351
|
Veeck J, Dahl E. Targeting the Wnt pathway in cancer: the emerging role of Dickkopf-3. Biochim Biophys Acta Rev Cancer 2011; 1825:18-28. [PMID: 21982838 DOI: 10.1016/j.bbcan.2011.09.003] [Citation(s) in RCA: 107] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2011] [Revised: 09/16/2011] [Accepted: 09/16/2011] [Indexed: 11/19/2022]
Abstract
Aberrant activation of the Wnt signaling pathway is a major trait of many human cancers. Due to its vast implications in tumorigenesis and progression, the Wnt pathway has attracted considerable attention at several molecular levels, also with respect to developing novel cancer therapeutics. Indeed, research in Wnt biology has recently provided numerous clues, and evidence is accumulating that the secreted Wnt antagonist Dickkopf-related protein 3 (Dkk-3) and its regulators may constitute interesting therapeutic targets in the most important human cancers. Based on the currently available literature, we here review the knowledge on the biological role of Dkk-3 as an antagonist of the Wnt signaling pathway, the involvement of Dkk-3 in several stages of tumor development, the genetic and epigenetic mechanisms disrupting DKK3 gene function in cancerous cells, and the potential clinical value of Dkk-3 expression/DKK3 promoter methylation as a biomarker and molecular target in cancer diseases. In conclusion, Dkk-3 rapidly emerges as a key player in human cancer with auspicious tumor suppressive capacities, most of all affecting apoptosis and proliferation. Its gene expression is frequently downregulated by promoter methylation in almost any solid and hematological tumor entity. Clinically, evidence is accumulating of Dkk-3 being both a potential tumor biomarker and effective anti-cancer agent. Although further research is needed, re-establishing Dkk-3 expression in cancer cells holds promise as novel targeted molecular tumor therapy.
Collapse
Affiliation(s)
- Jürgen Veeck
- Division of Medical Oncology, Department of Internal Medicine, GROW - School for Oncology and Developmental Biology, Maastricht University Medical Centre, Maastricht, The Netherlands.
| | | |
Collapse
|
352
|
Takebayashi-Suzuki K, Kitayama A, Terasaka-Iioka C, Ueno N, Suzuki A. The forkhead transcription factor FoxB1 regulates the dorsal-ventral and anterior-posterior patterning of the ectoderm during early Xenopus embryogenesis. Dev Biol 2011; 360:11-29. [PMID: 21958745 DOI: 10.1016/j.ydbio.2011.09.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2010] [Revised: 08/04/2011] [Accepted: 09/05/2011] [Indexed: 12/18/2022]
Abstract
The formation of the dorsal-ventral (DV) and anterior-posterior (AP) axes, fundamental to the body plan of animals, is regulated by several groups of polypeptide growth factors including the TGF-β, FGF, and Wnt families. In order to ensure the establishment of the body plan, the processes of DV and AP axis formation must be linked and coordinately regulated. However, the molecular mechanisms responsible for these interactions remain unclear. Here, we demonstrate that the forkhead box transcription factor FoxB1, which is upregulated by the neuralizing factor Oct-25, plays an important role in the formation of the DV and AP axes. Overexpression of FoxB1 promoted neural induction and inhibited BMP-dependent epidermal differentiation in ectodermal explants, thereby regulating the DV patterning of the ectoderm. In addition, FoxB1 was also found to promote the formation of posterior neural tissue in both ectodermal explants and whole embryos, suggesting its involvement in embryonic AP patterning. Using knockdown analysis, we found that FoxB1 is required for the formation of posterior neural tissues, acting in concert with the Wnt and FGF pathways. Consistent with this, FoxB1 suppressed the formation of anterior structures via a process requiring the function of XWnt-8 and eFGF. Interestingly, while downregulation of FoxB1 had little effect on neural induction, we found that it functionally interacted with its upstream factor Oct-25 and plays a supportive role in the induction and/or maintenance of neural tissue. Our results suggest that FoxB1 is part of a mechanism that fine-tunes, and leads to the coordinated formation of, the DV and AP axes during early development.
Collapse
Affiliation(s)
- Kimiko Takebayashi-Suzuki
- Institute for Amphibian Biology, Hiroshima University Graduate School of Science, Kagamiyama 1-3-1, Higashi-Hiroshima, Japan
| | | | | | | | | |
Collapse
|
353
|
Becker MR, Choi YS, Millar SE, Udey MC. Wnt signaling influences the development of murine epidermal Langerhans cells. J Invest Dermatol 2011; 131:1861-8. [PMID: 21614016 PMCID: PMC3156848 DOI: 10.1038/jid.2011.131] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Langerhans cells (LCs) are distinct dendritic cells (DCs) that populate stratified squamous epithelia. Despite extensive studies, our understanding of LC development is incomplete. Transforming growth factor β1 (TGFβ1) is required for LC development, but other epidermis-derived influences may also be important. Recently, EpCAM (CD326) has been identified as a cell surface protein discriminating LCs from Langerin(+) dermal DCs and other DCs in the skin. EpCAM is a known transcriptional target of the Wnt signaling pathway. We hypothesized that intraepidermal Wnt signaling might influence LC development. Addition of Wnt3A into cultures of bone-marrow-derived cells in combination with TGFβ1, GM-CSF, and M-CSF resulted in increased (33%; P<0.05) accumulation of EpCAM(+) DCs. In contrast, addition of the Wnt antagonist dickkopf-related protein 1 (Dkk1) decreased the number of EpCAM(+) DCs (21%; P<0.05). We used K14-KRM1; K5-rtTA; tetO-Dkk1 triple-transgenic and K5-rtTA; tetO-Dkk1 double-transgenic mice to test the in vivo relevance of our in vitro findings. Feeding doxycycline to nursing mothers induced expression of Dkk1 in the skin of transgenic pups, causing an obvious hair phenotype. Expression of Dkk1 reduced LC proliferation (40%; P<0.01) on P7, decreased LC densities (26%; P<0.05) on P14, and decreased EpCAM expression intensities on LCs as well (33%). In aggregate, these data suggest that Wnt signaling in skin influences LC development.
Collapse
Affiliation(s)
- Maria R. Becker
- Dermatology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Yeon Sook Choi
- Department of Dermatology, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Sarah E. Millar
- Department of Dermatology, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Mark C. Udey
- Dermatology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
354
|
|
355
|
Glantschnig H, Scott K, Hampton R, Wei N, McCracken P, Nantermet P, Zhao JZ, Vitelli S, Huang L, Haytko P, Lu P, Fisher JE, Sandhu P, Cook J, Williams D, Strohl W, Flores O, Kimmel D, Wang F, An Z. A rate-limiting role for Dickkopf-1 in bone formation and the remediation of bone loss in mouse and primate models of postmenopausal osteoporosis by an experimental therapeutic antibody. J Pharmacol Exp Ther 2011; 338:568-78. [PMID: 21531794 DOI: 10.1124/jpet.111.181404] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Genetic studies have linked both osteoporotic and high bone mass phenotypes to low-density lipoprotein receptor-related proteins (LRP4, LRP5, and LRP6). LRPs are receptors for inhibitory Dickkopf-1 (DKK1) protein, and treatment modalities that modulate LRP/DKK1 binding therefore may act as stimulators of bone mass accrual. Here, we report that RH2-18, a fully human monoclonal anti-DKK1 antibody elicits systemic pharmacologic bone efficacy and new bone formation at endosteal bone surfaces in vivo in a mouse model of estrogen-deficiency-induced osteopenia. This was paralleled by partial-to-complete resolution of osteopenia (bone mineral density) at all of the skeletal sites investigated in femur and lumbar-vertebral bodies and the restoration of trabecular bone microarchitecture. More importantly, testing of RH2-18 in adult, osteopenic rhesus macaques demonstrated a rate-limiting role of DKK1 at multiple skeletal sites and responsiveness to treatment. In conclusion, this study provides pharmacologic evidence for the modulation of DKK1 bioactivity in the adult osteopenic skeleton as a viable approach to resolve osteopenia in animal models. Thus, data described here suggest that targeting DKK1 through means such as a fully human anti-DKK1-antibody provides a potential bone-anabolic treatment for postmenopausal osteoporosis.
Collapse
Affiliation(s)
- Helmut Glantschnig
- Bone Biology, Merck Research Laboratories, 700 Sumneytown Pike, WP26A-1000, West Point, PA 19486, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
356
|
|
357
|
Du G, Kataoka K, Sakaguchi M, Abarzua F, Than SS, Sonegawa H, Makino T, Shimizu T, Huh NH. Expression of REIC/Dkk-3 in normal and hyperproliferative epidermis. Exp Dermatol 2011; 20:273-7. [PMID: 21323747 DOI: 10.1111/j.1600-0625.2010.01244.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Dickkopf (Dkk) family members are known as Wnt modulators involved in the development, cell growth/differentiation and cancer. REIC/Dkk-3, which does not interfere with Wnt signalling, has been proposed to be a tumor suppressor gene, but its physiological function has remained unclear. In this study, we analysed the expression of REIC/Dkk-3 in normal interfollicular epidermis (IFE) and hyperproliferative epidermis. REIC/Dkk-3 was expressed in human and mouse IFE, being localized at the interface of upper spinous layer and granular layer. Skin cancer cell lines lost REIC/Dkk-3 expression as reported previously. When we analysed patient samples, REIC/Dkk-3 expression was down-regulated in the hyperproliferative epidermis including skin cancers and non-cancerous proliferative diseases. REIC/Dkk-3 expression was also suppressed in the regenerative and inflammative epidermis of model mice. These findings will certainly contribute to the extension of studies on REIC/Dkk-3.
Collapse
Affiliation(s)
- Gang Du
- Department of Cell Biology, Okayama University Graduate, School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
358
|
Patel N, Sharpe PT, Miletich I. Coordination of epithelial branching and salivary gland lumen formation by Wnt and FGF signals. Dev Biol 2011; 358:156-67. [PMID: 21806977 DOI: 10.1016/j.ydbio.2011.07.023] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2011] [Revised: 07/01/2011] [Accepted: 07/15/2011] [Indexed: 10/18/2022]
Abstract
Branching morphogenesis is a molecularly conserved mechanism that is adopted by several organs, such as the lung, kidney, mammary gland and salivary gland, to maximize the surface area of a tissue within a small volume. Branching occurs through repetitive clefting and elongation of spherical epithelial structures, called endbuds, which invade the surrounding mesenchyme. In the salivary gland, lumen formation takes place alongside branching morphogenesis, but in a controlled manner, so that branching is active at the distal ends of epithelial branches while lumen formation initiates at the proximal ends, and spreads distally. We present here data showing that interaction between FGF signaling and the canonical (β-catenin dependent) and non-canonical branches of Wnt signaling coordinates these two processes. Using the Axin2(lacZ) reporter mice, we find Wnt/β-catenin signaling activity first in the mesenchyme and later, at the time of lumen formation, in the ductal epithelium. Gain and loss of function experiments reveal that this pathway exerts an inhibitory effect on salivary gland branching morphogenesis. We have found that endbuds remain devoid of Wnt/β-catenin signaling activity, a hallmark of ductal structures, through FGF-mediated inhibition of this pathway. Our data also show that FGF signaling has a major role in the control of lumen formation by preventing premature hollowing of epithelial endbuds and slowing down the canalization of presumptive ducts. Concomitantly, FGF signaling strongly represses the ductal marker Cp2l1, most likely via repression of Wnt5b and non-canonical Wnt signaling. Inhibition of canonical and non-canonical Wnt signaling in endbuds by FGF signaling occurs at least in part through sFRP1, a secreted inhibitor of Wnt signaling and downstream target of FGF signaling. Altogether, these findings point to a key function of FGF signaling in the maintenance of an undifferentiated state in endbud cells by inhibition of a ductal fate.
