/20/2022]
Abstract
BACKGROUND In December, 2019, the newly identified severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) emerged in Wuhan, China, causing COVID-19, a respiratory disease presenting with fever, cough, and often pneumonia. WHO has set the strategic objective to interrupt spread of SARS-CoV-2 worldwide. An outbreak in Bavaria, Germany, starting at the end of January, 2020, provided the opportunity to study transmission events, incubation period, and secondary attack rates. METHODS A case was defined as a person with SARS-CoV-2 infection confirmed by RT-PCR. Case interviews were done to describe timing of onset and nature of symptoms and to identify and classify contacts as high risk (had cumulative face-to-face contact with a confirmed case for ≥15 min, direct contact with secretions or body fluids of a patient with confirmed COVID-19, or, in the case of health-care workers, had worked within 2 m of a patient with confirmed COVID-19 without personal protective equipment) or low risk (all other contacts). High-risk contacts were ordered to stay at home in quarantine for 14 days and were actively followed up and monitored for symptoms, and low-risk contacts were tested upon self-reporting of symptoms. We defined fever and cough as specific symptoms, and defined a prodromal phase as the presence of non-specific symptoms for at least 1 day before the onset of specific symptoms. Whole genome sequencing was used to confirm epidemiological links and clarify transmission events where contact histories were ambiguous; integration with epidemiological data enabled precise reconstruction of exposure events and incubation periods. Secondary attack rates were calculated as the number of cases divided by the number of contacts, using Fisher's exact test for the 95% CIs. FINDINGS Patient 0 was a Chinese resident who visited Germany for professional reasons. 16 subsequent cases, often with mild and non-specific symptoms, emerged in four transmission generations. Signature mutations in the viral genome occurred upon foundation of generation 2, as well as in one case pertaining to generation 4. The median incubation period was 4·0 days (IQR 2·3-4·3) and the median serial interval was 4·0 days (3·0-5·0). Transmission events were likely to have occurred presymptomatically for one case (possibly five more), at the day of symptom onset for four cases (possibly five more), and the remainder after the day of symptom onset or unknown. One or two cases resulted from contact with a case during the prodromal phase. Secondary attack rates were 75·0% (95% CI 19·0-99·0; three of four people) among members of a household cluster in common isolation, 10·0% (1·2-32·0; two of 20) among household contacts only together until isolation of the patient, and 5·1% (2·6-8·9; 11 of 217) among non-household, high-risk contacts. INTERPRETATION Although patients in our study presented with predominately mild, non-specific symptoms, infectiousness before or on the day of symptom onset was substantial. Additionally, the incubation period was often very short and false-negative tests occurred. These results suggest that although the outbreak was controlled, successful long-term and global containment of COVID-19 could be difficult to achieve. FUNDING All authors are employed and all expenses covered by governmental, federal state, or other publicly funded institutions.
Collapse
Affiliation(s)
- Merle M Böhmer
- Bavarian Health and Food Safety Authority, Oberschleissheim, Germany; Institute of Social Medicine and Health Systems Research, Otto-von-Guericke-University, Magdeburg, Germany.
| | | | - Victor M Corman
- Institute of Virology, Charité University Medicine, Berlin, Germany; German Center for Infection Research, Partner Site Munich and Associated Partner Site Charité, Berlin, Germany
| | - Martin Hoch
- Bavarian Health and Food Safety Authority, Oberschleissheim, Germany
| | - Katharina Katz
- Bavarian Health and Food Safety Authority, Oberschleissheim, Germany
| | | | - Stefanie Böhm
- Bavarian Health and Food Safety Authority, Oberschleissheim, Germany; Postgraduate Training for Applied Epidemiology, Berlin, Germany; ECDC Fellowship Programme, Field Epidemiology Path, European Centre for Disease Prevention and Control, Stockholm, Sweden
| | - Tom Woudenberg
- Bavarian Health and Food Safety Authority, Oberschleissheim, Germany; ECDC Fellowship Programme, Field Epidemiology Path, European Centre for Disease Prevention and Control, Stockholm, Sweden
