351
|
Tao T, Liu M, Chen M, Luo Y, Wang C, Xu T, Jiang Y, Guo Y, Zhang JH. Natural medicine in neuroprotection for ischemic stroke: Challenges and prospective. Pharmacol Ther 2020; 216:107695. [DOI: 10.1016/j.pharmthera.2020.107695] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 09/23/2020] [Accepted: 09/23/2020] [Indexed: 12/13/2022]
|
352
|
Deng W, Mandeville E, Terasaki Y, Li W, Holder J, Chuang AT, Ning M, Arai K, Lo EH, Xing C. Transcriptomic characterization of microglia activation in a rat model of ischemic stroke. J Cereb Blood Flow Metab 2020; 40:S34-S48. [PMID: 33208001 PMCID: PMC7687036 DOI: 10.1177/0271678x20932870] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Microglia are key regulators of inflammatory response after stroke and brain injury. To better understand activation of microglia as well as their phenotypic diversity after ischemic stroke, we profiled the transcriptome of microglia after 75 min transient focal cerebral ischemia in 3-month- and 12-month-old male spontaneously hypertensive rats. Microglia were isolated from the brains by FACS sorting on days 3 and 14 after cerebral ischemia. GeneChip Rat 1.0ST microarray was used to profile the whole transcriptome of sorted microglia. We identified an evolving and complex pattern of activation from 3 to 14 days after stroke onset. M2-like patterns were extensively and persistently upregulated over time. M1-like patterns were only mildly upregulated, mostly at day 14. Younger 3-month-old brains showed a larger microglial response in both pro- and anti-inflammatory pathways, compared to older 12-month-old brains. Importantly, our data revealed that after stroke, most microglia are activated towards a wide spectrum of novel polarization states beyond the standard M1/M2 dichotomy, especially in pathways related to TLR2 and dietary fatty acid signaling. Finally, classes of transcription factors that might potentially regulate microglial activation were identified. These findings should provide a comprehensive database for dissecting microglial mechanisms and pursuing neuroinflammation targets for acute ischemic stroke.
Collapse
Affiliation(s)
- Wenjun Deng
- Neuroprotection Research Laboratories, Departments of Radiology and Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA.,Clinical Proteomics Research Center, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Emiri Mandeville
- Neuroprotection Research Laboratories, Departments of Radiology and Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Yasukazu Terasaki
- Neuroprotection Research Laboratories, Departments of Radiology and Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Wenlu Li
- Neuroprotection Research Laboratories, Departments of Radiology and Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | | | | | - Mingming Ning
- Clinical Proteomics Research Center, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Ken Arai
- Neuroprotection Research Laboratories, Departments of Radiology and Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Eng H Lo
- Neuroprotection Research Laboratories, Departments of Radiology and Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA.,Clinical Proteomics Research Center, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Changhong Xing
- Neuroprotection Research Laboratories, Departments of Radiology and Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA.,Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
353
|
Kang R, Gamdzyk M, Lenahan C, Tang J, Tan S, Zhang JH. The Dual Role of Microglia in Blood-Brain Barrier Dysfunction after Stroke. Curr Neuropharmacol 2020; 18:1237-1249. [PMID: 32469699 PMCID: PMC7770642 DOI: 10.2174/1570159x18666200529150907] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 04/26/2020] [Accepted: 05/25/2020] [Indexed: 12/17/2022] Open
Abstract
It is well-known that stroke is one of the leading causes of death and disability all over the world. After a stroke, the blood-brain barrier subsequently breaks down. The BBB consists of endothelial cells surrounded by astrocytes. Microglia, considered the long-living resident immune cells of the brain, play a vital role in BBB function. M1 microglia worsen BBB disruption, while M2 microglia assist in repairing BBB damage. Microglia can also directly interact with endothelial cells and affect BBB permeability. In this review, we are going to discuss the mechanisms responsible for the dual role of microglia in BBB dysfunction after stroke.
Collapse
Affiliation(s)
- Ruiqing Kang
- Department of Physiology and Pharmacology, Loma Linda University, School of Medicine, Loma Linda, CA, USA,Department of Neurology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Marcin Gamdzyk
- Department of Physiology and Pharmacology, Loma Linda University, School of Medicine, Loma Linda, CA, USA
| | - Cameron Lenahan
- Department of Physiology and Pharmacology, Loma Linda University, School of Medicine, Loma Linda, CA, USA
| | - Jiping Tang
- Department of Physiology and Pharmacology, Loma Linda University, School of Medicine, Loma Linda, CA, USA
| | - Sheng Tan
- Department of Neurology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - John H Zhang
- Department of Physiology and Pharmacology, Loma Linda University, School of Medicine, Loma Linda, CA, USA
| |
Collapse
|
354
|
Ma Y, Jiang L, Wang L, Li Y, Liu Y, Lu W, Shi R, Zhang L, Fu Z, Qu M, Liu Y, Wang Y, Zhang Z, Yang GY. Endothelial progenitor cell transplantation alleviated ischemic brain injury via inhibiting C3/C3aR pathway in mice. J Cereb Blood Flow Metab 2020; 40:2374-2386. [PMID: 31865842 PMCID: PMC7820683 DOI: 10.1177/0271678x19892777] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Endothelial progenitor cell transplantation is a potential therapeutic approach in brain ischemia. However, whether the therapeutic effect of endothelial progenitor cells is via affecting complement activation is unknown. We established a mouse focal ischemia model (n = 111) and transplanted endothelial progenitor cells into the peri-infarct region immediately after brain ischemia. Neurological outcomes and brain infarct/atrophy volume were examined after ischemia. Expression of C3, C3aR and pro-inflammatory factors were further examined to explore the role of endothelial progenitor cells in ischemic brain. We found that endothelial progenitor cells improved neurological outcomes and reduced brain infarct/atrophy volume after 1 to 14 days of ischemia compared to the control (p < 0.05). C3 and C3aR expression in the brain was up-regulated at 1 day up to 14 days (p < 0.05). Endothelial progenitor cells reduced astrocyte-derived C3 (p < 0.05) and C3aR expression (p < 0.05) after ischemia. Endothelial progenitor cells also reduced inflammatory response after ischemia (p < 0.05). Endothelial progenitor cell transplantation reduced astrocyte-derived C3 expression in the brain after ischemic stroke, together with decreased C3aR and inflammatory response contributing to neurological function recovery. Our results indicate that modulating complement C3/C3aR pathway is a novel therapeutic target for the ischemic stroke.
Collapse
Affiliation(s)
- Yuanyuan Ma
- Department of Neurology, Ruijin Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China.,Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Lu Jiang
- Department of Neurology, Ruijin Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Liping Wang
- Department of Neurology, Ruijin Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Yongfang Li
- Department of Neurology, Ruijin Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Yanqun Liu
- Department of Neurology, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Wenjing Lu
- Department of Neurology, Ruijin Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Rubing Shi
- Department of Neurology, Ruijin Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Linyuan Zhang
- Department of Neurology, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Zongjie Fu
- Department of Neurology, Ruijin Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Meijie Qu
- Department of Neurology, Ruijin Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Yingling Liu
- Department of Neurosurgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Yongting Wang
- Department of Neurology, Ruijin Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Zhijun Zhang
- Department of Neurology, Ruijin Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Guo-Yuan Yang
- Department of Neurology, Ruijin Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
355
|
Chu X, Liu D, Li T, Ke H, Xin D, Wang S, Cao Y, Xue H, Wang Z. Hydrogen sulfide-modified extracellular vesicles from mesenchymal stem cells for treatment of hypoxic-ischemic brain injury. J Control Release 2020; 328:13-27. [DOI: 10.1016/j.jconrel.2020.08.037] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 08/14/2020] [Accepted: 08/20/2020] [Indexed: 02/06/2023]
|
356
|
Voelz C, Habib P, Köberlein S, Beyer C, Slowik A. Alteration of miRNA Biogenesis Regulating Proteins in the Human Microglial Cell Line HMC-3 After Ischemic Stress. Mol Neurobiol 2020; 58:1535-1549. [PMID: 33210205 DOI: 10.1007/s12035-020-02210-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 11/12/2020] [Indexed: 12/21/2022]
Abstract
MicroRNAs (miRNA) are small noncoding sequences that control apoptosis, proliferation, and neuroinflammatory pathways in microglia cells. The expression of distinct miRNAs is altered after ischemia in the brain. Only minor information is available about the biogenesis and maturation of miRNAs after ischemia. We aimed at examining the impact of oxygen-glucose deprivation (OGD) and hydrogen peroxide (H2O2)-induced stress on the expression of miRNA regulating proteins such as DROSHA, DGCR8, XPO5, DICER, TARBP2, and AGO2 in the cultured human microglial cell line HMC-3 (human microglial cell line clone 3). OGD duration of 2.5 h or H2O2 stimulation at a concentration of 100 μM for 24 h resulted in a marked increase of the hypoxia sensor hypoxia-inducible factor1-α in HMC-3 cells. These treatments also led to an upregulation of DROSHA, DICER1, and AGO2 detected by semiquantitative real-time PCR (qrtPCR). XPO5 and TARBP2 were only upregulated after stimulation with H2O2, while DGCR8 responded only to OGD. We found elevated DICER1, DROSHA, and AGO2 protein levels by western blot and immunohistochemistry staining. Interestingly, the latter also exposed a colocalization of AGO2 with stress granules (G3BP1) after OGD. Our data indicate that DICER, DROSHA, and AGO2 are induced in microglial cells under hypoxia-like conditions. It might be speculated that their inductions might increase the miRNA synthesis rate. Future studies should investigate this correlation to determine which miRNAs are preferably expressed by microglia cells after ischemia and which functions they could exert.
Collapse
Affiliation(s)
- Clara Voelz
- Institute of Neuroanatomy, Medical Faculty, RWTH Aachen University, 52074, Aachen, Germany
| | - Pardes Habib
- Department of Neurology, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Stefan Köberlein
- Institute of Neuroanatomy, Medical Faculty, RWTH Aachen University, 52074, Aachen, Germany
| | - Cordian Beyer
- Institute of Neuroanatomy, Medical Faculty, RWTH Aachen University, 52074, Aachen, Germany
- JARA-Brain, RWTH Aachen University, Aachen, Germany
| | - Alexander Slowik
- Institute of Neuroanatomy, Medical Faculty, RWTH Aachen University, 52074, Aachen, Germany.
- Department of Anatomy and Cell Biology, Medical Faculty, RWTH Aachen University, 52074, Aachen, Germany.
| |
Collapse
|
357
|
Dehhaghi M, Kazemi Shariat Panahi H, Heng B, Guillemin GJ. The Gut Microbiota, Kynurenine Pathway, and Immune System Interaction in the Development of Brain Cancer. Front Cell Dev Biol 2020; 8:562812. [PMID: 33330446 PMCID: PMC7710763 DOI: 10.3389/fcell.2020.562812] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Accepted: 10/26/2020] [Indexed: 12/20/2022] Open
Abstract
Human gut microbiota contains a large, complex, dynamic microbial community of approximately 1014 microbes from more than 1,000 microbial species, i.e., equivalent to 4 × 106 genes. Numerous evidence links gut microbiota with human health and diseases. Importantly, gut microbiota is involved in the development and function of the brain through a bidirectional pathway termed as the gut-brain axis. Interaction between gut microbiota and immune responses can modulate the development of neuroinflammation and cancer diseases in the brain. With respect of brain cancer, gut microbiota could modify the levels of antioxidants, amyloid protein and lipopolysaccharides, arginase 1, arginine, cytochrome C, granulocyte-macrophage colony-stimulating factor signaling (GM-CSF), IL-4, IL-6, IL-13, IL-17A, interferon gamma (IFN-γ), reactive oxygen species (ROS), reactive nitrogen species (e.g., nitric oxide and peroxynitrite), short-chain fatty acids (SCFAs), tryptophan, and tumor necrosis factor-β (TGF-β). Through these modifications, gut microbiota can modulate apoptosis, the aryl hydrocarbon receptor (AhR), autophagy, caspases activation, DNA integrity, microglia dysbiosis, mitochondria permeability, T-cell proliferation and functions, the signal transducer and activator of transcription (STAT) pathways, and tumor cell proliferation and metastasis. The outcome of such interventions could be either oncolytic or oncogenic. This review scrutinizes the oncogenic and oncolytic effects of gut microbiota by classifying the modification mechanisms into (i) amino acid deprivation (arginine and tryptophan); (ii) kynurenine pathway; (iii) microglia dysbiosis; and (iv) myeloid-derived suppressor cells (MDSCs). By delineating the complexity of the gut-microbiota-brain-cancer axis, this review aims to help the research on the development of novel therapeutic strategies that may aid the efficient eradication of brain cancers.
Collapse
Affiliation(s)
- Mona Dehhaghi
- Neuroinflammation Group, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, Australia.,Pandis Community, Sydney, NSW, Australia.,Department of Microbial Biotechnology, School of Biology and Centre of Excellence in Phylogeny of Living Organisms, College of Science, University of Tehran, Tehran, Iran
| | - Hamed Kazemi Shariat Panahi
- Neuroinflammation Group, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, Australia.,Department of Microbial Biotechnology, School of Biology and Centre of Excellence in Phylogeny of Living Organisms, College of Science, University of Tehran, Tehran, Iran
| | - Benjamin Heng
- Neuroinflammation Group, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, Australia
| | - Gilles J Guillemin
- Neuroinflammation Group, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, Australia.,Pandis Community, Sydney, NSW, Australia
| |
Collapse
|
358
|
Chen D, Huang Y, Shi Z, Li J, Zhang Y, Wang K, Smith AD, Gong Y, Gao Y. Demyelinating processes in aging and stroke in the central nervous system and the prospect of treatment strategy. CNS Neurosci Ther 2020; 26:1219-1229. [PMID: 33210839 PMCID: PMC7702227 DOI: 10.1111/cns.13497] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 10/26/2020] [Accepted: 10/26/2020] [Indexed: 12/12/2022] Open
Abstract
Demyelination occurs in response to brain injury and is observed in many neurodegenerative diseases. Myelin is synthesized from oligodendrocytes in the central nervous system, and oligodendrocyte death‐induced demyelination is one of the mechanisms involved in white matter damage after stroke and neurodegeneration. Oligodendrocyte precursor cells (OPCs) exist in the brain of normal adults, and their differentiation into mature oligodendrocytes play a central role in remyelination. Although the differentiation and maturity of OPCs drive endogenous efforts for remyelination, the failure of axons to remyelinate is still the biggest obstacle to brain repair after injury or diseases. In recent years, studies have made attempts to promote remyelination after brain injury and disease, but its cellular or molecular mechanism is not yet fully understood. In this review, we discuss recent studies examining the demyelination process and potential therapeutic strategies for remyelination in aging and stroke. Based on our current understanding of the cellular and molecular mechanisms underlying remyelination, we hypothesize that myelin and oligodendrocytes are viable therapeutic targets to mitigate brain injury and to treat demyelinating‐related neurodegeneration diseases.