Collapse
Affiliation(s)
- Nisha Patel
- Department of Craniofacial Development, Dental Institute, King's College London, Guy's Hospital, London Bridge, London, UK
| | | | | |
Collapse
|
359
|
Dickkopf-1 level is lower in patients with ankylosing spondylitis than in healthy people and is not influenced by anti-tumor necrosis factor therapy. Rheumatol Int 2011; 32:2523-7. [PMID: 21833531 DOI: 10.1007/s00296-011-1981-0] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2010] [Accepted: 07/03/2011] [Indexed: 01/17/2023]
Abstract
(1) To compare the serum levels of Dickkopf-1 (DKK-1) and bone biomarkers in patients with ankylosing spondylitis (AS) and healthy controls. (2) To examine the effects of anti-tumor necrosis factor-α (TNF-α) therapy for 3 months on bone biomarkers in patients with AS. We measured the levels of DKK-1, osteocalcin, osteoprotegerin, and C-terminal telopeptide of type I collagen (CTX-1) in patients with AS and in healthy controls at baseline and 3 months after initiating anti-TNF-α therapy in AS patients. Bath Ankylosing Spondylitis Disease Activity Index (BASDAI) scores were also measured before and after anti-TNF-α therapy in AS patients. Serum levels of DKK-1 were significantly lower in the AS patients than in the controls (P < 0.0001). Osteocalcin and osteoprotegerin levels were significantly higher in the AS patients than in the controls (P < 0.0001). Serum levels of DKK-1 were not changed after the 3-month anti-TNF-α therapy. Osteocalcin level increased (P < 0.0001), osteoprotegerin level and BASDAI scores decreased (P = 0.025 and P < 0.0001, respectively) significantly after the 3-months anti-TNF-α therapy. Serum DKK-1 level was lower in patients with AS than in healthy controls and did not change after 3 months of anti-TNF-α therapy in the AS patients despite the marked improvement in BASDAI scores. These findings suggest the low serum DKK-1 level is related to the pathogenesis of new bone formation in AS, which is resistant to TNF-α blocking therapy.
Collapse
|
360
|
Misztal K, Wisniewska MB, Ambrozkiewicz M, Nagalski A, Kuznicki J. WNT protein-independent constitutive nuclear localization of beta-catenin protein and its low degradation rate in thalamic neurons. J Biol Chem 2011; 286:31781-8. [PMID: 21757747 DOI: 10.1074/jbc.m111.229666] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Nuclear localization of β-catenin is a hallmark of canonical Wnt signaling, a pathway that plays a crucial role in brain development and the neurogenesis of the adult brain. We recently showed that β-catenin accumulates specifically in mature thalamic neurons, where it regulates the expression of the Ca(v)3.1 voltage-gated calcium channel gene. Here, we investigated the mechanisms underlying β-catenin accumulation in thalamic neurons. We report that a lack of soluble factors produced either by glia or cortical neurons does not impair nuclear β-catenin accumulation in thalamic neurons. We next found that the number of thalamic neurons with β-catenin nuclear localization did not change when the Wnt/Dishevelled signaling pathway was inhibited by Dickkopf1 or a dominant negative mutant of Dishevelled3. These results suggest a WNT-independent cell-autonomous mechanism. We found that the protein levels of APC, AXIN1, and GSK3β, components of the β-catenin degradation complex, were lower in the thalamus than in the cortex of the adult rat brain. Reduced levels of these proteins were also observed in cultured thalamic neurons compared with cortical cultures. Finally, pulse-chase experiments confirmed that cytoplasmic β-catenin turnover was slower in thalamic neurons than in cortical neurons. Altogether, our data indicate that the nuclear localization of β-catenin in thalamic neurons is their cell-intrinsic feature, which was WNT-independent but associated with low levels of proteins involved in β-catenin labeling for ubiquitination and subsequent degradation.
Collapse
Affiliation(s)
- Katarzyna Misztal
- Laboratory of Neurodegeneration, International Institute of Molecular and Cell Biology, 4 Ks. Trojdena Street, 02-109 Warsaw, Poland
| | | | | | | | | |
Collapse
|
361
|
Zhou D, Zhang Y, Pan YX, Chen H. Dickkopf homolog 1, a Wnt signaling antagonist, is transcriptionally up-regulated via an ATF4-independent and MAPK/ERK-dependent pathway following amino acid deprivation. BIOCHIMICA ET BIOPHYSICA ACTA 2011; 1809:306-15. [PMID: 21683813 PMCID: PMC3199130 DOI: 10.1016/j.bbagrm.2011.05.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/22/2010] [Revised: 04/03/2011] [Accepted: 05/19/2011] [Indexed: 12/21/2022]
Abstract
Amino acid response (AAR) pathway is activated when cells are deprived of amino acids. In the present study, using the human colon cancer cell line SW480, we observed that DKK1, an antagonist of the Wnt pathway, was significantly induced at the mRNA level after the removal of amino acids from the medium. Addition of the amino alcohol histidinol, which prevents the formation of histidinyl-tRNA(His), also increased DKK1 mRNA to a level similar to that observed when cells were deprived of all amino acids. Transcriptional activity and stability of DKK1 mRNA were both increased in the amino acid-deprived condition. The induction of DKK1 gene expression was confirmed by the increased immunofluorescent staining of the DKK1 protein in the amino acid deprived condition. Although chromatin immunoprecipitation assays showed increased RNA Polymerase II binding at the DKK1 promoter in amino acid-limited conditions, ATF4 binding to the promoter is absent. Luciferase reporter assays did not detect any functional AARE within the DKK1 gene structure. Knockdown of ATF4 by siRNA did not affect the increase of DKK1 mRNA during amino acid limitation. Inhibition of ERK phosphorylation abolished the induction of DKK1. Our study revealed that DKK1 is a novel target gene in the response to amino acid deficiency and that the expression of DKK1 is up-regulated through an ATF4-independent and an ERK-dependent pathway.
Collapse
Affiliation(s)
- Dan Zhou
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| | - Yukun Zhang
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| | - Yuan-Xiang Pan
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| | - Hong Chen
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| |
Collapse
|
362
|
Sikandar S, Dizon D, Shen X, Li Z, Besterman J, Lipkin SM. The class I HDAC inhibitor MGCD0103 induces cell cycle arrest and apoptosis in colon cancer initiating cells by upregulating Dickkopf-1 and non-canonical Wnt signaling. Oncotarget 2011; 1:596-605. [PMID: 21317455 DOI: 10.18632/oncotarget.101001] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Colorectal cancer metastatic recurrence and chemoresistance are major causes of morbidity and mortality. Colon cancer initiating cells (CCIC) are thought to contribute to both these processes. To identify drugs with anti-CCIC activity we screened a number of FDA approved and investigational compounds. We found that the class I selective histone deacetylase inhibitor (HDACi) MGCD0103 has significant activity against CCIC, and also significantly inhibits non-CCIC CRC cell xenograft formation. Both MGCD0103 and the pan-HDAC inhibitor Trichostatin impairs CCIC clonogenicity and cause cell cycle arrest and cell death. Gene expression profiling revealed that the canonical WNT ligand DKK-1 is a highly upregulated target of HDAC inhibitors. Despite the presence of APC mutations and constitutive WNT signaling in CCIC, both transfected and recombinant DKK-1 dramatically inhibit CCIC proliferation and clonogenicity. Overall, these data show that inhibition of class I HDACs is a promising novel approach to target both CCIC and non-CCIC CRC cells. Our studies also provide novel insights into roles for DKK1 in addition to canonical WNT signaling and the mechanism of CCIC tumor formation.
Collapse
|
363
|
Bielefeld KA, Amini-Nik S, Whetstone H, Poon R, Youn A, Wang J, Alman BA. Fibronectin and beta-catenin act in a regulatory loop in dermal fibroblasts to modulate cutaneous healing. J Biol Chem 2011; 286:27687-97. [PMID: 21652705 DOI: 10.1074/jbc.m111.261677] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
β-Catenin is an important regulator of dermal fibroblasts during cutaneous wound repair. However, the factors that modulate β-catenin activity in this process are not completely understood. We investigated the role of the extracellular matrix in regulating β-catenin and found an increase in β-catenin-mediated Tcf-dependent transcriptional activity in fibroblasts exposed to various extracellular matrix components. This occurs through an integrin-mediated GSK3β-dependent pathway. The physiologic role of this mechanism was demonstrated during wound repair in extra domain A-fibronectin-deficient mice, which exhibited decreased β-catenin-mediated signaling during the proliferative phase of healing. Extra domain A-fibronectin-deficient mice have wounds that fail at a lower tensile strength and contain fewer fibroblasts compared with wild type mice. This phenotype was rescued by genetic or pharmacologic activation of β-catenin signaling. Because fibronectin is a transcriptional target of β-catenin, this suggests the existence of a feedback loop between these two molecules that regulates dermal fibroblast cell behavior during wound repair.
Collapse
Affiliation(s)
- Kirsten A Bielefeld
- Program in Developmental and Stem Cell Biology, Hospital for Sick Children Research Institute, Toronto, Ontario M5G 1L7, Canada
| | | | | | | | | | | | | |
Collapse
|
364
|
Szabó NE, Zhao T, Çankaya M, Stoykova A, Zhou X, Alvarez-Bolado G. Interaction between axons and specific populations of surrounding cells is indispensable for collateral formation in the mammillary system. PLoS One 2011; 6:e20315. [PMID: 21625468 PMCID: PMC3098884 DOI: 10.1371/journal.pone.0020315] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2011] [Accepted: 04/29/2011] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND An essential phenomenon during brain development is the extension of long collateral branches by axons. How the local cellular environment contributes to the initial sprouting of these branches in specific points of an axonal shaft remains unclear. METHODOLOGY/PRINCIPAL FINDINGS The principal mammillary tract (pm) is a landmark axonal bundle connecting ventral diencephalon to brainstem (through the mammillotegmental tract, mtg). Late in development, the axons of the principal mammillary tract sprout collateral branches at a very specific point forming a large bundle whose target is the thalamus. Inspection of this model showed a number of distinct, identified cell populations originated in the dorsal and the ventral diencephalon and migrating during development to arrange themselves into several discrete groups around the branching point. Further analysis of this system in several mouse lines carrying mutant alleles of genes expressed in defined subpopulations (including Pax6, Foxb1, Lrp6 and Gbx2) together with the use of an unambiguous genetic marker of mammillary axons revealed: 1) a specific group of Pax6-expressing cells in close apposition with the prospective branching point is indispensable to elicit axonal branching in this system; and 2) cooperation of transcription factors Foxb1 and Pax6 to differentially regulate navigation and fasciculation of distinct branches of the principal mammillary tract. CONCLUSIONS/SIGNIFICANCE Our results define for the first time a model system where interaction of the axonal shaft with a specific group of surrounding cells is essential to promote branching. Additionally, we provide insight on the cooperative transcriptional regulation necessary to promote and organize an intricate axonal tree.