| | | | - Regina Konrad
- Bavarian Health and Food Safety Authority, Oberschleissheim, Germany
| | - Ute Eberle
- Bavarian Health and Food Safety Authority, Oberschleissheim, Germany
| | - Bianca Treis
- Bavarian Health and Food Safety Authority, Oberschleissheim, Germany
| | - Alexandra Dangel
- Bavarian Health and Food Safety Authority, Oberschleissheim, Germany
| | - Katja Bengs
- Bavarian Health and Food Safety Authority, Oberschleissheim, Germany
| | - Volker Fingerle
- Bavarian Health and Food Safety Authority, Oberschleissheim, Germany
| | - Anja Berger
- Bavarian Health and Food Safety Authority, Oberschleissheim, Germany
| | | | - Siegfried Ippisch
- Bavarian Health and Food Safety Authority, Oberschleissheim, Germany
| | - Bernd Wicklein
- Bavarian Health and Food Safety Authority, Oberschleissheim, Germany
| | - Andreas Grahl
- Bavarian Health and Food Safety Authority, Oberschleissheim, Germany
| | - Kirsten Pörtner
- Postgraduate Training for Applied Epidemiology, Berlin, Germany; ECDC Fellowship Programme, Field Epidemiology Path, European Centre for Disease Prevention and Control, Stockholm, Sweden
| | - Nadine Muller
- Postgraduate Training for Applied Epidemiology, Berlin, Germany; ECDC Fellowship Programme, Field Epidemiology Path, European Centre for Disease Prevention and Control, Stockholm, Sweden
| | | | - T Sonia Boender
- Postgraduate Training for Applied Epidemiology, Berlin, Germany; ECDC Fellowship Programme, Field Epidemiology Path, European Centre for Disease Prevention and Control, Stockholm, Sweden
| | - Wei Cai
- Robert Koch Institute, Berlin, Germany
| | | | | | | | | | - Julia Schneider
- Institute of Virology, Charité University Medicine, Berlin, Germany
| | - Talitha Veith
- Institute of Virology, Charité University Medicine, Berlin, Germany
| | - Barbara Mühlemann
- Institute of Virology, Charité University Medicine, Berlin, Germany; German Center for Infection Research, Partner Site Munich and Associated Partner Site Charité, Berlin, Germany
| | - Roman Wölfel
- German Center for Infection Research, Partner Site Munich and Associated Partner Site Charité, Berlin, Germany; Bundeswehr Institute of Microbiology, Munich, Germany
| | - Markus Antwerpen
- German Center for Infection Research, Partner Site Munich and Associated Partner Site Charité, Berlin, Germany; Bundeswehr Institute of Microbiology, Munich, Germany
| | - Mathias Walter
- German Center for Infection Research, Partner Site Munich and Associated Partner Site Charité, Berlin, Germany; Bundeswehr Institute of Microbiology, Munich, Germany
| | - Ulrike Protzer
- German Center for Infection Research, Partner Site Munich and Associated Partner Site Charité, Berlin, Germany; Institute of Virology, Technical University Munich, Munich, Germany
| | - Bernhard Liebl
- Bavarian Health and Food Safety Authority, Oberschleissheim, Germany; Ludwig-Maximilians University, Munich, Germany
| | | | - Andreas Sing
- Bavarian Health and Food Safety Authority, Oberschleissheim, Germany; Ludwig-Maximilians University, Munich, Germany
| | - Christian Drosten
- Institute of Virology, Charité University Medicine, Berlin, Germany; German Center for Infection Research, Partner Site Munich and Associated Partner Site Charité, Berlin, Germany.
| | - Andreas Zapf
- Bavarian Health and Food Safety Authority, Oberschleissheim, Germany
| |
Collapse
|
392
|
Masucci MG. Viral Ubiquitin and Ubiquitin-Like Deconjugases-Swiss Army Knives for Infection. Biomolecules 2020; 10:E1137. [PMID: 32752270 PMCID: PMC7464072 DOI: 10.3390/biom10081137] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 07/31/2020] [Accepted: 07/31/2020] [Indexed: 12/16/2022] Open
Abstract
Posttranslational modifications of cellular proteins by covalent conjugation of ubiquitin and ubiquitin-like polypeptides regulate numerous cellular processes that are captured by viruses to promote infection, replication, and spreading. The importance of these protein modifications for the viral life cycle is underscored by the discovery that many viruses encode deconjugases that reverse their functions. The structural and functional characterization of these viral enzymes and the identification of their viral and cellular substrates is providing valuable insights into the biology of viral infections and the host's antiviral defense. Given the growing body of evidence demonstrating their key contribution to pathogenesis, the viral deconjugases are now recognized as attractive targets for the design of novel antiviral therapeutics.