Collapse
Affiliation(s)
- Di Chen
- Department of Critical Care Medicine and Neurosurgery of Huashan Hospital, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, and Institutes of Brain Science, Fudan University, Shanghai, China
| | - Yichen Huang
- Department of Critical Care Medicine and Neurosurgery of Huashan Hospital, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, and Institutes of Brain Science, Fudan University, Shanghai, China
| | - Ziyu Shi
- Department of Critical Care Medicine and Neurosurgery of Huashan Hospital, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, and Institutes of Brain Science, Fudan University, Shanghai, China
| | - Jiaying Li
- Department of Critical Care Medicine and Neurosurgery of Huashan Hospital, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, and Institutes of Brain Science, Fudan University, Shanghai, China
| | - Yue Zhang
- Department of Critical Care Medicine and Neurosurgery of Huashan Hospital, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, and Institutes of Brain Science, Fudan University, Shanghai, China
| | - Ke Wang
- Department of Critical Care Medicine and Neurosurgery of Huashan Hospital, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, and Institutes of Brain Science, Fudan University, Shanghai, China
| | - Amanda D Smith
- Geriatric Research, Education and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, PA, USA
| | - Ye Gong
- Department of Critical Care Medicine and Neurosurgery of Huashan Hospital, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, and Institutes of Brain Science, Fudan University, Shanghai, China
| | - Yanqin Gao
- Department of Critical Care Medicine and Neurosurgery of Huashan Hospital, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, and Institutes of Brain Science, Fudan University, Shanghai, China
| |
Collapse
|
359
|
Zhu HX, Cheng LJ, Ou Yang RW, Li YY, Liu J, Dai D, Wang W, Yang N, Li Y. Reduced Amygdala Microglial Expression of Brain-Derived Neurotrophic Factor and Tyrosine Kinase Receptor B (TrkB) in a Rat Model of Poststroke Depression. Med Sci Monit 2020; 26:e926323. [PMID: 33206632 PMCID: PMC7682116 DOI: 10.12659/msm.926323] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Background Previous studies have implicated reduced brain-derived neurotrophic factor (BDNF) expression and BDNF-TrkB receptor signaling as well as microglial activation and neuroinflammation in poststroke depression (PSD). However, the contributions of microglial BDNF-TrkB signaling to PSD pathogenesis are unclear. Material/Methods We compared depression-like behaviors as well as neuronal and microglial BDNF and TrkB expression levels in the amygdala, a critical mood-relating limbic structure, in rat models of stroke, depression, and PSD. Depression-like behaviors were assessed using the sucrose preference test, open-field test, and weight measurements, while immunofluorescence double staining was employed to estimate BDNF and TrkB expression by CD11b-positive amygdala microglia and NeuN-positive amygdala neuron. Another group of PSD model rats were examined following daily intracerebroventricular injection of proBDNF, tissue plasminogen activator (t-PA), or normal saline (NS) for 7 days starting 4 weeks after chronic unpredictable mild stress (CUMS). Results The numbers of BDNF/CD11b- and TrkB/CD11b-immunofluorescence-positive cells were lowest in the PSD group at 4 and 8 weeks after CUMS (P<0.05). PSD rats also showed reduced weight, sucrose preference, locomotion, and rearing compared with controls (P<0.05). The coexpression of BDNF/NeuN- and TrkB/NeuN-positive cells were not significantly different between groups at 4 and 8 weeks after CUMS (P>0.05). Injection of t-PA increased BDNF/CD11b- and TrkB/CD11b-positive cells in the amygdala of PSD rats and normalized behavior compared with NS or proBDNF injection (P<0.05). In contrast, proBDNF injection reduced BDNF and TrkB expression compared with NS (P<0.05). Conclusions These results suggest that decreased BDNF and TrkB expression by amygdala microglia may contribute to PSD pathogenesis and depression-like behaviors.
Collapse
Affiliation(s)
- Han-Xiao Zhu
- Clinical Medical School, Dali University, Dali, Yunnan, China (mainland)
| | - Li-Jing Cheng
- Clinical Medical School, Dali University, Dali, Yunnan, China (mainland)
| | - Ri-Wei Ou Yang
- Clinical Medical School, Dali University, Dali, Yunnan, China (mainland)
| | - Yang-Yang Li
- Clinical Medical School, Dali University, Dali, Yunnan, China (mainland)
| | - Jian Liu
- Clinical Medical School, Dali University, Dali, Yunnan, China (mainland)
| | - Dan Dai
- Clinical Medical School, Dali University, Dali, Yunnan, China (mainland)
| | - Wei Wang
- Clinical Medical School, Dali University, Dali, Yunnan, China (mainland)
| | - Ning Yang
- Clinical Medical School, Dali University, Dali, Yunnan, China (mainland)
| | - Yun Li
- Department of Neurology, The First Affiliated Hospital of Dali University, Dali, Yunnan, China (mainland)
| |
Collapse
|
360
|
Wang J, Wang B, Jiang L, Zhou K, Yang GY, Jin K. The Effect of IDO on Neural Progenitor Cell Survival Under Oxygen Glucose Deprivation. Front Cell Neurosci 2020; 14:581861. [PMID: 33192328 PMCID: PMC7662097 DOI: 10.3389/fncel.2020.581861] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 08/24/2020] [Indexed: 01/14/2023] Open
Abstract
Objective: Indoleamine 2,3-dioxygenase (IDO) activity plays an important role in many neurological disorders in the central nervous system, which may be associated with immunomodulation or anti-inflammatory activity. However, the action of IDO in the ischemic condition is still poorly understood. The purpose of the present study is to explore the expression and action of IDO in stem cell culture under oxygen and glucose deprivation. Methods: Neural progenitor cells were obtained from the human embryonic stem cell line BG01. These cells underwent oxygen and glucose deprivation. We examined the IDO expression at 3 and 8 h of oxygen and glucose deprivation and then examined neuronal progenitor cell viability in the normal and oxygen and glucose deprivation condition using the [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] assay. In addition, we studied the effect of IDO inhibition and the expression of TNF-α, IGF-1, VEGF, IL-6, FGFβ, TGFβ, EGF, and Leptin to explore the mechanism of IDO under the oxygen and glucose deprivation. Results: IDO expression in neural progenitor cells increased under oxygen and glucose deprivation, which is closely associated with cell death (p < 0.05). Inhibiting IDO did not affect cell survival in normal neural progenitor cells. However, inhibiting IDO could attenuate cell viability under oxygen and glucose deprivation (p < 0.05). Further study demonstrated that IDO expression was closely associated to the growth factor’s leptin expression. Conclusions: Our results demonstrated that an increase of IDO under oxygen and glucose deprivation was associated with cell death, suggesting that inhibiting IDO could be a target for neuroprotection.
Collapse
Affiliation(s)
- Jixian Wang
- Department of Rehabilitation, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Brian Wang
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center Fort Worth, Fort Worth, TX, United States
| | - Lei Jiang
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center Fort Worth, Fort Worth, TX, United States
| | - Kaijing Zhou
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center Fort Worth, Fort Worth, TX, United States
| | - Guo-Yuan Yang
- Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Department of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Kunlin Jin
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center Fort Worth, Fort Worth, TX, United States
| |
Collapse
|
361
|
Kinuthia UM, Wolf A, Langmann T. Microglia and Inflammatory Responses in Diabetic Retinopathy. Front Immunol 2020; 11:564077. [PMID: 33240260 PMCID: PMC7681237 DOI: 10.3389/fimmu.2020.564077] [Citation(s) in RCA: 150] [Impact Index Per Article: 37.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 10/14/2020] [Indexed: 12/12/2022] Open
Abstract
Diabetic retinopathy is a vision-threatening disease affecting neurons and microvasculature of the retina. The development of this disease is associated with the action of inflammatory factors that are connected to the activation of microglial cells, the resident tissue macrophages of the CNS. In the quiescent state, microglial cells help maintain tissue homeostasis in the retina through phagocytosis and control of low-grade inflammation. However, prolonged tissue stress due to hyperglycemia primes microglia to become overly reactive with the concomitant production of pro-inflammatory cytokines and chemokines causing chronic inflammation. In this review, we provide evidence of microglial cell activation and pro-inflammatory molecules associated with the development and progression of diabetic retinopathy. We further highlight innovative animal models that can mimic the disease in humans and discuss strategies in modulating microglial-mediated inflammation as potential therapeutic approaches in managing the disease.
Collapse
Affiliation(s)
- Urbanus Muthai Kinuthia
- Laboratory for Experimental Immunology of the Eye, Department of Ophthalmology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany.,Center for Molecular Medicine, University of Cologne, Cologne, Germany
| | - Anne Wolf
- Laboratory for Experimental Immunology of the Eye, Department of Ophthalmology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Thomas Langmann
- Laboratory for Experimental Immunology of the Eye, Department of Ophthalmology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany.,Center for Molecular Medicine, University of Cologne, Cologne, Germany
| |
Collapse
|
362
|
He T, Li W, Song Y, Li Z, Tang Y, Zhang Z, Yang GY. Sestrin2 regulates microglia polarization through mTOR-mediated autophagic flux to attenuate inflammation during experimental brain ischemia. J Neuroinflammation 2020; 17:329. [PMID: 33153476 PMCID: PMC7643276 DOI: 10.1186/s12974-020-01987-y] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 10/07/2020] [Indexed: 02/06/2023] Open
Abstract
Background Neuroinflammation is the major pathogenesis of cerebral ischemia. Microglia are activated and polarized to either the pro-inflammatory M1 phenotype or anti-inflammatory M2 phenotype, which act as a critical mediator of neuroinflammation. Sestrin2 has pro-survival properties against ischemic brain injury. However, whether sestrin2 has an anti-inflammatory function by shifting microglia polarization and its underlying mechanism is unknown. Methods Adult male C57BL/6 mice (N = 108) underwent transient middle cerebral artery occlusion (tMCAO) and were treated with exogenous sestrin2. Neurological deficit scores and infarct volume were determined. Cell apoptosis was examined by TUNEL staining and Western blotting. The expression of inflammatory mediators, M1/M2-specific markers, and signaling pathways were detected by reverse transcription-polymerase chain reaction, immunostaining, and Western blotting. To explore the underlying mechanism, primary neurons were subjected to oxygen-glucose deprivation (OGD) and then treated with oxygenated condition medium of BV2 cells incubated with different doses of sestrin2. Results Sestrin2 attenuated the neurological deficits, infarction volume, and cell apoptosis after tMCAO compared to those in the control (p < 0.05). Sestrin2 had an anti-inflammatory effect and could suppress M1 microglia polarization and promote M2 microglia polarization. Condition medium from BV2 cells cultured with sestrin2 reduced neuronal apoptosis after OGD in vitro. Furthermore, we demonstrated that sestrin2 drives microglia to the M2 phenotype by inhibiting the mammalian target of rapamycin (mTOR) signaling pathway and restoring autophagic flux. Conclusions Sestrin2 exhibited neuroprotection by shifting microglia polarization from the M1 to M2 phenotype in ischemic mouse brain, which may be due to suppression of the mTOR signaling pathway and the restoration of autophagic flux.
Collapse
Affiliation(s)
- Tingting He
- Department of Neurology, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200025, China.,School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, 200000, China
| | - Wanlu Li
- School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, 200000, China
| | - Yaying Song
- Department of Neurology, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200025, China.,School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, 200000, China
| | - Zongwei Li
- School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, 200000, China
| | - Yaohui Tang
- School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, 200000, China
| | - Zhijun Zhang
- School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, 200000, China.
| | - Guo-Yuan Yang
- Department of Neurology, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200025, China. .,School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, 200000, China.
| |
Collapse
|
363
|
Aging-Related Phenotypic Conversion of Medullary Microglia Enhances Intraoral Incisional Pain Sensitivity. Int J Mol Sci 2020; 21:ijms21217871. [PMID: 33114176 PMCID: PMC7660637 DOI: 10.3390/ijms21217871] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 10/21/2020] [Accepted: 10/22/2020] [Indexed: 12/12/2022] Open
Abstract
Activated microglia involved in the development of orofacial pain hypersensitivity have two major polarization states. The aim of this study was to assess the involvement of the aging-related phenotypic conversion of medullary microglia in the enhancement of intraoral pain sensitivity using senescence-accelerated mice (SAM)-prone/8 (SAMP8) and SAM-resistant/1 (SAMR1) mice. Mechanical head-withdrawal threshold (MHWT) was measured for 21 days post palatal mucosal incision. The number of CD11c-immunoreactive (IR) cells [affective microglia (M1)] and CD163-IR cells [protective microglia (M2)], and tumor-necrosis-factor-α (TNF-α)-IR M1 and interleukin (IL)-10-IR M2 were analyzed via immunohistochemistry on days 3 and 11 following incision. The decrease in MHWT observed following incision was enhanced in SAMP8 mice. M1 levels and the number of TNF-α-IR M1 were increased on day 3 in SAMP8 mice compared with those in SAMR1 mice. On day 11, M1 and M2 activation was observed in both groups, whereas IL-10-IR M2 levels were attenuated in SAMP8 mice, and the number of TNF-α-IR M1 cells increased, compared to those in SAMR1 mice. These results suggest that the mechanical allodynia observed following intraoral injury is potentiated and sustained in SAMP8 mice due to enhancement of TNF-α signaling, M1 activation, and an attenuation of M2 activation accompanying IL-10 release.
Collapse
|
364
|
Methane-Rich Saline Alleviates CA/CPR Brain Injury by Inhibiting Oxidative Stress, Microglial Activation-Induced Inflammatory Responses, and ER Stress-Mediated Apoptosis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:8829328. [PMID: 33149813 PMCID: PMC7603629 DOI: 10.1155/2020/8829328] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 09/20/2020] [Accepted: 09/25/2020] [Indexed: 12/21/2022]
Abstract
Brain injury induced by cardiac arrest/cardiopulmonary resuscitation (CA/CPR) is the leading cause of death among patients who have recovery of spontaneous circulation (ROSC). Inflammatory response, apoptosis, and oxidative stress are proven pathological mechanisms implicated in neuronal damage. Methane-rich saline (MRS) has been proven that exerts a beneficial protectiveness impact in several models of ischemia-reperfusion injury. The goal of this paper is to ascertain the role of MRS in CA/CPR-induced brain injury and its potential mechanisms. The tracheal intubation of Sprague-Dawley (SD) rats was clamped for 6 min to establish an asphyxiating cardiac arrest model. After that, chest compressions were applied; then, MRS or saline was administered immediately post-ROSC, the rats were sacrificed, and brain tissue was collected at the end of 6 hours. We observed that MRS treatment attenuated neuronal damage in the hippocampal CA1 region by inhibiting microglial activation, leading to a decrease in the overexpression of proinflammatory cytokines such as TNF-α, IL-6, and iNOS. The results also illustrated that MRS treatment diminished apoptosis in the hippocampal CA1 region , reduced the expression of apoptosis-associated proteins Bax and cleaved caspase9, and increased Bcl-2 expression, as well as inhibited the expression of endoplasmic reticulum (ER) stress pathway-related proteins GRP78, ATF4, and CHOP. Further findings showed that MRS treatment significantly attenuated hippocampal ROS and MDA levels and increased GSH and SOD antioxidant factor levels, which indicated that MRS treatment could inhibit oxidative stress. Our results suggest that MRS exerts a protective effect against CA/CPR brain injury, by inhibiting oxidative stress, microglial activation-induced inflammatory responses, and ER stress-mediated apoptosis.
