351
|
Pan HL, Wu ZZ, Zhou HY, Chen SR, Zhang HM, Li DP. Modulation of pain transmission by G-protein-coupled receptors. Pharmacol Ther 2008; 117:141-61. [PMID: 17959251 PMCID: PMC2965406 DOI: 10.1016/j.pharmthera.2007.09.003] [Citation(s) in RCA: 143] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2007] [Accepted: 09/07/2007] [Indexed: 01/17/2023]
Abstract
The heterotrimeric G-protein-coupled receptors (GPCR) represent the largest and most diverse family of cell surface receptors and proteins. GPCR are widely distributed in the peripheral and central nervous systems and are one of the most important therapeutic targets in pain medicine. GPCR are present on the plasma membrane of neurons and their terminals along the nociceptive pathways and are closely associated with the modulation of pain transmission. GPCR that can produce analgesia upon activation include opioid, cannabinoid, alpha2-adrenergic, muscarinic acetylcholine, gamma-aminobutyric acidB (GABAB), groups II and III metabotropic glutamate, and somatostatin receptors. Recent studies have led to a better understanding of the role of these GPCR in the regulation of pain transmission. Here, we review the current knowledge about the cellular and molecular mechanisms that underlie the analgesic actions of GPCR agonists, with a focus on their effects on ion channels expressed on nociceptive sensory neurons and on synaptic transmission at the spinal cord level.
Collapse
Affiliation(s)
- Hui-Lin Pan
- Department of Anesthesiology and Pain Medicine, The University of Texas M.D. Anderson Cancer Center, Program in Neuroscience, The University of Texas Graduate School of Biomedical Sciences, Houston, TX 77225, United States.
| | | | | | | | | | | |
Collapse
|
352
|
Boivin B, Vaniotis G, Allen BG, Hébert TE. G protein-coupled receptors in and on the cell nucleus: a new signaling paradigm? J Recept Signal Transduct Res 2008; 28:15-28. [PMID: 18437627 DOI: 10.1080/10799890801941889] [Citation(s) in RCA: 105] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Signaling from internalizing and endosomal receptors has almost become a classic GPCR paradigm in the last several years. However, it has become clear in recent years that GPCRs also elicit signals when resident at other subcellular sites including the endoplasmic reticulum, Golgi apparatus, and the nucleus. In this review we discuss the nature, function, and trafficking of nuclear GPCR signaling complexes, as well as potential sources of endogenous and exogenous ligands. Finally, we pose a series of questions that will need to be answered in the coming years to confirm and extend this as a new paradigm for GPCR signaling.
Collapse
Affiliation(s)
- Benoit Boivin
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, USA
| | | | | | | |
Collapse
|
353
|
Abstract
Glutamate and GABA, the two most abundant neurotransmitters in the mammalian central nervous system, can act on metabotropic receptors that are structurally quite dissimilar from those targeted by most other neurotransmitters/modulators. Accordingly, metabotropic glutamate receptors (mGluRs) and GABA(B) receptors (GABA(B)Rs) are classified as members of family 3 (or family C) of G protein-coupled receptors. On the other hand, mGluRs and GABA(B)Rs exhibit pronounced and partly unresolved differences between each other. The most intriguing difference is that mGluRs exist as multiple pharmacologically as well as structurally distinct subtypes, whereas, in the case of GABA(B)Rs, molecular biologists have so far identified only one structurally distinct heterodimeric complex whose few variants seem unable to explain the pharmacological heterogeneity of GABA(B)Rs observed in many functional studies. Both mGluRs and GABA(B)Rs can be localized on axon terminals of different neuronal systems as presynaptic autoreceptors and heteroreceptors modulating the exocytosis of various transmitters.
Collapse
Affiliation(s)
- M Raiteri
- Department of Experimental Medicine, Pharmacology and Toxicology Section, University of Genoa, 16148 Genoa, Italy.
| |
Collapse
|
354
|
Harada N, Yamada Y, Tsukiyama K, Yamada C, Nakamura Y, Mukai E, Hamasaki A, Liu X, Toyoda K, Seino Y, Inagaki N. A novel GIP receptor splice variant influences GIP sensitivity of pancreatic beta-cells in obese mice. Am J Physiol Endocrinol Metab 2008; 294:E61-8. [PMID: 17971513 DOI: 10.1152/ajpendo.00358.2007] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Gastric inhibitory polypeptide (GIP) is an incretin that potentiates insulin secretion from pancreatic beta-cells by binding to GIP receptor (GIPR) and subsequently increasing the level of intracellular adenosine 3',5'-cyclic monophosphate (cAMP). We have identified a novel GIPR splice variant in mouse beta-cells that retains intron 8, resulting in a COOH-terminal truncated form (truncated GIPR). This isoform was coexpressed with full-length GIPR (wild-type GIPR) in normal GIPR-expressing tissues. In an experiment using cells transfected with both GIPRs, truncated GIPR did not lead to cAMP production induced by GIP but inhibited GIP-induced cAMP production through wild-type GIPR (n = 3-4, P < 0.05). Wild-type GIPR was normally located on the cell surface, but its expression was decreased in the presence of truncated GIPR, suggesting a dominant negative effect of truncated GIPR against wild-type GIPR. The functional relevance of truncated GIPR in vivo was investigated. In high-fat diet-fed obese mice (HFD mice), blood glucose levels were maintained by compensatory increased insulin secretion (n = 8, P < 0.05), and cAMP production (n = 6, P < 0.01) and insulin secretion (n = 10, P < 0.05) induced by GIP were significantly increased in isolated islets, suggesting hypersensitivity of the GIPR. Total GIPR mRNA expression was not increased in the islets of HFD mice, but the expression ratio of truncated GIPR to total GIPR was reduced by 32% compared with that of control mice (n = 6, P < 0.05). These results indicate that a relative reduction of truncated GIPR expression may be involved in hypersensitivity of GIPR and hyperinsulinemia in diet-induced obese mice.
Collapse
Affiliation(s)
- Norio Harada
- Dept. Diabetes and Clinical Nutrition, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
355
|
Nomura R, Suzuki Y, Kakizuka A, Jingami H. Direct detection of the interaction between recombinant soluble extracellular regions in the heterodimeric metabotropic gamma-aminobutyric acid receptor. J Biol Chem 2007; 283:4665-73. [PMID: 18165688 DOI: 10.1074/jbc.m705202200] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The gamma-aminobutyric acid, type B (GABAB) receptor is a heterodimeric receptor consisting of two complementary subunits, GABAB1 receptor (GBR1) and GABAB2 receptor (GBR2). GBR1 is responsible for GABA binding, whereas GBR2 is considered to perform a critical role in signal transduction toward downstream targets. Therefore, precise communication between GBR1 and GBR2 is thought to be essential for the proper signal transduction process. However, biochemical data describing the interaction of the two subunits, especially for the extracellular regions, are not sufficient. Thus we began by developing a protein expression system of the soluble extracellular regions. One of the soluble recombinant GBR1 proteins exhibited a ligand binding ability, which is similar to that of the full-length GBR1, and thus the ligand-binding domain was determined. Direct interaction between GBR1 and GBR2 extracellular soluble fragments was confirmed by co-expression followed by affinity column chromatography and a sucrose density gradient sedimentation. In addition, we also found homo-oligomeric states of these soluble extracellular regions. The interaction between the two soluble extracellular regions caused the enhancement of the agonist affinity for GBR1 as previously reported in a cell-based assay. These results not only open the way to future structural studies but also highlight the role of the interaction between the extracellular regions, which controls agonist affinity to the heterodimeric receptor.
Collapse
Affiliation(s)
- Rei Nomura
- Department of Molecular Biology, Biomolecular Engineering Research Institute, 6-2-3 Furuedai, Suita, Osaka 565-0874, Japan
| | | | | | | |
Collapse
|
356
|
Baclofen, a GABAB receptor agonist, inhibits human hepatocellular carcinoma cell growth in vitro and in vivo. Life Sci 2007; 82:536-41. [PMID: 18222491 DOI: 10.1016/j.lfs.2007.12.014] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2007] [Revised: 11/05/2007] [Accepted: 12/13/2007] [Indexed: 11/23/2022]
Abstract
Gamma aminobutyric acid (GABA) has been reported to affect cancer development, but the activation of its type B receptor (GABABR) has shown contradictory effects on the progress of human carcinoma. In this study, we investigated the antitumor effect of the GABABR agonist baclofen (Bac) on growth of human hepatocellular carcinoma (HCC) in vitro and in vivo. We found Bac induced G(0)/G(1) phase arrest which was associated with down-regulation of intracellular cAMP level, and up-regulation of p21(WAF1) protein expression as well as its phosphorylation level. These in vitro effects could be abrogated by pretreatment with the specific GABABR antagonist phaclofen (Pha). Moreover, systemic administration of Bac significantly suppressed Bel-7402 xenograft tumor growth. Our data support the inhibitory effect of GABABR activation on HCC development, which would raise the possibility to develop Bac as a therapeutic drug for the treatment of HCC.
Collapse
|
357
|
Noeske T, Jirgensons A, Starchenkovs I, Renner S, Jaunzeme I, Trifanova D, Hechenberger M, Bauer T, Kauss V, Parsons CG, Schneider G, Weil T. Virtual Screening for Selective Allosteric mGluR1 Antagonists and Structure–Activity Relationship Investigations for Coumarine Derivatives. ChemMedChem 2007; 2:1763-73. [PMID: 17868161 DOI: 10.1002/cmdc.200700151] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
A virtual screening study towards novel noncompetitive antagonists of the metabotropic glutamate receptor 1 (mGluR1) is described. Alignment-free topological pharmacophore descriptors (CATS) were used to encode the screening compounds. All virtual hits were characterized with respect to their allosteric antagonistic effect on mGluR1 in both functional and binding assays. Exceptionally high hit rates of up to 26 % were achieved, confirming the applicability of this virtual screening concept. Most of the compounds were found to be moderately active, however, one potent and subtype selective mGluR1 antagonist, 13 (IC(50): 0.362 microM, SEM +/-0.031; K(i): 0.753 microM, SEM +/-0.048), based on a coumarine scaffold was discovered. In a following activity optimization program a series of coumarine derivatives was synthesized. This led to the discovery of potent (60, IC(50): 0.058 microM, SEM +/-0.008; K(i): 0.293 microM, SEM +/-0.022) and subtype selective (rmGluR5 IC(50): 28.6 microM) mGluR1 antagonists. From our homology model of mGluR1 we derived a potential binding mode within the allosteric transmembrane region. Potential interacting patterns are proposed considering the difference of the binding pockets between rat and human receptors. The study demonstrates the applicability of ligand-based virtual screening for noncompetitive antagonists of a G-protein coupled receptor, resulting in novel, potent, and selective agents.