Collapse
Affiliation(s)
- Nora-Emöke Szabó
- Brain Development Group, Max Planck Institute of Biophysical Chemistry, Göttingen, Germany
| | - Tianyu Zhao
- Brain Development Group, Max Planck Institute of Biophysical Chemistry, Göttingen, Germany
| | - Murat Çankaya
- Department of Biology, Faculty of Sciences and Art, Erzincan University, Erzincan, Turkey
| | - Anastassia Stoykova
- Department of Molecular Cell Biology, Max Planck Institute of Biophysical Chemistry, Göttingen, Germany
| | - Xunlei Zhou
- Brain Development Group, Max Planck Institute of Biophysical Chemistry, Göttingen, Germany
| | - Gonzalo Alvarez-Bolado
- Brain Development Group, Max Planck Institute of Biophysical Chemistry, Göttingen, Germany
| |
Collapse
|
365
|
Vijayakumar S, Liu G, Rus IA, Yao S, Chen Y, Akiri G, Grumolato L, Aaronson SA. High-frequency canonical Wnt activation in multiple sarcoma subtypes drives proliferation through a TCF/β-catenin target gene, CDC25A. Cancer Cell 2011; 19:601-12. [PMID: 21575861 PMCID: PMC3116447 DOI: 10.1016/j.ccr.2011.03.010] [Citation(s) in RCA: 108] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2010] [Revised: 10/11/2010] [Accepted: 03/15/2011] [Indexed: 12/20/2022]
Abstract
Wnt canonical signaling is critical for normal development as well as homeostasis of several epithelial tissues, and constitutive activation of this pathway is commonly observed in carcinomas. We show here that 50% of human sarcomas (n = 45) and 65% of sarcoma cell lines (n = 23) of diverse histological subtypes exhibit upregulated autocrine canonical Wnt signaling. Furthermore, in Wnt autocrine cell lines, we identify alterations including overexpression or gene amplification of Wnt ligands and/or LRP5/6 coreceptors and epigenetic silencing of different cell surface Wnt antagonists. Mutations in adenomatous polyposis coli (APC) gene were observed in two nonautocrine Wnt-positive sarcoma cell lines. Finally, downregulation of the activated Wnt pathway inhibited sarcoma cell proliferation both in vitro and in vivo by a mechanism involving the downregulation of CDC25A.
Collapse
Affiliation(s)
- Sapna Vijayakumar
- Department of Oncological Sciences, Mount Sinai School of Medicine, New York 10029
| | - Guizhong Liu
- Department of Oncological Sciences, Mount Sinai School of Medicine, New York 10029
| | | | - Shen Yao
- Department of Oncological Sciences, Mount Sinai School of Medicine, New York 10029
| | - Yan Chen
- Department of Oncological Sciences, Mount Sinai School of Medicine, New York 10029
| | - Gal Akiri
- Department of Oncological Sciences, Mount Sinai School of Medicine, New York 10029
| | - Luca Grumolato
- Department of Oncological Sciences, Mount Sinai School of Medicine, New York 10029
| | - Stuart A. Aaronson
- Department of Oncological Sciences, Mount Sinai School of Medicine, New York 10029
| |
Collapse
|
366
|
Identification of a novel inhibitor of the canonical Wnt pathway. Mol Cell Biol 2011; 31:3038-51. [PMID: 21576363 DOI: 10.1128/mcb.01211-10] [Citation(s) in RCA: 111] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Wnt signaling is known to regulate multiple processes including angiogenesis, inflammation, and fibrosis. Here, we identified a novel inhibitor of the Wnt pathway, pigment epithelium-derived factor (PEDF), a multifunctional serine proteinase inhibitor. Both overexpression of PEDF in transgenic mice and administration of PEDF protein attenuated Wnt signaling induced by retinal ischemia. Furthermore, PEDF knockdown by small interfering RNA (siRNA) and PEDF knockout in PEDF(-/-) mice induced activation of Wnt signaling. PEDF bound to LRP6, a Wnt coreceptor, with high affinity (K(d) [dissociation constant] of 3.7 nM) and blocked the Wnt signaling induced by Wnt ligand. The physical interaction of PEDF with LRP6 was confirmed by a coprecipitation assay, which showed that PEDF bound to LRP6 at the E1E2 domain. In addition, binding of PEDF to LRP6 blocked Wnt ligand-induced LRP6-Frizzled receptor dimerization, an essential step in Wnt signaling. These results suggest that PEDF is an endogenous antagonist of LRP6, and blocking Wnt signaling may represent a novel mechanism for its protective effects against diabetic retinopathy.
Collapse
|
367
|
Macdonald LJ, Sales KJ, Grant V, Brown P, Jabbour HN, Catalano RD. Prokineticin 1 induces Dickkopf 1 expression and regulates cell proliferation and decidualization in the human endometrium. Mol Hum Reprod 2011; 17:626-36. [PMID: 21546446 PMCID: PMC3172036 DOI: 10.1093/molehr/gar031] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Prokineticin 1 (PROK1) signalling via prokineticin receptor 1 (PROKR1) regulates the expression of several genes with important roles in endometrial receptivity and implantation. This study investigated PROK1 regulation of Dickkopf 1 (DKK1) expression, a negative regulator of canonical Wnt signalling, and its function in the non-pregnant endometrium and first trimester decidua. DKK1 mRNA expression is elevated during the mid-secretory phase of the menstrual cycle and expression increases further in first trimester decidua. DKK1 protein expression is localized to glandular epithelial and stromal cells during the proliferative, early- and mid-secretory phases, whereas expression is confined to the stroma in the late-secretory phase and first trimester decidua. PROK1 induces the expression of DKK1 in endometrial epithelial cells stably expressing PROKR1 and in first trimester decidua explants, via a Gq-calcium-calcineurin-nuclear factor of activated T-cells-mediated pathway. Endometrial epithelial cell proliferation is negatively regulated by PROK1-PROKR1 signalling. We demonstrate that this effect on cell proliferation occurs via DKK1 expression, as siRNA targeted against DKK1 reduces the PROK1-induced decrease in proliferation. Furthermore, decidualization of primary human endometrial stromal cells with progesterone and cyclic adenosine monophosphate is inhibited by miRNA knock down of PROK1 or DKK1. These data demonstrate important roles for PROK1 and DKK1 during endometrial receptivity and early pregnancy, which include regulation of endometrial cell proliferation and decidualization.
Collapse
Affiliation(s)
- Linsay J Macdonald
- MRC Human Reproductive Sciences Unit, The Queen's Medical Research Institute, Edinburgh, UK
| | | | | | | | | | | |
Collapse
|
368
|
Yang L, Wu X, Wang Y, Zhang K, Wu J, Yuan YC, Deng X, Chen L, Kim CCH, Lau S, Somlo G, Yen Y. FZD7 has a critical role in cell proliferation in triple negative breast cancer. Oncogene 2011; 30:4437-46. [PMID: 21532620 DOI: 10.1038/onc.2011.145] [Citation(s) in RCA: 220] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Breast cancer is genetically and clinically heterogeneous. Triple negative breast cancer (TNBC) is a subtype of breast cancer that is usually associated with poor outcome and lack of benefit from targeted therapy. We used microarray analysis to perform a pathway analysis of TNBC compared with non-triple negative breast cancer (non-TNBC). Overexpression of several Wnt pathway genes, such as frizzled homolog 7 (FZD7), low density lipoprotein receptor-related protein 6 and transcription factor 7 (TCF7) was observed in TNBC, and we directed our focus to the Wnt pathway receptor, FZD7. To validate the function of FZD7, FZD7shRNA was used to knock down FZD7 expression. Notably, reduced cell proliferation and suppressed invasiveness and colony formation were observed in TNBC MDA-MB-231 and BT-20 cells. Study of the possible mechanism indicated that these effects occurred through silencing of the canonical Wnt signaling pathway, as evidenced by loss of nuclear accumulation of β-catenin and decreased transcriptional activity of TCF7. In vivo studies revealed that FZD7shRNA significantly suppressed tumor formation, through reduced cell proliferation, in mice bearing xenografts without FZD7 expression. Our findings suggest that FZD7-involved canonical Wnt signaling pathway is essential for tumorigenesis of TNBC, and thus, FZD7 shows promise as a biomarker and a potential therapeutic target for TNBC.
Collapse
Affiliation(s)
- L Yang
- Department of Molecular Pharmacology, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA 91010, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
369
|
Agholme F, Isaksson H, Kuhstoss S, Aspenberg P. The effects of Dickkopf-1 antibody on metaphyseal bone and implant fixation under different loading conditions. Bone 2011; 48:988-96. [PMID: 21329773 DOI: 10.1016/j.bone.2011.02.008] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2010] [Revised: 02/07/2011] [Accepted: 02/07/2011] [Indexed: 12/17/2022]
Abstract
The secreted protein Dickkopf-1 (Dkk1) is an antagonist of canonical Wnt signaling, expressed during fracture healing. It is unclear how it is involved in the mechanical control of bone maintenance. We investigated the response to administration of a Dkk1 neutralizing antibody (Dkk1-ab) in metaphyseal bone under different loading conditions, with or without trauma. In this three part experiment, 120 rats had a screw or bone chamber inserted either unilaterally or bilaterally in the proximal tibia. Mechanical (pull-out) testing, μCT and histology were used for evaluation. The animals were injected with either 10mg/kg Dkk1-ab or saline every 14days for 14, 28, or 42days. Antibody treatment increased bone formation around the screws and improved their fixation. After 28days, the pull-out force was increased by over 100%. In cancellous bone, the bone volume fraction was increased by 50%. In some animals, one hind limb was paralyzed with Botulinum toxin A (Botox) to create a mechanically unloaded environment. This did not increase the response to antibody treatment with regard to screw fixation, but in cancellous bone, the bone volume fraction increased by 233%. Thus, the response in unloaded, untraumatized bone was proportionally larger, suggesting that Dkk1 may be up-regulated in unloaded bone. There was also an increase in thickness of the metaphyseal cortex. In bone chambers, the antibody treatment increased the bone volume fraction. The results suggest that antibodies blocking Dkk1 might be used to stimulate bone formation especially during implant fixation, fracture repair, or bone disuse. It also seems that Dkk1 is up-regulated both after metaphyseal trauma and after unloading, and that Dkk1 is involved in mechano-transduction.