Collapse
|
365
|
Boriero D, Carcereri de Prati A, Antonini L, Ragno R, Sohji K, Mariotto S, Butturini E. The anti-STAT1 polyphenol myricetin inhibits M1 microglia activation and counteracts neuronal death. FEBS J 2020; 288:2347-2359. [PMID: 32981207 DOI: 10.1111/febs.15577] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 08/05/2020] [Accepted: 09/22/2020] [Indexed: 11/26/2022]
Abstract
Microglia activation toward M1 pro-inflammatory phenotype represents one of the earliest events of neurological disorders. Therefore, reducing microglia activation should inhibit neuroinflammation, thereby delaying the progression of neurodegeneration. Recently, we pointed out the role of STAT1 signaling in hypoxia-induced M1 activation and proposed STAT1 as a suitable molecular target for the prevention and treatment of neurodegeneration. Myricetin (MYR) is a natural flavonoid that exhibits a specific anti-STAT1 activity correlated with its direct interaction with STAT1 protein itself. Herein, we investigated the anti-inflammatory effect of MYR and its ability to protect neurons from death in an in vitro model of neurotoxicity using the neuroblast-like SH-SY5Y cells that were exposed to conditioned media from hypoxia-activated microglia BV2 cells. We demonstrate that MYR pretreatment is able to switch off hypoxia-induced M1 microglia polarization through the inhibition of STAT1 signaling. The analysis of the molecular mechanism suggests that the direct interaction of MYR with STAT1 impairs its S-glutathionylation and phosphorylation. Moreover, treatment of SH-SY5Y cells with conditioned medium from hypoxia-activated microglia pretreated with MYR produced a significant reduction in neuronal viability. Our data indicate that MYR may represent a promising candidate for prevention and treatment of neuroinflammation in neurodegenerative disorders.
Collapse
Affiliation(s)
- Diana Boriero
- Neurosciences, Biomedicine and Movement Sciences, Biological Chemistry Section, University of Verona, Verona, Italy
| | | | - Lorenzo Antonini
- Rome Center for Molecular Design, Department of Drug Chemistry and Technology, Sapienza University of Rome, Rome, Italy
| | - Rino Ragno
- Rome Center for Molecular Design, Department of Drug Chemistry and Technology, Sapienza University of Rome, Rome, Italy
| | - Kazuo Sohji
- University of Human Arts and Sciences, Saitama, Japan
| | - Sofia Mariotto
- Neurosciences, Biomedicine and Movement Sciences, Biological Chemistry Section, University of Verona, Verona, Italy
| | - Elena Butturini
- Neurosciences, Biomedicine and Movement Sciences, Biological Chemistry Section, University of Verona, Verona, Italy
| |
Collapse
|
366
|
Zou X, Xie L, Wang W, Zhao G, Tian X, Chen M. FK866 alleviates cerebral pyroptosis and inflammation mediated by Drp1 in a rat cardiopulmonary resuscitation model. Int Immunopharmacol 2020; 89:107032. [PMID: 33045576 DOI: 10.1016/j.intimp.2020.107032] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 09/17/2020] [Accepted: 09/19/2020] [Indexed: 12/16/2022]
Abstract
OBJECTIVES Dynamin-related protein 1 (Drp1) mediates mitochondrial fission and triggers NLRP3 inflammasome activation. FK866 (a NAMPT inhibitor) exerts a neuroprotective effect in ischemia/reperfusion injury through the suppression of mitochondrial dysfunction. We explored the effects of FK866 on pyroptosis and inflammation mediated by Drp1 in a cardiac arrest/cardiopulmonary resuscitation (CA/CPR) rat model. METHODS Healthy male Sprague-Dawley rats were subjected to 7 min CA by trans-esophageal electrical stimulation followed by CPR. The surviving rats were treated with FK866 (a selective inhibitor of NAMPT), Mdivi-1 (Drp1 inhibitor), FK866 + Mdivi-1, or vehicle and then underwent 24 h reperfusion. Hematoxylin and eosin staining and immunohistochemistry (to detect NSE) were used to evaluate brain injury. We performed immunofluorescent staining to analyze NLRP3 and GSDMD expression in microglia or astrocytes and western blot to determine expression of NLRP3, IL-1β, GSDMD, Drp1, and Mfn2. Transmission electron microscopy was used to observe mitochondria. RESULTS FK866 significantly decreased pathological damage to brain tissue, inhibited the activation of NLRP3 in microglia or astrocytes, downregulated the expression of NLRP3, IL-1β, GSDMD, p-Drp1 protein, upregulated Mfn2 and improve mitochondrial morphology. CONCLUSIONS Our results demonstrated that FK866 protects the brain against ischemia-reperfusion injury in rats after CA/CPR by inhibiting pyroptosis and inflammation mediated by Drp1.
Collapse
Affiliation(s)
- Xinsen Zou
- Intensive Care Unit, The Second Affiliated Hospital of Guangxi Medical University, Nanning 530000, Guangxi, China
| | - Lu Xie
- Department of Physiology, Guangxi Medical University, Nanning 530000, Guangxi, China
| | - Wenyan Wang
- Intensive Care Unit, The Second Affiliated Hospital of Guangxi Medical University, Nanning 530000, Guangxi, China
| | - Gaoyang Zhao
- Intensive Care Unit, The Second Affiliated Hospital of Guangxi Medical University, Nanning 530000, Guangxi, China
| | - Xinyue Tian
- Intensive Care Unit, The Second Affiliated Hospital of Guangxi Medical University, Nanning 530000, Guangxi, China
| | - Menghua Chen
- Intensive Care Unit, The Second Affiliated Hospital of Guangxi Medical University, Nanning 530000, Guangxi, China.
| |
Collapse
|
367
|
Engler-Chiurazzi EB, Monaghan KL, Wan ECK, Ren X. Role of B cells and the aging brain in stroke recovery and treatment. GeroScience 2020; 42:1199-1216. [PMID: 32767220 PMCID: PMC7525651 DOI: 10.1007/s11357-020-00242-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 07/23/2020] [Indexed: 02/07/2023] Open
Abstract
As mitigation of brain aging continues to be a key public health priority, a wholistic and comprehensive consideration of the aging body has identified immunosenescence as a potential contributor to age-related brain injury and disease. Importantly, the nervous and immune systems engage in bidirectional communication and can exert profound influence on each other. Emerging evidence supports numerous impacts of innate, inflammatory immune responses and adaptive T cell-mediated immunity in neurological function and diseased or injured brain states, such as stroke. Indeed, a growing body of evidence supports key impacts of brain-resident immune cell activation and peripheral immune infiltration in both the post-stroke acute injury phase and the long-term recovery period. As such, modulation of the immune system is an attractive strategy for novel therapeutic interventions for a devastating age-related brain injury for which there are few readily available neuroprotective treatments or neurorestorative approaches. However, the role of B cells in the context of brain function, and specifically in response to stroke, has not been thoroughly elucidated and remains controversial, leaving our understanding of neuroimmune interactions incomplete. Importantly, emerging evidence suggests that B cells are not pathogenic contributors to stroke injury, and in fact may facilitate functional recovery, supporting their potential value as novel therapeutic targets. By summarizing the current knowledge of the role of B cells in stroke pathology and recovery and interpreting their role in the context of their interactions with other immune cells as well as the immunosenescence cascades that alter their function in aged populations, this review supports an increased understanding of the complex interplay between the nervous and immune systems in the context of brain aging, injury, and disease.
Collapse
Affiliation(s)
- E. B. Engler-Chiurazzi
- Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV 26506 USA
- Center for Basic & Translational Stroke Research, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV 26506 USA
| | - K. L. Monaghan
- Center for Basic & Translational Stroke Research, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV 26506 USA
- Department of Microbiology, Immunology & Cell Biology, West Virginia University, Morgantown, WV 26506 USA
| | - E. C. K. Wan
- Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV 26506 USA
- Center for Basic & Translational Stroke Research, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV 26506 USA
- Department of Microbiology, Immunology & Cell Biology, West Virginia University, Morgantown, WV 26506 USA
| | - X. Ren
- Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV 26506 USA
- Center for Basic & Translational Stroke Research, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV 26506 USA
- Department of Microbiology, Immunology & Cell Biology, West Virginia University, Morgantown, WV 26506 USA
| |
Collapse
|
368
|
Zhang S, Sun WC, Liang ZD, Yin XR, Ji ZR, Chen XH, Wei MJ, Pei L. LncRNA SNHG4 Attenuates Inflammatory Responses by Sponging miR-449c-5p and Up-Regulating STAT6 in Microglial During Cerebral Ischemia-Reperfusion Injury. DRUG DESIGN DEVELOPMENT AND THERAPY 2020; 14:3683-3695. [PMID: 32982175 PMCID: PMC7494233 DOI: 10.2147/dddt.s245445] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 07/28/2020] [Indexed: 12/15/2022]
Abstract
Background Inflammatory response mediated by microglia plays a key role in cerebral ischemia-reperfusion injury. This study intends to probe the role of lncRNA SNHG4 in regulating the inflammatory response of the microglia during cerebral ischemia reperfusion. Materials and Methods Blood samples and cerebrospinal fluid samples were collected from acute cerebral infarction (ACI) patients and healthy controls. The middle cerebral artery occlusion (MCAO) models were constructed with rats. LPS induction and oxygen-glucose deprivation methods were respectively applied to simulate the activation of microglia in vitro. qRT-PCR was employed to determine the expressions of SNHG4, miR-449c-5p and related inflammatory factors in vivo and in vitro. The inflammatory responses of the microglia subject to the varied expressions of SNHG4 and miR-449c-5p were detected. Luciferase assays were conducted to verify the crosstalk involving SNHG4, miR-449c-5p and STAT6. Results Compared with the control group, the expression of SNHG4 derived from the samples of ACI patients and the microglia of MCAO group were remarkably down-regulated, but the expression of miR-449c-5p was dramatically up-regulated. Overexpression of SNHG4 and knock-down of miR-449c-5p could inhibit the expression of pro-inflammatory cytokine in the microglia and promote the expression of anti-inflammatory factors. Meanwhile, the phospho-STAT6 was up-regulated, whereas the knock-down of SNHG4 and over-expression of miR-449c-5p in microglia had the opposite effects. Luciferase assay confirmed that SNHG4 could target miR-449c-5p, while miR-449c-5p could target STAT6. Conclusion SNHG4 can regulate STAT6 and repress inflammation by adsorbing miR-449c-5p in microglia during cerebral ischemia-reperfusion injury.
Collapse
Affiliation(s)
- Shuo Zhang
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning 110001, People's Republic of China.,Department of Anesthesiology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, People's Republic of China
| | - Wen-Chong Sun
- Department of Anesthesiology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, People's Republic of China
| | - Zuo-di Liang
- Department of Anesthesiology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, People's Republic of China
| | - Xiu-Ru Yin
- Department of Anesthesiology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, People's Republic of China
| | - Zhen-Rong Ji
- Department of Anesthesiology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, People's Republic of China
| | - Xiao-Huan Chen
- Department of Anesthesiology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, People's Republic of China
| | - Min-Jie Wei
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning 110001, People's Republic of China
| | - Ling Pei
- Department of Anesthesiology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, People's Republic of China
| |
Collapse
|
369
|
Gan YM, Liu DL, Chen C, Duan W, Yang YX, Du JR. Phthalide derivative CD21 alleviates cerebral ischemia-induced neuroinflammation: Involvement of microglial M2 polarization via AMPK activation. Eur J Pharmacol 2020; 886:173552. [PMID: 32926919 DOI: 10.1016/j.ejphar.2020.173552] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 09/02/2020] [Accepted: 09/10/2020] [Indexed: 12/17/2022]
Abstract
Microglia can be activated to become the classic phenotype (M1) or alternative phenotype (M2), which play an important role in regulating neuroinflammatory response and tissue repair after ischemic stroke. CD21, a novel phthalide derivative, is a potential neuroprotectant against ischemic brain injury. The present study further investigated the effects of CD21 on post-ischemic microglial polarization and the underlying mechanisms. Transient middle cerebral artery occlusion (tMCAO) was used as a mouse model of ischemic stroke, while BV2 cells stimulated with conditioned medium collected from oxygen-glucose deprivation-treated HT22 cells were used in in vitro ischemic studies. The current results showed that CD21 dose-dependently and significantly improved neurological outcomes in tMCAO mice. Biochemical analyses revealed that CD21 decreased the expression of M1 phenotype markers (CD86, interleukin-1β and inducible nitric oxide synthase) and increased the expression of M2 phenotype markers (CD206, interleukin-10 and YM1/2) in both ischemic brain tissues and BV2 cells. Meanwhile, CD21 decreased the production of proinflammatory cytokines (interleukin-1β, interleukin-6 and tumor necrosis factor-α), promoted the release of the antiinflammatory cytokine (interleukin-10), and enhanced the phosphorylation of adenosine 5'-monophosphate-activated protein kinase (AMPK) in ischemic brain tissue and BV2 cells. Furthermore, the AMPK inhibitor (compound C) reversed these effects of CD21 in BV2 cells. These findings indicate that CD21 alleviates post-ischemic neuroinflammation through induction of microglial M2 polarization that is at least in part medicated by AMPK activation, suggesting that CD21 may be a promising candidate for protecting against ischemic brain injury.