Collapse
Affiliation(s)
- Tobias Noeske
- Merz Pharmaceuticals GmbH, Altenhöfer Allee 3, 60438 Frankfurt am Main, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
358
|
Ben-Ari Y, Gaiarsa JL, Tyzio R, Khazipov R. GABA: a pioneer transmitter that excites immature neurons and generates primitive oscillations. Physiol Rev 2007; 87:1215-84. [PMID: 17928584 DOI: 10.1152/physrev.00017.2006] [Citation(s) in RCA: 916] [Impact Index Per Article: 50.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Developing networks follow common rules to shift from silent cells to coactive networks that operate via thousands of synapses. This review deals with some of these rules and in particular those concerning the crucial role of the neurotransmitter gamma-aminobuytric acid (GABA), which operates primarily via chloride-permeable GABA(A) receptor channels. In all developing animal species and brain structures investigated, neurons have a higher intracellular chloride concentration at an early stage leading to an efflux of chloride and excitatory actions of GABA in immature neurons. This triggers sodium spikes, activates voltage-gated calcium channels, and acts in synergy with NMDA channels by removing the voltage-dependent magnesium block. GABA signaling is also established before glutamatergic transmission, suggesting that GABA is the principal excitatory transmitter during early development. In fact, even before synapse formation, GABA signaling can modulate the cell cycle and migration. The consequence of these rules is that developing networks generate primitive patterns of network activity, notably the giant depolarizing potentials (GDPs), largely through the excitatory actions of GABA and its synergistic interactions with glutamate signaling. These early types of network activity are likely required for neurons to fire together and thus to "wire together" so that functional units within cortical networks are formed. In addition, depolarizing GABA has a strong impact on synaptic plasticity and pathological insults, notably seizures of the immature brain. In conclusion, it is suggested that an evolutionary preserved role for excitatory GABA in immature cells provides an important mechanism in the formation of synapses and activity in neuronal networks.
Collapse
Affiliation(s)
- Yehezkel Ben-Ari
- Insititut de Neurobiologie de la Méditerranée, Institut National de la Santé et de la Recherche Médicale U. 29, Marseille, France.
| | | | | | | |
Collapse
|
359
|
Mannoury la Cour C, Herbelles C, Pasteau V, de Nanteuil G, Millan MJ. Influence of positive allosteric modulators on GABA(B) receptor coupling in rat brain: a scintillation proximity assay characterisation of G protein subtypes. J Neurochem 2007; 105:308-23. [PMID: 18021295 DOI: 10.1111/j.1471-4159.2007.05131.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Little is known concerning coupling of cerebral GABA(B) receptors to G protein subtypes, and the influence of positive allosteric modulators (PAMs) has not been evaluated. These questions were addressed by an antibody-capture/scintillation proximity assay strategy. GABA concentration-dependently enhanced the magnitude of [(35)S]GTPgammaS binding to Galphao and, less markedly, Galphai(1/3) in cortex, whereas Gq and Gs/olf were unaffected. (R)-baclofen and SKF97581 likewise activated Galphao and Galphai(1/3), expressing their actions more potently than GABA. Similar findings were acquired in hippocampus and cerebellum, and the GABA(B) antagonist, CGP55845A, abolished agonist-induced activation of Galphao and Galphai(1/3) in all structures. The PAMs, GS39783, CGP7930 and CGP13501, inactive alone, enhanced efficacy and potency of agonist-induced [(35)S]GTPgammaS binding to Galphao in all regions, actions abolished by CGP55845A. In contrast, they did not modify efficacies at Galphai(1/3). Similarly, in human embryonic kidney cells expressing GABA(B(1a+2)) or GABA(B(1b+2)) receptors, allosteric modulators did not detectably enhance efficacy of GABA at Galphai(1/3), though they increased its potency. To summarise, GABA(B) receptors coupled both to Galphao and to Galphai, but not Gq and Gs/olf, in rat brain. PAMs more markedly enhanced efficacy of coupling to Go versus Gi(1/3). It will be of interest to confirm these observations employing complementary techniques and to evaluate their potential therapeutic significance.
Collapse
|
360
|
Filip M, Frankowska M, Przegaliński E. Effects of GABAB receptor antagonist, agonists and allosteric positive modulator on the cocaine-induced self-administration and drug discrimination. Eur J Pharmacol 2007; 574:148-57. [PMID: 17698060 DOI: 10.1016/j.ejphar.2007.07.048] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2007] [Revised: 07/23/2007] [Accepted: 07/23/2007] [Indexed: 11/19/2022]
Abstract
Preclinical and clinical findings indicate that a GABA(B) receptor agonist baclofen decreases cocaine use. The present study investigated the effects of the GABA(B) receptor antagonist (2S)-(+)-5,5-dimethyl-2-morpholineacetic acid (SCH 50911), the agonists baclofen and 3-aminopropyl(methyl)phoshinic acid (SKF 97541) and the allosteric positive modulator 3,5-bis(1,1-dimethylethyl-4-hydroxy-beta,beta-dimethylbenzenepropanol (CGP 7930) in cocaine-and food-maintained responding under a fixed ratio 5 schedule of reinforcement in male Wistar rats. The effects of the GABA(B) receptor ligands on cocaine (10 mg/kg)-induced discriminative stimulus in a two-lever, water-reinforced fixed ratio 20 task and on basal locomotor activity were also assessed. Baclofen (2.5-5 mg/kg), SKF 97541 (0.1-0.3 mg/kg) and CGP 7930 (30-100 mg/kg) decreased the cocaine (0.5 mg/kg/injection)-maintained responding; SCH 50911 (3-10 mg/kg) was inactive in this respect. Baclofen (5 mg/kg) and SKF 97541 (0.3 mg/kg), but not CGP 7930 or SCH 50911 attenuated the food-maintained responding. The inhibitory effects of the GABA(B) receptor agonists and the modulator were blocked by SCH 50911. SKF 97541 (0.1 mg/kg) or CGP 9730 (30-100 mg/kg) did not produce a significant shift in the cocaine (1.25-10 mg/kg) dose-response curve in a drug discrimination procedure, while baclofen (1.5 mg/kg) or SCH 50911 (10 mg/kg) attenuated the effects of separate doses of cocaine. Baclofen (5 mg/kg) and CGP 7930 (100 mg/kg) significantly reduced basal horizontal activity. We found that pharmacological stimulation of GABA(B) receptors by direct agonists or allosteric positive modulation reduces cocaine reinforcement while this property of cocaine is not related to tonic activation of GABA(B) receptors. The GABA(B) receptor stimulation-induced reduction of cocaine reinforcement was separated from its discriminative stimulus effects. Moreover, a dissociation between effects of direct GABA(B) receptor agonists and a GABA(B) allosteric positive modulator on cocaine vs. food-maintained responding was demonstrated.
Collapse
Affiliation(s)
- Małgorzata Filip
- Laboratory of Drug Addiction Pharmacology, Department of Pharmacology, Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland.
| | | | | |
Collapse
|
361
|
Kamikubo Y, Tabata T, Kakizawa S, Kawakami D, Watanabe M, Ogura A, Iino M, Kano M. Postsynaptic GABAB receptor signalling enhances LTD in mouse cerebellar Purkinje cells. J Physiol 2007; 585:549-63. [PMID: 17947316 DOI: 10.1113/jphysiol.2007.141010] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Long-term depression (LTD) of excitatory transmission at cerebellar parallel fibre-Purkinje cell synapses is a form of synaptic plasticity crucial for cerebellar motor learning. Around the postsynaptic membrane of these synapses, B-type gamma-aminobutyric acid receptor (GABABR), a Gi/o protein-coupled receptor for the inhibitory transmitter GABA is concentrated and closely associated with type-1 metabotropic glutamate receptors (mGluR1) whose signalling is a key factor for inducing LTD. We found that in cultured Purkinje cells, GABABR activation enhanced LTD of a glutamate-evoked current (LTDglu), increasing the magnitude of depression. It has been reported that parallel fibre-Purkinje cell synapses receive a micromolar level of GABA spilled over from the synaptic terminals of the neighbouring GABAergic interneurons. This level of GABA was able to enhance LTDglu. Our pharmacological analyses revealed that the betagamma subunits but not the alpha subunit of Gi/o protein mediated GABABR-mediated LTDglu enhancement. Gi/o protein activation was sufficient to enhance LTDglu. In this respect, LTDglu enhancement is clearly distinguished from the previously reported GABABR-mediated augmentation of an mGluR1-coupled slow excitatory postsynaptic potential. Baclofen application for only the induction period of LTDglu was sufficient to enhance LTDglu, suggesting that GABABR signalling may modulate mechanisms underlying LTDglu induction. Baclofen augmented mGluR1-coupled Ca2+ release from the intracellular stores in a Gi/o protein-dependent manner. Therefore, GABABR-mediated LTDglu enhancement is likely to result from augmentation of mGluR1 signalling. Furthermore, pharmacological inhibition of GABABR reduced the magnitude of LTD at parallel fibre-Purkinje cell synapses in cerebellar slices. These findings demonstrate a novel mechanism that would facilitate cerebellar motor learning.
Collapse
Affiliation(s)
- Yuji Kamikubo
- Department of Cellular Neuroscience, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | | | | | | | | | | | | | | |
Collapse
|
362
|
Levoye A, Jockers R. [GPCRs heterodimerization: a new way towards the discovery of function for the orphan receptors?]. Med Sci (Paris) 2007; 23:746-50. [PMID: 17875294 DOI: 10.1051/medsci/20072389746] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
G protein-coupled receptors (GPCRs), also called seven transmembrane domain (7TM) proteins, represent the largest family of cell surface receptors. GPCRs control a variety of physiological processes, are involved in multiple diseases and are major drug targets. Despite a vast effort of academic and industrial research, more than one hundred receptors remain orphans. These orphan GPCRs offer a great potential for drug discovery, as almost 60% of currently prescribed drugs target GPCRs. Deorphenization strategies have concentrated mainly on the identification of the natural ligands of these proteins. Recent advances have shown that orphan GPCRs, similar to orphan nuclear receptors, can regulate the function of non-orphan receptors by heterodimerization. These findings not only help to better understand the extraordinary diversity of GPCRs, but also open new perspectives for the identification of the function of these orphan receptors that hold great therapeutic potential.
Collapse
Affiliation(s)
- Angélique Levoye
- Institut Pasteur, Laboratoire de Pathogénie Virale Moléculaire, INSERM U819, Département de Virologie, 28, rue du Docteur Roux, 75724, Paris, France.
| | | |
Collapse
|
363
|
Conn PM, Ulloa-Aguirre A, Ito J, Janovick JA. G protein-coupled receptor trafficking in health and disease: lessons learned to prepare for therapeutic mutant rescue in vivo. Pharmacol Rev 2007; 59:225-50. [PMID: 17878512 DOI: 10.1124/pr.59.3.2] [Citation(s) in RCA: 183] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
G protein-coupled receptors (GPCR) comprise the largest family of drug targets. This is not surprising as many signaling systems rely on this class of receptor to convert external and internal stimuli to intracellular responses. As is the case with other membrane proteins, GPCRs are subjected to a stringent quality control mechanism at the endoplasmic reticulum, which ensures that only correctly folded proteins enter the secretory pathway. Because of this quality control system, point mutations resulting in protein sequence variations may result in the production of misfolded and disease-causing proteins that are unable to reach their functional destinations in the cell. There is now a wealth of information demonstrating the functional rescue of misfolded mutant receptors by small nonpeptide molecules originally designed to serve as receptor antagonists; these small molecules ("pharmacoperones") serve as molecular templates, promoting correct folding and allowing the mutants to pass the scrutiny of the cellular quality control system and be expressed at the cell surface membrane. Two of these systems are especially well characterized: the gonadotropin-releasing hormone and the vasopressin type 2 receptors, which play important roles in regulating reproduction and water homeostasis, respectively. Mutations in these receptors can lead to well defined diseases that are recognized as being caused by receptor misfolding that may potentially be amenable to treatment with pharmacoperones. This review is focused on protein misfolding and misrouting related to various disease states, with special emphasis on these two receptors, which have proved to be of value for development of drugs potentially useful in regulating GPCR trafficking in healthy and disease states.