Collapse
Affiliation(s)
- Maria Grazia Masucci
- Department of Cell and Molecular Biology, Karolinska Institutet, S-17177 Stockholm, Sweden
| |
Collapse
|
393
|
Acharya A, Agarwal R, Baker M, Baudry J, Bhowmik D, Boehm S, Byler KG, Coates L, Chen SY, Cooper CJ, Demerdash O, Daidone I, Eblen JD, Ellingson S, Forli S, Glaser J, Gumbart JC, Gunnels J, Hernandez O, Irle S, Larkin J, Lawrence TJ, LeGrand S, Liu SH, Mitchell JC, Park G, Parks JM, Pavlova A, Petridis L, Poole D, Pouchard L, Ramanathan A, Rogers D, Santos-Martins D, Scheinberg A, Sedova A, Shen S, Smith JC, Smith MD, Soto C, Tsaris A, Thavappiragasam M, Tillack AF, Vermaas JV, Vuong VQ, Yin J, Yoo S, Zahran M, Zanetti-Polzi L. Supercomputer-Based Ensemble Docking Drug Discovery Pipeline with Application to Covid-19. CHEMRXIV : THE PREPRINT SERVER FOR CHEMISTRY 2020:12725465. [PMID: 33200117 PMCID: PMC7668744 DOI: 10.26434/chemrxiv.12725465] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Revised: 07/29/2020] [Indexed: 01/18/2023]
Abstract
We present a supercomputer-driven pipeline for in-silico drug discovery using enhanced sampling molecular dynamics (MD) and ensemble docking. We also describe preliminary results obtained for 23 systems involving eight protein targets of the proteome of SARS CoV-2. THe MD performed is temperature replica-exchange enhanced sampling, making use of the massively parallel supercomputing on the SUMMIT supercomputer at Oak Ridge National Laboratory, with which more than 1ms of enhanced sampling MD can be generated per day. We have ensemble docked repurposing databases to ten configurations of each of the 23 SARS CoV-2 systems using AutoDock Vina. We also demonstrate that using Autodock-GPU on SUMMIT, it is possible to perform exhaustive docking of one billion compounds in under 24 hours. Finally, we discuss preliminary results and planned improvements to the pipeline, including the use of quantum mechanical (QM), machine learning, and AI methods to cluster MD trajectories and rescore docking poses.
Collapse
Affiliation(s)
- A Acharya
- School of Physics, Georgia Institute of Technology, Atlanta, GA 30332
| | - R Agarwal
- UT/ORNL Center for Molecular Biophysics, Oak Ridge National Laboratory, TN, 37830
- The University of Tennessee, Knoxville. Department of Biochemistry & Cellular and Molecular Biology, 309 Ken and Blaire Mossman Bldg. 1311 Cumberland Avenue Knoxville, TN, 37996
- Graduate School of Genome Science and Technology, University of Tennessee, Knoxville, TN, 37996
| | - M Baker
- Computer Science and Mathematics Division, Oak Ridge National Lab, Oak Ridge, TN 37830
| | - J Baudry
- The University of Alabama in Huntsville, Department of Biological Sciences. 301 Sparkman Drive, Huntsville, AL 35899
| | - D Bhowmik
- Computational Sciences and Engineering Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831
| | - S Boehm
- Computer Science and Mathematics Division, Oak Ridge National Lab, Oak Ridge, TN 37830
| | - K G Byler
- The University of Alabama in Huntsville, Department of Biological Sciences. 301 Sparkman Drive, Huntsville, AL 35899
| | - L Coates
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831
| | - S Y Chen
- Computational Science Initiative, Brookhaven National Laboratory, Upton, NY 11973
| | - C J Cooper
- UT/ORNL Center for Molecular Biophysics, Oak Ridge National Laboratory, TN, 37830
- Graduate School of Genome Science and Technology, University of Tennessee, Knoxville, TN, 37996
| | - O Demerdash
- Biosciences Division, Oak Ridge National Lab, Oak Ridge, TN 37830
| | - I Daidone
- Department of Physical and Chemical Sciences, University of L'Aquila, I-67010 L'Aquila, Italy
| | - J D Eblen
- UT/ORNL Center for Molecular Biophysics, Oak Ridge National Laboratory, TN, 37830
- The University of Tennessee, Knoxville. Department of Biochemistry & Cellular and Molecular Biology, 309 Ken and Blaire Mossman Bldg. 1311 Cumberland Avenue Knoxville, TN, 37996
| | - S Ellingson
- University of Kentucky, Division of Biomedical Informatics, College of Medicine, UK Medical Center MN 150, Lexington KY, 40536
| | - S Forli
- Scripps Research, La Jolla, CA, 92037
| | - J Glaser
- National Center for Computational Sciences, Oak Ridge National Laboratory, Oak Ridge, TN 37830
| | - J C Gumbart
- School of Physics, Georgia Institute of Technology, Atlanta, GA 30332
| | - J Gunnels
- HPC Engineering, Amazon Web Services, Seattle, WA 98121
| | - O Hernandez
- Computer Science and Mathematics Division, Oak Ridge National Lab, Oak Ridge, TN 37830
| | - S Irle
- Computational Sciences and Engineering Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831
- Bredesen Center for Interdisciplinary Research and Graduate Education, University of Tennessee, Knoxville, TN 37996
| | - J Larkin
- NVIDIA Corporation, Santa Clara, CA 95051