Collapse
Affiliation(s)
- Yu-Miao Gan
- Department of Pharmacology, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, PR China
| | - Dong-Ling Liu
- Department of Pharmacology, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, PR China
| | - Chu Chen
- Sichuan Provincial Key Laboratory of Quality and Innovation Research of Chinese Materia Medica, Sichuan Academy of Chinese Medicine Sciences, Chengdu, 610041, PR China
| | - Wei Duan
- School of Medicine and Centre for Molecular and Medical Research, Deakin University, Waurn Ponds, Victoria, Australia
| | - Yu-Xin Yang
- Department of Pharmacology, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, PR China
| | - Jun-Rong Du
- Department of Pharmacology, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, PR China.
| |
Collapse
|
370
|
Zheng L, Tang X, Lu M, Sun S, Xie S, Cai J, Zan J. microRNA-421-3p prevents inflammatory response in cerebral ischemia/reperfusion injury through targeting m6A Reader YTHDF1 to inhibit p65 mRNA translation. Int Immunopharmacol 2020; 88:106937. [PMID: 32890792 DOI: 10.1016/j.intimp.2020.106937] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 08/16/2020] [Accepted: 08/23/2020] [Indexed: 02/08/2023]
Abstract
OBJECTIVE Ischemic stroke is one of the leading causes of death globally, and inflammation is considered as a vital contributor to the pathophysiology of ischemic stroke. Recently, microRNA-421-3p-derived macrophages is found to promote motor function recovery in spinal cord injury. Here, we explored whether microRNA-421-3p is involved in inflammation responses during cerebral ischemia/reperfusion (I/R) injury and its molecular mechanism. METHODS An in vivo experimental animal model of intraluminal middle cerebral artery occlusion/reperfusion (MCAO/R) and in vitro model of microglial subjected to oxygen-glucose deprivation and reoxygenation (OGD/R) were used. The effects of microRNA-421-3p on cerebral I/R injury and its underlying mechanism were detected by quantitative real-time PCR, western blotting, immunofluorescence staining, RNA immunoprecipitation, flow cytometry, luciferase reporter assay, and bioinformatics analysis. RESULTS We find that microRNA-421-3p is significantly decreased in cerebral I/R injury in vitro and in vivo. Furthermore, overexpression of microRNA-421-3p evidently suppresses pro-inflammatory factor expressions and inhibits NF-κB p65 protein expression and nuclear translocation in BV2 microglia cells treated with OGD/R. However, microRNA-421-3p neither promotes p65 mRNA expression, nor affects p65 mRNA or protein stability. Moreover, we find the m6A 'reader' protein YTH domain family protein 1 (YTHDF1) is the specific target of microRNA-421-3p, and YTHDF1 specifically binds to the m6a site of p65 mRNA to promote its translation. CONCLUSION microRNA-421-3p prevents inflammatory response in cerebral ischemia/reperfusion injury through targeting YTHDF1 to inhibit p65 mRNA translation. These findings provide novel insights into understanding the molecular pathogenesis of cerebral I/R injury.
Collapse
Affiliation(s)
- Linbo Zheng
- Department of Traditional Chinese Medicine, Second People's Hospital of Guangdong Province, Guangzhou 510310, China
| | - Xialin Tang
- The Second Institute of Clinical Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510120, China
| | - Minyi Lu
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Shuangxi Sun
- The Second Institute of Clinical Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510120, China
| | - Shanshan Xie
- The Second Institute of Clinical Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510120, China
| | - Jun Cai
- The Second Institute of Clinical Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510120, China
| | - Jie Zan
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China; Department of Traditional Chinese Medicine, Second People's Hospital of Guangdong Province, Guangzhou 510310, China.
| |
Collapse
|
371
|
Kagawa N, Nagao T. Maternal administration of bisphenol A alters the microglial profile in the neocortex of mouse weanlings. Congenit Anom (Kyoto) 2020; 60:142-146. [PMID: 32223001 DOI: 10.1111/cga.12370] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 03/23/2020] [Accepted: 03/24/2020] [Indexed: 12/12/2022]
Abstract
Bisphenol A (BPA) is known to cause abnormal neurogenesis in the developing neocortex. The mechanisms of BPA toxicity concerning neuroinflammatory-related endpoints are incompletely characterized. To evaluate the microglial morphology and the gene expression of pro-inflammatory cytokines in the newborn neocortex, ICR mice were exposed to BPA 200 μg/kg/d on gestational day 6 through post-partum day 21. Weanlings exposed during prenatal and postnatal period to BPA showed an increased number of amoeboid-type microglia, a microglial differentiation disruption (the M1/M2 microglial ratio), and an abnormal expression of genes encoding pro-inflammatory factors. These findings suggest that the well-known neurodevelopmental toxicity of BPA may be related to an increased microglial activation and neuroinflammation in the neocortex.
Collapse
Affiliation(s)
- Nao Kagawa
- Department of Life Science, Kindai University, Osaka, Japan
| | - Tetsuji Nagao
- Department of Life Science, Kindai University, Osaka, Japan
| |
Collapse
|
372
|
Cataldi M, Pignataro G, Taglialatela M. Neurobiology of coronaviruses: Potential relevance for COVID-19. Neurobiol Dis 2020; 143:105007. [PMID: 32622086 PMCID: PMC7329662 DOI: 10.1016/j.nbd.2020.105007] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 06/25/2020] [Accepted: 06/27/2020] [Indexed: 12/18/2022] Open
Abstract
In the first two decades of the 21st century, there have been three outbreaks of severe respiratory infections caused by highly pathogenic coronaviruses (CoVs) around the world: the severe acute respiratory syndrome (SARS) by the SARS-CoV in 2002-2003, the Middle East respiratory syndrome (MERS) by the MERS-CoV in June 2012, and Coronavirus Disease 2019 (COVID-19) by the SARS-CoV-2 presently affecting most countries In all of these, fatalities are a consequence of a multiorgan dysregulation caused by pulmonary, renal, cardiac, and circulatory damage; however, COVID patients may show significant neurological signs and symptoms such as headache, nausea, vomiting, and sensory disturbances, the most prominent being anosmia and ageusia. The neuroinvasive potential of CoVs might be responsible for at least part of these symptoms and may contribute to the respiratory failure observed in affected patients. Therefore, in the present manuscript, we have reviewed the available preclinical evidence on the mechanisms and consequences of CoVs-induced CNS damage, and highlighted the potential role of CoVs in determining or aggravating acute and long-term neurological diseases in infected individuals. We consider that a widespread awareness of the significant neurotropism of CoVs might contribute to an earlier recognition of the signs and symptoms of viral-induced CNS damage. Moreover, a better understanding of the cellular and molecular mechanisms by which CoVs affect CNS function and cause CNS damage could help in planning new strategies for prognostic evaluation and targeted therapeutic intervention.
Collapse
Affiliation(s)
| | | | - Maurizio Taglialatela
- Division of Pharmacology, Department of Neuroscience, University of Naples "Federico II", 80131 Naples, Italy.
| |
Collapse
|
373
|
Wang D, Liu F, Zhu L, Lin P, Han F, Wang X, Tan X, Lin L, Xiong Y. FGF21 alleviates neuroinflammation following ischemic stroke by modulating the temporal and spatial dynamics of microglia/macrophages. J Neuroinflammation 2020; 17:257. [PMID: 32867781 PMCID: PMC7457364 DOI: 10.1186/s12974-020-01921-2] [Citation(s) in RCA: 103] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Accepted: 08/10/2020] [Indexed: 12/26/2022] Open
Abstract
Background Resident microglia and macrophages are the predominant contributors to neuroinflammation and immune reactions, which play a critical role in the pathogenesis of ischemic brain injury. Controlling inflammatory responses is considered a promising therapeutic approach for stroke. Recombinant human fibroblast growth factor 21 (rhFGF21) presents anti-inflammatory properties by modulating microglia and macrophages; however, our knowledge of the inflammatory modulation of rhFGF21 in focal cerebral ischemia is lacking. Therefore, we investigated whether rhFGF21 improves ischemic outcomes in experimental stroke by targeting microglia and macrophages. Methods C57BL/6 mice were subjected to middle cerebral artery occlusion (MCAO) and randomly divided into groups that received intraperitoneal rhFGF21 or vehicle daily starting at 6 h after reperfusion. Behavior assessments were monitored for 14 days after MCAO, and the gene expression levels of inflammatory cytokines were analyzed via qRT-PCR. The phenotypic variation of microglia/macrophages and the presence of infiltrated immune cells were examined by flow cytometry and immunostaining. Additionally, magnetic cell sorting (MACS) in combination with fluorescence-activated cell sorting (FACS) was used to purify microglia and macrophages. Results rhFGF21 administration ameliorated neurological deficits in behavioral tests by regulating the secretion of pro-inflammatory and anti-inflammatory cytokines. rhFGF21 also attenuated the polarization of microglia/macrophages toward the M1 phenotype and the accumulation of peripheral immune cells after stroke, accompanied by a temporal evolution of the phenotype of microglia/macrophages and infiltration of peripheral immune cells. Furthermore, rhFGF21 treatment inhibited M1 polarization of microglia and pro-inflammatory cytokine expression through its actions on FGF receptor 1 (FGFR1) by suppressing nuclear factor-kappa B (NF-κB) and upregulating peroxisome proliferator-activated receptor-γ (PPAR-γ). Conclusions rhFGF21 treatment promoted functional recovery in experimental stroke by modulating microglia/macrophage-mediated neuroinflammation via the NF-κB and PPAR-γ signaling pathways, making it a potential anti-inflammatory agent for stroke treatment.
Collapse
Affiliation(s)
- Dongxue Wang
- Department of Neurosurgery, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China.,School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Fei Liu
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Liyun Zhu
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Ping Lin
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Fanyi Han
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Xue Wang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Xianxi Tan
- Department of Neurosurgery, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Li Lin
- Department of Neurosurgery, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China. .,School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China.
| | - Ye Xiong
- Department of Neurosurgery, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China.
| |
Collapse
|
374
|
Luteolin Protects Against CIRI, Potentially via Regulation of the SIRT3/AMPK/mTOR Signaling Pathway. Neurochem Res 2020; 45:2499-2515. [PMID: 32809175 DOI: 10.1007/s11064-020-03108-w] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Revised: 06/28/2020] [Accepted: 08/01/2020] [Indexed: 12/21/2022]
Abstract
Mitochondrial abnormalities accelerate the progression of ischemic brain damage. Sirtuin 3 (SIRT3) is mainly found in mitochondria and affects almost all major aspects of mitochondrial function. Luteolin, a flavonoid with diverse biological properties, including antioxidant activity, inhibition of cell apoptosis and regulation of autophagy. It also modulates the activity of AMP activated kinase and/or sirtuin 1 (SIRT 1) by regulating the expression of sirtuins. We investigated the protective effects of luteolin on cerebral ischemia-reperfusion. It was found through experiments that luteolin reduced the infarcted area of MCAO rat model, and based on the experimental results, it was inferred that luteolin affected the AMPK, mTOR and SIRT3 pathways, thereby protecting brain cells. As expected, we found that luteolin can reduce the neurological function score, the degree of cerebral edema, the cerebral infarction volume, alleviate morphological changes in the cortex and hippocampus, increase neuron survival and decrease the number of apoptotic neurons. At the same time, luteolin significantly reduced the number of GFAP and Iba-1 positive glial cells in the hippocampus while enhanced the scavenging of oxygen free radicals and the activity of SOD in mitochondria. Addtionally, it can also enhance antioxidant capacity via the reversal of mitochondrial swelling and the mitochondrial transmembrane potential. Moreover, luteolin can increase SIRT3-targeted expression in mitochondria, decrease the phosphorylation of AMPK, and increase phosphor-mTOR (p-mTOR) levels, which may have occurred specifically through activation of the SIRT3/AMPK/mTOR pathway. We speculate that luteolin reduces the pathological progression of CIRI by increasing SIRT3 expression and enhancing mitochondrial function. Therefore, the results indicate that luteolin can increase the transduction of SIRT3, providing a potential mechanism for neuroprotective effects in patients with cerebral ischemia.
Collapse
|
375
|
Min Y, Yan L, Wang Q, Wang F, Hua H, Yuan Y, Jin H, Zhang M, Zhao Y, Yang J, Jiang X, Yang Y, Li F. Distinct Residential and Infiltrated Macrophage Populations and Their Phagocytic Function in Mild and Severe Neonatal Hypoxic-Ischemic Brain Damage. Front Cell Neurosci 2020; 14:244. [PMID: 32903800 PMCID: PMC7438904 DOI: 10.3389/fncel.2020.00244] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 07/15/2020] [Indexed: 01/10/2023] Open
Abstract
Neonatal brain injury, especially severe injury induced by hypoxia-ischemia (HI), causes mortality and long-term neurological impairments. Our previous study demonstrated activation of CD11b+ myeloid cells, including residential microglial cells (MGs) and infiltrating monocyte-derived macrophages (MDMs) in a murine model of hypoxic-ischemic brain damage (HIBD), with unknown functions. Here, we study the differences in the phagocytic function of MGs and MDMs to clarify their potential roles after HIBD. HI was induced in 9-10-day postnatal mice. On days 1 and 3 after injury, pathological and neurobehavioral tests were performed to categorize the brain damage as mild or severe. Flow cytometry was applied to quantify the dynamic change in the numbers of MGs and MDMs according to the relative expression level of CD45 in CD11b+ cells. CX3CR1 GFPCCR2 RFP double-transformed mice were used to identify MGs and MDMs in the brain parenchyma after HIBD. Lysosome-associated membrane protein 1 (LAMP1), toll-like receptor 2 (TLR2), CD36, and transforming growth factor (TGF-β) expression levels were measured to assess the underlying function of phagocytes and neuroprotective factors in these cells. The FITC-dextran 40 phagocytosis assay was applied to examine the change in phagocytic function under oxygen-glucose deprivation (OGD) in vitro. We found that neonatal HI induced a different degree of brain damage: mild or severe injury. Compared with mildly injured animals, mice with severe injury had lower weight, worse neurobehavioral scores, and abnormal brain morphology. In a severely injured brain, CD11b+ cells remarkably increased, including an increase in the MDM population and a decrease in the MG population. Furthermore, MDM infiltration into the brain parenchyma was evident in CX3CR1 GFPCCR2 RFP double-transformed mice. Mild and severe brain injury caused different phagocytosis-related responses and neuroprotective functions of MDMs and MGs at 1 and 3 days following HI. The phagocytic function was activated in BV2 cells but downregulated in Raw264.7 cells under OGD in vitro. These observations indicate that neonatal HI induced different degrees of brain injury. The proportion of infiltrated macrophage MDMs was increased and they were recruited into the injured brain parenchyma in severe brain injury. The resident macrophage MGs proportion decreased and maintained activated phagocytic function in both mild and severe brain injury, and restored neuroprotective function in severe brain injury.