Collapse
Affiliation(s)
- P Michael Conn
- Divisions of Neuroscience and Reproductive Biology, ONPRC/OHSU, Beaverton, OR 97006, USA.
| | | | | | | |
Collapse
|
364
|
Brown JT, Davies CH, Randall AD. Synaptic activation of GABA(B) receptors regulates neuronal network activity and entrainment. Eur J Neurosci 2007; 25:2982-90. [PMID: 17561812 DOI: 10.1111/j.1460-9568.2007.05544.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
In the mammalian central nervous system, GABA(B) receptors mediate slow pre- and postsynaptic inhibition. Using rat hippocampal slices we investigated the role of synaptic GABA(B) receptors in regulating kainate-induced subthreshold neuronal network oscillations in the gamma frequency range (25-80 Hz). The GABA(B) receptor agonist baclofen largely eliminated gamma oscillations. The GABA(B) receptor antagonist CGP55845 reversed this action of baclofen but alone did not alter the power or frequency of ongoing oscillations. To examine the role of synaptically released GABA on network activity, we electrically stimulated stratum radiatum of CA3 whilst recording gamma oscillations from stratum pyramidale. Single stimuli produced a pronounced transient (up to 1 s in duration) inhibition of gamma frequency oscillations. This stimulus-induced shutdown of network activity was enhanced by the GABA uptake inhibitor tiagabine and largely inhibited by CGP55845. Multiple stimuli delivered at frequencies of 1-3 Hz resulted in an activity-dependent fatigue of the inhibition of gamma activity, such that, after a number of stimuli, oscillations could be detected tens of milliseconds after the stimulus. Interestingly, this activity-dependent fatigue of inhibition uncovered a stimulus-dependent temporal entrainment of the gamma oscillations. Furthermore, the amount of repetitive synaptic input that was required to cause this entrainment was dramatically reduced by GABA(B) receptor antagonism such that it was evident within just a few stimuli. These data suggest that convergent afferent synaptic activity can alter the precise temporal arrangement of neuronal network activity. Furthermore, the flow of such information into a functioning neuronal network is highly regulated by GABA(B) receptor-mediated synaptic inhibition.
Collapse
Affiliation(s)
- Jon T Brown
- Neurology and GI, GlaxoSmithKline, Harlow, Essex, UK.
| | | | | |
Collapse
|
365
|
Herrick-Davis K, Grinde E, Weaver BA. Serotonin 5-HT(2C) receptor homodimerization is not regulated by agonist or inverse agonist treatment. Eur J Pharmacol 2007; 568:45-53. [PMID: 17507008 PMCID: PMC2205992 DOI: 10.1016/j.ejphar.2007.04.030] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2006] [Revised: 03/29/2007] [Accepted: 04/03/2007] [Indexed: 11/30/2022]
Abstract
Serotonin 5-HT(2C) receptors represent targets for therapeutics aimed at treating anxiety, depression, schizophrenia, and obesity. Previously, we demonstrated that 5-HT(2C) receptors function as homodimers. Herein, we investigated the effect of agonist and inverse agonist treatment on the homodimer status of two naturally occurring 5-HT(2C) receptor isoforms, one without basal activity (VGV) and one with constitutive activity (INI) with respect to Galpha(q) signaling. Cyan- and yellow-fluorescent proteins were used to monitor VGV and INI homodimer formation by western blot, and in living cells using bioluminescence and fluorescence resonance energy transfer (BRET and FRET). Western blots of solubilized membrane proteins revealed equal proportions of homodimeric receptor species from HEK293 cells transfected with either the VGV or INI isoform in the absence and presence of 5-HT. BRET ratios measured in HEK293 cells transfected with the VGV or INI isoform were the same and were not modulated by 5-HT. Similarly, FRET efficiencies were the same regardless of whether measured in cells expressing the VGV or INI isoform in the absence or presence of 5-HT or clozapine. The results indicate that serotonin 5-HT(2C) receptors form homodimers regardless of whether they are in an inactive or active conformation and are not regulated by drug treatment.
Collapse
Affiliation(s)
- Katharine Herrick-Davis
- Center for Neuropharmacology and Neuroscience, Albany Medical College, Albany, NY 12208, United States.
| | | | | |
Collapse
|
366
|
Baragli A, Alturaihi H, Watt HL, Abdallah A, Kumar U. Heterooligomerization of human dopamine receptor 2 and somatostatin receptor 2 Co-immunoprecipitation and fluorescence resonance energy transfer analysis. Cell Signal 2007; 19:2304-16. [PMID: 17706924 DOI: 10.1016/j.cellsig.2007.07.007] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2007] [Accepted: 07/02/2007] [Indexed: 12/17/2022]
Abstract
Somatostatin and dopamine receptors are well expressed and co-localized in several brain regions, suggesting the possibility of functional interactions. In the present study we used a combination of pharmacological, biochemical and photobleaching fluorescence resonance energy transfer (pbFRET) to determine the functional interactions between human somatostatin receptor 2 (hSSTR2) and human dopamine receptor 2 (hD2R) in both co-transfected CHO-K1 or HEK-293 cells as well as in cultured neuronal cells which express both the receptors endogenously. In monotransfected CHO-K1 or HEK-293 cells, D2R exists as a preformed dimer which is insensitive to agonist or antagonist treatment. In control CHO-K1 cells stably co-transfected with hD2R and hSSTR2, relatively low FRET efficiency and weak expression in co-immunoprecipitate from HEK-293 cells suggest the absence of preformed heterooligomers. However, upon treatment with selective ligands, hD2R and hSSTR2 exhibit heterodimerization. Agonist-induced heterodimerization was accompanied by increased affinity for dopamine and augmented hD2R signalling as well as prolonged hSSTR2 internalization. In contrast, cultured striatal neurons display constitutive heterodimerization between D2R and SSTR2, which were agonist-independent. However, heterodimerization in neurons was completely abolished in the presence of the D2R antagonist eticlopride. These findings suggest that hD2R and hSSTR2 operate as functional heterodimers modulated by ligands in situ, which may prove to be a useful model in designing new therapeutic drugs.
Collapse
Affiliation(s)
- Alessandra Baragli
- Department of Pharmacology and Therapeutics, McGill University, Royal Victoria Hospital, Montreal, QC, Canada
| | | | | | | | | |
Collapse
|
367
|
Kim U, Chung LY. Dual GABAergic synaptic response of fast excitation and slow inhibition in the medial habenula of rat epithalamus. J Neurophysiol 2007; 98:1323-32. [PMID: 17615126 DOI: 10.1152/jn.00575.2007] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We report here a novel action of GABAergic synapses in regulating tonic firing in the mammalian brain. By using gramicidin-perforated patch recording in rat brain slices, we show that cells of the medial habenula of the epithalamus generate tonic firing in basal conditions. The GABAergic input onto these cells at postnatal days 18-25 generates a combinatorial activation of fast excitation and slow inhibition. The fast excitation, mediated by gamma-aminobutyric acid type A receptors (GABA A Rs), is alone capable of triggering robust action potentials to increase cell firing. This excitatory influence of GABAergic input results from the Cl(-) homeostasis that maintains intracellular Cl(-) at high levels. The GABA A excitation is often followed by a slow inhibition mediated by GABA B Rs that suppresses tonic firing. Interestingly, in a subpopulation of the cells, the GABA B inhibition exhibits a remarkably low threshold for synaptic activation in that low-strength GABAergic input often activates selectively the GABA B slow inhibition, whereas the GABA A excitation requires further increases in stimulus strength. Our study demonstrates that the dual activation of GABAergic excitation and inhibition through GABA A Rs and GABA B Rs generates distinct temporal patterns of cell firing that alter the cellular output in an activity-dependent manner.
Collapse
Affiliation(s)
- Uhnoh Kim
- Department of Neurosurgery and Interdisciplinary Neuroscience Program, College of Medicine, Pennsylvania State University, Hershey, PA 17033-0850, USA.
| | | |
Collapse
|
368
|
Springael JY, Urizar E, Costagliola S, Vassart G, Parmentier M. Allosteric properties of G protein-coupled receptor oligomers. Pharmacol Ther 2007; 115:410-8. [PMID: 17655934 DOI: 10.1016/j.pharmthera.2007.06.004] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2007] [Accepted: 06/07/2007] [Indexed: 11/18/2022]
Abstract
Allosteric regulation of ligand binding is a well-established mechanism regulating the function of G protein-coupled receptors (GPCR). Allosteric modulators have been considered so far as molecules binding to an allosteric site, distinct from that of the reference ligand (orthosteric site), and able to modulate the binding affinity at the orthosteric site and/or the signaling properties resulting from orthosteric site occupancy. Given that most GPCR are known to form dimers or higher order oligomers, we explored whether allosteric interactions could also occur between protomers within oligomeric arrays, thereby influencing binding and signaling receptor properties. Two main conclusions emerged from such studies. First, allosteric modulators can affect one receptor by binding to another receptor within a dimeric or oligomeric complex. Second, allosteric modulators might act on a given receptor by targeting the "orthosteric site" in another receptor of the complex. Allosteric regulation within di(oligo)mers thus implies that the pharmacological properties of a given receptor subtype can be influenced by the array of dimerization partners coexpressed in each particular cell type. Ligands could thus act as agonists or antagonists on 1 receptor, while modulating allosterically the function of a variety of other receptors to which they do not bind directly. Allosteric regulation across GPCR oligomeric interfaces is expected to greatly influence the practice of pharmacology. It will likely affect the design of drug discovery programs, which rely mostly on the overexpression of the receptor of interest in a cell line, thereby focusing on homo-oligomers and ignoring the potential effects of other partners.
Collapse
Affiliation(s)
- Jean-Yves Springael
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM), Université Libre de Bruxelles, Campus Erasme, 808 Route de Lennik, Elsevier Inc, B-1070, Brussels, Belgium
| | | | | | | | | |
Collapse
|
369
|
Laffray S, Tan K, Dulluc J, Bouali-Benazzouz R, Calver AR, Nagy F, Landry M. Dissociation and trafficking of rat GABAB receptor heterodimer upon chronic capsaicin stimulation. Eur J Neurosci 2007; 25:1402-16. [PMID: 17425567 DOI: 10.1111/j.1460-9568.2007.05398.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Gamma-aminobutyric acid type B receptors (GABAB) are G-protein-coupled receptors that mediate GABAergic inhibition in the brain. Their functional expression is dependent upon the formation of heterodimers between GABAB1 and GABAB2 subunits, a process that occurs within the endoplasmic reticulum. However, the mechanisms that regulate GABAB receptor oligomerization at the plasma membrane remain largely unknown. We first characterized the functional cytoarchitecture of an organotypic co-culture model of rat dorsal root ganglia and spinal cord. Subsequently, we studied the interactions between GABAB subunits after chronic stimulation of sensory fibres with capsaicin. Surface labelling of recombinant proteins showed a decrease in subunit co-localization and GABAB2 labelling, after capsaicin treatment. In these conditions, fluorescence lifetime imaging measurements further demonstrated a loss of interactions between green fluorescent protein-GABAB1b and t-dimer discosoma sp red fluorescent protein-GABAB2 subunits. Finally, we established that the GABAB receptor undergoes clathrin-dependent internalization and rapid recycling to the plasma membrane following activation with baclofen, a GABAB agonist. However, in cultures chronically stimulated with capsaicin, the agonist-induced endocytosis was decreased, reflecting changes in the dimeric state of the receptor. Taken together, our results indicate that the chronic stimulation of sensory fibres can dissociate the GABAB heterodimer and alters its responsiveness to the endogenous ligand. Chronic stimulation thus modulates receptor oligomerization, providing additional levels of control of signalling.