Collapse
Affiliation(s)
- Fredrik Agholme
- Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden.
| | | | | | | |
Collapse
|
370
|
Pietilä I, Ellwanger K, Railo A, Jokela T, Barrantes IDB, Shan J, Niehrs C, Vainio SJ. Secreted Wnt antagonist Dickkopf-1 controls kidney papilla development coordinated by Wnt-7b signalling. Dev Biol 2011; 353:50-60. [DOI: 10.1016/j.ydbio.2011.02.019] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2010] [Revised: 02/14/2011] [Accepted: 02/16/2011] [Indexed: 12/24/2022]
|
371
|
Porntaveetus T, Ohazama A, Choi HY, Herz J, Sharpe PT. Wnt signaling in the murine diastema. Eur J Orthod 2011; 34:518-24. [PMID: 21531785 DOI: 10.1093/ejo/cjr049] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The correct number and shape of teeth are critical factors for an aesthetic and functional dentition. Understanding the molecular mechanisms regulating tooth number and shape are therefore important in orthodontics. Mice have only one incisor and three molars in each jaw quadrant that are divided by a tooth-less region, the diastema. Although mice lost teeth in the diastema during evolution, the remnants of the evolutionary lost teeth are observed as transient epithelial buds in the wild-type diastema during early stages of development. Shh and Fgf signaling pathways that are essential for tooth development have been shown to be repressed in the diastema. It remains unclear however how Wnt signaling, that is also required for tooth development, is regulated in the diastema. In this study we found that in the embryonic diastema, Wnt5a expression was observed in mesenchyme, whereas Wnt4 and Wnt10b were expressed in epithelium. The expression of Wnt6 and Wnt11 was found in both tissues. The Wnt co-receptor, Lrp6, was weakly expressed in the diastema overlapping with weak Lrp4 expression, a co-receptor that inhibits Wnt signaling. Secreted Wnt inihibitors Dkk1, Dkk2, and Dkk3 were also expressed in the diastema. Lrp4 mutant mice develop supernumerary teeth in the diastema that is accompanied by upregulation of Wnt signaling and Lrp6 expression. Wnt signaling is thus usually attenuated in the diastema by these secreted and membrane bound Wnt inhibitors.
Collapse
Affiliation(s)
- Thantrira Porntaveetus
- Department of Craniofacial Development, Dental Institute, King's College London, Guy's Hospital, London, UK
| | | | | | | | | |
Collapse
|
372
|
Bridgewater D, Di Giovanni V, Cain JE, Cox B, Jakobson M, Sainio K, Rosenblum ND. β-catenin causes renal dysplasia via upregulation of Tgfβ2 and Dkk1. J Am Soc Nephrol 2011; 22:718-31. [PMID: 21436291 DOI: 10.1681/asn.2010050562] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Renal dysplasia, defined by defective ureteric branching morphogenesis and nephrogenesis, is the major cause of renal failure in infants and children. Here, we define a pathogenic role for a β-catenin-activated genetic pathway in murine renal dysplasia. Stabilization of β-catenin in the ureteric cell lineage before the onset of kidney development increased β-catenin levels and caused renal aplasia or severe hypodysplasia. Analysis of gene expression in the dysplastic tissue identified downregulation of genes required for ureteric branching and upregulation of Tgfβ2 and Dkk1. Treatment of wild-type kidney explants with TGFβ2 or DKK1 generated morphogenetic phenotypes strikingly similar to those observed in mutant kidney tissue. Stabilization of β-catenin after the onset of kidney development also caused dysplasia and upregulation of Tgfβ2 and Dkk1 in the epithelium. Together, these results demonstrate that elevation of β-catenin levels during kidney development causes dysplasia.
Collapse
Affiliation(s)
- Darren Bridgewater
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, 555 University Avenue, Toronto, Ontario, Canada M5G 1X8
| | | | | | | | | | | | | |
Collapse
|
373
|
Wan M, Li J, Herbst K, Zhang J, Yu B, Wu X, Qiu T, Lei W, Lindvall C, Williams BO, Ma H, Zhang F, Cao X. LRP6 mediates cAMP generation by G protein-coupled receptors through regulating the membrane targeting of Gα(s). Sci Signal 2011; 4:ra15. [PMID: 21406690 DOI: 10.1126/scisignal.2001464] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Ligand binding to certain heterotrimeric guanine nucleotide-binding protein (G protein)-coupled receptors (GPCRs) stimulates the rapid synthesis of cyclic adenosine monophosphate (cAMP) through the G protein α(s) subunit, which activates adenylyl cyclase (AC). We found that the transmembrane receptor low-density lipoprotein receptor-related protein 6 (LRP6), a co-receptor for Wnt proteins, bound to the Gα(s)βγ heterotrimer and that knockdown of LRP6 attenuated cAMP production by various GPCRs, including parathyroid hormone receptor 1 (PTH1R). Knockdown of LRP6 disrupted the localization of Gα(s) to the plasma membrane, which led to a decrease in the extent of coupling of Gα(s) to PTH1R and inhibited the production of cAMP and the activation of cAMP-dependent protein kinase (PKA) in response to PTH. PKA phosphorylated LRP6, which enhanced the binding of Gα(s) to LRP6, its localization to the plasma membrane, and the production of cAMP in response to PTH. Decreased PTH-dependent cAMP production was observed in single cells in which LRP6 was knocked down or mutated at the PKA site by monitoring the cAMP kinetics. Thus, we suggest that the binding of Gα(s) to LRP6 is required to establish a functional GPCR-Gα(s)-AC signaling pathway for the production of cAMP, providing an additional regulatory component to the current GPCR-cAMP paradigm.
Collapse
Affiliation(s)
- Mei Wan
- Department of Orthopaedic Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
374
|
Butler JS, Murray DW, Hurson CJ, O'Brien J, Doran PP, O'Byrne JM. The role of Dkk1 in bone mass regulation: correlating serum Dkk1 expression with bone mineral density. J Orthop Res 2011; 29:414-8. [PMID: 20939046 DOI: 10.1002/jor.21260] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2010] [Accepted: 08/16/2010] [Indexed: 02/04/2023]
Abstract
The Wnt/β-catenin pathway is a major signaling cascade in bone biology, playing a key role in regulating bone development and remodeling, with aberrations in signaling resulting in disturbances in bone mass. The objectives of our study were to correlate serum Dkk1 expression with bone mineral density (BMD) and assess the potential role of Dkk1 as a serological marker of bone mass. Serum was collected from a cohort of patients (n = 36), 18 patients with a reduced BMD and 18 control patients. Serum Dkk1 expression as quantified by ELISA was correlated with lumbar and femoral t- and z-scores. Serum Dkk1 concentration in the osteoporosis group was significantly higher than control group (941 ± 116 vs. 558 ± 47 pg/ml, p < 0.01). Serum Dkk1 expression was highly correlated with bone mass variables with inverse associations found between serum Dkk1 expression and lumbar t-score (r = -0.34, p = 0.00433), lumbar z-score (r = -0.22, p = 0.1907), femur t-score (r = -0.42, p = 0.0101), and femur z-score (r = -0.43, p = 0.0089). Our data further emphasizes the pivotal role played by Wnt/β-catenin signaling in bone mass regulation. Dkk1, a powerful antagonist of canonical Wnt signaling, may have a role to play as a serological marker for disorders of bone mass, warranting further evaluation.
Collapse
Affiliation(s)
- Joseph S Butler
- Clinical Research Centre, UCD School of Medicine & Medical Science, Mater Misericordiae University Hospital, Dublin, Ireland.
| | | | | | | | | | | |
Collapse
|
375
|
Wang SY, Liu YY, Ye H, Guo JP, Li R, Liu X, Li ZG. Circulating Dickkopf-1 is correlated with bone erosion and inflammation in rheumatoid arthritis. J Rheumatol 2011; 38:821-7. [PMID: 21362762 DOI: 10.3899/jrheum.100089] [Citation(s) in RCA: 110] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
OBJECTIVE To explore the potential role of Dickkopf-1 (DKK-1) in rheumatoid arthritis (RA) and to evaluate the effect of a tumor necrosis factor-α (TNF-α) inhibitor (infliximab) and an interleukin 1 receptor antagonist (IL-1Ra; anakinra) on DKK-1 secretion in patients with RA. METHODS Serum samples were collected from 100 patients with RA, 100 patients with other rheumatic diseases (e.g., osteoarthritis and ankylosing spondylitis), and 40 healthy controls. DKK-1 and osteoprotegerin (OPG) levels in serum were detected by ELISA. Serum C-reactive protein (CRP) levels, erythrocyte sedimentation rates (ESR), rheumatoid factor (RF) titers, and anti-cyclic citrullinated peptide antibody were also measured in patients with RA. RESULTS The serum level of DKK-1 was significantly higher in patients with RA than in healthy controls and those with other rheumatic diseases (p < 0.01); the serum DKK-1 level was correlated with levels of CRP (r = 0.488, p = 0.003) and ESR (r = 0.458, p = 2.4 x 10(-4)) and the Sharp score of radiologic change (r = 0.449, p = 0.001) in RA. In contrast to the increasing level of OPG, DKK-1 was significantly decreased in RA patients treated with TNF-α inhibitor (p < 0.01). DKK-1 was significantly decreased in RA patients treated with IL-1Ra (p < 0.01). CONCLUSION DKK-1, as an important mediator, was correlated with bone erosion and inflammation in RA. The change of DKK-1 level may serve as a biomarker of disease activity and bone erosion.
Collapse
Affiliation(s)
- Shi-Yao Wang
- Department of Rheumatology and Immunology, Clinical Immunology Center, Beijing University People's Hospital, 11 Xizhimen South Street, Beijing, China
| | | | | | | | | | | | | |
Collapse
|
376
|
Ribeiro D, Ellwanger K, Glagow D, Theofilopoulos S, Corsini NS, Martin-Villalba A, Niehrs C, Arenas E. Dkk1 regulates ventral midbrain dopaminergic differentiation and morphogenesis. PLoS One 2011; 6:e15786. [PMID: 21347250 PMCID: PMC3037958 DOI: 10.1371/journal.pone.0015786] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2010] [Accepted: 11/24/2010] [Indexed: 12/17/2022] Open
Abstract
Dickkopf1 (Dkk1) is a Wnt/β-catenin inhibitor that participates in many processes during embryonic development. One of its roles during embryogenesis is to induce head formation, since Dkk1-null mice lack head structures anterior to midbrain. The Wnt/β-catenin pathway is also known to regulate different aspects of ventral midbrain (VM) dopaminergic (DA) neuron development and, in vitro, Dkk1-mediated inhibition of the Wnt/β-catenin pathway improves the DA differentiation in mouse embryonic stem cells (mESC). However, the in vivo function of Dkk1 on the development of midbrain DA neurons remains to be elucidated. Here we examined Dkk1+/− embryos and found that Dkk1 is required for the differentiation of DA precursors/neuroblasts into DA neurons at E13.5. This deficit persisted until E17.5, when a defect in the number and distribution of VM DA neurons was detected. Furthermore, analysis of the few Dkk1−/− embryos that survived until E17.5 revealed a more severe loss of midbrain DA neurons and morphogenesis defects. Our results thus show that Dkk1 is required for midbrain DA differentiation and morphogenesis.