| | - T J Lawrence
- Biosciences Division, Oak Ridge National Lab, Oak Ridge, TN 37830
| | - S LeGrand
- NVIDIA Corporation, Santa Clara, CA 95051
| | - S-H Liu
- UT/ORNL Center for Molecular Biophysics, Oak Ridge National Laboratory, TN, 37830
- The University of Tennessee, Knoxville. Department of Biochemistry & Cellular and Molecular Biology, 309 Ken and Blaire Mossman Bldg. 1311 Cumberland Avenue Knoxville, TN, 37996
| | - J C Mitchell
- Biosciences Division, Oak Ridge National Lab, Oak Ridge, TN 37830
| | - G Park
- Computational Science Initiative, Brookhaven National Laboratory, Upton, NY 11973
| | - J M Parks
- UT/ORNL Center for Molecular Biophysics, Oak Ridge National Laboratory, TN, 37830
- The University of Tennessee, Knoxville. Department of Biochemistry & Cellular and Molecular Biology, 309 Ken and Blaire Mossman Bldg. 1311 Cumberland Avenue Knoxville, TN, 37996
- Graduate School of Genome Science and Technology, University of Tennessee, Knoxville, TN, 37996
| | - A Pavlova
- School of Physics, Georgia Institute of Technology, Atlanta, GA 30332
| | - L Petridis
- UT/ORNL Center for Molecular Biophysics, Oak Ridge National Laboratory, TN, 37830
- The University of Tennessee, Knoxville. Department of Biochemistry & Cellular and Molecular Biology, 309 Ken and Blaire Mossman Bldg. 1311 Cumberland Avenue Knoxville, TN, 37996
| | - D Poole
- NVIDIA Corporation, Santa Clara, CA 95051
| | - L Pouchard
- Computational Science Initiative, Brookhaven National Laboratory, Upton, NY 11973
| | - A Ramanathan
- Data Science and Learning Division, Argonne National Lab, Lemont, IL 60439
| | - D Rogers
- National Center for Computational Sciences, Oak Ridge National Laboratory, Oak Ridge, TN 37830
| | | | | | - A Sedova
- Biosciences Division, Oak Ridge National Lab, Oak Ridge, TN 37830
| | - S Shen
- UT/ORNL Center for Molecular Biophysics, Oak Ridge National Laboratory, TN, 37830
- The University of Tennessee, Knoxville. Department of Biochemistry & Cellular and Molecular Biology, 309 Ken and Blaire Mossman Bldg. 1311 Cumberland Avenue Knoxville, TN, 37996
- Graduate School of Genome Science and Technology, University of Tennessee, Knoxville, TN, 37996
| | - J C Smith
- UT/ORNL Center for Molecular Biophysics, Oak Ridge National Laboratory, TN, 37830
- The University of Tennessee, Knoxville. Department of Biochemistry & Cellular and Molecular Biology, 309 Ken and Blaire Mossman Bldg. 1311 Cumberland Avenue Knoxville, TN, 37996
| | - M D Smith
- UT/ORNL Center for Molecular Biophysics, Oak Ridge National Laboratory, TN, 37830
- The University of Tennessee, Knoxville. Department of Biochemistry & Cellular and Molecular Biology, 309 Ken and Blaire Mossman Bldg. 1311 Cumberland Avenue Knoxville, TN, 37996
| | - C Soto
- Computational Science Initiative, Brookhaven National Laboratory, Upton, NY 11973
| | - A Tsaris
- National Center for Computational Sciences, Oak Ridge National Laboratory, Oak Ridge, TN 37830
| | | | | | - J V Vermaas
- National Center for Computational Sciences, Oak Ridge National Laboratory, Oak Ridge, TN 37830
| | - V Q Vuong
- Computational Sciences and Engineering Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831
- Bredesen Center for Interdisciplinary Research and Graduate Education, University of Tennessee, Knoxville, TN 37996
| | - J Yin
- National Center for Computational Sciences, Oak Ridge National Laboratory, Oak Ridge, TN 37830
| | - S Yoo
- Computational Science Initiative, Brookhaven National Laboratory, Upton, NY 11973
| | - M Zahran
- Department of Biological Sciences, New York City College of Technology, The City University of New York (CUNY), Brooklyn, NY 11201
| | | |
Collapse
|
394
|
Frick DN, Virdi RS, Vuksanovic N, Dahal N, Silvaggi NR. Molecular Basis for ADP-Ribose Binding to the Mac1 Domain of SARS-CoV-2 nsp3. Biochemistry 2020; 59:2608-2615. [PMID: 32578982 PMCID: PMC7341687 DOI: 10.1021/acs.biochem.0c00309] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 06/22/2020] [Indexed: 12/21/2022]
Abstract
The virus that causes COVID-19, SARS-CoV-2, has a large RNA genome that encodes numerous proteins that might be targets for antiviral drugs. Some of these proteins, such as the RNA-dependent RNA polymerase, helicase, and main protease, are well conserved between SARS-CoV-2 and the original SARS virus, but several others are not. This study examines one of the proteins encoded by SARS-CoV-2 that is most different, a macrodomain of nonstructural protein 3 (nsp3). Although 26% of the amino acids in this SARS-CoV-2 macrodomain differ from those observed in other coronaviruses, biochemical and structural data reveal that the protein retains the ability to bind ADP-ribose, which is an important characteristic of beta coronaviruses and a potential therapeutic target.