Collapse
Affiliation(s)
- Sophie Laffray
- INSERM U 862, Institut François Magendie, Université Bordeaux 2, Bordeaux, France
| | | | | | | | | | | | | |
Collapse
|
370
|
Grampp T, Sauter K, Markovic B, Benke D. Gamma-aminobutyric acid type B receptors are constitutively internalized via the clathrin-dependent pathway and targeted to lysosomes for degradation. J Biol Chem 2007; 282:24157-65. [PMID: 17581821 DOI: 10.1074/jbc.m702626200] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Receptor internalization is recognized as an important mechanism for rapidly regulating cell surface numbers of receptors. However, there are conflicting results on the existence of rapid endocytosis of gamma-aminobutyric acid, type B (GABAB) receptors. Therefore, we analyzed internalization of GABAB receptors expressed in HEK 293 cells qualitatively and quantitatively using immunocytochemical, cell surface enzyme-linked immunosorbent assay, and biotinylation methods. The data indicate the existence of rapid constitutive receptor internalization, with the first endocytosed receptors being observed in proximity of the plasma membrane after 10 min. After 120 min, a loss of about 40-50% of cell surface receptors was detected. Stimulation of GABAB receptors with GABA or baclofen did not enhance endocytosis of receptors, indicating the lack of agonist-induced internalization. The data suggest that GABAB receptors were endocytosed via the classical dynamin- and clathrin-dependent pathway and accumulated in an endosomal sorting compartment before being targeted to lysosomes for degradation. No evidence for recycling of receptors back to the cell surface was found. In conclusion, the results indicate the presence of constitutive internalization of GABAB receptors via clathrin-coated pits, which resulted in lysosomal degradation of the receptors.
Collapse
Affiliation(s)
- Thomas Grampp
- Institute of Pharmacology and Toxicology, University of Zurich, Zurich 8057, Switzerland
| | | | | | | |
Collapse
|
371
|
Suga H, Haga T. Ligand screening system using fusion proteins of G protein-coupled receptors with G protein alpha subunits. Neurochem Int 2007; 51:140-64. [PMID: 17659814 DOI: 10.1016/j.neuint.2007.06.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2007] [Revised: 06/07/2007] [Accepted: 06/08/2007] [Indexed: 01/04/2023]
Abstract
G protein-coupled receptors (GPCRs) constitute one of the largest families of genes in the human genome, and are the largest targets for drug development. Although a large number of GPCR genes have recently been identified, ligands have not yet been identified for many of them. Various assay systems have been employed to identify ligands for orphan GPCRs, but there is still no simple and general method to screen for ligands of such GPCRs, particularly of G(i)-coupled receptors. We have examined whether fusion proteins of GPCRs with G protein alpha subunit (Galpha) could be utilized for ligand screening and showed that the fusion proteins provide an effective method for the purpose. This article focuses on the followings: (1) characterization of GPCR genes and GPCRs, (2) identification of ligands for orphan GPCRs, (3) characterization of GPCR-Galpha fusion proteins, and (4) identification of ligands for orphan GPCRs using GPCR-Galpha fusion proteins.
Collapse
Affiliation(s)
- Hinako Suga
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| | | |
Collapse
|
372
|
Bush CF, Jones SV, Lyle AN, Minneman KP, Ressler KJ, Hall RA. Specificity of Olfactory Receptor Interactions with Other G Protein-coupled Receptors. J Biol Chem 2007; 282:19042-51. [PMID: 17472961 DOI: 10.1074/jbc.m610781200] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Studies on olfactory receptor (OR) pharmacology have been hindered by the poor plasma membrane localization of most ORs in heterologous cells. We previously reported that association with the beta(2)-adrenergic receptor (beta(2)-AR) facilitates functional expression of the OR M71 at the plasma membrane of HEK-293 cells. In the present study, we examined the specificity of M71 interactions with other G protein-coupled receptors (GPCRs). M71 was co-expressed in HEK-293 cells with 42 distinct GPCRs, and the vast majority of these receptors had no significant effect on M71 surface expression. However, co-expression with three subtypes of purinergic receptor (P2Y(1)R, P2Y(2)R, and A(2A)R) resulted in markedly enhanced plasma membrane localization of M71. Agonist stimulation of M71 co-expressed with P2Y(1)R and P2Y(2)R activated the mitogen-activated protein kinase pathway via coupling of M71 to Galpha(o). We also examined the ability of beta(2)-AR, P2Y(1)R, P2Y(2)R, and A(2A)Rto interact with and regulate ORs beyond M71. We found that co-expression of beta(2)-AR or the purinergic receptors enhanced the surface expression for an M71 subfamily member but not for several other ORs from different subfamilies. In addition, through chimeric receptor studies, we determined that the second transmembrane domain of beta(2)-AR is necessary for beta(2)-AR facilitation of M71 plasma membrane localization. These studies shed light on the specificity of OR interactions with other GPCRs and the mechanisms governing olfactory receptor trafficking.
Collapse
MESH Headings
- Acetophenones/pharmacology
- Animals
- Cell Line
- Cell Membrane/metabolism
- Humans
- Kidney/cytology
- Lac Operon
- MAP Kinase Signaling System/physiology
- Mice
- Mice, Transgenic
- Olfactory Receptor Neurons/physiology
- Photosensitizing Agents/pharmacology
- Protein Structure, Tertiary
- Rats
- Receptors, Adrenergic, alpha-2/genetics
- Receptors, Adrenergic, alpha-2/metabolism
- Receptors, Adrenergic, beta-2/chemistry
- Receptors, Adrenergic, beta-2/genetics
- Receptors, Adrenergic, beta-2/metabolism
- Receptors, G-Protein-Coupled/metabolism
- Receptors, Odorant/agonists
- Receptors, Odorant/genetics
- Receptors, Odorant/metabolism
- Receptors, Purinergic P2/genetics
- Receptors, Purinergic P2/metabolism
- Receptors, Purinergic P2Y1
- Receptors, Purinergic P2Y2
Collapse
Affiliation(s)
- Cristina F Bush
- Department of Pharmacology, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | | | | | | | | | | |
Collapse
|
373
|
Requirements and ontology for a G protein-coupled receptor oligomerization knowledge base. BMC Bioinformatics 2007; 8:177. [PMID: 17537266 PMCID: PMC1904246 DOI: 10.1186/1471-2105-8-177] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2007] [Accepted: 05/30/2007] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND G Protein-Coupled Receptors (GPCRs) are a large and diverse family of membrane proteins whose members participate in the regulation of most cellular and physiological processes and therefore represent key pharmacological targets. Although several bioinformatics resources support research on GPCRs, most of these have been designed based on the traditional assumption that monomeric GPCRs constitute the functional receptor unit. The increase in the frequency and number of reports about GPCR dimerization/oligomerization and the implication of oligomerization in receptor function makes necessary the ability to store and access information about GPCR dimers/oligomers electronically. RESULTS We present here the requirements and ontology (the information scheme to describe oligomers and associated concepts and their relationships) for an information system that can manage the elements of information needed to describe comprehensively the phenomena of both homo- and hetero-oligomerization of GPCRs. The comprehensive information management scheme that we plan to use for the development of an intuitive and user-friendly GPCR-Oligomerization Knowledge Base (GPCR-OKB) is the result of a community dialog involving experimental and computational colleagues working on GPCRs. CONCLUSION Our long term goal is to disseminate to the scientific community organized, curated, and detailed information about GPCR dimerization/oligomerization and its related structural context. This information will be reported as close to the data as possible so the user can make his own judgment on the conclusions drawn for a particular study. The requirements and ontology described here will facilitate the development of future information systems for GPCR oligomers that contain both computational and experimental information about GPCR oligomerization. This information is freely accessible at http://www.gpcr-okb.org.
Collapse
|
374
|
Tu H, Rondard P, Xu C, Bertaso F, Cao F, Zhang X, Pin JP, Liu J. Dominant role of GABAB2 and Gbetagamma for GABAB receptor-mediated-ERK1/2/CREB pathway in cerebellar neurons. Cell Signal 2007; 19:1996-2002. [PMID: 17582742 DOI: 10.1016/j.cellsig.2007.05.004] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2007] [Accepted: 05/20/2007] [Indexed: 11/23/2022]
Abstract
gamma-aminobutyric acid type B (GABA(B)) receptor is an allosteric complex made of two subunits, GABA(B1) and GABA(B2). GABA(B2) plays a major role in the coupling to G protein whereas GABA(B1) binds GABA. It has been shown that GABA(B) receptor activates ERK(1/2) in neurons of the central nervous system, but the molecular mechanisms underlying this event are poorly characterized. Here, we demonstrate that activation of GABA(B) receptor by either GABA or the selective agonist baclofen induces ERK(1/2) phosphorylation in cultured cerebellar granule neurons. We also show that CGP7930, a positive allosteric regulator specific of GABA(B2), alone can induce the phosphorylation of ERK(1/2). PTX, a G(i/o) inhibitor, abolishes both baclofen and CGP7930-mediated-ERK(1/2) phosphorylation. Moreover, both baclofen and CGP7930 induce ERK-dependent CREB phosphorylation. Furthermore, by using LY294002, a PI-3 kinase inhibitor, and a C-term of GRK-2 that has been reported to sequester Gbetagamma subunits, we demonstrate the role of Gbetagamma in GABA(B) receptor-mediated-ERK(1/2) phosphorylation. In conclusion, the activation of GABA(B) receptor leads to ERK(1/2) phosphorylation via the coupling of GABA(B2) to G(i/o) and by releasing Gbetagamma subunits which in turn induce the activation of CREB. These findings suggest a role of GABA(B) receptor in long-term change in the central nervous system.