Collapse
Affiliation(s)
- Diogo Ribeiro
- Section of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | - Kristina Ellwanger
- Division of Molecular Embryology, DKFZ-ZMBH Alliance, German Cancer Research Center, Heidelberg, Germany
| | - Désirée Glagow
- Division of Molecular Neurobiology, German Cancer Research Center, Heidelberg, Germany
| | - Spyridon Theofilopoulos
- Section of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | - Nina S. Corsini
- Division of Molecular Neurobiology, German Cancer Research Center, Heidelberg, Germany
| | - Ana Martin-Villalba
- Division of Molecular Neurobiology, German Cancer Research Center, Heidelberg, Germany
| | - Christof Niehrs
- Division of Molecular Embryology, DKFZ-ZMBH Alliance, German Cancer Research Center, Heidelberg, Germany
| | - Ernest Arenas
- Section of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
- * E-mail:
| |
Collapse
|
377
|
Danks JA, D'Souza DG, Gunn HJ, Milley KM, Richardson SJ. Evolution of the parathyroid hormone family and skeletal formation pathways. Gen Comp Endocrinol 2011; 170:79-91. [PMID: 21074535 DOI: 10.1016/j.ygcen.2010.10.023] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2010] [Accepted: 10/31/2010] [Indexed: 12/28/2022]
Abstract
Bone is considered to be a feature of higher vertebrates and one of the features that was required for the movement from water onto land. But there are a number of evolutionarily important species that have cartilaginous skeletons, including sharks. Both bony and cartilaginous fish are believed to have a common ancestor who had a bony skeleton. A number of factors and pathways have been shown to be involved in the development and maintenance of bony skeleton including the Wnt pathway and the parathyroid hormone gene family. The study of these pathways and factors in cartilaginous animals may shed light on the evolution of the vertebrate skeleton.
Collapse
Affiliation(s)
- Janine A Danks
- Comparative Endocrinology and Biochemistry Laboratory, School of Medical Sciences, RMIT University, Bundoora, Victoria, Australia.
| | | | | | | | | |
Collapse
|
378
|
David S, Meltzer SJ. Epigenetic Alterations as Contributors to the Pathogenesis, Detection, Prognosis and Treatment of Human Pre-invasive Neoplasia. PRE-INVASIVE DISEASE: PATHOGENESIS AND CLINICAL MANAGEMENT 2011:41-63. [DOI: 10.1007/978-1-4419-6694-0_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
379
|
Zaytouni T, Efimenko EE, Tevosian SG. GATA transcription factors in the developing reproductive system. ADVANCES IN GENETICS 2011; 76:93-134. [PMID: 22099693 DOI: 10.1016/b978-0-12-386481-9.00004-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Previous work has firmly established the role for both GATA4 and FOG2 in the initial global commitment to sexual fate, but their (joint or individual) function in subsequent steps remained unknown. Hence, gonad-specific deletions of these genes in mice were required to reveal their roles in sexual development and gene regulation. The development of tissue-specific Cre lines allowed for substantial advances in the understanding of the function of GATA proteins in sex determination, gonadal differentiation and reproductive development in mice. Here we summarize the recent work that examined the requirement of GATA4 and FOG2 proteins at several critical stages in testis and ovarian differentiation. We also discuss the molecular mechanisms involved in this regulation through the control of Dmrt1 gene expression in the testis and the canonical Wnt/ß-catenin pathway in the ovary.
Collapse
Affiliation(s)
- Tamara Zaytouni
- Department of Genetics, Dartmouth Medical School, Hanover, NH, USA
| | | | | |
Collapse
|
380
|
Curtin JC, Lorenzi MV. Drug discovery approaches to target Wnt signaling in cancer stem cells. Oncotarget 2010; 1:563-577. [PMID: 21317452 PMCID: PMC3248130 DOI: 10.18632/oncotarget.191] [Citation(s) in RCA: 137] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2010] [Accepted: 10/27/2010] [Indexed: 12/18/2022] Open
Abstract
Cancer stem cells (CSCs) represent a unique subset of cells within a tumor that possess self-renewal capacity and pluripotency, and can drive tumor initiation and maintenance. First identified in hematological malignancies, CSCs are now thought to play an important role in a wide variety of solid tumors such as NSCLC, breast and colorectal cancer. The role of CSCs in driving tumor formation illustrates the dysregulation of differentiation in tumorigenesis. The Wnt, Notch and Hedgehog (HH) pathways are developmental pathways that are commonly activated in many types of cancer. While substantial progress has been made in developing therapeutics targeting Notch and HH, the Wnt pathway has remained an elusive therapeutic target. This review will focus on the clinical relevance of the Wnt pathway in CSCs and tumor cell biology, as well as points of therapeutic intervention and recent advances in targeting Wnt/β-catenin signaling.
Collapse
Affiliation(s)
- Joshua C Curtin
- Oncology Drug Discovery, Research and Development, Bristol-Myers Squibb, Princeton, NJ, USA
| | | |
Collapse
|
381
|
Rallis C, Pinchin SM, Ish-Horowicz D. Cell-autonomous integrin control of Wnt and Notch signalling during somitogenesis. Development 2010; 137:3591-601. [DOI: 10.1242/dev.050070] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Integrins act at signalling crossroads, and their interactions with other signal transduction pathways are key to the regulation of normal and pathological cell cytoarchitecture and behaviour. Here, we describe a signalling cascade that acts during the formation of the defining segmental features of the vertebrate body – the somites – in which β1-integrin activity regulates epithelialisation by controlling downstream Wnt and Notch activity crucial for somite border formation. Using in vivo transcriptional inhibition in the developing chick embryo, we show that β1-integrin in the anterior presomitic mesoderm activates canonical Wnt signalling in a cell-autonomous, `outside-inside' manner. Signalling is mediated by integrin-linked kinase (ILK), leading to modulation of glycogen synthase kinase 3β (GSK3β) phosphorylation, and activates Notch signalling in the anterior presomitic mesoderm. The two signalling pathways then cooperate to promote somite formation via cMESO1/Mesp2. Our results show that β1-integrin can regulate cell shape and tissue morphogenesis indirectly, by regulation of downstream signalling cascades.
Collapse
Affiliation(s)
- Charalampos Rallis
- Developmental Genetics Laboratory, London Research Institute, Cancer Research UK, 44 Lincoln's Inn Fields, London WC2A 4LY, UK
| | - Sheena M. Pinchin
- Developmental Genetics Laboratory, London Research Institute, Cancer Research UK, 44 Lincoln's Inn Fields, London WC2A 4LY, UK
| | - David Ish-Horowicz
- Developmental Genetics Laboratory, London Research Institute, Cancer Research UK, 44 Lincoln's Inn Fields, London WC2A 4LY, UK
| |
Collapse
|
382
|
Sikandar S, Dizon D, Shen X, Li Z, Besterman J, Lipkin SM. The class I HDAC inhibitor MGCD0103 induces cell cycle arrest and apoptosis in colon cancer initiating cells by upregulating Dickkopf-1 and non-canonical Wnt signaling. Oncotarget 2010; 1:596-605. [PMID: 21317455 PMCID: PMC3093052 DOI: 10.18632/oncotarget.194] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2010] [Accepted: 11/17/2010] [Indexed: 11/25/2022] Open
Abstract
Colorectal cancer metastatic recurrence and chemoresistance are major causes of morbidity and mortality. Colon cancer initiating cells (CCIC) are thought to contribute to both these processes. To identify drugs with anti-CCIC activity we screened a number of FDA approved and investigational compounds. We found that the class I selective histone deacetylase inhibitor (HDACi) MGCD0103 has significant activity against CCIC, and also significantly inhibits non-CCIC CRC cell xenograft formation. Both MGCD0103 and the pan-HDAC inhibitor Trichostatin impairs CCIC clonogenicity and cause cell cycle arrest and cell death. Gene expression profiling revealed that the canonical WNT ligand DKK-1 is a highly upregulated target of HDAC inhibitors. Despite the presence of APC mutations and constitutive WNT signaling in CCIC, both transfected and recombinant DKK-1 dramatically inhibit CCIC proliferation and clonogenicity. Overall, these data show that inhibition of class I HDACs is a promising novel approach to target both CCIC and non-CCIC CRC cells. Our studies also provide novel insights into roles for DKK1 in addition to canonical WNT signaling and the mechanism of CCIC tumor formation.
Collapse
Affiliation(s)
| | - Diana Dizon
- Department of Medicine, University of California, Irvine, USA
| | - Xiling Shen
- Department of Biomedical Engineering, Cornell University, USA
| | | | | | - Steven M. Lipkin
- Departments of Medicine and Genetic Medicine, Weill Cornell Medical College, USA
| |
Collapse
|
383
|
Analysis of the expression profile of Dickkopf-1 gene in human glioma and the association with tumor malignancy. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2010; 29:138. [PMID: 21029453 PMCID: PMC2990739 DOI: 10.1186/1756-9966-29-138] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2010] [Accepted: 10/28/2010] [Indexed: 11/10/2022]
Abstract
BACKGROUND Gliomas represent the most common primary malignant brain tumors, yet little is known about the molecular pathogenesis of these tumors. The highly-regulated Wnt signal transduction pathway is essential for normal developmental processes, and defects in the pathway are closely linked to oncogenesis. Dickkopf-1 (DKK-1) is a secreted protein that acts as a potent inhibitor of the Wnt pathway. The aim of this study was to examine the expression profile of DKK-1 gene in human glioma and its association with tumor malignancy. METHODS We determined the expression levels of DKK-1 transcript and protein in 12 glioblastoma cell lines, medulloblastoma cells, low-grade glioma cells, and human astrocyte cells by semiquantitative RT-PCR and ELISA. A total of 47 tumor biopsy specimens and 11 normal brain tissue samples from patients with cerebral trauma internal decompression were embedded in paraffin blocks and used for immunostaining. Twenty-six primary tumors and 7 corresponding brain samples were stored in liquid nitrogen and used for RT-PCR. We further examined serologic concentrations and cerebral fluid levels of DKK-1 in patients with tumors. RESULTS DKK-1 could only be detected in 12 human glioblastoma cell lines, not in a panel of other tumor and normal cell lines. The difference between glioma patients and healthy individuals was significant. Kendall's tau-c association analysis also revealed the increased DKK-1 protein expression in tumor tissues of higher pathologic classification. The levels of cerebral fluid DKK-1 protein were significantly higher in glioma patients than in healthy donors or in neuronal benign tumor patients, suggesting that the DKK-1 molecule in cerebral fluids can be applicable to detect the presence of glioma and be developed as a novel prognostic treatment. CONCLUSION The Wnt antagonist DKK-1 gene may have important roles in glioma tumorigenesis and act as a novel biomarker in human malignant glioblastoma.