Collapse
Affiliation(s)
- David N. Frick
- Department of Chemistry & Biochemistry, The University of Wisconsin- Milwaukee, Milwaukee, WI 53217
| | - Rajdeep S. Virdi
- Department of Chemistry & Biochemistry, The University of Wisconsin- Milwaukee, Milwaukee, WI 53217
| | - Nemanja Vuksanovic
- Department of Chemistry & Biochemistry, The University of Wisconsin- Milwaukee, Milwaukee, WI 53217
| | - Narayan Dahal
- Department of Physics, The University of Wisconsin- Milwaukee, Milwaukee, WI 53217
| | - Nicholas R. Silvaggi
- Department of Chemistry & Biochemistry, The University of Wisconsin- Milwaukee, Milwaukee, WI 53217
| |
Collapse
|
395
|
Gervasoni S, Vistoli G, Talarico C, Manelfi C, Beccari AR, Studer G, Tauriello G, Waterhouse AM, Schwede T, Pedretti A. A Comprehensive Mapping of the Druggable Cavities within the SARS-CoV-2 Therapeutically Relevant Proteins by Combining Pocket and Docking Searches as Implemented in Pockets 2.0. Int J Mol Sci 2020; 21:ijms21145152. [PMID: 32708196 PMCID: PMC7403965 DOI: 10.3390/ijms21145152] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 07/10/2020] [Accepted: 07/14/2020] [Indexed: 12/14/2022] Open
Abstract
(1) Background: Virtual screening studies on the therapeutically relevant proteins of the severe acute respiratory syndrome Coronavirus 2 (SARS-CoV-2) require a detailed characterization of their druggable binding sites, and, more generally, a convenient pocket mapping represents a key step for structure-based in silico studies; (2) Methods: Along with a careful literature search on SARS-CoV-2 protein targets, the study presents a novel strategy for pocket mapping based on the combination of pocket (as performed by the well-known FPocket tool) and docking searches (as performed by PLANTS or AutoDock/Vina engines); such an approach is implemented by the Pockets 2.0 plug-in for the VEGA ZZ suite of programs; (3) Results: The literature analysis allowed the identification of 16 promising binding cavities within the SARS-CoV-2 proteins and the here proposed approach was able to recognize them showing performances clearly better than those reached by the sole pocket detection; and (4) Conclusions: Even though the presented strategy should require more extended validations, this proved successful in precisely characterizing a set of SARS-CoV-2 druggable binding pockets including both orthosteric and allosteric sites, which are clearly amenable for virtual screening campaigns and drug repurposing studies. All results generated by the study and the Pockets 2.0 plug-in are available for download.
Collapse
Affiliation(s)
- Silvia Gervasoni
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, Via Mangiagalli, 25, I-20133 Milano, Italy; (S.G.); (G.V.)
| | - Giulio Vistoli
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, Via Mangiagalli, 25, I-20133 Milano, Italy; (S.G.); (G.V.)
| | - Carmine Talarico
- Dompé Farmaceutici SpA, Via Campo di Pile, I-67100 L’Aquila, Italy; (C.T.); (C.M.); (A.R.B.)
| | - Candida Manelfi
- Dompé Farmaceutici SpA, Via Campo di Pile, I-67100 L’Aquila, Italy; (C.T.); (C.M.); (A.R.B.)
| | - Andrea R. Beccari
- Dompé Farmaceutici SpA, Via Campo di Pile, I-67100 L’Aquila, Italy; (C.T.); (C.M.); (A.R.B.)
| | - Gabriel Studer
- Biozentrum, University of Basel, Klingelbergstrasse 50-70, CH-4056 Basel, Switzerland; (G.S.); (G.T.); (A.M.W.); (T.S.)