Collapse
Affiliation(s)
- Haijun Tu
- Sino-France Laboratory for Drug Screening, Key Laboratory of Molecular Biophysics, Ministry of Education, School of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | | | | | | | | | | | | | | |
Collapse
|
375
|
Whorton MR, Bokoch MP, Rasmussen SGF, Huang B, Zare RN, Kobilka B, Sunahara RK. A monomeric G protein-coupled receptor isolated in a high-density lipoprotein particle efficiently activates its G protein. Proc Natl Acad Sci U S A 2007; 104:7682-7. [PMID: 17452637 PMCID: PMC1863461 DOI: 10.1073/pnas.0611448104] [Citation(s) in RCA: 530] [Impact Index Per Article: 29.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2006] [Indexed: 11/18/2022] Open
Abstract
G protein-coupled receptors (GPCRs) respond to a diverse array of ligands, mediating cellular responses to hormones and neurotransmitters, as well as the senses of smell and taste. The structures of the GPCR rhodopsin and several G proteins have been determined by x-ray crystallography, yet the organization of the signaling complex between GPCRs and G proteins is poorly understood. The observations that some GPCRs are obligate heterodimers, and that many GPCRs form both homo- and heterodimers, has led to speculation that GPCR dimers may be required for efficient activation of G proteins. However, technical limitations have precluded a definitive analysis of G protein coupling to monomeric GPCRs in a biochemically defined and membrane-bound system. Here we demonstrate that a prototypical GPCR, the beta2-adrenergic receptor (beta2AR), can be incorporated into a reconstituted high-density lipoprotein (rHDL) phospholipid bilayer particle together with the stimulatory heterotrimeric G protein, Gs. Single-molecule fluorescence imaging and FRET analysis demonstrate that a single beta2AR is incorporated per rHDL particle. The monomeric beta2AR efficiently activates Gs and displays GTP-sensitive allosteric ligand-binding properties. These data suggest that a monomeric receptor in a lipid bilayer is the minimal functional unit necessary for signaling, and that the cooperativity of agonist binding is due to G protein association with a receptor monomer and not receptor oligomerization.
Collapse
MESH Headings
- Animals
- Cattle
- Fluorescence Resonance Energy Transfer
- GTP-Binding Proteins/metabolism
- Humans
- Lipoproteins, HDL/chemistry
- Lipoproteins, HDL/metabolism
- Lipoproteins, HDL/ultrastructure
- Microscopy, Electron, Transmission
- Models, Molecular
- Protein Binding
- Protein Structure, Quaternary
- Receptors, Adrenergic, beta-2/chemistry
- Receptors, Adrenergic, beta-2/isolation & purification
- Receptors, Adrenergic, beta-2/metabolism
Collapse
Affiliation(s)
- Matthew R. Whorton
- *Department of Pharmacology, University of Michigan Medical School, 1301 Medical Sciences Research Building III, Ann Arbor, MI 48109
| | - Michael P. Bokoch
- Department of Molecular and Cellular Physiology, Stanford University Medical School, Stanford, CA 94305
| | - Søren G. F. Rasmussen
- Department of Molecular and Cellular Physiology, Stanford University Medical School, Stanford, CA 94305
| | - Bo Huang
- Department of Chemistry, Stanford University, Stanford, CA 94305; and
| | - Richard N. Zare
- Department of Chemistry, Stanford University, Stanford, CA 94305; and
| | - Brian Kobilka
- Department of Molecular and Cellular Physiology, Stanford University Medical School, Stanford, CA 94305
| | - Roger K. Sunahara
- *Department of Pharmacology, University of Michigan Medical School, 1301 Medical Sciences Research Building III, Ann Arbor, MI 48109
| |
Collapse
|
376
|
Pin JP, Neubig R, Bouvier M, Devi L, Filizola M, Javitch JA, Lohse MJ, Milligan G, Palczewski K, Parmentier M, Spedding M. International Union of Basic and Clinical Pharmacology. LXVII. Recommendations for the recognition and nomenclature of G protein-coupled receptor heteromultimers. Pharmacol Rev 2007; 59:5-13. [PMID: 17329545 DOI: 10.1124/pr.59.1.5] [Citation(s) in RCA: 209] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
G protein-coupled receptors (GPCRs) have long been considered to be monomeric membrane proteins. Although numerous recent studies have indicated that GPCRs can form multimeric complexes, the functional and pharmacological consequences of this phenomenon have remained elusive. With the discovery that the functional GABA(B) receptor is an obligate heterodimer and with the use of energy transfer technologies, it is now accepted that GPCRs can form heteromultimers. In some cases, specific properties of such heteromers not shared by their respective homomers have been reported. Although in most cases these properties have only been observed in heterologous expression systems, there are a few reports describing data consistent with such heteromultimeric GPCR complexes also existing in native tissues. The present article illustrates well-documented examples of such native multimeric complexes, lists a number of recommendations for recognition and acceptance of such multimeric receptors, and gives recommendations for their nomenclature.
Collapse
Affiliation(s)
- Jean-Philippe Pin
- Institut de Génomique Fonctionnelle, 141, rue de la Cardonille, 34094 Montpellier cedex 5, France.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
377
|
Levoye A, Dam J, Ayoub MA, Guillaume JL, Jockers R. Do orphan G-protein-coupled receptors have ligand-independent functions? New insights from receptor heterodimers. EMBO Rep 2007; 7:1094-8. [PMID: 17077864 PMCID: PMC1679777 DOI: 10.1038/sj.embor.7400838] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2006] [Accepted: 09/15/2006] [Indexed: 11/08/2022] Open
Abstract
G-protein-coupled receptors (GPCRs) are important drug targets and are involved in virtually every biological process. However, there are still more than 140 orphan GPCRs, and deciphering their function remains a priority for fundamental and clinical research. Research on orphan GPCRs has concentrated mainly on the identification of their natural ligands, whereas recent data suggest additional ligand-independent functions for these receptors. This emerging concept is connected with the observation that orphan GPCRs can heterodimerize with GPCRs that have identified ligands, and by so doing regulate the function of the latter. Pairing orphan GPCRs with their potential heterodimerization partners will have a major impact on our understanding of the extraordinary diversity offered by GPCR heterodimerization and, in addition, will constitute a novel strategy to elucidate the function of orphan receptors that needs to be added to the repertoire of 'deorphanization' strategies.
Collapse
Affiliation(s)
- Angélique Levoye
- Institut Cochin, Department of Cell Biology, UMR-S 8104, 22 rue Méchain, Paris F-75014, France
- Inserm, U567, UMR-S 8104, 22 rue Méchain, Paris F-75014, France
- CNRS, UMR 8104, UMR-S 8104, 22 rue Méchain, Paris F-75014, France
- Université Paris Descartes, Faculté de Médecine René Descartes, UMR-S 8104, 22 rue Méchain, Paris F-75014, France
- These authors contributed equally to this work
| | - Julie Dam
- Institut Cochin, Department of Cell Biology, UMR-S 8104, 22 rue Méchain, Paris F-75014, France
- Inserm, U567, UMR-S 8104, 22 rue Méchain, Paris F-75014, France
- CNRS, UMR 8104, UMR-S 8104, 22 rue Méchain, Paris F-75014, France
- Université Paris Descartes, Faculté de Médecine René Descartes, UMR-S 8104, 22 rue Méchain, Paris F-75014, France
- These authors contributed equally to this work
| | - Mohammed A Ayoub
- Institut Cochin, Department of Cell Biology, UMR-S 8104, 22 rue Méchain, Paris F-75014, France
- Inserm, U567, UMR-S 8104, 22 rue Méchain, Paris F-75014, France
- CNRS, UMR 8104, UMR-S 8104, 22 rue Méchain, Paris F-75014, France
- Université Paris Descartes, Faculté de Médecine René Descartes, UMR-S 8104, 22 rue Méchain, Paris F-75014, France
- Present address: Institut de Génomique Fonctionnelle (IGF), UMR5203 CNRS, U661 INSERM, Universités Montpellier 1 & 2, Département de Pharmacologie Moléculaire, 141 rue de la Cardonille 34094, Montpellier Cedex 05, France
| | - Jean-Luc Guillaume
- Institut Cochin, Department of Cell Biology, UMR-S 8104, 22 rue Méchain, Paris F-75014, France
- Inserm, U567, UMR-S 8104, 22 rue Méchain, Paris F-75014, France
- CNRS, UMR 8104, UMR-S 8104, 22 rue Méchain, Paris F-75014, France
- Université Paris Descartes, Faculté de Médecine René Descartes, UMR-S 8104, 22 rue Méchain, Paris F-75014, France
| | - Ralf Jockers
- Institut Cochin, Department of Cell Biology, UMR-S 8104, 22 rue Méchain, Paris F-75014, France
- Inserm, U567, UMR-S 8104, 22 rue Méchain, Paris F-75014, France
- CNRS, UMR 8104, UMR-S 8104, 22 rue Méchain, Paris F-75014, France
- Université Paris Descartes, Faculté de Médecine René Descartes, UMR-S 8104, 22 rue Méchain, Paris F-75014, France
- Tel: +33 1 40 51 64 34; Fax: +33 1 40 51 64 30;
| |
Collapse
|
378
|
Kantamneni S, Corrêa SAL, Hodgkinson GK, Meyer G, Vinh NN, Henley JM, Nishimune A. GISP: a novel brain-specific protein that promotes surface expression and function of GABA(B) receptors. J Neurochem 2007; 100:1003-17. [PMID: 17241134 PMCID: PMC3315443 DOI: 10.1111/j.1471-4159.2006.04271.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Synaptic transmission depends on the regulated surface expression of neurotransmitter receptors, but many of the cellular processes required to achieve this remain poorly understood. To better define specific mechanisms for the GABA(B) receptor (GABA(B)R) trafficking, we screened for proteins that bind to the carboxy-terminus of the GABA(B1) subunit. We report the identification and characterization of a novel 130-kDa protein, GPCR interacting scaffolding protein (GISP), that interacts directly with the GABA(B1) subunit via a coiled-coil domain. GISP co-fractionates with GABA(B)R and with the postsynaptic density and co-immunoprecipitates with GABA(B1) and GABA(B2) from rat brain. In cultured hippocampal neurons, GISP displays a punctate dendritic distribution and has an overlapping localization with GABA(B)Rs. When co-expressed with GABA(B)Rs in human embryonic kidney cells, GISP promotes GABA(B)R surface expression and enhances both baclofen-evoked extracellular signal-regulated kinase (ERK) phosphorylation and G-protein inwardly rectifying potassium channel (GIRK) currents. These results suggest that GISP is involved in the forward trafficking and stabilization of functional GABA(B)Rs.