Collapse
|
384
|
Lad EM, Cheshier SH, Kalani MYS. Wnt-signaling in retinal development and disease. Stem Cells Dev 2010; 18:7-16. [PMID: 18690791 DOI: 10.1089/scd.2008.0169] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The Wnt-signaling pathway is a known regulator of stem cell maintenance, cellular proliferation and differentiation, and cancer development in various tissues. Wnt proteins play a central role during various stages of retinal development; retinal field establishment, retinal and hyaloid vasculogenesis, cornea and lens development, eye field formation, and maintenance of retinal stem cell and neuronal specification in many species are Wnt-regulated processes. Uncontrolled Wnt signaling may cause retinal diseases such as familial exudative vitroretinopathy, retinitis pigmentosa, and Norrie's disease, further underscoring the importance of the Wnt-signaling pathway in the retina. This review summarizes major developments and discoveries regarding the role of the Wnt-signaling pathway as it pertains to retinal development and disease.
Collapse
Affiliation(s)
- Eleonora M Lad
- Department of Ophthalmology, Stanford University School of Medicine, Stanford, California 94305, USA
| | | | | |
Collapse
|
385
|
Glantschnig H, Hampton RA, Lu P, Zhao JZ, Vitelli S, Huang L, Haytko P, Cusick T, Ireland C, Jarantow SW, Ernst R, Wei N, Nantermet P, Scott KR, Fisher JE, Talamo F, Orsatti L, Reszka AA, Sandhu P, Kimmel D, Flores O, Strohl W, An Z, Wang F. Generation and selection of novel fully human monoclonal antibodies that neutralize Dickkopf-1 (DKK1) inhibitory function in vitro and increase bone mass in vivo. J Biol Chem 2010; 285:40135-47. [PMID: 20929859 DOI: 10.1074/jbc.m110.166892] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Wnt/LRP5 signaling is a central regulatory component of bone formative and resorptive activities, and the pathway inhibitor DKK1 is a suppressor of bone formation and bone mass accrual in mice. In addition, augmented DKK1 levels are associated with high bone turnover in diverse low bone mass states in rodent models and disease etiologies in human. However, examination of the precise role of DKK1 in the normal skeleton and in higher species requires the development of refined DKK1-specific pharmacological tools. Here, we report the strategy resulting in isolation of a panel of fully human anti-DKK1 antibodies applicable to studies interrogating the roles of mouse, rhesus, and human DKK1. Selected anti-DKK1 antibodies bind primate and human DKK-1 with picomolar affinities yet do not appreciably bind to DKK2 or DKK4. Epitopes mapped within the DKK1 C-terminal domain necessary for interaction with LRP5/6 and consequently effectively neutralized DKK1 function in vitro. When introduced into naïve normal growing female mice, IgGs significantly improved trabecular bone volume and structure and increased both trabecular and cortical bone mineral densities in a dose-related fashion. Furthermore, fully human DKK1-IgG displayed favorable pharmacokinetic parameters in non-human primates. In summary, we demonstrate here a rate-limiting function of physiologic DKK1 levels in the regulation of bone mass in intact female mice, amendable to specific pharmacologic neutralization by newly identified DKK1-IgGs. Importantly the fully human IgGs display a profile of attributes that recommends their testing in higher species and their use in evaluating DKK1 function in relevant disease models.
Collapse
|
386
|
Zheng G, Zhou M, Ou X, Peng B, Yu Y, Kong F, Ouyang Y, He Z. Identification of carbonic anhydrase 9 as a contributor to pingyangmycin-induced drug resistance in human tongue cancer cells. FEBS J 2010; 277:4506-18. [PMID: 21040473 DOI: 10.1111/j.1742-4658.2010.07836.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Drug resistance is the major obstacle to successful cancer treatment. To understand the mechanisms responsible for drug resistance in tongue cancer, Tca8113 cells derived from moderately differentiated human tongue squamous cell carcinoma were exposed to stepwise escalated concentrations of pingyangmycin (PYM) to develop the resistant cell line called Tca8113/PYM, which showed over 18.78-fold increased resistance to PYM as compared with Tca8113 cells, and cross-resistance to cisplatin, pirarubicin, paclitaxel, adriamycin, and mitomycin. We found that the resistance was not associated with multidrug resistance transporter 1 (p170, p-gp), multidrug resistance-associated protein 1 and breast cancer resistance protein overexpression, so we hypothesized that Tca8113/PYM cells must have some other resistance mechanism selected by PYM. To test this hypothesis, the global gene expression profiles between Tca8113 and Tca8113/PYM cells were compared by cDNA microarray. Eighty-nine genes and thirteen expressed sequence tags with differential expression levels between the two cell lines were identified. Some differential expression levels were validated with real-time PCR and western blot. Furthermore, the functional validation showed that both carbonic anhydrase (CA) inhibitor acetazolamide application and CA9 silencing with CA9 antisense oligonucleotides contribute to the medium pH increase of Tca8113/PYM cells and enhanced PYM chemosensitivity. Moreover, both acetazolamide and CA9 antisense oligonucleotides significantly increased PYM-induced caspase 3 activation in Tca8113/PYM cells. Thus, our study suggests that the resistance of Tca8113/PYM cells is probably associated with CA9 and other differential expression molecules, and that CA9 may be an important marker for prediction of PYM responsiveness in tongue cancer chemotherapy.
Collapse
Affiliation(s)
- Guopei Zheng
- Cancer Research Institute, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | | | | | | | | | | | | | | |
Collapse
|
387
|
Butler JS, Queally JM, Devitt BM, Murray DW, Doran PP, O'Byrne JM. Silencing Dkk1 expression rescues dexamethasone-induced suppression of primary human osteoblast differentiation. BMC Musculoskelet Disord 2010; 11:210. [PMID: 20843343 PMCID: PMC2946271 DOI: 10.1186/1471-2474-11-210] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2010] [Accepted: 09/15/2010] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND The Wnt/β-catenin pathway is a major signaling cascade in bone biology, playing a key role in bone development and remodeling. The objectives of this study were firstly, to determine the effects of dexamethasone exposure on Wnt/β-catenin signaling at an intracellular and transcriptional level, and secondly, to assess the phenotypic effects of silencing the Wnt antagonist, Dickkopf-1 (Dkk1) in the setting of dexamethasone exposure. METHODS Primary human osteoblasts were exposed in vitro to 10-8 M dexamethasone over a 72 h time course. The phenotypic marker of osteoblast differentiation was analyzed was alkaline phosphatase activity. Intracellular β-catenin trafficking was assessed using immunoflourescence staining and TCF/LEF mediated transcription was analyzed using a Wnt luciferase reporter assay. Dkk1 expression was silenced using small interfering RNA (siRNA). RESULTS Primary human osteoblasts exposed to dexamethasone displayed a significant reductions in alkaline phosphatase activity over a 72 h time course. Immunoflourescence analaysis of β-catenin localization demonstrated a significant reduction in intracytosolic and intranuclear β-catenin in response to dexamethasone exposure. These changes were associated with a reduction of TCF/LEF mediated transcription. Silencing Dkk1 expression in primary human osteoblasts exposed to dexamethasone resulted in an increase in alkaline phosphatase activity when compared to scrambled control. CONCLUSIONS Wnt/β-catenin signaling plays a key role in regulating glucocorticoid-induced osteoporosis in vitro. Silencing Dkk1 expression rescues dexamethasone-induced suppression of primary human osteoblast differentiation. Targeting of the Wnt/β-catenin signaling pathway offers an exciting opportunity to develop novel anabolic bone agents to treat osteoporosis and disorders of bone mass.
Collapse
Affiliation(s)
- Joseph S Butler
- Clinical Research Centre, UCD School of Medicine & Medical Science, Mater Misericordiae University Hospital, Dublin, Ireland.
| | | | | | | | | | | |
Collapse
|
388
|
Hojo H, Ohba S, Yano F, Chung UI. Coordination of chondrogenesis and osteogenesis by hypertrophic chondrocytes in endochondral bone development. J Bone Miner Metab 2010; 28:489-502. [PMID: 20607327 DOI: 10.1007/s00774-010-0199-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2010] [Accepted: 05/09/2010] [Indexed: 01/01/2023]
Abstract
Mammalian bones have three distinct origins (paraxial mesoderm, lateral plate mesoderm, and neural crest) and undergo two different modes of formation (intramembranous and endochondral). Bones derived from the paraxial mesoderm and lateral plate mesoderm mainly form through the endochondral process. During this process, hypertrophic chondrocytes play a vital role in inducing osteogenesis. So far, a number of published papers have provided evidence that chondrocyte hypertrophy and osteoblast differentiation are controlled by a variety of signaling pathways and factors; however, little is known about their hierarchy (which are upstream? which are most potent?). In this review, we discuss the signaling pathways and transcriptional factors regulating chondrocyte hypertrophy and osteoblast differentiation based on the evidence that has been reported and confirmed by multiple independent groups. We then discuss which factor would provide the most coherent evidence for its role in endochondral ossification.
Collapse
Affiliation(s)
- Hironori Hojo
- Center for Disease Biology and Integrative Medicine, Faculty of Medicine, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | | | | | | |
Collapse
|
389
|
Camilli TC, Weeraratna AT. Striking the target in Wnt-y conditions: intervening in Wnt signaling during cancer progression. Biochem Pharmacol 2010; 80:702-11. [PMID: 20211149 PMCID: PMC2897923 DOI: 10.1016/j.bcp.2010.03.002] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2010] [Revised: 02/25/2010] [Accepted: 03/01/2010] [Indexed: 12/30/2022]
Abstract
Wnt signaling can be divided into three pathways, namely the canonical Wnt/beta-catenin pathway, and the non-canonical (or heretical) Wnt/Ca(2+) and planar cell polarity (PCP) pathways. Although the canonical Wnt/beta-catenin pathway is the best described in cancer, increasing data points to the importance of the heretical Wnt pathways in several aspects of tumor progression. The recent advances in understanding the players and mechanisms by which these Wnt pathways contribute to cancer progression have led to the identification of numerous molecules that are already, or could be considered, targets for cancer therapy.