Collapse
Affiliation(s)
- Yingjun Min
- Department of Pathology and Pathophysiology, School of Basic Medical Sciences, Kunming Medical University, Kunming, China
| | - Lin Yan
- Department of Pathology and Pathophysiology, School of Basic Medical Sciences, Kunming Medical University, Kunming, China
| | - Qian Wang
- Department of Pathology and Pathophysiology, School of Basic Medical Sciences, Kunming Medical University, Kunming, China
| | - Fang Wang
- Department of Pathology and Pathophysiology, School of Basic Medical Sciences, Kunming Medical University, Kunming, China
| | - Hairong Hua
- Department of Pathology and Pathophysiology, School of Basic Medical Sciences, Kunming Medical University, Kunming, China
| | - Yun Yuan
- Department of Human Anatomy and Histoembryology, School of Basic Medical Sciences, Kunming Medical University, Kunming, China
| | - Huiyan Jin
- Department of Functional Experiment, School of Basic Medical Sciences, Kunming Medical University, Kunming, China
| | - Ming Zhang
- Yunnan Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Molecular and Clinical Medicine, Kunming Medical University, Kunming, China
| | - Yaling Zhao
- Department of Obstetrics and Gynecology, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Jianzhong Yang
- Department of Psychiatry, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Xiangning Jiang
- Department of Neurology, University of California, San Francisco, San Francisco, CA, United States
| | - Yuan Yang
- Department of Physiology, School of Basic Medical Sciences, Kunming Medical University, Kunming, China
| | - Fan Li
- Department of Pathology and Pathophysiology, School of Basic Medical Sciences, Kunming Medical University, Kunming, China
| |
Collapse
|
376
|
Functional variations of NFKB1 and NFKB1A in inflammatory disorders and their implication for therapeutic approaches. ASIAN BIOMED 2020. [DOI: 10.1515/abm-2020-0008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Abstract
Nuclear factor κ-light-chain-enhancer of activated B cells (NF-κB) is a sophisticated transcription factor that is particularly important in the inflammatory response, but it regulates more than 400 individual and dependent genes for parts of the apoptotic, angiogenic, and proliferative, differentiative, and cell adhesion pathways. NF-κB function is directly inhibited by the binding of inhibitor of κB (IκB), and the imbalance between NF-κB and IκB has been linked to the development and progression of cancer and a variety of inflammatory disorders. These observations might broaden the horizon of current knowledge, particularly on the pathogenesis of inflammatory diseases considering the roles of NF-κB and IκB. In this context, we focus this narrative review on a comparative discussion of our findings with other literature regarding variations of NFKB1 and NFKB1A and their association with susceptibility to widespread inflammatory disorders (such as atherosclerosis, morbid obesity, Behçet syndrome, Graves disease, Hashimoto disease) and common cancers (such as gliomas).
Collapse
|
377
|
Taylor X, Cisternas P, You Y, You Y, Xiang S, Marambio Y, Zhang J, Vidal R, Lasagna-Reeves CA. A1 reactive astrocytes and a loss of TREM2 are associated with an early stage of pathology in a mouse model of cerebral amyloid angiopathy. J Neuroinflammation 2020; 17:223. [PMID: 32711525 PMCID: PMC7382050 DOI: 10.1186/s12974-020-01900-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 07/15/2020] [Indexed: 02/07/2023] Open
Abstract
Background Cerebral amyloid angiopathy (CAA) is typified by the cerebrovascular deposition of amyloid. The mechanisms underlying the contribution of CAA to neurodegeneration are not currently understood. Although CAA is highly associated with the accumulation of amyloid beta (Aβ), other amyloids are known to associate with the vasculature. Alzheimer’s disease (AD) is characterized by parenchymal Aβ deposition, intracellular accumulation of tau, and significant neuroinflammation. CAA increases with age and is present in 85–95% of individuals with AD. A substantial amount of research has focused on understanding the connection between parenchymal amyloid and glial activation and neuroinflammation, while associations between vascular amyloid pathology and glial reactivity remain understudied. Methods Here, we dissect the glial and immune responses associated with early-stage CAA with histological, biochemical, and gene expression analyses in a mouse model of familial Danish dementia (FDD), a neurodegenerative disease characterized by the vascular accumulation of Danish amyloid (ADan). Findings observed in this CAA mouse model were complemented with primary culture assays. Results We demonstrate that early-stage CAA is associated with dysregulation in immune response networks and lipid processing, severe astrogliosis with an A1 astrocytic phenotype, and decreased levels of TREM2 with no reactive microgliosis. Our results also indicate how cholesterol accumulation and ApoE are associated with vascular amyloid deposits at the early stages of pathology. We also demonstrate A1 astrocytic mediation of TREM2 and microglia homeostasis. Conclusion The initial glial response associated with early-stage CAA is characterized by the upregulation of A1 astrocytes without significant microglial reactivity. Gene expression analysis revealed that several AD risk factors involved in immune response and lipid processing may also play a preponderant role in CAA. This study contributes to the increasing evidence that brain cholesterol metabolism, ApoE, and TREM2 signaling are major players in the pathogenesis of AD-related dementias, including CAA. Understanding the basis for possible differential effects of glial response, ApoE, and TREM2 signaling on parenchymal plaques versus vascular amyloid deposits provides important insight for developing future therapeutic interventions.
Collapse
Affiliation(s)
- Xavier Taylor
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Neurosciences Research Building 214G, 320 West 15th Street, Indianapolis, IN, 46202, USA.,Department of Anatomy, Cell Biology, & Physiology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Pablo Cisternas
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Neurosciences Research Building 214G, 320 West 15th Street, Indianapolis, IN, 46202, USA.,Department of Anatomy, Cell Biology, & Physiology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Yanwen You
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Neurosciences Research Building 214G, 320 West 15th Street, Indianapolis, IN, 46202, USA.,Department of Anatomy, Cell Biology, & Physiology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Yingjian You
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Neurosciences Research Building 214G, 320 West 15th Street, Indianapolis, IN, 46202, USA.,Department of Anatomy, Cell Biology, & Physiology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Shunian Xiang
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Yamil Marambio
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Neurosciences Research Building 214G, 320 West 15th Street, Indianapolis, IN, 46202, USA.,Department of Anatomy, Cell Biology, & Physiology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Jie Zhang
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Ruben Vidal
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Neurosciences Research Building 214G, 320 West 15th Street, Indianapolis, IN, 46202, USA.,Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Cristian A Lasagna-Reeves
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Neurosciences Research Building 214G, 320 West 15th Street, Indianapolis, IN, 46202, USA. .,Department of Anatomy, Cell Biology, & Physiology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.
| |
Collapse
|
378
|
Kumar M, Arora P, Sandhir R. Hydrogen Sulfide Reverses LPS-Induced Behavioral Deficits by Suppressing Microglial Activation and Promoting M2 Polarization. J Neuroimmune Pharmacol 2020; 16:483-499. [DOI: 10.1007/s11481-020-09920-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 04/21/2020] [Indexed: 01/01/2023]
|
379
|
Ma DC, Zhang NN, Zhang YN, Chen HS. Kv1.3 channel blockade alleviates cerebral ischemia/reperfusion injury by reshaping M1/M2 phenotypes and compromising the activation of NLRP3 inflammasome in microglia. Exp Neurol 2020; 332:113399. [PMID: 32652099 DOI: 10.1016/j.expneurol.2020.113399] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 07/01/2020] [Accepted: 07/04/2020] [Indexed: 12/17/2022]
Abstract
After cerebral ischemia/reperfusion injury, pro-inflammatory M1-like and anti-inflammatory M2-like phenotypes of microglia are involved in neuroinflammation, in which NLRP3 inflammasome plays an essential role. Kv1.3 channel has been recognized as neuro-immunomodulatory target, but it is not clear as to its role in the neuroinflammation after cerebral ischemic injury. The current study aimed to investigate the issue. Middle cerebral artery occlusion/reperfusion (MCAO/R) model in rats and oxygen-glucose deprivation/ reoxygenation (OGD/R) in primary microglia were utilized to mimic disease state of ischemic stroke. Treatment with PAP-1, a Kv1.3 channel blocker, produced a significant improvement in neurological deficit scores and a decrease in infarct volume in MCAO/R model. An increased number of M2-like phenotypic microglia and a reduced number of M1-like phenotypic microglia were observed by immunofluorescent staining in the in vivo model, which was further validated by flow cytometry in vitro. Western blot showed that PAP-1 treatment profoundly reduced cleavage of caspase-1 and IL-1β in vivo and in vitro. Furthermore, PAP-1 administration reduced the number of NLRP3+/Iba1+ cells and NLRP3 protein levels in vivo, while reduced mRNA and protein expression levels of NLRP3 in vitro. Reduced mRNA expression levels of IL-1β in vitro and protein level of IL-1β in vivo were also observed. Taken together, our findings suggested that Kv1.3 channel blockade effectively alleviated cerebral ischemic injury, possibly by reshaping microglial phenotypic response from M1 towards M2, compromising the activation of NLRP3 inflammasome in microglia, and inhibiting release of IL-1β.
Collapse
Affiliation(s)
- Dai-Chao Ma
- Graduate College, Liaoning University of Traditional Chinese Medicine, China; Department of neurology, General Hospital of Northern Theater Command, China
| | - Nan-Nan Zhang
- Department of neurology, General Hospital of Northern Theater Command, China
| | - Yi-Na Zhang
- Department of neurology, General Hospital of Northern Theater Command, China
| | - Hui-Sheng Chen
- Department of neurology, General Hospital of Northern Theater Command, China.
| |
Collapse
|
380
|
Var SR, Byrd-Jacobs CA. Role of Macrophages and Microglia in Zebrafish Regeneration. Int J Mol Sci 2020; 21:E4768. [PMID: 32635596 PMCID: PMC7369716 DOI: 10.3390/ijms21134768] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 07/02/2020] [Accepted: 07/03/2020] [Indexed: 12/11/2022] Open
Abstract
Currently, there is no treatment for recovery of human nerve function after damage to the central nervous system (CNS), and there are limited regenerative capabilities in the peripheral nervous system. Since fish are known for their regenerative abilities, understanding how these species modulate inflammatory processes following injury has potential translational importance for recovery from damage and disease. Many diseases and injuries involve the activation of innate immune cells to clear damaged cells. The resident immune cells of the CNS are microglia, the primary cells that respond to infection and injury, and their peripheral counterparts, macrophages. These cells serve as key modulators of development and plasticity and have been shown to be important in the repair and regeneration of structure and function after injury. Zebrafish are an emerging model for studying macrophages in regeneration after injury and microglia in neurodegenerative disorders such as Parkinson's disease and Alzheimer's disease. These fish possess a high degree of neuroanatomical, neurochemical, and emotional/social behavioral resemblance with humans, serving as an ideal simulator for many pathologies. This review explores literature on macrophage and microglial involvement in facilitating regeneration. Understanding innate immune cell behavior following damage may help to develop novel methods for treating toxic and chronic inflammatory processes that are seen in trauma and disease.
Collapse
|
381
|
Zhu T, Wang L, Tian F, Zhao X, Pu XP, Sun GB, Sun XB. Anti-ischemia/reperfusion injury effects of notoginsenoside R1 on small molecule metabolism in rat brain after ischemic stroke as visualized by MALDI-MS imaging. Biomed Pharmacother 2020; 129:110470. [PMID: 32768957 DOI: 10.1016/j.biopha.2020.110470] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 06/17/2020] [Accepted: 06/24/2020] [Indexed: 02/09/2023] Open
Abstract
Ischemic stroke is a syndrome of severe neurological responses that cause neuronal death, damage to the neurovascular unit and inflammation. Notoginsenoside R1 (NG-R1) is a neuroprotective drug that is commonly used to treat neurodegenerative and cerebrovascular diseases. However, its potential mechanisms on the regulation of small molecule metabolism in ischemic stroke are largely unknown. The aim of this study was to explore the potential mechanisms of NG-R1 on the regulation of small molecule metabolism after ischemic stroke. Here, we found that NG-R1 reduced infarct size and improved neurological deficits by ameliorating neuronal damage and inhibiting glial activation in MCAO/R rats. Furthermore, using matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI), we clarified that NG-R1 regulated ATP metabolism, the tricarboxylic acid (TCA) cycle, the malate-aspartate shuttle, antioxidant activity, and the homeostasis of iron and phospholipids in the striatum and hippocampus of middle cerebral artery occlusion/reperfusion (MCAO/R) rats. In general, NG-R1 is a promising compound for brain protection from ischemic/reperfusion injury, possibly through the regulation of brain small molecule metabolism.
Collapse
Affiliation(s)
- Ting Zhu
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100193, China; Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China; Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine Prescription, Chinese Academy of Medical Sciences, Beijing, 100193, China.
| | - Lei Wang
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100193, China; Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China; Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine Prescription, Chinese Academy of Medical Sciences, Beijing, 100193, China; Harbin University of Commerce, Harbin, Heilongjiang, 150000, China.
| | - Fang Tian
- National Key Research Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, 100191, China.
| | - Xin Zhao
- National Key Research Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, 100191, China.
| | - Xiao-Ping Pu
- National Key Research Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, 100191, China.
| | - Gui-Bo Sun
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100193, China; Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China; Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine Prescription, Chinese Academy of Medical Sciences, Beijing, 100193, China.
| | - Xiao-Bo Sun
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100193, China; Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China; Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine Prescription, Chinese Academy of Medical Sciences, Beijing, 100193, China.
| |
Collapse
|
382
|
Radenovic L, Nenadic M, Ułamek-Kozioł M, Januszewski S, Czuczwar SJ, Andjus PR, Pluta R. Heterogeneity in brain distribution of activated microglia and astrocytes in a rat ischemic model of Alzheimer's disease after 2 years of survival. Aging (Albany NY) 2020; 12:12251-12267. [PMID: 32501292 PMCID: PMC7343500 DOI: 10.18632/aging.103411] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 05/01/2020] [Indexed: 01/07/2023]
Abstract
The present study was designed to follow neuroinflammation after ischemic brain injury in the long-term survival rat model. Immunohistochemistry was performed 2 years after 10 min global brain ischemia due to cardiac arrest. For the visualization of the cellular inflammatory reaction microglial marker Iba1 and astrocyte marker GFAP were used. In post-ischemic animals our study revealed significant activation of astrocytes in all tested brain regions (hippocampal CA1 and CA3 areas and dentate gyrus, motor and somatosensory cortex, striatum and thalamus), while microglial activation was only found in CA1 and CA3 areas, and the motor cortex. In the specifically sensitive brain areas microglia and astrocytes showed simultaneously significant activation, while in the resistant brain areas only astrocytes were activated. Thus, there was clear evidence of less intensive neuroinflammation in brain areas resistant to ischemia. Such neuroinflammatory processes are backed by microglia and astrocytes activity even up to 2 years after ischemia-reperfusion brain injury. Our study thus revealed a chronic effect of global cerebral ischemia on the neuroinflammatory reaction in the rat brain even 2 years after the insult.