Collapse
Affiliation(s)
- Sriharsha Kantamneni
- MRC Centre for Synaptic Plasticity, Department of Anatomy, School of Medical Sciences, University of Bristol, Bristol, UK
| | - Sônia A. L. Corrêa
- MRC Centre for Synaptic Plasticity, Department of Anatomy, School of Medical Sciences, University of Bristol, Bristol, UK
| | - Gina K. Hodgkinson
- MRC Centre for Synaptic Plasticity, Department of Anatomy, School of Medical Sciences, University of Bristol, Bristol, UK
| | | | - Ngoc Nga Vinh
- MRC Centre for Synaptic Plasticity, Department of Anatomy, School of Medical Sciences, University of Bristol, Bristol, UK
| | | | | |
Collapse
|
379
|
Lagerström MC, Hellström AR, Gloriam DE, Larsson TP, Schiöth HB, Fredriksson R. The G protein-coupled receptor subset of the chicken genome. PLoS Comput Biol 2007; 2:e54. [PMID: 16741557 PMCID: PMC1472694 DOI: 10.1371/journal.pcbi.0020054] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2006] [Accepted: 04/06/2006] [Indexed: 11/23/2022] Open
Abstract
G protein–coupled receptors (GPCRs) are one of the largest families of proteins, and here we scan the recently sequenced chicken genome for GPCRs. We use a homology-based approach, utilizing comparisons with all human GPCRs, to detect and verify chicken GPCRs from translated genomic alignments and Genscan predictions. We present 557 manually curated sequences for GPCRs from the chicken genome, of which 455 were previously not annotated. More than 60% of the chicken Genscan gene predictions with a human ortholog needed curation, which drastically changed the average percentage identity between the human–chicken orthologous pairs (from 56.3% to 72.9%). Of the non-olfactory chicken GPCRs, 79% had a one-to-one orthologous relationship to a human GPCR. The Frizzled, Secretin, and subgroups of the Rhodopsin families have high proportions of orthologous pairs, although the percentage of amino acid identity varies. Other groups show large differences, such as the Adhesion family and GPCRs that bind exogenous ligands. The chicken has only three bitter Taste 2 receptors, and it also lacks an ortholog to human TAS1R2 (one of three GPCRs in the human genome in the Taste 1 receptor family [TAS1R]), implying that the chicken's ability and mode of detecting both bitter and sweet taste may differ from the human's. The chicken genome contains at least 229 olfactory receptors, and the majority of these (218) originate from a chicken-specific expansion. To our knowledge, this dataset of chicken GPCRs is the largest curated dataset from a single gene family from a non-mammalian vertebrate. Both the updated human GPCR dataset, as well the chicken GPCR dataset, are available for download. Man and chicken are very different, but how is that difference related to our respective gene repertoire? The authors studied the family of G protein–coupled receptors (GPCRs), which in man contains about 791 proteins. These are found in the cell membrane, where they recognize substances, thereby functioning as mediators of signals across the cellular membrane. GPCRs respond to physiologically important substances such as hormones and neurotransmitters. In this paper, the publicly available genomic sequence from the domestic chicken is used to identify the entire repertoire of GPCRs in this species. The authors found 557 GPCRs and compared the chicken and human receptors; they concluded that out of the 328 chicken receptors that are not involved in olfaction, more than 250 have a corresponding human receptor. The majority of the differences between the chicken and man are within three groups of GPCRs—the receptors for olfaction, bitter taste, and the receptors involved in the immune system. The chicken GPCR sequences obtained here will be useful for identification of GPCRs in other species that are more distantly related to man, such as fish or insects. The domestic chicken represents the leading experimental model among the avian species and also serves as an important source of food worldwide.
Collapse
Affiliation(s)
| | | | - David E Gloriam
- Department of Neuroscience, Uppsala University, Uppsala, Sweden
| | | | - Helgi B Schiöth
- Department of Neuroscience, Uppsala University, Uppsala, Sweden
| | - Robert Fredriksson
- Department of Neuroscience, Uppsala University, Uppsala, Sweden
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
380
|
Abstract
In the basal ganglia the effects of gamma-aminobutyrate (GABA) are mediated by both ionotropic (GABA(A)) and metabotropic (GABA(B)) receptors. Although the existence and widespread distribution in the CNS of the GABA(B) receptor had been established in the 1980s the field of GABA(B) research was revolutionized with the discovery that two related G-protein-coupled receptors (GPCRs) needed to dimerize to form the functional GABA(B) receptor at the cell surface. This finding lead to a number of studies of oligomerization in GPCRs and detailed pharmacological studies of the cloned receptors and their splice variants. Particular interest has focused on the proteins interacting with the receptor which may be important in mediating the longer term signalling effects of the receptor and modifying its cellular localization or physiology. The cloning of the GABA(B) receptors also lead to the identification of the first compounds interacting in an allosteric fashion with the receptor some of which may have therapeutic value. Most recently "knockouts" of both the GABA(B) subunits have been produced where in general as expected there is a loss of the majority of the inhibitory effects of the GABA(B) receptor.
Collapse
Affiliation(s)
- Piers C Emson
- The Babraham Institute, Babraham Research Campus, Cambridge CB2 4AT, UK.
| |
Collapse
|
381
|
Abstract
This review considers how recent advances in the physiology of ion channels and other potential molecular targets, in conjunction with new information on the genetics of idiopathic epilepsies, can be applied to the search for improved antiepileptic drugs (AEDs). Marketed AEDs predominantly target voltage-gated cation channels (the alpha subunits of voltage-gated Na+ channels and also T-type voltage-gated Ca2+ channels) or influence GABA-mediated inhibition. Recently, alpha2-delta voltage-gated Ca2+ channel subunits and the SV2A synaptic vesicle protein have been recognized as likely targets. Genetic studies of familial idiopathic epilepsies have identified numerous genes associated with diverse epilepsy syndromes, including genes encoding Na+ channels and GABA(A) receptors, which are known AED targets. A strategy based on genes associated with epilepsy in animal models and humans suggests other potential AED targets, including various voltage-gated Ca2+ channel subunits and auxiliary proteins, A- or M-type voltage-gated K+ channels, and ionotropic glutamate receptors. Recent progress in ion channel research brought about by molecular cloning of the channel subunit proteins and studies in epilepsy models suggest additional targets, including G-protein-coupled receptors, such as GABA(B) and metabotropic glutamate receptors; hyperpolarization-activated cyclic nucleotide-gated cation (HCN) channel subunits, responsible for hyperpolarization-activated current Ih; connexins, which make up gap junctions; and neurotransmitter transporters, particularly plasma membrane and vesicular transporters for GABA and glutamate. New information from the structural characterization of ion channels, along with better understanding of ion channel function, may allow for more selective targeting. For example, Na+ channels underlying persistent Na+ currents or GABA(A) receptor isoforms responsible for tonic (extrasynaptic) currents represent attractive targets. The growing understanding of the pathophysiology of epilepsy and the structural and functional characterization of the molecular targets provide many opportunities to create improved epilepsy therapies.
Collapse
Affiliation(s)
- Brian S Meldrum
- Centre for Neuroscience, Division of Biomedical and Health Sciences, School of Medicine, Kings College, London, United Kingdom
| | | |
Collapse
|
382
|
Samadi P, Rouillard C, Bédard PJ, Di Paolo T. Functional neurochemistry of the basal ganglia. HANDBOOK OF CLINICAL NEUROLOGY 2007; 83:19-66. [DOI: 10.1016/s0072-9752(07)83002-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
383
|
Wigglesworth MJ, Wolfe LA, Wise A. Orphan seven transmembrane receptor screening. ERNST SCHERING FOUNDATION SYMPOSIUM PROCEEDINGS 2007:105-43. [PMID: 17703580 DOI: 10.1007/2789_2006_006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Drug discovery has successfully exploited the superfamily of seven transmembrane receptors (7TMR), with over 35% of clinically marketed drugs targeting them. However, it is clear that there remains an undefined potential within this protein family for successful drugs of the future. The human genome sequencing project identified approximately 720 genes that belong to the 7TMR superfamily. Around half of these genes encode sensory receptors, while the other half are potential drug targets. Natural ligands have been identified for approximately 215 of these, leaving 155 receptors classified as orphan 7TMRs having no known ligand. Deorphanisation of these receptors by identification of natural ligands has been the traditional method enabling target validation by use of these ligands as tools to define biological relevance and disease association. Such ligands have been paired with their cognate receptor experimentally by screening of small molecule and peptide ligands, reverse pharmacology and the use of bioinformatics to predict candidate ligands. In this manuscript, we review the methodologies developed for the identification of ligands at orphan 7TMRs and exemplify these with case studies.
Collapse
Affiliation(s)
- M J Wigglesworth
- Screening and Compound Profiling, GlaxoSmithKline, New Frontiers Science Park, Third Avenue, Harlow, CM19 5AW Essex, UK.
| | | | | |
Collapse
|
384
|
Barbaresi P. Cellular and subcellular localization of the GABAB receptor 1a/b subunit in the rat periaqueductal gray matter. J Comp Neurol 2007; 505:478-92. [DOI: 10.1002/cne.21509] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
385
|
Li SP, Lee HY, Park MS, Bahk JY, Chung BC, Kim MO. Prenatal GABAB1 and GABAB2 receptors: cellular and subcellular organelle localization in early fetal rat cortical neurons. Synapse 2006; 60:557-66. [PMID: 16983643 DOI: 10.1002/syn.20332] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Gamma-aminobutyric acid (GABA)(B) receptors appear to influence developmental events, depending on whether they are found at a synapse or in extrasynaptic areas. Little, if anything, is known as to the cellular and subcellular localization of GABA(B1) and GABA(B2) receptors during early fetal development. We used Western blots, immunohistochemistry, and postembedding immunoelectronmicroscopy to investigate fetal rat brain expression and distribution of these receptor proteins. GABA(B1) is expressed as early as gestational day (GD) 11.5 and 12.5, with immunoreactivity found in the all neuroepithelium, and a high expression in the mantel zone and the cortical area's plate; no immunolabeling for GABA(B2) receptor was observed. Our immunogold studies define a pattern of early GABA(B1) receptor protein in dendrite processes, endoplasmic reticulum, and axon terminals of the cortical neuroepithelium on GD 11.5. On GD 12.5, GABA(B1) receptor immunogold was found in dendrite processes, spines and tree, axon terminals, mitochondria, and intracellular organelles of the cortical neuroepithelium. No synapse formation was apparent as no synaptophysin could be found on either GD 11.5 or 12.5. We suggest that GABA(B1) has a functional role in the early fetal brain during neuronal proliferation and migration, and that it is different from the established functional GABA(B) receptor.
Collapse
Affiliation(s)
- S P Li
- Division of Life Science, College of Natural Sciences and Applied Life Science (Brain Korea 21), Gyeongsang National University, Chinju 660-701, South Korea
| | | | | | | | | | | |
Collapse
|
386
|
Dong C, Wu G. Regulation of anterograde transport of alpha2-adrenergic receptors by the N termini at multiple intracellular compartments. J Biol Chem 2006; 281:38543-54. [PMID: 17038316 PMCID: PMC2648813 DOI: 10.1074/jbc.m605734200] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The studies on the intrinsic structural determinants for export trafficking of G protein-coupled receptors (GPCRs) have been mainly focused on the C termini of the receptors. In this report we determined the role of the extracellular N termini of alpha(2)-adrenergic receptors (alpha(2)-ARs) in the anterograde transport from the endoplasmic reticulum (ER) through the Golgi to the cell surface. The N-terminal-truncated alpha(2B)-AR mutant is completely unable to target to the cell surface. A single Met-6 residue is essential for the export of alpha(2B)-AR from the ER, likely through modulating correct alpha(2B)-AR folding in the ER. The Tyr-Ser motif, highly conserved in the membrane-proximal N termini of all alpha(2)-AR subtypes, is required for the exit of alpha(2A)-AR and alpha(2B)-AR from the Golgi apparatus, thus representing a novel Tyr-based motif modulating GPCR transport at the Golgi level. These data provide the first evidence indicating an essential role of the N termini of GPCRs in the export from distinct intracellular compartments along the secretory pathway.