- SIB Swiss Institute of Bioinformatics, Biozentrum, University of Basel, Klingelbergstrasse 50-70, CH-4056 Basel, Switzerland
| | - Gerardo Tauriello
- Biozentrum, University of Basel, Klingelbergstrasse 50-70, CH-4056 Basel, Switzerland; (G.S.); (G.T.); (A.M.W.); (T.S.)
- SIB Swiss Institute of Bioinformatics, Biozentrum, University of Basel, Klingelbergstrasse 50-70, CH-4056 Basel, Switzerland
| | - Andrew Mark Waterhouse
- Biozentrum, University of Basel, Klingelbergstrasse 50-70, CH-4056 Basel, Switzerland; (G.S.); (G.T.); (A.M.W.); (T.S.)
- SIB Swiss Institute of Bioinformatics, Biozentrum, University of Basel, Klingelbergstrasse 50-70, CH-4056 Basel, Switzerland
| | - Torsten Schwede
- Biozentrum, University of Basel, Klingelbergstrasse 50-70, CH-4056 Basel, Switzerland; (G.S.); (G.T.); (A.M.W.); (T.S.)
- SIB Swiss Institute of Bioinformatics, Biozentrum, University of Basel, Klingelbergstrasse 50-70, CH-4056 Basel, Switzerland
| | - Alessandro Pedretti
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, Via Mangiagalli, 25, I-20133 Milano, Italy; (S.G.); (G.V.)
- Correspondence: ; Tel.: +39-02-503-19332
| |
Collapse
|
396
|
Parlikar A, Kalia K, Sinha S, Patnaik S, Sharma N, Vemuri SG, Sharma G. Understanding genomic diversity, pan-genome, and evolution of SARS-CoV-2. PeerJ 2020; 8:e9576. [PMID: 32742815 PMCID: PMC7370936 DOI: 10.7717/peerj.9576] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 06/29/2020] [Indexed: 01/10/2023] Open
Abstract
Coronovirus disease 2019 (COVID-19) infection, which originated from Wuhan, China, has seized the whole world in its grasp and created a huge pandemic situation before humanity. Since December 2019, genomes of numerous isolates have been sequenced and analyzed for testing confirmation, epidemiology, and evolutionary studies. In the first half of this article, we provide a detailed review of the history and origin of COVID-19, followed by the taxonomy, nomenclature and genome organization of its causative agent Severe Acute Respiratory Syndrome-related Coronavirus-2 (SARS-CoV-2). In the latter half, we analyze subgenus Sarbecovirus (167 SARS-CoV-2, 312 SARS-CoV, and 5 Pangolin CoV) genomes to understand their diversity, origin, and evolution, along with pan-genome analysis of genus Betacoronavirus members. Whole-genome sequence-based phylogeny of subgenus Sarbecovirus genomes reasserted the fact that SARS-CoV-2 strains evolved from their common ancestors putatively residing in bat or pangolin hosts. We predicted a few country-specific patterns of relatedness and identified mutational hotspots with high, medium and low probability based on genome alignment of 167 SARS-CoV-2 strains. A total of 100-nucleotide segment-based homology studies revealed that the majority of the SARS-CoV-2 genome segments are close to Bat CoV, followed by some to Pangolin CoV, and some are unique ones. Open pan-genome of genus Betacoronavirus members indicates the diversity contributed by the novel viruses emerging in this group. Overall, the exploration of the diversity of these isolates, mutational hotspots and pan-genome will shed light on the evolution and pathogenicity of SARS-CoV-2 and help in developing putative methods of diagnosis and treatment.