Collapse
Affiliation(s)
- Lidija Radenovic
- Center for Laser Microscopy, Faculty of Biology, University of Belgrade, Belgrade, Serbia
| | - Marija Nenadic
- Center for Laser Microscopy, Faculty of Biology, University of Belgrade, Belgrade, Serbia
| | - Marzena Ułamek-Kozioł
- Laboratory of Ischemic and Neurodegenerative Brain Research, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland
| | - Sławomir Januszewski
- Laboratory of Ischemic and Neurodegenerative Brain Research, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland
| | | | - Pavle R. Andjus
- Center for Laser Microscopy, Faculty of Biology, University of Belgrade, Belgrade, Serbia
| | - Ryszard Pluta
- Laboratory of Ischemic and Neurodegenerative Brain Research, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
383
|
MicroRNA-665-3p attenuates oxygen-glucose deprivation-evoked microglial cell apoptosis and inflammatory response by inhibiting NF-κB signaling via targeting TRIM8. Int Immunopharmacol 2020; 85:106650. [PMID: 32512270 DOI: 10.1016/j.intimp.2020.106650] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 05/09/2020] [Accepted: 05/28/2020] [Indexed: 12/21/2022]
Abstract
Microglial inflammation induced by ischemic stroke aggravates brain damage. MicroRNAs (miRNAs) have emerged as pivotal regulators in ischemic stroke-induced inflammation in microglial cells. miR-665-3p has been reported as a critical inflammation-associated miRNA. However, whether miR-665-3p participates in regulating microglial inflammation during ischemic stroke is underdetermined. This study investigated the potential role of miR-665-3p in stroke-induced inflammation in microglial cells using a cellular model of oxygen-glucose deprivation (OGD)-stimulated microglial cells in vitro. We found that miR-665-3p expression was decreased in microglial cells exposed to OGD treatment. Functional experiments demonstrated that the overexpression of miR-665-3p attenuated OGD-induced apoptosis and inflammation in microglial cells. Notably, tripartite motif 8 (TRIM8) was identified as a target gene of miR-665-3p. TRIM8 expression was induced by OGD treatment in microglial cells and the knockdown of TRIM8 protected microglial cells from OGD -induced cytotoxicity and inflammation. Moreover, TRIM8 knockdown or miR-665-3p overexpression blocked OGD-induced activation of nuclear factor (NF)-κB signaling in microglial cells. In addition, TRIM8 overexpression partially reversed the miR-665-3p overexpression-mediated inhibitory effect on OGD-induced inflammation in microglial cells. Taken together, these results indicate that miR-665-3p up-regulation protects microglial cells from OGD-induced apoptosis and inflammatory response by targeting TRIM8 to inhibit NF-κB signaling.
Collapse
|
384
|
Zhao S, Xiao P, Cui H, Gong P, Lin C, Chen F, Tang Z. Hypothermia-Induced Ubiquitination of Voltage-Dependent Anion Channel 3 Protects BV2 Microglia Cells From Cytotoxicity Following Oxygen-Glucose Deprivation/Recovery. Front Mol Neurosci 2020; 13:100. [PMID: 32581711 PMCID: PMC7289978 DOI: 10.3389/fnmol.2020.00100] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Accepted: 05/11/2020] [Indexed: 12/21/2022] Open
Abstract
Background: Hypothermia attenuates microglial activation and exerts a potential neuroprotective effect against cerebral ischemic-reperfusion (I/R) injury. However, the underlying mechanism remains to be elucidated. In this in vitro study, a model of oxygen-glucose deprivation, followed by recovery (OGD/R), was used to investigate whether hypothermia exerts anti-inflammatory and anti-apoptosis properties via enhanced ubiquitination and down-regulation of voltage-dependent anion channel 3 (VDAC3) expression. Methods: BV2 microglia were cultured under OGD for 4 h following reperfusion with or without hypothermia for 2, 4, or 8 h. M1 and M2 microglia markers [inducible nitric oxide synthase (iNOS) and arginase (Arg)1] were detected using immunofluorescence. The levels of pro-inflammatory cytokines [tumor necrosis factor (TNF) α, interleukin (IL)-1β], and anti-inflammatory factor (IL-10) were determined using enzyme-linked immunosorbent assay (ELISA). Mitochondrial membrane potential (ΔΨm) was assayed by JC-1 staining using a flow cytometer. Expression of caspase-3, cleaved caspase-3, and VDAC3 were assessed using western blot analysis. The cellular locations and interactions of ubiquitin and VDAC3 were identified using double immunofluorescence staining and immunoprecipitation (IP) assay. Also, the level of the VDAC3 mRNA was determined using a quantitative polymerase chain reaction (qPCR). Results: Hypothermia inhibited the OGD/R-induced microglia activation and differentiation into the M1 type with pro-inflammatory effect, whereas it promoted differentiation to the M2 type with anti-inflammatory effect. Hypothermia attenuated OGD/R-induced loss of Δψm, as well as the expression of apoptosis-associated proteins. Compared to normothermia, hypothermia increased the level of ubiquitinated VDAC3 in the BV2 microglia at both 2 and 8 h of reperfusion. Furthermore, hypothermia did not attenuate VDAC3 mRNA expression in OGD/R-induced microglia. Conclusions: Hypothermia treatment during reperfusion, attenuated OGD/R-induced inflammation, and apoptosis in BV2 microglia. This might be due to the promotion of VDAC3 ubiquitination, identifying VDAC3 as a new target of hypothermia.
Collapse
Affiliation(s)
- Shen Zhao
- Shengli Clinical Medical College, Fujian Medical University, Fuzhou, China.,Department of Emergency Medicine, Fujian Provincial Hospital, Fujian Institute of Emergency Research, Fuzhou, China
| | - Peng Xiao
- Shengli Clinical Medical College, Fujian Medical University, Fuzhou, China.,Department of Emergency Medicine, Fujian Provincial Hospital, Fujian Institute of Emergency Research, Fuzhou, China
| | - Hao Cui
- Department of Emergency Medicine, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Cardiopulmonary Cerebral Resuscitation, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Ping Gong
- Department of Emergency Medicine, the First Affiliated Hospital of Dalian Medical University, Dalian City, China
| | - Caijing Lin
- Shengli Clinical Medical College, Fujian Medical University, Fuzhou, China.,Department of Emergency Medicine, Fujian Provincial Hospital, Fujian Institute of Emergency Research, Fuzhou, China
| | - Feng Chen
- Shengli Clinical Medical College, Fujian Medical University, Fuzhou, China.,Department of Emergency Medicine, Fujian Provincial Hospital, Fujian Institute of Emergency Research, Fuzhou, China
| | - Ziren Tang
- Department of Emergency Medicine, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Cardiopulmonary Cerebral Resuscitation, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
385
|
Zhao J, Piao X, Wu Y, Liang S, Han F, Liang Q, Shao S, Zhao D. Cepharanthine attenuates cerebral ischemia/reperfusion injury by reducing NLRP3 inflammasome-induced inflammation and oxidative stress via inhibiting 12/15-LOX signaling. Biomed Pharmacother 2020; 127:110151. [PMID: 32559840 DOI: 10.1016/j.biopha.2020.110151] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 04/03/2020] [Accepted: 04/04/2020] [Indexed: 01/23/2023] Open
Abstract
Cepharanthine (CEP) is a potential candidate for treatment of cerebral ischemia/reperfusion (I/R) injury, due to its anti-inflammatory and anti-oxidative properties. To investigate the effect of CEP on cerebral I/R injury, we established a mouse model of transient middle cerebral artery occlusion (tMCAO) and a microglia cell model of oxygen and glucose deprivation/reoxygenation (OGD/R). Administration of CEP attenuated neurological deficits, reduced infarct volume and edema, and decreased microglia activation in MCAO mice. Immunofluorescence staining showed an up-regulation in NLR Family Pyrin Domain Containing 3 (NLRP3) immunoreactivity in Iba1-labled microglia together with total Iba1 and NLRP3 expression in the brain following tMCAO, while down-regulated by CEP treatment. In both tMCAO-induced mice and OGD/R-treated BV-2 cells, CEP exhibited dose-dependent inhibition on the expression of NLRP3, ASC and cleaved caspase-1. Importantly, CEP attenuated tMCAO or OGD/R-induced overproduction of M1 microglia-regulated pro-inflammation cytokines IL-1β and IL-18, suggesting that CEP might involve in suppressing microglia polarization to M1 phenotype in vivo and in vitro. Moreover, CEP dose-dependently inhibited tMCAO-induced arachidonate 15 lipoxygenase (ALOX15) together with Iba1-labled microglia. The subsequent ALOX15-mediated oxidative stress was decreased by CEP treatment in vivo and in vitro, as evidenced by reduced ROS generation and MDA level, and increased SOD activity. Taken together, we demonstrate that CEP attenuates cerebral I/R injury probably by inhibiting microglia activation and NLRP3 inflammasome-induced inflammation and reducing oxidative stress via suppressing 12/15-LOX signaling.
Collapse
Affiliation(s)
- Jie Zhao
- Department of Neurology, Affiliated Zhongshan Hospital of Dalian University, Dalian 116001, People's Republic of China
| | - Xiangyu Piao
- Department of Neurology, Affiliated Zhongshan Hospital of Dalian University, Dalian 116001, People's Republic of China
| | - Yue Wu
- Department of Orthopedics, Affiliated Zhongshan Hospital of Dalian University, Dalian 116001, People's Republic of China
| | - Shanshan Liang
- Key Laboratory of Biomarker High Throughput Screening and Target Translation of Breast and Gastrointestinal Tumor, Department of Oncology, Affiliated Zhongshan Hospital of Dalian University, Dalian 116001, People's Republic of China
| | - Fang Han
- Department of Radiology, Affiliated Zhongshan Hospital of Dalian University, Dalian 116001, People's Republic of China
| | - Qian Liang
- Department of Neurology, Affiliated Zhongshan Hospital of Dalian University, Dalian 116001, People's Republic of China
| | - Shujuan Shao
- Key Laboratory of Proteomics, Dalian Medical University, Dalian 116044, People's Republic of China.
| | - Dewei Zhao
- Department of Orthopedics, Affiliated Zhongshan Hospital of Dalian University, Dalian 116001, People's Republic of China.
| |
Collapse
|
386
|
Mohammadi M, Manaheji H, Maghsoudi N, Danyali S, Baniasadi M, Zaringhalam J. Microglia dependent BDNF and proBDNF can impair spatial memory performance during persistent inflammatory pain. Behav Brain Res 2020; 390:112683. [PMID: 32442548 DOI: 10.1016/j.bbr.2020.112683] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Revised: 03/15/2020] [Accepted: 04/27/2020] [Indexed: 12/30/2022]
Abstract
Inflammatory pain is commonly associated with cognitive impairment. However, its molecular mechanisms are poorly understood. Thus, this study was conducted to investigate the molecular mechanisms of behavioral changes associated with inflammatory pain. Briefly, 36 Wistar rats were randomly divided into two main groups: CFA group treated with 100 μL of Complete Freunds' Adjuvant (CFA) and CFA + Minocycline group treated with 100 μL of CFA+40 mg/kg/day of minocycline). After that, each group was divided into three subgroups based on different time points of the study. The pain was induced using CFA and subsequent behavioral changes (i.e., hyperalgesia and learning and spatial memory) were analyzed by the Morris Water Maze (MWM) task and Radiant Heat. Then, the cellular and molecular changes were assessed using Western Blotting, Immunohistochemistry, and Terminal deoxynucleotidyl transferase dUTP Nick End Labeling (TUNEL) techniques. Results of the study indicated that CFA-induced pain impaired spatial learning and memory functions. Studying the cellular changes showed that persistent inflammatory pain increased the microglial activity in CA1 and Dentate Gyrus (DG) regions. Furthermore, an increase was observed in the percentage of TUNEL-positive cells. Also, pro-Brain-Derived Neurotrophic Factor (BDNF)/BDNF ratio, Caspase3, and Receptor-Interacting Protein kinase 3 (RIP3) levels increased in the rats' hippocampus following induction of persistent inflammatory pain. These changes were reversed following the cessation of pain as well as the injection of minocycline. Taking together, the results of the current study for the first time revealed that an increase in the microglia dependent proBDNF/BDNF ratio following persistent inflammatory pain leads to cell death of the CA1 and DG neurons that subsequently causes a cognitive deficit in the learning and spatial memory functions.
Collapse
Affiliation(s)
- Mola Mohammadi
- Physiology Department, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Neurophysiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Homa Manaheji
- Physiology Department, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Neurophysiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Nader Maghsoudi
- Department of Biology, Queens College and Graduate Center of the City University of New York, Flushing, NY, USA; Neurobiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Samira Danyali
- Physiology Department, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Neurophysiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mansoureh Baniasadi
- Physiology Department, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Neurophysiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Jalal Zaringhalam
- Physiology Department, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Neurophysiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
387
|
Li X, Liao Y, Dong Y, Li S, Wang F, Wu R, Yuan Z, Cheng J. Mib2 Deficiency Inhibits Microglial Activation and Alleviates Ischemia-Induced Brain Injury. Aging Dis 2020; 11:523-535. [PMID: 32489699 PMCID: PMC7220279 DOI: 10.14336/ad.2019.0807] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 08/07/2019] [Indexed: 12/20/2022] Open
Abstract
Neuroinflammation plays a critical role in ischemia-induced brain injury. Mib2, an E3 ubiquitin ligase, has been reported to regulate Notch signaling and participate in the peripheral immune system. However, the roles of Mib2 in the nervous system are not well characterized. In this study, we show that Mib2 is involved in lipopolysaccharide (LPS)- and oxygen-glucose deprivation (OGD)-induced microglial activation. Mechanistically, Mib2 interacts with the IKK complex and regulates the activation of NF-κB signaling, thus modulating Notch1 transcription in the microglia. Furthermore, we generated a microglia-specific Mib2 knockout mice and found that microglia-specific deletion of Mib2 significantly alleviates ischemia-induced neuroinflammation and brain injury. Taken together, our results reveal a critical role of Mib2 in microglial activation and ischemia-induced brain injury, thus providing a potential target for the treatment of stroke.
Collapse
Affiliation(s)
- Xiaoheng Li
- 1Beijing Institute for Brain Disorders, Capital Medical University, Beijing, China
| | - Yajin Liao
- 2The Brain Science Center, Beijing Institute of Basic Medical Sciences, Beijing, China.,3Center on Translational Neuroscience, College of Life & Environmental Science, Minzu University of China, Beijing, China
| | - Yuan Dong
- 4Department of Biochemistry, Medical College, Qingdao University, Qingdao, Shandong, China
| | - Shuoshuo Li
- 5The State Key Laboratory of Brain and Cognitive Sciences, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Fengchao Wang
- 6National Institute of Biological Sciences, Beijing, China
| | - Rong Wu
- 2The Brain Science Center, Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Zengqiang Yuan
- 1Beijing Institute for Brain Disorders, Capital Medical University, Beijing, China.,2The Brain Science Center, Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Jinbo Cheng
- 2The Brain Science Center, Beijing Institute of Basic Medical Sciences, Beijing, China.,3Center on Translational Neuroscience, College of Life & Environmental Science, Minzu University of China, Beijing, China
| |
Collapse
|
388
|
Leardini-Tristão M, Andrade G, Garcia C, Reis PA, Lourenço M, Moreira ETS, Lima FRS, Castro-Faria-Neto HC, Tibirica E, Estato V. Physical exercise promotes astrocyte coverage of microvessels in a model of chronic cerebral hypoperfusion. J Neuroinflammation 2020; 17:117. [PMID: 32299450 PMCID: PMC7161182 DOI: 10.1186/s12974-020-01771-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 03/12/2020] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Brain circulation disorders such as chronic cerebral hypoperfusion have been associated with a decline in cognitive function during the development of dementia. Astrocytes together with microglia participate in the immune response in the CNS and make them potential sentinels in the brain parenchyma. In addition, astrocytes coverage integrity has been related to brain homeostasis. Currently, physical exercise has been proposed as an effective intervention to promote brain function improvement. However, the neuroprotective effects of early physical exercise on the astrocyte communication with the microcirculation and the microglial activation in a chronic cerebral hypoperfusion model are still unclear. The aim of this study was to investigate the impact of early intervention with physical exercise on cognition, brain microcirculatory, and inflammatory parameters in an experimental model of chronic cerebral hypoperfusion induced by permanent bilateral occlusion of the common carotid arteries (2VO). METHODS Wistar rats aged 12 weeks were randomly divided into four groups: Sham-sedentary group (Sham-Sed), Sham-exercised group (Sham-Ex), 2VO-sedentary group (2VO-Sed), and 2VO-exercised group (2VO-Ex). The early intervention with physical exercise started 3 days after 2VO or Sham surgery during 12 weeks. Then, the brain functional capillary density and endothelial-leukocyte interactions were evaluated by intravital microscopy; cognitive function was evaluated by open-field test; hippocampus postsynaptic density protein 95 and synaptophysin were evaluated by western blotting; astrocytic coverage of the capillaries, microglial activation, and structural capillary density were evaluated by immunohistochemistry. RESULTS Early moderate physical exercise was able to normalize functional capillary density and reduce leukocyte rolling in the brain of animals with chronic cerebral hypoperfusion. These effects were accompanied by restore synaptic protein and the improvement of cognitive function. In addition, early moderate exercise improves astrocytes coverage in blood vessels of the cerebral cortex and hippocampus, decreases microglial activation in the hippocampus, and improves structural capillaries in the hippocampus. CONCLUSIONS Microcirculatory and inflammatory changes in the brain appear to be involved in triggering a cognitive decline in animals with chronic cerebral ischemia. Therefore, early intervention with physical exercise may represent a preventive approach to neurodegeneration caused by chronic cerebral hypoperfusion.