Collapse
Affiliation(s)
- Tura C. Camilli
- Laboratory of Immunology and Research Resources Branch, National Institute on, Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Ashani T. Weeraratna
- Laboratory of Immunology and Research Resources Branch, National Institute on, Aging, National Institutes of Health, Baltimore, MD 21224, USA
| |
Collapse
|
390
|
Dalbeth N, Pool B, Smith T, Callon KE, Lobo M, Taylor WJ, Jones PB, Cornish J, McQueen FM. Circulating mediators of bone remodeling in psoriatic arthritis: implications for disordered osteoclastogenesis and bone erosion. Arthritis Res Ther 2010; 12:R164. [PMID: 20796300 PMCID: PMC2945067 DOI: 10.1186/ar3123] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2010] [Revised: 08/04/2010] [Accepted: 08/26/2010] [Indexed: 12/17/2022] Open
Abstract
Introduction Diverse bone pathologies are observed in patients with psoriatic arthritis (PsA). Uncoupling of bone remodeling with disordered osteoclastogenesis has been implicated in the pathogenesis of PsA. The aim of this study was to examine the role of soluble mediators of bone remodeling within the circulation of patients with PsA. Methods Patients with PsA (n = 38), with psoriasis (n = 10), and healthy controls (n = 12) were studied. Serum was obtained for testing of Dikkopf-1 (Dkk-1), macrophage-colony stimulating factor (M-CSF), osteoprotegerin (OPG), and receptor activator of nuclear factor-κB ligand (RANKL) with ELISA. Patients with PsA also had bone densitometry, plain radiographs of the hands and feet, and assessment of peripheral blood osteoclast precursors. Radiographs were scored for erosion, joint-space narrowing, osteolysis, and new bone formation. Results Compared with those with psoriasis and healthy controls, patients with PsA had higher circulating concentrations of Dkk-1 and M-CSF. In patients with PsA, M-CSF and RANKL, but not Dkk-1, concentrations positively correlated with radiographic erosion, joint-space narrowing, and osteolysis scores. Mediators of bone remodeling did not correlate with the number of joints with new bone formation or with total hip-bone mineral density. Peripheral blood CD14+/CD11b+ cells, and the number of osteoclast-like cells and resorptive pits after culture with RANKL and M-CSF also correlated with radiographic damage scores. Circulating M-CSF concentrations correlated with the percentage of peripheral blood CD14+/CD11b+ cells. Conclusions Systemic expression of soluble factors that promote osteoclastogenesis is disordered in patients with PsA and may contribute to periarticular bone loss in this disease.
Collapse
Affiliation(s)
- Nicola Dalbeth
- Department of Medicine, University of Auckland, Auckland 1010, New Zealand.
| | | | | | | | | | | | | | | | | |
Collapse
|
391
|
Buono M, Visigalli I, Bergamasco R, Biffi A, Cosma MP. Sulfatase modifying factor 1-mediated fibroblast growth factor signaling primes hematopoietic multilineage development. J Exp Med 2010; 207:1647-60. [PMID: 20643830 PMCID: PMC2916128 DOI: 10.1084/jem.20091022] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2009] [Accepted: 06/04/2010] [Indexed: 01/03/2023] Open
Abstract
Self-renewal and differentiation of hematopoietic stem cells (HSCs) are balanced by the concerted activities of the fibroblast growth factor (FGF), Wnt, and Notch pathways, which are tuned by enzyme-mediated remodeling of heparan sulfate proteoglycans (HSPGs). Sulfatase modifying factor 1 (SUMF1) activates the Sulf1 and Sulf2 sulfatases that remodel the HSPGs, and is mutated in patients with multiple sulfatase deficiency. Here, we show that the FGF signaling pathway is constitutively activated in Sumf1(-/-) HSCs and hematopoietic stem progenitor cells (HSPCs). These cells show increased p-extracellular signal-regulated kinase levels, which in turn promote beta-catenin accumulation. Constitutive activation of FGF signaling results in a block in erythroid differentiation at the chromatophilic erythroblast stage, and of B lymphocyte differentiation at the pro-B cell stage. A reduction in mature myeloid cells and an aberrant development of T lymphocytes are also seen. These defects are rescued in vivo by blocking the FGF pathway in Sumf1(-/-) mice. Transplantation of Sumf1(-/-) HSPCs into wild-type mice reconstituted the phenotype of the donors, suggesting a cell autonomous defect. These data indicate that Sumf1 controls HSPC differentiation and hematopoietic lineage development through FGF and Wnt signaling.
Collapse
Affiliation(s)
- Mario Buono
- Telethon Institute of Genetics and Medicine, 80134 Naples, Italy
| | - Ilaria Visigalli
- San Raffaele Telethon Institute for Gene Therapy, Division of Regenerative Medicine, San Raffaele Scientific Institute, 20132 Milan, Italy
| | | | - Alessandra Biffi
- San Raffaele Telethon Institute for Gene Therapy, Division of Regenerative Medicine, San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Maria Pia Cosma
- Telethon Institute of Genetics and Medicine, 80134 Naples, Italy
- Institute of Genetics and Biophysics, National Research Council of Italy, 80131 Naples, Italy
| |
Collapse
|
392
|
Niehrs C, Shen J. Regulation of Lrp6 phosphorylation. Cell Mol Life Sci 2010; 67:2551-62. [PMID: 20229235 PMCID: PMC11115861 DOI: 10.1007/s00018-010-0329-3] [Citation(s) in RCA: 152] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2009] [Revised: 02/08/2010] [Accepted: 02/19/2010] [Indexed: 12/14/2022]
Abstract
The Wnt/beta-catenin signaling pathway plays important roles in embryonic development and tissue homeostasis, and is implicated in human disease. Wnts transduce signals via transmembrane receptors of the Frizzled (Fzd/Fz) family and the low density lipoprotein receptor-related protein 5/6 (Lrp5/6). A key mechanism in their signal transduction is that Wnts induce Lrp6 signalosomes, which become phosphorylated at multiple conserved sites, notably at PPSPXS motifs. Lrp6 phosphorylation is crucial to beta-catenin stabilization and pathway activation by promoting Axin and Gsk3 recruitment to phosphorylated sites. Here, we summarize how proline-directed kinases (Gsk3, PKA, Pftk1, Grk5/6) and non-proline-directed kinases (CK1 family) act upon Lrp6, how the phosphorylation is regulated by ligand binding and mitosis, and how Lrp6 phosphorylation leads to beta-catenin stabilization.
Collapse
Affiliation(s)
- Christof Niehrs
- Division of Molecular Embryology, DKFZ-ZMBH Alliance, Deutsches Krebsforschungszentrum, Im Neuenheimer Feld 581, Heidelberg, Germany.
| | | |
Collapse
|
393
|
Abstract
Growth factor signaling is required for cellular differentiation, tissue morphogenesis, and tissue homeostasis. Misregulation of intracellular signal transduction can lead to developmental defects during embryogenesis or particular diseases in the adult. One family of growth factors important for these aspects is given by the Wnt proteins. In particular, Wnts have important functions in stem cell biology, cardiac development and differentiation, angiogenesis, cardiac hypertrophy, cardiac failure, and aging. Knowledge of growth factor signaling during differentiation will allow for improvement of targeted differentiation of embryonic or adult stem cells toward functional cardiomyocytes or for understanding the basis of diseases. Our major aim here is to provide a state of the art review summarizing our present knowledge of the intracellular Wnt-mediated signaling network. In particular, we provide evidence that the subdivision into canonical and noncanonical Wnt signaling pathways solely based on the identity of Wnt ligands or Frizzled receptors is not appropriate anymore. We thereby deliver a solid base for further upcoming articles of a review series focusing on the role of Wnt proteins on different aspects of cardiovascular development and dysfunction.
Collapse
Affiliation(s)
- Tata Purushothama Rao
- Institute for Biochemistry and Molecular Biology, Ulm University, Albert-Einstein-Allee 11, D-89081 Ulm, Germany
| | | |
Collapse
|
394
|
Mason JJ, Williams BO. SOST and DKK: Antagonists of LRP Family Signaling as Targets for Treating Bone Disease. J Osteoporos 2010; 2010:460120. [PMID: 20948575 PMCID: PMC2951123 DOI: 10.4061/2010/460120] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2010] [Revised: 04/27/2010] [Accepted: 05/26/2010] [Indexed: 11/22/2022] Open
Abstract
The study of rare human genetic disorders has often led to some of the most significant advances in biomedical research. One such example was the body of work that resulted in the identification of the Low Density Lipoprotein-Related Protein (LRP5) as a key regulator of bone mass. Point mutations were identified that encoded forms of LRP5 associated with very high bone mass (HBM). HBM patients live to a normal age and do not appear to have increased susceptibility to carcinogenesis or other disease. Thus, devising methods to mimic the molecular consequences of this mutation to treat bone diseases associated with low bone mass is a promising avenue to pursue. Two groups of agents related to putative LRP5/6 functions are under development. One group, the focus of this paper, is based on antagonizing the functions of putative inhibitors of Wnt signaling, Dickkopf-1 (DKK1), and Sclerostin (SOST). Another group of reagents under development is based on the observation that LRP5 may function to control bone mass by regulating the secretion of serotonin from the enterrochromaffin cells of the duodenum.
Collapse
Affiliation(s)
- James J. Mason
- Center for Skeletal Disease Research, Van Andel Research Institute, 333 Bostwick NE, Grand Rapids, MI 49503, USA,Laboratory of Orthopaedic Cell and Tissue Mechanics, Van Andel Research Institute, 333 Bostwick NE, Grand Rapids, MI 49503, USA
| | - Bart O. Williams
- Center for Skeletal Disease Research, Van Andel Research Institute, 333 Bostwick NE, Grand Rapids, MI 49503, USA,Laboratory of Cell Signaling and Carcinogenesis, Van Andel Research Institute, 333 Bostwick NE, Grand Rapids, MI 49503, USA,*Bart O. Williams:
| |
Collapse
|
395
|
Li Y, Lu W, King TD, Liu CC, Bijur GN, Bu G. Dkk1 stabilizes Wnt co-receptor LRP6: implication for Wnt ligand-induced LRP6 down-regulation. PLoS One 2010; 5:e11014. [PMID: 20543981 PMCID: PMC2882367 DOI: 10.1371/journal.pone.0011014] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2010] [Accepted: 05/16/2010] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND The low density lipoprotein receptor-related protein-6 (LRP6) is an essential co-receptor for canonical Wnt signaling. Dickkopf 1 (Dkk1), a major secreted Wnt signaling antagonist, binds to LRP6 with high affinity and prevents the Frizzled-Wnt-LRP6 complex formation in response to Wnts. Previous studies have demonstrated that Dkk1 promotes LRP6 internalization and degradation when it forms a ternary complex with the cell surface receptor Kremen. METHODOLOGY/PRINCIPAL FINDINGS In the present study, we found that transfected Dkk1 induces LRP6 accumulation while inhibiting Wnt/LRP6 signaling. Treatment with Dkk1-conditioned medium or recombinant Dkk1 protein stabilized LRP6 with a prolonged half-life and induces LRP6 accumulation both at the cell surface and in endosomes. We also demonstrated that Kremen2 co-expression abrogated the effect of Dkk1 on LRP6 accumulation, indicating that the effect of Kremen2 is dominant over Dkk1 regulation of LRP6. Furthermore, we found that Wnt3A treatment induces LRP6 down-regulation, an effect paralleled with a Wnt/LRP6 signaling decay, and that Dkk1 treatment blocked Wnt3A-induced LRP6 down-regulation. Finally, we found that LRP6 turnover was blocked by an inhibitor of caveolae-mediated endocytosis. CONCLUSIONS/SIGNIFICANCE Our results reveal a novel role for Dkk1 in preventing Wnt ligand-induced LRP6 down-regulation and contribute significantly to our understanding of Dkk1 function in Wnt/LRP6 signaling.