Collapse
Affiliation(s)
- Chunmin Dong
- Department of Pharmacology and Experimental Therapeutics, Louisiana State University Health Sciences Center, 1901 Perdido Street, New Orleans, LA 70112, USA
| | | |
Collapse
|
387
|
Cahill CM, Holdridge SV, Morinville A. Trafficking of delta-opioid receptors and other G-protein-coupled receptors: implications for pain and analgesia. Trends Pharmacol Sci 2006; 28:23-31. [PMID: 17150262 DOI: 10.1016/j.tips.2006.11.003] [Citation(s) in RCA: 137] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2006] [Revised: 10/20/2006] [Accepted: 11/22/2006] [Indexed: 12/22/2022]
Abstract
A cell can regulate how it interacts with its external environment by controlling the number of plasma membrane receptors that are accessible for ligand stimulation. G-protein-coupled receptors (GPCRs) are the largest superfamily of cell surface receptors and have a significant role in physiological and pathological processes. Much research effort is now focused on understanding how GPCRs are delivered to the cell surface to enhance the number of 'bioavailable' receptors accessible for activation. Knowing how such processes are triggered or modified following induction of various pathological states will inevitably identify new therapeutic strategies for treating various diseases, including chronic pain. Here, we highlight recent advances in this field, and provide examples of the importance of such trafficking events in pain.
Collapse
Affiliation(s)
- Catherine M Cahill
- Department of Pharmacology and Toxicology, Queen's University, Kingston, Ontario K7L 3N6, Canada.
| | | | | |
Collapse
|
388
|
Balasubramanian S, Fam SR, Hall RA. GABAB receptor association with the PDZ scaffold Mupp1 alters receptor stability and function. J Biol Chem 2006; 282:4162-71. [PMID: 17145756 DOI: 10.1074/jbc.m607695200] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
gamma-Aminobutyric acid, type B (GABA(B)) receptors are heterodimeric G protein-coupled receptors that mediate slow inhibitory synaptic transmission in the central nervous system. To identify novel interacting partners that might regulate GABA(B) receptor (GABA(B)R) functionality, we screened the GABA(B)R2 carboxyl terminus against a recently created proteomic array of 96 distinct PDZ (PSD-95/Dlg/ZO-1 homology) domains. The screen identified three specific PDZ domains that exhibit interactions with GABA(B)R2: Mupp1 PDZ13, PAPIN PDZ1, and Erbin PDZ. Biochemical analysis confirmed that full-length Mupp1 and PAPIN interact with GABA(B)R2 in cells. Disruption of the GABA(B)R2 interaction with PDZ scaffolds by a point mutation to the carboxyl terminus of the receptor dramatically decreased receptor stability and attenuated the duration of GABA(B) receptor signaling. The effects of mutating the GABA(B)R2 carboxyl terminus on receptor stability and signaling were mimicked by small interference RNA knockdown of endogenous Mupp1. These findings reveal that GABA(B) receptor stability and signaling can be modulated via GABA(B)R2 interactions with the PDZ scaffold protein Mupp1, which may contribute to cell-specific regulation of GABA(B) receptors in the central nervous system.
Collapse
|
389
|
|
390
|
David M, Richer M, Mamarbachi AM, Villeneuve LR, Dupré DJ, Hebert TE. Interactions between GABA-B1 receptors and Kir 3 inwardly rectifying potassium channels. Cell Signal 2006; 18:2172-81. [PMID: 16809021 DOI: 10.1016/j.cellsig.2006.05.014] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2006] [Accepted: 05/11/2006] [Indexed: 12/01/2022]
Abstract
gamma-aminobutyric acid (GABA) is the principal inhibitory neurotransmitter in the mammalian brain. It acts via both ionotropic GABA-A and metabotropic GABA-B receptors. We evaluated the interaction of receptors with members of the inwardly rectifying potassium (Kir 3) channel family, which also play an important role in neuronal transmission and membrane excitability. These channels are functionally regulated by GABA-B receptors. Possible physical interactions between GABA-B receptor and Kir 3 channels expressed in HEK cells were evaluated using Bioluminescence Resonance Energy Transfer (BRET) experiments, co-immunoprecipitation and confocal microscopy. Our data indicate that Kir 3 channels and Gbetagamma subunits can interact with the GABA-B(1) subunits independently of the GABA-B(2) subunit or Kir 3.4 which are ultimately responsible for their targetting to the cell surface. Thus signalling complexes containing GABA-B receptors, G proteins and Kir channels are formed shortly after biosynthesis most likely in the endoplasmic reticulum.
Collapse
Affiliation(s)
- Martin David
- Département de biochimie, Université de Montréal, Canada
| | | | | | | | | | | |
Collapse
|
391
|
Kim SK, Jacobson KA. Computational prediction of homodimerization of the A3 adenosine receptor. J Mol Graph Model 2006; 25:549-61. [PMID: 16781879 PMCID: PMC6282177 DOI: 10.1016/j.jmgm.2006.03.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2005] [Revised: 03/13/2006] [Accepted: 03/13/2006] [Indexed: 11/30/2022]
Abstract
Increasing evidence suggests that G protein-coupled receptors form functional dimers or larger oligomeric complexes through homo- or heterodimerization, and that various transmembrane (TM) domains contribute dimerization interfaces. In this study, monomeric receptor structures - either the monomeric crystallographic structure of bovine rhodopsin or an A(3) adenosine receptor (AR) homology model - were dimerized by computational methods assuming various TM contact regions, optimized, and compared. The semi-empirical oligomeric structure of mouse rhodopsin studied in a native disc membrane with atomic force microscopy was used to establish the distance between monomers in the initial dimeric models. Among eight variations of symmetrical homodimers of bovine rhodopsin, the favored dimeric assembly closely resembled the semi-empirical model, in which TM domains 4 and 5 were the contact site, thus validating this approach. We used similar methods to generate eight homodimers of the A(3)AR and found the favored dimeric interface similarly to be TM4-5. By this method, dimeric variations - TM1-2, TM2-3, TM2-4, TM3-4, TM4-5, TM5-6, TM6-7, and TM7-1 - were constructed with the SYBYL 7.0 program by using a novel "fit-centroids-normal" method. Fitting atoms considered one of eight TM-TM centroids or seven-TM centroids, two centroids of each monomer, and a normal atom passing through the plane containing all centroids. Following molecular dynamics, the most energetically favorable contact modes were identified. In addition to TM4-5, which was favored in both rhodopsin and A(3)AR dimeric models, TM1-2 dimers in which helices 8 also contacted each other were judged favorable. The largest contact surface area between the monomers among the various homodimers, determined by van der Waals calculation with the MOLCAD surface program, was for the TM4-5 dimer. This contact surface also showed a high degree of shape complementarity. In addition, the TM4-5 dimers made by this theoretical method were more stable than the semi-empirically determined dimer.
Collapse
Affiliation(s)
- Soo-Kyung Kim
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Kenneth A. Jacobson
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| |
Collapse
|
392
|
Damian M, Martin A, Mesnier D, Pin JP, Banères JL. Asymmetric conformational changes in a GPCR dimer controlled by G-proteins. EMBO J 2006; 25:5693-702. [PMID: 17139258 PMCID: PMC1698895 DOI: 10.1038/sj.emboj.7601449] [Citation(s) in RCA: 119] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2006] [Accepted: 10/04/2006] [Indexed: 11/09/2022] Open
Abstract
G-protein-coupled receptors (GPCRs) are key players in cell communication. Although long considered as monomeric, it now appears that these heptahelical proteins can form homo- or heterodimers. Here, we analyzed the conformational changes in each subunit of a receptor dimer resulting from agonist binding to either one or both subunits by measuring the fluorescent properties of a leukotriene B(4) receptor dimer with a single 5-hydroxytryptophan-labeled protomer. We show that a receptor dimer with only a single agonist-occupied subunit can trigger G-protein activation. We also show that the two subunits of the receptor dimer in the G-protein-coupled state differ in their conformation, even when both are liganded by the agonist. No such asymmetric conformational changes are observed in the absence of G-protein, indicating that the interaction of the G-protein with the receptor dimer brings specific constraints that prevent a symmetric functioning of this dimer. These data open new options for the differential signaling properties of GPCR dimers.
Collapse
Affiliation(s)
- Marjorie Damian
- UMR 5074 CNRS, Laboratoire de Chimie Biomoléculaire et Interactions Biologiques, Faculté de Pharmacie, Montpellier Cedex, France
- Université Montpellier I, Montpellier Cedex, France
| | - Aimée Martin
- UMR 5074 CNRS, Laboratoire de Chimie Biomoléculaire et Interactions Biologiques, Faculté de Pharmacie, Montpellier Cedex, France
- Université Montpellier I, Montpellier Cedex, France
| | - Danielle Mesnier
- UMR 5074 CNRS, Laboratoire de Chimie Biomoléculaire et Interactions Biologiques, Faculté de Pharmacie, Montpellier Cedex, France
- Université Montpellier I, Montpellier Cedex, France
| | - Jean-Philippe Pin
- CNRS UMR 5203, Montpellier, France
- INSERM U 661, Montpellier, France
- Université Montpellier I, Montpellier, France
- Université Montpellier II, Montpellier, France
- Département de Pharmacologie Moléculaire, Institut de Génomique Fonctionnelle, Montpellier Cedex, France
| | - Jean-Louis Banères
- UMR 5074 CNRS, Laboratoire de Chimie Biomoléculaire et Interactions Biologiques, Faculté de Pharmacie, Montpellier Cedex, France
- Université Montpellier I, Montpellier Cedex, France
- UMR 5074, CNRS, Université Montpellier I, Faculté de Pharmacie, 15 Av. Ch. Flahault, BP 14491, 34093 Montpellier Cedex 5, France. Tel.: +33 467 548 667; Fax: +33 467 548 625; E-mail:
| |
Collapse
|
393
|
James JR, Oliveira MI, Carmo AM, Iaboni A, Davis SJ. A rigorous experimental framework for detecting protein oligomerization using bioluminescence resonance energy transfer. Nat Methods 2006; 3:1001-6. [PMID: 17086179 DOI: 10.1038/nmeth978] [Citation(s) in RCA: 249] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2006] [Accepted: 10/17/2006] [Indexed: 11/09/2022]
Abstract
Bioluminescence resonance energy transfer (BRET), which relies on nonradiative energy transfer between luciferase-coupled donors and GFP-coupled acceptors, is emerging as a useful tool for analyzing the quaternary structures of cell-surface molecules. Conventional BRET analyses are generally done at maximal expression levels and single acceptor/donor ratios. We show that under these conditions substantial energy transfer arises from random interactions within the membrane. The dependence of BRET efficiency on acceptor/donor ratio at fixed surface density, or expression level at a defined acceptor/donor ratio, can nevertheless be used to correctly distinguish between well-characterized monomeric and oligomeric proteins, including a very weak dimer. The pitfalls associated with the nonrigorous treatment of BRET data are illustrated for the case of G protein-coupled receptors (GPCRs) proposed to form homophilic and/or mixed oligomers on the basis of previous, conventional BRET experiments.