Collapse
Affiliation(s)
- Marina Leardini-Tristão
- Laboratory of Immunopharmacology, Oswaldo Cruz Foundation, Av. Brasil, 4365, Manguinhos, Rio de Janeiro, 21040-900, Brazil
- Laboratory of Cardiovascular Investigation, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Giulia Andrade
- Laboratory of Immunopharmacology, Oswaldo Cruz Foundation, Av. Brasil, 4365, Manguinhos, Rio de Janeiro, 21040-900, Brazil
- Laboratory of Cardiovascular Investigation, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Celina Garcia
- Laboratory of Glial Cell Biology, Biomedical Sciences Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Patrícia A Reis
- Laboratory of Immunopharmacology, Oswaldo Cruz Foundation, Av. Brasil, 4365, Manguinhos, Rio de Janeiro, 21040-900, Brazil
| | - Millena Lourenço
- Laboratory of Immunopharmacology, Oswaldo Cruz Foundation, Av. Brasil, 4365, Manguinhos, Rio de Janeiro, 21040-900, Brazil
| | - Emilio T S Moreira
- Laboratory of Immunopharmacology, Oswaldo Cruz Foundation, Av. Brasil, 4365, Manguinhos, Rio de Janeiro, 21040-900, Brazil
| | - Flavia R S Lima
- Laboratory of Glial Cell Biology, Biomedical Sciences Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Hugo C Castro-Faria-Neto
- Laboratory of Immunopharmacology, Oswaldo Cruz Foundation, Av. Brasil, 4365, Manguinhos, Rio de Janeiro, 21040-900, Brazil
| | - Eduardo Tibirica
- Laboratory of Cardiovascular Investigation, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
- National Institute of Cardiology, Rio de Janeiro, Brazil
| | - Vanessa Estato
- Laboratory of Immunopharmacology, Oswaldo Cruz Foundation, Av. Brasil, 4365, Manguinhos, Rio de Janeiro, 21040-900, Brazil.
- Laboratory of Cardiovascular Investigation, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil.
| |
Collapse
|
389
|
A Reproducible New Model of Focal Ischemic Injury in the Marmoset Monkey: MRI and Behavioural Follow-Up. Transl Stroke Res 2020; 12:98-111. [PMID: 32249405 DOI: 10.1007/s12975-020-00804-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 02/12/2020] [Accepted: 03/06/2020] [Indexed: 02/06/2023]
Abstract
Ischemic stroke mostly affects the primary motor cortex and descending motor fibres, with consequent motor impairment. Pre-clinical models of stroke with reproducible and long-lasting sensorimotor deficits in higher-order animals are lacking. We describe a new method to induce focal brain damage targeting the motor cortex to study damage to the descending motor tracts in the non-human primate. Stereotaxic injection of malonate into the primary motor cortex produced a focal lesion in middle-aged marmosets (Callithrix jacchus). Assessment of sensorimotor function using a neurological scale and testing of forelimb dexterity and strength lasted a minimum of 12 weeks. Lesion evolution was followed by magnetic resonance imaging (MRI) at 24 h, 1 week, 4 and 12 weeks post-injury and before sacrifice for immunohistochemistry. Our model produced consistent lesions of the motor cortex, subcortical white matter and caudate nucleus. All animals displayed partial spontaneous recovery with long lasting motor deficits of force (54% loss) and dexterity (≈ 70% loss). Clearly visible T2 hypointensity in the white matter was observed with MRI and corresponded to areas of chronic gliosis in the internal capsule and lenticular fasciculus. We describe a straightforward procedure to reproducibly injure the motor cortex in the marmoset monkey, causing long-lasting motor deficits. The MRI signature reflects Wallerian degeneration and remote injury of corticospinal and corticopontine tracts, as well as subcortical motor loops. Our model may be suitable for the testing of therapies for post-stroke recovery, particularly in the chronic phase.
Collapse
|
390
|
Kestner RI, Mayser F, Vutukuri R, Hansen L, Günther S, Brunkhorst R, Devraj K, Pfeilschifter W. Gene Expression Dynamics at the Neurovascular Unit During Early Regeneration After Cerebral Ischemia/Reperfusion Injury in Mice. Front Neurosci 2020; 14:280. [PMID: 32300291 PMCID: PMC7142359 DOI: 10.3389/fnins.2020.00280] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 03/11/2020] [Indexed: 12/21/2022] Open
Abstract
With increasing distribution of endovascular stroke therapies, transient middle cerebral artery occlusion (tMCAO) in mice now more than ever depicts a relevant patient population with recanalized M1 occlusion. In this case, the desired therapeutic effect of blood flow restauration is accompanied by breakdown of the blood-brain barrier (BBB) and secondary reperfusion injury. The aim of this study was to elucidate short and intermediate-term transcriptional patterns and the involved pathways covering the different cellular players at the neurovascular unit after transient large vessel occlusion. To achieve this, male C57Bl/6J mice were treated according to an intensive post-stroke care protocol after 60 min occlusion of the middle cerebral artery or sham surgery to allow a high survival rate. After 24 h or 7 days, RNA from microvessel fragments from the ipsilateral and the contralateral hemispheres was isolated and used for mRNA sequencing. Bioinformatic analyses allowed us to depict gene expression changes at two timepoints of neurovascular post-stroke injury and regeneration. We validated our dataset by quantitative real time PCR of BBB-associated targets with well-characterized post-stroke dynamics. Hence, this study provides a well-controlled transcriptome dataset of a translationally relevant mouse model 24 h and 7 days after stroke which might help to discover future therapeutic targets in cerebral ischemia/reperfusion injury.
Collapse
Affiliation(s)
- Roxane-Isabelle Kestner
- Department of Neurology, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany.,Department of General Pharmacology and Toxicology, Pharmazentrum Frankfurt, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany
| | - Franziska Mayser
- Department of Neurology, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany.,Department of General Pharmacology and Toxicology, Pharmazentrum Frankfurt, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany
| | - Rajkumar Vutukuri
- Department of General Pharmacology and Toxicology, Pharmazentrum Frankfurt, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany
| | - Lena Hansen
- Department of General Pharmacology and Toxicology, Pharmazentrum Frankfurt, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany
| | - Stefan Günther
- Department of Cardiac Development and Remodeling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Robert Brunkhorst
- Department of Neurology, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany
| | - Kavi Devraj
- Department of General Pharmacology and Toxicology, Pharmazentrum Frankfurt, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany.,Institute of Neurology (Edinger Institute), University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany
| | - Waltraud Pfeilschifter
- Department of Neurology, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany
| |
Collapse
|
391
|
Hosseini M, Wilson RH, Crouzet C, Amirhekmat A, Wei KS, Akbari Y. Resuscitating the Globally Ischemic Brain: TTM and Beyond. Neurotherapeutics 2020; 17:539-562. [PMID: 32367476 PMCID: PMC7283450 DOI: 10.1007/s13311-020-00856-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Cardiac arrest (CA) afflicts ~ 550,000 people each year in the USA. A small fraction of CA sufferers survive with a majority of these survivors emerging in a comatose state. Many CA survivors suffer devastating global brain injury with some remaining indefinitely in a comatose state. The pathogenesis of global brain injury secondary to CA is complex. Mechanisms of CA-induced brain injury include ischemia, hypoxia, cytotoxicity, inflammation, and ultimately, irreversible neuronal damage. Due to this complexity, it is critical for clinicians to have access as early as possible to quantitative metrics for diagnosing injury severity, accurately predicting outcome, and informing patient care. Current recommendations involve using multiple modalities including clinical exam, electrophysiology, brain imaging, and molecular biomarkers. This multi-faceted approach is designed to improve prognostication to avoid "self-fulfilling" prophecy and early withdrawal of life-sustaining treatments. Incorporation of emerging dynamic monitoring tools such as diffuse optical technologies may provide improved diagnosis and early prognostication to better inform treatment. Currently, targeted temperature management (TTM) is the leading treatment, with the number of patients needed to treat being ~ 6 in order to improve outcome for one patient. Future avenues of treatment, which may potentially be combined with TTM, include pharmacotherapy, perfusion/oxygenation targets, and pre/postconditioning. In this review, we provide a bench to bedside approach to delineate the pathophysiology, prognostication methods, current targeted therapies, and future directions of research surrounding hypoxic-ischemic brain injury (HIBI) secondary to CA.
Collapse
Affiliation(s)
- Melika Hosseini
- Department of Neurology, School of Medicine, University of California, Irvine, USA
| | - Robert H Wilson
- Department of Neurology, School of Medicine, University of California, Irvine, USA
- Beckman Laser Institute, University of California, Irvine, USA
| | - Christian Crouzet
- Department of Neurology, School of Medicine, University of California, Irvine, USA
- Beckman Laser Institute, University of California, Irvine, USA
| | - Arya Amirhekmat
- Department of Neurology, School of Medicine, University of California, Irvine, USA
| | - Kevin S Wei
- Department of Neurology, School of Medicine, University of California, Irvine, USA
| | - Yama Akbari
- Department of Neurology, School of Medicine, University of California, Irvine, USA.
- Beckman Laser Institute, University of California, Irvine, USA.
| |
Collapse
|
392
|
Pan J, Yang GY. Response by Pan and Yang to Letter Regarding Article, "MicroRNA-126-3p/-5p Overexpression Attenuates Blood-Brain Barrier Disruption in a Mouse Model of Middle Cerebral Artery Occlusion". Stroke 2020; 51:e67. [PMID: 32106774 DOI: 10.1161/strokeaha.120.028935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Jiaji Pan
- Shanghai Jiao Tong University Affiliated Sixth People's Hospital, School of Biomedical Engineering, Shanghai Jiao Tong University, China
| | - Guo-Yuan Yang
- Shanghai Jiao Tong University Affiliated Sixth People's Hospital, School of Biomedical Engineering, Shanghai Jiao Tong University, China
| |
Collapse
|
393
|
Ambroxol Improves Neuronal Survival and Reduces White Matter Damage through Suppressing Endoplasmic Reticulum Stress in Microglia after Intracerebral Hemorrhage. BIOMED RESEARCH INTERNATIONAL 2020; 2020:8131286. [PMID: 32309438 PMCID: PMC7142346 DOI: 10.1155/2020/8131286] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 02/23/2020] [Accepted: 02/28/2020] [Indexed: 12/31/2022]
Abstract
Intracerebral hemorrhage (ICH) has been becoming a serious public health problem. Pneumonia, occurring in 43% of all ICH patients, is a common complication heavily influencing outcome and accounting for more than 1/3 of the overall mortality in patients with ICH. Ambroxol may be an effective additional treatment for ICH patients with pneumonia. But its effect and potential mechanism on functional recovery post-ICH still remain elusive. In the present study, the results indicated that 35 mg/kg and 70 mg/kg ambroxol facilitated neuronal survival and reduced white matter fiber bundle damage due to mitigating microglial activation and reducing proinflammatory cytokine accumulation in mice with ICH. The possible mechanism might be due to suppressing endoplasmic reticulum stress involving the IRE1α/TRAF2 signaling pathway, which paves a new path for the treatment of ICH and opens a new window for the use of ambroxol in clinical practice.
Collapse
|
394
|
Zhang W, Mi Y, Jiao K, Xu J, Guo T, Zhou D, Zhang X, Ni H, Sun Y, Wei K, Li N, Hou Y. Kellerin alleviates cognitive impairment in mice after ischemic stroke by multiple mechanisms. Phytother Res 2020; 34:2258-2274. [DOI: 10.1002/ptr.6676] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Revised: 01/25/2020] [Accepted: 03/06/2020] [Indexed: 12/12/2022]
Affiliation(s)
- Wenqiang Zhang
- College of Life and Health Sciences, Northeastern University Shenyang China
- Key Laboratory of Data Analytics and Optimization for Smart Industry Northeastern University, Ministry of Education Shenyang China
| | - Yan Mi
- College of Life and Health Sciences, Northeastern University Shenyang China
- Key Laboratory of Data Analytics and Optimization for Smart Industry Northeastern University, Ministry of Education Shenyang China
| | - Kun Jiao
- College of Life and Health Sciences, Northeastern University Shenyang China
- Key Laboratory of Data Analytics and Optimization for Smart Industry Northeastern University, Ministry of Education Shenyang China
| | - Jikai Xu
- College of Life and Health Sciences, Northeastern University Shenyang China
- Key Laboratory of Data Analytics and Optimization for Smart Industry Northeastern University, Ministry of Education Shenyang China
| | - Tingting Guo
- School of Traditional Chinese Materia Medica Shenyang Pharmaceutical University Shenyang China
| | - Di Zhou
- School of Traditional Chinese Materia Medica Shenyang Pharmaceutical University Shenyang China
| | - Xueni Zhang
- School of Traditional Chinese Materia Medica Shenyang Pharmaceutical University Shenyang China
| | - Hui Ni
- XinJiang Institute of Chinese Materia Medica and Ethnodrug Urumqi China
| | - Yu Sun
- XinJiang Institute of Chinese Materia Medica and Ethnodrug Urumqi China
| | - Kun Wei
- School of Chemical Science and Technology Yunnan University Kunming China
| | - Ning Li
- School of Traditional Chinese Materia Medica Shenyang Pharmaceutical University Shenyang China
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources Guangxi Normal University Guilin China
| | - Yue Hou
- College of Life and Health Sciences, Northeastern University Shenyang China
- Key Laboratory of Data Analytics and Optimization for Smart Industry Northeastern University, Ministry of Education Shenyang China
| |
Collapse
|
395
|
Lauro C, Limatola C. Metabolic Reprograming of Microglia in the Regulation of the Innate Inflammatory Response. Front Immunol 2020; 11:493. [PMID: 32265936 PMCID: PMC7099404 DOI: 10.3389/fimmu.2020.00493] [Citation(s) in RCA: 158] [Impact Index Per Article: 39.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Accepted: 03/04/2020] [Indexed: 12/11/2022] Open
Abstract
Microglia sustain normal brain functions continuously monitoring cerebral parenchyma to detect neuronal activities and alteration of homeostatic processes. The metabolic pathways involved in microglia activity adapt at and contribute to cell phenotypes. While the mitochondrial oxidative phosphorylation is highly efficient in ATP production, glycolysis enables microglia with a faster rate of ATP production, with the generation of intermediates for cell growth and cytokine production. In macrophages, pro-inflammatory stimuli induce a metabolic switch from oxidative phosphorylation to glycolysis, a phenomenon similar to the Warburg effect well characterized in tumor cells. Modification of metabolic functions allows macrophages to properly respond to a changing environment and many evidence suggest that, similarly to macrophages, microglial cells are capable of a plastic use of energy substrates. Neuroinflammation is a common condition in many neurodegenerative diseases and the metabolic reprograming of microglia has been reported in neurodegeneration. Here we review the existing data on microglia metabolism and the connections with neuroinflammatory diseases, highlighting how metabolic changes contribute to module the homeostatic functions of microglia.