Collapse
Affiliation(s)
- Arohi Parlikar
- Institute of Bioinformatics and Applied Biotechnology (IBAB), Bengaluru, Karnataka, India
| | - Kishan Kalia
- Institute of Bioinformatics and Applied Biotechnology (IBAB), Bengaluru, Karnataka, India
| | - Shruti Sinha
- Institute of Bioinformatics and Applied Biotechnology (IBAB), Bengaluru, Karnataka, India
| | - Sucheta Patnaik
- Institute of Bioinformatics and Applied Biotechnology (IBAB), Bengaluru, Karnataka, India
| | - Neeraj Sharma
- Institute of Bioinformatics and Applied Biotechnology (IBAB), Bengaluru, Karnataka, India
| | - Sai Gayatri Vemuri
- Institute of Bioinformatics and Applied Biotechnology (IBAB), Bengaluru, Karnataka, India
| | - Gaurav Sharma
- Institute of Bioinformatics and Applied Biotechnology (IBAB), Bengaluru, Karnataka, India
| |
Collapse
|
397
|
Hognon C, Miclot T, García-Iriepa C, Francés-Monerris A, Grandemange S, Terenzi A, Marazzi M, Barone G, Monari A. Role of RNA Guanine Quadruplexes in Favoring the Dimerization of SARS Unique Domain in Coronaviruses. J Phys Chem Lett 2020; 11:5661-5667. [PMID: 32536162 PMCID: PMC7331935 DOI: 10.1021/acs.jpclett.0c01097] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 06/14/2020] [Indexed: 05/16/2023]
Abstract
Coronaviruses may produce severe acute respiratory syndrome (SARS). As a matter of fact, a new SARS-type virus, SARS-CoV-2, is responsible for the global pandemic in 2020 with unprecedented sanitary and economic consequences for most countries. In the present contribution we study, by all-atom equilibrium and enhanced sampling molecular dynamics simulations, the interaction between the SARS Unique Domain and RNA guanine quadruplexes, a process involved in eluding the defensive response of the host thus favoring viral infection of human cells. Our results evidence two stable binding modes involving an interaction site spanning either the protein dimer interface or only one monomer. The free energy profile unequivocally points to the dimer mode as the thermodynamically favored one. The effect of these binding modes in stabilizing the protein dimer was also assessed, being related to its biological role in assisting the SARS viruses to bypass the host protective response. This work also constitutes a first step in the possible rational design of efficient therapeutic agents aiming at perturbing the interaction between SARS Unique Domain and guanine quadruplexes, hence enhancing the host defenses against the virus.
Collapse
Affiliation(s)
- Cécilia Hognon
- Université de
Lorraine and CNRS, LPCT UMR 7019, F-54000 Nancy,
France
| | - Tom Miclot
- Université de
Lorraine and CNRS, LPCT UMR 7019, F-54000 Nancy,
France
- Department of Biological, Chemical and
Pharmaceutical Sciences and Technologies,
Università degli Studi di
Palermo, Viale delle Scienze, 90128 Palermo,
Italy
| | - Cristina García-Iriepa
- Department of Analytical Chemistry,
Physical Chemistry and Chemical Engineering, Universidad
de Alcalá, Ctra. Madrid-Barcelona, Km
33,600, 28871 Alcalá de Henares, Madrid,
Spain
- Chemical Research Institute
“Andrés M. del Río” (IQAR),
Universidad de Alcalá, 28871
Alcalá de Henares, Madrid, Spain
| | - Antonio Francés-Monerris
- Université de
Lorraine and CNRS, LPCT UMR 7019, F-54000 Nancy,
France
- Departament de Química
Física, Universitat de
València, 46100 Burjassot,
Spain
| | | | - Alessio Terenzi
- Department of Biological, Chemical and
Pharmaceutical Sciences and Technologies,
Università degli Studi di
Palermo, Viale delle Scienze, 90128 Palermo,
Italy
| | - Marco Marazzi
- Department of Analytical Chemistry,
Physical Chemistry and Chemical Engineering, Universidad
de Alcalá, Ctra. Madrid-Barcelona, Km
33,600, 28871 Alcalá de Henares, Madrid,
Spain
- Chemical Research Institute
“Andrés M. del Río” (IQAR),
Universidad de Alcalá, 28871
Alcalá de Henares, Madrid, Spain
| | - Giampaolo Barone
- Department of Biological, Chemical and
Pharmaceutical Sciences and Technologies,
Università degli Studi di
Palermo, Viale delle Scienze, 90128 Palermo,
Italy
| | - Antonio Monari
- Université de
Lorraine and CNRS, LPCT UMR 7019, F-54000 Nancy,
France
| |
Collapse
|
398
|
Weisberg E, Sattler M, Yang PL, Parent A, Gray N, Griffin JD. Current therapies under investigation for COVID-19: potential COVID-19 treatments. Can J Physiol Pharmacol 2020; 98:483-489. [PMID: 32640179 DOI: 10.1139/cjpp-2020-0286] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
In response to the outbreak of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), researchers are expeditiously searching for antiviral treatments able to alleviate the symptoms of infection, which can be life-threatening. Here, we provide a general overview of what is currently known about the structure and characteristic features of SARS-CoV-2, some of which could potentially be exploited for the purposes of antiviral therapy and vaccine development. This minireview also covers selected and noteworthy antiviral agents/supportive therapy out of hundreds of drugs that are being repurposed or tested as potential treatments for COVID-19, the disease caused by SARS-CoV-2.