Collapse
Affiliation(s)
- John R James
- Nuffield Department of Clinical Medicine and Medical Research Council, Human Immunology Unit, Weatherall Institute of Molecular Medicine, The University of Oxford, Oxford Radcliffe Hospital, Oxford, OX3 9DU, UK
| | | | | | | | | |
Collapse
|
394
|
Galvan A, Kuwajima M, Smith Y. Glutamate and GABA receptors and transporters in the basal ganglia: what does their subsynaptic localization reveal about their function? Neuroscience 2006; 143:351-75. [PMID: 17059868 PMCID: PMC2039707 DOI: 10.1016/j.neuroscience.2006.09.019] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2006] [Revised: 09/10/2006] [Accepted: 09/13/2006] [Indexed: 01/29/2023]
Abstract
GABA and glutamate, the main transmitters in the basal ganglia, exert their effects through ionotropic and metabotropic receptors. The dynamic activation of these receptors in response to released neurotransmitter depends, among other factors, on their precise localization in relation to corresponding synapses. The use of high resolution quantitative electron microscope immunocytochemical techniques has provided in-depth description of the subcellular and subsynaptic localization of these receptors in the CNS. In this article, we review recent findings on the ultrastructural localization of GABA and glutamate receptors and transporters in monkey and rat basal ganglia, at synaptic, extrasynaptic and presynaptic sites. The anatomical evidence supports numerous potential locations for receptor-neurotransmitter interactions, and raises important questions regarding mechanisms of activation and function of synaptic versus extrasynaptic receptors in the basal ganglia.
Collapse
Affiliation(s)
- A Galvan
- Yerkes National Primate Research Center, Emory University, Atlanta, GA 30322, USA.
| | | | | |
Collapse
|
395
|
Ferreira-Gomes J, Neto FL, Castro-Lopes JM. GABA(B2) receptor subunit mRNA decreases in the thalamus of monoarthritic animals. Brain Res Bull 2006; 71:252-8. [PMID: 17113954 DOI: 10.1016/j.brainresbull.2006.09.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2006] [Revised: 08/01/2006] [Accepted: 09/08/2006] [Indexed: 10/24/2022]
Abstract
Many studies have implicated GABA(B) receptors in pain transmission mechanisms, especially in the spinal cord. In the thalamus, mRNA expression of the GABA(B(1b)) isoform was shown to be regulated in relay nuclei in response to chronic noxious input arising from experimental monoarthritis. GABA(B(1a)) and GABA(B2) mRNA expression was here determined by in situ hybridisation in the brain of control, 2, 4, 7 and 14 days monoarthritic rats, to evaluate whether this expression was regulated by chronic noxious input in thalamic nuclei. mRNA labelling was analysed quantitatively in the ventrobasal complex, posterior, central medial/central lateral and reticular thalamic nuclei; the thalamic visual relay and dentate gyrus were examined for control. No mRNA expression was detected for GABA(B(1a)) in control and monoarthritic animals. Similarly, GABA(B2) mRNA was not found in the reticular nucleus. However, GABA(B2) mRNA expression was observed in the ventrobasal complex, posterior and central medial/central lateral nuclei of control animals. A significant decrease of 42% at 2 days and 27% at 4 days of monoarthritis was observed in the ventrobasal complex contralaterally, when compared with controls, returning to basal levels at 7 days of monoarthritis. In the ipsilateral posterior nucleus, there was a significant decrease of 38% at 2 days of monoarthritis. No significant changes were observed in central medial/central lateral nuclei. The data suggest that GABA(B2) mRNA expression in the ventrobasal complex and posterior nucleus is regulated by noxious input and that GABA(B) receptors might play a role in the plasticity of these relay nuclei during chronic inflammatory pain.
Collapse
Affiliation(s)
- Joana Ferreira-Gomes
- Institute of Histology and Embryology, Faculty of Medicine and IBMC, 4200-319 Porto, University of Porto, Portugal
| | | | | |
Collapse
|
396
|
Dupré DJ, Hébert TE. Biosynthesis and trafficking of seven transmembrane receptor signalling complexes. Cell Signal 2006; 18:1549-59. [PMID: 16677801 DOI: 10.1016/j.cellsig.2006.03.009] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2006] [Accepted: 03/21/2006] [Indexed: 12/16/2022]
Abstract
Recent studies have shown that 7-transmembrane receptors (7TM-Rs), their associated signalling molecules and scaffolding proteins are often constitutively associated under basal conditions. These studies highlight that receptor ontogeny and trafficking are likely to play key roles in the determination of both signalling specificity and efficacy. This review highlights information about how 7TM-Rs and their associated signalling molecules are trafficked to the cell surface as well as other intracellular destinations.
Collapse
Affiliation(s)
- Denis J Dupré
- Department of Pharmacology and Therapeutics, McIntyre Medical Sciences Building, 3655 Promenade Sir William Osler, Montréal, Québec, Canada H3G 1Y6
| | | |
Collapse
|
397
|
Mukherjee RS, McBride EW, Beinborn M, Dunlap K, Kopin AS. Point mutations in either subunit of the GABAB receptor confer constitutive activity to the heterodimer. Mol Pharmacol 2006; 70:1406-13. [PMID: 16847143 DOI: 10.1124/mol.106.024463] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The GABA receptor (GABABR) is a class C G protein-coupled receptor (GPCR) that functions as an obligate heterodimer, composed of two heptahelical subunits, GABABR subunit 1 (R1) and GABABR subunit 2 (R2). In this study, we generated and pharmacologically characterized constitutively active GABABR mutants as novel tools to explore the molecular mechanisms underlying receptor function. A single amino acid substitution, T290K, in the R1 agonist binding domain results in ligand-independent signaling when this mutant subunit is coexpressed with wild-type R2. Introduction of a Y690V mutation in the putative G protein-coupling domain of R2 is sufficient to confer moderate constitutive activity when this subunit is expressed alone. Activity of the Y690V mutant can be markedly enhanced with coexpression of wild-type R1. Coexpression of both mutant subunits (R1-T290K and R2-Y690K) leads to a further increase in basal signaling. Potencies of the full agonists R-(+)-beta-(aminomethyl)-4-chlorobenzenepropanoic acid hydrochloride (baclofen) and GABA are increased at the constitutively active versus the corresponding wild-type receptors. The mutant GABABR variants provided a sensitive probe enabling detection of inverse or partial agonist activity of molecules previously considered neutral antagonists. Our studies using constitutively active isoforms provide independent support for a model of GABABR function that takes into account 1) ligand binding by R1, 2) signal transduction by R2, and 3) modulation of R2-induced function by R1. Furthermore, we demonstrate that certain hallmark features of constitutive activity as originally established with class A GPCRs (e.g., enhanced agonist potency and affinity), are more generally applicable, as suggested by our finding with a class C heterodimeric receptor.
Collapse
Affiliation(s)
- Richa S Mukherjee
- Molecular Pharmacology Research Center, Molecular Cardiology Research Institute, Tufts-New England Medical Center, Department of Neuroscience, Tufts University School of Medicine, Boston, MA 02111, USA
| | | | | | | | | |
Collapse
|
398
|
Minneman KP. Heterodimerization and surface localization of G protein coupled receptors. Biochem Pharmacol 2006; 73:1043-50. [PMID: 17011524 PMCID: PMC1876675 DOI: 10.1016/j.bcp.2006.09.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2006] [Revised: 08/30/2006] [Accepted: 09/01/2006] [Indexed: 11/30/2022]
Abstract
G protein coupled receptors (GPCRs) are one of the largest human gene families, and are targets for many important therapeutic drugs. Over the last few years, there has been a major paradigm shift in our understanding of how these receptors function. Formerly, GPCRs were thought to exist as monomers that, upon agonist occupation, activated a heterotrimeric G protein to alter the concentrations of specific second messengers. Until recently, this relatively linear cascade has been the standard paradigm for signaling by these molecules. However, it is now clear that this model is not adequate to explain many aspects of GPCR function. We now know that many, if not most, GPCRs form homo- and/or hetero-oligomeric complexes and interact directly with intracellular proteins in addition to G proteins. It now appears that many GPCRs may not function independently, but might more accurately be described as subunits of large multi-protein signaling complexes. These observations raise many important new questions; some of which include: (1) how many functionally and pharmacologically distinct receptor subtypes exist in vivo? (2) Which GPCRs physically associate, and in what stochiometries? (3) What are the roles of individual subunits in binding ligand and activating responses? (4) Are the pharmacological or signaling properties of GPCR heterodimers different from monomers? Since these receptors are the targets for a large number of clinically useful compounds, such information is likely to be of direct therapeutic importance, both in understanding how existing drugs work, but also in discovering novel compounds to treat disease.
Collapse
Affiliation(s)
- Kenneth P Minneman
- Department of Pharmacology, Emory University School of Medicine, Atlanta, GA 30322, USA.
| |
Collapse
|
399
|
Tabata T, Kano M. GABA(B) receptor-mediated modulation of glutamate signaling in cerebellar Purkinje cells. THE CEREBELLUM 2006; 5:127-33. [PMID: 16818387 DOI: 10.1080/14734220600788911] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Since Purkinje cells are the sole output neurons of the cerebellar cortex, the postsynaptic integration of excitatory and inhibitory synaptic inputs in this cell type is a pivotal step for cerebellar motor information processing. In Purkinje cells, Gi/o protein-coupled B-type gamma-aminobutyric acid receptor (GABABR) is expressed at the annuli of the dendritic spines that are innervated by the glutamatergic terminals of parallel fibers. The subcellular localization of GABABR suggests the possibility of postsynaptic interplay between GABABR and glutamate signaling. It has recently been demonstrated that GABABR indeed modulates alpha amino-3-hydroxy-5-methyl-4-isoxalone propionate-type ionotropic glutamate receptor (AMPAR)-mediated and type-1 metabotropic glutamate receptor (mGluR1)-mediated signaling. Interestingly, GABABR exerts modulatory actions not only via the classical Gi/o protein-dependent signaling cascade but also via a Gi/o protein-independent interaction between GABABR and mGluR1. In this review, we compare the physiological nature, underlying mechanisms, and possible functional significance of these modulatory actions of GABABR.
Collapse
Affiliation(s)
- Toshihide Tabata
- Department of Cellular Neuroscience, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan
| | | |
Collapse
|
400
|
Prabhu Y, Eichinger L. The Dictyostelium repertoire of seven transmembrane domain receptors. Eur J Cell Biol 2006; 85:937-46. [PMID: 16735079 DOI: 10.1016/j.ejcb.2006.04.003] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The availability of fully sequenced genomes allows the in silico analysis of whole gene families in a given genome. A particularly large and interesting gene family is the G-protein-coupled receptor family. These receptors detect a variety of extracellular signals and transduce them, generally via heterotrimeric G-proteins, to effector proteins inside the cell and thus elicit a physiological response. G-protein-coupled receptors are found in all eukaryotes and constitute in vertebrates 3-5% of all genes. They are also very important drug targets and approximately 25 of the top 100 selling drugs are directed against these receptors. The Dictyostelium discoideum genome contains a surprisingly high number of 55 such receptors, approximately 0.5% of the encoded genes. Besides the four well-studied cAMP receptors the genome encodes eight additional cAMP receptor-like proteins and one of these is distinguished by a novel domain structure, one secretin-like receptor, 17 GABA(B)-like and 25 Frizzled-like receptors. The existence of the latter three types of receptors in D. discoideum was surprising because they had not been observed outside the animal kingdom before. Their presence suggests unprecedentedly complex and so far unknown signaling activities in this lower eukaryote.
Collapse
Affiliation(s)
- Yogikala Prabhu
- Centre for Biochemistry, Medical Faculty, University of Cologne, Joseph-Stelzmann-Str. 52, D-50931 Köln, Germany
| | | |
Collapse
|