Collapse
Affiliation(s)
- Yonghe Li
- Department of Biochemistry and Molecular Biology, Drug Discovery Division, Southern Research Institute, Birmingham, Alabama, United States of America
- Departments of Pediatrics, St. Louis Children's Hospital, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Wenyan Lu
- Department of Biochemistry and Molecular Biology, Drug Discovery Division, Southern Research Institute, Birmingham, Alabama, United States of America
| | - Taj D. King
- Department of Biochemistry and Molecular Biology, Drug Discovery Division, Southern Research Institute, Birmingham, Alabama, United States of America
| | - Chia-Chen Liu
- Departments of Pediatrics, St. Louis Children's Hospital, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Gautam N. Bijur
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Guojun Bu
- Departments of Pediatrics, St. Louis Children's Hospital, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| |
Collapse
|
396
|
Gujral TS, MacBeath G. A system-wide investigation of the dynamics of Wnt signaling reveals novel phases of transcriptional regulation. PLoS One 2010; 5:e10024. [PMID: 20383323 PMCID: PMC2850918 DOI: 10.1371/journal.pone.0010024] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2010] [Accepted: 03/08/2010] [Indexed: 12/29/2022] Open
Abstract
Aberrant Wnt signaling has been implicated in a wide variety of cancers and many components of the Wnt signaling network have now been identified. Much less is known, however, about how these proteins are coordinately regulated. Here, a broad, quantitative, and dynamic study of Wnt3a-mediated stimulation of HEK 293 cells revealed two phases of transcriptional regulation: an early phase in which signaling antagonists were downregulated, providing positive feedback, and a later phase in which many of these same antagonists were upregulated, attenuating signaling. The dynamic expression profiles of several response genes, including MYC and CTBP1, correlated significantly with proliferation and migration (P<0.05). Additionally, their levels tracked with the tumorigenicity of colon cancer cell lines and they were significantly overexpressed in colorectal adenocarcinomas (P<0.05). Our data highlight CtBP1 as a transcription factor that contributes to positive feedback during the early phases of Wnt signaling and serves as a novel marker for colorectal cancer progression.
Collapse
Affiliation(s)
- Taranjit S. Gujral
- Department of Chemistry & Chemical Biology, Harvard University, Cambridge, Massachusetts, United States of America
| | - Gavin MacBeath
- Department of Chemistry & Chemical Biology, Harvard University, Cambridge, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
397
|
Cajánek L, Ribeiro D, Liste I, Parish CL, Bryja V, Arenas E. Wnt/beta-catenin signaling blockade promotes neuronal induction and dopaminergic differentiation in embryonic stem cells. Stem Cells 2010; 27:2917-27. [PMID: 19725118 DOI: 10.1002/stem.210] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Embryonic stem cells (ESCs) represent not only a promising source of cells for cell replacement therapy, but also a tool to study the molecular mechanisms underlying cellular signaling and dopaminergic (DA) neuron development. One of the main regulators of DA neuron development is Wnt signaling. Here we used mouse ESCs (mESCs) lacking Wnt1 or the low-density lipoprotein receptor-related protein 6 (LRP6) to decipher the action of Wnt/beta-catenin signaling on DA neuron development in mESCs. We provide evidence that the absence of LRP6 abrogates responsiveness of mESCs to Wnt ligand stimulation. Using two differentiation protocols, we show that the loss of Wnt1 or LRP6 increases neuroectodermal differentiation and the number of mESC-derived DA neurons. These effects were similar to those observed following treatment of mESCs with the Wnt/beta-catenin pathway inhibitor Dickkopf1 (Dkk1). Combined, our results show that decreases in Wnt/beta-catenin signaling enhance neuronal and DA differentiation of mESCs. These findings suggest that: 1) Wnt1 or LRP6 are not strictly required for the DA differentiation of mESCs in vitro, 2) the levels of morphogens and their activity in ESC cultures need to be optimized to improve DA differentiation, and 3) by enhancing the differentiation and number of ESC-derived DA neurons with Dkk1, the application of ESCs for cell replacement therapy in Parkinson's disease may be improved.
Collapse
Affiliation(s)
- Lukás Cajánek
- Laboratory of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institute, S-171 77 Stockholm, Sweden
| | | | | | | | | | | |
Collapse
|
398
|
Zhou XL, Qin XR, Zhang XD, Ye LH. Downregulation of Dickkopf-1 is responsible for high proliferation of breast cancer cells via losing control of Wnt/beta-catenin signaling. Acta Pharmacol Sin 2010; 31:202-10. [PMID: 20139903 DOI: 10.1038/aps.2009.200] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
AIM To investigate the role of DKK-1/Wnt/beta-catenin signaling in high proliferation of LM-MCF-7 breast cancer cells, a sub-clone of MCF-7 cell line. METHODS Two cell lines (MCF-7 and LM-MCF-7) with different proliferation abilities were used. LM-MCF-7 cells were transiently transfected with the pcDNA3-DKK-1 plasmid encoding the DKK-1 gene (or MCF-7 cells were transfected siRNA targeting DKK-1 mRNA). Flow cytometry analysis and 5-bromo-2'-deoxyuridine (BrdU) incorporation assay were applied to detect the cell proliferation. The expression levels of beta-catenin, phosphorylated beta-catenin, c-Myc, cyclin D1 and Survivin were examined by Western blot analysis. The regulation of Survivin was investigated by Luciferase reporter gene assay. RESULTS Western blot and RT-PCR analysis showed that the expression level of DKK-1 was downregulated in LM-MCF-7 relative to MCF-7 cells. Flow cytometry and BrdU incorporation assay showed DKK-1 could suppress growth of breast cancer cells. Overexpression of DKK-1 was able to accelerate phosphorylation-dependent degradation of beta-catenin and downregulate the expression of beta-catenin, c-Myc, cyclin D1 and Survivin. Luciferase reporter gene assay demonstrated that Survivin could be regulated by beta-catenin/TCF4 pathway. CONCLUSION We conclude that the downregulation of DKK-1 is responsible for the high proliferation ability of LM-MCF-7 breast cancer cells via losing control of Wnt/beta-catenin signaling pathway, in which c-Myc, cyclinD1 and Survivin serve as essential downstream effectors. Our finding provides a new insight into the mechanism of breast cancer cell proliferation.
Collapse
|
399
|
Bourhis E, Tam C, Franke Y, Bazan JF, Ernst J, Hwang J, Costa M, Cochran AG, Hannoush RN. Reconstitution of a frizzled8.Wnt3a.LRP6 signaling complex reveals multiple Wnt and Dkk1 binding sites on LRP6. J Biol Chem 2010; 285:9172-9. [PMID: 20093360 DOI: 10.1074/jbc.m109.092130] [Citation(s) in RCA: 172] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Wnt/beta-catenin signaling is initiated at the cell surface by association of secreted Wnt with its receptors Frizzled (Fz) and low density lipoprotein receptor-related protein 5/6 (LRP5/6). The study of these molecular interactions has been a significant technical challenge because the proteins have been inaccessible in sufficient purity and quantity. In this report we describe insect cell expression and purification of soluble mouse Fz8 cysteine-rich domain and human LRP6 extracellular domain and show that they inhibit Wnt/beta-catenin signaling in cellular assays. We determine the binding affinities of Wnts and Dickkopf 1 (Dkk1) to the relevant co-receptors and reconstitute in vitro the Fz8 CRD.Wnt3a.LRP6 signaling complex. Using purified fragments of LRP6, we further show that Wnt3a binds to a region including only the third and fourth beta-propeller domains of LRP6 (E3E4). Surprisingly, we find that Wnt9b binds to a different part of the LRP6 extracellular domain, E1E2, and we demonstrate that Wnt3a and Wnt9b can bind to LRP6 simultaneously. Dkk1 binds to both E1E2 and E3E4 fragments and competes with both Wnt3a and Wnt9b for binding to LRP6. The existence of multiple, independent Wnt binding sites on the LRP6 co-receptor suggests new possibilities for the architecture of Wnt signaling complexes and a model for broad-spectrum inhibition of Wnt/beta-catenin signaling by Dkk1.
Collapse
Affiliation(s)
- Eric Bourhis
- Department of Protein Engineering, Genentech, Inc, South San Francisco, California 94080, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
400
|
Sakane H, Yamamoto H, Kikuchi A. LRP6 is internalized by Dkk1 to suppress its phosphorylation in the lipid raft and is recycled for reuse. J Cell Sci 2010; 123:360-8. [PMID: 20053636 DOI: 10.1242/jcs.058008] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Beta-catenin-mediated Wnt signaling is crucial in animal development and tumor progression. The phosphorylation of low-density lipoprotein receptor-related protein 6 (LRP6), a single-span transmembrane Wnt receptor, plays a vital role in this signaling. Dickkopf1 (Dkk1) has been shown to inhibit the Wnt-beta-catenin pathway, but the mechanism is not yet clear. Here, evidence is presented that Wnt3a-dependent phosphorylation of LRP6 occurs in the lipid raft and that Dkk1 inhibits the formation of a complex between LRP6 and casein kinase 1gamma (CK1gamma) by removing LRP6 from the lipid raft. Dkk1 internalized LRP6 in a Rab5-dependent mechanism to prevent phosphorylation mediated by CK1gamma. The internalized LRP6 was recycled back in a Rab11-dependent mechanism to the cell-surface membrane, and the recycled LRP6 again responded to Wnt3a and Dkk1. Internalized Dkk1 was trafficked in a Rab7-mediated route and degraded in the lysosome. These results suggest that Dkk1 induces the internalization of LRP6 to suppress its phosphorylation in the lipid raft and allows subsequent recycling of LRP6 so that it can be reused for signaling.
Collapse
Affiliation(s)
- Hiroshi Sakane
- Department of Biochemistry, Graduate School of Biomedical Sciences, Hiroshima University, Hiroshima 734-8551, Japan
| | | | | |
Collapse
|