Collapse
Affiliation(s)
- Clotilde Lauro
- Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy
| | - Cristina Limatola
- Laboratory Affiliated to Istituto Pasteur Italia- Fondazione Cenci Bolognetti, Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy.,IRCCS NeuroMed, Pozzilli, Italy
| |
Collapse
|
396
|
Rawlinson C, Jenkins S, Thei L, Dallas ML, Chen R. Post-Ischaemic Immunological Response in the Brain: Targeting Microglia in Ischaemic Stroke Therapy. Brain Sci 2020; 10:brainsci10030159. [PMID: 32168831 PMCID: PMC7139954 DOI: 10.3390/brainsci10030159] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 02/27/2020] [Accepted: 03/07/2020] [Indexed: 12/21/2022] Open
Abstract
Microglia, the major endogenous immune cells of the central nervous system, mediate critical degenerative and regenerative responses in ischaemic stroke. Microglia become "activated", proliferating, and undergoing changes in morphology, gene and protein expression over days and weeks post-ischaemia, with deleterious and beneficial effects. Pro-inflammatory microglia (commonly referred to as M1) exacerbate secondary neuronal injury through the release of reactive oxygen species, cytokines and proteases. In contrast, microglia may facilitate neuronal recovery via tissue and vascular remodelling, through the secretion of anti-inflammatory cytokines and growth factors (a profile often termed M2). This M1/M2 nomenclature does not fully account for the microglial heterogeneity in the ischaemic brain, with some simultaneous expression of both M1 and M2 markers at the single-cell level. Understanding and regulating microglial activation status, reducing detrimental and promoting repair behaviours, present the potential for therapeutic intervention, and open a longer window of opportunity than offered by acute neuroprotective strategies. Pharmacological modulation of microglial activation status to promote anti-inflammatory gene expression can increase neurogenesis and improve functional recovery post-stroke, based on promising preclinical data. Cell-based therapies, using preconditioned microglia, are of interest as a method of therapeutic modulation of the post-ischaemic inflammatory response. Currently, there are no clinically-approved pharmacological options targeting post-ischaemic inflammation. A major developmental challenge for clinical translation will be the selective suppression of the deleterious effects of microglial activity after stroke whilst retaining (or enhancing) the neurovascular repair and remodelling responses of microglia.
Collapse
Affiliation(s)
- Charlotte Rawlinson
- School of Pharmacy and Bioengineering, Keele University, Staffordshire ST5 5BG, UK;
| | - Stuart Jenkins
- School of Medicine, Keele University, Staffordshire ST5 5BG, UK;
| | - Laura Thei
- School of Pharmacy, University of Reading, Reading RG6 6UB, UK; (L.T.); (M.L.D.)
| | - Mark L. Dallas
- School of Pharmacy, University of Reading, Reading RG6 6UB, UK; (L.T.); (M.L.D.)
| | - Ruoli Chen
- School of Pharmacy and Bioengineering, Keele University, Staffordshire ST5 5BG, UK;
- Correspondence: ; Tel.: +44-1782-733849; Fax: 44-1782-733326
| |
Collapse
|
397
|
Wen RX, Shen H, Huang SX, Wang LP, Li ZW, Peng P, Mamtilahun M, Tang YH, Shen FX, Tian HL, Yang GY, Zhang ZJ. P2Y6 receptor inhibition aggravates ischemic brain injury by reducing microglial phagocytosis. CNS Neurosci Ther 2020; 26:416-429. [PMID: 32154670 PMCID: PMC7080436 DOI: 10.1111/cns.13296] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 02/01/2020] [Accepted: 02/01/2020] [Indexed: 02/06/2023] Open
Abstract
Introduction Clearance of damaged cells and debris is beneficial for the functional recovery after ischemic brain injury. However, the specific phagocytic receptor that mediates microglial phagocytosis after ischemic stroke is unknown. Aim To investigate whether P2Y6 receptor‐mediated microglial phagocytosis is beneficial for the debris clearance and functional recovery after ischemic stroke. Results The expression of the P2Y6 receptor in microglia increased within 3 days after transient middle cerebral artery occlusion. Inhibition of microglial phagocytosis by the selective inhibitor MRS2578 enlarged the brain atrophy and edema volume after ischemic stroke, subsequently aggravated neurological function as measured by modified neurological severity scores and Grid walking test. MRS2578 treatment had no effect on the expression of IL‐1α, IL‐1β, IL‐6, IL‐10, TNF‐α, TGF‐β, and MPO after ischemic stroke. Finally, we found that the expression of myosin light chain kinase decreased after microglial phagocytosis inhibition in the ischemic mouse brain, which suggested that myosin light chain kinase was involved in P2Y6 receptor‐mediated phagocytosis. Conclusion Our results indicate that P2Y6 receptor‐mediated microglial phagocytosis plays a beneficial role during the acute stage of ischemic stroke, which can be a therapeutic target for ischemic stroke.
Collapse
Affiliation(s)
- Ruo-Xue Wen
- Shanghai JiaoTong Affiliated Sixth People's Hospital, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Hui Shen
- Shanghai JiaoTong Affiliated Sixth People's Hospital, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Shu-Xian Huang
- Shanghai JiaoTong Affiliated Sixth People's Hospital, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Li-Ping Wang
- Department of Neurology, School of Medicine, Ruijin Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Zong-Wei Li
- Shanghai JiaoTong Affiliated Sixth People's Hospital, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Peng Peng
- Shanghai JiaoTong Affiliated Sixth People's Hospital, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Muyassar Mamtilahun
- Shanghai JiaoTong Affiliated Sixth People's Hospital, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Yao-Hui Tang
- Shanghai JiaoTong Affiliated Sixth People's Hospital, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Fan-Xia Shen
- Department of Neurology, School of Medicine, Ruijin Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Heng-Li Tian
- Department of Neurosurgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Guo-Yuan Yang
- Shanghai JiaoTong Affiliated Sixth People's Hospital, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China.,Department of Neurology, School of Medicine, Ruijin Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Zhi-Jun Zhang
- Shanghai JiaoTong Affiliated Sixth People's Hospital, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
398
|
Sardari M, Dzyubenko E, Schmermund B, Yin D, Qi Y, Kleinschnitz C, Hermann DM. Dose-Dependent Microglial and Astrocytic Responses Associated With Post-ischemic Neuroprotection After Lipopolysaccharide-Induced Sepsis-Like State in Mice. Front Cell Neurosci 2020; 14:26. [PMID: 32116567 PMCID: PMC7029732 DOI: 10.3389/fncel.2020.00026] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 01/29/2020] [Indexed: 12/25/2022] Open
Abstract
In contrast to lipopolysaccharide (LPS)-induced preconditioning, which has repeatedly been examined in the past, the effects of post-ischemic LPS-induced sepsis, although clinically considerably more important, have not systemically been studied. We exposed mice to transient intraluminal middle cerebral artery occlusion (MCAO) and examined the effects of intraperitoneal LPS (0.1 or 1 mg/kg) which was administered 24 h post-ischemia. Post-ischemic glial reactivity, neuronal survival and neurological outcome were differently modulated by the higher and the lower LPS dose. Although both doses promoted neuronal survival after 72 h, the underlying mechanisms were not similar. Mice receiving 1 mg/kg LPS exhibited transient hypothermia at 1 and 3 hours post sepsis (hps), followed by reduced focal neurological deficits at 24, 48 and 72 hps. The lower dose (0.1 mg/kg) did not induce hypothermia, but reduced microglia/macrophage activation with the appearance of an anti-inflammatory CD206 positive cell phenotype in the brain parenchyma. Together, our results indicate a novel, dose-dependent modulation of microglial cells that is intricately involved in brain protection.
Collapse
Affiliation(s)
- Maryam Sardari
- Department of Neurology, University Hospital Essen, Essen, Germany
| | - Egor Dzyubenko
- Department of Neurology, University Hospital Essen, Essen, Germany
| | - Ben Schmermund
- Department of Neurology, University Hospital Essen, Essen, Germany
| | - Dongpei Yin
- Department of Neurology, University Hospital Essen, Essen, Germany
| | - Yachao Qi
- Department of Neurology, University Hospital Essen, Essen, Germany
| | | | - Dirk M Hermann
- Department of Neurology, University Hospital Essen, Essen, Germany
| |
Collapse
|
399
|
Keilhoff G, Titze M, Rathert H, Lucas B, Esser T, Ebmeyer U. Normoxic post-ROSC ventilation delays hippocampal CA1 neurodegeneration in a rat cardiac arrest model, but does not prevent it. Exp Brain Res 2020; 238:807-824. [PMID: 32125470 DOI: 10.1007/s00221-020-05746-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 02/03/2020] [Indexed: 01/21/2023]
Abstract
The European Resuscitation Guidelines recommend that survivors of cardiac arrest (CA) be resuscitated with 100% O2 and undergo subsequent-post-return of spontaneous circulation (ROSC)-reduction of O2 supply to prevent hyperoxia. Hyperoxia produces a "second neurotoxic hit," which, together with the initial ischemic insult, causes ischemia-reperfusion injury. However, heterogeneous results from animal studies suggest that normoxia can also be detrimental. One clear reason for these inconsistent results is the considerable heterogeneity of the models used. In this study, the histological outcome of the hippocampal CA1 region following resuscitation with 100% O2 combined with different post-ROSC ventilation regimes (21%, 50%, and 100% O2) was investigated in a rat CA/resuscitation model with survival times of 7 and 21 days. Immunohistochemical stainings of NeuN, MAP2, GFAP, and IBA1 revealed a neuroprotective potency of post-ROSC ventilation with 21% O2, although it was only temporary. This limitation should be because of the post-ROSC intervention targeting only processes of ischemia-induced secondary injury. There were no ventilation-dependent effects on either microglial activation, reduction of which is accepted as being neuroprotective, or astroglial activation, which is accepted as being able to enhance neurons' resistance to ischemia/reperfusion injury. Furthermore, our findings verify the limited comparability of animal studies because of the individual heterogeneity of the animals, experimental regimes, and evaluation procedures used.
Collapse
Affiliation(s)
- Gerburg Keilhoff
- Institute of Biochemistry and Cell Biology, Medical Faculty, University of Magdeburg, Leipziger Strasse 44, 39120, Magdeburg, Germany.
| | - Maximilian Titze
- Institute of Biochemistry and Cell Biology, Medical Faculty, University of Magdeburg, Leipziger Strasse 44, 39120, Magdeburg, Germany
| | - Henning Rathert
- Institute of Biochemistry and Cell Biology, Medical Faculty, University of Magdeburg, Leipziger Strasse 44, 39120, Magdeburg, Germany
| | - Benjamin Lucas
- Department of Trauma Surgery, Medical Faculty, University of Magdeburg, Magdeburg, Germany
| | - Torben Esser
- Department of Anesthesiology, Medical Faculty, University of Magdeburg, Magdeburg, Germany
| | - Uwe Ebmeyer
- Department of Anesthesiology, Medical Faculty, University of Magdeburg, Magdeburg, Germany
| |
Collapse
|
400
|
Fang YY, Zhang JH. MFG-E8 alleviates oxygen-glucose deprivation-induced neuronal cell apoptosis by STAT3 regulating the selective polarization of microglia. Int J Neurosci 2020; 131:15-24. [PMID: 32098538 DOI: 10.1080/00207454.2020.1732971] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Background: Ischemic stroke is a complex pathological process, involving inflammatory reaction, energy metabolism disorder, free radical injury, cell apoptosis and other aspects. Accumulating evidences have revealed that MFG-E8 had a protective effect on multiple organ injuries. However, the comprehensive function and mechanism of MFG-E8 in ischemic brain remain largely unclear.Methods: BV-2 cells were treated with recombinant murine MFG-E8 (rmMFG-E8) or/and Colivelin TFA after exposing for 4 h with oxygen glucose deprivation (OGD). Cell viability and apoptosis were assessed by MTT assay and Flow cytometry. RT-qPCR and Western blot assays were applied to examine the expression levels of MFG-E8, apoptosis-related proteins and M1/M2 polarization markers.Results: Our results demonstrated that OGD significantly inhibited microglial viability and facilitated apoptosis. In addition, we found that OGD downregulated MFG-E8 expression, and MFG-E8 inhibited OGD-induced microglial apoptosis and promoted microglial M2 polarization. In terms of mechanism, we proved that MFG-E8 regulated OGD-induced microglial M1/M2 polarization by inhibiting p-STAT3 and SOCS3 expressions, which was reversed by STAT3 activator (Colivelin TFA). Finally, we verified MFG-E8 alleviated OGD-induced neuronal cell apoptosis by M2 polarization of BV-2 cells.Conclusions: We demonstrated that MFG-E8 reduced neuronal cell apoptosis by enhancing activation of microglia via STAT3 signaling. Therefore, we suggested that MFG-E8 might provide a novel mechanism for ischemic stroke.
Collapse
Affiliation(s)
- Ying-Ying Fang
- Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong Province, P.R. China
| | - Jing-Hui Zhang
- Department of Rehabilitation, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong Province, P.R. China.,Guangdong Association of Rehabilitation Medicine, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong Province, P.R. China
| |
Collapse
|