Collapse
Affiliation(s)
- Ellen Weisberg
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA.,Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Martin Sattler
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA.,Department of Medicine, Harvard Medical School, Boston, MA 02115, USA.,Department of Surgery, Brigham and Women's Hospital, MA 02115, USA
| | - Priscilla L Yang
- Department of Cancer Cell Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA.,Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Alexander Parent
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA.,Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Nathanael Gray
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - James D Griffin
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA.,Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
399
|
Gupta A, Kumar S, Kumar R, Choudhary AK, Kumari K, Singh P, Kumar V. COVID-19: Emergence of Infectious Diseases, Nanotechnology Aspects, Challenges, and Future Perspectives. ChemistrySelect 2020; 5:7521-7533. [PMID: 32835089 PMCID: PMC7361534 DOI: 10.1002/slct.202001709] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Accepted: 06/22/2020] [Indexed: 01/08/2023]
Abstract
Wuhan, a city of China, is the epicenter for the pandemic outbreak of coronavirus disease-2019 (COVID-19). It has become a severe public health challenge to the world and established a public health emergency of international worry. This infectious disease has pulled down the economy of almost all top developed nations. The coronaviruses (CoVs) known for various epidemics caused time to time. Infectious diseases such as severe acute respiratory syndrome (SARS) and middle east respiratory syndrome (MERS), followed by COVID-19, are all coronaviruses led outbreaks that scourged the history of mankind. CoVs evolved themselves to more infectious, transmissible, and more pandemic with time. To prevent the spread of the SARS-CoV-2, many countries have ordered the complete lockdown to combat the outbreak. This paper briefly discussed the historical background of CoVs and the evolution of human coronaviruses (HCoVs), the case studies and the development of their antiviral medications. The viral infection encountered with present-day challenges and futuristic approaches with the help of nanotechnology to minimize the spread of infectious viruses. The antiviral drugs and their clinical advances, along with herbal medicines for viral inhibition and immunity boosters, are described. Elaboration of tables related to CoVs for the compilation of the literature has been adopted for the better understanding.
Collapse
Affiliation(s)
- Akanksha Gupta
- Department of ChemistrySri Venkateswara CollegeUniversity of DelhiIndia.
| | - Sanjay Kumar
- Department of ChemistryDeshbandhu CollegeUniversity of DelhiIndia.
| | - Ravinder Kumar
- Department of Chemistry, Gurukula Kangri VishwavidyalayaHaridwarIndia.
| | | | - Kamlesh Kumari
- Department of ZoologyDeen Dayal Upadhyaya CollegeDelhiIndia.
| | - Prashant Singh
- Department of ChemistryAtma Ram Sanatan Dharma CollegeDelhi UniversityNew DelhiIndia.
| | - Vinod Kumar
- Department of ChemistryKirori Mal CollegeUniversity of DelhiIndia
- Special Centre for Nano SciencesJawaharlal Nehru UniversityDelhiIndia
| |
Collapse
|
400
|
Zhirnov OP. Molecular Targets in the Chemotherapy of Coronavirus Infection. BIOCHEMISTRY (MOSCOW) 2020; 85:523-530. [PMID: 32571182 PMCID: PMC7232917 DOI: 10.1134/s0006297920050016] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
In the pathogenesis of the infectious process in the respiratory tract by SARS, MERS, and COVID-19 coronaviruses, two stages can be distinguished: early (etiotropic) and late (pathogenetic) ones. In the first stage, when the virus multiplication and accumulation are prevalent under insufficient host immune response, the use of chemotherapeutic agents blocking the reproduction of the virus is reasonable to suppress the development of the disease. This article considers six major chemotherapeutic classes aimed at certain viral targets: inhibitors of viral RNA polymerase, inhibitors of viral protease Mpro, inhibitors of proteolytic activation of viral protein S allowing virus entry into the target cell, inhibitors of virus uncoating in cellular endosomes, compounds of exogenous interferons, and compounds of natural and recombinant virus-neutralizing antibodies. In the second stage, when the multiplication of the virus decreases and threatening pathological processes of excessive inflammation, acute respiratory distress syndrome, pulmonary edema, hypoxia, and secondary bacterial pneumonia and sepsis events develop, a pathogenetic therapeutic approach including extracorporeal blood oxygenation, detoxification, and anti-inflammatory and anti-bacterial therapy seems to be the most effective way for the patient’s recovery.
Collapse
Affiliation(s)
- O P Zhirnov
- The Russian-German Academy of Medical and Biotechnological Sciences, Moscow, 121205, Skolkovo, Russia. .,Ivanovsky Institute of Virology, Gamaleya Scientific Research Institute of Epidemiology and Microbiology, Moscow, 123098, Russia
| |
Collapse
|